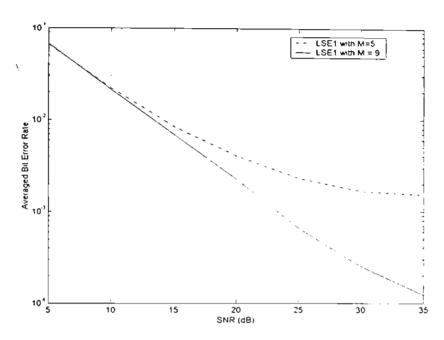
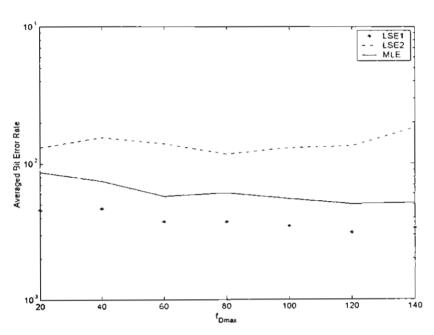

N-1 เนื่องจากไม่นับตัวที่เป็น pilot signal ที่ทราบค่าอยู่แล้ว) การค้นหาค่าสูงสุดโดยตรงต้อง ใช้จำนวนครั้งในการคำนวณหาค่าถึง $2^{15}=32768$ ครั้ง มากกว่า 200 เท่าของจำนวนครั้งใน การคำนวณที่ต้องใช้โดยอัลกอริที่มที่เสนอ

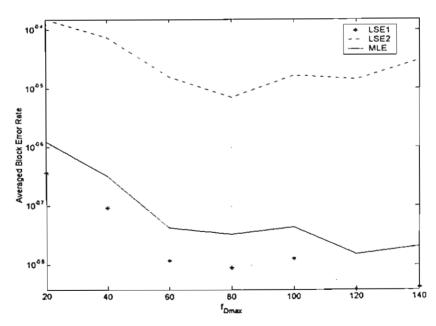

อนึ่งเนื่องจากในการทดลองข้างต้นใช้จำนวนสัมประสิทธิ์ตัวกรองสัญญาณ (M=5) ที่ แทน Discrete-time Channel Model น้อยกว่าช่วงกว้างของ Impulse Response ของช่อง สัญญาณ (= 9) ดังแสดงในรูปที่ 5 โดยช่วงของ Impulse Response ที่ใช้ในการตรวจจับและ คำนวณหาค่าคุณสมบัติช่องสัญญาณแสดงเป็นเส้นประในรูป ทำให้มีความคลาดเคลื่อนในการ คำนวณค่า รูปที่ 6 แสดงการเปรียบเทียบค่า Averaged Bit Error Rate ที่ได้โดยใช้ค่า Impulse Response จริง (LSE1) ที่ M=5 และที่ M=9 จะเห็นได้ว่าประสิทธิภาพของการตรวจจับข้อ มูลของวิธีการ LSE1 ที่ M=9 ได้ผลที่ดีกว่า จึงคาดได้ว่าประสิทธิภาพของวิธีการ MLE ที่ เสนอน่าจะเพิ่มขึ้นหากใช้ค่า M=9 แทนค่าที่ใช้ในการทดลองที่ผ่านมา (แต่จะต้องอาศัยการ คำนวณที่ซับซ้อนมากขึ้น)

รูปที่ 5 : แสดงตัวอย่างของค่า Channel Impulse Response ตลอดช่วงเวลา 100 OFDM Symbols ที่ $f_{D\,{
m max}}\,$ = 100

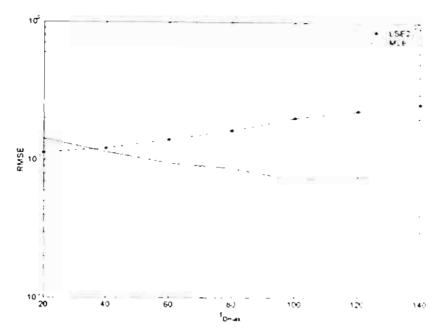
สำนักงานถองทุกสนับสนุนการวิจัย (สกว.) ชั้น 14 อาคาร เกล เก็ก ทางกอร์ เลขที่ 979/17-21 กามเพทลให้หิน แขวงสามเสนใน เขตพญาไท กรุงภพา 10400 โทร.298-0455 โกรสาร 298-0476 Home pages http://www.irl.or.th E-mail: tri-biblocart.or.th

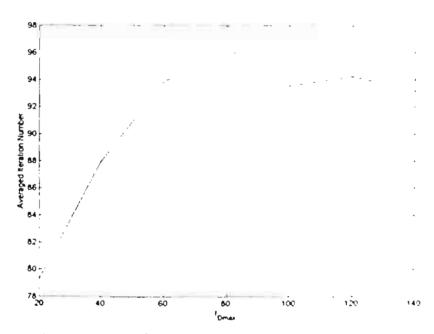

รูปที่ 6: คำ Averaged Bit Error Rate โดยใช้วิธี LSE1 ที่ M=5 และ M=9

การทดลองที่ 2: ในการทดลองนี้ทำการกำหนดค่า SNR ไว้ที่ 20 dB แล้วทำการเปลี่ยนแปลง ค่า $f_{D\max}$ จาก 20 จนถึง 140 (เท่ากับการเปลี่ยนแปลงความเร็วในการเคลื่อนที่จาก 20 กม./ ชม. – 150 กม./ชม.ที่ความถี่ศูนย์กลางเท่ากับ 1 GHz) เพื่อทดสอบผลของปรากฏการณ์ Doppler Effect ค่าเฉลี่ยของ Bit Error Rate และ Block Error Rate ที่ได้จากการตรวจจับ สัญญาณที่ส่งด้วยวิธีการทั้ง 3 แสดงดังรูปที่ 7 และ 8 จากรูปพบว่าผลที่ได้ต่างไปจากที่คาด การณีไว้ในเบื้องต้นที่ว่า ณ. ค่า $f_{D\max}$ สูง ๆ ค่าความคลาดเคลื่อนในการตรวจจับสัญญาณที่ส่ง ควรจะมีแนวโน้มสูงตามไปด้วย แต่จากผลการทดลองพบว่ามิได้มีแนวโน้มลดลงอย่างมีนัย สำคัญแต่อย่างใด ปรากฏการณ์ดังกล่าวอาจวิเคราะห์ได้ว่าเกิดจากการที่ ณ. $f_{D\max}$ สูง ๆ Deep Fading ที่เกิดในบางช่วงความถี่ของช่องสัญญาณอันอาจเป็นผลทำให้การตรวจจับผิดพลาดได้ นั้น ถูกผลของการเปลี่ยนแปลงช่องสัญญาณที่รวดเร็ว ทำให้ส่งผลต่อการตรวจจับสัญญาณน้อย ลง เนื่องจาก Deep Fading มีการเปลี่ยนแปลงตำแหน่งที่เกิดในแต่ละช่วงของ OFDM Symbol ทำให้ไปชดเชยผลในทางลบอันเกิดจากปรากฏการณ์ Doppler Effect อย่างไรก็ดีจากรูปผลการ ทดลอง พบว่าวิธีการ MLE มีอัตราความผิดพลาดในการตรวจจับสัญญาณน้อยกว่า LSE2 ใน ทุกค่าของ $f_{D\max}$


รูปที่ 9 แสดง Normalized RMSE ของค่าคุณสมบัติช่องสัญญาณที่ประมาณได้โดยใช้ วิธี MLE และ LSE2 จากรูปจะพบว่าความผิดพลาดในการประมาณค่าคุณสมบัติช่องสัญญาณ ด้วยวิธีการ LSE2 เพิ่มขึ้นเมื่อ $f_{D_{\max}}$ มีค่าเพิ่มขึ้นตามที่คาดหมาย ในขณะที่วิธีการ MLE ได้ผล การคำนวณค่าคุณสมบัติช่องสัญญาณที่ถูกต้องมากกว่าวิธี LSE2 โดยเฉพาะอย่างยิ่งที่ค่า $f_{D_{\max}}$ สูง ๆ ทั้งนี้เนื่องจากค่าคุณสมบัติช่องสัญญาณที่คำนวณได้ด้วยวิธีการ MLE เป็นค่าเฉลี่ย เฉพาะในแต่ละ OFDM Symbol หากแต่ค่าคุณสมบัติช่องสัญญาณที่คำนวณได้ด้วยวิธีการ

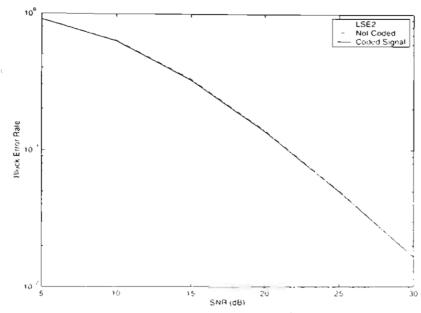
LSE2 เป็นคำเฉลี่ยตลอดช่วงเวลา 5 OFDM Symbol จึงมีความคลาดเคลื่อนเพิ่มมากขึ้นเมื่อ $f_{D_{\max}}$ มีค่ามากขึ้น


รูปที่ 10 แสดงคำเฉลี่ยของจำนวนครั้งในการคำนวณโดยอัลกอริทึ่มที่เสนอ จากรูปพบ ว่าจำนวนครั้งในการคำนวณที่ต้องใช้มีแนวโน้มเพิ่มมากขึ้นที่ $f_{D\max}$ สูง ๆ

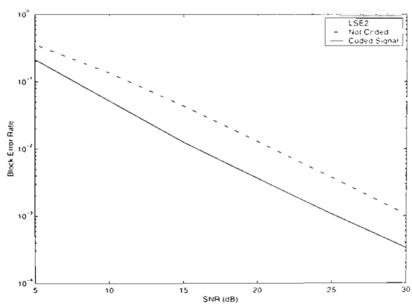

รูปที่ 7 : ค่า Averaged Bit Error Rate ที่ $f_{D\,\mathrm{max}}$ ต่าง ๆ (SNR = 20 dB)

รูปที่ 8 : ค่า Averaged Block Error Rate ที่ $f_{D\,\mathrm{max}}$ ต่าง ๆ (SNR = 20 dB)

รูปที่ 9 : ค่า RMSE ของคำคุณสมบัติซ่องลัญญาณที่คำนวณได้โดยวิธีการ MLE และ LSE2 จากการทดลองที่ 2


รูปที่ 10 : ค่าเฉลี่ยของจำนวนครั้งในการคำนวณที่ค่า f_{Dmi} ค่าง ๆ (SNR = 20 dB)

การทดลองที่ 3: ในการทดลองนี้ เป็นการทดสอบประสิทธิภาพการทำงานของเทคนิค Semiblind OFDM Channel Estimation ดังรายละเอียดที่ได้นำเสนอในหัวข้อ 6 โดยในการทดลอง ได้ทำการจำลองสภาพแวดล้อมของระบบการสื่อสารเป็นแบบ Rayleigh fading channel โดยมี คำ Maximum Delay Spread อยู่ที่ 3 μ s ทำการจำลองการส่งสัญญาณที่ใช้การมอดูเลชั่นแบบ OFDM-BPSK โดยใช้จำนวนช่องสัญญาณย่อย N=64 ความถี่ศูนย์กลาง f_{μ} เท่ากับ 1 GHz ความกว้างช่องสัญญาณ (bandwidth) เท่ากับ 500 KHz ช่วงห่างของเวลาในการแซมปลิ้ง T_{μ}


= 1/500 ms ค่า guard band interval $T_{_{\rm K}}$ = 10 $T_{_{
m S}}$ อนึ่งในการทดลองดังกล่าวไม่ได้มีการ พิจารณาผลของปรากฏการณ์ Doppler Effect

การทดลองเพื่อตรวจจับสัญญาณที่ส่งกระทำโดยใช้วิธีการ Semi-blind MLE โดยอาศัย สัญญาณนำร่องที่ผ่านการโค้ดสัญญาณตาม Codeword ที่แสดงในตารางที่ 2 นอกจากนี้ได้ทำ การทดลองกับวิธีการ LSE2 และ วิธีการ Semi-blind MLE โดยอาศัยสัญญาณนำร่องที่มิได้ผ่าน การโค้ดสัญญาณส่งไปในสี่ช่องสัญญาณย่อย ซึ่งตำแหน่งของช่องสัญญาณย่อยที่ใช้ส่งสัญญาณ นำร่องคงที่ตลอดการทดลองและกระจายตลอดช่วงแบนด์วิทของช่องสัญญาณ

ในชั้นแรกทำการทดลองตรวจจับสัญญาณที่ส่งด้วยวิธีทางอ้อม โดยเริ่มจากทำการ คำนวณหาค่าคุณสมบัติช่องสัญญาณโดยอาศัยข้อมูลที่ได้รับจากช่องสัญญาณย่อย 16 ช่อง สัญญาณ (ซึ่งมีสัญญาณนำร่องส่งมาในบางช่องสัญญาณย่อยอยู่ด้วย) จากนั้นจึงใช้ค่าคุณสมบัติ ช่องสัญญาณที่คำนวณได้มาชดเชยผลของช่องสัญญาณ (equalization) กับสัญญาณที่ได้รับใน ลักษณะเดียวกับการชดเชยสัญญาณที่ใช้ในวิธี LSE1 ดังสมการที่ 35 จากนั้นจึงทำการตรวจจับ สัญญาณที่ส่งมาโดยใช้วิธีการแบบ hard-decision กระทำกับสัญญาณที่ชดเชยผลของช่อง สัญญาณแล้วดังกล่าว ผลจากการทดลองดังแสดงในรูปที่ 11 พบว่าวิธีการ Semi-blind MLE โดยอาศัยการโค้ดสัญญาณนำร่อง มิได้ทำให้ได้ประสิทธิภาพการทำงานที่ดีกว่าวิธีการที่ไม่ใช้ การโค้ดสัญญาณนำร่องแต่อย่างใด เมื่อพิจารณาในแง่ของ Block Error Rate ทั้งนี้เนื่องจากพบ ว่าผลของการโค้ดสัญญาณนำร่องมิได้ทำให้ความถูกต้องในการประมาณค่าคุณสมบัติช่อง อย่างไรก็ดีในกรณีที่การดรวจจับสัญญาณที่ส่งกระทำโดยตรง สัญญาณเพิ่มขึ้นจนมีนัยสำคัญ ด้วยสมการที่ 19 โดยทำแบ่งสัญญาณที่ได้รับออกเป็น 4 ชุด แต่ละชุดประกอบด้วยสัญญาณจาก 16 ช่องสัญญาณย่อย พบว่าวิธีการ Semi-blind MLE โดยอาศัยการโค้ดสัญญาณนำร่องมีประ สิทธิภาพในการตรวจจับสัญญาณได้ดีกว่าวิธีที่ไม่ใช้การโค้ดสัญญาณนำร่อง (ในแง่ของ Block Error Rate) ดังแสดงในรูปที่ 12

รูปที่ 11 : ค่า Averaged Block Error Rate ของสัญญาณที่ตรวจจับทางอ้อมด้วยวิธี Semiblind MLE โดยลาศัยสัญญาณนำร่องที่ผ่านการโค้ดสัญญาณ (Coded) และที่ไม่ผ่านการโค้ดสัญญาณ (Not Coded)

รูปที่ 12 : ค่า Averaged Block Error Rate ของสัญญาณที่ตรวจจับโดยตรงจากสมการที่ 19 ด้วยวิธีการ Semi-blind MLE โดยการโค้ดสัญญาณนำร่องและไม่โค้ดสัญญาณนำร่อง

8 บทสรุป

ในรายงานการวิจัยฉบับนี้ได้นำเสนอเทคนิคการคำนวณค่าคุณสมบัติช่องสัญญาณและ การตรวจจับสัญญาณโดยไม่ใช้สัญญาณนำร่องสำหรับระบบสื่อสาร OFDM โดยได้แสดงให้เห็น ด้วยวิธีการพิสูจน์เชิงคณิตศาสตร์ว่าการคำนวณหาค่าคุณสมบัติช่องสัญญาณและการตรวจจับ สัญญาณในระบบการสื่อสาร OFDM สามารถกระทำได้โดยไม่ใช้สัญญาณนำร่อง โดยอาศัย เพียงสัญญาณที่ได้รับตลอดช่วงเวลา 1 OFDM Symbol นอกจากนี้ในรายงานได้นำเสนอสมการ ในการคำนวณหาค่าคุณสมบัติช่องสัญญาณโดยพัฒนาจากหลักการหาค่าพารามิเตอร์แบบ Maximum Likelihood โดยได้ทำการปรับสมการให้ลดความซับซ้อนในการคำนวณลงสำหรับ กรณีที่ใช้เทคนิคการมอดูเลชั่นแบบ OFDM-PSK อย่างไรก็ดีการแก้ปัญหายังต้องอาคัยการ คำนวณที่ซับซ้อน ดังนั้นผู้วิจัยจึงได้ทำการพัฒนาอัลกอริที่มซึ่งลดความซับซ้อนในการคำนวณ ลงจากวิธีการค้นหาคำตอบโดยตรง (Exhausive Search) ได้เป็นอย่างมากโดยอาคัยหลักการ ของเทคนิค Branch-and-Bound ในสาขา Integer Programming นอกจากนี้ผู้วิจัยได้เลนอ เทคนิคการคำนวณค่าคุณสมบัติช่องสัญญาณแบบใช้สัญญาณนำร่องบางส่วน ที่เพิ่มประสิทธิ ภาพในการตรวจจับสัญญาณในขณะที่ลดขีดความสามารถในการส่งข้อมูลของระบบ (bandwidth utilization) ไปเพียงบางส่วน

ประสิทธิภาพการทำงานของวิธีการและอัลกอริที่มที่เสนอได้แสดงในการทดลองที่กระทำ โดยอาศัยการจำลองด้วยคอมพิวเดอร์บนพื้นฐานของแบบจำลองมาตรฐาน ผลจากการทดลอง พบว่าวิธีการที่เสนอมีประสิทธิภาพที่ดีกว่าวิธีการแบบที่อาศัยสัญญาณนำร่อง (ที่ SNR > 10 dB) อย่างไรก็ดีปัญหาของการนำเอาวิธีที่เสนอไปใช้ในทางปฏิบัติคือความชับซ้อนในการ คำนวณที่ยังมีมากกว่าวิธีการที่อาศัยสัญญาณนำร่องอยู่มาก โดยแนวทางการแก้ปัญหาดังกล่าว ที่เป็นไปได้ประการหนึ่งคือการอาศัยโหมดการทำงานแบบติดตาม (Tracking Mode) ในบาง ช่วง (เช่น โดยใช้วิธีการ Decision Direct Estimation) แทนที่จะต้องทำการคำนวณหาค่าคุณ สมบัติช่องสัญญาณโดยวิธีการที่เสนอในทุก OFDM Symbol การศึกษาวิเคราะห์ประสิทธิภาพ ของวิธีการที่เสนอ ตลอดจนแนวทางการแก้ปัญหาความซับซ้อนในการคำนวณดังกล่าวควรจะ ได้มีการศึกษาต่อไปในอนาคด

เอกสารอ้างอิง

- [1] ETSI EN 300 744, "Digital Video Broadcasting (DVB); Framing structure, channel coding and modulation for digital terrestrial television," *European Telecommunication Standards Institute*, ETSI, 2001.
- [2] J. Bringham, "Multicarrier modulation for data transmission: An idea whose time has come," *IEEE Commun. Mag.*, vol. 28, May 1990, pp. 982-989.
- [3] F. Sanzi, and J. Speidel, "An Adaptive Two-Dimensional Channel Estimator for Wireless OFDM with Application to Mobile DVB-T," *IEEE Trans. Broadcasting*, vol. 46, no. 2, June 2000, pp. 128-133.
- [4] Y. Li, "Pilot-Symbol-Aided Channel Estimation for OFDM in Wireless Systems," *IEEE Trans. Vehicular Tech.*, vol. 49, no. 4, July 2000, pp. 1207-1215.
- [5] O. Edfors, M. Sandell, J. van de Beek, S. K. Wilson, and P. O. Borjesson, "OFDM Channel Estimation by Singular Value Decomposition," *IEEE Trans. Communications*, vol. 46, no. 7, July 1998, pp. 931-939.
- [6] Y. Li, J. Cimini, Jr., and N. R. Sollengerger, "Robust Channel Estimation for OFDM Systems with Rapid Dispersive Fading Channels," *IEEE Trans.* Communications, vo. 46, no. 7, July 1998, pp. 902-914.
- [7] B. Muquet, and M. de Courville, "Blind and semi-blind channel identification methods using second order statistics for OFDM systems," *Proc. IEEE ICASSP*, Mar 1999. Pp. 2745-2748.
- [8] X. Zhuang; Z. Ding, and A. L. Swindlehurtst, "A statistical subspace method for blind channel identification in OFDM communications," *Proc. IEEE ICASSP '00*. Vol. 5, Mar 2000, pp. 2493 –2496.
- [9] A. Scaglione, G. B. Giannakis, and S. Barbarossa, "Redundant Filterbank Precoders and Equalizers Part II: Blind Channel Estimation, Synchronization, and Direct Equalization," *IEEE Trans. Signal Processing*, vol. 47, no. 7, July 1999, pp. 2007-2022.
- [10] S. Zhou; G. B. Giannakis, and A. Scaglione, "Long codes for generalized FH-OFDMA through unknown multipath channels" *IEEE Transactions on Communications*, vol. 49, no. 4, April 2001, pp. 721 –733.

- [11] E. Moulines, P. Duhamel, J. F. Cardoso, and S. Mayrargue, "Subspace methods for the blind identification of multichannel FIR filters," *IEEE Trans. Signal Processing*, vo. 43, Feb. 1995, pp. 516-525.
- [12] D. Yellin, and B. Porat, "Blind Identification of FIR Systems Excited by Discrete-Alphabet Inputs," *IEEE Trans. Signal Processing*, vol. 41, no.3, March 1993, pp. 1331-1339.
- [13] W. L. Winston, Introduction to Mathematical Programming: Applications and Algorithms, Duxbury Press, 1995.
- [14] H. A. Taha, Integer Programming: Theory, Applications, and Computations, Academic Press, 1975.
- [15] R. L. Rardin, Optimization in Operations Research, Prentice-Hall, 1998.
- [16] P. Hoeher, "A Statistical Discrete-Time Model for the WSSUS Multipath Channel," *IEEE Trans. Vehicular Technology*, vol. 41, no. 4, November 1992, pp. 461-468.
- [17] U. Tureli, D. Kivanc, and H. Liu, "Experimental and Analytical Studies on a High-Resolution OFDM Carrier Frequency Offset Estimator," *IEEE Trans. Vehicular Technology*, vol. 50, no. 2, March 2001, pp. 629-643.
- [18] Y. S. Choi, P. J. Voltz, and F. A. Cassara, "ML Estimation of Carrier Frequency Offset for Multicarrier Signals in Rayleigh Fading Channels," *IEEE Trans.* Vehicular Technology, vol. 50, no. 2, March 2001, pp. 644-655.

ภาคผนวก : Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

รายชื่อบทความที่ได้รับการตีพิมพ์

1.1 N. Chotikakamthorn, and H. Suzuki, "Semi-blind OFDM Channel Estimation Using Coded Pilot Signal," Proc. 3rd Int. Sym. Wireless Personal Multimedia Communications (WPMC), Bangkok, November 2000, pp. 693-697. (Excellent Paper Award)

2. การนำผลงานวิจัยไปใช้ประโยชน์

2.1 นักศึกษาระดับปริญญาโทร่วมในโครงการวิจัย (1 คน)

Semi-blind OFDM Channel Estimation Using Coded Pilot Signal

Nopporn Chotikakamthorn † and Hiroshi Suzuki ‡

[†]Faculty of Information Technology King Mongkut's Institute of Technology, Ladkrabang, Bangkok 10520, Thailand e-mail: nopporn@tkmitlac.th

[‡]International Cooperation Center for Science and Technology Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo, Japan

Abstract

Blind channel estimation for coherent signal detection in OFDM systems is considered in this paper. Based on previous work on identifiability of OFDM blind channel estimation and signal detection, the paper shows that a pilot signal needed for resolving scaling ambiguity can be implicitly sent using coded transmitted waveform. By exploiting a structure constraint as found in signal waveform coding schemes such as a convolutional code, it is shown that maximum likelihood blind channel estimation and signal detection can be achieved without the need of explicit pilot signal transmission. In addition, when compared with standard channel estimation and signal detection method using a linear least squares estimator, it is shown by computer simulation that the proposed blind signal detection method employing the coded pilot signal outperforms the least squares method.

Keywords: blind channel estimation, equalizer, OFDM

1 Introduction

The method of Orthogonal Frequency Division Multiplexing (OFDM) modulation has gained much research interest recently, due to improved spectrum utilization efficiency as well as the elimination of Inter-Symbol Interference (ISI) through the use of guarding time. The scheme has been adopted in digital audio/video broadcasting standards, and is the candidate for use in future multimedia mobile communications services. However, to allow for coherent detection, an equalizer is needed at the receiving side. Current solution to the problem use a LMMSE (Linearly Minimum Mean Squares Error) or LSE (Least Squares Error) estimator using a pilot/training signal. sent along with a useful data [1][2][3]. This ap-

proach, however, reduces bandwidth utilization, especially under highly time-varying environment (e.g., a mobile user on a moving vehicle) where a training signal must be sent more frequently. In [4], it is shown that blind channel estimation and signal detection are possible, up to a scaling factor. To resolve a scaling ambiguity problem, however, at least a single training signal is needed to be transmitted along with useful transmitted signal. It was found, however, that the use of a minimum number of training signal as required by the theorem in [4] yields poor performance. To improve the method's performance, more training signals are needed to be transmitted. One problem associated with this semi-blind scheme is on the selection of OFDM subchannels for transmitting training signals. From our observation, the choice does affect the performance of the method. However, it appears that the optimal choice of training signal transmission subchannels is varied with signal propagation condition, and thus can not be known a priori. Without a strong reason in favour of particular OFDM subchannels, a training signal which is coded into several OFDM subchannels may be employed. Initially, use of spread spectrum principle for spreading a pilot signal over a few OFDM channels was investigated. However, this approach was soon rejected because it results in increased complexity in solving a maximum likelihood equation for channel estimation and signal detection. In this paper, through the employment of some signal coding schemes, it is shown that (semi-) blind channel estimation and signal detection can be obtained without explicit transmission of a training signal. Two applicable signal coding schemes are described in this paper. The first coding method is simply constructed from all possible code words for a pariticular code length. Then, half of the code words which are 1's complement to the remaining code

words are removed. The second coding method considered is a standard convolutional code with rate 2/4 [5]. Certain structure constraint inherent in these coding methods removes scaling ambiguity in blind channel estimation. Because many communications systems including the proposed digital video broadcasting (DVB) standard, which employs OFDM modulation, use such signal coding scheme to improve receiver performance, there is no extra loss in transmission bandwidth by using the proposed method. This is in contrast to a pilot-assisted channel estimation method, where explicit training signal transmission is required.

In the following section, problem formulation and notation declaration are first given. Maximum likelihood blind channel estimator using coded pilot signal is described in Section 3. Simulation results comparing the proposed method with a standard least squares method are given in Section 4. Section 5 provides some concluding remarks.

2 PROBLEM FORMULATION

Consider first the problem of channel estimation and transmitted symbol detection in OFDM systems. From the received signal

$$x(t) = \sum_{m=0}^{M-1} h_{i,m} s(t - mT_s) + n(t)$$
 (1)

where the baseband transmitted signal s(t), obtained by OFDM modulation using N subcarriers, is expressed as

$$s(t) = \sum_{n=0}^{N-1} b_{i,n} e^{jn\Delta\omega t}$$
 (2)

and $i(T_d+T_g)+T_g \leq t \leq (i+1)(T_d+T_g)$, for $i=0,1,\ldots$, the problem is to estimate the channel parameters $h_{i,m}$, $m = 0, \dots, M-1$, and the transmitted symbols $b_{i,n}$, $n = 0, \dots, N-1$. From the above equation $b_{i,n}$ is the data transmitted over the nth carrier frequency at the ith OFDM symbol duration. The symbol $b_{i,n}$ is a member of the P-alphabet set $\{b_k \mid k=1,\cdots,P\}$ (e.g., $b_{i,n} \in \{1,-1\}$ for a BPSK-modulation case). The constants T_g and T_d refer to respectively, as the guard time and symbol detection time durations. In addition, Ts is the sampling time interval. From Eq.(2), s(t) is a combination of N modulated signals, with different subcarrier frequencies separated from the adjacent ones by a factor of $\Delta\omega$. With L samples of the input signal x(t), obtained with the sampling time interval of T, over the time duration T_d (= T_sL), we arrive at the following compact equation.

$$\mathbf{x}_{i} = [x(iL) \ x(iL+1) \cdots x((i+1)L-1)]^{T}$$

= $\mathbf{A}_{c}\mathbf{B}_{i}\mathbf{A}_{d}\mathbf{h}_{i} + \mathbf{n}_{i}$ (3)

where

$$\mathbf{A}_{c} = [\mathbf{a}_{c,0} \ \mathbf{a}_{c,1} \cdots \mathbf{a}_{c,N-1}]$$
 (4)

$$B_{i} = \begin{bmatrix} b_{i,0} & & & & \\ & b_{i,1} & & \\ & & & \ddots & \\ & & & b_{i,N-1} \end{bmatrix}$$
 (5)

$$\mathbf{A}_d = [\mathbf{a}_{d,0} \ \mathbf{a}_{d,1} \cdots \mathbf{a}_{d,M-1}] \tag{6}$$

$$\mathbf{h}_{i} = [h_{i,0} \ h_{i,1} \cdots h_{i,M-1}]^{T} \tag{7}$$

$$\mathbf{n}_{i} = [n(iL) \ n(iL+1) \dots n((i+1)L-1)]^{T}$$
 (8)

$$\mathbf{a}_{e,n} = \left[1 e^{jn\Delta\omega T_e} \cdots e^{jn\Delta\omega T_e(L-1)}\right]^T, n = 0, \cdots, N-1$$
(9)

$$\mathbf{a}_{d,m} = \begin{bmatrix} 1 & e^{-jm\Delta\omega T_s} & \cdots & e^{-jm\Delta\omega T_s(N-1)} \end{bmatrix}^T,$$

$$m = 0, \cdots, M-1$$
(10)

In [4], it is shown that, with certain requirements, blind estimation of the channel parameters, as well as the detection of transmitted symbols can be achieved up to a scaling factor, without the need for a training signal. To resolve scaling ambiguity, however, the maximum likelihood blind channel estimator as formulated in [4] requires a training data to be transmitted on at least one of N OFDM subchannels. Without a particular reason in favour of any subchannel for training signal transmission, the use of a implicitly coded training signal sent over several OFDM subchannels is proposed in the next section.

3 OFDM MAXIMUM LIKELIHOOD ESTI-MATOR USING CODED PILOT SIGNAL

By performing a discrete Fourier transform on the received signal x_i , we arrive at

$$X_{i} = \frac{1}{N} \mathbf{A}_{c}^{H} \mathbf{x}_{i}$$
$$= \mathbf{B}_{i} \mathbf{A}_{d} \mathbf{h}_{i} + \mathbf{N}_{i}$$
(11)

where $N_i = \frac{1}{N} A_c^H n_i$. Given X_i , it is shown in [4] that channel parameters and transmitted data symbols are identifiable up to a scaling factor, provided that N > Q(M-1). Here Q is the number of b_p/b_q with distinct values, where $b_p, b_q \in \{b_1, \dots, b_P\}$, $p, q = 1, \dots, P$. A compact form of a maximum likelihood method for joint signal detection and channel parameter estimation of OFDM-BPSK modulated signal is given by [4]

$$\hat{\mathbf{b}}_{i} = \max_{\mathbf{b}_{i}} \operatorname{Tr}\{\mathbf{B}_{i} \mathbf{A}_{d} \mathbf{A}_{d}^{H} \mathbf{B}_{i}^{H} \mathbf{X}_{i} \mathbf{X}_{i}^{H}\}$$

$$= \max_{\mathbf{b}_{i}} \operatorname{Tr}\{\tilde{\mathbf{X}}_{i}^{*} \mathbf{A}_{d} \mathbf{A}_{d}^{H} \tilde{\mathbf{X}} \mathbf{b}_{i}^{*} \mathbf{b}_{i}^{T}\}$$

$$= \max_{\mathbf{b}_{i}} \mathbf{b}_{i}^{T} \tilde{\mathbf{X}}_{i}^{*} \mathbf{A}_{d} \mathbf{A}_{d}^{H} \tilde{\mathbf{X}} \mathbf{b}_{i}^{*} \qquad (12)$$

where

$$\tilde{\mathbf{X}}_{i} = \begin{bmatrix} X_{i,0} & & & & \\ & X_{i,1} & & & \\ & & \ddots & & \\ & & & X_{i,N-1} \end{bmatrix}$$
(13)

and $X_{i,l}$ are the l^{th} elements of \mathbf{X}_i . Given the estimate of \mathbf{b}_i , the maximum likelihood estimate of \mathbf{h}_i can be obtained from

$$\hat{\mathbf{h}}_{i} = \frac{1}{N} \mathbf{A}_{d}^{H} \hat{\mathbf{B}}_{i}^{*} \mathbf{X}_{i} \tag{14}$$

where $\hat{\mathbf{B}}_{i}$ is constructed from Eq.(5) using the ML estimate of b_t. To eliminate scaling ambiguity, a constraint must be imposed on b. This can be achieved by sending a known signal over one of the OFDM subchannels. Here, however, we use signal coding methods which impose structure constraint on b, to solve the problem instead. A sufficient constraint for solving the scaling ambiguity problem is that, among the codewords used, there is no codeword pair which is I's complement. For example, with the codwords as described in Table 1, the 0th and 7th codewords form a 1's complement pair. One of the possible selection of codewords to meet the requirement is shown in Table 1. with the selected words marked by underlines. In this example, we note that the total number of data bits transmitted using this code is equal to 2^{N-1} . Thus, the reduction in transmission bandwidth is the same as for the case where one subchannel is used for explicit transmission of a training signal. Another signal coding method that can be applied is a convolutional code. In this paper, we use the code with the code rate 2/4. The codewords with length 8 are shown in Table 2. They were obtained by reinitialising the coding process every 4 information bits. It should be noted that this frequent reinitilization is not a usual practice, but applied here simply to reduce computer simulation complexity. From the table, it can be verified that there is no 1's complement codeword pair for such codeword set.

4 EXPERIMENTAL RESULTS

In our computer simulation experiment, the system operated at the 1GHz band. The transmission bandwidth is 500 KHz and the number of subchannels is 64. Data was modulated with each subcarrier using the BPSK modulation scheme. The system operated under a Rayleigh-fading channel with the maximum delay spread of 6 μ s. The exponential power decay model was employed with the mean delay spread of 3 μ s. For each channel estimation, only data obtained over a single OFDM symbol duration (T_d) was used.

Table 1: Codewords obtained by eliminating 1's complement pairs

Information	bits	Code words
	()()	000
		001
		010
	01	011
		100
]()	101
	11	<u>110</u>
		111

Doppler effect was not taken into account. In all experiments, the convolutional code as shown in Table 2 was applied for the semi-blind method with coded pilot signals. For the semi-blind and least squares estimation (LSE) methods employing explicit transmission of the training signals, the known signals were transmitted on 4 evenly distributed subchannels

In the first experiment, both semi-blind methods used only data obtained from 16 subchannels for channel estimation. The resulting estimated channel parameters were used for signal detection. The resulting bit error rates and block error rates are shown in Figures 1 and 2 respectively. From these figures, it is seen that the proposed coded pilot method performed reasonably well in terms of block error rate. Next, instead of indirect signal detection as before (i.e., through the estimation of the channel parameters), each block of received data containing 16 subchannels was used for maximum likelihood signal detection (by using Eq. (12)). A simple branch-and-bound technique was employed to speedup the calculation [6]. The results measured in terms of bit error rate and block error rate are shown in Figure 3 and Figure 4.

Next. similar experiment was performed by dividing the received data into 8 blocks of 8 subchannels each. Semi-blind signal detection was carried out on each data block independently, using both explicit and implicit pilot signal transmission. The resulting block error rate performance is shown in Figure 5 (BER calculation was performed based on the 64-subchannels block size). Increased performance obtained by the proposed coded pilot method can be seen.

5 Conclusions

In this paper, we have shown that semi-blind channel estimation and signal detection from the received OFDM signal can be performed using the coded transmitted signal. The stucture constraint of commonly used signal waveform coding schemes can be exploited

Table 2: A rate 2/4 binary convolutional code

Information bits	Code words
0000	00000000
0001	00001011
0010	00000110
0011	00001101
0100	10111010
0101	10110001
0110	10111100
0111	10110111
1000	01100101
1001	01101110
1010	01100011
1011	01101000
1100	11011111
1101	11010100
1110	11011001
1111	11010010

to remove scaling ambiguity of the blind estimation method. By using this implicit, coded pilot signal scheme, there is no need for explicit transmission of a known training signal. In addition, because a signal coding scheme is employed for current OFDM systems. the method can be applied without further reducing spectrum efficiency. The performance of the method has been shown through computer simulation, in comparison with the blind method using a training signal, and the least squares estimation method. By using certain signal detection configuration, it has been found that the proposed method offers improved performance over the methods employing explicit transmission of a training signal. This performance improvement, however, comes at the cost of increasing signal detection complexity. Future work will be focused on a detailed analysis of the developed scheme. as well as a refinement on efficient algorithm for solving the maximum likelihood equation.

Acknowledgement

This work was partly supported by The Thailand Research Fund through the contract number PDF/04/2543.

References

- J. van De Beek, O. Edfors, M. Sandell, S. Wilson, and P. Borjesson, "On channel estimation in OFDM systems", Proc. VTC'95, Vol.2, July 1995, pp.815-819.
- [2] O. Edfors, M. Sandell, J. van de Beek, S. K. Wilson, and P. O. Borjesson, "OFDM Channel Estimation by Singular Value Decomposition", *IEEE Trans. Communications*, Vol. 46, No. 7, July 1998, pp. 931-939.

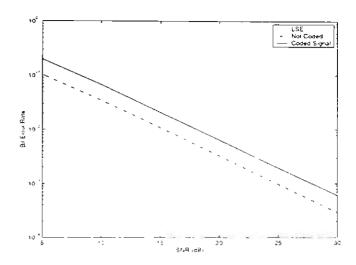


Figure 1: Bit error rate performance obtained by indirect signal detection using single 16-subchannels data block

- [3] Y. Li, L. J. Chinni, Jr., and N. R. Sollenberger, "Robust Channel Estimation for OFDM Systems with Rapid Dispersive Fading Channels", *IEEE Trans. Communications*, Vol. 46, No. 7, July 1908, pp. 902-914
- [4] N. Chotikakamthorn, and H. Suzuki, "On Identifiability of OFDM Blind Channel Estimation", Proc. IEEE Vehicular Technology Conference (VTC '99 Fall), September 1999, pp. 2358-2361.
- [5] J. G. Proakis. Digital Communications. McGraw-Hill, 1989.
- [6] W. L. Winston. Introduction to Mathematical Programming: Applications and Algorithms. Duxbury Press. 1995.

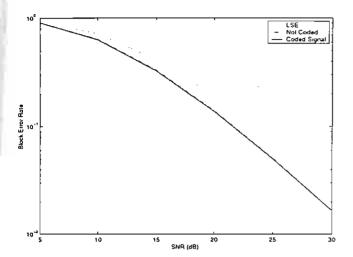


Figure 2: Block error rate performance obtained by indirect signal detection using single 16-subchannels data block

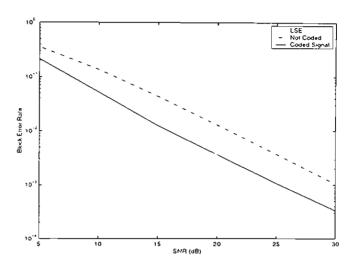


Figure 4: Block error rate performance obtained by direct ML signal detection

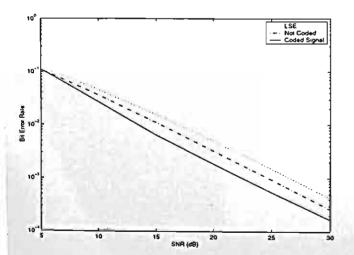


Figure 3: Bit error rate performance obtained by direct ML signal detection

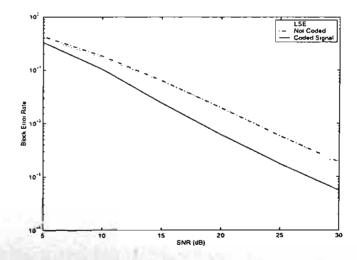


Figure 5: Block error rate performance obtained by direct ML signal detection, performed on each of four 8-subchannels data blocks