บทคัดย่อ

รหัสโครงการ : PDF /24 / 2543

ชื่อโครงการ :การใช้การเร่งกำลังด้วยความร้อนในการทำนายกำลังและคุณสมบัติด้านความทนทาน ของคอนกรีตผสมเถ้าลอย

ชื่อนักวิจัย: รศ. สุวิมล สัจจวาณิชย์ ภาควิชาวิศวกรรมโยชา มหาวิทยาลัยเกษตรศาสตร์

E-mail address: fengsusa@ku.ac.th

ระยะเวลาโครงการ: 1 กรกฎาคม 2543-30 มิถุนายน 2545

การใช้คอนกรีดผสมเถ้าลอยในงานก่อสร้างภายในประเทศในปัจจุบันมีแนวโน้มสูงขึ้นมาก แต่ ความสม่ำเสมอของคุณสมบัติเถ้าลอยยังเป็นประเด็นสำคัญสำหรับคุณภาพของคอนกรีต งานวิจัยนี้มุ่ง ศึกษาผลกระทบของความร้อนจากการบ่มต่อคุณสมบัติและพฤติกรรมต่าง ๆของมอร์ตาร์และคอนกรีต ผสมเถ้าลอยในด้านการพัฒนากำลัง ความทนทานบางประการ และเปรียบเทียบการพัฒนาโครงสร้าง ภายในของคอนกรีตผสมเถ้าลอยที่บ่มด้วยวิธีมาตรฐานและวิธีเร่งกำลังด้วยความร้อนเพื่อเป็นแนวทาง หาวิธีการทดสอบที่เหมาะสมที่ใช้เวลาเวลาสั้น ๆ เพื่อใช้ตรวจสอบและควบคุมคุณภาพสำหรับงานก่อ สร้าง โดยเป็นการศึกษาจากชิ้นตัวอย่างมอร์ตาร์และคอนกรีตทั้งที่ไม่ผสมและผสมเถ้าลอยที่ผันแปร ปริมาณการแทนที่ซีเมนต์ 5 ระดับ ภายใต้ภาวะต่างๆคือบ่มชื้นปกติ บ่มด้วยวิธีเร่งกำลังด้วยความ ร้อนทันทีในถังบ่มที่ควบคุมอุณหภูมิ 35 °c , 75c และ95c และบ่มด้วยวิธีเร่งกำลังด้วยความร้อนเมื่อมี อายุครบ 24 ซม. โดยใช้เวลา 24,3 1/2 และ 3 1/2 ซม. ตามลำดับ

ผลการศึกษาพบว่าเถ้าลอยจากต่างแหล่งมาจากวัตถุดิบและกระบวนการผลิตต่างกัน มีความแตกต่าง กันทั้งองค์ประกอบทางเคมีและคุณสมบัติทางกายภาพ แหล่งของเถ้าลอยมีผลกระทบต่อการพัฒนา กำลังอัดแต่ไม่มีผลซัดเจนต่ออัตราส่วนกำลังจากวิธีบ่มเร่งต่อกำลังจากวิธีบ่มปกติที่อายุ28วัน การบ่ม อุณหภูมิสูงมีผลต่อการพัฒนากำลังทั้งแรงอัด แรงดัดและ แรงดึงในระยะดัน โดยเฉพาะแรงอัด มีความ ผันแปรอยู่ในช่วงร้อยละ 10 ค่ากำลังของมอร์ตาร์และคอนกรีตที่บ่ม 95°Cมีค่าสูงกว่าการบ่มที่75°C ความสัมพันธ์ระหว่างค่าอัตราส่วนกำลังของมอร์ตาร์จากการบ่มเร่งต่อกำลังจากการบ่มปกติที่อายุ 28 วัน และปริมาณการแทนที่ของเถ้าลอยจากแหล่งต่าง ๆ อยู่ในช่วง 0.2 – 0.60 ขึ้นอยู่กับ ปริมาณการ แทนที่ และระดับอุณหภูมิ การยึดระยะเวลาการบ่มเร่ง มีผลต่อการลดความผันแปรของคำอัตราส่วน กำลัง ค่ากำลังอัดจากการบ่มเร่งมีความสัมพันธ์ของกำลังอัดจากการบ่มปกติค่อนข้างซัดเจน ทั้งอัตรา ส่วนกำลังดัดและกำลังดึงมีค่าลดลงตามปริมาณการแทนที่ที่เพิ่มขึ้น

จากการศึกษาคอนกรีดพบว่า การบ่มด้วยอุณหภูมิสูงมีผลต่อทั้งคอนกรีดควบคุมและคอนกรีดผสมเถ้า ลอยทุกระดับการแทนที่ สำหรับคอนกรีตปกติ ค่าเฉลี่ยกำลังอัดจากการบ่มเร่งกำลังอุณหภูมิสูงทันที ในแต่ละกรณีมีค่าแตกต่างกันอย่างมีนัยสำคัญทางสถิติแต่การบ่มเร่งยืดเวลา 24 ชั่วโมงไม่แสดงแนว โน้มชัดเจน และความสัมพันธ์ของค่ากำลังอัดของคอนกรีดควบคุมจากการบ่มเร่งหลังยึดเวลาไปแล้ว 24 ชั่วโมงกับกำลังอัดระยะยาว 28 และ 56วันมีความผันแปรน้อยกว่ากรณีการบ่มเร่งทันที การบ่ม

อุณหภูมิสูงมีผลต่อการพัฒนากำลังสำหรับคอนกรีตผสมเถ้าลอยมาก ทั้งปริมาณการแทนที่และระดับ อุณหภูมิมีผลต่อการเร่งกำลัง และการทำนายกำลังอัดระยะยาว ค่ากำลังอัดจากการบ่มเร่งมีความ สัมพันธ์กับระดับอุณหภูมิ W/B และปริมาณการแทนที่ในลักษณะเชิงเส้น แต่ผลกระทบของระดับ อุณหภูมิต่อค่าอัดราส่วนกำลังดัดมีน้อยกว่าเมื่อเทียบกับกรณีของกำลังอัด อิทธิพลของอุณหภูมิต่อ ความต้านทานการขยายตัวจากเกลือซัลเฟตของคอนกรีตผสมเถ้าลอยมีพฤติกรรมค่อนข้างแตกต่าง จากคอนกรีตปกติ แต่ข้อมูลการแซ่ระยะสั้นที่มีอยู่ได้มีความผันแปรมากไม่อาจสรุปได้ชัดเจน คอนกรีด ควบคุมและคอนกรีตผสมเถ้าลอยทุกระดับการแทนที่ ที่บ่มดัวยอุณหภูมิสูง 3.5 ซม.มีค่าความด้าน ทานการซึมได้ของคลอไรด์ด่ำ จนไม่อาจวัดได้ แต่ผลกระทบจากอุณหภูมิสูงยังคงมีผลต่อความด้าน ทานการซึมได้แม้เมื่อบ่มต่อที่อุณหภูมิปกติสำหรับคอนกรีตทั้งสองซนิด อุณหภูมิสูงมีผลต่อการ พัฒนาโครงสร้างภายในอย่างชัดเจนและมี อิทธิพลต่อการเกิดปฏิกริยา pozzolanic ในระดับที่แตก ต่างกัน เมื่อพิจารณาถึงผลกระทบของอุณหภูมิสูงและความเหมาะสมในการใช้งาน อาจสรุปได้การบ่ม ด้วยอุณหภูมิสูง 3.5 ซม.ทันทีมีความเหมาะสมในการประยุกต์ใช้เป็นวิธีตรวจสอบและควบคุมคุณภาพ ในระยะเวลาสั้น ๆ ทั้งอุณหภูมิ75°c และ 95°Cให้ความสัมพันธ์กับ กำลังอัดระยะยาวที่มีความน่าเชื่อ ถือได้ทางสถิติ

คำหลัก: การเร่งกำลังด้วยความร้อน กำลัง คอนกรีตผสมเถ้าลอย

Abstract

Project Code: PDF/24/2543

Project Title: Heat Accelerated Test to Predict Strength and

Durability Properties of Fly Ash Concrete

Investigator: Dr.Suvimol Sujjavanich

Department of Civil Engineering Kasetsart University

E-mail Address: fengsusa@ku.ac.th

Project period: July 1, 2543- June 30,2545

The trend of fly ash utilization in concrete industry is increasing to unprecedented degree. However, the uniformity of fly ash is still questionable for quality of final concrete. Therefore, the means for quality control during construction become necessary. This report aimed to investigate the effect of high curing temperature on strength development, some durability properties and also the development of the microstructure, compare to that of the standard curing condition, to aid finding accelerated early strength method for quality control of fly ash concrete. The study investigated the effect of high curing temperature and duration on fly ash cement mortar and concrete with the following parameters.

Five cement replacement percentages, namely 0, 20,30,40 and 50; 3 levels of water/binder ratios, viz, 0.40, 0.50 and 0.60; and three curing conditions, namely standard and high temperature curing promptly and after 24 hours of casting for 3 ½ hours.

The results indicated favorable outcome of accelerated curing from the inclusion of fly ash in concrete. Different sources of fly ash which yielded different chemical composition and physical properties appeared to affect individual strength gain, but not the ratios of accelerated strength to strength at 28 days. High curing temperatures strongly influence strength development of fly ash cement mortar, including compressive, tensile and flexural strength. The ratios of accelerated compressive strength to strength at 28 days varied within 10 percent range. The strength of both mortar and concrete under 95 °C curing is always significantly higher than of 75 °C curing, regardless to the used condition. The strength ratios of fly ash mortar were found to be in the range of 0.20-0.60, depending on percent replacement, and temperature level. Delayed curing

condition clearly reduced the variation of strength ratio. The clear relationship between accelerated compressive strength and normal cure compressive strength was found. The strength ratio of compressive, flexural and tensile strength decreased as the percent replacement increased.

For concrete, the strong effect of prompt curing under both high temperature levels, 75°C and 95 °C on strength development of concrete both with and without fly ash was revealed. For normal concrete, the difference in means of compressive strength from both temperature in each condition was statistically significant. However, the difference in means of the delayed accelerated cure compressive strength under 75°C and 95 °C was not clear. The variation of the relationship between accelerated and normal compressive strength was less in this case than that of the prompt curing. High temperature curing strongly affected strength development of fly ash concrete. Both replacement percentage and temperature level affect strength development and later age strength prediction. The relationship of accelerated and temperature, w/b and percentage replacement was found to be linear. However, the effect from temperature level on flexural strength ratio was less than that of compressive strength. The effect of temperature on resistance to sulfate expansion was not clear. Only conclusion that could be drawn from the wide variation of the limited data was the behavior of fly ash and normal concrete in this aspect is different. From rapid chloride permeability test, fly ash concrete under heat cure 3 1/2 hours showed the immeasurably low resistance of chloride penetration. The heat effect influenced permeability development even after the heat source was removed. Different high temperature influenced hydration and pozzolanic reaction of fly ash concrete to different degree.

On the basis of the results and with consideration of proper flexible working schedule and feasibility of each method, both 75°C and 95°C promptly cured for 3 ½ hours was proposed as means for quality control and corrective measure. It was concluded that the relationship of accelerated and normal strength was statistically significant.

Keywords: Heat Accelerated, Strength, Fly Ash Concrete