รหัสโครงการ: PDF/02/2543 (สัญญาเพิ่มเติม)

โครงการ: การพัฒนาระบบบำบัดน้ำเสียแบบใหม่ที่เป็นถังปฏิกรณ์ชีวภาพที่มีไมโครฟิลเตรชันเมมเบรน จมตัว แบบแอนนอกซิก-แอนแอโรบิก-ออกซิก เพื่อการนำกลับน้ำเสียมาใช้ประโยชน์ใหม่

ผู้วิจัย: ผู้ช่วยศาสตราจารย์ ดร. ชวลิต รัตนธรรมสกุล คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

Email Address: fencrt@kankrow.eng.chula.ac.th

ระยะเวลาโครงการ: 1 กรกฎาคม 2544 - 30 มิถุนายน 2545

งานวิจัยนี้เป็นการศึกษาประสิทธิภาพ และกลไกในการกำจัดซีโอดี ไนโตรเจน และฟอสฟอรัส ของระบบถังปฏิกรณ์เมมเบรนซีวภาพ แบบแอนนอกซิก-แอนแอโรบิค-แอโรบิค หรือ Anoxic-anaerobic-aerobic membrane bioreactor (A³-MBR) ซึ่งพัฒนาขึ้นมาใหม่ที่ภาควิชา โดยคำนึงถึงผล ของอัตราการแบ่งน้ำเสียเข้าส่วนแอนนอกซิกต่อส่วนไร้ออกซิเจน และอายุสลัดจ์ที่มีต่อระบบ

ในงานวิจัยแบ่งออกเป็นการทดลองย่อย 3 การทดลอง ซึ่งการทดลองที่ 1 ควบคุมอัตราการ แบ่งน้ำเสียเข้าส่วนแอนนอกซิกต่อส่วนไร้ออกซิเจนเท่ากับ 25% ต่อ 75 % การทดลองที่ 2 ควบคุมอัตรา การแบ่งน้ำเสียเข้าส่วนแอนนอกซิกต่อส่วนไร้ออกซิเจนเท่ากับ 75% ต่อ 25% ทั้งสองการทดลองควบคุม อายุสลัดจ์ไว้ที่ 40 วัน และการทดลองที่ 3 ควบคุมอัตราการแบ่งน้ำเสียเข้าส่วนแอนนอกซิกต่อส่วนไร้ ออกซิเจนเท่ากับ 75% ต่อ 25% โดยควบคุมอายุสลัดจ์ไว้ที่ 80 วัน

น้ำเสียที่ใช้ในงานวิจัยเป็นน้ำเสียสังเคราะห์ ผลการทดลองที่สภาวะคงตัวของการทดลองพบว่า ระบบมีประสิทธิภาพในการกำจัดดังนี้ ประสิทธิภาพในการกำจัดชีโอดีสูงกว่า 97% ประสิทธิภาพในการ กำจัดที่เคเอ็นสูงกว่า 95% ประสิทธิภาพในการกำจัดไนโตรเจนทั้งหมดสูงกว่า 93% และประสิทธิภาพใน การกำจัดฟอสฟอรัสสูงกว่า 80%

จากการทดลองพบว่าอัตราการแบ่งน้ำเสียไม่มีผลต่อการกำจัดซีโอดี ในโตรเจน และ ฟอสฟอรัส เนื่องจากในเตรตที่เวียนมาจากส่วนเติมออกซิเจนของระบบมีค่าต่ำ เพราะเกิดปฏิกิริยาเอส เอ็นดี (Simultaneous Nitrification Denitrification) ที่ส่วนเติมออกซิเจน และค่าอายุสลัดจ์ที่เพิ่มขึ้น ไม่ทำให้ประสิทธิภาพในการกำจัดฟอสฟอรัสลดลง เนื่องจากปริมาณฟอสฟอรัสในเซลล์เพิ่มขึ้นจาก 8.4% ที่อายุสลัดจ์ 40 วันเป็น 10.7% ที่อายุสลัดจ์ 80 วัน และอายุสลัดจ์ที่เพิ่มขึ้นทำให้ขนาดอนุภาค ฟล็อกในระบบมีขนาดใหญ่ขึ้น จึงเกิดปฏิกิริยาเอสเอ็นดีมากขึ้นด้วย

จากการวิเคราะห์ชุมชนแบคทีเรียด้วยเทคนิคฟิชพบว่า เบต้าชับคลาสโพทีโอแบคทีเรีย (beta subclass proteobacteria) เป็นแบคทีเรียกลุ่มเด่นในระบบ ค่าฟลักช์เฉลี่ยของแผ่นเยื่อตลอดการ ทดลองเท่ากับ 13.5 ลิตร/ตร.ม.-ชม. โดยมีค่าใช้จ่ายในการบำบัดน้ำเสียด้วยระบบเท่ากับ 171 บาท/ลบ.ม.

คำหลัก: เอสามเอ็มบีอาร์ การกำจัดในโตรเจนและฟอสฟอรัสทางชีวภาพ กระบวนการไมโครฟิลเตรชัน ปฏิกิริยาเอสเอ็นดี

ABSTRACT

Project Code: PDF/02/2543 (Additional Contract)

Project Title: Development of a new Anoxic-anaerobic-oxic submerged-type MF

membrane bioreactor for wastewater reclamation

Investigator: Assistant Professor Dr. Chavalit Ratanatamskul

Department of Environmental Engineering, Chulalongkorn University

Email Address: fencrt@kankrow.eng.chula.ac.th Project Period: 1 July 2001 – 30 June 2002

This research was a study on the efficiencies and mechanisms of Anoxic-Anaerobic-Aerobic Membrane Bioreactor (A³-MBR) which has been newly developed for removal of COD, nitrogen and phosphorus in wastewater. The research examined the effects of the flowrate distribution ratio to anoxic per anaerobic compartments and sludge age on the system performance.

The research was divided into 3 experiments. The first experiment controlled the flowrate distribution ratio of wastewater to anoxic part at a rate of 25% per 75% of the anaerobic part. The second experiment controlled the flowrate distribution ratio of wastewater to the anoxic part at a rate of 75% per 25% of the anaerobic part. Both experiments kept sludge age at 40 days. The third experiment maintained the same flowrate distribution ratio as in the second experiment, but increasing sludge age to 80 days.

The wastewater used in the research was synthetic wastewater. The synthetic wastewater had 325 mg.COD/l., 7.9 mg.P/l. and 35.8 mg.TKN/l. From the results obtained at steady state condition, it was found that the system performance in terms of COD, TKN, TN and phosphorus removal was higher than 97%, 95%, 93%, and 80%, respectively.

The experiments indicated that the flowrate distribution ratio yielded insignificant effects on COD, nitrogen and phosphorus removal. The increasing of sludge age did not decrease the phosphorus removal efficiency since the phosphorus content in cells rose from 8.4% at the sludge age of 40 days to 10.7% at the sludge age of 80 days. Furthermore, the older the sludge age, the larger the floc size in the system. This led to the increase in total nitrogen removal due to simultaneous nitrification denitrification (SND) reaction. The analysis of bacterial community by FISH technique, beta subclass proteobacteria was found to be the dominant bacteria in the system. The average membrane flux throughout the experiments was 13.5 litre/m².-hr., and the cost for wastewater treatment using A³-MBR was approximately 171 Baht/m³.

KEYWORDS: A³-MBR, biological nutrient removal, microfiltration process, simultaneous nitrification denitrification