5

where 6 > 0 is the neuron’s threshold, s; is the bipolar input Bernoulli signal (with success
probability -%) with amplitude A > 0, and n, is the additive white noise with probability density

p(n). Experiments with other success probabilities near % did not produce substantially different

simulation results.

C. Noisy Continuous Neuron

This additive neuron model is a bistable system with additive noise: [1], [10], [15], [37], [38],
[43]

r = —r+ 2tanhz + s(t) + n(t) (7)
y(t) = sgn(z(t)). (8)

where y(t) is the binary output of the system. The neuron feeds its sigmoidal output signal

2tanh x back to itself and emits the threshold bipolar signal y(t) as output.

I1I. MUTUAL INFORMATION OF THE THRESHOLD NEURON WITH BIPOLAR INPUT SIGNALS
A. SR in Threshold Neuron

This section derives analytical SR results for the noisy threshold neuron based on the marginal
probability density function of the output Py (y) and the conditional density Py |s(y|s). The
system is the binary neuron with a fixed threshold 8. The bipolar (Bernoulli with success
probability p) input signal s, has amplitude A: s, € {—A, A} with probability density Ps(s).
The noise n, adds to the signal s, before it enters the neuron. So the neuron’s output y; has
the form (6). Figure 5 plots the mutual information I(S,Y’) for four standard closed-form noise
probability density functions (15)-(34). The central result is a theorem that holds for almost all
noise probability densities so long as the mean noise falls outside an interval that depends on
the threshold 6.

The symbol “0” denotes the input signal s = —A and output signal y = —1. The symbol “17
denotes the input signal s = A and output signal y = 1. We also assume subthreshold input
signals: A < 6. Then the conditional probabilities Py |s(y|s) are

4+ A
Pris(00) = Pris+n<8)|__ = Prin<6+4} = [ " p(nn (9)
Py|s(1]0) = 1-— Py 5(0]0) (10)
8- A
Pys(01) = Pr{s+n<8}| _ = Prin<0-4} = Lw p(n)dn (11)
Py s(1]1) = 1— Py s(0[1) (12)

and the marginal density is

Pry) = 3 Pyis(yls)Ps(s) (13)



Researchers have derived the conditional probabilities Py g{y|s) of the threshold system with
Gaussian noise with bipolar inputs {12] and Gaussian inputs [65]. We next derive Py gly|s) for
uniform, Laplace. and Cauchy noise as well. Figure 3 shows four examples of the unimodal noise
densities and their realizations. Tlien we introduce stable distributions to model a spectrum of

impulsive noise types.
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Figure 3. Probability density functions and samplé realizations. The figure shows Gaussian, Laplace,
p— 2 ey 2 o

and uniform random variables w with zero mean and variance of two: Efx] = 0 and E] [ ] o2 =2,

The C_auchy density funection has zero ‘(llot‘atr()_‘n and unit ‘dISp@IZSIKOD,. The pseu de-pandom pumber

generators in [62] act as noise sources for these probability densities.

i , D I S
e Gaussian Noise. The Gaugsian density with zero mean and variance o, = o* has the form

s ‘ 1 L (14)
) = el )
Then the conditional probabilities Py s ( y|s) are
PY[S(0|0) = /DC Jf_exp{ }dn = 3 + 2~er e ( )
1 1 . 8+4 16)

Py 5(110) = 5~ 2erf —7



Pys(ol) =

Pyg(1j1) =
The error function erf is
2 e o
erf(r) = —= [ exp{—t}ds (19)
m Jo
o Uniform Noise. The nniform dersi ty with zero mean and variance r:r,i = (1‘—2 has the form

1l ¢ 4 = .. s a
{E if -5 <n<3

{ @ (20)
4 otherwise

plny =

Then the conditionial probibilitics Py (y|v) are

if§ <@+ A 6+ A

1 -
so min{l, 5 + 2 ¥ (21)

. . | g+ A. "y

Py (110) = wax{d, 5 — —— (22)
e e

, 1 8- A .

1 8 -A

Pyis(ll) = max{0.; -~ —} (24)

Pys(0)0) = s | .
3+ othcrwise

s Laplace Noise. The Laplace density with zere mean and variance o2 = 23% has the form
1 . o

pin) = — expl{—|—= 25)

pln) = gsgexpl |§|} (25)

Then the conditional probabilities Py-s(y|s) are

Pys(0j0) = 1- %em{f’;*‘*.} (26)
| 0+ A, |
Py s(1)0) = %PXP{—%} (27)
, 0 A
Pyjstol) = 1- gexpl="5") (28)

. @—A. ‘
Al = Le(=257) 29

» Cauchy Noise. The Cauchy density with zero location and finite dispersion y (but infinite
variance) has the form
| 1 v (30)
p(n) = and +pE
"Then the conditional probabilities Py s{y|s) are

Al 1 1. _,8+A -



1 1 g

Pys(l0) = §—Etan‘1 J;A (32)
1 1 - A

Pys011) = 5—!—;&111l - (33)
1 1 g— A

P\'IS(HI) = E—Etan_l S (34)

e Symmetric Alpha-Stable Noise: Thick-Tailed Bell Curves

We model many types of impulsive noise with symmetric alpha-stable bell-curve probability
density functions with parameter « in the characteristic function ¢(w) = exp{—v|w|®}. Here
v is the dispersion parameter [6], [27]. [33], [59]. The parameter « controls tail thickness and
lies in 0 < a < 2. Noise grows more impulsive as « falls and the bell-curve tails grow thicker.
The (thin-tailed) Gaussian density results when o = 2 or when @{(w) = exp{—yw?}. So the
standard Gaussian random variable has zero mean and variance ¢? = 2 (when v = 1). The
parameter o gives the thicker-tailed Cauchy bell curve when a = 1 or ¢(w) = exp{—|w|} for
a zero location (a = 0) and unit dispersion (v = 1) Cauchy random variable. The moments of
stable distributions with o < 2 are finite only up to the order k for k < a. The Gaussian density
alone has finite variance and higher moments. Alpha-stable random variables characterize the
class of normalized sums of independent random variables that converge in distribution to a
random variable [6] as in the famous Gaussian special case called the “central limit theorem.”
Alpha-stable models tend to work well when the noise or signal data contains “outliers” — and
all do to some degree. Models with a < 2 can accurately describe impulsive noise in telephone
lines, underwater acoustics. low-frequency atmosphereic signals, fluctuations in gravitational
fields and financial prices. and many other processes [44], [59]. Note that the best choice of « is
an empirical question for bell-curve phenomena. Bell-curve behavior alone does not justify the
(extreme) assumption of the Gaussian bell curve.

Figure 4 shows realizations of four symmetric alpha-stable random variables. A general alpha-

stable probability density function f has characteristic function ¢ [2], [5], [33], [59]:

[0 418
plw) = exp {z‘aw — ylw|® (1 + ¢Bsign(w) tan —2—) } for o #1 (35)
and
plw) = exp {faw —yjw|(1 — 2:3 lnlwfsign(w)/vr)} for o =1 (36)
where
1 ifw>0
sign(w) = 0 ifw=20 (37)

-1 ifw=<0
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Figure 4. Samples of standard symmetric alpha-stable probability densities and their realizations. {(a)
Density functions with zero location (@ = 0) and unit dispersion (v = 1) for & = 2, 1.8, 1.5, and 1.
The densities are bell curves that have thicker tails as a decreases and thus that model increasingly
impulsive noise as o decreases. The case a = 2 gives a Gaussian density with variance two (or unit
dispersion). The parameter & = 1 gives the Cauchy density. (b) Samples of alpha-stable random
variables with zero location and unit dispersion. The plots show realizations when o = 2, 1.8, 1.5,
and 1. Note the scale differences on the y-axes. The alpha-stable variable n becomes more impulsive
as the parameter a falls. The algorithm in [13],[67] generates these realizations. (¢) Density function

for & = 1.8 with dispersion v = 0.5, 1, and 2. (d) Samples of alpha-stable noise n for a = 1.8 with

dispersions v =0.5, 1, and 2.
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and i = vV-1,0 < o <2 -1 <8 <1, and ¥ > 0. The parameter o is the characteristic
exponent. Again the variance of an alpha-stable density distribution does not exist if o < 2.
The location parameter a is the “mean” of the density when o > 1. /J is a skewness parameter.
The density is symmetric about @ when 8 = 0. The theorem below still holds even when /3 # 0.
The dispersion parameter 7y acts like a variance because it controls the width of a symmetric
alpha-stable bell curve. There are no known closed forms of the a-stable densities for most «'s.
Numerical integration of ¢ gives the probability densities above.

The following theorem shows that noisy threshold neurons produce some SR effect for alinost
all noise probability descriptions. The proof shows that if 7(S,}) > 0 then eventually the
mutual information 1(5,Y) tends toward zero as the noise variance ot dispersion tends toward
zero. So the mutual information I{S,Y) must increase as the noise variance increases from
zero. The crucial assumption is that the noise mean E[n] (or location parameter) not lie in the

signal-threshold inverval [8 — A, 0 + A].

Theorem. Suppose that the threshold signal system (6) has noise probability deunsity function
p(n) and that the input signal S is subthreshold (A < 8). Suppose that there is some statistical
dependence between input random variable S and output random variable Y (so that I(S,Y) >
0). Suppose that the noise mean E[n| does not lie in the signal-threshold interval [6 — A.8 + A]
if p(n) has finite variance. Suppose that a ¢ [0 — 4,0 + A] for the location parameter a of an
alpha-stable noise density with characteristic function (35)-(36). Then the threshold system (6)
exhibits the nonmonotone SR effect in the sense that 7(5,Y) -0 as o — 0 or v -» 0.

Proof. Assume 0 < Pg(s) < 1 to avoid triviality when Ps(s) = 0 or L We show that
S and Y are asymptotically independent: I(c) -+ 0 as 0 — 0 (or as v — 0). Recall that
I(S,Y) = 0 if and only if S and Y are statistically independent [19]. So we need to show only
that Pgy(s,y) = PS(S)P)’(?}) or Pyl.s(yisf) = Py(y) as o — 0 (or as v = 0) for some signal
symbols s € S and y € Y. The two-symbol alphabet set 5 gives

Pyly) = > Pyis(yls)Ps(s) (38)
— PrsW0)Ps(0) + PrisDPs() (39)
= Py s(y|0)Ps(0) + Pys(y|1)(1 — Ps(0)) (40)
= (Pys@l0) — Pys(y11)Ps(0) + Pys(yll)- (41)

So we need to show only that Py s(y|0) — Pyis(yjl) =0asa = 0 (or as ¥ — 0). This condition
implies that Py (y) = Py 5(y|l) and Py (y) = Py 5(yl0). We assume for simplicity that the noise
density p(n) is integrable. The argument below still holds if p(n) is discrete and if we replace

integrals with appropriate sums.
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Consider y ='0". Then (9) and (11) imply that

g+ .4 H—A
Py <(0]0) — Pyye(0]1) = [ pln)dn —f p(n)dn (42)
0+ A o
/{),1 p(n)dn (43)
Similary for y ="1":
s &}
Prsilo) = [ plnyan (44)
0+
>
Py (1) = /9' ,lp(n)dn (45)
Then
) O+ 4
Pyys(1]0) = Pys(1]1) = ‘f(,  pln)dn (46)
The result now follows if we¢ can show that
7+
[ plrydne — 0 asog —+0ory —0 (47)
-

Case 1. Finite-variance noise. Let the mean of the noise be m = E[n] and the variance be
o? = E[(x - m)?]. Then mn ¢ [# — A4 + A] by hypothesis.

Now suppose that mmn < 8 — A. Pick € = %(1(9 — A.m) = %(9 —A-m)>0 Sof—A—¢c=
B—A-c+m~m=m+(—-—A—m)—c=m+2—ec=m+e. Then

f+.4
Py1s(0/0) = R0y = [ plndn (48)
x
< / p(n)dn (4_9)
-
< [T pvdn (50)
- A—¢
s @)
= f p(n)dn (51)
rm+e
= Pr{in>m+e}=Pr{in—-m2>e¢} (52)
< Pr{ln—m|=¢} (53)
2
< % by Chebyshev’s inequality (54)
- €
- 0 as 0 -+ 0 (55)

Suppose next that rn > 6 + A. Then pick ¢ = 3d(0 + 4,m) = s(m — 68— A) > 0 and so

0+A+e=0+A+e4+m—-m=m—(m—0—A)+e=m-2e+ec=m—¢. Then

g+A
Pyi5(000) = Ps(Ol) = [ " p(mdn (56)
< [ pmn (57)
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v f+A+e
=< /+ ’ p(n)dn (58)

= Prin<m—¢} =Prin-—m< —¢} (60)

< Pri{ln-—m]>¢} (61)
2

< Z—zn by Chebyshev’s inequality (62)

= 0 as ¢ — 0 (63)

Case 2. Impulsive noise: Alpha-stable noise.
The characteristic function ¢(w) of alpha-stable density p(n) has the exponential form (35)-

(36). This reduces to a simple complex exponential in the zero-dispersion limit:

lim plw) = exp {iaw} (64)

for all a’s, skewness 3’s, and location a's. So Fourier transformation gives the corresponding

density function in the limiting case (y — 0) as a translated delta function

limp(n) = 6&(n—a) (65)
¥—0
Then

8+ A
Pyis(0l0) — Pris(O) = [ "p(m)dn (66)

04{‘».4
= / 8{n —a)dn (67}

g-A
= 0 (68)

because a & [0 — A,0 + A).

Then Py (y) = Pys(yls) as v = 0. So Cases 1 and 2 imply that I(S,Y) = 0 as o — O for

finite-variance noise or as y — 0 for alpha-stable noise. ~Q.E.D.

B. Theoretical Results for Closed-Form Noise Densities

We can derive more specific results for closed-form noise densities. Figure 5 shows I-versus-o
profiles of a threshold system with four kinds of noise: Gaussian, uniform, Laplace, and Cauchy.
The I profile of the uniform noise has the highest peak among the four noise densities for
the same system (same threshold @ and same input amplitude A). And the I profile has a

distinct shape: it drops sharply after it reaches its peak as o grows. Gaussian noise gives the
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Figure 5. Mutual information I profiles of a threshold system with bipolar input for fours kinds of noise.
The system has threshold 8 = 0.5. The input Bernoulli signal is bipolar with amplitude A = 0.4.

second highest I while Cauchy gives the lowest. The threshold system requires different optimal
standard deviations (or dispersions) for different kinds of noise.

The closed form of the I-versus-o profiles in Figure 5 also allows a direct analysis of how the
optimal noise depends on the signal amplitude A for Gaussian, uniform, Laplace, and Cauchy
noise. Suppose the signal amplitude A is a subthreshold input in a noisy threshold neuron with
threshold 8: A < 8. Then will the optimal noise Gopt (O Yopt) decrease as the signal amplitude
A moves closer to the threshold §?

Intuition suggests that the threshold system should need less noise to produce the entropic SR
effect as the amplitude moves closer to the threshold 8. But the results in Figure 6 show that
the compound nonlinearities involved produce no such simple relationship. The different noise
types produce different SR optimality schedules. Figure 6 shows four optimal noise schedules
for the threshold value & = 0.5. other threshold values produced similar results. Only optimal
Laplace and Cauchy noise produce the more intuitive monotone decrease in the optimal noise
level with rising signal amplitude A. Optimal uniform noise grows linearly with signal amplitude

while optimal Gaussian noise defines a nonmontonic schedule.

IV. SToCHASTIC RESONANCE IN COMPUTER SIMULATIONS

Discrete simulations can model continuous-time nonlinear dynamical systems if a stochastic
numerical scheme approximates the system dynamics and its signal and noise response. We
used a simple stochastic version of the Euler scheme to model a nonlinear system with input
forcing signal and noise. We measured how the system performed based on only the system’s

input-output samples.
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Consider the forced dynamical system with additive fmcing, input signil s and “white” noise

£ = flz)+s(t) +nit) (69)
y(t) = gla(t))- (70)

These models simply add noise term to a differential equation rather than use a formal Ito or
Stratonovich stochastic differentials [14], [23], [29). By “whiteness" of a random variable 1 we
mean that n is white only over sore large but finite frequency bandwidth interval [—~B. B) for
some large B' > (. Random numbers from the algorithims in [62], [13], [66] act as noise from
various probability ‘densities in our simulations. The next sections show how we diseretized the

continuous-time systems to the discrete-tirne systems to produce computer similation.

A. Nonlirvear Systems with White Gaussian Noise

Consider the dynamical system (69) with initial condition z(tg) = zo. Here the white Gaussian
noise w has zero mean and unit variance so that n = gw has zero mean and variance 0. This

system corresponds to the stochastic initial value problem [29]
dX = f@, X)+o(t, X)dW (71)

for initial condition X {ty) = Xp. Here f(t, X) = f(X)+s(t). o(t. X) = oand W is the standard
Wiener process [29]. 'We used Euler’s method (the Euler-Maruyama scheme) [20]. [29]. [40] to
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obtain the discrete form for computer simulation:

Tiey = ;r.t+AT(f(:rt)+s,g)+o\/Ew, (72)
ye = gluay) (73)

for t = 0.1.2.... and initial condition xrg. The input sample s, has the value of the signal s{tAT)

at time step t. The zero-mean white Gaussian noise sequence {w;} has unit variance o2 = 1.

The term VAT scales wy so that VAT wy conforms with the Wiener increment [29], [40], [56].

2
w

The output sample ¢ is some transformation g of the system’s state .

This simple algorithm gives fairly accurate results for moderate nonlinear systems [29], [40],
[49]. [56]. Other algorithms may give more accurate numerical solutions of the stochastic differ-
ential equations for more complicated system dynamics [29]. [52]. All of our simulations used
the Euler’s schewme in (72)-(73).

The numerical algorithm in [62] generates a sequence of pseudo-random numbers from a
Gaussian density with zero mean and unit variance for {ur} in (72). Figure 3 shows the Gaussian

and other densities that have zero mean and a variance of two.

B. Nonlinear Systemns with OQther Finite-Variance Noise

We next consider a system (69) with finite-variance noise n. Suppose the noise n has variance

o? and again apply the above Euler’'s method:

ry.1 = x;+ AT (f(;rt) + st) + oV AT uy (74)
yrer = g(rigr): (75)

Here the random sequence {w,} has density function p{w) with zero mean and unit variance.
The numerical algorithms in [62] generate sequences of random variables for Laplace and uniform
density functions. Figure 3 plots these probability density functions and their realizations with

mean zero and variance of two: E[r] = 0 and E[x?%] = 2.

C. Nonlinear Systems with Alpha-Stable Notse

Figure 3 shows realizations of the syminetric alpha-stable random variable when a« = 1

(Cauchy density). Again we assume that the Euler’s method above applies to this class of

random variables with inifinite variance. Let w be a standard alpha-stable random variable

. . . _ - — ~ 1/
with parameter o and zero location and unit dispersion: a = 0 and v = 1. Let K = /¢ denote

- - = (473
. — - s Zo is nvy = k.
a “scale” factor of a random variable. Then n = Kw has zero location and dispersion -y

This leads us to the Euler's numerical solution
x, + AT (f(;]:t) + sf) + KV ATy (76)
(77)

Ti+r =

Yt = g(z¢)-
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The algorithm in {13]. [66] generates a standard alpha-stable random variable w.

V. DERIVATION OF SR LEARNING LAw
We use a stochastic gradient ascent to learn the SR effect [45], [54]:
or

Ok+l = Okt Hekg-

da (78)

We assume that FP(s) does not depend on ¢ and we use the natural logarithm. Then the

learning term 2L has the form
g—i = % (—Zy:'l’(y)loﬂ *(y) + ZP( ZP(yI 10gP(J|3) (79)
U (g 2
+ZZ( (yL)P(;l ) P | pisytog Pyl ZR4) (80
o3 (2 )
D3 (P2 4 P 1og P (vl9) 2730 (81)

‘ dP(yls) _ :
The sum ¥, P(y) = L implies T, 258 = L5, P(y) = 0. And 35,3, 0Pls) — 0 because
>y Plyls) =1. So
oI

el + ZZP ) log P(y|b)——(?JL) (82)
Oo do

= —ZlogP( <

We estimate the partial derivative with a ratio of time differences and replace the denominator

with the signum function to avoid numerical instability:

0P _ Bly) = P
do - O — Ok—1
~ sgn{ox — o) Prely) — Pi_1{y)] (83)
aP(yls) _  Pelyls) — Peoa(yls)
o - o — Ok—1
T o sanlon — ok D[P (ls) — Puci (wls)] (84)

where Pi(y) is the marginal density function of the output Y at time t and Pk(yls) is the

conditional density function at time f. Then the learning term becomes

g ~ sgnl(ox — Ok—1) (— Z‘[Pk(y) — Pi_1(y)] log Pr(y)
do "

+ ZZPk(S Pk(y|3) P _ 1y|¢)]10ng(y| ) (85)
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Figure 7. Finite-variance noise cases: Adaptive stochastic resonance for the noisy threshold neuron (6)
with bipolar input signal s,, amplitude 4 = 0.2, and threshold 8 = 0.5. The additive noise are {a)
Gaussian, (b) uniform, and (c) Laplace. The graphs at the top show the nonmonotonic signatures
of SR. The sample paths at the bottom plots show the convergence if the initial condition gg is
close to the optimal noise level g,,,. Distant initial conditions may lead to divergence as the third
learning path in (a) shows. The constant learning rates are gy = 0.01 for Gaussian and uniform

noise and uyx = 0.02 for Laplace noise.

B. Noisy Continuous Neuron

We used the discrete model in Section IV for simulations. We used dt = 0.01 s and let each
input symbol stays for 50 s. So for each input symbol we presented the corresponding “spikes”

(plus noise) 5000 times to the neuron. And we collected 5000 discrete time output “spikes” and

averaged them to get the output symbol.

The bipolar input Bernoulli signal had success probability Ps(—A) = Ps(A) = 3 where
the amplitude A varied from A = 0.1 to 4 = 0.4 (subthreshold inputs). We tried several
noise densities that included the Gaussian, uniform, Laplace, and Cauchy densities. All noise
densities had zero mean (zero location for Cauchy). We used constant learning rates px = 0.03
for Gaussian, uniform, and Laplace noise. We used the smaller learning rates ux = 0.02 for
alpha-stable noise with o = 1.9 and @ = 1.5. We used the even smaller learning rate p; = 0.005
for Cauchy noise. We started the learning from several initial conditions with different noise
seeds.

Figures 10-12 show the adapted SR profiles and the gop learning paths for different noise

types. The learning paths converged near the optimal standard deviation ogp (or dispersion
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Figure 8. Finite-variance noise cases: Adaptive stochastic resonance for the noisy threshold neuron (6)
with bipolar input signal s,, amplitude 4 = 0.4, and threshold 8 = 0.5. The additive noise are (a)
Gaussian, (b) uniform, and (c) Laplace. The graphs at the top show the nonmonotonic signatures
of SR. The sample paths at the bottom plots show the convergence of the noise standard deviation
ok to the noise optimum Oopt for each noise density. The constant learning rates are yx = 0.01 for

Gaussian and uniform noise and i = 0.02 for Laplace noise.

Yopt) if the initial value was near Topt-

VII. CONCLUSION

Threshold neurons exhibit stochastic resonance-they increase their throughput mutual infor-
mation when faint input noise increases in intensity. A theorem shows that this holds for almost
all noise densities. Such noise-based information maximization is consistent with Linsker's prin-
ciple of information maximization in neural networks [47], [48]. Closed-form noise densities allow
us to derive the exact dependence of mutual information on noise dispersion and to observe the
nonlinear relationships between the optimal noise level and the magnitude of the input signal
amplitude. Extensive simulations confirined this entropic SR effect for noisy threshold neurons
and for a simple continuous neuron.

A simple robust stochastic learning law can find the entropically optimal noise level for both
threshold and continuous neurons that process noisy bipolar input signals. This result holds
for many types of finite-variance and infinite-variance (impulsive) noise. These noise types can

. model energetic disturbances that range from thermal jitter to unmodeled environmental effects

to the random crosstalk of neurons in large neural networks. This robust finding supports the
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Signal detection and adaptation in impulsive noise

. ‘ Bart Kosko' and Sanya Mitaim®
Department of Electrical Engineering. Signal and Image Processing Institute. Universitvy of Southern C. alifornia,
Los Angeles, California 90089-2564
 Department of Elecirical Engineering. Facuin: of Engineering, Thammasat University Rangsit Campus,
Klong Luang. Pathumthani 12121, Thailand
(Received 23 October 2000: revised manuscnpt received 7 May 2001 published 22 October 2001)

Stochastic resonance (SR} occurs when noise improves a system performance measure such as a spectral
signal-to-noise ratia or a cross-correlation measure. All SR studies have assumed that the forcing noise has
finite vartance. Most have further assumed that the noise is Gaussian. We show that SR stll occurs for the
more general case of impulsive or infinite-vanance noise. The SR effect fades as the noise grows more
impulsive. We study this fading effect on the family of symmetric a-stable bell curves that includes the
Gaussian bell curve as a special case. These bell curves have thicker tails as the parameter o falls from 2 (the
Gaussian case) 10 1 (the Cauchy case) 10 even lower values. Thicker tails create more frequent and more
violent noise impulses. The mamn feedback and feedforward models in the SR literature show this fading SR
effect for penodic forcing signals when we plot either the signal-10-noise rauo or a signal correlation measure
against the dispersion of the a-stable noise. Linear regression shows that an exponential law y,,(a)=c4”
descrtbes this relation between the impulsive index «a and the SR-optimal noise dispersion v, . The results
show that SR is robust agamnst noise “‘outhers.”” So SR may be more widespread in nature than previcusly
believed. Such robustness alse favors the use of SR in engineering systems. We further show that an adaptive
systern can leam the optimal noise dispersion for two standard SR models (the quartic bistable model and the
FizHugh-Nagumo neuron model) for the signal-to-noise ratio performance measure. This also favors practical
applications of SR and suggests that evolution may have tuned the noise-sensitive parameters of biological

systems.
DOI: 10.1103/PhysRevE.64.051110

L. IMPULSIVE NOISE AND STOCHASTIC RESONANCE

Most noise processes have infinite variance. This math-
ematical fact is almost trivial. Even most bell-curve probabil-
ity densities do not have finite variance or any finite higher-
order moments. Yet this fact finds scant expression in over a
century of published research in science and engineening. A
review of the published statistical research in any field shows
a common practice. Most random models assume that the
dispersion of a random variable equals its squared-error mea-
sure of variance. But other measures of dispersion may be
finite while the variance measure is infinite. The popularity
of the finite-variance assumption may attest to its usefulness
in many cases. But that does not lessen its severity. The
assumption persists even though such a squared-error term
seldom exists in any formal generality and even though such
a squared-error term is not robust against data “*outliers™
when it does exist. Celebrated examples of the finite-
variance hypothesis range from the Heisenberg uncertainty
principle in quantum mechanics to the least-squares regres-
sion framework that underlies statistical curve fitting and
forecasting in fields as disparate as astronomy and sociology.

The presence of infinite variance in a random model does
not itself nullify the model or count as some sort of stochas-
tic reductioc ad absurdum. Infinite variance does not imply
that we lack all statistical knowledge about the position or
momentum of a random particle or about the value of any
random variable if we assume only that the random variable
has a probability density function in the shape of a beil
curve. Many infinite-variance bell curves are locally indistin-
guishable from the thinner-tailed Gaussian bell curve.

1063-651X/2001/64(5)/051110(11)/$20.00
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Infinite-variance noise itself produces impulses of only finite
magnitude. Nor does infinite variance imply that a real sys-
tem must have infinite energy. This holds for the same rea-
son that the use of a Gaussian bell curve in a model does not
imply that axes extend to infinity in the real world. Other
events can explain the presence of infinite variance. We may
have measured the random dispersion involved with the
wrong measure. We may have applied a good but approxi-
mate measure 1o extreme cases that lie outside the measure’s
particular structure. Or we may simply have used or encoun-
tered a bell curve that has thicker tails than a Gaussian bell
curve has.

Stochastic resonance [1—-13] offers a recent and stark ex-
ample of the finite-variance assumption. A dynamical system
stochastically resonates or shows the stochastic resonance
{SR) effect when noise increases its signal-to-noise ratio or
other system performance measure. Almost all SR research
has assumed that the noise process is Gaussian and hence has
finite variance. A few SR studies have explored uniform and
other non-Gaussian but finite-variance noise-types [14-17]).
The SR signature of a nonmonotonic signal-to-noise graph
gives perhaps the best evidence of the umiversality of the
finite-variance assumption in SR tesearch. All SR studies
plot the dynamical system’s signal-to-noise ratio against ei-
ther the variance or the standard deviation of the driving
noise process. So the very notation excludes the presence of
infinite variance. This practice rules out a vast set of possible
SR scenarios and suggests that SR is not robust against noise
outliers. The simulation results below show that the SR ef-
fect can indeed occur when infinite-variance noise drives
nonlinear feedback and feedforward systems.

@2001 The American Physical Society
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F1G. 1. Impulsive stochastic resonance SNR measure and convergence of learned dispersion to the SR effect. (a) The graph shows the
smoothed output SNR as a function of the dispersion of additive a-stable (infinite-variance) noise with a=1.8. The vertical dotted lines
show the absolute deviation between the smallest and largest SNR outliers in each sample average of 100 outcomes. The vertical dashed line
shows the optimal noise level at the dispersion y=0.097. The noisy signal-forced quartic bistable dynamical system has the form ¥=x
-+s+n with binary output y(r)=sgn(x(r)). The a-stable noise n{r) (with a= 138} adds to the external forcing narrow band signal
${1)=0.1 5in 277(0.01)/. (b) Learning paths of y, with the Cauchy impulse suppressor &(2)=2z/(] + =) for the quartic bistable system with
simusoidal input. The Cauchy impulse suppressor & #SNR, . da) replaces aSNR,/do in the SR learning law [16] as in Eq. {(43) below. The
learning paths converged to and wander about the opumal noise dispersion ,,,~0.097.

Stochastic resonance occurs in a signal-forced dynamical
System when noise improves its performance by increasing
its signal-to-noise ratio (SNR) [18-22] or some other perfor-
mance measure such as a signal cross correlation [23-27] or
mutual entropy [25-27]} Then the noise process n{/) and
signal process s(r) force a feedback dynamical system of the
form x = f(x) to give x=f(x)+s(1)+n{1). The forced sys-
lem’s signal-to-noise ratio has the form SNR=5/N where S
measures the spectral content of the forcing signal s(#) in the
fm:ced system and N measures the spectral content of the
noise n(¢) [as entangled with each other and with the system
State dynamics x = f(x)]. Most SR systems in the literature
have assumed that the forcing signal has the simple periodic
form of a sinusoid. Aperiodic SR [23,24] is an important
€xception that we do not consider here.

The figures show the main results of this research. Figure
1 s}aows an SR profile when the additive forcing impulsive
Boise has infinite variance. The noise has alpha value a=1.8
am.:l so the noise is only mildly impulsive compared to the
noise that arises from bell curves with thicker tails. Figure 1
also shows the more complex result that a stochastic learning
algorithmn can leamn to locate the SR-optimal dispersion value
In lhl.S impulsive environment and do so based not on the
functional form of the dynamical stable {the quartic bistable
System in this case) but based on only input-output training
samples of dispersion and SNR values. Each SNR value de-
Pends on the noise-corrupted system dynamics. This allows
the leaming process to in effect slowly estimate the system

ics. The presence of system dynamics means that the
same dispersion value or the same noise impulse will at dif-
ferent times produce different SNR values. Leaming based

on a correlation measure requires direct use of the state dy-
hamics.

Figure 2 shows four a-stable bell curves and the noise
samples they produce [28.29]. It also shows three infinite-
variance curves for a= 1.8 based on three dispersion values
and the resulting samples of impulsive noise. The three im-
pulsive SR profiles for the SNR measure in Fig. 3 show that
the SR mode occurs for even smaller dispersion values as the
impulsiveness grows (as a falls). Figure 4 shows that the
pattern in Fig. 3 generalizes. Impulsiveness decreases sto-
chastic resonance because the exponential law y,,{a)
=¢A4% tends to hold for all the dynamical systems we stud-
ied. Figure 5 confirms this pattern for the cross-correlation
performance measure for a guartic bistable system. Figure 6
shows that any SNR-based learning scheme faces Cauchy-
like impulsiveness as it approaches the first-order condition
for an SR optimum. This impulsiveness occurs for all noise-
types including the Gaussian. This in turn implies that both
biological and engineering systems must find some way to
suppress this second level of tmpulsiveness if they try to
learn the SR optimum or otherwise search for it based on

noisy training data.

II. SYMMETRIC o-STABLE NOISE: THICK-TAILED
BELL CURVES

We use a class of symmetric a-stable bell-curve probabil-
ity density functions with parameter o in the characteristic
function ¢(w)=exp[— ¥ |w|*} where v is the dispersion pa-
rameter [30-33). The parameter a lies in 0 <a =<2 and gives
the Gaussian random variable when a=2 or when ¢(w)
= exp{— yw’}. So the standard Gaussian random variable has
zero mean and vanance o’ =2 (when y=1). The parameter
& gives the thicker-tailed Cauchy bell curve when a=1 or
@(w)= exp{—|wl} for a zero location (a= 0) and unit disper-
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FIG. 2. Samples of standard symmetric a-stable probability densities and their realizations. (a) Density functions with zero location
(a=0) and unit dispersion (y=1) for a=2. 1.8. 1.5. and 1. The densities are bell curves that have thicker tails as o decreases. The case a=2
gives a Gaussian density with variance two (or unit dispersion). The parameter a=1 gives the Cauchy density. (b) Samples of a-siable
mndom variables with zero location and umt dispersion. The plots show realizatons when =2, 1.8, 1.5, and 1. Note the scale differences
onthe v axes. The a-stable vanable x becomes more impulsive as the parameter a falls. The algonthm in [28.29] generates these realizanions.
{¢) Density function for a=1.8 with dispersion ¥=0.5, 1. and 2. {d) Samples of a-stable noise # for a=1.8 with dispersions y=0.5. 1,

and 2.

S[On ‘(‘y= 1} Cauchy random variable. The moments of stable
distributions with a<2 are finite only up to the order & for
k<a. The Gaussian density alonc has finite variance and
higher moments. a-stable random variables characterize the
class of normalized sums of independent random variables
that converge in distribution to a random variable [30] as in
the famous Gaussian special case called the *‘central limit
theo'rem.” a-stable models tend to work well when the noise
Or signal data contains “‘outliers’—and all do to some de-
gree. Models with <2 can accurately describe impulsive
0ise in telephone lines, underwater acoustics. low-

uency atmospheric signals, fluctuations in gravitational
ﬁeld_s and financial prices, and many other processes [33.34].

€ best choice of a is always an empirical question for
bell-curve phenomena.

Figure 2 shows realizations of four symmetric a-stable
random vanables. An e-stable probability density f/ has the
characteristic function [32.33.35.36] ¢

aTw
glw)=expliaw— ‘y|w|" 1+ sgn(w)tanT

for a=1 (1)
and
¢lw)=expliaw— y|lw|(1+2iB In|w|sgnw)/ )]
for a=1 (2)
where
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FIG. 3. The optimal dispersion Yopr becomes smaller as the tails on the noise bell curves becom? thicker and thus as the mﬁmte-vanapce
Noise becomes more impulsive. The three SR profiles show that Yopr shifts to the left as « falls. F_lgure 4 3Shows that this trend general‘lzes
1o an exponential relationship between a and Yop: - The dynamical system is the quartic bistable ¥ =x—x"+s+n .modlﬁed for saturations
effects and where the signal s is the sinusoid 5(s)=0,] sin 27(0.01)r. The plots on the left side show the SNR-dispersion prolﬁles.for (a)
=19, {b) @=1.7, and {¢) @=1.5. The dotted lines show the absolute deviation between the smallest ;nd I.argest_ SNR outliers in each
$ample average of 100 outcomes. The vertical dashed lines show the SR effect or mode at the optimal noise dlspersmn_ Yeopr - T.he plots on
the right side of {a)~(c) show the learning paths of y as it slowly and noisily converges to y,,, per the robustified learning law in Eq. (43).

1 if w>0 a<<2 has finite moments only of c_)rdt_:r Iqss than a. Again th‘e

variance of an a-stable density distribution does not exist if

sgn(w)=4{ O if w=0 (3} a< 2. The location parametcr a is the “*mean’” of the de‘nsn_y

-1 if <0 when a>1 and S is a skewness parameter. The density is

— ’ symmetric about @ when 8=0. The dispersion parameter y

and /= /-1, O0<a=2, —1=sB=<I, and y>0. The a is the acts like a variance because it controls the width of a sym-
Characteristic €xponent parameter. An a-stable density with metric a-stable bell curve.
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FIG. 4. Exponential laws for opumal noise dispersion y and parameter « for the SNR performance measure. The optimal noise dispersion

Ydepends on the parameler a through the exponential relation Yopil ) =

cA“ for some constants ¢ and 4. Table ! shows the constants ¢ and

4 for the dynamical Systems we tested. (a) the Quaruc bistable system (modified). (b) the FHN model {modified), (¢) the bistable neuron
Dode] (Hopﬁ.eld). (d) the duffing osciltator, (e} the feedforward threshold system. and () the random pulse system. The slope of the
Pulse-system in (f) 15 50 close to zero as to undermine the log-linear (exponential} relauonship. The small correlation coefficient for the pulse

fysiem in Table | reflects this nearly flat log-linear relationship.

HI. AN EXPONENTIAL LEARNING LAW:
IMPULSIVENESS DECREASES RESONANCE

This section lists the SR performance measures and state
Models that we used in the simulations, Four of the six state
I’10(11?15 are feedback or dynamical systems. The neuron and

mo_dels are feedforward models. All give rise to the
SXponential law Yopl @) =cA" but the pulse model does so

with only a small correlation coefficient of linear regression
because its log-plot is almost flat.

A. SR performance measures

This section reviews the two most popular measures of
SR. These performance measures depend on the forcing sig-
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FIG. 5. The optimal dispersion Yop: Still becomes smaller as the infinite-vanance noise becomes more impulsive for a cross-correlation
" : measure. The dynamical system is the quartic bistable ¥ =x — x>+ s+ n modified for the saturation effects. The signal 5 is the
Rousoid 5(7) =0.1 sin 297(0.01)1 as in Fig. 3 but with cross-correlation measure C . The plots (a)~(c) show the C,-dispersion profiles for (a)
@=19, (b) @=1.7, and (c) a=1.5. The dotted lines show the absolute deviation between the smallest and largest cross-correlation outliers
B each sample average of 100 outcomes. The vertical dashed hines show the SR effect or mode at the optimal noise dispersion y,,,. The
Mot (d) shows the exponential law for optimal noise dispersion y and parameter a.

%l and noise and can vary from system to system. There is
1 consensus in the SR literature on how to measure the SR
effect.
. & Signal-to-noise ratio. The most common SR measure
% some form of a signal-to-noise ratio (SNR) [18-22.37].
This seems the most Intuitive measure even though there are
many ways to define a SNR.

Suppose the input signal is the sinewave s{7)= & sin wyt.
'l_'hcn the SNR measures how much the system output y
=g(x) contains the input signal frequency wg:

s
SNR=10log,, v 4)
S(wy)
= lOlog.Dru:;) dB. (5)

The signal power 5= Y( wg)|? is the magnitude of the ourput
power specttum Y{w) at the input frequency wq. The back-
ground noise spectrumn N(wg) at input frequency wy is some
average of |Y(w)|? at nearby frequencies [21,26,38]. The
discrete Fourier transform (DFT) Y[4] for k=0,..., L—1
is an exponentially weighted sum of elements of a discrete-
time sequence {¥g,¥,....¥1 1} of output signal samples

L—1
Y[k]= 20 _y,e-"z'h““. (6)
r=

The signal frequency wg corresponds to bin £y in the DFT
for integer ko=LAT/fy and for wo=2m/,. Tl:is gives t_he
output signal in terms of a DFT as S=|¥[k,]|". The noise

05t110-6
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) F]Q. 61 Visual display of sample statistics of dSNR,/#¢ for the saturaton-medified quartic bistable system ¥=x—x*+s+n with
sinysoidal input s(#)=0.1 sin 27(0.01)+ and a-stable noise n(¢) with a=1.8. The system has binary output y(¢)=sgn(x(1)). {a} Cauchy-like
sample§ of d8NR, /do at each iteration ¢ at the noise dispersion ¥= 0.1 (which is the optimal dispersion for this signal system). The plot
showsvxmpulsiveness of the random variable JSNR, /. (b) Test of infinite variance. The sequence of sample variances converges to a finite
value if the underlying probability density has finite variance. Else it has infinite variance. (c) Log-tail test of the parameter « in for an
m—sta.b]e bel.l curve. The test plots log Prob( X > «) versus log,, & for large w. If the underlying density is a-stable with @< 2 then the slope
of this plot is approximately — e. This test found that a= 1 and so the density was approximately Cauchy. The result is that we need to apply
the Cauchy impulse suppressor [53] @(x)=2x/(1 +x7) to the approximate SR gradient SNR,/dg.

power N=N[ky] is the average power in the adjacent bins
ko—M,..., ko— 1, ko+1,. .., kg+M for some integer M
[22,39]

1 M
N=gm1 2 Y Tko =11+ [YTko +/11). 7)

.Thgre is no standard definition of system-level signal and
noise in nonlinear systems. We work with a SNR that is easy
to compute and that depends on standard spectral power
measures in signal processing. We start with a sinewave in-
Put and view the output state y(t) = g(x(¢)) of the dynamical
system as a mixture of signal and noise. We arrange the DFT
computation so that the energy of the sine term lies in fre-
quency bin k,. The squared magnitude of this energy spec-
trum _Y[ko] acts as the system-level signal: 5=2|¥[koll*.
We view all else in the spectrum as noise: N=P—S=P
.—2|Y[k0:||2 where the total energy is P=35_,|¥[£]|*. We
ignore the factor L that scales § and P since the ratio S/N
cancels its effect.

b. Cross-correiation measures. These *‘shape matchers™
can measure SR when inputs are not periodic signals. Re-
searchers coined the term ‘‘aperiodic stochastic resonance’”
[23,40-42] for such cases. They defined cross-correlation
measures for the input signal s and the system response in
terms of the mean transition rate » in the FHN model in Eqgs.
(16)-(18):

Co=max{s(1)r(t+ 1)}, (8)

C
= 2 (%)

[32“)]”2{[“)_r“)]Z}l:E.

where 1 is the time average ¥= l/TJ'gx(r)dr.

B. SR systems and simulation models

The computer simulation uses a discrete version

x,+|=x,+AT]'_f(x,)+s,]+ VATkw,, (10)

Vi1 =8 1), (11)
with initial condition x, and output y,. We assume that this
discrete model applies to systems with a-stable noise. The
zero location white a-stable random sequence {w,} has unit
dispersion y,.=1. So n,=xw, has dispersion y=«". Note
that a unit dispersion for Gaussian density (when a=2)
equals a variance of two. We tested the following six mod-

cls:
(a) Quartic bistable system. The forced quartic bistable

system has the form

i=x—x +s()+nlo), (12)

y(1)=sgnlx()}. (13)

for binary output ¥(7). We tested the quartic bistable system
model with the sinusoid input s(¢)=g sin 27/t for e=0.1
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TABLE I. Linear least-squares fit of the log of optimal dispersion y and the parameter a in an a-stable

.

density. The parameters g and ¢

relate log,y ¥ and a through a straight line: logy ¥(a)=aatc'.

SNR Cross correlation
Parameters rl Parameters r?

Quartic bistable a= 12444, ¢’ = — 33411 0.8923 a=1.2177, ¢'= —3.1889 0.8463
FHN a=08622 ¢c'=—2.7496 (.5098 a=0.6518, ¢’ = —2.4869 0.7510
Bistable neuron a= 18552, ¢c'=—39344 0.9593 a=149581, ¢'=—4.0252 09641
Duffing oscillator a=0.7320, ¢’ = —3.3057 0.7444 a=08912, ¢’ =—3.3204 0.8173
Threshold a=—025020, ¢'=0.1638 09215 a=—0.5036, ¢"=0.1658 0.9196
Pulse a=0.0692, c"'=02267 0.0406 a=0.2478, ¢'=0.2516 0.3361

i as the minimum variance method for arbitrary random vari-
ables and the maximum likelihood method for normal ran-
dom variables [52].

The correlation coefficient r* indicates how good the lin-
ear modet! fits the data

Soi—w) [Ele,—anw, - W)

2
E(w‘—ﬁ]: E(ga,—c_r)zf(n',—ﬁ)z'

(39)

where 0<|r|=1 and |r|=1 iff w, = =aa,+c' forevery i
The positive and negative signs reflect the positive and nega-
tive slopes.

2. Test results

Table I shows the parameters a and ¢’ of the linear least-
squares fit of logarithm of the optimal dispersion y,,, and
the parameter «. The correlation coefficients r? measure how
well the regression ga+ 5 fits the data and how much
logiy ¥,,, linearly depends on a. Figure 4 shows the SR-
pptimal dispersion y,,,{ @) versus the parameter a. The plots
in Figs. 4(a)—4(d) for fecedback systems agree with the expo-
nential law. Figures 4(e) and 4({f) show the plots for the
threshold and feedforward pulse systems. The correlation co-
efficients * for the pulse system for both the SNR and cross-
correlation measures are small due to the small slopes @ and
the large spread of the data log,g( ¥,,). But their trends stiil
show a linear relationship.

Note also that the slopes of the plots can be positive or
negative or zero depending on the time scale factor of the
dynamical system and on the noise when we consider the
noise scale « that gives the dispersion y= . Consider, for
example, the two FHN models (16)—(18) and (19)—{(21}) are
tl}e same system. But the noise n' ()= «'w(?) in Eq. (16)
differs from the optimal noise n(1)= xw(t) in Eq. (19} by
the scale €. So at SR the two optimal noise scales obey the
relation «;,,=ex,, . Then v, (a)=«,, (@) =c(4AB)" if
Yopl @)= K,,{a)*=cA°. So the factor e can change the

slope of the plot from positive to negative for this FHN
model.

IV. LEARNING THE OPTIMAL NOISE DISPERSION
IN IMPULSIVE ENVIRONMENTS

We applied the stochastic SR gradient-ascent learning law
of [15] to the problem of finding the optimal noise dispersion

Yupe for infinite-variance noise. This leaning law has the
form

ASNR
ay

Y1 = Yty \ (40)

where i, is a decreasing sequence of learning coefficients. A
like learning law holds for the correlation measure in Eq. (9).
The spectral relation SNR=S/N and the chain rule of calcu-
lus show that

ASNR AN

dSNR  3SNR 45
AN dy

= —+
ay a5 dy

(41)

1 35 SNR &N
- 2= 42)

The first-order condition for an SR maximum is dSNR/Jy
=0. This leads to the optimality condition S/N=S'/N’
where S’ = 05/3v. But the optimality error process £= SIN
—§'/N' itself is impulsive. Indeed a converging-variance
test and log-tail test confirm that this random process obeys
the highly impulsive Cauchy probability density (with &
=1). Figure 6 shows samples of this Cauchy-like error pro-
cess. These impulses destabilized all attempts to learn v,p,
with Eq. (42). This Cauchy impulsiveness holds for forcing
noise with finite as well as infinite variance and for all the
SR models and performance measures. It is systemic to the
gradient-leaming process. But its Cauchy nature suggests an
immediate remedy. We can apply the well-known Cauchy
impulse suppressor Plzy=2z,/(1 +:,2) from the theory of
robust statistics [53]. This gives the final robustified form of

the learning law:

43)

6SNR]

Ye+1= 7r+#,¢>£ oy

The robustified learning law (43} learned the optimal dis-
Persions Yoy, i Figs. 1 and 3. It successfully four':d Yopr fOI
& values in the range [1.4, 2) for both the quartic bistable and
Fitzhugh-Nagumo models but only for the SNR performance
measure. The learing law often converged o ¥, for o
values in [1. 1.4} but with decrecasing frequency and accuracy
for the lower a values. The learning scheme often did not

converge when the forcing noise was Cauchy (a=1}.

051110-9



BART KOSKO AND SANYA MITAIM

_Leaming with the SNR measure did not require knowledge
- of the system dynamics while learning with the correlation
measure did require some knowledge of the system Jacobian.
Learning is slow in any case because the system must in
effect estimate at least part of the system dynamics based on
the sampled SNR. inputs to the learning process. The robus-
tified gradient scheme (43) can use other performance mea-
. sures or can include more information from the system dy-
namics to help the system more accurately estimate the
stochastic term dSNR/ay.

V. CONCLUSION

We have shown that stochastic resonance is robust against
noise outliers. Sufficiently large and sufficiently frequent
noise impuises can overwhelm any SR system. But an SR
effect still emerges even for the wide range of infinite-
variance noise-types that lie between the extremes of the
wildly impulsive Cauchy bell curve and the nonimpulsive
Gaussian. The approximate exponential relationship
Yoprl @) =cA® shows this. This result is encouraging because
all real noise is impulsive to some degree—the best-fit a is
seldom the Gaussian case of a=2. This robustness favors
engineering designs that may not conform to the ideal stan-
dards of Gaussian noise. It also suggests that SR may occur
more widely in nature than many had belicved.

The success of the dispersion-leaming simulations further
suggests that evolution could have tuned biological param-
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eters to exploit the SR affect for signal detection in noisy
environments. No living organism can control the noise
structure of the environment. But gene selection over thou-
sands of generations might act as if a gene pool slowly and
noisily tuned its own noise parameters. Each act of reproduc-
tive fitness would count as only a lone noisy spike in evolu-
tion’s learning process. The battle of genetic countermea-
sures between predator and prey suggest that if the predator
or prey cvolved SR-sensitive signal detection (as Moss
[11,54] has shown for crayfish that use SR to detect a large-
mouth bass's periodic fin pattern or paddlefish [55] that use
SR to detect plankton} then they would have to evalve new
SR parameter settings as their opponents evolved new coun-
termeasures.

The problem with such an SR evolutionary hypothesis is
the Cauchy impulsiveness of gradient-ascent learning (40)
for either a signal-to-noise or correlation performance mea-
sure. Biological systems would have to further evolve a to-
bustifier of some sort to suppress extremely large leaming
outliers as Eq. (43) does with the Cauchy impulse sup-
presser. A meta-level threshold system might suffice for that
task.
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The Shape of Fuzzy Sets in Adaptive Function Approximation

Sanya Mitaim and Bart Kosko

!
- Abstract—The shape of if-part fuzzy sets affects how well feed-

i| orward fuzzy systems approximate continuous functions. We ex-

‘plore:a wide range of candidate if-part sets and derive supervised
llearming laws that tune them. Then we test how well the resulting
‘adaptive fuzzy systems approximate a battery of test functions. No
‘one set shape emerges as the best shape. The sinc function often
;'dm well and has a tractable learning law. But its undulating side-
"labes may have no linguistic meaning. This suggests that the engi-
'neering goal of functiop-approximation acecuracy may sometimes
have to outweigh the linguistic or philosophical interpretations of
fuzzy sets that have accompanied their use in expert systems. We
divide the if-part sets into two large classes. The first class consists
of n-dimensional joint sets that factor into 72 scalar sets as found
inalmost all published fuzzy systems. These sets ignore the corre-
lations among vector components of input vectors, Fuzzy systems
that use factorable if-part sets suffer in general from exponential
rule explosion in high dimensions when they blindly appreximate

* functions without knowledge of the functions. The factorable fuzzy

sets themselves also suffer from what we call the second curse of di-
mewsionality: The fuzzy sets tend to become binary spikes in high
dimension. The secend class of if-part sets consists of the mere gen~
eral but less common 72-dimensional joint sets that do not facter
into n scalar fuzzy sets. We present a method for constructing such

" unfactorable joint sets from scalar distance measures. Fuzzy sys-

tenis that use unfactorable if-part sets need not suffer from expo-
_nl!ptial rule explosion but their increased complexity may lead to
Wiractable learning laws and inscrutable if-then rules. We prove
that some of these unfactorable joint sets still suffer the second

turse of dimensionality of spikiness. The search for the best if-part

sts in fuzzy funition approximation has just begun.

Index Terms—Adaptive fuzzy system, curse of dimensionality,
fuzzy function approximation, fuzzy sets.

L. THE SHAPE OF FUZZY SETS: FROM TRIANGLES TQO WHAT?

HAT is the best shape for fuzzy sets in function apprex-

imation? Fuzzy sets can have any shape. Each shape
tffects how well a fuzzy system of if-then rules approximate
2 function. Triangles have been the most popular if-part set
shape but they surely are not the best choice [24], [32] for ap-
froximating: nonlinear systems. Qverlapped symmetric trian-
gles or trapezoids reduce fuzzy systems to piecewise linear sys-
ttms. Gaussian bell-curve sets give richer fuzzy systems with
simple learning laws that tune the bell-curve means and vari-
dces. But this popular choice comes with a special cost: It con-
Verts fuzzy systerns to radial-basis-function neural networks er
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to other well-known systems that predate fuzzy systems [3].
[17], [20]. [27], [28], [30]. These Gaussian systems make im-
portant benchmarks but there is no scientific advance involved
in their rediscovery.

Triangles and Gaussian bell curves alse do not reptesent the
vast function:space of if-part fuzzy sets. But then which shapes
do? This question has no easy answer. A key part of the problem
1s that we do not know what should count as a meaningful tax-
onomy of fuzzy sets. We can distinguish continuous fuzzy sets
from discontinucus sets, differentiable from nondifferentiable
sets, monotone from nonmonotone sets, unimodal from multi-
modal sets, and so on. But these binary classes 0f fuzzy sets may
still be too general to permit a fruitful analysis in terms of fune-
tion approximation or in terms of other performance critena. Yet
a taxonomy requires that we draw lines somewhere through the
function spacé of all fuzzy sets.

We draw two lines. The first line answers whether a joint
fuzzy set is factorable or unfactorable. Consider any fuzzy set
A C R" with arbitrary set function & @ £ — [0.1] (or the
slightly more general case where « maps ££"' or 5ome other space
X into some connected.real interval [, v] C H). The multidi-
mensional nature of fuzzy set A presents a structural question
that does rot arise in the far more popular scalar or one-dimen-
sional case: Is A factorable? Does A € £ factor into a Carte-
sian product of o scalar fuzzy sets 1; C R A=Hd;x--xA,.7

The general answer is no. Factorability is rare in the space of
all n-dimensional mappings of K™ into numbers. It corresponds
to uncorrelatedness or independence in probability theory. Yet
much analysis focuses on the factorable exceptions of hyper-
rectangles and multivariate Gaussian probability densities. And
almost all published fuzzy systéms use rules that deliberately
factor the if-part sets into scalar sets. This often yields factorable
joint set functions of the form a, () = ab(oy) x -oox af (o)
or a;{x) = mjn,(u} (x1)....,a}(wn)). Consider this rule for
a simple air-conditioner controller: “If the air is warm and the
humidity is high then set the blower to fast.” A triangle or trape-
20id or bell curve might describe the fuzzy subset.of warm air
temperatures or of high humidity values. A product of these two
scalar sets forms a factorable fuzzy subset Ap x Ay C AL But
users tend not to work with even simple unfactorable two-di-
mensional (2-D) sets such as allipsoids: “If the temperature-hu-
midity values lie in the warm-high planar ellipsoid then set the
motor speed to fast.” Few unfactorable fuzzy subsets of the
planeor of R" are as simple-geometrically or as tractable math-
ematically as ellipsoids [1]. [2].

Below we study how well feedforward additive fuzzy sys-
tems can approximate test functions for both adaptive fac,tor:.ible
and unfactorable if-part fuzzy sets. We first derive supervised
leaming laws for a wide range of fuzzy sets of different shape
and then test them against one another in terms of how ,accku-
rately they approximate the test functions in a squared-error

1063-6706/01510.00 © 2001 IEEE
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tense. Then we form factorable n-dimensional fuzzy sets from
the scalar factors and compare them both against one another
and against some new unfactorable joint fuzzy sets. Exponential
tile explosion severely constrains the extent of the simulations.
We also uncover a second curse of dimensionality: Factorable
sets tend toward binary spikes in high dimension. Unfactorable
sets need not suffer exponential rule explosion. But we prove
that some of them also suffer from spikiness in high dimensions.

We draw a second line between parametrized and non-
parametrized fuzzy sets. We study only parametrized fuzzy
$ts because only for them could we define learning laws
(that tune the parameters). We did not study recursive fuzzy
sets sxfch as those that can arise with B-splines [33] or other
Teursive algorithms. It also is not clear how to fairly compare
Pmetdzed if-part set functions with nonparametrized set
functions for the task of adaptive function approximation.

The simulation results do not pick a clear-cut winner. Nor
Wutfld we expect them to do so given the ad hoc nature of our
thoices of both candidate set functions and test functions. But
Lhee results do suggest that some nonobvious set functions should
Or;]r:i(;ng those that a fuzzy engineer considers when building
o g a fuzzy system. Along the way we also developed an

ensive library of new set functions and denived their often
Quite complex learning laws.

Sin]:eg:l?,p:' the r‘r.mst surprisin'g and durablg finding is that the
faslesta:dml? {sinz/x) of signal processing often converges
tianglos (;wth greatest accuracy among candidates that mcl.u.de
t » Gaussian and Cauchy bell curves, and ot.her famll.lar
a.safu;;es- This appears to be the ﬁrst‘use of the sinc function
Manes az set. Wf: cou]q find no thepretlcal reason for its p;rfqr-
el a nonlinear mte.rpolat.or in a fuzzy system de.splte 1ts
Ding ¢ wn Status as th.e linear mterpola.tor in the Nyqu.lst sam-

eorem and its signal-energy optimatity properties [21].
cuiv*::?;;ombined two hyperbolic tangents to give a new bell
i often competes favorably with other if-part set can-

idates. We call this new bell curve the difference hyperbolic
fangent [18].

Fig. 1 shows scalar and joint sinc set functions. Fig. 1{a)
shows the decaying sidelobes that can take on negative values.
This requires that we view the sinc as a generalized fuzzy set
[14] whose set function maps into a totally ordered interval
that includes negative values: @ : R — [—(0.217.1]. An exer-
cise shows that such a bipolar set-function range does not affect
the set-theoretic structure of - in terms intersection, union. or
complementation because the carresponding operations of min-
imum, maximum. and order reversal depend on only the total or-
dering (with a like result for triangular or f-norms [8]}. Fig.1(c)
shows the 2-D factorable sinc that results when we multiply two
scalar sinc functions as we might do te compute the degree to
which a two-vector input & = (1. .rz) fires the two if-part fac-
tors of a rule of the form “If .Yy 15 4, and .z is +i» then Yous
B,." Fig. 1(d) and (e} show two new unfactorable 2-D set func-
tions built from the scalar sinc function and a distance metric.

Below we derive the supervised learning law that tunes these
sinc set functions given input—output samples from a test func-
tion. The factorable joint set functions are far easier to tune than
are the unfactorable sets because we need only add one more
term to a partial-derivative expansion and then multiply the re-
sults for tuning the individual factors. Fig. 2 shows how a 2-D
factorable or product sinc set evoives as the process of super-
vised learning unfolds when a sinc-based fuzzy system approx-
imates a test function.

The sinc finding raises a broader issue: Does an if-part fuzzy
set need to have a linguistic meaning? The very definition of
the sinc set function ¢ : £ — [—0.217. 1] already requires that
we broaden our usual notion of “degrees” that range from 0%
to 100% to a more general totally ordered scale. But the sinc’s
undulating and decaying sidelobes admit ne easy lingwistic in-
terpretation. We could simptly think of the smooth bell-shaped
envelope of the sinc and treat it as we would any other umimodal
curve that stands for warm atr or high humidity or fast blower
speeds. That would solve the problem in practice and would
allow engineers to safely interpret a domain expert’s fuzzy con-
cepts as appropnately centered and scated sinc sets. But that
would not address the conceptual problem of how to make sense
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teaming, (c) after 500 epochs, and {d) the sinc set converges after 3000 epochs

fefall those local minima and maxima in such a multimodal set
function.

A pragmatic answer is that a given if-part fuzzy set need not
have a precise linguistic meaming or have any tie to natural lan-
guage at all. Function approximation is a global property of a
fuzzy system. If-part fuzzy sets are local parnts of local (f-then
niles. The central goal is accurate function approximation. This
can outweigh the linguistic and philosophical concerns that may
have attended earlier fuzzy expert systems. Engineers designed
many of those earlier systems not to accurately approximate
some arbitrary nonlinear function but to accurately model an
expert’s knowledge as the expert stated 1t in if-then rules.

So the real issue is the gradual shift in performance criteria
from accuracy of linguistic modeling to accuracy of function ap-
proximation. Progress in fuzzy systems calls into question the
eatlier goal of simply modeling what a human says. That goal
remains important for many applications and no doubt always
will. But it should not itself constrain the broader considera-
tions of fuzzy function approximation. The function space of
al if-part fuzzy sets is simply too vast and too rich for natural
language to restrict searches through it.

II. Fuzzy FUNCTION APPROXIMATION AND TWO CURSES OF
DIMENSIONALITY

We work with scalar-valued additive fuzzy
F . R* — R. These systems approximate a function
[iR* — Rby covering the graph of f with fuzzy rule patches
ind averaging patches that overlap [14]. An if-then rule of
the form “If X is A then Y is B” defines a fuzzy Cartesian
Pach 4 x B in the input-output space .X' x Y. The rules
‘an use fuzzy sets of any shape for either their if-part sets A
or then-part sets B. This holds for the feedforward standard
Wditive model (SAM) fuzzy systems discussed below. Their
Eenerality further permits any scheme for combining if-part
¥ector components because all theorems assume only that the
%t function maps to numbers as in @ : R* — [u,v]. The
Bneral fuzzy approximation theorem [11] also allows any
thoice of if-part set or then-part sets for a general additive
Model and still allows any choice of if-part set for the SAM
Case that in turn includes most fuzzy systems in use [15].

) The fuzzy approximation theorem does not say which shape
18 the best shape for an if-part fuzzy set or how many rules /1 a
system should use when it approximates a function. The
$hape of if-part sets Aj affects how well the feedforward SAM
approximates a function f and how quickly an adaptive SAM
approximates it when learning based on input—cutput samples
om f tunes the parameters of A, and the centroids ¢, and vol-

systems

Samples of evolution of a product sinc if-part sct function in an adaptive
sinc set function such as us center and width on each parameter axis .« and « »:
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function approximator. Supervised learning tunes the parameters of the product
©(a) a sinc set function at initial state, (b) the same sinc set after 10 cpochs of

umes V), of the then-part set £2;. The shape of then-part sets B;
does not affect the first-order behavior of a feedforward SAM I
beyond the effect of the volume V; and centroid ¢;. This holds
because the SAM output computes only a convex-weighted sum
of the then-part centroids ¢; for each vector input »

I'(x) = ij(;r)(:j (1

J=1

where p; () = 0 and Z;-";l pi{e) = 1 foreach « € H" as
defined in (6). p, depends on £2, only through its volume or area
V', (and perhaps through its rule weight), We also note that (1)
and (2) imply that £'(«) = E[Y |.X = «] [14]. But the shape
of 3, does affect the second-order uncertainty or conditional
variance V¥ | .X = z] of the SAM output [7{x) [14]

VIV = o] = Y pi(weh, + 3 pitole — 1))
=1 J=1
(2
where o2, in an SAM is the then-part set variance
E
. o )
o, = [ =) psw)dy 3)
—

and where py (1) = b;(¥)/V; isan integrable probability dgn-
sity function and b : £ — (0. 1] is the integrable set function
of then-part set ;. The first term on the right side qf ('2) gives
an input-weighted sum of the then-part set uncertainties. The
second term measures the interpolation penalty that results from
computing the SAM output F{r)in(l)as simply the weighted
sum of centroids. The output conditional variance (2) further
simplifies if all then-part sets B, have th;' same shape and thus
all have the same inherent uncertainty @

VY| X =u] = o’ + Z-pj(.r)[cJ - ()% (4)

1=1

So a given input & minimizes the system Aur?certainty or gives
an output £ (&) with maximal confidence if it fires the sth rule
dead-on (so £'(r) = ¢;)and does not fire the other /i~ 1 ru.les at
all (pr{x) = O for k # J). This justifies the common pracncerof
centering a symimetric unimodal if-part fuzzy set A, ata point
where the other rn— 1 if-part sets have zero m§mber§h:p degree.
It does not justify the equally common practice of ignoring ic
thickness or thinness of the then-part sets B, and even replacing

them with the maximally confident choice of binary “'singleton”

spikes centered at the centroid ¢,. The second-order structure of



fuzzy system’s output depends crucially on the size and shape
f the then-part sets B;.
' We allow learning to tune the volumes V; and centroids ¢,
f the then-part sets B; in our adaptive function-approximation
‘mulations. A then-part set B; with volume V; and centroid
b can have an infinitude of shapes. And again many of these
will change the cutput uncertainty in {2) or (4). But we
mll ignore the second-order behavior that (2) and (4) de-
scribe.

High dimensions present further problems for fuzzy func-
tion approximation. Feedforward fuzzy systems suffer at least
wo curses of dimensionality. The first is the familiar exponen-
tial rule explosion. This results directly from the factorability
of if-part fuzzy sets in fuzzy if-then rules. The second curse i3
one that we call the second curse of dimensionality: factorable
if-part sets tend to binary spikes as the dimension n increases.

Consider first rule explosion for blind function approxima-
tion, Suppose we can factor the if-pant fuzzy set 4 : 4 =
Ay x--- A Nontrivial if-then rules require that we use at least
two scalar factors for each of the n orthogonal axes in K" as in
the minimal fuzzy partition of air temperatures into warm and

sot-warm temperatures or into low and high temperatures. A

fizzy system must cover the graph of the function f with rule
paches. That entails that the if-part sets cover the system’s do-
min——else the fuzzy system £ would not be defined on those
rgions of the input space. So such a rule-patch cover of the do-
main of a furzy system F : C C R" — R entails a rule explo-
sion on the order of & where C is some compact subset of R™.
Wewill for convenience often denote functions as £ : " — R
wasa : B” — [0, 1] where we understand that the domain is
oaly some compact subset of K.

There is a related exception that deserves comment. Watkins
B1). [32] has shown that if we not only know the functional
form of f but build it into the very structure of the if-part sets
4; then we can exactly represent many functions in the sense
of F(z) = f(x) for all £ and can do so with a number of rules
“at grows linearly with the dimension n. This does not apply
B blind approximation where we pick the tunable if-part sets
4; in advance and then train them and other parameters based
on exact or noisy input—output samples from the approximand
f“!l:tion f. But it suggests that there may be many types of
tiddle ground where partial knowledge of f may reduce the
nle complexity from exponential to polynomial or perhaps to
%ome other tractable function of dimension.

All factorable if-part sets suffer the second curse of di-
Mensionality. They ignore input structure and collapse to
binary-like spikes in high dimensions. The separate factors
% ignore correlations and other nonlinearities among the
Mput variables [5]. This structure can be quite complex in
¥gh dimensions. The product form al(z,) x - x af(ra)
¥uds toward a spike in K™ for large n when «} < 1.

: Borel—Cantelli lemma of probability theory shows that
Bin(al(x,), . .. ,a}(Zn)) tends to zero with probability one

85 n. — ¢ if the random sequence ', , £z. - - - is independent
& identically distributed. This also holds for any t-norm
“mbination of factors because of the generalized t-norm
bound T(aj(z1),....a}(xa)) < minfah(z1).....a}(£a))-

rable joint set functions degenerate in high dimensions.
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This curse of dimensionality can combine with the better
known curse of exponential rule explosion. The result can be a
function approximator with a vast set of spiky rules.

Joint unfactorable sets tend to preserve input correlations i5].
They need not collapse to spikes in high dimensions or suffer
from the like rotten-apple effect of falling to zero when just one
term equals zero. This also suggests that some unfactorable joint
fuzzy sets may lessen or even defeat the curse of dimensionality.

The second part of this paper shows how to create and tune
metrical joint set functions. These joint set functions preserve
at least the metrical structure of inputs and do not try to factor
a nonlinear function into a preduct or other combination of n
terrns. The idea is to use one well-behaved scalar set function
like sinc(.r) {18]) and apply it to an n-dimensional distance func-
tion d,(.r) rather than multiply n of the scalar set functions:
u;(r) = sine(d,(r)) rather than () = [];_, sinc(r,). Then
supervised learming tunes the metrical joint set function as it
tunes the metric. The next section reviews the standard additive
fuzzy systems that we use to derive parameter leaming laws and
to test candidate if-part sets in terms of their accuracy of func-
tion approximation.

III. ADDITIVE FuzZyY SYSTEMS AND FUNCTION
APPROXIMATION

This section reviews the basic structure of additive fuzzy sys-
tems. The Appendix reviews and extends the more formal math
structure that underlies these adaptive function approximators.

A fuzzy system £ : R™ — RP stores rn rules of the word
form "If X = A; Then ¥ = B;” or the paich form A; x
B, ¢ X xY = R" x RP.The if-part fuzzy sets 4, C R"
and then-part fuzzy sets B; C HRP have set functions a;
E* — [0.1] and b; : R? — [0.1]. Generalized fuzzy sets
[14] map to intervals other than [0.1]. The system can use the
joint set function a; or some factored form such as u;{r} =
al(zry)...af{zn)ore;(e) = min(a}(£1). ... a}(en)) or any
other conjunctive form for input vector .t = {£1,-..,Zn) € R"

10].
: zin additive fuzzy system [10], [11] sums the “fired"” then-part
sets B}

m T™H

B(J.‘) = Zu’jB;' = Z'u’jaj(I)Bj.
=1

J=L

(5)

Fig. 3(a) shows the parallel fire-and-sumn structure of the SAM.
These nonlinear systems can uniformly approximate any con-
tinuous (or bounded measurable) function f on a compact do-
main [19]. Engineers often apply fuzzy systems to problems of
control [4] but fuzzy systems can also ap;-)]y to problems of com-
munication [22] and signal processing (3], (6] and other fields.
Fig. 3(b) shows how three rule patches can cover part of the
graph of a scalar function f : £ — R. The p}atch—cover strml:-
ture implies that fuzzy systems F: R — HF su‘ﬂfer from r::he
explosion in high dimensions. A fuzzy system I' needs on the
order of k" +F~t rules to cover the graph apd thus to approxi-
mate a vector function f : 7 — RF. Optimat rules can help
deal with the exponential rule explosion. Lone or local mean-
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Centroid .
| Defuzzifier [ ™ F(X)

IF X=A, THEN ¥ =B,

By

(b)

‘ Rg 3 Feedforward fuzzy function approxamator (a) The parallel assosative
‘ Sucture of the additive fuzzy system £ 7 — 3% with o rules Each
M1, € f1* enters the system £ as a numenical vector At the set level r,
' 828 a delwa pulse A{r — r,,) that combs the if-part tuzsy sets Y and giees
© hem set values gra) = fn-‘ Mr o— rJa, e ids The set values “fire”
© @scale the then-part fuzzy sets O, 1o give 137 An SAM scales cach 3. with
9{7). Then the system sums the B3’ sets 1o give the output “set”™ [ The systerm
%P F{r,) s the centroid of B (h) Fuzzy rules define C antesian rule patches
{ "'Jl" B, in the input—output space and cover the graph of the approximand f
leads 10 exponential rule explosion in high dimensions Optimal lone rules

tover the extrema of the approxumand as 1n Fig 4

~Yuared optimal rule patches cover the extrema of the approx-
 Wand f [13]), [14). They “patch the bumps™ as in Fig. 4. The
- Appendix presents a simple proof of this fact. Better leaming
xhemes move rule patches to or near extrema and then fill in
I €en extrema with extra rule patches if the rule budget al-
ows,
The scaling choice B = «u,(r)B, gives an SAM. The Ap-
Padix further shows that taking the centroid of £(x) in (5)
Bves the following SAM ratio [10]. [} 1]. [13]. [14]):

2w, ()Y ki
(o) = 4= A LA p, (o). (6)
' Z_,‘:]. wja;(a)V _]ZL ’ ’

Here Vj is the finite positive volume or area of then-part
¥ B; and ¢; is the centroid of B; or its center of mass.
¢ convex weights pi(w).....p.(x) have the form
Pe) "= (wja (e)V,/ 30 wiai(£)V,). The convex co-
Hhicients p;(x) change with each input vector «. Sections V
- ™4 VIII derive the gradient learning laws of all parameters of
the SAM for different shapes of if-part sets.

Fig 4 Lone optimal fuzzy rule patches cover the exirema of approximand f.
A lone rule defines a flat ine segment that cuts the graph of the local extremum
w ot feast two places The mean value theorem implies that the extremum lies
betivecn these points. This can reduce much of fuzzy function approximation to
the search for zeroes © of the denvatve map /' @ f'(e) = 0.

TV, SCALAR AND JOINT FACTORABLE FUZZY SET FUNCTIONS

A seafar set funcuon i, : f — [0.1] measures the degree
to which input &+ € R belongs to the furzy or multivalued set
A, e, le) = Degree(nr € 4} A joint factorable set 4, C R”
derives from s scalar sets .4} C K. Any conjunctive operator
such as a t-norm can combine # scalar sets to obtain a joint
factorable set.

A. Scalur Fuzzyv Sets

We tested a wide range of if-part set functions. Below we list
the scalar form of most of these set functions. The sinc function
was multimodal and could take on negative values in [—0.217,
I]. We viewed these negative values as low degrees of set mem-
bership.

1) Triangle set function. We define the triangle set function
as a three-tuple (/,.rn,.r,) where {; > Oand r; > 0.
e, € K denotes the location of a peak of the triangle

;-
l——J[—-—-. iy — 1 <& Sy
i
3 = &= T . 7
ai(0) =91 LT < e Smy 7
o
J
0. else

We can alse define the symmetric triangle set function
with two parameters that are its cenfer mi; and width d,

as
£— ) ‘ ‘
- |— if e, —my,| <d
(o) = ! d; l, * 4 (8)
\ 0, else.
2) Trapezeid set function. We define the trapezoid set

function as a four-tuple ({;.ml; g, r;) where
ml; < mr; € R {, > 0and T, o> 0 denote the
distance of the support of a function to the left and
right of mi; and rmr,. We can view the center as

m, = (1/2}(md; + rrer )

reed, — 2

ifml; -, <x s il

1- ;
7 itml ey ©
a, () = 1— 22 ifery <@ Smry
-
0. ’ else



3) Clipped-parabola {Quadratic) sel function. A clipped-
parabola set function (or quadratic set function) centered
gt m; and with “width™ d; has the form

p 4 . 2
=T £o— T
1— [ —/——) . (=22} <1,
: ai(x) = ( d; ) ‘f(; d, ) <1 (o
0.

else

This quadratic set function differs from the quadratic set
fiinction in [26].

4) Gaussian ser funcifon. The Gaussian set funetion de-
pends on the mean 7, and standard deviation , /\/E

== (52) )

5) Cauchy ser function. The Cauchy set function is a bell
curve with thicker tails than the Gaussian bel curve and
with infinite variance and higher order moments [5]

(1n

1

:(f:rj)z - (2

a;{r) =

6) Laplace set fiinction. The Laglace sét function is an ex-
ponéential curve
aj(r)= 'e‘xp{— Lr;dm;_l } (1)

4

whiere 1115 is the center and ¢; > 0 picks the decay rate
of the curve. ‘

) Sinc set funcfion. We: define the sinc set function cen-
tered at m; and width d; > 0 as

The sinc set function is a map a; : £ — [—-0.217.1].
So the denominator of a sinc SAM can in theory become
zero or negative. The system désign must take care when
these negative sét values enter the SAM ratio in (6). We
set a logic flag to chieck if the denominator is zero or
negative.

8) Logistic set function. The logistic or sigmoid funetion
has the form of S, () = 1/{1 + exp{—c}). We define
a symmetri¢ logistic set function centered at v with
width d; > 0.as

a;(z) =28 (— (*‘"‘Tj"f-)z)

= —2_— (15)
14T 5%

{14

~ The factor2 gives max,ep u;(z) = 1.
9N Hyperbolic tangent set function. This set fumction has
the form

aj(fif') =1+ tanh (_ (J_ﬂ_,_) )
\T% /.

(16)
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where ne; and d; define thie centér and the width of the
bell ¢urve.

10} Hyperbolic secant set function. Again mn; and d; >0
define the center and width of this scalar set function

a;(a) = sech ‘(—I — mj) .

d; an

V1V Differential logistie set function. The derivative of the lo-
gistic function is a bell curve form of probability density
function. S'(&) = S{)(1 — 5(«)) holds for a logistic
function S{r) = 1/(1 + expt—u2}). So we define this
new set function as

a)(x) =48 (r ;:”J ) [1 -8 (__"‘ ;:”'f )] _

The factor 4 gives maxgen a,{x) = 1.

12) Difference logistic set function. The logistic orsigmoid
function with steepness o, > 0 has the form of 5, («) =
1/(1+exp{—c, x}). We define a symmetric logistic set
function centered at ; with width 1; > 0 as

(18)

1 . . )
0 () = 5 18,(e = my + 1) = Sle —my — )] (19)
K]

The normalizer I; = S,(1;) — 5;(—{;) ensures that
wax.ep i) = 1 7

13§ Difference hyvperbolic tangent set function. This new set
function has the difference form

1 [ £—dy+1 o fwmmy
(;j(,,[f} = F_’ [tﬂllh( —B-J'l—')) — t(illll(—dj—):( .
' ) ' (20)

This results in a bell curve. The term #; > 0 defines the
“width” of the function and £; = 2tank(l; /d;) gives
the normalization factor. &
Fig. 5 plots the scalar set functions for sample chaices of pa-
rameters. Simulations in Seetion VI compare how these scalar
set functions perform in adaptive fuzzy function approximation.
in tetms of squared erTor.

B. Joint Factorable Seis: Product Set Functions

This class includes joint set functions a; & H" — [0., 1)
that fﬁctbr aw, (&) = g(u}.{wl),, ..... ay (£ }) -fo".r §:0m.e» fun‘?lOﬁ
g [0.3)" — [0, 1]. The popular f.ajgtorab]'c joint et functions
combine the scalar set functions with product

a;{e) = ajle) X %oy {En) 21)
or other t-iorms such as min
a;(£) = winfajlea), - 45 (x.)) (22)

for scalart set functions ai . B — [0, 1]. We form'the produc.:t set;
! unctions i tion, [V-A as in Fig. 6.

functions from scalar set functions in Seciion IV A. as in Fig. €

Section VI compares the results of adaptive function approxi-

imation of these set fungtions for twe- and three-input cases.
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. . (D)

Fig 5. Set functions centered at rn = 01, (a) T = = Symm = T = = =
cta) Trsanple T landr = Sy . ; . ;
e ndr 3 {b) Sy ctric trniangte o = 3 {c) Trapezowd: ! Tl = 2 om0 =2 and r = 2H{d)

?Iﬂ:ola:.d = 2. (e) Gaussian: = 2 (fy Cauchy: « = 2
Hyperbolic secant: ¢ = 2. (1) Differental logisnic: & = 2

gy Laplace o =

1

th)ySinc « = 4 () Logtsuc. o = 2. 1j) Hyperbolic Tangent ¢ = 2 tk)

{my Difference Jogistic «+ = 2 and/ = 1 (n} Difference hyperbohe tangent: f = 2and! =1

6 P . .
E&N " rf(liuclu’;)mtsmﬁ;mcnons centered at/n = 0. {3y Trangle: ! ~ (0.3, 4)anda? ~ (0. 2. 2). (b) Symmetric trangle: ' = tandd? =
—1.1.3)and a? ~ ({1.—1.5.1.5 2} (d) Parabola: ' = 4 and 4 = 3. (e) Gaussian: ' = 2and ¢ = 1 if) Cauchy: o' =2

= 2 (c) Trapczowd’
and d* =1 1g)

Lo 41 = 3 and d = 1 (hy S1 [ F
2and d¢ = 1. ¢h) Sine: d' = 1.5 and ¢ = U 4. i) Logmstic ' = Zand«* = 1.0 Hyperbolic tangent ' = Zand d® = 1. (k) Hyperbohic

Bt JL — ° . A ) o
d' = 2 and d* = 1 (1) Differential logistic' ¢ = 2and ¥ = 1.tm) Dhfference logistic: o

Sgem: d = §. 1 = 2.d¢ = 2, and{¢ = 1.

¥
SUPERVISED LEARNING IN SAMS: SCALAR AND PRODUCT
SETS

S‘fﬁpewised gradient descent can tune all the parameters in the

" model (6) [12], [14]). A gradient descent learning law for
AM parameter £ has the form

aF

E(t+1)=E1@) — po—

‘ ) 5( ) He D€

Yhere 11, is a leaming rate at iteration t. We seek to minimize

Squared error

(23)

Be) = 5(fe) - F2)? (24
“‘hhzsfunction approximation. The vector function f : H" —
vec;:!’r;:onf:nts!{(;c) = (IL'(J’_‘), oo fp{x))t and so does
tnera) £ nction - We consider the case when p = 1. A
a orm for rnultiple output when p > 1 expands the error
on E(z) = || f(w) — F{x)|| for some norm || -{]. Let £j‘

V21 = 2. at = 2 and ¢ = 1.(n) Difference hyperbolic

denote the kth parameter in the set function u,. Then the chain
rule gives the gradient of the error function with respect to the
if-part set parameter Ej" with respect to the then-part set centroid

¢, = (¢ .. ./} and with respect to the then-part set volume
v,
DE QR OF on, 9L _OEOF
e, T OF Yu, dE] T dey dt de, )
oL = ﬁd—,‘ (25)
ov, = 9F av,
where
dE . o
£2 o (flay - Fl)) = —<le) (26)

UI" i

JdFE (-.5) a (o), (Ve =V (- alnVie)
Ja, (5" a(Va)”
ey N, D gy et) -
= S, = v (J)]er(I)' (27}



\

The SAM ratios (6) with equal rule weights w), = w, = -.. =
o = w give [12], [14]

OF  a;(w)V;

‘-9'07_— m=1’1('~5) (28)
' & — F(ux (e
57 = el =l - pB o)

Then the learning laws for the then-part set centroids ¢; and
olumes V; have the final form

¢ (8 + 1) = ¢ () + pee()p, ()
Vit + 1) = Vy(0) + pee(les — B2

(30

PJ{ ) (31)

The learning laws for the if-part set parameters follow in like
maaner for both scalar and joint sets as we show below.

We first derive learning laws for parameters of the scalar
part set functions. Each set function «; gives different par-
tal derivatives of «; with respect to its Ath parameter £}, in (25).
The learning laws for the parameters of each scalar set functions
regs follows.,

1) Triangle set function

() — pee(a)e; — I’(J,)]"’ (‘t) =,
ifm; —1; <& <m;

milt +1) = ¢ my(t) + pee(e)[e; — F(w) E—((:—;-,l , (32)
ifm; <x<m;+ry;
my(t), else
() + pee(ole; — F) 2t
Lt+1) = ifm; —1; <w <my (33)
1 (t), else
ri(t) + pee(@)e; — & (-L)]:me—:-'*
rit+1) = ifm; <w <my+r {(34)
ri(t), else.

) Trapezoid set function

{"‘l () — pee(a)e; — A7 (J,)]v (vc) L
ml;(t + 1) ifrd; — 1 <@ <l 35)
ml;(t), else
e () + pee(a)e; - F ("')]u (:‘) '11 ‘
mri(t+1) = if r; <@ <ror; +r; 36)
mr;(t), else
L) + e (@)le; — (0] 54
l.i(t + 1) { ifm,l_.,- - [J- < @w < '!H,l (37)
5(t),  else

r5(t) + pee(e)e; — F(x )]u (f) P :;rn- '
Tt +1) = ifmr; <o <+ (38)
’lj(t)’ else.

3) Clipped-parabola set function

m;(t) + 2p,e(x){e

i (55) <1

m;(t), else

e

Bilt+1) = (39)
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dy(t) + 2u,e(r)]c

les = B e

dj(t + l) =

if (f._,_) <1 (40)
d;(t), else.
4) Gaussian set function
m(t 4+ 1) = mey () + 2pe()p, (0)]e, — 2(x )] - nu
a4,
i
d;(t+1)=d; (t)Zu;E( 0, .L)[( - Fl )] - THJ)
(42)
5) Cauchy set function
ey (t + 1) = m(t) + 2pe(0)p; (e, — I"(.r)|'—r — i, (1)
;
(43)
. (o - m_,)
di(t+ 1) = d;{t) + 2uue(w)p,(o)e, — I'(l)]——---—
X aj (). (44)
6) Laplace set function
n(t + 1) = ny () + jue(e)e, — F())p; (o)
1
x sign(e —my ) —— (45)
|1
d;(t + 1) = d;(t) +jue (), — 7)), ()
x wignd; )—'J — | (46)
5
7) Sinc set function
P, (x)
my(t + 1) = m (8 + e (w)e; — £ )}u X
B o femmy, 1 47
X (u,-(.,r,) —tU&-( Z, )) T, (4n
d;(t + 1) = d;{t) + pree(ade; — F(ua )]u. (,;
&= iy 1
X (u.,-(.v) - t'uﬂ(T)) d_J (48)
8) Logistic set function
(4 1) = ne,(8) + u,E(J; p, ()¢, — #(x))
x (2 - flj(_,[)) - "H_, (49)
d;(t + 1) = d;(t) + pueldp, (f)[ (o)
2
E_L)_, (50)

x (2 —u,(x)) P
’

9) Hyperbolic tangent set function
my(t+1) = () + 2l o), (Ole, — F(0)]

£ — TH
x (2 _ “}(1.)) ([z 4 (SI}

d;(t +1)=d, (¢) + 2,(:,6(.()]1_,(1 MNe, = #7(0)]
(r — m,_,) —

x (2= @, ()3 (52)
p)



IBE TRANSACTIONS ON FUZZY SYSTEMS, VOL. Y, NO. 4. AUGUST 2001

\

#) Hyperbolic secant set function

m;(t+ 1) = m(t) + ree()pi(e)e, — F(2)

1 N LT
x Z Léulh(TJJ—) (53)
d;(t+ 1) =d,(t) + pee()p, (O)[e; — ()]
r—mn, L= in,
X _F_(d_,)z tauh(—d} ) . (54)
1) Differential logistic set function
my(t+1) = m;(t) + pee(O)p,(0)]e, — 1(2)]
1 £ rn
X — |1=28 "
d; [ ( o, )} G
di(t+ 1) = 7, (t) + tee()p, (e, — 1)
&= £ =
X ——24 1 — 28 [ — 2
7 ()] e
12) Difference logistic set function
mi{t + 1)
=m;(8) + pee(a)p; (£)e; ~ F(a))
xrtj[s_,-(.r—m_,-+l_,-)+sj(r—m_,—l_,)—l] 57

o(t + 1)

=ai(®) + pee() 20

XSi{x ~m; +1,)[1 - Sy~ + 1))
~ e ~my - LIS« —m; - I = Si(e — 1y — ;)]

- l.iaj(r)(SJ(Ij)[l -5, + S, (=) = S, (=)Dl
(58)

6 = £(0)) 55-lle = m, +1,]

ift+1)

=1 )e; - (Pl o
L) + pee(o)[e; - 1 (I)]mﬁ;
X [Si{w =y + L)L~ Si(w ~ ey + 1))
TS =y — )1 - S ~ r — 1))
= a5()(S, DI = S, + S,(=1)01 — S,(~1,)])].
(59)

13) Difference hyperbolic tangent set function

bt + 1)
=m;(t) + ﬂts(l')Pj(w)w

X [tauh 'L_:ﬂ"{-_i—') + tanh £-my; =1 (60)
, d; d;
“!(H- 1)

=GO + e D, ) 1

(x) D;d;
x [I—Trtj-i—lj tanh? (£ + 1
d; d,

JITemy— 1 tanh? (;L' —m; —{;

2L {; s
= ?j + 23?(13-(:1:) [1 — tanh? (j—)”

J

(61)

645

lj(t-{- 1)

ZIJ t Hele IJ_,(J!') PR AT 1
)+ ()—uj(m_)[J 1@)]0%

x [2 — tanh? (I —ut lJ — tanh? {2 T y
J

— 2a;(.0) [l — tanh? (:l—‘:-)” .

A We also can approximate the learning laws for the symmetric
triangle and trapezoid set functions with Gaussian leaming laws
for their centers and the widths. Like results hold for the learning
laws of factorable n-D set functions. A factored set function
a(0) = ul(eg).. - (@) leads to a new form for the error
gradient. The gradient with respect to the parameter i of the
Jth set function «, has the form ’

(62)

U!Hf - Ja;dr_t": (')rn,:?' (63)
where
Ju; . w; ()
—— = ]| el = H—. 64
du,_',‘ 11;-!; 4 rLj‘(J:k) (64)

V1. SIMULATION RESULTS [: SCALAR AND JOINT PRODUCT
SETS

We trained the SAMs with different set functions to approx-
imate different functions. We scored each test in terms of the
squared error (SE) of the function approximation for a constant
learning rate g

We uniformly sampled 201 points of the function in the one-
dimensional (1-I)) case to give a training set. The 2-D ¢ase used
31 x 31 = 961 samples. The 3-D case used 20 x 20 x 20 =
8000 samples. One epoch passed all 201, 961, or 8000 samples
through the SAM to train it.

We then finely sampled the function to obtain the test data
for each function. So the training data set and the test data set
are different but do overlap due to the sampling pattern. The
one-input cases used 241 samples, the two-input cases used
51 x 31 = 2601 samples and the three-input cases used 31 x
31 x 31 = 29791 samples to test how well fuzzy systems ap-
proximate the approximands.

The 1-D SAMs used 12 rules, while the 2-ID SAMs used 64
rules. The 3-D SAMs used 125 rules. Different initializations
led to convergence to different local minima of the SE surface.
There is no formal way to find the initial conditions that lead
to the global minimum, so we had to guess at them. We spread
rule patches uniformly along the input space. So we spread the
if-part set centers »¢; uniformly along the r-axis. We picked
the then-part set centroids ¢, as the values of the sampled ap-
proximand [ atw;: c; = f(#e;). We set the then-part volumes
{areas) to unity at first: V1 = .- = V,,, = 1. Then supervised
learning tuned each SAM parameter.

We used a constant leaming rate j¢ throughout each training
session. We also tried different learning rates to see whether the
system converged to different solutions and picked the best re-
sults as a representative for that case. But at each try the learning
rates for each parameter were the same. The learning rates were
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fe 7. Samples of 1-D and 2-D test approximands.
_beca_“se each leamning law is highly nonlinear—else the 100(x + 0.95)(z + 0.6)(x + 0.4)
:!lmg might not have converged. The leamning rates that we x(r — 0.1)(& — 0.4)(x — 08)(x — 0.9)
ranged from . = 107 % to 1074, W, fala) = .
fr each leamni _ . We compared the results (£ +1.7)(« —2)?
o earning rates and picked the best ones. Below we list forr € [-1,1]. (67)
ctions we used as approximands. |
L LD ;
Test Functions 2) Exponential Functions: This class of set function

We defined functions of one variable J : .X C K — Htotest includt_*.s Gaussiap bell-curve and !_aplace functipns. Thg hy-
scalar fuzzy sets in the S ) perbolic tangent is one form of ratio of exponential functions.
fom the |t n the SAM models. We also used functions e tested the approximands below on the interval r € [-1. 1]
erature _[l]. [7]. We roughly classify the test functions
We used and list some of them as follow.

1) Polynomial a ;

! nd Rational Functions: This class of 2| x—0 8 _lztas

WO_’::nands 'consisted of polynomial functions and rational Ja(e) =10 (c et TTE e ) (68)

P ns of different degrees. The two simplest functions in fs5(0) = 10— CFF — ge () - 4e— T (69)
doass are a constant function and a straight line function. g (=017 ety _(rzudye

ily not list constant functions here because we can represent Jo(x) = bde A 45 [c T T T
Constant i i : . . o

) function with any kind of fuzzy system with only 4 P LS c_(;_;_[g)g] 0

e ry) Y . .
4 Fie. We did include a straight line function in our test case
g. 7). The test functions were as follows:

hz)=15z4+5 forze [-1,1) (65) 3) Polynomials Based on Trigono_merric Functions: lelis
class of functions includes many functions. A truncated Fourler

fZ(E') =3 —
z(x — 1)(x — 1.9)(x — 0.7)(x + 1.8) expansion of any function belongs to this class. We also include
forx € [—2,2] (66) the inverse of these trigonometric functions within this class
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#est cases. All of the functions have as their domain the set

{x =[-1,1]

fr(z) = 10[sin(4x + 0.1) + sin(14x)
+ sin(11z — 0.2) + sin(172 + 0.3))
fo(z) = 8sin(10z? + 5z + 1)
fo(z) = 0.01 tan®(1.52) + 10tan(2) — 20 tan(0.7:)

(7N
(72)

= a (73)
- fi(x) = arccos*(x) — arceos®(—x) — arccos(—ux) (74)
;,fn(a:) = 10tan™'[10(z + 0.9)(x + 0.5)
% (x +0.1)(x — 0.6)(z — 0.75)) (75
2000(x — .1)(x — .3)(x — .5)
x{x — .9) & — 1.1)(x + .2)
fiz(z) = 5tan—! X(x + 4)(x + 6)(« + 8)(x + 1)
£2 4150+ 1

(76)

4) Combination of Exponential, Rational and Trigono-
wetric Functions: We formed a mixed class of functions from
te sbove classes. A sinc function sin /= also belongs to this
dsss because it is a rational function of trigonometri¢c and
wlynomial functions

L sin( 123
hia(z) = 1 + 10¢~100=-0.7)? M forx € [0, 1]
r+0.1
(77

10— (z—2.3)? —3) (x~9)? 3
5 (S 1)

Jufz) = for2<z<6 7
—3(x—0G 0.005(x —2.5)*{x —5)% (£ —09)5c*
¢ ) ( iw;?ﬂt()(x—u.é;* + 12)
for6 <z <8
1 (78)
(o) = ggy — e (HE 4 7o (FR
+ 2(3‘_2(1_0'3) forx € [_1, 1]' (79)

K. 7 plots some of the 1-D approximands.

" 2-D Test Functions

,I:We created 2-D test functions f : X ¢ R? — R from the
"V test functions. A product of two 1-D functions created 2-D
W functions. We also defined new 2-D set functions that were
:?L‘torable. Below we list some samples of the approximands
‘k\ ‘_we tested. All test functions have as their domain the set
g‘ [~1,1]x = [-1, 1] x {—1, 1] except for the test function

Az, z;)
=3dx1(z1 — 1)(&y — 1.9)(x; + 0.7)

X {(z1 + 1.8)sin(xz) for—2 < 4,25 < 2 (80

H"
92001, 02) = Sy + 25} - 303 + 6sin(5r, £3) (81)
gs(ry..r2)
= 10 tw—l(lu(rl e 0-2)(-[1 - 0.7)r, + 0.8)
£+ 1.4
10(rz = 0.2)(r; + 0.8)ry - U.7)
x tan x(rz +0.2)r; - 1.5)
(2 + 1A)er2 — L1)rp(c; + 03) + 07

) (82}

ga(oy,02) = To /7 tr fale2) (83)
1

gs{x1.x2) = gfxs(‘—f-‘l)fu(.rz) (84)
1

ge(wr. x2) = gfﬁ(-fl)fb(J'Z) (85)

sin(10u] + 523 — 6ury)
Ty, o) = 10 - -

gr(e. r2) 1027 + 523 — 612 (86)
1

galer. £z) = 'I'Gf?(ﬁ)fs(-vz) (87

galay.ez)
= fs(r1) tan~1(10(x2 + 0.8)
%X (@2 +0.3) ez — 0.4) (22 — 0.7)). (B®)

Fig. 7 plots the surface of some of these samples of 2-D approx-
imands.

C. 3-D Test Functions

We created 3-D test functions f : X C H* — R as products
of 1-D test functions, We also define new 3-D set functions that
were unfactorable. All test functions have as their domain the set
X = [-1,1] x [-1,1] x [—1.1]. Below we list some samples
of the approximands that we tested

hiay, &z, x3)
= 60.‘1‘1(.‘-1‘1 - 0.5)(.[1 - 0.95)(1‘1 + 1.35)
x (& + 0.9) (3sin(6ryrs) + 6ran™! (dr3)

x tan”}(3iuz) tan ! (20203) - Srdrs) (89)
hoa(ey o, as)
I
= mfﬁ(ﬁ)‘fs(fz)fw(-fs) (90)
hy(xy, £2.23)
1
= mf:s(-fl)fs(fz)fn(-l'a) {91)
h.l(.l.‘l..tg..l:;g)
: 12,
sinf 22
— [ 1 4 10100032, F0.3)}* "(” Ayt
- ary + 06
x fs(r2) f3(r3) (92)
h:,(.fl..l'z..r;;) i
_ ,A(:.x,-u.r)(:.:,Hu.s;i‘iu(l%/(f: +1.5))
=¢ £y + 1.1
+ (51115 — Gr3) tan~ (10ry 1y + i) . (93
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Res ¢ _— )
onvergence plots of squared error versus iteration steps. We picked the best results from different leaming rates from each set function. The approximands

®1-D and 2-D approximands in Fig. 7.

D Resutys- Comparison of Squared Errors

We gave one point to the set function whose squared error
gﬁ) was the.lowest for each test approximand. In case of a
.'f(Wh_en their SEs are well within 20%) we gave a fraction

4 point fonf each tying competitors. We also count as winners

set functions wl_mse SEs lie within 20% of the lowest SE.

e__ teste_d8 the learning laws with various learning rates (from
i; 10 top = 10~*) and also with different initial widths

set functions of bell-curve shape.
| qu. 8 plots the SEs against the number of learning cycles.
¢ Simulation results show that the sinc set function often con-

*rged faster and more accurately than did the other set func-
Wns. The 2-D and 3_-D cases with factored set functions showed
cll:a:emhs‘ The pie charts in Fig. 9 show the frequency with
ety s;: s;tfﬁmctlon performed best in the test cases for the
i an actorab_le (prgduct) sets. Note that the sinc shape
a8 in one and two dimensions while it loses to Gaussian and

e 911(: tangent shapes in three dimensions.

“wi]:'n:t set function a; : R — [0, 1] measures the degree
1¢h mput € R" belong to the fuzzy or multivalued

set A; C R™ : a;(x) = Degree(r € A;). Most fuzzy sys-
tems factor the joint set function though some use distance to
maintain the joint structure and thus to maintain the correla-
tion among input components [5]. We further examine how fac-
torable and unfactorable joint set functions affect function ap-

proximation.

VIL. JOINT UNFACTORABLE FUZZY SETS: TRANSFORMED
METRICS

This section considers a class of joint set functions a; : K" —
[0, 1] that do not factor. We focus on a small class of metrical
joint set functions: a,[x] = g(d(x;m;, K,)) = g(d;(x)) fer
some metric d; and some scalar function g such as a Gaussian,
triangle, or sinc set function.

We first define the metric d;{x) = d;(a;m;, K;) as a
quadratic form with positive definite matrix K

di(x)? = (& — m;) K;(z — m). o4
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fig. 9. Proportions of test cases where each function performed best.
'H_llllldimcnsional sets are factorable (product) sets of the scalar ones. The
vitners in each case are from the best leaming rates from 4 = 107° to
$=10-% (a) 1-D, (b} 2-D. and (c) 3-D test cases.

Then we can create metrical joint set functions a, from this
mtric d; and the scalar set functions g: u,[x] = g{d,;(«)).
Bflow we show the cases when g takes the form of a piece-
wse linear function g(:r) = ax + b (this gives a metrical tni-
wgle), parabolic function g(x) = aa? + br + ¢, Cauchy func-
tn g(z) = 1/(1 + «2), Gaussian function g(«) = ¢™*,
laplace function g(x) = e~1¥, sinc function g(x) = sinx /.
Yeerbolic tangent g(r) = 1 + tanh(—ux?). logistic function
fz) = 25(—x?) where S(x) = 1/(1 + ¢~*), hyperbolic
kant g(z) = sech &, or the derivative of logistic function
fz) = 5'(x).
1) Symmetric metrical triangle set function. This set function
defines the degree to which an input vector & € R' belongs
ta set A; with linear function

lfdj(.!?) <1

else (95

8(z] = a;(d;(x)) = {(1] - d;(x),

%) Joint Gaussian set function. This set function derives from

the probability density function of a jointly normal random
vector [23]

a;fz] = e~h &) = rtemm) K lemm), (96)

So K; is analogous to the inverse covanmance matnx
(1/2)K =1 and m, is analogous to the mean vector in the
nomalized joint Gaussian probability density [23]. The
joint Gaussian set factors when the positive definite matmx
K, is diagonal.

The joint Gaussian set function has the Mahalanobis dis-
tance as its exponent if h':l 1S a covanance mamx. Wy
apply this method to scalar set functions to create metrical
joint set functions below.

3) Metrical parabolic set function. The set value hinearly falls
as the square of the distance d; grows

ajle] = {1 —d, ()% afd,(r) <1 (97)

0. else.

4) Joint Cauchy. The joint Cauchy set function denves from
the probability density function of joint Cauchy random
variables [25]). We discard the constant that normalizes
the density function to a unit integral and obtain the joint
Cauchy set function

1

0 _ | 98
@] (14 (r — )V R (e — n))nt/2 o8

5) Metrical Cauchy set function. This set function differs from
the actual joint Cauchy density in (98). Ithasa simpler form

1 1

] = _ L C99)
u"[J] l+d1(1')2 1+ (- 7”_:)‘}\1(-"— ’“J) (

6) Metrical Laplace set function. The scalar Laplace function
forms the metrical set function as

a;{r] = exp{—d,{(£)} = emVE—m TR =) o (100)

This metrical set function reduces to the factorable product
set if the positive definite matrix K, is diagonal.

7y Metrical sinc set function. The scalar sinc function forms
a joint metrical set from a metric d, as

sin(d, ()

(101
d,(r)

a;lr] =

8} Merrical logistic set function. The logistic funcuion defines
this metrical joint set as

2

N« R (102)
& [7] = T axpld, (21}

9) Metrical hyperbolic tangent set Sfunction. This metncal
joint set has the form

a, =1+ tanh(—d, (1)) (103}
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2
Fig. 10. Merrical joint set functions with 1 = Uand & = | -

-1
| and f¢ distance. (a) Symmetric metrical triangle set function. (b) Metrical parabola set

fmction. (c) Joint (metrical) Gaussian set function. (d) Metrical Cauchy set function. (e) Metrical Laplace set function, (f) Metrical sinc set function. (g) Metrical
kgistic set function. (h) Metrical hyperbolic tangent set function. (i) Metrical hyperbolic secant set function. (j) Metrical differential logistic set function.

10} Metrical hvperbolic secant set function. We form the met-
rical joint set from the hyperbolic secant function as

a;[z] = sech(d;(x)). (104)

) Metrical differential logistic set function. The derivative of
the ! function also defines a metrical joint set

a;lx] = 45(d;(£))(1 — S(d;(x)))- {105)

‘ Fig. 10 shows some of the above joint set functions with cen-

WEat m; = 0 and with K; = 21 -11
_The metric d; reduces to the weighted {2 metric for the
bagonal matrix K; = diag((x})?,... . (x])?) di(z) =

Eid : - . ) )
i=1 |&5(zi — m})|2. So we can generalize this metrical
Oicasure to the weighted [ metric

&) = [Z 8 (s = m3) | 106)

i=1

brp > 0 and use it to create joint metrical set functions. We

®placed the weights «% from the diagonal matrix # with scales

lfo%. So we replaced |&5(xi — mi)|P with |(z: — m)/o}|* to

wnform with the form of factorable sets in Section IV-B. The
metrical distance has the form

n o ," ¥ %
&) =S %’ﬁ , (107)

i=1 7
bhe 17 metrical set function af follows as
a2(x) = g (&) (108)

'h.so'.“e scalar function g : R — R and for d as in (107).
8ives a general form for I metrical sets. The real function

g : B — R can be any generalized scalar set function. Popular
examples of g are triangle and Gaussian functions.
We also tested the metrical sets with the {! or “city block”
metric
Tl

di@) =3

i=1

I; —im_,- (109)
9

where o > 0 in (107). The {* set function a} has the form

T _l'z _ Tn,'
1r,.] — 1e.3Y — i
ajle] =g (d;{)) = 9 (21 - ) : (110)
=
Fig. 11 shows some of the {! metrical sets with o = 0 and

o = [2 1] for the 2-D input case. The function g takes the form
of a symmetrical triangle, parabola, Gaussian, Cauchy, Laplace.
sinc, logistic, hyperbolic tangent, or differential fogistic func-
tion.

We now consider the extreme case of the [ metrical set func-
tions when p = 0. This gives the “max” metric. The I set
function has the form

a3l = g (d7°(<)) X (th
T i |\ ?
Fi — M
= ' = 2 (112)
i=1 2
£, — Tk
—y ( nax e (113)
1<i<n O'J-

/ot i if g(:x) is mono-
Note that |{ir; — m}) /0| is never negative. Sp if g(.r)G ne-
tone decreasing for x > 0 (such as for a triangle or Gaus
function or any unimodal function where &; peaks at i = 7r25)

then
5= (114)
oor, —_— . -
a; [“E] =y (llé];'d_g:n 0';‘ )
Xy — Tni-
= 1in g( 7 2 ) (115)
1<isn UJ-
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fg 11.  Metrical joint set functions with rir = .o = (2 1], and {* distance. {a) Symmetric metrical triangle set function. (b) Metrical parabola set function. (c)
Netrical Gaussian set function. {d) Metrical Cauchy set function. (¢} Metrical Laplace set function. (f) Metrical sinc set function. (g) Metrical logistic set function.
M) Metrical hyperbolic tangent set function. (i) Metrical hyperbolic secant set Runction. (j) Metrical differential logistic set function,

. €y — 'm;»
i = mmn @i _—
1<i<n O';

(116)

bolds for a scalar set function aj; ()} = ¢(|(z, — 5}/ o}]). So
e 1°° metrical joint sets a3 with g monotone decreasing are
tquivalent to the factorable sets with the min conjunctive oper-
uor. Fig. 12 shows the sets of points that give the same distance
fom the origin with #¥ metric forp = 1, 2, and . So factorable
xt functions with min bound the metrical set functions in (108)
trough the IZ metric in (107).

The shape and orientation of the “hills” of if-part fuzzy sets
nay help fuzzy systems better approximate certain functions in
#at region. So we transform the translated input vector (r —
rlj) € R" to Aj{x — ;) where A; : R* — R" is any
linear or nonlinear operator [16]. We transform the translated
Yector x — 2y instead of the input vector x because it is easier
Wkeep track of the “center” vector m; (if we use a unimodal
®t function such as the Gaussian and some mapping A; such
bat A;(x) = 0 if and only if £ = 0).

Here we show the simple case of a linear transformation. Say
A_j isan n x n matrix A; € R™*". Then define the norm (or
titance with the vector ™;) as

&i() = [l A4;(z = m;)llp (1)
brthe jth metrical set function a;[x] = g(d%(x)) as above. The
Hom ||z||,, of a vector 2 = [xy,...,x,]* € R has the form

1
F

lelly = | D Jas? (118)
i=1

© we can rewrite the quadratic distance d%(zx) =
e =m)T R {z = ;) in (94) in the form of (117). The
Watrix K; is symmetrical nonnegative definite: K; = K 5’ > 0.

IthfF VEiVK; and \/K; = (\/K;)T [29]. This implies

d?(“-') = \KB = m;)TK;(x — my) (119}

Fig. 12. Spheres in different metric spaces.

:\/{w—mJ-)T\IK}'\/Kj(:E—m_;) (120)
= || K (e — )l (121)

This has the form || A, (& — 12|, where 4; = \/I—Candp.: 2.

Users may encode more useful information in the nonlinear
operator A; to reduce the number of fuzzy ru.les and perhaps
lessen the rule explosion. Finding good combinations of non-
linear maps A; and metnics df and functional form g rematns
an open research problem.

VIIl. SUPERVISED LEARNING IN SAMS: METRICAL SETS

The learning laws for the then-part set centroids ¢; and vol-
umes V; remain the same for any if-part fuzzy sets. Only the
learning laws for if-part set parameters have new forms. The
joint metrical set functions depend on the metric d;. Sq we tune
the parameters that define the metric d;. For the quadratic mem:j:
d;j(x)? = (¢ — ;) K (& — m;) we tunc the vector w2, an
the matrix K;

(122)
(123)

ﬂ'i.j(t 4+ 1) = '"lj(t) - I‘lvru,E
Kj(t + 1) = K‘,‘(t) - I-"tvh',E-



The partial derivatives {or gradients in the vector-matrix cases)
pllow from (24) in like manner

OE OF du;
dF a; dd,
JE OF By

Vi, E= oo
%7 7 BF Ba; d;

Vo, B = {124)

ru_,dj

Vi, d;j. (125)

We have derived the first two partial derivatives in (26) and (27).
'The partial derivative (8a;)/(0d;) depends on which scalar set
fuinction we use to create the joint set function.

1) Symmetric metrical triangle set function

da; | -1, ifd;(x} < 1
BTJ_,- - {0, else, (126)
?) Metrical parabola set function
da; [ —2d;(x), ifd;(x)<1
BTJ,-' - {0, else. azn
) Jeint Gaussian set function
Buj
— T - 3 K . 28
4) Joint Cauchy set function
da; d; ()
— i — —_—r . 2
34, {(n+1) Tt dj(:::)zaJ [«] {129)
5} Metrical Cauchy set function
da; 2
= _0d. [.e]®. 130
a4, 2d;(x)a;[x) (130)
6) Metrical Laplace set function
6a,~
i R—— 131
3d, a;[x] (131)
T Metrical sinc set function
8u,- 1
— = — (¢ (L)) — a; ). 132
adj dj (.B) (COS(dJ ('ﬂ)) u‘} [‘B]) ( )
8) Metrical logistic set function
Oda;
3d, = ~d;{(z)(2 — a;[«c])a;[z]. (133)
9). Metrical hyperbolic tangent set function
Ja:
ot = ~2d;(£)(2 - a;[c])alr]. (134)

ad;
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10) Metrical hyperbolic secant set function

Oa;
Ed—i = — tanh(d;(x))a,[x|. (135)
11) Metrical differential logistic set function
du .
52, = ~S(d(=)ale]. (136)

These partial derivatives (du,)/(3d,) hold for any metnc d,
that users might choose. They are independent of the funcuon
d; that we use to transform the input vector r into the scalar
dj (J’.‘)

We now derive the gradients of the metric d, with respect to
the vector w:, and matrix K, for the quadratic case d,{r)? =
(x — m; )T K,;(« — m,). The gradients have the form

1 .
V,,,de.—-—m-hj(.r—mj} (137N
1 "
v’\-de: m(;’:—ﬂ'l}')(f—ﬂl_’)l (138"

since K; = Kf

We might use diagonal matrices K, to reduce the compu-
tation. This reduces the quadratic form of d; to a weighted I
norm. We can also use any {* norm to compute d’'(r) as men-
tioned earlier. We also examine set functions from the ! nom
as in (109). The partial derivatives have the form

ad! 1

I — _gen{ap — m) —— (139)
f)mf :;gu(.rg mJ) |af|
2y 21 . _ k
o - o 7:" (140)
9o (@3)

for o¥ > 0. The learning laws for the set functions lhat use
the lPJ metric in (106) follow in like manner. We now denv_e the
learning laws for the metrical set function «; (] = g(d"(r))
where d” takes the form in (117)and 4, is amatrix 4, € H**".
Let [AJ-]’, denote the ith row of an » x n matnx A, and put
ey = [ m!|*'. We can rewrite the norm d'(r) as

d () = (|A;{x = m,)llp (141)

= (i I[-’ij]l('f — IHJ)IP)

So the gradient {in row vector notation) for the kth row o

L

(142}
fA4,1s

i1
’

1 I
Cpand =3 (Z ) (e - m,w’)

x Vi, 3 104 L (e = m )

i=1

(t43)
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= 2 (@) ™ Vi A e —

P (144)

1
= —d;’(.z) l[-4j]k(1? —m;)|r-t sgn(Ad;]a (e - m,))

X Va4 = me;)) (145)
1 -
= m”*‘iﬂk(-‘l‘ —m, )Pt
 sgu([A; ) (z — m;))(x — ;)T (146)

ll'he gradient of the metric d‘_’: with respect to i, (in column
Fector notation) follows in like manner

n -1

1 P

Vo, df = » (Z [[As]i(x — T"J)l")
=1

X Vo, 3 1AL (e — 7, ) (147)

=]

R

(@)™ 3%, 14,0 - )P (148)
=1

P ‘ .
= F) 2 P e =y

x V!ﬂ, '[.‘13'].‘(.‘5 - rnj)l (149)
1 n o
= p e ; I[A;]i (o — n, )1
x sgu([A;]i(x — my)) (~[4;)7) (150)
1 & -1
= __—-d;.’(:r) ; I[AJ],(J." - Tuj)lP
x Sgﬂ([Aj]i(I _ T.’L_"))[Aj];r. (lSl)

We can further tune the parameter p in the ¥ metric in (106)
o
-2 . _2

B = pd’f(z)lndf(z')

n L1

1 . _ ;

+o (Z | (i - m;-)l")
i=1

(St o= Pt - 1)

=1l
(152)
11

P(&@)"
x (Z I“‘; (= — m;) IPlnlnj (i — m_';-)') .
i=1

(153)

1
= ~>di() lndf(z) +

t‘?al‘-tial derivative when the metric d% has the form (117) has
* similar form 4
o8 1 1

i< 1
dp = =34 () lnd;f;x) + P @

-

x (_Z Al (2 — ;)1 I |4, ) (o — mj)l) :

=1

(154)
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Fig. 13. ¥ metwrical sets. Proportions of test cases where each metrical set
function performed best, (a) 2-D test cases. (b} 3-D test cases, Note that the
metrical triangle and the metrical quadratic switch from first and second place
for the 2-D test cases to second and first place for the 3-D test cases.
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Fig. 14. ' metrical sets. Proportions of test cases where each mlemcal_sel
function performed best. {a) 2-D test cases. (b) 3-D test cases. The I -metrical
sinc goes from winner for the 2-D test cases to loser for th_e 3~p test cases, The
I'-metrical Laplacian emerges as the winner for the first time in the 3-D case.

IX. SIMULATION RESULTS II: JOINT METRICAL SETS

Figs. 13 and 14 show the second results of quadratic {? and {!
metrical sets in 2-D and 3-D test cases. Fig. 13 shows that the
metrical triangle performs best in the 2-D experirr!ents while
the /?-metrical quadratic performs second best. Thls outcome
reverses in the 3-D experiments. There the lz-mf:tncal quadratic
if-part set performs best while the metrical _mangle pe_rforms
second best. Fig. 14 shows that the [*-metrical sinc wins for
the 2-D test cases but loses for the 3-D test cases (when the

{!-metrical Laplace wins).
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4. The Second Curse of Dimensionality and Unfactorable
Metrical Sets

Our final result is negative: even unfactorable joint set func-
fions can suffer the second curse of dimensiconality of spikiness
inhigh dimensions. The following theorem illustrates this claim
for metrical set functions that depend on diagonal matrices. The
result may also hold for many nondiagonal matrices.

Theorem: Suppose that a metrical set function rzf has the
form

() = g (df(«))

for the /# metric & (x) = [j4;{x — m;)||,. Here A; is an n x
n positive-definite diagonal matrix and ¢ : Ry — [0.1] isa
monotone decreasing function such that g(r) — Oasr — .
Then af suffers the second curse of dimensionality: it collapses
pa spike in high dimension as . grows to .

Proof: Recall that factorable set functions with min con-
junction @ () = min; g(|(e; — k) /di]) collapse to spikes in
high dimensions for monotone decreasing g such that g(.) — 0
BZ — oo (see Section 1I). So we need show only that for a
given metrical set function uf in (155) there exists a fuctorable
wifunction @; (generated from the same function g) that bounds
gi:a;(x} < a,(«). Then the metrical set uf collapses to a spiky
surface in high dimensions.

For a matrix A; it follows that

(155)

%(@) = g(ll4; (e — 7)) (156)

=gl Az — Aymy|l,) (157)
= gll|x — ey(lp) (158)
< 912 — 7y lo0) = a7 ()

since [|x||, = |[z]low (see Lemma below)

and g : K4 — [0, 1] is monotone decreasing  {159)
=g (111513( (2 — ﬁa}!) = 111iing (& — Th;-')

since g is monotone decreasing (160)
=111iiilr1j;(:i;) = a;{x) (tel)

! o
Mere % () = g(|[A,]iw — [A,]im,]) and [4,]; is the ith row

:“ffej. So min; a5(x) bounds o (). Q.E.D.
mma: all, > falloo if &= (o1, ., 0] € RO,
i Proof: Consider + € R". Then
Z|wi|"’_>_|;vj|” forallj=1,...,n (162)
i=1
n i/p
Ikl ] 2le) foralj=1,....n  (163)
i=]
'Zl e " 1/
® |:{¥ 2 max x| = U )"
i > max ;| = lin £y

L (164)

Izl > ). Q.E.D.
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Note that the set function ¢; may not count as a factorable
set function since each component a’; takes as input the whole
vector « € H™. Then the ith row of .4; transforms the input
vector & into a scalar ., Therefore {F;}_, may not be inde-
pendent and so the theorem (Borel-Cantelli lemma) [9] need
not apply. The thearem does apply if -, is diagonal.

X. CONCLUSION: THE SEARCH GOES OX

At least three main conclusions follow from the above if-pant
fuzzy-set definitions, learning laws, and simulations of how
these if-part sets affect adaptive fuzzy function approximation.
The first conclusion is that curses of dimensionality alone will
impose tight limits on empirical searches for the best shape of
parametrized 1f-part fuzzy sets. The complexity of the learning
laws further compounds this computational burden. It limuted
our simulation experiments t0 no more than three dimensions.
The sets that performed well 1n these smaller dimensions may
not do so in higher dimensions. Thé winner histograms even
changed dramatically when going from one to two to three
dimensions. The second dimensionality curse of set spikiness
will also have greater force for searches through the spaces of
four- and higher dimensional set functions.

The second conclusion is that common sense Or even expert
intuition may offer little guidance for picking good if-part sets in
higher dimensions. Indeed, they may mislead even in the scalar
case. The frequent winning status of the sinc set in the simula-
tions shows that. This seems to be the first time anyone has used
the sinc function as a fuzzy set and yet such sets may well have
improved the performance of many real fuzzy systems. Surely
there are many more scalar if-part sets that would perform even
better for these and other test functions and that would appear
even less intuitive or have less linguistic meaning than does the
sinc function. Again. the engineering goal of accurate function
approximation will tend to lead the search for the best if-part
set far beyond where the earlier goal of accurate linguistic mod-
eling would take it. And the success of the sinc set a‘nd‘t_he
hyperbolic-tangent bell curve further suggest that the familiar
Gaussian or Cauchy or other familiar wnimodal curves will not
emerge as optimal set functions in other searches.

The third conclusion follows from the other two: The search
for the best shape of if-part (and then-part) sets will continue.
There are as many continuous if-part fuzzy subsets of the
real line as there are real numbers. The set of all if-part fuzzy
subsets of the real line has the higher cardinality of the set of alll
subsets of the real line. Fuzzy theorists will never exhaust this
search space. Each theorist can draw different lines through the
space to form set taxonomies or to focus the search or to pose
narrow or broad optimality problems. We suspect that many
such searches will take care to distinguish faclorabk frqm
unfactorable sets though they may well ignore our disunction
of parametnized versus nonparametrized sets. Thc unfaqturable
sets hold the promise that they may ]ESSEHIIf not defeat cx
ponential rule explosion even if they may 'snll §uffcr from ;.'el
spikiness. These searches may be endless in prmmple but that
itself does not mean that they are not worthwhile. They can on

occasion produce new tools.
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APPENDIX
(HE STANDARD ADDITIVE MODEL (SAM) THEOREM

This Appendix derives the basic ratio structure (6) of a stan-
fard additive model fuzzy system and review the local structure
of optimal fuzzy rules.

SAM Theorem: Suppose the fuzzy system £’ : R* — RFP
is a standard additive model: F(x) = Centroid{B{x)) =
Centroid(3_"—, wja;(«)B;) for if-part joint set function
5 R* — [b, 1], rule weights w; > 0, and then-part fuzzy set
B; C RP. Then F(x) is a convex sum of the v then-part set
tentroids

Yy wiai(@)Vie; &

it = ]J(-L')C
z;=1wj“j(w)vj ; ! !

The convex coefficients or discrete probability weights
plx), ..., p(xr) depend on the input x through

F(x) =

(165)

wya;(£)V;

pi(x) = m (166)

V; is the finite positive volume (or area if p = 1) and ¢; is the
centroid of then-part set &;

V,-=j; bij(yr, - ypldyr .. dy, >0 (167)
¢ = Jae 90; @1, yp) dys - dy, (168)
fRP bi{y1s - ypddyr - dyp

Proaf: There is no loss of generality to prove the theocrem
for the scalar-output case p = 1 when I : K" — RP. This
smplifics the notation. We need but replace the scalar integrals
tver £ with the p-multiple or volume integrals over K” in the
moof to prove the general case. The scalar case p = 1 gives
(167) and (168) as

Vi= [ by (169)
o = o ¥bily) dy (170)
TS by dy

Edeﬂ the theorem follows if we expand the centroid of B
invoke t,lle SAM assumption F(x)} = Centroid{B(z)) =
woid(3 7L, wja;(x)B;) to rearrange terms

) = ub(v) dy
F(z} = Centroid(B(z)) = j—;’y—— 171
= wway Y
_ S v i wibi(y) dy (172)
JZon 25 wib(y) dy
_ Iy 5 wias(0)b;(y) dy am)
S Ty wia; ()b (y) dy
_ iy wias(x) [T ubi(v) dy
- e =0 (174)
Zj=1 wj“j(l') f_wbj(y) dy
= 2 (175)

e wini(w)V;
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_' >y wiai(x)Vie;
- 7]
250 wya;(6)V;

Now we give a simple local description of optimal lone fuzzy
rules [13], [14]. We move a fuzzy rule patch so that it most
reduces an error. We look (locally) at a minimal fuzzy system
£ R — R of just one rule. So the fuzzy system is constant in
that region: ¥ = ¢. Suppose that f{x) # ¢ for x € [u.b] and
define the error

o) = () = F()? = (f() = 0",

We want to find the best place .&. So the first-order condition
gives Ve = 0 or

(176)

(77

el aFf
0= _;(j_) =2(f(2) — ) i)ﬂj) (178)
Then f(x) # ¢ implies that
defx) _ af(e)
S =0e 5 =0 (179)

at. = I.So the extrema of ¢ and f coincide in this case. Fig. 4
shows how fuzzy rule patches can “patch the bumps”™ and so
help minimize the error of approximation. |
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