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Abstract

Blind channel estimation for coherent signal de-
tection in OFDM systems is considered in this pa-
per. Based on previous work on identifiability of
OFDM blind channel estimation and signal detec-
tion, the paper shows that a pilot signal needed for
resolving scaling ambiguity can be implicitly sent
using coded transmiited waveform. By exploiting
a structure constraint as found in signal waveform
coding schemes such as a convolutional code, it is
shown that maximum likelihood blind channel esti-
mation and signal detection can be achieved with-
out the need of explicit pilot signal transmission.
In addition, when compared with standard chan-
nel estimation and signal detection method using a
linear least squares estimator, it is shown by com-
puter simulation that the proposed blind signal de-
tection method employing the coded pilot signal
outperforms the least squares method.

Keywords: blind channel estimation, equalizer,
OFDM

1l INTRODUCTION

The method of Orthegonal Frequency Division
Multiplexing (OFDM)} modulation has gained 1nuch
research interest recently, due to improved spectrum
utilization efficiency as well as the elimination of Inter-
Symbol Interference (ISI) through the use of guarding
time. The scheme has been adopted in digital au-
dio/video broadcasting standards, and is the candi-
date for use in future multimedia mobile communi-
cations services. However, to allow for coherent de-
tection, an equalizer is needed at the receiving side.
Current solution to the problem use a LMMSE {Lin-
early Mimimum Mean Squares Error) or LSE (Least
Squares Error) estimator using a pilot/training sig-
nal. sent along with a useful data [1][2}[3]. This ap-

proach. however. reduces bandwidth utilization. espe-
ciallyv under lughly thne-varving environment (e.g.. a
robule wsor on a moving vehicle) where a training sig-
nal must be sent more frequently. In [H], it s shown
that blind channel estimation and signal detection are
possible. up to a scaling factor. To resolve a scaling
ambiguity probleny, however, at least a single training
sigual is needed to be transmitted along with useful
transmitted signal. It was found. however, that the
use of a minimum number of training signal as re-
quired by the theorem in [4] yields poor performance.
To improve the method's performance, more training
signals are needed to be transmitted. Omne problem
associated with this semi-blind scheme is on the selec-
tion of OFDMI subchannels for transmitting training
signals. From our observation, the choice does affect
the performance of the inethod. However, it appears
that the optimal choice of training signal transmission
subchannels is varied with signal propagation condi-
tion, and thus can not be known a priori. Without
a strong reason in favour of particular OFDM sub-
channels. a training signal which is coded into sev-
eral OFDAl subchannels may be emploved. Initially.
use of spread spectrum principle for spreading a pilot
signal over a [ew OFDM channels was investigated.
However. this approach was soon rejected because it
results in increased complexity in solving a maximuimn
likelihood equation for channel estimation and signal
detection. In this paper, through the employment of
some signal coding schemes, it is shown that (semni-
) blind channel estimation and signal detection can
be obtained without explicit transmission of a train-
ing signal. Two applicable signal coding schemes are
described in this paper. The first coding method is
simply coustructed from all possible code words for
a pariticutar code length. Then, half of the code
words which are 1’s complemnent to the remaining code



vords are removed. The second coding method con-
sidered is a standard convolutional code with rate 2/4
[5). Certain structure constraint inkerent in these cod-
ing methods removes scaling ambiguity in blind chan-
nel estimation. Because many communications sys-
tems including the proposed digital video broadcasting
(DVB} standard, which employs OFDAI modulation,
use such signal coding scheme to improve receiver per-
formance, there is no extra loss in transmission band-
width by using the proposed method. This is in con-
trast to a pilot-assisted channel estimation method.
where explicit training signal transmission is required.

In the following section, problem formulation and
notation declaration are first given. Maximum likeli-
hood blind channel estimator using coded pilot signal
is described in Section 3. Simwulation results compar-
ing the proposed method with a standard least squares
method are given in Section 4. Section 5 provides some
concluding remarks.

2 PROBLEM FORMULATION
Consider first the problem of channel estimation
and transmitted symbol detection in OFDMI systems.
From the received signal

Af—1

Z(t) = D him st — mT5) + n(t) (1)

m=0

where the baseband transmitted signal s(t}, obtained
by OFDM modulation using N subcarriers, is ex-

pressed as
N-1

s(t) = D binelnat (2)
n=0

and {(Ta + T) + Ty < t < (i + 1)(Ta + Ty), for
t = 0,1,..., the problem is to estimate the channel
parameters b m, m = 0,---, M — 1, and the trans-
mitted symbols b;,, n = 0,---,N — 1. From the
above equation b; 5, is the data transmitted over the
n'* carrier frequency at the i*® OFDM symbol dura-
tion. The symbol b; , is a member of the P-alphabet
set {bk l k = 1?"'|P} (e'g-n bt’.u € {1,—1} for a
BPSK-modulation case). The constants T, and Ty
refer to respectively, as the guard time and symbol
detection time durations. In addition, T, is the sam-
pling time interval. From Eq.(2), s(t) is a combination
of N modulated signals, with different subcarrier fre-
quencies separated from the adjacent ones by a factor
of Aw. With L samples of the input signal =(t), ob-
tained with the sampling time interval of T, over the
time duration Ty { = T, L ), we arrive at the following
compact equation.

[x(iL) (iL +1)---z((G + 1)L — 1)]T
A.B;Azh; +n; (3)

Xy

where
Ac=lacoac --acyvo] (4)
b o
bia
B, = (5)
b(,]’\"—l

Ag = [agoasi - agar ] {6)
}1, - [hf.U hl.l"'h(__\f—i]T (T)
n,=[nUL)nGL +1) .0 on({i + 1YL —1)|T (3)
Acn = [1 f’)”_\w.r' e ‘€J“AWIT"(L _1)]T. n=0---.N~1
(9)

Agm = [1 eimALT e—;rr:A*-T_(N—l):lT‘

me=0,--- A -1 10)

In 4], it is shown that. with certain requirements,
blind estimation of the channel parameters. as well as
the detection of transmitted symbols can be achieved
up to a scaling factor. without the need for a train-
ing signal. To resolve scaling ambiguity. however. the
maximum likelihood blind ¢chanrel estimator as formu-
lated in [4] requires a training data to be transmitted
on at least one of N OFDMI subchannels. Without a
particular reason in favour of any subchannel for train-
ing signal transmission, the use of a implicitly coded
training signal sent over several OFDAI subchannels
is proposed in the next section.

3 OFDM MaXiMUM LIKELIHOOD ESTI-
MaTOR UsiNGg CoDED PILOT SIGNAL

By performing a discrete Fourier transform on the
received signal x;. we arrive at

1

X, = NAf”x,-
= B;Ajh; + N; (11)
where N; = £ AMn;. Given X,. it is shown in [4]

that channel parameters and transmitted data sym-
bols are identifiable up to a scaling factor, provided
that N > Q(Af — 1}). Here @ is the number of
bp/by with distinct values, where p,b5 € {b),-+,bp}.
p,g=1,---,P. A compact form of a maximum like-
lihood method for joint signal! detection and channel
parameter estimation of OF DA-BPSK modulated sig-
nal is given by [4]

bi = maxTr{B;AsAfBIX.X{)
= maxTr{X;AsA{Xb;b]}

= max bl X ALAT Xb; (12)



where

X, = . (13)
Xy nvo

and X, are the ['" elements of X,. Given the estimmate
of b,. the maximum likelihood estimate of h, can be
obtained from

- 1 R
h, = TA,’,’B;x, (1)

where B, is constructed from Eq.(3) using the MIL
estiinate of b,. To eliminate scaling ambiguity. a con-
straint must be imposed on b,. This can be achieved]
by sending a known signal over one of the QFDAT sub-
channels. Here. however. we use signal coding meth-
ods which impeose structure constraint on b, to solve
the problemn instead. A sufficient constraint for solv-
ing the scaling ambiguity problem is that. among the
codewords used. there 13 no codeword pair which is
I's compleinent. For exumple. with the codwords as
described in Table 1. the 0°" and 7'" codewords form
a l's complement pair. One of the possible selection
of codewords to meet the requirement js shown in Ta-
ble 1. with the selected words marked by underlines.
In this example, we note that the total number of
data bits transmitted using this code is equal to 2¥ 1,
Thus. the reduction in transmission bandwidth is the
same as for the case where one subchannel is used
for explicit transmission of a training signal. Another
signal coding method that can be applied is a convo-
lutional code. In this paper, we use the code with the
code rate 2/4. The codewords with length 8 are shown
in Table 2. They were obtained by reinitialising the
coding process every 4 information bits. It should be
noted that this frequent reinitilization is not a usual
practice. but applied here simply to reduce computer
simulation complexity. From the table, it can be veri-
fied that there is no 1°s complement codeword pair for
such codeword set.

4 EXPERIMENTAL RESULTS

In our computer simulation experiment, the system
operated at the 1GHz band. The transmission band-
width is 500 KHz and the number of subchannels is
64. Data was modulated with each subcarrier using
the BPSK modulation scheme. The system operated
under a Rayleigh-fading channel with the maximum
delay spread of 6 us. The exponential power decay
model was employed with the mean delay spread of 3
#s. For each channel estimation, only data obtained
over a single OFDAI symbol duration (T,) was used.

Table 11 Codewords obtained by eliminating 1's com-
plement pairs

Information bits  Code words

Q0 oo
(HRN]
010

ul o oll
1

10 101

11

Daoppler eftect was not taken into account I oll ex-
perients. the convelutional code as shiown e Table
2 was applied for the semi-blind method with coded
pilut signals. For the semi-blid and least squares es-
timation (LSE) methods emploving explicit transimis-
sion of the training signals. the known signals were
transmitted on 4 evenly distributed subchannels

e the first experiment. both semi-blind methods
used ouly data obtained from 16 subehannels for chan-
nel estimation. 'L he resulting estimated channel pa-
rametels were used for signal detection. The resulting
bit error rates and block error rates are shown in Fisg-
ures 1 and 2 respectively. From these figures. it is seen
that the proposed coded pilot method performed rea-
sonably well in terms of block error rate. Next. instead
of indirect signal detection as before (i.e., through the
estimation of the channel parameters), each block of
received data containing 16 subchannels was used for
maximum likelihood signal detection {(by using Eq.
(12)). A simple branch-and-bound technique was em-
ployed to speedup the calculation [6]. The results mea-
sured in terims of bit error rate and block error rate
are shown in Figure 3 and Figure 4.

Next. similar experiment was performed by divid-
ing the received data into 8 blocks of 8 subchannels
each. Seini-blind signal detection was carried out on
each data bluck independently. using both explicit and
implicit pilot signal transmission. The resulting block
error rate perforimance is shown in Figure 5 (BER cal-
culation was performed based on the G4-subchannels
block size). Increased performance obtained by the
proposed coded pilot method can be seen.

5 (CONCLUSIONS

In this paper, we have shown that semi-blind chan-
nel estimation and signal detection from the received
OFDMI signal can be performed using the coded trans-
mitted signal. The stucture constraint of commonly
used signal waveform coding schemes can be exploited



Table 2: A rate 2/4 binary convolutional code

Information bits Code words

0000 00000000
0001 00001011
0010 00000110
0011 0000t101
0100 10111010
0101 10110001
4110 10111100
a1il 10110111
1004 01100101
1001 01101110
1010 01100011
1011 01101000
1100 11011111
1101 11010100
1110 11011001
L1111 11010010

to remove scaling ambiguity of the blind estimation
method. By using this implicit. coded pilut signal
scheme. there is no need for explicit transmission of
a known training signal. In addition. because a signal
coding sclieme is emploved for current OF DAl syvstems.
the method can be applied without {further reducing
spectrum efficiency. The performance of the method
has been shown through computer simulation. in com-
parison with the blind method using a training sig-
nal. and the least squares estimation method. By us-
ing certain signal detection configuration. it has been
found that the proposed method offers improved per-
formance over the metlods employing explicit trans-
mission of a training signal. This performance im-
provement. however. comes at the cost of increasing
sighal detection complexity. Future work will be fo-
cused on a detailed analvsis of the developed scheimne.
as well as a rehinement on efficient algorithm for solv-
ing the maximum likelihood equation.
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