บทคัดย่อ

รหัสโครงการ PDF-43/2542

ชื่อโครงการ ผลกระทบของคุณภาพความสดและการสูญเสียสภาพธรรมชาติของแอคโดมัย

โอซินต่อความสามารถในการเกิดเจลของโปรดีนกล้ามเนื้อจากปลาทรายแดง

(Nemipterus spp.)

ชื่อนักวิจัย นาย จิรวัฒน์ ยงสวัสดิกุล

ผู้ช่วยศาสตราจารย์ สาขาเทคโนโลยีอาหาร

มหาวิทยาลัยเทคโนโลยีสุรนารี จ. นครราชสีมา 30000

E-mail address: Jirawat@ccs.sut.ac.th

ระยะเวลาโครงการ 2 ปี (2542-2544)

วัดถุประสงค์ของงานวิจัยนี้คือ เพื่อศึกษาการเปลี่ยนแปลงทางชีวเคมีและโครงร่างของ แอคโดมัยโอซินจากปลาทรายแดง (Nemipterus spp.) ระหว่างการเก็บในน้ำแข็งและแช่แข็ง นอกจากนี้เพื่อศึกษาลักษณะการสูญเสียสภาพธรรมชาติของแอคโดมัยโอซินเมื่อได้รับความร้อน และศึกษาปรากฏการณ์เซททิง (Setting) ซึ่งเกิดจากการเร่งปฏิกิริยาของทรานสกลูทามิเนส โดยวิเคราะห์ K-value โดยวิธี HPLC ในตัวอย่างปลาแช่น้ำแข็ง ศึกษาการเปลี่ยนแปลงโครง ร่างในปลาแช่น้ำแข็งและปลาแช่นข็งโดยวิเคราะห์กิจกรรม ATPase ปริมาณกลุ่มซัลฟไฮดริลทั้ง หมด และ surface hydrophobicity ศึกษาการสูญเสียสภาพธรรมชาติของแอคโดมัยโอซินขณะ ได้รับความร้อนโดย circular dichroism, scanning calorimetry และ dynamic rheology วิเคราะห์กิจกรรมทรานสกลูทามิเนสโดยวิธีวัดค่าการเรื่องแสง วิเคราะห์การเชื่อมโยงมัยโอซิน โดยพันธะโควาเลนท์ด้วย SDS-PAGE วัดลักษณะเนื้อสัมผัสโดย punch test

K-value เพิ่มขึ้นหลังจากเก็บปลาในน้ำแข็ง 12 วัน แอคโตมัยโอชินเปลี่ยนโครงร่างเมื่อ ปลาถูกเก็บในน้ำแข็งและแช่แข็ง ปลาควรถูกใช้เป็นวัตถุดิบในการผลิตซูริมิเมื่อเก็บในน้ำแข็ง ไม่เกิน 3 วัน หรือแช่แข็งไม่เกิน 6 สัปดาห์ การสูญเสียสภาพธรรมชาติเของแอคโตมัยโอชิน เนื่องจากความร้อนเริ่มที่อุณหภูมิประมาณ 35 องศาเชลเชียส กระบวนการล้างในขั้นตอนการ ผลิตซูริมิลดกิจกรรมของทรานสกลูทามิเนสประมาณร้อยละ 50 ทรานสกลูทามิเนสที่หลงเหลือ อยู่ในซูริมิมีบทบาทสำคัญต่อการเกิดเซททิงที่ 25 และ 40 องศาเชลเชียส กรดไอโอโดอะซิติก (iodoacetic acid) สามารถยับยั้งกิจกรรมทรานสกลูทามิเนสได้อย่างมีประสิทธิภาพ การเดิม แคลเชียมไอออนร้อยละ 0.2 พร้อมกับการบ่มที่ 40 องศาเชลเชียส สามารถปรับปรุงลักษณะ เนื้อสัมผัสของเจลซูริมิได้เป็นอย่างดี

ควรศึกษาวิธีการปรับปรุงคุณภาพของชูริมิที่ผลิตจากปลาแช่แข็งซึ่งเป็นวัตถุดิบหลัก สำหรับอุตสาหกรรมชูริมิไทย นอกจากนี้ควรศึกษากลไกการเร่งปฏิกิริยาของทรานสกลูทามิ เนสในปลาทรายแดงในแนวลึก ความเข้าใจดังกล่าวสามารถนำมาประยุกต์ใช้ปรับปรุงคุณภาพ ของเจลชูริมิต่อไป

คำหลัก ปลาทรายแดง ชูริมิ โครงร่างโปรตีน ทรานสกลูทามิเนส

Abstract

Project code: PDF-43/2542

Project Title: Influence of Freshness Quality and Actomyosin Denaturation on Gel-

Forming Ability of Threadfin Bream (Nemipterus spp.) Muscle Proteins

Investigator: Jirawat Yongsawatdigul, Ph.D.

Assistant Professor, School of Food Technology

Suranaree Univeristy of Technology, Nakhon Ratchasima 30000

E-mail Address: Jirawat@ccs.sut.ac.th

Project Period: 2 Years (1999-2001)

Objectives of this study were to investigate biochemical and conformation changes of threadfin bream (*Nemipterus spp.*) actomyosin during ice and frozen storage. In addition, to elucidate thermal denaturation pattern of actomyosin. "Setting" phenomenon induced by endogenous transglutaminase was also studied. K-value determined by HPLC was conducted in fish stored in ice. Conformation changes of actomyosin during iced and frozen storage were followed using ATPase activities, total sulfhydryl group (SH), and surface hydrophobicity. Circular dichroism, scanning calorimetry, and dynamic rheology were applied to study thermal denaturation and aggregation of actomyosin. Transglutaminase activity was monitored through spectroflucrometric method. Covalent cross-links of myosin were examined using SDS-PAGE. Textural properties of surimi gel were evaluated by punch test.

K-value increased after ice storage of 12 days. Actomyosin underwent conformation changes during ice and frozen storage. Fish should be processed to surimi within 3 days of storage in ice or within 6 weeks of frozen storage. Thermal denaturation of actomyosin began at around 35°C. Washing process during surimi processing reduced transglutaminase activity to about 50%. Residual endogenous transglutaminase played an important role in setting of surimi gel at 25 and 40°C. lodoacetic acid effectively inhibited transglutaminase activity. Addition of 0.2% Ca²⁺ with preincubation at 40°C significantly improved textural properties of surimi gel.

It is essential to seek for a means to improve quality of surimi produced from frozen fish, a typical raw material for Thai surimi industry. In addition, catalytic mechanism of endogenous transglutaminase should be investigated in depth. Gel quality can be further enhanced through understanding of transglutaminase-catalyzed reaction.

Key words: Threadfin bream, surimi, protein conformation, transglutaminase