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Figure 4.37 Angular positions from each joint and their tracking errors.
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Figure 4.38 Open-loop and closed-loop torque on each joint.

B.4. Case 4 — 30 % Mass Loss on the Last Link

In the fourth test case, a 30 % loss of mass occurs on the last link, The mass of the last
link has therefore changed from 1.0 kg to 0.7 kg. The simulation results for the cases
of PID and radial-basis function network controllers with torque limits, and for the
PID and extended Kohonen network controllers with torque limits are shown in
Figures 4.39 and 4.40. The sum of the squared errors, the sum of the absolute errors
and the maximum value of magnitude of the closed loop torque over the trajectory

from each simulation are summarised in Table 4.20.
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Figure 4.39 Angular positions from each joint and their tracking errors.
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Figure 4.40 Open-loop and closed-loop torque on each joint.

Table 4.20 Summary of tracking errors and closed-loop torque.

Controller Tracking Error ~ Magnitude of Closed-loop Torque
Squared Absolute Joint ] Joint 2 Joint 3
PID + RBF network 0.0304 1.1929  15.0000 22.0439 2.5137
PID + Kohonen network 0.0332 1.2447  15.0000 25.0000 5.0000

B.5. Case 5 — 40 % Mass Loss on the Last Link

In the fifth test case, a 40 % loss of mass occurs on the last link. The mass of the last
.link has therefore changed from 1.0 kg to 0.6 kg. The simulation results for the cases

of PID and radial-basis function network controllers with torque limits, and for the
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PID and extended Kohonen network controllers with torque limits are shown in
Figures 4.41 and\ 4.42. The sum of the squared errors, the sum of the absolute errors
and the maximum value of magnitude of the closed loop torque over the trajectory

from each simulation are summarised in Table 4.21.

Joint 1 Joint 2 Joint 3

7 - /;1'
.

: . 7
; H i .
/ i /
e / -
( “‘E/ | ‘\//
— Reference angle

-~ Angle output - PID + radial-basis function network controllers
Angle output - PID + extended Kohonen network controllers

Tona iara)

Joint 1 Joint 2 Joint 3

e

Eour )
z 3
R
RN
-

R
L_Z
Piiiioi3ig
-I—‘_X-A

1}
=
K/
NS
L
e
4
=
T—
«
5
v
-~
{
b
A
p
\
2
-

.

--- Tracking error - PID + radial-basis function network controllers
— Tracking error - PID + extended Kohonen network controliers

Figure 4.41 Angular positions from each joint and their tracking errors.
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Figure 4.42 Open-loop and closed-loop torque on each joint.

Table 4.21 Summary of tracking errors and closed-loop torque.

Controller Tracking Error  Magnitude of Closed-loop Torque
Squared Absolute  Joint 1 Joint 2 Joint 3
PID + RBF network 0.0365 1.3096  15.0000 22.0439 2.7616
PID + Kohonen network 0.0422 1.3989  15.0000 25.0000 5.0000
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B.6. Case 6 — 50 % Mass Loss on the Last Link

In the sixth test case, a 50 % loss of mass occurs on the last link. The mass of the last
link has therefore changed from 1.0 kg to 0.5 kg. The simulation results for the cases
of PID and radial-basis function network controllers with torque limits, and for the
PID and extended Kohonen network controllers with torque limits are shown in
Figures 4.43 and 4.44. The sum of the squared errors, the sum of the absolute errors
and the maximum value of magnitude of the closed loop torque over the trajectory

from each simulation are summarised in Table 4.22.

Joint 1 Joint 2 Joint 3

Y
7
™~

P y
Tae .. /,/,/ \\\\ H —
s s ".:/ \\Q*‘ "F[ \%/

.......

X3 [0 (R0 1 o ] (X1 (K XD
vemsarms . terow

— Reference angle
--- Angle output - PID + radial-basis function network controllers

Angle output - PID + extended Kohonen network controllers

Joint 1 Joint 2 Joint 3

Lot pod)

] [ = w1 " n " « T4

-~ Tracking error - PID + radial-basis function network controliers
— Tracking error - PID + extended Kohonen network controliers

Figure 4.43 Angular positions from each joint and their tracking errors.
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Figure 4.44 Open-loop and closed-loop torque on each joint.
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Table 4.22 Summary of tracking errors and closed-loop torque.

Controller Tracking Error ~ Magnitude of Closed-loop Torque
K Squared Absolute Joint 1 Joint 2 Joint 3
PID + RBF network 0.0409 1.4249 15.0000 22.0439 3.1131
PID + Kohonen network 0.0502 1.5483  15.0000  25.0000 5.0000

B.7. Discussions on Results from Using the Radial-Basis Function

Network and Extended Kohonen Network Controllers

From all six test cases, the command tracking performances of the robotic system
where the radial-basis function networks and extended Kohonen networks are used as
additional controllers are very much the same. This can be observed from the
characteristics of the angular position and tracking error profiles. However, there are
some differences between the characteristics of the closed-loop torque profile when
the radial-basis function networks are used and that when the extended Kohonen
networks are utilised. In addition, the summary of the sum of the squared and absolute
tracking errors over the trajectory also indicates that the extended Kohonen network 1s
slightly better than the radial-basis function network when it is used in the normal
operating condition. In contrast, the radial-basis function network exhibits a slightly
better compensation performance than the extended Kohonen network in the situation

where modelling errors exist in the system. These differences can be explained as

follows.

Regarding the differences in the closed-loop torque profile over the trajectory,
although there are some differences between the closed-loop torque profiles from both
cases of neural network controllers, both closed-loop torque profiles still remain close
to the open-loop torque profile. This implies that the time-optimality requirement is
met in both cases of neural network controllers. The differences in the closed-loop
torque profile only confirm the nature of the robotic system in being a non-linear and
multivariable system. In other words, there will be more than one set of control

command sequences that can drive the system from the initial state to the final state in
the state-space viewpoint.

Moving onto the summary on the tracking error results. It can be observed that
when there is no mass loss from the robot arm both the sum of the squared and
absolute tracking errors over the trajectory when the extended Kohonen network

controllers are used are slightly better than those when the radial-basis function
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networks are used. In contrast, once there are some modelling errors in the system, it
can be seen that the tracking errors when the extended Kohonen network controllers
are used are slightly higher than that when the radial-basis function networks are
utilised. These results are caused by the differences in the network structure and the
learning algorithm used. Recall that the output from a radial-basis function network is
the weighted-sum of the signals from hidden neurons. This means that each control
action of the radial-basis function network will be responsible by more than one
neuron in the network. This also means that when a fault occurs in the control system,
the fault tolerance load will be shared by a number of neurons. This makes the
performance of the radial-basis function network remains high even when there is a
large modelling error in the system. However, with the network structure like this, the
learning process can also be a difficult one since the target output has to be achieved
through the distribution of the adjustment of a number of connection weights in the
output layer. It means that the control action produced by the radial-basts function
network can be worse than that produced by the network which the target network
output is achieved through an easier approach of adjusting one connection weight in
the output layer. This will be the case here since the learning algorithm used to adjust
the extended Kohonen network involves the adjustment of the connection weight of a
neuron in the motor map which can be treated as a connection weight in the output
layer. This leads to the command tracking performance of the extended Kohonen
network being better than that of the radial-basis function network in the normal
operating condition. Note that the mentioned normal operating condition is also the
condition at which the neural network controllers are subjected to the process of
learning. Following the same line of reasoning, since the control action produced by
the extended Kohonen network is the direct result from the firing of a neuron in the
state map, the fault tolerance load will only be directed to one neuron in the state map
and another neuron in the motor map. Without load sharing as in the case of the
radial-basis function network, it comes to no surprise that the fault tolerance
performance of the extended Kohonen network would be worse than that of the

radial-basis function network when modelling errors exist in the system.

The tracking errors of the system, expressed in terms of both the sum of the

squared errors and the sum of the absolute errors, from all previously discussed

simulation results are displayed in Figure 4.45.
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Figure 4.45 Tracking errors from all simulations involving modelling errors.

From Figure 4.45, it can be seen that trajectory pre-shaping can help to reduce
tracking errors in the system where only PID controllers are used. However, both
radial-basis function network and extended Kohonen network controllers are more
effective than trajectory pre-shaping scheme in all cases. Note that the extended
Kohonen network is more suitable to the time-optimal control task when the robot is
operated under the normal condition while the radial-basis function network is more

effective when there are modelling errors in the robotic system.

4.4. Time-Optimal Control Task IT — Multi-
Objective Optimisation Using a Genetic
Algorithm Section

In practice, the maximum torque limits, which are used in the time-optimal trajectory
calculation process for a closed-loop control, are usually less than the actual torque
limits on the actuators. This safety precaution is done in order to allow some margins
of error for possible discrepancies introduced to the system by modelling errors and
controller dynamics (Shiller et al., 1996). This implies that for a given set of the actual
torque limits of the actuators, there is a set of admissible torque limit combinations
that can lead to a certain level of time-optimality within an acceptable range of
tracking error. In addition, in certain applications such as welding or edge-deburring it
is possible to modify the end-effector trajectory in Cartesian space without effecting
the task requirement provided that the position and orientation of the work piece at

which the end-effector has to remain in contact with can be modified accordingly. The
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control task discussed in section 4.2 is an example which reflects such applications.
By modifying the initial and final locations of the straight-line path, the task
description in the application viewpoint would remain the same while the angular
trajectory at which the robot joint has to follow would be different. Such change in the
angular trajectory would lead to a variation in position tracking error. Combining with
the issue on torque limits, this points to a design problem in robotic applications. The
objective of such problem is to find a combination of torque limits from a set of
admissible torque ranges and the initial and final position of the end-effector which
leads to a trajectory which meets the time-optimality and tracking error constraints. A

schematic diagram of the problem is illustrated in Figure 4.46.
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Figure 4.46 Schematic diagram illustrating torque limit combinations and end-
effector positions.

With this arrangement, this problem will be a multi-objective optimisation problem
since it would be highly unlikely to obtain a single trajectory that can minimise both
the trajectory time and tracking error simultaneously. A multi-objective genetic
algorithm (MOGA) will be used to solve the problem associated with the torque limit

and end-effector position selection in this study. The problem formation and the

genetic operators used are discussed as follows.
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4.4.1. Decision Variables

v

A 3-dof robot with the task of tracking a straight-line path in Cartesian space
presented earlier in section 4.2 is used to demonstrate this multi-objective
optimisation problem. The decision variables of the problem consist of the torque
limit combination and the initial and final position of the end-effector. Assuming that
the magnitudes of the maximum and minimum torque limits are the same for each
actuator, the torque limit part of the decision variables would consist of the magnitude
of the torque limits of each joint. In this study, the range of the magnitudes of the
torque limits on joints 1, 2 and 3 are set to 15-30, 25-40 and 5-20 Nm, respectively.
The lower bounds of the limits (1.e. 15, 25, 5) are based on the maximum allowable
trajectory time requirement of 0.3 seconds, while the upper bounds of the torque

limits (i.e. 30, 40, 20) are set by the actual torque limits of the actuators.

Moving on to the part of decision variables which involves the positions of the
end-effector. In order to create a fixed-length path in Cartesian space, two vectors are
required: the position vector for the initial position of the end-effector and the
direction vector pointing from the initial position toward the desired final position of
the end-effector. This requirement can be achieved by setting up two search variables.
The first variable will be the initial location of the end-effector while the second
variable will be another point in the robot workspace at which a direction vector
pointing from the initial position of the end-effector toward this point can be
established. In this investigation the search range for the initial position of the end-
effector is given by (0.721-0.751, 0.211-0.241, 0.078-0.108) in the x, y and z
directions, respectively. In contrast, the search range for the location of the other point
in the robot workspace is set to (-0.015-0.015, 0.839-0.869, 0.339-0.369) in the x, y
and z directions, respectively. Note that the search ranges for these two points are in

the vicinity of the initial and final positions of the straight-line path described earlier

in section 4.2.

4.4.2. Objective Variables

There are two optimisation objective variables in this problem: the tracking error and

trajectory time. The tracking error is expressed in terms of the sum of the mean
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absolute value from the three joints, calculated over the whole trajectory. The tracking

error objective function is given by

Ny
NPNCAGEEIS!
Tracking Error Objective = D | <= ~
=1 ;

(4-17)

where &, (/) is the jth sample of the desired angular position of joint i/, &(j) is the jth

sample of the actual angular position of joint / and Nyis the total number of samples of
the time-optimal trajectory in discrete time. Moving onto the second objective
variable - the trajectory time: the trajectory time is the optimal time obtained from the
motion control algorithm described in section 3.3. Note that since the sampling period
used in this simulation is 0.01 seconds, the trajectory time will always be in the form

of 0.01m, where m is a positive integer.

4.4.3. Chromosome Coding

Nine decision variables — the magnitudes of the torque limits from all three joints and
the co-ordinates along three axes of the two points for identifying the straight-line
path — are concatenated together and coded to form a chromosome. Two chromosome
coding schemes are explored here: Gray and integer-based coding schemes. The
torque ranges for all three joints are discretised using a search step of 0.5 Nm. This
Jeaves 31 search points for the magnitude of the torque limits of each joint. In a
similar way, the search ranges of the co-ordinates of the two points for dictating the
location of the straight-line path are discretised using a search step of 0.001 m. This
also leaves 31 search points for the co-ordinate in each axis. With the use of a Gray
coding scheme, a Gray code of length 5 can be used to represent a decision variable.
The total length of the chromosome in this case would be equal to 45. Note that there
are certain search points obtained after decoding the chromosome which lie outside
the required search space. These points are mapped back into the feasible region by
changing the most significant bit of the Gray code section representing the particular
decision variable that violates the feasibility constraint into zero. In contrast to the

case of the Gray coding scheme, with the use of an integer-based coding system a
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single gene can be used to represent a decision variable. Each gene can then take an
allele value from a set which is composed of 31 integers ranging from 0 to 30. The
chromosome length in this case would be equal to nine. A schematic diagram of the

chromosome coding mechanisms is given in Figure 4 47,
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Figure 4.47 Schematic diagram of the chromosome coding mechanisms

4.4.4. Fitness Assignment and Fitness Sharing

The ranking method, as described by equation (3-32), is used to rank each individual
in the population. Following that, a linear fitness interpolation is used to assign fitness

to each individual. Fitness sharing, with the use of triangular sharing function, is then

carried out in normalised objective space.

4.4.5. Selection Method

Stochastic universal sampling (Baker, 1989) is used in the fitness selection. The elitist

strategy used is to select two individuals with the highest fitness and pass onto the

next generation without crossover or mutation.
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4.4.6. Crossover and Mutation Methods

\
The standard one-point crossover is used in the recombination. Two individuals are

allowed to perform crossover if, and only if, they are within the mating restriction
distance from each other. For simplicity, the mating restriction radius is set to equal to
the sharing radius and the consideration on the distance between the two individuals is
also done in normalised objective space. For the case of chromosome coding using a
Gray code, a standard bit-flipped operation is used for the mutation. In contrast, the
value 1 will be added to or subtracted from the allele value of the mutated gene to
achieve mutation in the integer-based coding system. The parameter settings for the

MOGA are summarised in Table 4.23.

Table 4.23 Parameter settings for the MOGA.

Parameter Value

Chromosome length

Gray code 45

Integer-based code 9
Crossover probability 0.8
Mutation probability

Gray code 0.02

Integer-based code 0.1
Sharing and mating restriction radii 0.03
Population size 30
Number of elitist individuals 2
Number of generations 30

For the purpose of comparison, the random search technique is also used to
find the Pareto optimal solutions in this study. Eschenauer et al. (1990) have
explained that in the case of multi-objective optimisation, the random search method
can generally be used to obtain a non-dominated solution set. In the random search
technique, a set of random solutions is generated. Then, non-dominated solutions are

picked from this solution set. This can be done by applying the ranking mechanism
used in the MOGA to the initial random solutions and select solutions with rank 0. A

number of multi-objective optimisation search techniques also use random search as

an initial search procedure. For example, in the Monte Carlo method, after non-

dominated solutions are found from the pool of initial solutions, one compromised

solution is selected from this non-dominated solution set based on a min-max

optimum criteria (Coello Coello and Christiansen, 1996). Since the MOGA is used In
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this framework in order to obtain a non-dominated solution set, the random search
will produce a good means for comparison in this aspect. However, since the genetic
algorithm also uses randomly generated solutions as its initial search points, the
random search has already been embedded into the genetic algorithm as the initial
search procedure. This means that a comparison between the non-dominated solutions
found from the initial population of the genetic algorithm and the non-dominated
solutions obtained from the last generation of the genetic algorithm run would provide
an adequate comparison in terms of the comparison with the random search method.
Note that since the results from the random search method are represented by the
results from the initial population of the genetic algorithm, the number of initial
random solutions would be equal to the population size. The simulation results, with

regards to this multi-objective optimisation problem, are discussed in the next section.

4.4.7. Simulation Results

Two case studies are investigated in the subsequent sections. The aim of the first case
study is to find a set of torque limit combinations and straight-line paths which lead to
trajectories with the sum of the mean absolute tracking errors < 0.15708 radians (3
degrees per joint) and the trajectory time < 0.27 seconds. The aim of the second case
study is to find a set of torque limit combinations and straight-line paths which lead to
trajectories with the sum of the mean absolute tracking errors < 0.07854 radians (1.5
degrees per joint) and the trajectory time < 0.30 seconds. The purpose of the first case
study is to find solutions that concentrate more on optimising the trajectory time while
the second case study emphasises on the tracking error optimisation. Within each case
study, each simulation using a search technique is repeated five times with different
initial guess solution sets. Hence, the displayed results will include the Pareto optimal
solutions from each simulation run and the combined Pareto optimal solutions from

all simulation runs. A brief description of the simulations within each case study is

given in Table 4.24.
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Table 4.24 Summary of the description of the simulations within each case study.

Section Simulation Description
4.47.A.1 Simulation using random search (Case 1)
4.4.7.A.2 Simulation using MOGA with a Gray-coding scheme (Case I)
4.4.7.A.3 Simulation using MOGA with an integer-based coding scheme (Case I)
4.4.7.A.4 Summary of simulation results from sections 4.4.7.A.1-3 (Case )
4.4.7.B.1 Simulation using random search (Case II)
4.4.7.B.2 Simulation using MOGA with a Gray-coding scheme (Case 1I)
4.4.7.B.3 Simulation using MOGA with an integer-based coding scheme (Case I1)
4.4.7.B.4 Summary of simulation results from sections 4.4.7.B.1-3 (Case II)

A. Case Study I

As mentioned earlier, the purpose of this case study is to find solutions which
concentrate more on optimising the trajectory time. The results from the random
search, the MOGA with a Gray-coding scheme and the MOGA with an integer-based

coding scheme are as follows.

A.1l. Random Search

The goal vector used to obtain non-dominated solutions from the initial random

solutions is given by
[rracking error trajectory n'me]r = [0.15708 0.27]T. (4-18)

The Pareto optimal solutions and their objective values from five simulation runs are

shown in Table 4.25.

Table 4.25 Parecto optimal solutions and their objective values from five simulation

runs.
Run Decision Variables Objectives
7, P T3 Xini  Vini Zini Xfin Viin zgn  Error t
1 26.5 39.5 11.5 0723 0222 0.092 0014 0855 0.3660.11320 0.23

24.0 34.5 16.0 0.721 0229 0.084 0.003 0.858 0.3460.10316 0.24
21.5 36.5 16.0 0.748 0221 0.081 -0.013 0.858 0.3680.07753 0.25
20.5 35.0 15.5 0.745 0.230 0.086 0.010 0.866 0.3440.06561 0.26

2 27.0 385 200 0.724 0220 0.080 -0.009 0.859 0.3650.14410  0.22
555 305 185 0729 0212 0.081 -0.008 0857 03690.10980 0.23
545 345 165 0.733 0212 0078 -0.012 0.864 03390.10335  0.24
530 380 160 0.750 0212 0078 0.015 0.869 03590.07003 0.5
200  33.5 05 0721 0215 0093 0001 0.868 0.3690.06623 0.26
185 285 185 0730 0.232 0.083 -0.007 0.844 0.3540.05871 _ 0.27

T; - Magnitude of torque limits on joint { (Nm) Error - Mean absolute tracking error (rad)
(Xini» Yini» Zini) - Initial position (m) t - Trajectory time (second)
(xfin>» ¥in, Zsin) - Required second position (m)
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Table 4.25 Pareto optimal solutions and their objective values from five simulation
runs (cont.).

Run Decision Variables Objectives
7\ 7 T35 Xini __ Yini __ Zini_ Xfin ___ Vfin __ Zi, Error
3 28.0 39.5 12.0  0.739  0.221 0.082 -0.005 0.850 0.3660.12512 0.22
23.0 33.0 9.0 0739 0.228 0.106 0.007 0.843 0.3470.11207 024
23.0 38.5 7.0 0745 0.226 0.078 0.011 0.854 0.3430.07316 0.25
21.0 345 90 0749 0.237 0.102 -0.006 0850 0.3430.05950 0.26
19.0 34.5 14.0 0.730 0214 0.106 0.006 0.858 0.3640.05419 0.27
4 28.0 38.5 17.5 0.746 0218 0.108 -0.014 0.846 0.3630.12628 0.22
26.0 36.0 200 0731 0.234 0.101 -0.007 0.839 0.3620.11665 0.23
24.0 37.0 15.0 0.735 0.239 0.099 0.004 0.847 0.3650.09527 0.24
225 34.0 16.5 0.723 0.241 0.090 0.011 0.849 0.3560.07671 0.25
19.5 36.5 9.0 0.737 0.223 0.681 -0.005 0.851 0.3390.07542 0.26
18.5 34.5 13.5 0.732 0212 0.106 0.014 0.851 0.3490.05592 0.27
5 28.0 39.5 12,0 0.739 0.221 0.082 -0.005 0.850 03660.12512 0.22
25.5 39.5 18.5 0.729 0.212 0.081 -0.008 0.857 0.3690.10980 0.23
24.0 39.0 16.5 0.736 0.235 0.099 -0.003 0.852 0.3680.09433 0.24
23.0 380 160 0.750 0.212 0.078 0.015 0.869 0.3590.07003  0.25
21.0 345 9.0 0.749 0237 0.102 -0.006 0.850 0.3430.05950 0.26
19.0  34.0 7.0 0742 0214 0.104 -0.015 0.865 0348005298 0.27
Table 4.26 Combined Pareto optimal solutions and their objective values.
Run Decision Variables Objectives
Tl T2 T3 Xini Vini Zini Xfin Yfin Zfin Error !
- 28.0 39.5 12.0 0.739 0.221 0.082 -0.005 0.850 0.3660.12512 0.22
25.5 39.5 18.5 0.729 0.212 0.081 -0.008 0.857 0.3690.10980 0.23
24.0 39.0 16,5 0.736 0.235 0.099 -0.003 0.852 0.3680.09433 0.24
23.0 38.0 16.0 0.750 0.212 0.078 0.015 0.869 0.3590.07003 0.25
21.0 34.5 9.0 0.749 0237 0.102 -0.006 0.850 0.3430.05950 0.26
19.0 34.0 7.0 0742 0214 0104 -0.015 0.865 0.3480.05298 0.27

T; - Magnitude of torque limits on joint  (Nm) Error - Mean absolute tracking error (rad)

(Xinis Yini» Zini) - Initial position (m)
(Xfin, Yfins Zfin) - Required second position (m)

Error (rad)

t - Trajectory time (second)

Q.2 a.21

0.22 0.23 024 025 078 .27 0.28 029

Time (se&)

0.3

Figure 4.48 Trade-off surface of the Pareto front.

125



Chapter 4

Hybridisation of NNs and a GA for Time-Optimal Control

The combined Pareto optimal solutions and their objective values from all simulation

runs are summqrised in Table 4.26 while the trade-off surface of the Pareto front is

given in Figure 4.48.

A.2. MOGA with a Gray Coding Scheme

The goal vector used to obtain the non-dominated solutions is the same as the one

presented in the random search approach. The Pareto optimal solutions and their

objective values from five simulation runs are shown in Table 4.27.

Table 4.27 Pareto optimal solutions and their objective values from five simulation

runs.
Run Decision Variables Objectives
T, T /! Xini___ Yini _ Zini  Xfin  Yfin  Zgn Error ¢
1 28.5 38.5 12.0 0.740 0.221 0.078 (.012 0.841 0.3610.12481 0.22
26.0 37.5 120 0.749 0220 0.094 0011 0840 0.3550.11127 023
23.5 37.5 120 0.740 0.216 0.078 0.011 0.844 0.3630.09043 0.24
225 37.5 145 0.741 0.233 0.092 0.005 0.851 0.3580.07112 0.25
20.5 35.0 15.0 0748 0.230 0082 0.002 0.849 0.3520.05886 0.26
19.5 35.0 1.0 0.748 0.227 0.081 0.008 0.859 0.3410.04156 027
2 26.0 38.0 9.0 0750 0214 0.088 -0.004 0858 0.3630.10090 0.23
24.5 36.5 170 0.748 0.211 0086 0.012 0865 0.34]10.08945 0.24
22.5 38.5 7.5 0.726 0213 0.082 0.012 0.861 0.3480.07355 0.25
21.0 37.0 8.0 0749 0219 0.085 0.011 0865 0.3400.05544 0.26
19.5 29.5 85 0749 0234 00806 0.012 0.855 0.3560.04502 0.27
3 28.0 39.5 11.5 0.745 0.214 0.079 -0.002 0.851 0.3670.12442 0.22
25.5 39.5 11.5 0.745 0.214 0.084 -0.001 0.850 0.3670.10600 0.23
240 395 13.0 0.740 0.224 0090 0.006 0.847 0.3430.09009 0.24
23.5 39.5 12.5 0.739 0.235 0078 0.007 0.867 0.3390.06801 0.25
20.5 39.5 17.5 0.750 0.218 0.081 -0.004 0.853 0.3440.05835 0.26
19.0 34.5 8.5 0750 0216 0.079 -0.007 0.854 0.3500.04239 0.27
4 28.5 38.5 18.0 0.747 0.215 0.079 -0.010 0.858 0.3460.11797 0.22
26.5 36.5 18.5 0750 0.219 0.078 -0.005 0.867 0.3540.10205 0.23
25.0 35.0 15.0 0.750 0219 0.078 -0.005 0.867 0.3540.08179 0.24
23.0 33.0 7.5 0751 0.226 0.081 0.006 0.857 0.3460.07602 0.25
21.0 35.0 9.0 0.751 0.240 0.083 0.003 0.863 0.3480.05714 0.26
19.0 39.0 17.0 0.744 0219 (.082 0.001 0.862 0.3540.04467 0.27
5 30.0 40.0 140 0.735 0.214 0.106 -0.005 0.849 0.3430.14613 0.21
29.0 39.0 17.5 0.751 0.232 0.078 0.015 0.849 0.3540.11324 0.22
26.0 36.0 9.5 0.751 0.229 0.078 -0.015 0.866 0.3600.10753 0.23
240 39.0 11.0 0.738 0.228 0.083 -0.005 0.846 0.3520.08989 0.24
22.0 39.0 16.5 0.731 0220 0.099 -0.005 0833 0.3580.07633 0.25
20.5 37.0 7.5 0751 0217 0.094 0.000 0.869 0.3640.06043 0.26
19.5 29.5 185 0.746 0.239 0.078 0015 0.860 0.3420.04392 0.27

T; - Magnitude of torque limits on joint i (Nm) Error - Mean absolute tracking error (rad)
(Xinis Vini» Zini) - Initial position (m)

¢ - Trajectory time {second)

(xXfin, ¥fins Zfin) - Required second position (m)
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The combined Pareto optimal solutions and their objective values from all simulation

runs are summarised in Table 4.28 while the trade-off surface of the Pareto front is

given in Figure 4.49.

Table 4.28 Combined Pareto optimal solutions and their objective values.

Run Decision Variables Objectives
Tl TZ T3 Xini Vini Zini Xfin Yiin Zfin Error f
- 30.0 40.0 140 0.735 0214 0.106 -0.005 0.849 0.3430.14613 0.21
29.0 39.0 17.5 0.751 0232 0.078 0.015 0.849 0.3540.11324 0.22
26.0 38.0 90 0750 0214 0.088 -0.004 0.858 (0.3630.10090 0.23
25.0 35.0 150 0750 0.219 0.078 -0.005 0.867 0.3540.08179 0.24
23.5 395 12.5 0739 0.235 0.078 0.007 0.867 0.3390.06801 0.25
21.0 37.0 8.0 0749 0.219 0.085 0.011 0.865 0.3400.05544 0.26
19.5 35.0 11.0 0.748 0.227 0081 0.008 0859 0.3410.04156 027

T; - Magnitude of torque limits on joint i (Nm)
(Xini» Vini» Zini) - Initial position (m})

Error - Mean absolute tracking error (rad)

f - Trajectory time (second)

(X7ins Vfins zﬁ,,) - Required second position (M)

E¢ror (rad)

Q21

Time (sec)

0.22 023 024 025 0286 027 028 0.29

¢ 3

Figure 4.49 Trade-off surface of the Pareto front.

A.3. MOGA with an Integer-Based Coding Scheme

The goal vector used to obtain the non-dominated solutions is the same as the one

presented in the random search approach. The Pareto optimal solutions and their

objective values from five simulation runs are shown in Table 4.29. The combined

Pareto optimal solutions and their objective values from all simulation runs are

summarised in Table 4,30 while the trade-off surface of the Pareto front is given in

Figure 4.50.
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Table 4.29 Pareto optimal solutions and their objective values from five simulation

runs.
Run ' Decision Variables Objectives
TI T2 T3 Xini Vini Zini Xfin Viin Zfin EITOT 7
1 27.0 40.0 11.0 0.724 0221 0.093 0.011 0.855 0.3670.14643 0.22
26.0 40.0 11.0  0.725 0.220 0.093 0.011 0855 0.3690.11077 0.23
24.0 40.0 19.0 0.748 0.219 0.078 0.013 0.846 0.3690.08789 0.24
22.0 39.0 185 0.746 0221 0.078 0.014 0.843 0.3670.07072 0.25
21.0 35.0 165 0.749 0.219 0.084 0.010 0.865 0.3450.05415 0.26
21.0 35.0 170 0.749 0219 0084 0010 0865 0.3450.05415 026
19.5 34.5 15.0 0.742 0224 0.084 0.009 0.865 0.3460.04475 0.27
2 28.0 395 200 0724 0.220 0.079 -0.012 0.860 0.3670.12774 0.22
27.5 39.0 200 0724 0221 0.079 -0.011 0.859 0.3660.10086 0.23
24.5 35.5 11.0 0.750 0212 0.078 0.015 0.859 0.3400.08856 0.24
235 37.5 11.0 0751 0232 0.078 0.015 0.858 0.3400.06955 0.25
23.5 37.5 17.5 0751 0232 0.078 0.015 0.858 0.3400.06955 0.25
20.0 35.0 10.5  0.737 0220 0.082 0.009 0841 0.3330.06088 0.26
19.5 34.5 12.0 0724 0236 00783 0013 02869 0.3590.04084 0.27
3 285 40.0 140 0741 0223 0.079 0010 0.8344 0.3630.12255 0.22
28.5 40.0 9.5 0735 0223 0.078 0010 0844 0.3620.10552 0.23
24.0 40.0 9.5 0736 0224 0.078 0010 0844 0.3640.08860 0.24
23.0 40.0 7.5 0749 0226 0.078 0.010 0.855 0.3420.07036 0.25
21.0 36.5 10,0 0,747 0.238 0.103 -0.005 0.851 0.3490.05760 0.26
19.5 36.0 13.5 0.750 0.236 0.101 -0.007 0.851 0.3420.04385 0.27
4 29.5 40.0 18.0 0.744 0.218 0.108 -0.015 0.843 0.3490.14403 0.21
28.0 38.0 18.5 0.746 0.218 0,108 -0.013 0.848 0.3530.12338 0.22
26.5 40.0 15,5 0.733 0.237 0.088 -0.005 0.841 0.3520.10994 0.23
26.5 40.0 16.0 0.733 0.237 0.088 -0.005 0.841 0.3520.10994 0.23
24.0 38.0 13.5 0.733 0.239 0.097 0.006 02846 0.3410.09189 0.24
225 34.0 17.0 0.723 0227 0.080 -0.005 0.851 0.3430.07423 0.25
20.5 38.0 8.5 0735 0224 0080 -0.004 0.852 0.3400.06077 0.26
20.5 38.0 90 0735 0.224 0.080 -0.004 0.852 0.3400.06077 0.26
19.5 35.5 9.5 0.735 0.239 0.092 0007 0.865 0.3420.04257 0.27
5 29,5 39.5 125 0.722  0.224 0.079 0.008 0.847 0.3410.12677 0.22
27.0 37.0 180 0.751 0240 0.078 0.011 0.847 0.3420.1006! 0.23
24.0 39.5 16,5 0.737 0235 0.082 -0.015 0.851 0.3440.08914 0.24
22.0 40.0 10.5 0.732 0.237 0.081 -0.014 0.852 0.3670.07279 0.25
20.5 30.5 18.0 0.748 0.230 0.100 -0.007 0.868 0.3690.06260 0.26
19.0 33.5 7.5 0.739 0.236 0.089 -0.006 0.862 0.3450.04770 0.27
Table 4.30 Combined Pareto optimal solutions and their objective values.
Run Decision Variables Objectives
Tl T2 T Xini Vini Zini Xiin Vfin Zfin Error 4
- 295 40.0 18.0 0744 0.218 0.108 -0.015 0.843 0.3490.14403 0.21
28.5 40.0 14.0 0741 0223 0.079 0.010 0.844 0.3630.12255 0.22
27.0 37.0 18,0 0.751 0240 0.078 0.011 0.847 0.3420.10061 0.23
24.0 40.0 190 0748 0219 0.078 0.013 0.846 0.3690.08789 0.24
235 375 17.5 0.751 0232 0.078 0.015 0.858 0.3400.06955 0.25
21.0 350 16.5 0749 0.219 0.084 0.010 0865 0.3450.05415 0.26
19.5 34.5 120 0724 0236 0078 0.013 0.869 0.3590.04084 0.27

T; - Magnitude of torque limits on joint i (Nm) Error - Mean absolute tracking error (rad)

(Xinis Yinis Zini) - Initial position (m)
(xfin, Yrnns Zfin) - Required second position (m)

t - Trajectory time (second)
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Figure 4.50 Trade-off surface of the Pareto front.

A.4. Summary of Simulation Results from Case Study I

Results from the random search, the MOGA with a Gray coding scheme, and the

MOGA with an integer-based coding scheme are summarised in Table 4.31.

Table 4.31 Summary of results from the three approaches.
Approach

Random search

MOGA with a Gray coding scheme

MOGA with an integer-based coding scheme
N4 - Number of distinct solutions found
N, - Number of solutions which are not dominated by solutions found by other techniques

\1\10\&2
B wo|Z

B. Case Study 11

As stated earlier, the purpose of this case study is to find solutions that concentrate
more on optimising the tracking error objective. The results from the random search,
the MOGA with a Gray coding scheme and the MOGA with an integer-based coding

scheme are as follows.

B.1. Random Search

The goal vector used to obtain non-dominated solutions from the initial random

solutions is given by

[tracking error trajectory time]T =[0.07854 0.30] . (4-19)
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The Pareto optimal solutions and their objective values from five simulation runs are

shown in Table 4.32. The combined Pareto optimal solutions and their objective

values from all simulation runs are summarised in Table 4.33 while the trade-off

surface of the Pareto front is given in Figure 4.51.

Table 4.32 Pareto optimal solutions and their objective values from five simulation

runs.
Run Decision Variables Objectives

TI T2 T3 Xini Vini Zini Xfin Viiin Zfin Error f
1 21.5 36.5 160 0.748 0221 0.081 -0.013 0.858 0.3680.07753 0.25
20.5 35.0 155 0745 0.230 0.086 0.010 0866 0.3440.06561 0.26
17.5 275 15,0 0.732 0222 0.083 0.003 0.861 0.3630.04325 0.28
16.5 28.5 85 0742 0213 0.084 0.010 0.862 0.3400.02312 0.29
2 23.0 38.0 16.0  0.750 0212 0.078 0.015 0.869 0.3590.07003 0.25
20.0 33.5 9.5 0721 0.215 0.093 0001 0868 0.3690.06623 0.26
18.5 28.5 8.5 0.730 0.232 0.083 -0.007 0.844 0.3540.05871 0.27
17.0 37.0 7.0 0722 0.216 0.100 -0.006 0.862 0.3690.04744 0.28
16.5 26.5 1535 0.727 0.241 0.089 0.012 0.851 0.3400.03249 0.29
15.5 35.5 135 0.751 0218 0.09 0.002 0861 0.3400.02811 0.30
3 23.0 38.5 7.0 0745 0226 0078 0.011 0.854 0343007316 0.25
21.0 34.5 9.0 0749 0.237 0.102 -0.006 0850 0.3430.05950 0.26
19.0 34.5 140 0.730 0214 0.106 0.006 0858 0364005419 0.27
18.0 37.5 7.0 0750 0228 0.106 0.014 08501 0357003750 0.28
16.5 26.5 11.5 0.744 0.222 0.094 0011 0.858 0.3390.02661 0.29
15.0 33.0 12,5 0.745 0.236 0.106 -0.014 0862 03650.02235 0.30
4 22.5 34.0 165 0.723 0.241 0.090 0.011 0.849 0356007671 0.25
19.5 36.5 9.0 0.737 0.223 0.081 -0.005 0.851 0.3390.07542 0.26
18.5 34.5 13.5 0.732 0212 0.106 0.014 0.851 0.3490.05592 0.27
17.0 33.0 85 0.725 0.225 0.105 -0.014 0.854 0.3540.04114 0.28
16.5 26.5 145 0.733 0.240 0.106 0.002 0.850 0.3500.04070 0.29
15.0 32.0 19.5 0.740 0.218 0.083 0.008 0.849 0.3470.02224 0.30
5 22.0 39.5 9.0 0731 0.233 0.089 -0.006 0.839 0.3660.07506 0.25
20.5 30.5 18.0 0.748 0.231 0.098 -0.015 0.854 0.3400.06403 0.26
19.0 34.0 7.0 0.742 0214 0.104 -0.015 0.865 0.3430.05298 0.27
17.5 35.5 8.5 0.725 0.238 0.094 0.000 0.847 0.3660.03582 0.28
16.5 36.0 17.5 0.751 0.238 0.078 0.011 0.848 0.34] 0.02458 0.29

Table 4.33 Combined Pareto optimal solutions and their objective values.
Run Decision Variables Objectives

Ty 1 T3 Xini  Vini  Zini _ Xfin __ Ypn _ Zfin_ EITOr
- 23.0 38.0 16.0 0.750 0.212 0.078 0.015 0.869 0.3590.07003 0.25
21.0 34.5 9.0 0.749 0.237 0.102 -0.006 0.850 0.3430.05950 0.26
19.0 34.0 7.0 0.742 0.214 0.104 -0.015 0.865 0.3480.05298 0.27
17.5 35.5 8.5 0.725 0.238 0.094 0.000 0.847 0.3660.03582 0.28
16.5 28.5 8.5 0.742 0.213 0.084 0.010 0.862 0.3400.02312 0.29
15.0 32.0 19.5 0.740 0.218 0.083 0.008 0.849 0.3470.02224 0.30

7, - Magnitude of torque limits on joint i (Nm) Error - Mean absolute tracking error (rad)

(Xinis YVini» Zini) - Initial position (m)
(Xfin, Yfin» Zin) - Required second position (m)

t - Trajectory time (second)
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B.2. MOGA with a Gray Coding Scheme
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Figure 4.51 Trade-off surface of the Pareto front.

The goal vector used to obtain the non-dominated solutions is the same as the one

presented in the random search approach. The Pareto optimal solutions and their

objective values from five simulation runs are shown in Table 4.34. The combined

Pareto optimal solutions and their objective values from all simulation runs are

summarised in Table 4.35 while the trade-off surface of the Pareto front is given in

Figure 4.52.

Table 4.34 Pareto optimal solutions and their objective values from five simulation

runs.
Run Decision Variables Objectives
7T, T T3 Xini  Yini  Zini  Xfin _ Yfin  Zfin ErTOr ¢

1 22.0 37.0 140 0.729 0232 0.088 -0.002 0849 0.3520.07582 0.25
20.5 38.0 15.5 0.744 0227 0.103 0.011 0.844 0.35]10.06070 0.26

19.0 39.0 15.0 0.748 0.231 0.088 -0.009 0.843 0.3490.04280 0.27

17.5 27.5 15.0 0.733 0.220 0.080 -0.002 0.860 0.3460.04127 0.28

16.5 34.0 11.0 0.727 0.234 0084 0.010 0.863 0.3470.02]182 0.29

2 22.5 36.0 10.0 0.736 0.233 0.079 -0.013 (0.857 0.3470.07310 0.25
20.5 36.5 10,0 0.736 0.233 0.079 -0.013 0.857 0.3470.05837 0.26

19.5 33.5 11.5 0.721 0.238 0.078 -0.005 0.864 0.3590.05047 0.27

17.5 36.0 200 0.736 0.215 0.090 -0.003 0.864 0.3660.03151 0.28

16.5 30.0 15.0 0.723 0.240 0.082 0.002 0860 0.3390.02202 0.29

15.5 34.5 16.0 0.744 0.237 (¢.107 0.009 (0.861 0.3440.01703 0.30

15.5 34.5 16.0 0.744 0238 0.107 0.009 0862 0.3430.01703 0.30

T; - Magnitude of torque limits on joint : (Nm) Error - Mean absolute tracking error (rad)

(Xinis Vinis Zini) - Initial position (m)
(xfins Yriny Zin) - Required second position (m)

t - Trajectory time (second})
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Table 4.34 Pareto optimal solutions and their objective values from five simulation
runs (cont.).

Run Decision Variables Objectives
Tl T2 T3 Xini Vini Zini Xfin ¥fin Zfin Error g
3 22.5 38.0 150 0.733 0226 0.079 0.000 0.852 0.3410.07202 0.25
20.5 39.0 18.0 0.750 0.233 0.078 -0.006 0.850 0.3500.05799 0.26
19.0 39.0 16.0 0.721 0.222 0.101 0.007 0.839 0.3460.05390 0.27
17.5 395 16.5 0.731 0234 0.083 0.000 0.846 0.3590.03104 0.28
16.0 29.0 10.5 0.730 0.234 0.086 -0.003 0.843 0.3550.02362 0.29
15.0 36.0 190 0.734 0227 0.108 0.000 0.851 0.3510.01668 0.30
4 22.5 39.5 17.0  0.739  0.235 0.081 -0.010 0.866 0.3590.07145 0.25
21.0 325 6.5 0749 0.237 0.104 -0.011 0.864 0.3610.05850 0.26
19.5 34.0 85 0.747 0223 0.081 0.006 0.868 0.3460.04235 0.27
18.0 35.0 17.0 0.750 0.230 0.079 0.014 0.854 0.3460.03210 0.28
16.5 36.5 8.0 0.721 0238 0.078 0.011 0.850 0.3390.02311 (.29
15.0 36.0 7.5 0734 0234 0.104 0.001 0.849 0.3560.01710 0.30
5 22.0 39.5 10.5 0.732 0234 0.080 -0.007 0.845 0.3620.07252 0.25
20.5 33.5 16.0 0.746 0235 0.107 -0.010 0.861 0.3530.06198 0.26
19.0 38.0 16.0 0.739 0239 0.091 -0.002 0.847 0.3530.04591 0.27
17.5 35.0 7.5 0.726 0.235 0.094 -0.015 0.847 0.3440.03401 0.28
16.5 32.0 16.0 0.751 0.234 0,104 -0.010 0.8356 (.3400.02226 0.29
15.0 40.0 6.0 0.730 0.237 0.104 -0.015 0.862 0.3670.01649 0.30
Table 4.35 Combined Pareto optimal solutions and their objective values.
Run Decision Variables Objectives
Tl T2 T3 Xini Vini Zini Xfin Viin Zfin Error !
- 225 39.5 17.0 0.739 0.235 0.081 -0.010 0.866 0.3590.07145 0.25
20.5 39.0 18.0 0.750 0.233 0.078 -0.006 0.850 0.3500.05799 0.26
19.5 34.0 8.5 0.747 0223 0.081 0.006 0.868 0.3460.04235 .27
17.5 39.5 165 0.731 0234 0.083 0.000 0.846 0.3590.03104 0.28
16.5 34.0 11.0 0.727 0234 0.084 0.010 0.863 0.3470.02182 0.29
15.0 40.0 6.0 0730 0.237 0.104 -0.015 0.862 0.3670.01649 0.30

T; - Magnitude of torque limits on joint i (Nm) Error - Mean absolute tracking error (rad)

(Xinis Yinis Zini) - Initial position (m)
(xﬁn, Yiins zf,,,) - Required second position (m)

t - Trajectory time (second)
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Figure 4.52 Trade-off surface of the Pareto front.
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B.3. MOGA with an Integer-Based Coding Scheme

\ . . . -
The goal vector used to obtain the non-dominated solutions is the same as the one

presented in the random search approach. The Pareto optimal solutions and their

objective values from five simulation runs are shown in Table 4.36. The combined

Pareto optimal solutions and their objective values from all simulation runs are

summarised in Table 4.37 while the trade-off surface of the Pareto front is given in

Figure 4.53.

Table 4.36 Pareto optimal solutions and their objective values from five simulation

runs.
Run Decision Variables Objectives
Tl TZ T3 Xini Vini Zini Xfin Vin Zfin Error i

1 22.5 36.5 13.0 0.728 0.235 0.093 0.005 0.852 0.3610.07178 0.25
21.0 35.0 145 0.747 0228 0.087 0010 0.864 0.3470.06069 0.26

20.0 35.0 17.0 0.747 0.231 0.087 0013 0.866 0.3450.04686 0.27

17.5 39.5 8.0 0725 0.222 0079 0.003 0.860 0.365003571 0.28

16.5 29.5 8.5 0742 0.213 0.082 0.012 0863 0.3390.01994 0.29

5.0 34.5 10.0 0.737 0.222 0092 -0.013 0.863 0.3510.01760 0.30

2 23.0 38.5 16.5 0.751 0213 0.079 0.015 0.869 0.3610.06986 0.25
21.0 35.5 12,5 0.746  0.232 0.081 0.015 0.848 0.3390.05414 0.26

18.5 28.5 190 0.731 0.232 0.081 -0.009 0.842 0.3540.05310 0.27

17.0 37.5 7.5 0721 0215 0,101 -0.008 0.847 0.3600.03934 0.28

16.0 37.5 16.0 0.736 0.222 0.098 -0.006 0.849 0.3610.02360 0.29

15.0 37.0 16.5 0.734 0.222 0.101 -0.003 0.85! 0.3580.02158 0.30

3 21.0 35.0 7.5 0.746 0.234 0.078 0.014 0.853 0.3450.05371 0.26
19.0 35.0 145 0.730 0213 0.105 0.006 0.856 0.3650.05329 0.27

17.5 34.0 6.5 0.731 0.232 0.086 -0.004 0.848 0.3600.03014 0.28

16.5 26.5 10.5 0.744 0.222 0.093 0.011 0.858 0.3420.02546 0.29

15.0 335 14.5 0.746 0.235 0.106 -0.014 0.860 0.3670.01898 0.30

4 22.5 34.5 16.0 0.735 0.221 0.081 0.012 0.850 0.3550.07126 0.25
21.0 31.0 8.0 0735 0.219 0.089 -0.002 0.865 0.3390.06395 0.26

19.0 35.5 9.0 0.737 0.223 0.080 -0.005 0.849 0.3410.04850 0.27

18.0 34.0 19.5 0.748 0.238 0.097 0.014 0.868 0.3550.03289 0.28

16.5 26.5 18.0 0.732 0236 0.097 0.012 0.854 0.3540.02945 0.29

15.0 31.5 20.0 0.738 0.219 0.083 0.007 0.850 0.3470.01848 0.30

15.0 32.0 20.0 0.738 0.219 0.083 0.007 0.850 0.3470.01848 0.30

5 22.0 40.0 9.0 0.730 0.233 0.088 -0.006 0.839 0.3670.07455 0.25
20.5 30.5 18.0 0.748 0.232 0.099 -0.013 0.853 0.3400.06348 0.26

19.0 31.0 140 0747 0215 0.094 -0.015 0.867 0.3680.05065 0.27

17.5 35.0 13.0 0.736 0239 0.104 0.002 0.848 0.3650.03357 0.28

16.5 36.0 17.5 0.751 0.238 0.079 0.010 (.848 0.3420.02381 0.29

15.0 25.0 19.5 0.741 0.237 0.104 -0.015 0.861 0.3680.02379 0.30

T; - Magnitude of torque limits on joint i (Nm)} Error - Mean absolute tracking error (rad)

(Xini» Yinis Zini) - Initial position (m)
(fins Yfins 2fim) - Required second position (m)

t - Trajectory time (second)
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Table 4.37 Combined Pareto optimal solutions and their objective values.

Run
T

‘T 73

Decision Variables

Objectives

Xini Vini Zini Xfin Viin Zfin EITOI" f
- 23.0 38.5 16.5 0751 0.213 0.079 0.015 0.869 0.361 0.06936 0.25
21.0 350 7.5 0746 0.234 0.078 0.014 0.853 0.3450.05371 0.26
20.0 35.0 17.0 0747 0231 0.087 0.013 0.866 0.3450.04686 027
17.5 34.0 6.5 0.731 0.232 0.086 -0.004 0.848 0.3600.03014 0.28
16.5 29.5 85 0742 0.213 0.082 0.012 0.863 0.3390.01994 0.29
15.0 34.5 10.0 0.737 0.222 0.092 -0.013 0.863 0.3510.01760 0.30

T; - Magnitude of torque limits on joint ; (Nm) Error - Mean absolute tracking error (rad)

(Xinis Yini» Zini) - Initial position (m)
(Xfin» ¥fin» Zsin) - Required second position (m)

t - Trajectory time (second)

Errar {(rag)

02 Q21

Time (sec}

022 023 024 025 026 ©G27 028 029

03

Figure 4.53 Trade-off surface of the Parecto front.

B.4. Summary of Simulation Results from Case Study II

Results from the random search, the MOGA with a Gray coding scheme and the

MOGA with an integer-based coding scheme are summarised in Table 4.38.

Table 4.38 Summary of results from the three approaches.

Approach

Random search

MOGA with a Gray coding scheme
MOGA with an integer-based coding scheme

0\0\0\5

hmog

N4 - Number of distinct solutions found

N, - Number of solutions which are not dominated by solutions found by other techniques

4.4.8. Discussions

Prior to any analysis on the simulation results can be carried out, a number of points

are required to be made clear. The Pareto front results are used to represent two main
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aims of the search; these are to find the range of variety in solutions and to locate the
solutions which.are close to the true Pareto optimal solutions of the problem. For this
time-optimal control application, the exact range of variety in solutions is known.
Such knowledge is gained by inspecting the non-dominated solutions and their
corresponding objectives in the solution set itself. This statement will be made clearer
later on in the discussions. Nonetheless, similar to the majority of engineecring
applications, the theoretical, or true, Pareto optimal solutions of the problem are not
known. Of course, there will be a possibility that some of the Pareto optimal solutions
found by one technique can be dominated by the solutions found by another
technique. In order to compare the Pareto optimal solutions obtained from each
technique objectively, both points of view on the variety in solutions found and the
number of solutions found which cannot be dominated by the solutions obtained from

other techniques needs to be considered.

First of all, consideration is placed on the simulation results from the tirst case
study. Both the MOGA with a Gray coding scheme and the MOGA with an integer-
based coding scheme can locate seven distinct solutions while the random search fails
to locate a solution with the trajectory time of 0.21 seconds. For this case study, there
can be only seven distinct solutions in the Pareto optimal solution set. This is because
the solution that has a trajectory time of 0.21 seconds and still has the tracking error
within the target value is obtained for magnitudes of torque limits which are close to
the actual limits on the actuator torque. In addition, there are only seven distinct
solutions which can occupy the trajectory time solution space from ¢ = 0.2 seconds to
t = 0.27 seconds with an increment of 0.01 seconds (the sampling period). As far as
the variety of solutions found is concemed, both approaches of the MOGA are equally
good in this respect. With a close inspection, it is noticeable that all solutions found
by both approaches of the MOGA dominates all optimal solutions found by the
random search. However, after comparing the results found by both approaches of the
MOGA, it is found that the solutions with the trajectory times of 0.21, 0.23, 0.26 and
0.27 seconds found by the MOGA with a Gray coding scheme are dominated by the
corresponding solutions found by the MOGA with an integer-based coding scheme.
At the same time, the solutions found by the MOGA with an integer-based coding
scheme which have trajectory times of 0.22, 0.24 and 0.25 seconds are dominated by
the solutions obtained by the MOGA with a Gray coding scheme. In this respect, it
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can be said that the search performances of the two MOGA approaches are very close

to one another. .

Moving onto the second case study: all three search techniques are capable of
locating six distinct solutions. Note that for this case study, there can be a maximum
of six distinct solutions in the Pareto optimal solution set. This is concluded from the
results obtained from the first case study which indicates that the solution which has
the minimum allowable trajectory time and also has the tracking error which is
smaller than 0.07854 rad is the one with the trajectory time of 0.25 seconds. With the
maximum allowable trajectory time being limited to 0.3 seconds by the search target
and the sampling period is set to 0.01 seconds, there are only six distinct solutions
with the trajectory times ranging from 0.25 to 0.30 seconds that can cover the whole
Pareto front. The simulation results in this case study also reveals that all solutions
found by the MOGA with an integer-based coding scheme dominates all solutions
found by the random search. In contrast, the MOGA with a Gray coding scheme can
only find five solutions which dominate the solutions located by the random search.
The only solution found by the MOGA with a Gray coding scheme which 1s
dominated by the solution found by the random search is the one with the trajectory
time of 0.25 seconds. Among the solutions found by the two MOGA approaches, two
solutions found by the MOGA with a Gray coding scheme dominates the solutions
located by the MOGA with an integer-based coding scheme. These two solutions are
the solutions with the trajectory times of 0.27 and 0.30 seconds. In contrast, the
MOGA with an integer-based coding scheme can locate four distinct solutions that
dominates the solutions found by the MOGA with a Gray coding scheme: the
solutions with the trajectory times of 0.25, 0.26, 0.28 and 0.29 seconds. In overall, it
can be noticed that the performance of the MOGA with an integer-based coding

scheme is slightly higher than that of the MOGA with a Gray coding scheme.

In summary, it can be seen that the MOGA with an integer-based coding
scheme has emerged as the most effective method in finding the Pareto front for this
problem. This conclusion is supported by both viewpoints on the variety of solutions
found and the number of found solutions which cannot be dominated by solutions
obtained from the other techniques. Another important point, which can be observed
from both case studies, is that nearly all of the solutions found by the random search

method cannot dominate the solutions found by both approaches of the MOGA. Since
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the solutions found by the random search method in this case are the non-dominated
solutions of the initial population of the genetic algorithm, this indicates that

successful evolution has been accomplished by the MOGA.,

4.5. Conclusions

In this chapter, the task hybridisation framework presented in Chapter 3 is applied to a
robotic application. In this hybrid framework, the overall application task is divided
into a number of small tasks which subsequently benefit from different components in
the framework. Particularly, this framework concentrates on the combination of
neural networks and genetic algorithms in which the results obtained from the neural
network module are used as the objective values in the genetic algorithm module. A
3-dof robotic system has been used to demonstrate this framework, where the neural
networks are used as assistants to PID controllers in a non-linear de-coupled feedback
control scheme. The performance of the robot is then measured and used as the

objective values in a multi-objective optimisation problem.

The robotic application which is chosen to illustrate the effectiveness of the
framework is a time-optimal control application. The task of tracking a straight-line
path in Cartesian space is given to the robot in this case. The time-optimal joint
trajectory time history is calculated by using the time-optimal control algorithm as
described by Shiller and Lu (1992). Time-optimality is achieved by executing a bang-
bang control, where the control torque signal in one joint is saturated and the control
torque signal on other joints is adjusted accordingly such that the torque limits on
each actuator are not violated. However, the trajectory time history obtained from the
time-optimal control algorithm is calculated by using only the open-loop dynamics of
the robot model. Previously, in order for this trajectory time history to be used as
input to the position control loop, the time history had to be modified using a
trajectory pre-shaping scheme (Shiller et al., 1996). In this investigation, the use of
extended Kohonen networks which contain an additional lattice of output neurons as
assistants to PID controllers has been proven to be an effective method in
compensating for the closed-loop dynamics and modelling errors. This results in
being able to use the trajéctory time history as the input to the control loop directly

without the use of trajectory pre-shaping scheme.
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Subsequently, a genetic algorithm has been used to solve a multi-objective
optimisation involving the selection of torque limits and an end-effector path subject
to time-optimality and tracking error constraints. Two approaches of a multi-objective
genetic algorithm (MOGA) have been used in this application: the MOGA with a
Gray coding scheme and the MOGA with an integer-based coding scheme. The
simulation results suggest that the integer-based chromosome is more suitable than
the Gray chromosome at representing the decision variables. This makes the MOGA
with an integer-based coding scheme emerge as the most effective method in finding

the Pareto optimal solutions for this problem.
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Chapter 5

Conclusions

5.1. Introduction

In this report, a neuro-genetic based hybrid framework has been presented. The
framework has been fully explained and demonstrated in a robotic application. In
particular, the developed framework is identified as a task hybridisation framework
where the neural network has the role of being an additional controller in the control
system while the genetic algorithm is used to solve a multi-objective optimisation
problem associated with the control task. The developed framework has been
successfully applied to a closed-loop time-optimal control application where the

interested optimisation objectives are trajectory time and position tracking error.

In this final chapter, conclusions from the works presented in this report are
briefly summarised. In addition, a comparison between the developed framework and
the one reported in early literature, and possible further works are also discussed. The
summary of conclusions and the framework comparison is given in section 5.2 while

the recommended further work is explained in section 5.3.

5.2. Framework Comparison and Conclusions

In this report, a task hybridisation framework has been introduced. In this particular

framework, the neural network component has the role of being an additional
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controller in a control system. The purpose of using a neural network controller in this
case 1s to compensate for modelling errors in the control system. In contrast, the
genetic algorithm component is used to solve a multi-objective optimisation problem
where the performances of the control system are optimisation objectives. This
developed framework is comparable to one of the task hybridisation frameworks
reported in early literature. In particular, this previously developed framework uses a
neural network to model a relationship between decision variables and objective
values in an optimisation using a genetic algorithm. A schematic diagram showing the

structures of these two frameworks is given in Figure 5.1.

Optimisation using GA Optimisation using GA
NN
| influence
> Neural > ~ Ceontrol
decision network |objective decision system objecélve
variables values variables values
Early developed framework Task hybridisation framework

Figure 5.1 Comparison between an early developed framework and the task
hybridisation framework.

From Figure 5.1, in the early developed framework the neural network component has
a direct role in calculating the objective values for the optimisation process based
upon its input. In contrast, the neural network component can only influence the
outcome of the objective values in the task hybridisation framework illustrated in this
report. In this case a specific function, based on the structure of a control system, is

used to calculate the objective values instead.

In this report, a time-optimal control application is used to demonstrate the
functionality of the task hybridisation framework. The conclusions drawn from
implementing this task hybridisation framework in the time-optimal control

application can be summarised as follows.

I. The use of neural network controllers for the purpose of minimising the effect of
modelling error in a robotic system has proven to be more effective than using
trajectory pre-shaping (Shiller et al., 1996) for the same purpose in time-optimal
control. In addition, it is found that the extended Kohonen network is more

suitable to the time-optimal control task when the robot is operated under the
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normal condition while the radial-basis function network is more effective when
there are modelling errors in the system. Moreover the use of the neural network
controllers also enables the use of a time-optimal angular trajectory profile,
obtained from the time-optimal control algorithm (Shiller and Lu, 1992), as the
reference input to the closed-loop robotic system without the use of trajectory pre-

shaping as required in Shiller et al. (1996).

2. A multi-objective genetic algorithm (MOGA) has successfully solved a multi-

objective optimisation problem involving the selection of a torque limit
combination and a pre-defined path for use as input to the time-optimal control
algorithm where the objectives are trajectory time and tracking error. The MOGA
has been proven to be more effective than a random search in obtaining Pareto
optimal solutions. In addition, it is also found that an integer-based chromosome is

more suitable than a Gray code chromosome at representing decision varables.

5.3. Recommended Further Works

In the previous section, the conclusions from the report have been discussed. Based
on these conclusions, a possible further work can be explained as follows. In the
report, the control problem discussed involves the time-optimal control of a robot that
is given a task of tracking a straight-line path in Cartesian space. The scope of the
work can be extended to include obstacle avoidance criteria where the use of a more
sophisticated path-planning scheme is required. Obstacle avoidance constraints can be
integrated into the problem investigated where the obstacles can be dynamic or static

ones.
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Appendix A

Lagrange-Euler Formation of the Dynamic
Model of a Robot

Prior to the Lagrange-Euler formation of the dynamics equation of a robot arm, three
key elements of the robot model have to be identified: homogeneous transformation
matrices, pseudo-inertia matrices and centre of mass vectors. These three components

are briefly explained as follows.

A.l. Homogeneous Transformation Matrices

A homogeneous transformation matrix is a matrix which is used to relate the spatial
displacement of a link co-ordinate frame to another co-ordinate frame in a robotic
system. Let “'A; be the homogeneous transformation matrix which relates the
co-ordinate frame of the ith link to the co-ordinate frame of the (i-1)th link. If the joint

is a revolute joint, "' A, is given by

cosfl —cosa,sing sing,sing  a,cosé]
. sing cosa,cosd —sina,cosé a,sing
-1 i i T i i i i
.= . (A-1)
0 sin &, cosa, d,
0 0 0 1

where & is the joint angle from the x;; axis to the x; axis about the z;) axis (using the
right hand rule), d; is the distance from the origin of the (i-1)th co-ordinate frame to
the intersection of the z.; axis with the x; axis along the z;, axis, a; is the offset
distance from the intersection of the z;, axis with the x; axis to the origin of the ith
frame along the x, axis (or the shortest distance between the z;.; and z; axes) and &; 1s
the offset angle from the z;, axis to the z; axis about the x; axis (using the right hand

rule). On the other hand, if joint / is a prismatic joint, ~'A; is given by
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[cosg  —cosa,sing  sina sing 0

el sing,  cosa,cosgd  -sine cosf 0
A, = . (A-2)

0 sin g, cosa, d,

0 0 0 ]

For a revolute joint, d;, a; and «; are the joint parameters and remain constant for a
robot while & is the joint variable that changes when link / rotates with respect to link
i-1. For a prismatic joint, &, a; and «; are the joint parameters and remain constant for
a robot while d; is the joint variable. To model an n-dof robot requires the knowledge
of n homogeneous transformation matrices where each matrix relates the ith

co-ordinate frame to the (/-1)th co-ordinate frame fori =1, 2, ..., n. Note that

TA=TA LA L FTTALL AL (A-3)

A.2. Pseudo-Inertia Matrices

A pseudo-inertia matrix is a matrix which is composed of first moments, moments of
inertia and products of inertia of a link about the three principal axes of a co-ordinate
frame. In order to model an n-dof robot, 1z pseudo-inertia matrices are required in the
formation of the dynamics equation. Each pseudo-inertia matrix is calculated for a
link between the ith co-ordinate frame and the (i-1)th co-ordinate frame. The pseudo-
inertia matrix of link i where link 7 is located between the (i-1)th co-ordinate frame

and the ith co-ordinate frame is given by

I+ + 1T, ]
' I ! n.Xx.
2 x xr i i
l,—1,+1_ _

J‘_ = 11} 2 ]y: m.y, (A_4)

I +1,—1_ 3
I /. > m.z,

| m.Xx, my, m.z, m, |

where J; is the pseudo-inertia matrix of link {, /., /,, and /.. are the moments of inertia
about the principal axes x;, y; and z; in the ith co-ordinate frame, /,,, /,; and /; are the
products of inertia about the axes X;y;, yiz; and x;z; in the /th co-ordinate frame, m, is

the mass of link /, and ¥,, y, and Z, form the centre of mass of link / expressed in the

ith co-ordinate system.
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A.3. Centre of Mass Vectors

\

A centre of mass vector is a vector describing the centre of mass of a robot link in a

co-ordinate frame. Let 'T, be the centre of mass vector of link / in the ith co-ordinate

frame. ‘T, is given by

i

_ = _ _ r

F=[5 7 % 1] (A-5)
where X;, ¥; and Z; form the centre of mass of link /, expressed in the ith co-ordinate
system.

With the full knowledge regarding homogeneous transformation matrices,
pseudo-inertia matrices and centre of mass vectors, the dynamics equation of a robot

arm can be formed where it is given by
D(6)0 + h(6,6) + ¢(0) = u(r) (A-6)

where D(0) is the » x n inertial acceleration-related matrix, h(8,8) is the n x |
centrifugal and Coriolis forces vector, ¢(8) is the » x 1 gravity loading force vector,
u(r) is the n x 1 torque input vector, 6(s) is the » x 1 angular position vector, 8(¢) is
the n x 1 angular velocity vector, 6(r) is the n x | angular acceleration vector and »
denotes the degree of freedom of the robot model. The explanation for the terms D(0),
h(8,6) and ¢(8) is given as follows.

Firstly, a consideration is placed on the inertial acceleration-related matrix,

D(6). Each element of D(8) is given by

ka = ZT"(UJ*JJ'U;)’ I,k= 1923'-'3'” (A-7)

J=max{i k)

[¢] ‘ j—] ‘ . S .
where U, = AQ A, for s (A-8)
Y 0 for/>1i
0O -1 06 0
1 0 00 . 9
and Q= o 0 0 0 for a revolute joint (A-9)
0O 0 0 0
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[0 0 0 O]
10 6 0 O

and Q, = 00 0 1 for a prismatic joint,
0 0 0 0]

(A-10)

J; is the pseudo-inertia matrix of joint j, 7r(.) denotes the trace operation and T

indicates the transposition.

Moving onto the term describing centrifugal and Coriolis forces: h(8,0) is

given by
h©,6)=[h h, - h]
where h, :ZZI‘.‘M&’*Q’, i=1,2,...,n
k=t m=|
and By = 2 TP (U, J UTY, ik,m=1,2,
JF=max(i k m)

‘A QA Q. "TA, fori>k=j

Note that U,=1"4,.,Q,"A,,Q, A, fori=j=k

0 fori<jori<k
Finally, the gravity loading force vector is given by

c(G)z[c, cy e cn]r

where c,.=Z(—mngﬁij.), i=1,2,..,n
J=i

(A-11)

(A-12)

ooy 1(A-13)

(A-14)

(A-15)

(A-16)

and m; is the mass of link j, f‘Fj is the centre of mass vector of link j in the jth

co-ordinate frame and g is a gravity row vector expressed in the base co-ordinate

system. For a level system, g = [0 0 - |g| 0] and g is the gravitational constant.
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Appendix B

Calculations of Moments and Products of
Inertia

In Chapter 4, a robot model is used during the simulations. All links in the robots are
modelled as a rigid rod in one-dimensional space. Moments of inertia and products of

inertia of a rod are described as follows.

Within the robot model used during the simulations, moments of inertita of a
rigid rod is only required for the case of rotations about the principal axes in a co-
ordinate frame. In particular, the rod will always coincide with the x axis of the co-
ordinate frame where the rotation axes being at one end of the rod itself. Hence, the

moments of inertia of the rgid rod about the principal axes are given by

I _=0,1_ = mi* (B-1)

.
- Eml' and /_ =

G | —

where m is the mass of the rod, / is the length of the rod and /., /,, and /.. represent
moments of inertia about the x, y and z axes respectively. Since the rod occupies one-
dimensional space, particularly with the dimensions of the rod in the y and z axes of
the co-ordinate frame always being equal to zero, the products of inertia (/y, /yz /)

will be equal to zero.

146



Appendix C
Robot Model Used in the Simulations

As mentioned earlier, the 3-dof robot illustrated in Figure 4.1 is used in the
simulations presented in Chapter 4. Using the Denavit-Hartenberg convention (Fu et

al., 1985), the parameters used during the co-ordinate frame transformations are given

in Table C.1.

Table C.1 Parameters for co-ordinate frame transformations.

Joint Number a; a; d;
| 90° 0 0
2 0° ly 0
3 0° l> 0

Note that the definition of parameters «;, a; and d4; are given in Appendix A.
Homogeneous transformation matrices, pseudo-inertia matrices and centre of mass
vectors for this 3-dof robot are given alongside co-ordinate transformation diagrams
in Figure C.1. In addition, the mass and length properties of each link in the robot

model are given in Figure 4.1.

Joint 1

Z y1 cosgd 0O singd O
a Yo oA = singd 0 —cosg O
! 0 1 0 0
: Xo , X, o 0 0 1

° / 000 0

@ 00 00

J7=10 0 0 o

00 00

'r=[0 0 o 1]
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Figure C.1 Co-ordinate transformation diagrams.

Joint 2

cosd, —sing, 0 / cosé
A - sing, cos# 0 /[ sing,
X2 - 0 0 1 0
0 0 0 ]
T 1]
Emlll‘ 0 0 —Elnl[l
J. = 0 0 0 0
i} 1O 0 0 0
_"5’"111 0 0 m, |
T
T, :[——1, 0 O 1]
Joint 3
cost, —sing, 0 /[, cosé,
N sin¢, cosé, O I[,siné
N 0 1 0
X3
0 0 0 1
_l L 0 0 1 / |
PR S Mol
0 0 0 0
J; =
0 0 0 0
1
~—m,, 0 0 n,
L 2 - -
1 T
’T, :[—512 0 0 1}
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Appendix D
Publication of the Research Result
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control using neural networks and a genetic algorithm. 2007/ ASME International
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UBSTRACT

This paper presents the use of neural nctworks and a
~ [metic algorithm in time-optimal control of a closed-loop 3-dof

mhotic system. Extended Kohonen networks which contain an
dditional Jattice of output neurons are used in conjunction with
'ID controllers in position control to minimise command
cking errors. The results indicate that the extended Kohonen
etwork controller is more efficient than the trajectory pre-
daping scheme reported in carly literature. Subsequently. a
mlti-objective genetic algorithm (MOGA) is used to solve an
ptimisation problem related to time-optimal control. This
roblem involves the selection of actuator torque limits and an
md-effector path subject to time-optimality and tracking error
onstraints. Two chromosome coding schemes are explored in
be investigation: Gray and integer-based coding schemes. The
ults suggest that the integer-based chromosome 1s more
witable at representing the decision variables. As a result qf
ing both neural networks and a genetic algorithm in this
" ppplication, an idea of a hybridisation betwecn a necural network
md a genetic algorithm at the task level for use in 2 control
system is also effectively demonstrated.

Reywords: Genetic Algorithm, Neural Network, Robotics,
Time-Optimal Contro!

NOMENCLATURE

dof degree-of-freedom

KOH Kohonen network

'MOGA multi-objective genetic algorithm

NN neural network

PID proponional-integra!-derivative controller
'RBF radial-basis function network

'SMAE sum of mean absolute tracking errors
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TP trajectory pre-shaping

c(9) gravity loading force vecior

D(8) inertial acceleration-related matrix

h(8,8) centrifugal and Coriolis forces vector

{ continuous time

u(r) torque input vector

uief () reference control signal for the ith joint
sub-system

a, arbitrary scalar

e(:) angular position vector

é(r) angular velocity vector

8() angular acceleration vector

8} desired angular position of joint i

9'; desired angular velocity of joint i

A, arbitrary scalar

1. INTRODUCTION .

Time-optimal control has been one of the major re_scarch
s in robotics during the past decade. Time-optimality can
nt in the level of productivity from
ffectiveness

interest
lead to an overall improveme .
a manufacturing viewpoint and an increase ifi th'e effe
of a task execution from an operational  viewpoint. One
particular aspect of research is the theory and application of
time-optimal control of a robot arm along 2 prc-de'f'lnejd path.
An algorithm that can {ead to time-optimality of this kind was
firstly developed by Baobrow et al. [1]. Over the years, this
algorithm has undergone a number of {eﬁnements_ and one of
the latest modifications has been described in Shiller and Lu
[2]. In summary, a time-optimal motion of_a ro_bot arm a]ong a
pre-dcﬁned path is achieved when the motion is executed with
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sper the maximum possible acceleration or deceleration along
% path. This can be done when one of the actuators on the
ot armn is always saturated and the other actuators adjust
ir torque values so that their torque limits are not violated

[
J

Although this time-optimal control algorithm has been
rven to be a useful algonithm in a number of robotic
bplications, the majority of the demonstrations have only been
one in the open-loop conirol mede. This ¢an hardly be the case
or a practical use of motion control in a real-time
nplementation where closed-loop contrel would be & more
ommon  practice. Shiller et al. [4] have pointed out that the
wtuator dynamics and the delays caused by an on-line feedback
ontroller would lead to a reduction in the efficiency of the
leorithm when closed-loop control is used. Three possible
thods have been used to solve this problem. The first method
s based on a medification of the onginal time-optimal control
croblem into a time-energy optimal control problem which can
% regarded as a lagrangian constraint optimisation problem and
an only be solved numerically [5]. A drawback of this method
sthat the modification also lecads to an increase in the resulting
mjectory time. The second method is based on the use of a
implified friction model to compensate for the actuator
fmamics and the implementation of a trajectory pre-shaping to
xeount for the dynamics of the controller [4]. Finally, the third
nethod covers the use of a neural network which is trained
wsing feedback error leamning {6] as an additional controller in
e control loop. The primary function of this neural network is
0 compensate for modelling errors and delays caused by the
nain controller in the system. It has also been demonstrated that
e compensation performance of the neural network controller
shigher than that of the trajectory pre-shaper [7].

The work initiated by Chaiyaratana and Zalzala [7] will be
ontinued in this paper where the investigation will cover the
se of time-optimal control in a closed-loop 3-dof robotic
system. Similar 10 the carlicr work, the investigation will be
tarried out in a similar way to that described in Shiller et al. (4]
txcept that the actuator dynamics are not considered. The
teural network controllers will be used in conjunction with the
standard controllers, which leads to the redundancy of the use
of trajectory pre-shaper. In contrast to the eartier work where
the feedback error learning is used, in this paper the neural
metwork controliers will be trained using reinforcement
learning. In addition to the continuation on the study of neural

[network capability in the compensation task, a further m_ults—

objective optimisation problem associated wi(h tl_le use of time-

optimal control is also considered. Note that this is an £xtension
to the multi-objective problem addressed in Chaiyaratana and

Zalzala [7]. The optimisation problem interested involves the

selection of torque limit combination and the pat_h planning

process where the scarch objectives are expressed in terms of
the position tracking error and trajectory time. Aﬂ_aPPmaCh on
« multi-objective optimisation using a geneuc algon_lhma namely

a multi-objective genetic algorithm (MOGA) (8] will be used to

solve the mentioned problem. Since the neural network and
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genetic algorithm are used in the different part of the control
application, in essence this indicates a task hybridisation
between a neural network and a genetic algorithm.

This paper is presented as follows. The time-optimal
control algorithm as described by Shiller and Lu [2] is briefly
explained in section 2. In addition, the trajectory pre-shaping
scheme is also explained in this section. In scction 3, the
overview of the time-optimal control problem is discussed. In
section 4, the control structure of the robotic system and the
neural network contribution 15 given. The improvement in the
system performance gained by using neural network controllers
and the comparison with the previous results reported in
Chaivaratana and Zalzala [7] is illustrated in section 5. The
multi-objective optimisation problem assoctated with time-
optimal control and the MOGA are explained in section 6. The
optimisation results and the related discussions are given in
section 7. Finally, the conclusions are drawn in section 8.

2. TIME-OPTIMAL CONTROL ALGORITHM AND

TRAJECTORY PRE-SHAPING SCHEME

In swnmary, time-optimal control algorithm as described
by Shiller and Lu [2] can be used 1o generate the time-optimal
profiles of the reference joint position and the open-loop control
torque signal provided that the physical properties of the robot
arm are known and a pre-defined path of the robot arm in the
workspace is available. In particular, the torque limits on the
actuators within the robot are the key factors which have a
major influence on the trajectory time obtained from the
algorithm. As stated earlier, the time-optimal motion is achieved
when one of the actuators on the robot arm is always saturated
and the torque values of other actuators are within the bounds of
the corresponding limits. This means that with the large values
of the torque limits, the obtained trajectory time will be shont.
On the other hand, with the smaller values of the torque limits,
the obtained trajectory time will be relatively larger. A
schematic diagram describing input and output of the time-
optimal control algorithm is given in Fig. 1.

Robot physical

properties Refcrence.
including the joint position
torque limits {profile .

Time-optimal

control

algorithm ~

QOpen-loop

=
Pre-defined
torque profile

path

Input Qutput

Figure 1. Schematic diagram of the time-optimal
control algorithm.

, the time-optimal control algorithm takes the robot

erties and the information regarding the pre-

h as inputs. The outputs from the algorithm

In Fig. |
physical prop
defined robot’s pal
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the reference joint position and the open-loop torque
Eﬁles.

Nonetheless, the time-optimal control algorithm will
hduce a result based on the open-loop dynamics of the
stem. This means that a certain number of problems will arise
%en using the reference joint position profile obtained from
: algorithm as input to the closed-loop system [4, 5]. In order
rsolve the problem, Shiller et al. [4] have introduced a method
hown as trajectory pre-shaping which involves a modification
fthe reference joint position profile according to the dynamics
{the closed-loop system. This modification involves adding
pe open-loop reference joint position profile with a factor
iven by the open-loop torque profile which has been
nsformed by the inverse model of the controller in the closed-
wp system. This modified or “pre-shaped” reference joint
wsition profile is then used as input to the position feedback
hstemn in the usual way. Although some good results obtained
by using trajectory pre-shaping have been reported in early
lterature, it will be demonstrated in sections 4 and 5 that the
of neural networks to compensate for dynamics of the
ontrollers and modelling errors helps to remove the need for
jectory pre-shaping.

b OVERVIEW OF THE TIME-OPTIMAL CONTROL
PROBLEM

The simulations which are used to demonstrate the
anctions of a neural network and a genetic algorithm in the
ime-optimal control application involve the use of a 3-dof
wbot in a position control task. This task requires the robot to
mack a one-metre straight-line path; this is illustrated in Fig. 2.

0 0

y (m) x (m}

Figure 2. Robot and the straight-line path.

[Referring to Fig. 2, point 4 (0.736, 0.226, 0.093) is the initial
location of the robot end-effector and point B (0.0, 0.8534,
0.354) is the final desired location of the robot end-effector on
this path. The time-optimal control algorithm is then used to
generate the trajectory time history, which is subsequently used
as the input to the position control loop.

4. CONTROL STRUCTURE AND NEURAL NETWORK
CONTRIBUTION
Firstly, consider the dynamic equation of motion for an n-
dof robot which is given by
D(8)0 + h(8,0) + c(8) = u(s) (1)
where D(8) is the » x » inertial acceleration-related matrix,
h(8,8) is the 7 x | centrifugal and Coriolis forces vector, (@)
15 the n x | gravity loading force vector, u{r) is the n x 1 torque
input vector, 8(7) is the » % 1 angular position vector, G(r) is

the # x 1 angular velocity vector, 8(r) is the n x 1 angular
acceleration vector and » is the degree of freedom of the robot
model. Equation (1) indicates a non-linear relationship between
the input torque and the joint angular parameters. The control
strategy which is used in this study is the non-linear de-coupled
feedback control. In this case, the control objective is to find a
control signal u(7) such that the overall robotic system will be
de-coupled into n linear second order systems. Freund [9] has
suggested such a control signal which takes the form of
@8, (1) + 0,8, (1) = Aty (1) ;
u(r) = h(6,6) +¢(6) - D(O) : 2)
0,8, (1) + 04,0, (1) = Aul, (1)
where ¢, and A, are arbitrary scalars. With the use of u(¢) of this
form, the overall dynamics of the system as described in Eq. (1)
will transform into

6,0+, 00+ 8(1)=Aul (1), i=1,2,n (3)
which indicates the de-coupled input-output relationship of the
system. Using this form of de-coupling and non-linear
compensation, c¢ach de-coupled joint sub-system can be
controlled using a standard PID controller. In addition, a ncural
network can be used as an additional controller in each joint
control loop where it will have a role of compensating for the
dynamics of the primary controller and the possible modelling
errors. This arrangement is illustrated in Fig. 3.

g,,' +

130 e . joint 6,
\X\/‘ PID \’\//\ sub-system
; - | + PR S —

2 NN J

Figure 3. Neural network and PID controllers in each
joint control loop.

However, with the control scheme as shown in Fig. 3, it is
not possible to derive an exact desired neural network output
training signal. Hence, an alternative training signal must
therefore be acquired. One possible way for deriving an
appropriate neural network output signal for use as an
additional control signal is to use a reinforcement leaming
paradigm; this can be done as follows.
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One procedure which can be used to accomplish
anforcement learning is a generate-and-test process. Basically,
“s process begins by generating a possible value of the neural
ywork output. This newly generated neural network output is
en combined with the control signal from the PID controller
Psubsequently applied to the model of joint sub-system
where the predicted value of the command tracking error can be
bained. This cormmand tracking error will be represented in
2 form of the reward value achieved by using the generated
wural network output. In a similar manner, the unmeodified
ale of the neural network output is also applied to the same
model of the joint sub-systern where another predicted value of
e command tracking error and the associated reward value can
so be obtained. If the change in the reward function — the
hfference between the two reward values — meets the criteria
or adjusting the network connection weights, the network
narameters will undergo an adaptation using an appropriate
raming rule such as an error correction leamning rule. After the
saptation, the network will send out the output signal which is
%ing calculated using the updated settings of the network
parameters where this output signal will be used as a pan of the
werall control signal for the actual robot. On the other hand, if
he change in the reward function does not satisfy the critena
for the network adaptation, the network parameters will remain
mchanged. The output from the network will then be calculated
wsed on the unmodified settings of the network parameters.
This process will continue until there are no changes in the
setwork  parameters. The schematic diagram of the
xinforcement learmning paradigm described above is illustrated
m Fig. 4.

model of

l joint sub-

| system
{ + ’L “;rf .. 9‘
| " .. joint sub-
PID \’T)ﬁi system |
/‘ e

Figure 4. Model-based reinforcement learning within
the contro! loop of joint f.

In this study, Kohonen networks with an additional lattice
of output neurons or the extended Kohonen networks [10] are
used to assist PID controllers in the position control loop. The
model-based reinforcement learning is used to train the
connection weights within the networks. Three neural network
controllers, one for each joint sub-system, are trained and tested
for use in position control of the 3-dof robot by using a
combination between the time-optimal position and velocity
trajectones as both the training and testing samples. Note that
this time-optimal trajectory is obtained for a robot task of
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tracking a straight-line path in Cartesian space shown in Fig. 2
with the torque limits on joints 1, 2 and 3 of +15, +25 and +5
Nm, respectively. The parameter settings for training neural
networks are summarised in Table 1. The simulation results are
displayed and discussed in the following section.

Table 1. Parameter settings for training neural

networks.
Parameter Value
Number of neurons in each network 98
Number of connection weights in each network 147
Number of tnput nodes in each network 2
Number of firing output nodes in each network 1
Number of training samples 30
400

Number of training epochs

5. RESULTS FROM USING NEURAL NETWORK

CONTROLLERS AND DISCUSIONS

In this section, the simulation results from using the
extended Kohonen network controllers will be discussed. In
order to make the comparison, the results obtained using other
techniques including the results achieved via the use of
trajectory pre-shaping scheme and radial-basis  function
networks [7] will also be displayed alongside. Firstly, the
simulation results for the case of PID controllers with trajectory
pre-shaping and the case of PID and extended Kohonen
network controliers are shown in Figs. §, 6 and 7. In Figs. 5 and
6, the simulation results indicate that with the use of the
extended Kohonen network contrellers as the assistants to the
PID controllers, a significant improvement in the control
performance over that achievable by using trajectory pre-
shaping mechanism can be observed. In Fig. 7, with the use of
the extended Kohonen network controllers, the characteristics
of the closed-loop torque profiles are similar to those of the
open-loop control. This indicates that the time-optimality has
been achieved within the torque constraints. Note that these
trained extended Kohonen networks are used in the following
parts including the following multi-objective optimisation
problem without any further training.

Another advantage gained by using neural networks as
assistants to PID controllers is the resistance to modelling errors
which can occur during the rebot operation. Many forms of
error can be introduced to the robot system after the controllers
have been designed. For example, a liquid spillage from the
container attached to the last link of the robot arm can occur
afiter an unexpected event, such as a collision. This kind of
malfunction can lead to a loss of the overall mass in the last link
of robot, which is a form of medelling error. This kind of
modelling error is used in the following test cases which in turn
are used to demonstrate the effectiveness of extended Kohonen
network controllers in this kind of situation. In summary, in the
following five test cases, a certain amount of mass in the last
link, ranging from 10 % te 50 % of the overall mass, is lost
during the operation. Note that the modelling error will only
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effect the mass of the last link and not the length of the last link.
This makes the robot trajectory unaffected by this modelling
CITOL.

Since the modelling error occurs after the control structure
has been determined, the robot physical model which is used in
the time-optimal trajectory generation and  feed-forward
compensator for de-coupling the robot dynamics will remain
unchanged. Also the same torque limits on the actuators will be
used in the time-optimal trajectory generation. However, the
generated reference position trajectory and open-loop torque
profile will no longer be time-optimal. Nevertheless, it is
sufficed to say that although time-optimality cannot be
maintained after the occurrence of the fault, the robot operation
can still be described as time sub-optimal. A summary of
simulation results, expressed in terms of the sum of the squared
position tracking errors and the sum of the absolute errors, from
all five test cases and the previous simulation with no mass loss
is given in Table 2. Note that the simulation results from using
trajectory pre-shaping and radial-basis function network
controllers which are trained using feedback error learning [7]
are also given for comparison purposes.

Table 2. Summary of tracking error results.

Loss Squared Error (rad”) Absolute Error {rad)
(%) PID+KOH PID+RBF PID+TP PID+KOH PID+RBF PID+TP
4] 0.0074 0.0084 05894 0.5593 0.6669 31.6620
10 0.0128 0.0103 06350 0.8442 0.7607 35.1721
20 0.0220 0.0205 0.3191 1.0616 1.0206 4.0637
30 0.0332 0.0304 02754 1.2447 1.1929 3.7820
40 0.0422 0.0365 0.2656 1.3989 1.3096 3.8071
50 0.0502 0.0409 0.2509 1.5483 1.4249 37661

Again from Table 2, it is noticeable that in all test cases, the
use of the neural networks as assistants to PID controllers has
proven to be a more effective method in reducing tracking
errors than the use of trazjectory pre-shaping scheme. This
indicates that neural network controllers are more suitable to the
time-optimal control application both in the normal operating
condition and in the event of the occurrence of modelling errors
in the control system.

Although in all test cases, the PID and neural network
controllers exhibit a very good performance, a significant
increase in tracking errors can be observed as more mass is lost
from the last link. However, this is to be expected since the
neural network controllers are originally trained to cope with
the robotic system which has been de-coupled into a set of de-
coupled linear systems. As more mass is lost from the last link,
the level of coupling in the overall system will increase. This
will certainly lead to the deterioration in the performance of the
neural network controllers. It can also be observed from the
case where there is no mass loss from the robot arm that both
the sum of the squared and the absolute tracking errors over the
trajectory when the extended Kohonen networks are used are
slightly better than those when the radial-basis function
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aworks are used. In contrast, once there are some modelling
7ors in the system, it can be seen that the tracking errors when
¢ extended Kohonen networks are used are slightly higher
han that when the radial-basis function networks are utilised.
Tese results are caused by the differences in the network
mctures and the leamning algorithms used.

.. MULTI-OBJECTIVE OPTIMISATION USING A
GENETIC ALGORITHM

In practice, the maximum torque limits, which are used in
he time-optimal trajectory calculation process for a closed-loop
untrol, are usually less than the actual torque limits on the
smators. This safety precaution is done in order to allow some
margins of error for possible discrepancies introduced to the
wsteme by modeliing errors and controller dynamics [4]. This
mplies that for a given set of the actual torque lhimits of the
ktuators, there is a set of admissible torque limits combinations
hat can lead to a certain level of time-optimality within an
wceptable range of tracking error. In addition, in certain
pplications such as welding or edge-deburring it is possible to
medify the end-effector trajectory in Cartesian space without
sffecting the task requirement provided that the position and
wmentation of the work piece at which the end-effector has to
®main in contact with can be modified accordingly. The control
ask discussed in section 3 is an example which reflects such
pplications. By modifying the initial and final locations of the
graight-line path, the task description in the applicaticn
viewpoint would remain the same while the angular trajectory at
which the robot joint has to follow would be different. Such
thange in the angular trajectory would lead to a variation in the
position tracking error. Combining with the issue on torque
limits, this points to a design problem in robotic applications.
The objective of such problem is to find a combination of
orque limits from a set of admissible torque ranges and the
initial and final position of the end-effector which will lead to a
rajectory which meets the time-optimality and tracking error
constraints. This is a multi-objective optimisation problem since
it would be highly unlikely to obtain a single trajectory that can
minitnise  both the trajectory time and tracking error
simultaneously. A multi-objective genetic algorithm (MOGA)
will be used to solve the problem associated with the torque
limit and end-effector position selection in this study. The
'(problem formation and the genetic operators used are discussed
as follows.

6.1. Decision Variables

A 3-dof robot with the task of tracking a straight-line path

in Cartesian space presented earlier is used to demonstrate this

multi-objective optimisation problem. The decision variables of

Fthe problem consist of the torque limit combination and the
linitial and final position of the end-effector. Assuming that the
magnitudes of the maximum and minimum torque limits are the

same for each actuator, the torque limit part of the decision

variables would consist of the magnitude of the torque limits of

each joint. In this stmdy, the range of the magnitudes of the

torque limits on joints 1, 2 and 3 are set to 15-30, 25-40 and 5-
20 Nm, respectively. The lower bounds of the limits (i.e. 15, 25,
5) are based on the maximum allowable trajectory time
requirement of 0.3 scconds, while the upper bounds of the
torque limits (i.e. 30, 40, 20) are set by the actual torque limits
of the actuators.

Moving on to the part of decision variables which involves
the positions of the end-effector. In order to create a fixed-
length path in Cartesian space, two vectors are required: the
position vector for the initial position of the end-effector and
the direction vector pointing from the initial position toward the
desired final position of the end-effector. This requirement can
be achieved by setting up two scarch variables. The first
variable will be the initial location of the end-effector while the
second variable will be another point in the robot workspace at
which a direction vector pointing from the initial position of the
end-cffector toward this point can be established. In this
investigation the search range for the initial position of the end-
effector is given by {0.721-0.751, 0.211-0.241, 0.078-0.108) in
the x, y and z directions, respectively. In contrast, the search
range for the location of the other point in the robot workspace
is set to (-0.015-0.015, 0.839-0.869, 0.339-0.369) in the x, ¥
and z directions, respectively. Note that the search ranges for
these two points are in the vicimty of the initial and final
positions of the straight-line path described earher in section 3.

6.2. Objective Variables

There are two optimisation objective variables in this
problem: the tracking error and the trajectory time objectives.
The tracking error objective is expressed in terms of the sum of
the mean absolute errors over three joints, calculated over the
whole trajectory. The trajectory time objective is the optimal
trajectory time obtained from the time-optimal control
algorithm. Note that the sampling period used in the simulation
of this 3-dof robotic closed-loop system is 0.0] seconds. Hence,
the trajectory time will always be in the form of 0.01m where m

I$ a positive integer.

6.3. Chromosome Coding

Nine decision variables — the magnitudes of the torque
limits from all three joints and the co-ordinates along three axes
of the two points for identifying the straight-line path - are
concatenated together and coded to form a chromosome. Two
chromosome coding schemes are explered here: Gray and
integer-based coding schemes. The torque ranges for all three
joints are discretised using a search step of 0.5 Nm. This leaves
31 search points for the magnitude of the torque limits of each
joint. In a similar way, the search ranges of the co-ordinates of
the two points for dictating the location of the straight-line path
are discretised using a search step of 0.001 m. This also leaves
31 search poinis for the co-ordinate in each axis. With the use
of a Gray coding scheme, a Gray code of length 5 can be used
to represent a decision variable. The total length of the
chromosome in this case would be equal to 45. Note that there
are certain search points obtained after decoding the
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«omosome which lie outside the required search space. These
Lnts are tnapped back into the feasible region by changing the
st significant bit of the Gray code section representing the
pticular  decision  variable that violates the feasibility
nstraint into zero. In contrast to the case of the Gray coding
cheme, with the use of an integer-based coding system a single
boe can be used Lo represent a decision variable. Each gene
- then take an allele value from a set which is composed of
| integers ranging from 0 to 30. The chromosome length in
ks case would be equal to nine.

id. Fitness Assignment and Fitness Sharing

The ranking method as described in Fonseca and Fleming
[11] is used to rank each individual in the population. Following
tat, a linear fitness interpolation is used to assign fitness to
zch individual. Fitness sharing. with the use of tnangular
daring function, is then carried out in nonmalised objective

pace.

FiS. Selection Method

Stochastic universal sampling [12] is used in the fitness
wlection. The elitist strategy used is to select two individuals
sith the highest fitness and pass onio the next generation
sithout crossover or mutation.

§6. Crossover and Mutation Methods

The standard one-point crossover is used in  the
rcombination. Two individuals are allowed to perform
[wossover if, and only if, they are within the mating restriction
Jistance from each other. For simplicity, the mating restriction
ndius is set to equal to the sharing radius and the consideration
n the distance between the two individuals 1s also done in
wrmalised objective space. For the case of chromosome coding
sing a Gray code, a standard bit-flipped operation is used for
fe mutation. In contrast, the value 1 will be added to or
wwbtracted from the allele value of the mutated gene to achieve
mutation in the integer-based coding systern. The parameter
settings for the MOGA are summarised in Table 3.

For the purpose of comparison, the random search
echnique 15 also used to find the Pareto optimal soiutions in
this study. Eschenauer et al. [13] have explained that in the case
of a multi-objective optimisation, the random search method
can generally be used to obtain a non-dominated solution set. In
the random scarch technique, a set of random solutions is
generated. Then non-dominated solutions are picked from this
[solution set. This can be done by applying the ranking
mechanism used in the MOGA 10 the initial random solutions
and sclected solutions with the highest rank. Since a genetic
algorithm also uses randomly generated solutions as its initial
search points, the random scarch has already been embedded
into the penctic algorithm as the initial search procedure. This
means that a comparison between the non-dominated solutions
found from the initial population of the genetic algerithm and
the non-dominated solutions obtained from the last generation
of the genctic algorithm run would provide an adequate

comparison in terms of the comparison with the random search
method. The description of the case studies explored. the
simulation results and the discussions will be given i the net
section.

Table 3. Parameter settings for the MOGA.

Parameter Value

Chromosome length

Gray code 45

[nteger-based code 9
Crossover probability 0.8
Mutation probability

Gray code 0.02

[nteger-based code 0.1
Sharing and mating restriction radii 0.03
Population size i0
Number of elitist individuals 2
Number of generations 30

7. RESULTS FROM USING A GENETIC ALGORITHM

AND DISCUSSIONS

Two case studies are investigated in this paper. The aim of
the first case study is to find a set of torque limit combinations
and straight-line paths which lead to trajectortes with the sum of
the mecan absolute tracking errors £ 0.15708 radians (3 degrees
per joint) and the trajectory time < 0.27 seconds. The aim of the
second case study is to find a sct of torque limit combinations
and straight-line paths which lead to trajectories with the sum ot
the mean absolute tracking ermors < 0.07854 radians (3.5
degrees per joint) and the trajectory time £ 0.30 seconds. The
purpose of the first case study 15 to find solutions that
concentrate more on optimising the trajectory time while the
second c¢ase study emphasises on  the tracking  crror
optimisation. The simulation results for these two cases are
summarised in Figs. 8 and 9. Note that the displayed results are
the combination of Pareto optimal selutions obtained from five
different simulation runs. In addition, the imitial populations
used in both approaches of the MOGA in cach simulation run
are generated such that the resulting decision vanables are the
same. In other words, the initial populations used 10 the two
appreaches are equivalent in terms of the decision variables
obtained after decoding the chromosomes.

In overall, it can be scen from the results that the MOGA
with an integer-based coding scheme has emerged as the most
effective method in finding the Parcto front for this problem.
This conclusion is supported by both viewpoints on the varicty
ot solutions found and the number of found solutions which
cannot be dominated by solutions obtatned from the other
techniques. Another important point, which can be observed
from both case studies, is that necarly all of the solutons found
by the random search method cannot dominate the seolutions
found by both approaches of the MOGA. Since the solutions
found by the random scarch method in this case are the non-
dominated solutions from the intial population of the genctic
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Q;aﬁm, this indicates that successful evolution has been
-ymplished by the MOGA.
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Figure 8. Pareto optimal solutions from case 1.
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E- CONCLUSIONS

In this paper, the robotic application which is chosen to
lustrate the effectiveness in combining neural networks and a
enetic algorithm at the application task level is a time-optimal
ontrol application. The task of tracking a straight-line path in
Cartesian space is given to the robot in this case. The time-
ptimal joint trajectory time history is calculated by using the
ime-optimal control algorithm as described by Shiller and Lu
Q]. Time-optimality is achieved by executing a bang-bang
tontrol, where the control torque signal in one joint is saturated
and the control torque signal on other joints is adjusted
tecordingly such that the torque limits on each actuator are not
violated. However, the trajectory time history obtained from the
lime-optimal control algorithm is calculated by using only the
lopen-loop dynamics of the robot model. Previously, in order for
this trajectory time history 1o be used as input to the position
tontrol loop, the time history had to be modified using
tjectory pre-shaping scheme [4]. In this paper, the use of
extended Kohonen networks which contain an additional lattice
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of output neurons as assistants to PID controllers has been
proven to be an effective method in compensating for the
closed-loop dynamics and modelling errors. This results in
being able to use the trajectory time history as the input to the
control loop directly without the use of trajectory pre-shapmyg
scheme.

Subsequentiy, a genetic algorithm has been used to solve a
multi-objective optimisation involving the selection of torque
limits and an end-effector path subject to time-optimality and
tracking crror constraints. Two approaches of a multi-abyective
genetic algorithm (MOGA) have been used in this applicanon.
the MOGA with a Gray coding scheme and the MOGA with an
integer-based coding scheme. The simulation results sugpest
that the integer-based chromosome is more suitable than the
Gray chromosome at representing the decision variables. This
makes the MOGA with an integer-based coding scheme emerge
as the most effective method in finding the Pareto optimal
solutions for this problem.
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