PDF/31/2543 @5. \@nae) Wunansimn

i
‘.“-N
»

o
P
mﬂ“““"
o
=i R
TRF

enddeauanysal

o v es @
Iﬂ‘Nﬂ'lﬁ fnﬁﬂ'lﬁHﬂﬂ'Zl'l'JJLTNW‘Hﬁ‘IIEJ\i“lﬂﬂE!uﬂﬁ U1 UML

TaglEnguijlsunsudalszmadmsy XMUXML duiugm

(On the Relationships between UML. Diagrams
Based-on XMI/XML Declarative Program Theory)

& By ¢ W) au < o y
Tms @A HHNRTIONT HBTALE

j: WL 2545

¢

Yy uavh PDF/31/2543

eadduniivauysal

Insams msﬁmuﬂmmﬁ’uﬁuﬁmaﬂﬂaznmmmm UML

TaaldnquilisunsuBadszmadimiy XMUXML duiiugm

(On the Relationships between UML Diagrams
Based-on XMI/XML Declarative Program Theory)

= o Qs L4 a o o
HeL A7, londan) Ui anniuma Tulagu i ads uss

YHIINNGU I TURERS

#. a5, Jae 309 aafumalulaguivedy

PRV 3 PR samarevaTs searsraninre

. WEro0041
AUTEITOU e cererrersggensrarareses
IAuNTH mr
RSO IR0 e FA—
¥ . wa
(arwiulunssmiiduvosdise . liduiludeaiudmauslil) ‘

" s v
Arinnunembmfsmms e (@na.) Y NN
L ATNERTIN T RUT FRTTRIRE TR M o
s 0791721 penma TeT s unauly

o R TR 10300 \d

Faawrndsd Insans 208-0476 ! 4 o

Homwe pase s atipyiwww icfor.th

E-mand D i mlodedefonth oD
TS

Aadanssvdsene

wanudananfiriueuelulasinisit Aedunanduustiatradediasfiramin nssms
1@5uan enaamanTd Jane eelL] FavenvrimzinmbhiliiuenssAlinuneamivinoinus
Wiygninuazienvasimirlasmsluszning we. 2533-2540 udh aldnnansonrimi i
iniTefdanedlasamadag v'hﬁﬁ'ﬂmam‘s“le'f"s'un’rsﬁﬁumg.u'lm‘%aaﬂuazlféumaona"lnms
UszananakuuaNya gauflunalnmstszansnsvaniltlulasonsil sinmaamess alod szaas
wazldfllomaiouimiuludmmngunmgujémivnalonmlsznasauusuys ladaoa
RN g ‘uawv‘ﬂ.n%'ﬁmmwaa‘::uug'mm*mjl’lu'[ﬂnmn‘fgnﬁ'@umﬁfu lavldiuanutunia
10 PAwT oyl gIm AsNSE ez wiTUN duna ‘[mamrd"lé’%‘un’rmﬂ'umumnéwﬁ.mm
nasnusiLERUNIITE (MUATBwRaRyguen an.)

Abstract

Project Code : PDF/31/2543

Project Title : On the Relationships between UML Diagrams
Based-on XMI/XML Declarative Program Theory

Investigator : Ekawit Nantajeewarat
Sirindhorn International Institute of Technology
Thammasat University

E-mail Address : ekawit@siit.tu.ac.th

Project Period : 1 July 2000 — 30 June 2002

Objective: To establish a foundation for representing knowledge and reasoning
in the domain of UML based on XML declarative descriptions.

Methods: Graphical diagrams in a UML model are encoded as XML elements, which
are regarded as facts about a specific problem instance in a knowledge base, and the
general knowledge in the UML domain, such as inherent interrelationships among
diagram components and implicit properties of diagrams, is represented as a set of
XML definite clauses. Equivalent transformation is employed as the underlying com-

putation mechanism for reasoning with the represented diagrams.

Results: A framework for knowledge representation and reasoning in the domain of
UML, based on XML Declarative Description Theory, is proposed. To represent
UML diagrams in a standard way, the XML Document Type Definition (DTD)
specified by XML Metadata Interchange Format (XMI), a technology recommended
lately by the Object Management Group (OMG), is employed. Representation of
general rules in the UML domain using XML definite clauses is demonstrated. The
framework has been applied to the representation of transformation rules for
generating relational database schemas from the static parts of UML models. A
prototype UML knowledge-based system under the proposed framework has been

developed and tested, and satisfactory results have been obtained.

Conclusion: Since XMI/XML is becoming a standard textual representation of UML
diagrams, it is expected that the presented framework has several promising ap-
plications, such as forward and reverse engineering, consistency verification of
models, and automatic generation of database schemas. Integration of the proposed
framework into other UML-based software modeling tools and techniques is also
possible inasmuch as virtually every tool supporting UML is capable of reading and
writing models in XMI format.

Keywords : UML, XML, Knowledge Representation, Knowledge-Base Systems,
Declarative Descriptions, Deduction, Software Engineering

sWalas9IN17: PDF/31/2543

falasonis: nmamwnaaaduiy aa“lﬂa.,unsumm UML Ta u’lﬁnqvg
Tisunandatsen@diniy XMIXML sﬂuwumu

Howndu wazaniin: wndrg WunIaviant
goumna Tu Tad AT UST YMINSEsIIuMaR

E-mail Address : ekawit@siit.tu.ac.th
szpzaIlAzInTg 1 nINgIAY 2543 - 30 Anupu 2545

Tagusy 2796 Lwaamaaaﬂmmﬂwmmumiaﬂmumms WAZM IR Ay
LUUE889LBITT UL E T IWMANIN Unified Modeling Language (UML) 1o plingu])
Tusunsuidadsemadmu Extensible Markup Language (XML) dudugin

35m17: leezunsy UML Useinnenss ’lmmumaawanuumm % mnm”l.ﬂammulu
gwanuiluanenevasdayalugluny XML FuenuiAgIRUA NN ENRETNg e
mmmﬂsvmﬂmqq m*nnﬁmlﬁuluanum"mamgmmm’TunJLmu"uaa Definite Clause
dAMIL XML Iﬂw"l'ﬁm'sﬂsvmaNaLLuuawaLﬂunavl,nﬂg'n‘lun'\‘m‘muLLa"m‘saumu
mmﬂmﬁammaﬁmmwm

unrselasIns E FEnsdmivmadafivenad wasmsiinit Auanunuuitessmes
supruidondulumen uML ‘lmnnLfma%u:um’mmuwamqwgmsunm:.-mﬂizmﬂ
30 XML lasfin1si1 XML Document Type Definition (DTD) wnnmuumfuhu XML
Metadata Interchange Format (XMI) anldifluanaspmlumssaiivlaazunsusog uale
finsuaaIasnITalaniiansle Definite Clause dM3U XML 'Lumsammumwauwuﬁ
?wma’mﬂ‘;‘-ﬂa:u"uaﬂ.ﬂa.ummmungmmfnm"lﬂ'luIﬂmwaa UML vuilsfimsugas
m’sm’:ﬁmmLaua'uu‘lﬂﬁ1~unm"l.'ﬁ'lumnmnnngmmfnmmﬁﬂmaa‘mmwuaummu
RUNWUT (Relational Database Schema) mmmumaaai"um’mwau’lwsﬂ'uad UML @uLuy
'uaai..uumum'mﬂﬂnnwmmmmwam‘mmaauwwmm

a3y - Wuiimanivivitnsfuieduiesiluysgndlld Anumedunidaifiung
inagimsasldaunsuyssgndnnuuiassssuuam HAZUMIUNITATITRDY
ANgNdaImanndeITauLYaasTuLY wananiiadanaii léieniitng
ﬁ"lﬂﬂi.,unm"l-ﬁnunmﬁmsauqn'lmau'lwnaﬂmmmmumumswwmu.uumamswuu
e dlasrnaariininsitdulngmunsnem wnsiuinuuimessuuauly
JUuuy XMUXML

ANAN : UML, XML, m‘samn‘um'mi Tu‘lJ‘]Jﬁ'W%ﬂTWT Tdsunsuididsznne,
AIHINDY, ammm'nawmni

A =y a4
1HEHI I
VNN

M5a3LLU§1003 (Model) vosszuunududiiuiuetndalumsianaewinns Tnemme
VA o s 4 1 9] a 3 giey ¢ P T =
st Tumaiannseriinivng uy wwumesveaszuusssoiliinneseuuiacd 400
o Y o~ o o W = # o) . . A Y
ardilasaiuluszumniidesms wazssimibhiifudedmuaswasiden (Specifications) iive It
WeuTsunsuafaTdsunsu Idetngadosmuniudesmsvosldszuy anudWyvsawuiians
@ ¢ & ™ o w a o . oy &
szuya lumaiansewinsitSon It unwdiyuosiuWiliey (Blueprint) Tumsfasiweims &
urta1ed] 1997 Huduur 7117 Unified Modeling Language (UML) [1, 2, 3] 185Um30504910 Object
4 4. .
Management Group (OMG) " Fuffusanmsivimdhfidfmumnasguilugasvas suzeriinns Wil
aynnasgudmIuAsunuuiaouTiInguos T U (Object-Oriented Model) MB1UML 15200y
- r & Q z
dnlmaznnrudanmlszinnare Feemnsmi lU M lumsussowTnseas1avea5 0y (Static Model)

HAZ NS AIMUANTT RIS MU BI83A152NDULBIA Y YBITZUY (Behavioral Model) THudigi 19

& Yo o E 1 < =L 8 o 4 «
({i9391nMY1 UML 185unsWauniueinsiaG 1 laviiusswdndusinmagaamnssusoviung
LY g, o ' & w o 3 o
Fuwdn fomdrgedravitaveaniyt UML Tuilegiunfe msvasingrumangefiferdunnunmn
A (Precise Formal Semantics) ttaxanuduiufszninaiuves lassunsinlszinndaq FIAFIUNN
¥ .
nqufdananifianudiAgedetluntiinnziuasesnasuanugndsanseiuuss laezunsu eq Tu
o o q.9¥e Y e ‘¢ W ot a 2 . SR |
nuvdimes uazeei A4 1gss 00 ez vasfieu Tusunsy Sanud s huuuiassiidouiu
L) ¥
assfu aadofiawmalunsdemsfiofatulunssuumsiannsediuad mastmusenumnoiaz
aruduiuiidasussai ligmsimuusseadanisverliuag (Software Tools) Al misalunis
ATIMADUANUYNABITBARABITTHIIT M TENOUATIY veTEUY fouRssiTuasiiodeuTUsunTuaag
4 L. o r y 4 A ¢ Ffo w
Y9I3L VLU TEYNA (Application Programs) uazwm“lﬂqmmmm‘samamwaﬂmmmmums
] o Ll [4 1 1 1 a
adnTsunsudng lussuunulaeda Tul@nnuuudiass fezteaanauaza g lumsiamn

senua laniuedgaun

¥

anitedsadtullfimsaduosdarnd Ini lums 19T sunsuFalsemea (Declarative Program) [4]

; 2 § .
fil#oyalugiiuuves XML Metadata Interchange Format (XMID)” i8udeyafiugnitumsimuan iy
- : 4 o -
Fustutnuanuvieveslaszunsudieg Tu UML ideasin xMIdugliuuinasgmdmiuienn/aod
1

Jaynifigrnudindsznouen vaauuiiaesvesszuy uazdulsenoua e vealidsunsuuu Intemet

al
LAY World Wide Web aadnanidiivzasandoafunnnnuialumsWennTisunsuuuudla yaainslu

1 -
swazfsAuBIeafinT OMG anTag den hitp:/www.omg.org/

2
TwazBoaves XMl annsog 1hen hitprwww.omg.orgitechnology/documents

Output 91nlATaM 596N ld5uuen an

= = a a = .
NﬁQ'I‘H‘I"Ilﬁuﬂ'luﬂ1]‘53‘]131711&'31!““1111“11“‘5] (TreazioEn ag“lumﬂmu'm)

E. Nantajeewarawat, V. Wuwongse, C. Anutariya, K. Akama, and S. Thiemjarus.
“Towards Reasoning with UML Diagrams Based-on XML Declarative Description
Theory”, in V. Kreinovich and J. Daengdej, editors, Proceedings of the First
International Conference on Intelligent Technologies (InTech’ 2000}, Bangkok,
Thailand, pages 341-350, December 2000. ISBN 974-615-055-3.

E. Nantajeewarawat and R. Sombatsrisomboon. “On the Semantics of UML
Diagrams Using Z Notation”, in V. Kreinovich and J. Daengdej, editors, Proceedings
of the First International Conference on Intelligent Technologies (InTech’2000),
Bangkok, Thailand, pages 325-334, December 2000. ISBN 974-615-055-3.

E. Nantajeewarawat, V. Wuwongse, S. Thiemjarus, K. Akama, and C. Anutariya.
“Generating Relational Database Schemas from UML Diagrams Through XML
Declarative Descriptions”, in T. Tanprasert, editor, Proceedings of the Second
International Conference on Intelligent Technologies (InTech'2001), Bangkok,
Thailand, pages 240-249, November 2001. ISBN 974-615-068-5.

E. Nantajeewarawat, K. Akama, and H. Koike. “Expanding Transformation: A Basis
for Verifying the Correctness of Rewriting Rules”, in T. Tanprasert, editor,
Proceedings of the Second International Conference on Intelligent Technologies
(InTech’2001), Bangkok, Thailand, pages 392-401, November 2001. ISBN 974-615-
068-5.

K. Akama, E. Nantajeewarawat, and H. Koike. “A Class of Rewriting Rules and
Reverse Transformation for Rule-Based Equivalent Transformation”, in M. van den
Brand and R. Verma, editors, Proceedings of the Second International Workshop on
Rule-Based Programming (RULE-2001}, Firenze, Italy, pages 4-18, September 2001.
[Also published in Electronic Notes in Theoretical Computer Science, Yol. 59, No. 4,
16 pages, 2001. Elsevier Science Publishers. ISBN 0444510761.]

H. Unphon and E. Nantajeewarawat. “The Roles of Ontologies in Manipulation of
XML Data”, in Proceedings of the Joint International Conference of SNLP-Oriental
COCOSDA 2002 (the Fifth Symposium on Natural Language Processing & Oriental
COCOSDA Workshop 2002), Hua Hin, Prachuapkirikhan, Thailand, Pages 89-96,
May 2002. ISBN 974-572-947-7.

vnansdgs e Sunsiosande il Idlumsdindlunsmsinmsunnna

E. Nantajeewarawat, V. Wuwongse, C. Anutariya, K. Akama, and S. Thiemjarus.
“Towards Reasoning with UML Diagrams Based-on XML Declarative Description
Theory”. Submitted to International Journal of Intelligent Systems.

E. Nantajeewarawat and R. Sombatsrisomboon. “On the Semantics of UML
Diagrams Using Z Notation”. Submitted to International Journal of Intelligent
Systems.

o ¢ o / 3 i w 4 1 w
Auwange bl aunsonzd v luanfine M sesldaioslonvsowinnifawesntialuns
& 1 1 W -, { d 1 1 B
ouludufiauesfuiinyey unzuanasudor Tvsdmd e veaszyuddoiu Tasldyduimes

XMIiuAonate @iussuLInS e Internet
»
TagyUszavdvelnsanisiidade il

A 1 o v s a o '
1. weadneranuilmilumsdmussnummnesasnuduiuives lnozunsuane lunimn

UML TaeldmquiTsunsnFalszmadiniy XML (s, 6] Lfluﬁ’ugm

=y LY J <y el i
2. AnpAuaNaEnsisily eduction) Muienwes Idsunsudalsena Taold3in1sUgou

wilaaTaganuya (Equivalent Transformation) [7, 8, 9] Wunalniug i lunisyssuiana

a - ar é 1
3. Annfanmibesdaned Wlslumsinivfeadhadlsznauvesrsuuaulszgnd Tiaen

adeefussaziBeanfivua 3 luunudaeseeszuuau

4. AnpudToudvunywvmanssimuanudiusuaza ey e sunsylunier UML Tey

1F TsunsmFadizma AuuuImiaoug wu masmuaanuduius laaldmun 2 (0]

ey
EMs
A4 9oy - a - o w W 4
TasameHizududemataumgu] Tsunsudalssmad miudayateglugluuuves XML Meta-
A J o’ o a 1 L]

data Interchange Format (XMI) iveiflufiugrulumsuansnnudinius lanivsz i lnozunsudieg vea
a a w] o [

BUUSImeTEULIM aazmisuasnwduiussenin laesunsudvasznouvesssuuaulszgng
¥

< 1 o o & R]

TneldTdsunsusedsena - dedaomsfamnduahfansinieanuitenivesgiunind Manmuautd

w A o o ¥ a1 ' 3)
Tﬂuuwm“lﬂaxunsu Hﬁxlﬂﬂﬂ\uﬂi"ISHﬁ']U‘iJT%ﬂBU'UE)\!\TIU‘lJiZE‘Iﬂﬂ (AIDYN WU Tﬂ‘i\lﬁ‘i'l\iﬂ']‘u‘llﬂlla

o o s . i < w o v &
nuudndug) srnuuines Taoldmsdssussnanvumsdouudaslasauyaidunalandn drduiu
»

aanA1q lumsiivilfne 1l

4 4 a Yo

| DORULY Specialization System AMMzaueiiulnTsadonendiamansdmiunsuaannm
v oW Lo a = ¥ = ¥
duviussznindeyanoglugluuuves xvr Tnevziinsveegduovues xa IWeusaiins 1y

L A] ' u & ! a o 1
As (variables) 1NBITEN Toadaud1en veadieya uazieuaaadiuvasvayai limwizinzae
v o JoF . apg X . .
18 Spesialization System BOAULVIUMT vz g THTRug I lunsAmuaTdsunsuds

15219 TU XMIXML

2. Enwitennuduiut lamienannuveved laezunsudeg lumyt ume swazusseany

¥ ¥y 1 Hd
Fuiutinarit lneld T sunsuddsemATuRUFIUYD I Specialization System IR HUATLTUAD |

& ad a oW -4 H ¥ P
3. Anwidaasmsisneaiten lu Tl sunsuniadniulude 2 Taeldnmisdszuamanuumsidou

wladTnsauyaiflunalandn

o 1

- A o o L |1
4. anwmsivouTlsunsudalsene enaannuduiuiseninlaozunsuluniyr ume fuaou

Usznevvesszuunulszynd Neoandniduswazdaiifiniua B lunuuianavesszuyau

= o oA « 2 - a ! (s [sy
s, Aowimsisduiedunsisddnssnouiidiigunauvessyuuanulssged lasda wl@ 110
o T wd o ¥ Y o
wuudwesfidaiivegugduuuves xvr TaoldRugiuende 1 4o 3 unzde 4 uazfauigiu

armiauuuy Tasldmsdsfuuumsn@euwnalagauya

=t =1 a & J [aw 4 A4 5 o) ' LYY =
6. ll]iﬂl]l'ﬂUlJllu’.lﬂ'TIllﬂﬂTllﬂuﬂ‘lluﬂﬂi"lu']ﬂﬂﬂuﬂ MNYIVDI ATOUNITU ITUVDIURNIIYHIUIT IR

' 3
TuNQu Precise UML
[l < = s [3 Iy o 3
feulsannsofn it asBeavesiimsdanan ldrnunanmiiswsaw i lunnsuan

WavaalAIanIs

{ o a @ w o] i
1. TIATDBALIL Specialization System FrINzandmFumsuaasnuduRutsenadoyahieglugd

HULUBY XMI

2. FEnsdmiumsdafuniud uasnsise Merdusudmewesszuuauideudulumnu
uML TaoldmguiTusupsmdalssmedmiy XML dhuiug idgaauein Taslinmi xmL
. o o 4 ¥ d o & W
Document Type Definition (DTD) fignimuaiulag XM ulhithianasgiulumssanudaya

ey lanzunsneag

3. imsaeppuahtimainienuiomuTsursu@alszmedmiy xvr Taoldmlse-

wananuumsiiouuasTasauyaidiunalondn

a [w o as v o W ow
4. Tinsuaaetladanuiedins1d Definite Clause 13y XML TumsSafuanuduiufuazng

e T Tu Tamsues UML

<4 o e H : @ o 1 Qs
5. fnmsuamansiimsieustulWhlszgedldlumssanuagnasimsadradnszneundn

1 & @ LT .

muwuwaﬂﬂmnsuﬂs:qnﬁ vufe Tnseerdugudoyauuuduius (Relational Database

Schema) 1MIULSBBITEULINMABY Tugve UML

3
swazBorunangn PUML muiseq [un hitp://www.cs.york.ac.uk/puml/

Y a & A
6. dunvvveiguaNud ldgniaiuiensmaaey

TwaziBvavsanavealnsamannsog laninumanuiisasw Blumamuin
=y &
nivisel

o 1 w1 . { ;& ° o [
HluimaniaidtnsiausiuiszannsnilUuszged AR uaumadumsiad unginus
ar & o o ey o
msdansHamsznetueassuLa Yl sEgna lausa TulaaInuuus 10932 UV LAz UM ELAS
¥ '

ATApLANNgNdBIRBARdBIouLLS AR TEuLIN wennnildainnudiul 1dResi hdseynd 14
I oaa < oy ¢ Wb o . . & v
FauMrAimaguq Aldegluserbiidmivrensiauiuuuiiee1ss a1 ewinsewiing

b d
miarldmlrgauisos weziuinuuus ez ugliuy XMUXML

o :; a 1 A =sy4 = ooy 3 o
nuateintsezilunnasdeesinlnsamsil Asmrlivdgalsz@nEmuwnidwanugs
A w 2 ' 4y 3 ¥y -
voanssyumsisy Taslddeyaviialvy msnaasudesdulagldgmanuidunuunadstuients
oo { ' . R
waaey uaasliiundoya XMEXML i laezunsusreg lunw umL dludeyeffivinadoud
T 3 v a0 ad P -g 3/ Ly Ay o o
Tna fadhimisisdeanuitmsfiaueiu sz uagndatedieidens anudr lunisdsyuianad
3 as & = aw a = A o e 1 o o
aseg ldfumslsulss asiinsAuadiiomuAunenunatiafissslumsdivanuialung
v . ¥ & o Yam o 4
drzuranatoyavuialvg Taoldna lnlumsszusasanuumya Fauennazd iiEns eyl
a) a - J s 1)
aunsagmirlidszgndldeduiiss@ninminiuudy fnzdunsadnedanudlniiunsisde
' A
Tnal#¥oyavmialrgTugtuuuyes XML Tassdndg iilesninnalnlumsdssinaranuuanya iy
A o o - yé’ ¥ ‘i‘_‘ a g 9
na Infignesnuuuinlfansasessunsmugumsinielagfiftemveadoyadundn Taelildns
o @ o A4 - a ' 4 {
ALAULLDABT) MIRannmaiadesnlsznimmmsdszmanmbnzsiusedfidulyld Tay

aw & a) o v . a (o wa
m‘iﬁﬂ'li’murw:um:u“luﬁm‘umimuﬂmﬂanm"lum»mqyﬁ uﬂ:mammﬂam!‘mﬂgum

PAT15D19D9

[1] Rumbaugh, 1, Jacobson, I, and Booch, G, The Unified Modeling Language Reference
Manual, Addison Wesley, 1999

[2] Booch, G., Rumbaugh, J., and Jacobson, 1., The Unified Modeling Language User Guide,
Addison Wesley, 1999.

[3] Jacobson, 1., Booch, G., and Rumbaugh, J., The Unified Software Development Process,
Addison Wesley, 1999,

(4] Akama, K., Declarative Semantics of Logic Programs on Parameterized Representation
Systems, Advances in Software Science and Technology, vol. 5, pp. 45-63, 1993,

(5] Wuwongse, V., Anutariya, C., Akama, K., and Nantajeewarawat, E., XML Declarative
Description: A Language for the Semantic Web, IEEE Intelligent Systems, MayiJune 2001, pp.

54-65.

[6]

(7]

(8]

(9]

[10]

Wuwongse, V., Akama, K., Anutariya, C., and Nantajeewarawat, E., A Data Model {or XML
Databases, Lecture Notes in Artificial Intelligence, vol, 2198, pp. 237-246, 2001.

Akama, K., Shigeta, Y., and Miyamoto, E,, Solving Problems by Equivalent Transtormation ol

Logic Programs, Proceedings of the 5™ International Conference on Information Systems
Analysis and Synthesis, Orlando, Florida, 1999,

Akama, K, Shimizu, T., and Miyamoto, E., Solving Problems by Equivalent Transformation of

Declarative Programs, Journal of the Japanese Society for Artificial Intelligence, vol. 13, no.
6, pp. 944-952, 1998,

Akama, K., Nantajeewarawat, E,, and Koike, H., A Class of Rewriting Rules and Reverse
Transformation for Rule-Based Equivalent Transformation, Electronic Notes in Theoretical
Computer Science, vol. 39, no, 4, Elsevier Science, 2001,

Spivey, J. M., The Z Notation — a Reference Manual, Prentice Hall, 2nd Edition, 1992.

NMIANUHIN

Technolagies (InTech'2000), Bangkok, Thailand, pages 341-350, December 2000. ISBN $74-615-055-3.

Published in Kreinovich, V. and Daengdej, J., editors, Proceedings of the First Inlernational Conference on Intelligent

Towards Reasoning with UML Diagrams
Based-on XML Declarative Description Theory

Ekawit Nantajeewarawat

Vilas Wuwongse! and Chutiporn Anutariya®

IT, Sirindhorn International Inst. of Tech.
Thammasat University, Ranggit Campus
Pathumthani 12121, Thailand
E-mail: ekawit@siit tu.ac.th

Kiyoshi Akama

Center of Information and Multimedia Studies

Hokkaido University, Sapporo 060, Japan
E-mail: akama@cims.hokudai.ac.jp

CSIM, School of Advanced Technologies
Asian Institute of Technology
Pathumthani 12120, Thailland
E-mail: vw! ca’@cs.ait.ac.th

Surapa Thiemjarus

IT, Sirindhorn International Inst. of Tech.

Thammasat University, Rangsit Campus
Pathumthani 12121, Thailand

Abstract: A practical framework for representing knowledge and reasoning
in the domain of UML is proposed. In this framework, graphical diagramsin a
UML model are encoded as XML/XMI elements, which are regarded as facts
about a specific problem instance in a knowledge base, and the general knowl-
edge on UML, such as inherent interrelationships among diagram components
and implicit properties of diagrams, is represented as a set of XML definite
clauses. Based on Akama's theory of declarative descriptions, the semantics of
such a knowledge base can be precisely determined. Equivalent Transformation
is employed as a fundamental computation mechanism for reasoning with the
UML diagrams represented in the knowledge base.

Key words: UML, XML/XMI, Declarative description, Knowledge represen-

tation, Automated reasoning, Knowledge-based software engineering

1. Introduction

The Unified Modeling Language (UML) (8] is a
graphical language, adopted as a standard by the
Object Management Group (OMG), for visual-
izing, specifying, constructing, and documenting
the artifacts of a software-intensive system. As
reported by recent works on the formal seman-
tics of UML, e.g., [4, B, 7], there exist inherent
interrelationships between components of a UML
model. These interrelationships are essentially
general knowledge about the domain of UML,
which may be used, for example, for deriving im-
plicit properties and verifying the consistency of
the model. With this knowledge, a system ana-
lyst can make use of the information contained
in one diagram to add more components to some
other related diagrams, thereby improving the
completeness of the model.

This paper proposes a solid practical frame-
work for knowledge representation and reason-
ing in the domain of UML. The framework is
based on the theory of XML declarative descrip-
tions [3, 9], which in turn uses Akama’s theory
of declarative descriptions {DD theory) [1] as its
primary foundation. As outlined in Figure 1, the
diagrams in a UML model will be represented

as textual structured data in Extensible Markup
Language (XML) [6], and the general knowledge
about the UML domain as an XML declarative
description. Equivalent Transformation (ET) [2]
is used as a computation mechanism for inferring
the answers to posed queries or for automatic re-
finement of the encoded UML diagrams accord-
ing to the represented general knowledge.

One serious question about the feasibility of
this approach is how to construct a sufficiently
comprehensive XML Document Type Definition
{DTD) that can serve as an appropriate schema

o

More Complete

UML Modiel
XM larati
KB L Deg a.ra ive
Description
XML o XML
Representation Equivalent o Representation
Transfarmation

Figure 1: Overview of the Framework

for representing UML diagrams in XML. XML
Metadata Interchange Format (XMI) [10], a
technology recommended lately by OMG, pro-
vides a realistic answer to this. XMI specifies an
open information interchange model that facili-
tates the exchange of programiming data over the
Internet in a standardized way. It identifies stan-
dard XML DTD for UML, and, therefore, pro-
vides the presented framework with the ontology
of the UML domain. Moreover, the conversion
between UML diagrams and XML/XMI repre-
sentations can be automated by currently avail-
able software tools, such as UCI's Argo/UML
and IBM’s XMI Toolkit.

To start with, DD theory and the concept of
XML declarative description are briefly reviewed
in Sections 2 and 3, respectively. Section 4 de-
scribes, by means of examples, a UML knowledge
base represented as an XML declarative descrip-
tion, and Section 5 demonstrates computation
with UML diagrams, based on ET paradigm, in
the presented frameworlk.

2. Declarative Description Theory
Akama’s DD theory [1] is an axiomatic theory
which purports to generalize the concept of con-
ventional logic programs to cover a wider variety
of data doinains. The theory suppresses the dif-
ferences in the forms of (extended) atomic formu-
lae in various definite-clause knowledge represen-
tation languages, and captures the common in-
terrelations between atomic formulae and substi-
tutions by a mathematical abstraction, called a
specialization system. Despite its simplicity, the
specialization system provides a sufficient struc-
ture for defining declarative descriptions together
with their meanings. DD theory has provided a
template for developing declarative semantics for
declarative descriptions in various specific data
domains.

2.1 Specialization Systems
The concepts of specialization system and declar-
ative description will be reviewed first.

Definition 1 (Specialization System) A spe-
cialization system is a quadruple (A, G, 8, p) of
three sets ,4,G and &, and a mapping p from
S to partial_map(A) (i.e., the set of all partial
mappings on A), that satisfies the conditions:

1. (Vs',5" € 8)(Ts € &) : pus = (us") o (ps'),
2. (35 € S)(Va € A) : (ws)a = g,
3. GC A

The elements of A are called atoms, the set §
interpretation domain, the elements of § special-
ization pargmeters or simply specializations, and

the mapping pu specialization operator. A special-
ization s € & is said to be applicable to a € A, if
and only if a € dom(us). O

In the sequel, let ' = {4,G, 8, p) be a special-
ization system. A specialization in & will often
be denoted by a Greek letter such as 8. For the
sake of simplicity, a specialization ¢ € S will he
identified with the partial mapping ué and used
as a postfix unary (partial) operator on A, e.g.,
(pf)a = af.

2.2 Declarative Descriptions and Their
Meanings

A declarative description on I' will now be de-
fined. Every logic program in the conventional
theory can be regarded as a declarative descrip-
tion on some specialization system.

Definition 2 (Definite Clause and Declara-
tive Description) Let X be a subset of 4. A
definite clause C on X is a formula of the form:

a bl,...,bn

where n > 0 and a,by,...,b, are atoms in X,
The atom a is denoted by head(C) and the set
{b1,...,ba} by Body(C). A definite clause C
such that Body(C) = @ is called unit clause.
The set of all definite clauses on X is denoted
by Delause(X). A declarative description on T
is a (possibly infinite} subset of Delause(A). O

Let C be a definite clause {¢ + b1,...,b,) on
A. A definite clause €’ is an instance of €, if and
only if there exists § € & such that £ is applicable
to a,b1,...,b, and &' = (af « b6,... 08
Denote by €& such an instance C' of C' and by
Instance(C) the set of all instances of C.

Next, let P be a declarative description on I
Denote by Gelause{ P} the set

U (Instance(C) M Delause(G)),
CeP

i.e., the set of all instances of clauses in P which
are constructed solely out of atoms in . Asso-
ciated with P is the mapping Tp on 2¢, defined
as follows: for each X C G, Tp(X) is the set

{head(C) | C € Gelause(P) & Body(C) C X}. .

The meaning of P, denoted by AM({P), is then
defined by

M(Py = | T(@),
n=1

where Th(B) = Tp(B) and TE (B} = Tp(Tp~ ()
for each n > 1.

3. XML Declarative Descriptions
XML is a textual representation of structured or
semistructured data, adopted as a standard by
the World Wide Web Consortium (W3C). The
forms of conventional XML elements will be re-
called first, and then extended by incorporation
of variables. The concepts of XML specialization
system and XML declarative description [3, 9]
will next be presented.

3.1 XML Elements

A conventional XML element takes one of the
forms:

Um = 'Um/>,

Uy = Um> gl </t>!

Oy = V> €10+~ € <f1>,

o Llayp =1y «
o <ldy =11y
e <layp=v; -

where n,m > 0, ¢ is a tag name {or element
type}, the a; are distinct attribute names, the »;
are strings and the ¢; are XML elements. An
XML element of the first, the second, and the
third forms are called empty, simple, and nested
elements, respectively.

In the next subsection the concept of an XML
element with variables, called an XML expres-
sion, will be intreduced. A variable has two
roles. First, it is used as a specialization wild
card, i.e., a variable can be specialized into an
XML element or a component of an XML ele-
ment. As its second role, a variable behaves as
an equality constraint imposed on components
of XML expressions, i.e., all occurrences of the
same variable in an expression must be special-
ized into identical components.

3.2 XML Expressions
Assume that Zx is an alphabet comprising the
symbols from the following seven sets:
1. A set C of characters.
2. A set N of tag names and attribute names,
3. A set Vy of name-variables, or, for short,
N-variables,
4. A set Vs of string-variables, or, for short,
S-variables.
5. A set Vp of attribute-value-pair-variables,
or, for short, P-variables.
6. A set Vg of XML-expression-variables, or,
for short, E-variables.
7. A set Vp of intermediate-expression-varia-
bles, or, for short, [-variables.

Also assume that ‘$’ ¢ ', no element of IV begins
with ‘¢’, and the elements of Vi, Vs, Vp, Vi and
Vr begin with “$N:”, “$s5:”, “§P:”, “$E:” and
“$I:”, respectively.

Definition 3 (XML Expression) An XML
expression on Ly takes one of the following
forms:

1. vg,
Z<tar=v - Gm =Um Up, - VP[>,
3. <lar=v1 +++ Qu = Uy VP UP >
Vm+41
<ft>,
4. <taj=wv - am = U, Vp, - VP>
€1+ Bp
<ft>,

5. <yrm e en <fur>,

where {{m,n > 0; vg € Vg; t,a; € N U Vy;
iUl ECT UV as Aap ili £ (L<i<
m 1< <m)vp € Vp (L j<i)v €V
and e is an XML expression on Ex (1 < k < n).
The order of the m pairs a1 = v+ dm = tUm
and the order of the [P-variables vp, --- vp, are
immaterial, but the order of the n expressions
e1--+ ey is important. An XML expression with
no occurrence of any variable is called a ground
XML expression. An XML expression of the sec-
ond, the third or the fourth form is referred to
as a t-expression, while that of the fifth form as
a vy-expression. A ground t-expression will also
be called a t-element. When n = 0, an XML
expression '

<lay =¥ -+ Qm =¥ VP - P[>

of the fourth form is assumed to be identical to
the XML expression

<dap =V o Gy = U Up, e Up >

of the second form. The parts enclosed by a pair
of < and />, a pair of < and >, or a pair of
</ and > are referred to as tegs. For each i
{1 <i<m),ifa; €N, a; will be called an
attribute name, and if q; € Vi, it will be called
an attribute-name variable. D

3.3 XML Specialization System and XML
Declarative Descriptions
The concept of an XML specialization genera-
tion system will be presented first. Based on this
structure, the notion of an XML specialization
systern will then be defined.

Definition 4 {XML Specialization Genera-
tion System) Let Ay be a quadruple

{(Ax,Gx,Cx vx),

where Ay is the set of all XML expressions on
Y x, Gx is the set of all ground XML expressions
on Tx, €x is the union of the following sets:

e Vv x N

. (VS XC*JU(VE x Ax)

e (Vv x VnIU (Vs x Vi) U (Ve x Vp)U (VR x
Ve) U (V7 x Vi)

L] VpX(VNXVSXVP)

. VE X (VE XVE)

(Ve U VE) x {¢}

V;X{E}

VIX(VNXVPKVEXVEXW);

and vy : Cx — partial.map(Ayx) is defined as
follows: Let ¢ € Cx and a € Ax.

[N -Vuriable Instantiation]
If ¢ = (v,6) € Vw x N and each tag con-
taining v as an attribute-name variable in
a does not contain & as an attribute name,
then (rx¢)a is the XML expression obtained
from a by simultaneously replacing each oc-
currence of v in a with 4.

[5- or E-Variable Instantiation]
Ife=(v,b) € (Ve x C*)U(VE x Ax), then
{vx ¢)ais the XML expression obtained from
a by simultaneously replacing each occur-
rence of v in a with b.

[Variable Renaming]
Ife=(v,u) € (Vux Vn)U (Ve x Va)U(Vp x
Vp) U {Ve x Vg) U (V] x V]], then (ch]a
is the XML expression obtained from a by
simultaneously replacing each occurrence of
vin a with u,

[P-Variable Expansion]

If e = (v, {u,w,v")) € Vp x {Vn x V5 x Vp)
and each tag containing v in a does not con-
tain u as an attribute-name variable, then
{vx ¢)a is the XML expression obtained from
a by simultaneously replacing each occur-
rence of v in a with the pair v = w followed
by .

[E-Variable Ezpunsion]
Ife = (v, (u,w)) € Vg x (Vg x Vg), then
(vx c)a is the XML expression obtained from
a by simultaneously replacing each occur-
rence of v in ¢ with u followed by .

[P- or E-Variable Removal]
Ifc = (v,¢) € (Vp UVE) x {¢}, then (vxc)a
is the XML expression obtained from a by
removing each occurrence of v in a.

{I-Variable Removal]
If ¢ = (v,¢) € Vi x {€}, then (vxc)a is the
XML expression obtained from a by remov-
ing each occurrence of <v> and each occur-
rence of <fv> in a.

[I- Variable Instantiation]
e = (v,(un,up,ug,wg,vj)) € V; x
(Viv x Ve x Vg x Vg x Vi), then (vxcla is
the XML expression obtained from a by si-
multaneously replacing each occurrence in a
of each vy-expression

<y ey ey <JUr>
with the uy-expression

<Uy up>
ug <vi> ey-- e, <JUi> wg
<Jun>.

Ax will be referred to as the XML specialization
generation system on Lx. 0O

Next, an XML specialization system is defined.

Definition 5 (XMI Specialization System)
Based on Ay, the specialization system for XML
expressions ol Ly , denoted by 'y, is defined by

Tx = {(Ax,Gx,Sx.tx}

where Sx = C%, 1.e., the set of all sequences over
Cx, and pyx : Sy — partial_map(Ax) is given
as follows: For each ¢ € Ay,

s (uxA)e = a, where A denotes the null se-
quence, and

s for each ¢ € Cx, 5 € Sx, (px(c-8))a =
(uxs)((vxe)(a)). B

Obviously, I'x satisfies all the three conditions
of Definition 1. Examples demonstrating the ap-
plication of specializations in 8y to XML expres-
sions will be seen in Section 5.

An XML declarative description is then de-
fined as a declarative description on I'y, and
its declarative meaning follows directly from DD
theory.

4, UML Knowledge Base

Subject to the XML DTD for UML specified
by XMI, a UML model will be converted into a
number of XML elements (ground XML expres-
sions), which are regarded as specific facts about
the model. These specific facts will be formal-
ized as ground XML unit clauses, constituting an
XML declarative description Kp. By contrast,
inherent interrelationships among components of
UMIL diagrams will be represented as another
XML declarative description Kg, which basi-
cally consists of non-unit XML definite clauses
{or rules). The union of Ky and Kz will then
be considered as a knowledge base for the model.

Movie Show
- mviName : String 1 has p.* | -cinemaNa : Integer
- category : String - showTime : Tima

+ soundtrack : Boolean
+ getNama
1

Ticket 1| seatingPlan
- moviaName ; String Seat —‘* : SeaingPlan
- date ; Date
- lime : Time
- cinemaNo : integar
- s8atNo : Seat

SellTickatWindow

Figure 2: A UML Class Diagram

<Class xmi.id="C1.4">
<name>Movie</name>
<associationEnd>
<AssociationEnd xmi.idref="C1.8.2"/>
</associationEnd>
<feature>
<Attribute xmi.id="Cl.4.1">
<name>mvName</name>
<visibility xmi.value="private"/>
<type>
<Primitive xmi.idref="_1.1.21"/>
</type>
</Attribute>
<Attribute xmi.id="C1.4.,2">
<name>category</name>
<visibility xmi.value="private"/>
<type>
<Primitive xmi.idref="_1.1.21"/>
</type>
</Attribute>
<Operation xmi.id="C1.4.11">
<name>getName</nama>
<viszibility xmi.value=‘'public"/>
</Operation>
</feature>
</Class>

Figure 3: A Class-element, Cp .y

4.1 Encoding UML Diagrams: Examples

Consider the UML class diagram in Figure 2.
Fach class in this diagram is represented in
XML/XMI by a Class-element, and each asso-
ciation by an Association-element. For exam-
ple, the class Movie in Figure 2 is represented
by the Class-element in Figure 3, and the as-
sociation has in Figure 2 by the Association-
element in Figure 4. The associationEnd-
element of the ¢lass-element in Figure 3 spec-
ifies that Movie is a class at an endpoint of
the association has by referring to the second
AssociationEnd-element of the connection-

<Association xmi.id="C1,8">
<name>haz</name>
<connection>
<AssociationEnd xmi.id="C1.8.1">
<name/>
<isNavigable xmi.value="true"/>
<aggregation xmi.value="none"/>
<multiplicity>0..#</multiplicity>
<type>
<Class xmi.idref="C1.3"/>
</type>
</AssociationEnd>
<AssocciationEnd xmi.id="C1.8.2">
<name/>
<isNavigable xmi.value="true"/>
<aggregation xmi.value='"none"/>
<multiplicity>1</multiplicity>
{type>
<Classz xmi.idref="C1.4"/>
</type>
</AssociationEnd>
</comnection>
</Agsociation>

Figure 4: An Association-element, Chq,

% |:§ellTickefWindewl | m: Movie } s: Show

TickgtSeller

mavieSelected{m),

elListOfShows()

E disglayShquisl(sLs

getSealingPlan{)

showSetectad(s)

5]
R R SR ;
displaySeatingPlan{$p) i

I

; sealSelected{n)

! resarveSaat(n)

=, o
Gleate | :Tickel

priniTickel) o
i 'LJ

Figure 5: A UML Sequence Diagram

[
Lt

element in Figure 4. The feature-element in
Figure 3 describes the attributes and operations
of Movie. Each AssociationEnd-element inside
the connection-clement in Figure 4 details an
endpoint, e.g., its multiplicity, connected class
and navigability, of the association has. (In the
figure, assume that the identifiers of the Class-
elements representing the classes Show and Movie
are C1.3 and C1.4, respectively.)

<Collaboration xmi.id="33'">
<name>SellingMovieTicket</name>
<ownedElement>
<ClassifierRole>
<name>TicketSeller</name>
<message>
<Message xmi.idref="520"/>
<Message xmi.idref="521"/>
<Message xmi.idref="8522"/>
</message>
</ClassifierRole>
<ClaasifierRole>
<name/>
<message>
<Message xmi.idref="523"/>
<Message xmi.idref="524"/>
<Message xmi.idref="S25"/>
<Message xmi.idref="526"/>
<Message xmi.idref="327"/>
<Message xmi.idref="528"/>
<Meossage xmi.idref="§29"/>
</message>
<messagel>
<Message xmi.idref="$20"/>
<Message xmi.idref="820.5"/>
<Message xmi.idref="521"/>
<Message xmi.idref="521.5"/>
<Message xmi.idref="822"/>
</message2>
<base>
<Class xmi.idref="C1.2"/>
</base>
</Classifierficle>
<ClassifierRole>
<name>m</name>
<message>
<Message xmi.idref="520.5"/>
</message>
<message>
<Message xmi,.idref="523"/>
</message2>
<base>
<Class xmi.idref="C1.4"/>
</base>
</ClassifierRole>
<ClassifierRele>
<{name>s</name>

¢/ClassifierRole>
{ClassifierRole>
<name/>

</ClassifierRole>

</ownedElement>
<interaction>

</interaction>
</Collaboration>

Figure 6: A Collaboraticn-element, C,qq

<SendAction xmi.id="$138">
<name>movieSelected</name>
<isAsynchronous xmi.value="true"/>
<Action.message>
<Message xmi.idref="520"/>
</Action.message>

<actualArgument>
<Argument>
<name>mn</name>
</Argument>
</actualArgument>
<fSendAction>

Figure 7: A SendAction-element, Cy;

<CallAction xmi.id="5141">
<name>getListDfShows</name>
<isAsynchronous xmi.value="false"/>
<Action.message>
<Message xmi.idref="323"/>
<fAction.message>
</Callhction>

Figure 8: A CallAction-element, Cg

<CallAction xmi.id="5143">
<name>displayShowlist</name>
<isAsynchronous xmi.value="false'/>
<Action.message>
<Message xmi.idref="524"/>
</Action.message>
<actualArgument>
<Argument>
<name>sList</name>
</Argument>
</actualArgument>
</CallAction>

Figure 9: A Callictionr-element, Cy,p

<ReturnAction xmi,id="5142">
<name/>
<isAsynchronous xmi.value="false"/>
<Action.message>
<Message xmi.idref="520.5"/>
<fAction.message>
<actualdrgument>
<Argument>
<pame>sList</name>
</Argument>
</actualArgument>
</Returniction>

Figure 10: A ReturniAction-element, C,.;

Figure 6 illustrates the XML/XMI represen-
tation of the UML sequence diagram in Figure
5, which describes a normal scenario of the use
case “Selling Movie Ticket” of a movie-ticketing
system. The ownedElement-subelement of the
Collaboration-element in Figure 6 contains
five ClassifierReole-elements, each of which
describes an object or an actor participating
in the sequence diagram. A ClassifisrRole-
element typically has one message-element and
one message2-element, referring to the messages
sent and received, respectively, by the object or
the actor the element describes. For example, the
message-element in the first ClassifierRole-
element in Figure 6 indicates that the actor
TicketSeller sends three messages, which are
described by the Message-elements having the
identifiers 520, $21 and $22, respectively, and
the absence of the message2-element signifies
that this actor receives no message. Like-
wise, the message-element and the message2-
element in the second ClassifierRole-element
itemize the messages the anonymous SellTick-
etWindow object sends and receives, respec-
tively. A ClassifierRole-clement describing
an object, such as the second and the third
ClassifierRola-clements, normally contains a
base-element, which refers to the class of the de-
scribed object. (Assume that the identifier of the
Class-element for the class SellTicketWindow is
c1.2.)

The Message-clements referred to by the ma-
ssage-elements and the message2-elements, to-
gether with the predecessor relation and the
successor relation on their corresponding mes-
sages in the sequence diagram, are defined within
the interaction-subelement (the last subele-
ment) in Figure 6. Due to space limitation,
the details of this interaction-element and the
ClassifierRole-elements for the Show object s
and the anonymous Ticket object are not shown.

The action of each message is specified by a
SendAction-element, a CallAction-element or
a ReturnAction-element, depending on the type
of the message. For example, the operation of
the Message-element having the identifier 520,
i.e., the first message the actor TicketSeller sends,
is detailed by the SendAction-element in Fig-
ure 7. Similarly, the operations of the Message-
elements having the identifiers S23 and 524, i.e.,
the first and the second messages the SellTick-
etWindow object sends, are described by the
CallAction-elements in Figures 8§ and 9, respec-
tively; and the ¥essage-element with the identi-
fier §20.5, i.e., the first return message the Sell-
TicketWindow object receives, is defined by the
ReturnAction-element in Figure 10,

<Class xmi.1d=35:CID $P:1> $E:1
<feature> $E:2
<Operation>
<name>$S:NM</name>
</Operation>
</feature>
</Class>

{_
<$1:1>
<classifierRole> 3E:3
<message2> $E:4
<Message xmi.idref=$35:MID/> 3E:5
</message2> $E:6
<baszae>
<Class xmi.idref=$5:CID/>
</base>
</classifierRole>
</81:1>,
<CallAction $P:2>
<name>$5:NM</name> $E: T
<Action.message>
<Message xmi.idref=$5:MID/>
</Action.message> 3E:8
</CallAction>,
<Class xmi.id=$5:CID $P:1> 3E:1
<feature> $E:2
</feature>
</Class>

Figure 11: A Definition Clause, Cg;

4.2 General Knowledge about the Domain

The detailed formal analysis of the semantics of
UML in [4, 5, 7] uncovers several inherent in-
terrelationships between UML diagrams as well
as implicit properties of diagram components.
The descriptions of these interrelationships and
properties can be regarded as axioms {or general
rules) in the domain of UML, which will be rep-
resented as XML definite clauses in the proposed
framework.

As an illustration, the axiomatic assertion that
“the operation of any message received by an ob-
ject in a sequence diagram must be an operation
provided by the class of that object in a class dia-
gram”, given in [7], can be encoded as the XML
definite clause in Figure 11. More comprehen-
sively, this definite clause states that if

o the $I:1i-expression in its body can be spe-
cialized into an XML-element that con-
tains a classifierRole-element for an ob-
ject having a Message-element identified by
$S:MID as the representation of one of its re-
ceived messages and having a Class-element
identified by $S:CID as the representation of
its class, and

e there is a Calliction-clement that has as
its name $S:NM and refers to the Message-
element having the identifier $3:MID,

then the feature-element of the Class-element
with the identifler $5:CID has an Operation-
element with the name $S:NM. Observe that
the Class-expression in the head and that in
the body of this clause are identical except
that the expression in the head has an addi-
tional Operation-expression inside its feature-
subexpression. Each of the E-variables occurring
in the clause, e.g., $E: 1 and $E:2, can be instan-
tiated into zero or more XML elements.

Figure 12 provides another example of an en-
coded general rule. The XML definite clause in
the figure represents the axiom *“a class inher-
its from its superclass the associations that the
superclass has with other classes along with the
information about the multiplicities of the end-
points that connect the associations with those
classes” | by stating that if there are

s a Generalization-clement, describing a
generalization relationship, of which the
child-subelement and the parent-sub-
element refer to the Class-elements having
the identifiers $S:SubID and $S:5upld, re-
spectively, and

¢ an Association-element with an Associ-
ationEnd-element referring to the Class-
element identified by $S:Supld,

then one can construct another Association-
element that has the same content as the
former Association-element except that the
first AssociationEnd-element is replaced with
an AssociationEnd-element that refers to the
Class-element identified by $S:Subld and con-
tains no multiplicity-element, and the sec-
ond AssociationEnd-element is replaced with
an AssociationEnd-element having the same
multiplicity-element and the same type-
element.

5. Equivalent Transformation
Equivalent Transformation {ET) paradigm [2] is
a new computational model for solving prob-
lems based on semantics-preserving transforma-
tion. In ET framework, the specification of a
problem is formalized as a declarative descrip-
tion, and the problem will be solved by trans-
forming this declarative description successively
into a simpler but equivalent declarative descrip-
tion, from which the solutions to the problem can
be obtained easily and directly.

The correctness of the computation mecha-
nism in ET paradigm relies solely on the equiva-

<Association>
<$I:1>
<AssociationEnd>
<type>
<Class xmi.idref=$S5:S5ublD/>
</type>
</Associationknd>
<AssociationEnd>
<multiplicity>$5:M2</multiplicity>
<type>$E:C</type>
</AgsociationEnd>
</$I: 1>
</Association>

o

<Generalization> $E:1
<child>
<Class xmi.idref=$5:35ubID/>
</child>
<parent>
<Class xmi.idref=$3:SupID/>
</parent>
</Generalization>,

<Association $P:1>
<$I:1>
<hasociationEnd $P:2> $E:2
<multiplicity>$$:Mi</multiplicity>
<type> ‘
<Class xmi.idref=$S:SupiD/>
</type>
</AssociationEnd>
<AssociationEnd $P:3> $E:3
<multiplicity>$S:M2</multiplicity>
<type>$E:C</type>
</AssoclationEnd>
</3I:1>
<fAssociation>

Figure 12: A Definite Clause, Cps

lence of all declarative descriptions in a transfor-
mation process. Two declarative descriptions P
and P’ are said to be eguivalent if and only if they
have exactly the same meaning, i.e., M(P) =
M(P'). In this paper, only unfolding transfor-
mation will be applied. In general, other kinds
of semantics-preserving transformation can also
be used, especially to improve computation effi-
ciency.

To demeonstrate computation with XML/XMI
clements under ET framework, assume that
Crmows Chas) Caeqs Cmus, Cget: Cdap and Cr.s are
the umt clauses the heads of which are the
XML/XMI elements in Figures 3,4, 6,7, 8, 9 and
10, respectively; also that Cg; and Cra are, re-
spectively, the definite clauses in Figures 11 and
12. Then, let KB be the XML declarative de-
scription consisting of these nine definite clauses.
Now suppose that one wants to find the names of
the operations provided by the class Movie, The

problem can be formulated as the declarative de-
scription

Py = KBU{Cy},
where C) is the definite clause

<anawer>$S:X</answer> ¢

<Class $P:Y1>
<name>Movie</name> 3E:Y2
<feature> $E:Y3
<Operation $P:Y4>
<name>$8:X</name> $E:Y5
</Operation> $E: Y6
</feature>
</Clasa>.

T'he ¢lass-cxpression in the body of Cy is unili-
able with the head of the unit clause Cyou {Fig-
ure 3} using the specialization

{($P:Y1, ($N:V1, $S:V2, $P:V3}),
($M:V1, xmi.id), ($5:V2, "C1.4"), ($P:V3,¢),
($E:Y2, Ey), ($E: Y3, ($E:V4, SE:V5)),
(3E:v4, Eq), (SE: VS, F3),
($P:Y4, ($N:V6, $5:V7, $P:V8)),
($0:v6, xmi.id), ($3:V7, "C1.4.11"),
($P:V8, €), ($5:X, getNane),
($E:Y5, E4), ($E:Y6, €))

in 8y as a unifier, where Fi,FE3 E3 and E4
denote the associationEnd-element, the first
and the second Attribute-elements and the last
visibility-element, respectively, in Cp,gy. This
class-expression in Cp is moreover unifiable
with the head of the clause Cg; (Figure 11} using
the unifier

{(3P:Y1, (3N:W1, $5:W2, SP:W3}),

$N:W1, xmi.id), ($5:W2, $5:CID), ($P:W3, $P:1),

$E: U4 <name>Mov1e<fname>)
$E:W5, $E:Y2), ($E:2, $E: Y3), ($P: Y4, ¢),

(

{

($E:1, ($E:W4, $E:W5)),

E

($S:NM,$5:X), ($E:Y5,¢€), ($E:Y6, ¢)).

By unfolding (7, P can thus be transformed into
Py = KBU{C,,Cat,
where ' is the unit clause
<answer>getiane</answerd> +—

and Cq is the definite clause with the head
<answer>$S:X</answer> and with the same body
as that of Cr; except that $3:WM is replaced with
$3:% and the Class-expression in the body is
changed into

<Class xmi.id=$S:CID $P:1>
<name>Movie</name> $E:Y2
<feature> $E: Y3

</feature>
</Class>.

At this step, one answer, i.e., getName, is directly
obtained from Cy. Other answers may be com-
puted by further transforming P;. The Class-
expression in the body of 5 is unifiable with
the unit clause Cynoy (Figure 3) using the unifier

" {($5:C1ID, "C1.4"), ($P:1, €), ($E:¥2, By,
($E:Y3, ($E:U1, $E:U2)], ($E:U2, ($E: U3, $E:04)},
($E:U1, By), (3E: U8, Fa), ($E:U4, Ej)),

where Ep, £, Eq and Ej5 denote the aszssocia-
tionEnd-element, the first and the second At-
tribute-elements and the Operation-element,
respectively, in Cy 4. By resolving Co with Chyy
upon Lhis Class-cxpression, [% is rewritten into

= KBU{Cy,Cs},

where the head of the clause 3 is the same
as that of Cq, and the body of C5 is same as
the body of Cpgy except that $5:WM is replaced
with $8:X, $5:CID with "Ci1.4" and the Class-
expression in the body is removed. Next, the
$1: 1-expression in the body of C'5 can be unified
with the unit clause C,.q (Figure 6) using the
specialization

{($T:1, ($N:Z1, $P:22, $E:Z3, $E:24, $I:25)),
($W:21, Collaborat:.on) ($E 74, Es)

($P:22, ($N:26, $5:27, $P:28)],

($H:26, xmi. 1d) ($5:27, "s3"), (3P:28,¢),
($E:23, <name>5e111ngHov1eT1cket</name>}
($1:5,($N:29,$P:210, $E: 211, $E: 212, $1:213)}),
($M:29, ownedElement) ($P: Zlo,e),

($E:211, ($E:214, $E:Z15)),

($E:212, ($E:216, $E: 217)),

($E:214, E7), (SE.ZlS,Eg),

($E:218, Eg] ($E:217, Ep),

($1:13,¢), ($E:3, ($E:218, SE: 219)),

($E:Z18, <name>m</name>) ($E:219, Fyy),
(SE:4,¢), ($E:5,¢),($E:6,¢), ($5:MID,"523"))

in S_J(, where Es,E';,Eg,EQ,E;(} and E11 de-
note the interaction-element, the first, the sec-
ond, the fourth and the fifth ClassifierRole-
elements, and the message-subelement of the
third ClassifierRole-element, respectively, in
Cieq- As aresult, Py can be transformed into

Py = fff?LJ{(j;,Ch},
where C, is the clause

<answer>$S:X</answer> +

<CallAction 3P:2>
<name>$S:X</name> $E: T
<Action.message>
<Message xmi.idref="823"/>

</Action.mespage> 3E:8
</CallAction>.

Obviously, by further resolving the clause C,
with the unit clause Cge; (Figure 8), Py can be
transformed into

P = KBU {C},Cs},
where Cy is the unit clause
<answer>getListDfShouws</answer> +¢—

from which the second answer, i.e., getListDf-
Shows, can be directly drawn. As neither C; nor
(s can further be transformed, no other answer
will be derived. Since only unfolding transfor-
mation, which always preserves the equivalence
of declarative descriptions, is used in each step,

M(Py) = M(Fs},

and the two obtained answers are guaranteed
to be correct with respect to KB. Providing
that KB is augmented with the XML/XMI el-
ements representing all components of the dia-
grams in Figures 2 and 5, one can derive, for ex-
ample, the names of the operations offered by the
class Show, i.e., getSeatingPlan and reserveSeat,
through the clause Cgy, in a similar way (al-
though the class Show has no explicitly declared
operation in the class diagram of Figure 2).

6. Concluding Remarks

Apart from the general rules illustrated in this
paper, encoding other known implicit interrela-
tionships between UML diagrams as XML def-
inite clauses along with discovering additional
inherent interrelationships in the UML domain
is in progress. The development of a proto-
type UML knowledge-based system under the
proposed framework is now under way at AIT
and SIIT. Since program code, e.g., Java code,
can also be represented as XML data, the pre-
sented framework furthermore has a significant
application in forward engineering—the process
of transforming a model into code through a

UML Mode! » Java Code
Forward Engineering
Knowledge
XMLXMI o XML
Representation Equivalent " | Rapresentation:
Transformation

Figure 13: Forward Engineering Framework

10

mapping to an implementation language. As de-
picted by Figure 13, general rules specifying the
mapping, i.e., forward engineering knowledge,
can be expressed as an XML declarative descrip-
tion, and Equivalent Transformation can be used
as underlying inference machinery for generating
program code from a UML model. Acquisition
of forward engineering knowledge in the UML
domain is also an ongoing research at SIIT.

Acknowledgement
This work was supported by the Thailand Re-
search Fund, under Grant No. PDF/31/2543,

References

(1] Akama, K., Declarative Semantics of Logic
Programs on Parameterized Representation
Systems, Advances in Software Science and
Technology, vol. 5, pp. 45-63, 1993.

[2] Akama, K., Shimitsu, T. and Miyamoto, E.,
Solving Problems by Equivalent Transfor-
mation of Declarative Programs, J. JSAJ
vol. 13, no. 6, pp. 944-952, 1998.

[3] Anutariya, C., Wuwongse, V., Nantajee-
warawat, E. and Akama, K., Towards a
Foundation for XML Document Databases,
Proc, 1st International Conference on E-
Commerce and Web Technologies, UK, Lec-
ture Notes in Computer Science, vol. 1875,
pp. 324-333, Springer-Verlag, 2000.

[4] Evans A. S., Reasoning with UML Class Di-
agrams, Proc. £nd [EEE workshop on In-
dustrial-Strength Formal Specification Tech-
niques, Florida, IEEE Press, 1998,

[5] France, R., Evans, A. S., Lano, K. and
Rumpe, B., The UML as a Formal Model-
ing Notation, Computer Standards and In-
terfaces, vol. 19, no. 7, pp. 325334, 1998.

[6] Goldfarb, C. F. and Prescod, P., The XML
Handbook, Prentice Hall, 1998,

[7] Nantajeewarawat, E. and Sombatsrisom-
boon, R., On the Semantics of UML Dsi-
agrams Using Z Notaion, Froc. Interna-
tional Conference on Intelligent Technelo-
gies, Bangkok, Thailand, 2000.

[8] Rumbaugh, J., Jacobson, I. and Booch, G.,
The Unified Modeling Language Reference
Manual, Addison Wesley, 1999.

[9] Wuwongse, V., Akama, K., Anutariya, C.
and Nantajeewarawat, E., A Foundation for
XML Document Databases: Data Model,
Technical Report, CSIM, AIT, 1999.

[10] XML Metadata Interchange Format (XMI),
IBM Application Development, www-4.ibm.
com/software/ad /standards/xmi.html.

Published in Krainovich, V. and Daengdsj, J., etilors, Proceedings of the First Internationai Conference on Intelligent

Technologies (InTech'2000), Bangkek, Thailand, pages 325-334, Dacember 2000, ISBN 974-615-055-3.

On the Semantics of UML Diagrams
Using Z Notation

Ekawit Nantajeewarawat and Ratanachai Sombatsrisomboon
Information Technology Program
Sirindhorn International Institute of Technology
Thammasat University, Rangsit Campus
Pathum Thani 12121, Thailand
E-mail: ekawit@siit.tu.ac.th

Abstract: After the method war in the early 90's, the Unified Modeling Language
(UML) has emerged as a de facto standard notation for object-oriented system
analysis and design. However, due to the lack of the precise semantics of UML, in-
terrelationships among components of UML models can hardly be analyzed and the
consistency of the models cannot be formally verified. As a step towards the precise
semantics of UML, this paper employs the Z notation, an expressive mathematical
language, to develop formal specifications for two important parts of UML, i.e.,
class diagrams and sequence diagrams, and to precisely define the well-formedness
rules and the model-theoretic semantics of these two kinds of diagrams. Based on
this established foundation, a number of sound deductive inference rules, which can
be used for rigorously reasoning with UML class diagrams and sequence diagrams,
are presented.

Key words: UML, Model-theoretic semantics, Formal deduction, Entailment, In-

ference rules, Inheritance, Diagrammatical transformation

1. Introduction

In response to the popularity of object-oriented
software development, more than thirty different ob-
ject-oriented modeling methods and languages were
proposed during 1889-1994, The differences be-
tween these methods and notations were nonetheless
often superficial, e.g., the same concept was often
realized using subtly different graphical syntax and
terminology in different methods. System analysts
and software developers had difficulty in choosing a
suitable modeling language that met their require-
ments completely and in understanding software
specifications written in various modeling lan-
guages. Before long, three leading object-oriented
methodologists, Booch, Jacobson and Rumbaugh,
were motivated to unify the modeling notations of
their methods, i.e., the Booch method, Jacobson’s
OOSE and Rumbaugh’s OMT, and to incorporate
ideas from other modeling languages, and began to
develop the Unified Modeling Language (UML) [1,
5, 7, 8, 9], which has become a standard modeling
language for object-oriented systems.

Although the UML. architects have claimed that
UML has a well-defined semantics, as defined in the
UML Semantics Decument [9], its current semantics
is only described in a “semi-formal™ style that com-
bines graphical notation and formal language with
lengthy and loose explanations in natural language
(English), and is not sufficiently precise. The lack
of the precise semanti¢s is a serious hindrance to the
detailed and accurate analysis of the interrelation-
ships between model components as well as their

properties, the verification of the consistency and
correctness of designs, and, moreover, the construc-
tion of rigorous systern-modeling and automation
tools.

1.1 Related Works

Being well aware of the necessity of the formal and
precise semantics and a solid theoretical basis, inter-
national researchers and practitioners in the precise
UML group (pUML) [10], who share the aim of de-
veloping UML as a precise modeling language, have
atternpted to clarify and make precise the semantics
of UML [2, 3, 4]. The Z notation {11, 12, 13], a ma-
ture and expressive mathematical language that is
well supported by tools, is employed to describe the
abstract syntax and constraints on the syntactic
structures of graphical object-oriented notation in
UML, define the semantics domain and associate
meanings with well-formed syntactic structures.
The concept of entailment between UML diagrams
is formulated, and a set of sound inference rules,
called diagrammatical transformation rules, each of
which transforms a given diagram into some of its
logical consequence, is introduced as a tool for prov-
ing properties of and reasoning about components of
UMI. models.

As an illustration of reasoning through diagram-
matical transformation, consider the UML class dia-
gram in Figure 1, which describes the relationship
between students and instructors and that between
students and courses. In addition to specifying that
each student has exactly one instructor as his/her ad-
visor, the diagram also asseris that each full-time

student takes at least three but at most ten courses,
and, on the other hand, at least fifteen students take
each course. In order to deduce the relationship be-
tween students and courses in general, a few infer-
ence rules introduced by [2] can be successively ap-
plied to transform the class diagram in Figure 1 into
the class diagram in Figure 2, from which the con-
clusion that some student may take no course can be
directly drawn.

Student - ! Instructor
advisor
/-/F Course
3.10
PartTime FullTime 53 takes

Figure 1: A Class Diagram

15.* takes 0,3.10

Student Course

Figure 2: Part of a Derived Class Diagram

However, the works reported by this group [2, 3,
4] presently capture the syntax and semantics of only
some components of UML class diagrams, ie.,
classes, associations and generalization relation-
ships, and the inference rules presented in these
works can only be used for reasoning about the
properties of these components. How to deal with
internal components of classes, e.g., attributes and
operations, how to formulate the concrete semantics
of other prominent kinds of UML diagrams, e.g., se-
quence diagrams, collaboration diagrams, statechart
diagrams and activity diagrams, and how to formally
analyze and reason about their interrelationships and
their properties remain challenging issues.

1.2 The Presented Work

As a step towards the precise semantics of UML,
this paper first extends the abstract syntax of and the
well-formedness rules for class diagrams in [2, 3, 4]
to embrace attribute declarations and operation dec-
larations, which are important internal components
of classes, and defines the abstract syntax of UML
sequence diagrams as well as the well-formedness
rules for them (Section 2). An appropriate seman-
tics domain for assigning meanings to components
of UML class diagrams and to those of UML se-
quence diagrams is then specified, and the model-
theoretic semantics of these two kinds of diagrams is
developed (Section 3). The proposed semantics en-
ables the precise discussion on inheritance of attrib-

utes and operations and, moreover, the analysis of
the inherent interrelationships between class dia-
grams and sequence diagrams. Sound inference
rules for deductive reasoning about inberitance and
about interconnections between components of the
two kinds of UML diagrams are presented (Section
4). Applicability of the proposed inference rules in
computer-aided software engineering tools is ex-
plained (Section 5).

2. Well-Formed Diagrams
Subsection 2.1 briefly recalls the abstract syntax of
some basic conceplts, i.e., AssociationEnd and Asso-
ciation, defined by [2, 4], and, then, defines the ab-
stract syntax of attributes and operations together
with the concept of a well-formed class diagram,
Subsection 2.2 defines the abstract syntax ol the
components of UML sequence diagrams along with
the notion a well-formed sequence diagram.
Throughout the paper, the sets ClassName, Ob-
jectName, Actor and Name are assumed as basic
types. These four sets are presumed to contain all
class names, object names, actors, and other names
{(e.g., attribute names, operation names, association
names, association-end names, and parameter
names), respectively, used in a model.

2.1 Well-Formed Class Diagrams

An association represents a structural relationship
among objects. An association typically has two
end-points, called association ends, each of which
connects the association with a class of objects. The
schema for association ends is given below,

__AssociationEnd________
rolename : Name
class : ClassName
multiplicity :P, N

multiplicity # {0}

A role name of an association end specifies the role
that an object of its connected class plays in an asso-
ciation. A multiplicity specifies the possible number
of objects that may be connected across an associa-
tion instance. A multiplicity is defined as a non-
empty subset of the set N of non-negative integers.
Since the multiplicity {0} of an association end indi-
cates that the association does not actually exist, the
constraint that a multiplicity cannot be the singleton
set {0} is imposed. An association has two associa-
tion ends with different rale names.

_Association__________
name : Name
e, e;: AssociationEnd

ey.rolename # e, rolename

Example 1 Consider the class diagram in Figure 3.
The set ClassName is assumed to contain Person,
Student, Instructor, Course, String, Money, Year and
Integer; and the set Name is assumed to contain ad-
visor, takes, name, addr, chngAddr, salary, spouse,
getSalary, v, code and credit. This class diagram
contains four association ends, i.e., ae;, ae;, aey and
aes. The value of aeq.rolename is advisor, while the
rolename of each of the other three association ends
is undefined. The values of ae|.class and ages.class
are Student and Instructor, respectively, while those
of aes.class and ae,.class are Student and Course, re-
spectively, The multiplicity of ae| is unspecified,
the multiplicity of ae; is the singleton set {1}, and

the multiplicitics of aey and aey are the infinite sets

{n e N | n=15) and N, respectively. There are
two associations in the figure, ie., a; and a;, where
a.name ts undefined, a,.e, and a,.e; are ae| and ae,,
respectively, and ap.name, ay.€; and a;.e, are takes,
ae, and aey, respectively. o

Person c
_name: String A
/| addr: String

attr”
attr,” | chngAddr()

&
o R
3
&, <
ac, a Instructor

&

£ 1| salary: Money
advisor| spouse: Person

s

115.% ae; | Money getSalary(y; Year)
HE; '.'\ \"-.
takes o2 P
; Course
,-'"' 0,.* . .cc“
s " | code: String £

| name: String
ae; |credit Integer

Figure 3: A Class Diagram

A class may have attributes and operations as its
components. An attribute has a name and a type
specifying its possible values.

ttribute
name ; Name
type : ClassName

The signature of an operation is a combination of
its name, its type and a number of formal parameters
(formal arguments). The type of an operation speci-
fies the range of possible values the operation may
return when it is invoked. To capture the order of
parameters, the component arguments of an opera-
tion is defined as a finite partial function from N to
Parameter (the set of all formal parameters) the do-
main of which is the set {n e N | 1 £ n € m}, for

some non-negative integer m. Let the set of all such
functions be denoted by scq(Parameter).

__Parameter.
name ; Name
type : ClassNarme

— Operation.
name : Name

type : ClassName
arguments : seq(Parameter)
numOfargs :N

anmOfArgs = #dom arguments

A class is then considered as an abstract entity
that has as its components a name, a finite number of
declared attributes and a finite number of declared
operations.

Class.
name : ClassName
declrAtirs : F Attribute
declrOpers - F Operation

Example 2 The class diagram in Figure 3 has four
classes, i.c., ¢j, €2, €z and ¢y, the names of which are
Person, Student, Instructor and Course, respectively.
The value of c|.declrAttrs is the set {atry, atirs},
where the names of arry and arr, are name and
addr, respectively, and their types are String. The
value of ¢\.declrOpers is the singleton set {op;}. No
attribute and operation is declared in ¢;, whence both
cadeclrAttrs and co.decirOpers are the empty set.
The value of the component decirOpers of the class
¢y is the set {op,}, where op;name, opi.type,
opy.arguments and opy.numOfArgs are getSalary,
Money, the mapping {(1, p;}}, and the integer 1, re-
spectively. The values name and type of the pa-
rameter p| are y and Year, respectively. =

The notion of a well-formed class diagram will
now be defined. A well-formed class diagram con-
sists of a finite set, classes, of classes, a finite set,
associations, of associations, a partial function, su-
perclass, which defines superclass relationships, a
partial function, allsubs, associating with a class the
set of its subclasses, and a set, rop classes, of the
classes that are considered as the highest classes in
the ontological classification taxonomy of the sys-
tem being modeled. The schema for well-formed
class diagrams is given below.

WFD_CD.
classes | F Class
associations | F Association
superclass : Class — Class
allsubs . Class —+ F Class

topelasses : F Class

Ve, ¢ clusses « ¢ 2 ¢’ = c.name # ¢’ .name
V¢ : topclasses -

{c € classes A ¢ & dom superclass)
Ve, ¢ classes .

(c' e allsubs(c) & superclass(c’) = c)
V¢ classes - ¢ & allsubs(c)

The constraints of this schema ensure that each class
has a unique name, each top class does not have any
superclass, the partial functions superclass and all-
subs are consistent with each other, and, further-
more, a class can be neither a superclass nor a sub-
class of itself (i.e., circular inheritance is not al-
lowed).

Example 3 The class diagram in Figure 3 can be
considered as a well-formed class diagram D, where
the cormponent classes of D) is the set {¢), €2, €3, €4},
the component zopeclasses is the set {c;, ¢4}, which
means ¢, and ¢4 are assumed to have no superclass,
the component associations is the set (@), az}, the
component superclass is the mapping {(c3. c)), {(c3,
¢}, and the component allsubs is the mapping {{c|,

{627 C:l})9 (C29 @), (C3v Q)» (64! @)}- -

2.2 Well-Formed Sequence Diagrams

A sequence diagram describes an interaction ar-
ranged in time sequence. It specifies participating
objects, their lifelines and the sequence of messages
they exchange, but does not show the structural as-
sociations among the objects. Objects and messages
are basic components of a sequence diagram. An ob-
ject is an individual instance of some class. It has
two components, i.e., name and type, which refers to
its class.

Object.
name : ObjectName
type : Class

The concept of action encompasses messages
that are exchanged between objects. Two basic
types of actions are considered, i.e., action calls and
return actions.

Action = ActionCall v ReturnAction

__ActionCall

source : Object U Actor
target © Object

opName : Name
actualArgs : seq(Object)
numQOfActArgs | N

numOfActArgs = #dom actualArgs

ReturnAction
source : Object

target : Object U Actor

return : Object

An action call has source, target, opName, actu-
alArgs and numOfActArgs as its components. The
component source refers to the caller, which can ei-
ther be an actor or an object, of the action, whereas
the component target refers to the object that re-
ceives the call. The components opName and actu-
alArgs refer to the name and the actual parameters
(actual arguments), respectively, of the called opera-
tion. The component actualdrgs of an action call
and the component arguments of an operation have
the same structure (see the schema Operation) ex-
cept that an actual argument is an object rather than
a formal parameter. A return action also has the
components source and target, but instead of having
an operation name and actual arguments, it has a re-
turned object as its part.

o4 22

% o« | ekawit: Instructor | | accNo: Account
accountant 4,
]

1

1

|

1

I

1

. s
getAccount ' !
]

L]

i

:

I

Figure 4: A Sequence Diagram

Example 4 Assume that the set ObjectName con-
tains ekawit, thisYear, m, accNo and ok, the set Ac-
tor contains accountant and the set Name contains
getSalary, getAccount and transfer. Consider the
sequence diagram in Figure 4, in which two objects,
i.e., o) and o,, and one actor, i.e., accountant, par-
ticipate. The objects oy, for instance, has ekgwir as
its name and the class ¢y of Figure 3 as its type.
There are three action calls in the diagram, i.e., act,
acts and acts, where the source of each of them is the
actor accountant, their targets are o, 0, and oy, re-
spectively, and their operation names are getSalary,
gerAccount and rransfer, respectively. The values of
actualArgs of o, 0s, and oy are the mappings {(1,
o}, @ and {(l, o4)}, respectively. The diagram
contains three return actions, i.e., r, r» and r3,
where, for example, r).source is o, ri.target is ac-
countant and ry.return is o4. QObserve that r|.return
and #.return are also used as the actual argument
and the target object, respectively, of act;. u

A well-formed sequence diagram consists of a
finite set of objects, a finite set of actors, a finite set
of action calls, a finite set of return actions, a partial
injective function that specifies the order of actions,
and a partial injective function that associates with
an action call its corresponding return action.

__WFD_SD
objects . F Object

actors F Actor

calls : F ActionCall

returns . F ReturnAction

order : Action N

matchRet : ActionCall = ReturnAction

dom order = (calls U returns)

ran order = 1. #(calls U returns)

dom matchRet = culls

ran matchRet = returns

Va:calls.
{a.source = matchRet(a).target
A a.target = matchRet(a).source
A a.order < matchRet(a).order
A a.source € objects U actors
A atarget € objects)

Y r.returns .
(rsource € objects
A rrarget € objects \J actors)

By the constraints of this schema, the sender of an
action call must be the receiver of its matching re-
turn action, and, conversely, the sender of a return
action must be the receiver of its matching action
call. Moreover, an action call always occurs in time
sequence before its matching return action.

Example 5 The sequence diagram in Figure 4 can
be regarded as a well-formed sequence diagram D,
where Dj.objects is the set {0y, 03}, Daactors is the
singleton set {accountant}, the components calls
and returns of D, are the sets {acty, acty, act;} and
{r,, 2 r31, respectively, and the components order
and matchRet of D, are the partial injections {{act,,
1y, (ry, 2), (acty, 3), (r, 4), (acty, 5), (rs, 6)} and
{{act), 1), (acty,), (acty, ri)}, respectively, =

As only class diagrams and sequence diagrams are
considered in this paper, a well-formed diagram is
cither a well-formed class diagram or a well-formed
sequence diagram. In the sequel, let WFD be the un-
ion of WFD_CD and WFD_SD.

3. Semantics

In classical logic, a well-formed formula has differ-
ent interpretations in different possible worlds.
Likewise, a well-formed UML diagram has many
possible interpretations. The notion of a set assign-
ment will be used to capture the concept of an inter-
pretation in the context of UML. Under a set as-
signment, for example, a class has a set of object

identities as its meaning, an association has a binary
relation on object identifiers as its meaning. A set
assignment also assigns possible meanings to ob-
Jects, attributes and operations.

3.1 Preliminary

In the rest of the paper, the set Ofd of all object iden-
tifiers is assumed, and let the terms Tuple, Map-
Tuple, AllMapOldTuple and TupleProjection be de-
fined using the following abbreviation definitions,

Tuple(X, n) == {x), ..., x,: X -(xy, ..o, x0)}
MapTuple(X, n) == Tuple(X,n) — X
AliMapOldTuple ==

{mNtnr21« MapTuple(Old, n)}
TupleProjection(i,n, T} ==

[y s X i Tk NI (k=in kS n)» 2y

That is, Tuple(X, n) denotes the set of all n-tuples of
elements of X; MapTuple(X, n) the set of all partial
functions which maps an #-tuple of elements of X to
some element of X; AllMapOldTuple the collection
comprising the sets MapTupte(X, n) for each posi-
tive integer n; and TupleProjection{i, n, T) the set
consisting of the ith-element of each n-tuple in T,

3.2 Set Assignment
The schema $ for set assignments is now defined.

S

obj : Class -+ P Old

links : Name - (Old < Old)

attribute : Attribute » (Qld — Old)
operation : Operation -» \J AllMapOldTuple
id : Object »» OId

Va :dom antribute ;d ¢ : dom obj »
dom attribute(a) = obj(c)
Yop : dom operation »
(operation(op) €
MapTuple(OQld, op.numOfargs + 1)) A
(Jc¢ : dom obyj - obj(c) =
TupleProjection(1, op numOfArgs + 1,
dom operation{op)))

The components obj, links, attribute, and operation
of a set assignment provide interpretations of basic
abstract components of a class diagram, i.e., classes,
assoctations, attributes and operations, respectively,
whereas the component id simply assigns a single
object identifier to an object. Suppose that a set as-
signment s is given. A class ¢ has the set 5.0bj{(c) of
object identifiers as its extension under s, and an as-
sociation name a has as its meaning under s the bi-
nary relation s./inks(a) on the set of object identifi-
ers.

An attribute aztr is interpreted by s as the partial
function s.attribute(attr) associating with the identi-
fier of each object ¢ at most one object identifier,
which will be regarded as the value of the attribute

attr of o under s. It is specified as a constraint of the
schema that whenever s.attribute(arr) is defined, its
domain must be the extension of some class ¢; and,
consequently, the value of the attribute aftr of each
object belonging to such class ¢ is defined under s.

An operation op with n parameters is interpreted
by s as the partial function s.operarion(op) associat-
ing at most one object identifier oid, with each
{n+1)-tuple {oid,, 0id,, ..., oid,) of object identifiers,
where oid, 1s regarded as the value returned by the
operation op when it is invoked with the actual pa-
rameters oid|, ..., oid, on the host object identified
by oidy. The schema also requires that for every op-
eration op, if the partial function s.operation(op) is
defined, then the set of the identifiers of the host ob-
jects in its domain must be the extension of some
class, and, as a result, every object in this class pro-
vides the operation ap.

3.3 Components of Diagrams and Their Satisfac-
tory Conditions

Intuitively, when the meaning of a diagram compo-
nent o under a set assignment s conforms to some
possible consistent instance of a model (of some sys-
tem) containing «, the set assignment s will be con-
sidered 1o sarisfy the component ¢, denoted by s k o
Referring to Figure 3, for example, if the meanings
of the classes ¢, and ¢, under a set assignment s are
sets O and O,, respectively, of object identifiers and
0, includes O, then the set assignment s can be
considered to satisfy the generalization relationship
between ¢; and c;.

In order to specify the precise satisfactory condi-
tions for diagram components, the (free type) defini-
tion, Component, of the components of UML dia-
grams considered in this paper is first given.

Component .=
class{Class) |
top{Class) |
gen{Class x Class) |
association{Association} |
decirAtiribute{Attribute ¥ Classy |
availAntributeArtribute X Classy |
declrOperation{Operation X Class} |
availOperation{Operation X Class} |
classWfd{WFD_CD} |
ptepObjiObject} |
call{ActionCall} |
seqWid{WFD_SDY |
wil{WFD})

The relation k is then defined as a relation from $ fo
Component. For any set assignment s and any com-
ponent ¢, when 5 F ¢, 5 can be regarded as a model
of & (in the sense of a model of a well-formed for-
mula in classical logic). The satisfactory conditions
for each element of Component will be described in
the next two subsections.

3.4 Satisfactory Conditions for Class Diagrams
The satisfactory conditions for the components ol a
class diagram will now be given.

Class

E: 8+ Component

Vs:S;,¢:.Class -
s Fclass(c) < ¢ edoms.obf

Generalization
Vs: 8¢, ¢ Class
skgen(c, ¢y & s.0bji(c) Cs.0bj(c)

That is, given any classes ¢ and ¢', a set assignment §
satisfies the component class{c) if and only if the ex-
tension of ¢ under s is defined, and satisfies the
component gen(c, ¢ if and only if the extension un-
der s of ¢' includes that of c.

Associations
Ys S, r:Association «
§ kassoctation(r) <
(dom(s.links(r.name)) C s.obj(r.e\.class} A
ran{s.links{r.name)) & s.obj(r.es.class)) ~
(Vo :s.0bj(r.e;.class) -
#{0":s.obj(resclass) |
{0, 0y e s.finks (r.name)}
& r.eamultiplicity}
(Vo' :s.0bj(r.e,class).
#{o: s.obj(r.e;.class) |
(0, 0") e s.links(r.name))
e r.emultpliciny)

Intuitively, for any association (relationship) r, a set
assignment s satisfies the component association{r)
if and only if, under s, the association r only relates
objects belonging to the classes indicated at its asso-
ciation ends, and the number of objects participating
in the association conforms to the multiplicity speci-
fied at the association ends.

From the abstract syntax of cluss diagrams de-
fined in Subsection 2.1, a class typically has a num-
ber of declared attributes and operations. In addition
to these declared components, the class may have
some other attributes and operations through inheri-
tance. In order to precisely define the meanings of
these internal components of a class, the notions of
declared components and available components are
introduced. A declared attribute of a class is an at-
tribute that is declared explicitly in the class,
whereas an available attribute of a class is an atirib-
ute that is either declared explicitly in the class or
inherited from some ancestor of the class.

Available Attribute
VsS85 c:Class, a:Attribute
s k availAttribute(a, ¢) <
(s.0bj(c} « dom s.attribute(a)) A
(Ve': Class | ¢"name = a.type »
ran s.attribute(a) € s.obj(c™)

Declared Attribute
Vs .S ¢ Class, o Anribute s
s k declrAttribute(a, ¢y &
(s E availAttribute(a, ¢)) A
(s.obj{c) = dom s.attribute(a))

Roughly speaking, for an attribute @ and a class ¢, a
set assignment s satisfies the components availAt-
tribute{a, c), meaning that a is regarded as an avail-
able attribute of ¢ under s, if the value of the attrib-
ute a of every object in the extension of ¢ under s
belongs to the extension under s of the type of a.
Under the same condition except that every object
the value of the attribute a of which is defined also
belongs to the extension of ¢ under s, the set assign-
ment s satisfies the component declrAttribute(a, c).
It follows directly that;

Proposition 1
Vs: S c:Class, a: Anribute -
s EdeclrAttribute(a, ¢)
= 5k availAttribute{a, c) =

Similarly, while a declared operation of a class
is an operation that is declared explicitly in the class,
an available artribute of a class is an operation that
the class provides, which may be derived from an
ancestor of the class by means of inheritance.

Available Operation
Vs :S; ¢ Class; op : Operation -
£ FavallOperation(op, c) &
TupleProjection(l, op.numQOfArgs + 1,
dom s.operation(op)) 2 s.0bj(c) A
(Vi:N;c":Class |
2<i<opnumOfArgs + 1 A
c'.name = op.arguments(i - 1).type -
TupleProjection(i, op.numQfargs + 1,
dom s.operation(op)) € s.0bj(c")} »
(Vc¢": Class | ¢".name = op.type +
ran g,operation(op) € s.obj(c"))

Declared Operation
Vs :S; ¢ Class;, op : Operation «
s FdecirOperation{op, ¢) <
(s F availOperation{op, c}) A
(TupleProjection{], op.numOfArgs + 1,
dom s.operation{op)) = 5.0bj(c))

Intuitively, given an operation op and a class ¢, a set
assignment s satisfies the component availOpera-
tion{op, c), if every object in the extension of c un-
der s is a host object of op, and each possible actual
argument belongs to the extension under s of the
class of its corresponding formal parameter, and,
mereover, each possible returned value belongs to
the extension under s of the return type of op. Under
the same condition except that every possible host
object of op also belongs to the extension of ¢ under
5, the set assignment s satisfies the component
decirOperation{op, ¢). The next proposition directly
follows.

Proposition 2
Vs :8; ¢ Class; op : Operation .
s EdeclrOperation(op, ¢}
=> s F availOperation{op, c) &

Next, given a class ¢, a set assignment s satisfies
the component top(c), meaning that ¢ can be consid-
ered as one of the highest classes in a classification
taxonomy under s, if and only if there exists no other
class the extension under s of which includes the ex-
tension of ¢ under s.

Top Class
Vs : 5 ¢:Class « sktop(c) <
(Vc':doms.obj | ' # ¢+ s.obi(c) @ s.obj(ch)

Then, for any well-formed class diagram d, a set
assignment s satisfies the component classWid(d), if
and only if it satisfies every component of 4.

Class Diagrams
Vs: S d:WFD_CD .
s FelassWid(d) «»
(Ve :d.classes « s F class(c)) A
(Ve :dom d.superclass -
5 F gen(c, d.superclass(c))) A
(Va :d.associations « s F association(a)) A
(V¢ : d.classes; op : Operation -
op e c.declrOpers

= 5 k declrOperation{op, ¢)) A

(Ve .d.topclasses - s + top(c))

3.5 Satisfactory Conditions for Sequence
Diagrams

The satisfactory conditions for objects participating

in a sequence diagram and for action calls will now

be described.

Participating Object
V5.5, 0:Object -
s k picpObjo) <
(o.type € dom s.0bj) A (0 € dom s5.id) A
(5.id(0) € s.obj(o.type))

In plain words, for any object o, a set assignment s
satisfies the component prcpObj(o} when the identi-
fier of o is consistent with the extension of its type
under s. The next proposition follows directly.

Proposition 3
Vs:S; 0 Object .
5 ¥ ptepObj(o) = sk class(o.type)

Next, consider the satisfactory conditions for action
calls. Basically, a set assignment satisfies an action
call, if and only if, under that set assignment, the
class of the receiver of the call provides the opera-
tion of the call and, furthermore, the actual argu-
ments of the call all conform to the signature of the
operation. This is formally described as follows.

Call
Vs S act - ActionCall «
sEcall(ach &
(s £ ptepObj(act.target)) A
(dop : Operation
(s F availOperation{op, act.target.type))
{op.name = act.opName) A
(op.numOfArgs =act.rumOfActArgs) A
(Vi:NI112 i<op.numQOfArgs -
(3¢:Class -
{op.arguments(i).type = c.name)
(s.id{act.actualArgs(i}) e s.0bj(c))))

Proposition 4, which will be used in the next section,
follows readily.

Proposition 4
Vs :8; act: ActionCall «
sk call{act) = Jop:Operation -
(s k availOperation(op, act.target.type)) A
(op.name = act.opName) A
(op.numQOfArgs = act.numCfActArgs)

Next, a set assignment s satisfies a well-formed
sequence diagram d if and only if it satisfies every
component of 4; and, finally, a set assignment can
satisfy well-formed class diagrams or well-formed
sequence diagrams, and other kinds of diagrams are
not discussed in this paper.

Sequence Diagrams
Vs: S, d: WFD_SD -
sk seqgWid(d) &
(Vo : d.objects « s k ptepObj(o)) ~
(Va: d.calls - sk call{a)}

Diagrams
Vs S5 d:WFD .
sEwfdld) < (5 F seqgWid(d) v s kclassWid(d))

4. Reasoning with UML Diagrams
Inference rules for deducing from a given set of
UML diagrams some of their logical consequences
and for proving their properties are presented in this
section. Before developing such inference rules,
what it means for one diagram to entail another dia-
gram is precisely defined in Subsection 4.1. The no-
tion of entailment is then used as a basis for verify-
ing the soundness of the inference rules described in
Subsection 4.2.

4.1 Entailment Relationship on UML Diagrams
In [2], the entailment relation, in symbols Fj,, be-
tween well-formed diagrams is defined as follows.

t: WFD — WFD

vD, D' WFD .
DE D & (Vs:8-skwfd(D)= sk wfd(D)

That is, one well-formed diagram entails another
well-formed diagram, i’ and only il cvery sct as-
signment satisfying the former also satisfies the lat-
ter. This definition of F; will be used as a basis for
proving the soundness of inference rules for deriving
from a single diagram some of its implicit properties
or components, e.g., the first three inference rules in
Subsection 4.2,

By means of overloading, the entailment relation
ky will additionally be used in this paper as a relation
that connects a pair of well-formed diagrams with
another well-formed diagram. As formalized below,
given two well-formed diagrams D and D', the pair
(D, D) is considered to entail another well-formed
diagram D", if and only if every set assignment that
satisfies both D and D' always satisfies D"

~Eg 2 (WFD X WFD) « WFD

vD, D, D": WFD .
(D,DV D" =
(Vs : 8. (sEwfd(D) A s EwfdDY)
= skwfd(D')

This extended relation k; wiil be used as the grounds
for justifying the soundness of rules for inferring
some new diagram components from two existing
diagrams, ¢.g., Rules 4 and 5 in the next subsection,

4,2 Inference Rules for UML Diagrams

Based on the concept of the entailment relation
defined in Subsection 4.1, an inference rule R is said
to be sound if either of the following two conditions
is satisfied.

1) If R infers from a well-formed diagram D a
well-formed diagram DV, then D £, D,

2} If R infers from well-formed diagrams D and
a well-formed diagram D", then (D, DY) b, D"

A number of inference rules will now be presented.
The first rule can be considered as the inheritance
mechanism for UML class diagrams.

Rule 1: (Inheritance) Each available attribute (or
operation) of a class ¢ is also an available attribute
(or operation, respectively) of every subclass of the
class¢, m

The soundness of Rule 1 follows directly from the
next proposition.

Proposition 5
1} Vs 8;attr: Attribute; ¢, ¢': Class -
(s k availAttribute(attr, ¢) ~ sk gen(c', ¢))
= sk availAntribute(attr, c)
2) Vs5:.S;0p: Operation: c, c’: Class
(s F availOperation(op, ¢) ~ sF gen(c’, c})
= § FavailOperation(op, ¢’}

Proof Let s S5, antr e Attribute and ¢, ¢' e Class
such that s F availAttribute(attr, ¢) and s k gen(c', c).
Since s k availAttribute(artr,), dom s.attribute(aitr)
includes s.0bj(c). As sk gen(c', ¢}, s.0bj(c) includes
s.0bj(c. Thus dom s.attribute(att) 2 s.obj(c?). Asa
consequernce, s £ availAttribute(artr, ¢’), and the first
result holds, The second result of this proposition
can be proven in a similar way. =

The next two rules can be used for reasoning
about available and declared attributes/operations of
a class.

Rule 2: (Deriving Available Attributes/Operations
Jrom Declared Attributes/Operations) Each de-
clared attribute (or operation) of a class ¢ is also an
available attribute (or operation, respectively) of the
classc.

Rule 3: (Deriving Declared Operations from Avail-
able Operations) Each available operation of a
class ¢ that is not a subclass of any other class is also
a declared operation of the classc. ™

The soundness of Rule 2 follows from Propositions
1 and 2, while that of Rule 3 follows immed:ately
from the next proposition.

Proposition 6
Vs :S: op : Operation; ¢ : Class «
(s £ availOperation{op, c) » 5 E top{c))
= s F declrOperation (op, c)

Proof Lets €S, op e Operation and ¢ € Class such
that s k availOperation(op, c) and s k top(c). Let O
denote the set TupleProjection(l, op.numOfArgs + 1,
dom operation(op)). As s F availOperation(op, c),
s.obj(c) € O. By the constraints of the schema for §,
there exists ¢’ € dom obj such that s.obj(c’) = O. As-
sume that s.0bj(c} # so0bj(c’). Then ¢ # ¢’ and
sobj(c) c s.obj(c). But, as sk top(c), sobjlc)a
s.obj(c, which is a contradiction. Hence s.objic) =
s.obj(c?). It follows that s.0bj(c} = O, and, as a result,
5 FdeclrOperation (op,c). B

Some components of a class diagram can be in-
ferred from a sequence diagram by the application of
the next two inference rules.

Rule 4: (Deriving Classes from Sequence Dia-
grams) If c is the class of some object participating
in a sequence diagram D and ¢ does not exist in a
class diagram D', then ¢ can be added into the class
diagram D', =

Rule 5: (Deriving Available Operations from Se-
quence Diagrams) I an action call of which the
operation is op is invoked on an object of some class

¢ in a sequence diagram D and ¢ is a class in a class
diagram £)', then the operation op is an available op-
eration of ¢ in the class diagram D'. =

The soundness of Rules 4 and 5 follow from Propo-
sitions 3 and 4, respectively.

.% : Registration c: Course
registrar _—

| withdraw(, sdld) |
]

[

verify(c, stdld)

]

deductStd(}

-

K= T !

Figure 5: A Sequence Diagram

Person -
wamer String Registration
addr: .String
withdraw(x, y)
chngAddr() verify(x, y} !
]
Enstructor
11 salary: Money
Student advisor| Spouse: Person
o Money getSalary(y: Year)
takes Course
cade; String
0% hame: String

credit: Integer

deductStud()

Figure 6: A Class Diagram

4.3 Example

This subsection illustrates the application of the in-
ference rules presented in Subsection 4.2. Consider
the class diagram in Figure 3 (in Subsection 1.1} and
the sequence diagram in Figure 5. From these two
diagrams, one can use Rule 4 to infer that there ex-
ists a class the name of which is Registration, and
use Rule 5 in infer that this class has at least two
available operations, i.e., withdraw and verify, each
takes two arguments. Rule 5 can furthermore be ap-
plied to infer that deductStud is an available opera-
tion in the class Course. Then, as neither the class
Registration nor the class Course has a superclass,
one can infer that withdraw and verify are declared

operation of the class Registration, and deductStd is
a declared operation of the class Course, using Rule
3. As aresult, the class diagram in Figure 6 is de-
rivable from the class diagram in Figure 3 and the
sequence diagram in Figure 5. Now, from the class
diagram in Figure 6, one can use Rule 2 to infer, for
example, that the class Person has name and addr as
available attributes and chngAddr as an available
operation, and, then, use Rule 1 to infer that the
classes Student and Instructor also have these avail-
able attributes and operation.

5. Concluding Remarks

After a formal semantics of UML class diagrams
(including attribute and operation declarations) and
sequence diagrams is developed, sound inference
rules for reasoning with these two kinds of diagrams
are proposed. The proposed inference rules are
practically uvseful, for instance, for implementing
computer-aided system modeling tools. In an early
step of a model development process, a system ana-
lyst commonly uses a class diagram for visualizing
the structural aspect of the system being modeled.
Such a class diagram typically focuses solely on the
static relationships among classes of objects in the
problem domain, and the internal components of a
class, such as the operations each class provides, are
often left unspecified. Thereafter, in order to de-
scribe the dynamic behavior of the system, the sys-
tem analyst usually uses sequence diagrams for
specifying how objects in the system collaborate on
petforming tasks in various scenarios. By using the
inference rules, such as Rules 3, 4 and 5, a modeling
tool can make use of the information contained the
sequence diagrams to automatically refine the class
diagram, e.g., to declare necessary operations in
classes. Other inference rules, such as Rules 1 and
2, can then be used, for example, for deriving im-
plicit properties of diagram components and for
checking the consistency of UML models.

The authors believe that the work reported in this
paper provides a solid theoretical basis for the se-
mantics of UML and for the construction of com-
puter-aided software engineering tocls. For exam-
ple, using knowledge-based software engineering
approach (e.g., [6]), the presented inferences rules
can be encoded as part of the general knowledge on
the domain of UML, which can then be used by
some inference engine in order to make a UML
model more complete and consistent. Furthermore,
once the precise semantics of UML is firmly estab-
lished, the mapping rules for transforming a UML
model to some specific implementation language,
such as Java or C++, can be accurately identified,
and, consequently, forward engineering and reverse
engineering UML models can be (at least partly)
automated.

Acknowledgement
This work was supported by the Thailand Research
Fund, under Grant No. PDF/31/2543.

References

{11 Booch, G., Jacobson, 1. and Rumbaugh I, The
Unified Modeling Language User Guide, Ad-
dison-Wesley, 1999,

{2] Evans A. S., Reasoning with UML Class Dia-
grams, Proe. 2™ IEEE Workshop on Indus-
trial-Strength Formal Specification Tech-
niques, Boca Raton, Florida, IEEE Press,
1998.

{3] Evans, A.S. and Kent, 8., Core Meta-Modeling
Semantics of UML: The pUML Approach, Lec-
ture Notes in Computer Science, vol. 1723, pp.
140-1335, Springer-Verlag, 1999,

[4] France, R., Evans, A. §., Lano, K. and Rumpe,
B., The UML as a Formal Modeling Notation,
Computer Standards and Interfaces, vol. 19, no.
7, pp- 325-334, Elsevier Science, 1998.

[51 Jacobson, L, Booch, G. and Rumbaugh, 1., The
Unified Software Development Process, Addi-
son Wesley, 1999,

[6] Nantajeewarawat, E., Wuwongse, V., Anu-
tariya, C., Akama, K. and Thiemjarus, S., To-
wards Reasoning with UML Diagrams Based-
on XML Declarative Description Theory, Proc.
International Conference on Intelligent Tech-
nologies, Bangkok, Thailand, 2000.

[7] Rumbaugh, J., Jacobson, 1. and Booch, G., The
Unified Modeling Language Reference Man-
ual, Addison Wesley, 1999,

[8] The UML Group, The Unified Modeling Lan-
guage Notation Guide (version 1.1), hup#
www rational.com/uml.

[91 The UML Group, The Unified Modeling Lan-
guage Semantics Document (version 1.1),
hetp:/fwww.rational.com/uml.

[10] The precise UML group (pUML), information
available at htip://www.cs york.ac.uk/puml.

[11] Spivey, J. M., The Z Notation — A Reference
Manrnual, Prentice Hall, 2nd Edition, 1992.

[12] Woodcock, J. and Davies, 1., Using Z Specifi-
cation, Refinement and Proof, Prentice Hall,
1996.

[13] Wordsworth, J. B., Software Development
with Z - A Practical Approach to Formal
Methods in Software Engineering, Addison-
wesley, 1992,

10

Publishet in Tanpraser, T., editor, Proceadings of the Second international Conterence on Intelligent Technologies
{InTech'2001}, Bangkok, Thailand, pages 240-249, November 2001. ISBN $74-615-068-5.

Generating Relational Database Schemas from UML Diagrams
Through XML Declarative Descriptions

Ekawit Nantajeewarawat
IT Program
Sirindhorn Intl. Inst. of Tech.
Thammasat University

Vilas Wuwongse
CSIM Program
School of Advanced Tech.
Asian Institute of Techuology

Surapa Thiemjarus
IT Program
Sirindhorn Intl. Inst. of Tech.
Thammasat University

Pathumthani 12121, Thailand Pathumthani 12120, Thailand Pathumthani 12121, Thailand

E-mail: ekawit@siit.tu.ac.th

E-mail: vw@cs.ait.ac.th

E-mail: st01@doc.ic.ac.uk

Introduction

Kiyoshi Akama
Center for Information
and Multimedia Studies
Hokkaido University
Sapporo 060-0811, Japan
E-mail: akama®@cims.hokudai.ac.jp

Chutiporn Anutariya
CSIM Program
School of Advanced Tech.
Asian Institute of Technology
Pathumthani 12120, Thailand
E-mail: ca@cs.ait.ac.th

Abstract: With strong support from leading system-modeling methodologists,
academics and, most importantly, the Object Management Group (OMG), it
comes as no surprise that the Unified Modeling Language (UML)} is matur-
ing into a de facto standard object-oriented language for modeling software-
intensive systems. For a variety of reasons, e.g., compatibility with existing
gystems and databases, most object-oriented applications still rely upon a re-
lational database management system despite their original object-centered
designs. Integrating relational databases into object-oriented applications ne-
cessitates transformations from the structural parts of object-oriented models
into relational database schemas. It is demaonstrated in this paper that map-
ping rules for such transformations, which constitute an important part of
general knowledge in the domain of UML, can be represented as XML defi-
nite clauses. Of central importance to this approach, such definite clauses use
XML expressions as their underlying data structure; consequently, not only
can they directly describe diagram components that are represented in XML
Metadata Interchange format {XMI)—a standard XML-based interchange for-
mat for UML diagrams—in addition, they can seamlessly specify information
to be extracted from the diagram components as well as new information to be
derived.

Key words: UML, XMI, XML declarative descriptions (XDD}, Knowledge
representation, Knowledge-based systems, Object-oriented models, Relational
models, Forward engineering, Database schemas

(UML) [6, 13] has undoubtedly become the most

The past decade saw rapid growth in the pop-
ularity of object-oriented (OO) software devel-
opment. Notwithstanding some architectural in-
elegance, most OO0 applications are still employ-
ing relational databases as their persistent data
repositories. Such practices arise from several
reasons: compatibility with existing legacy sys-
tems, reliability and existing user-awareness of
the relational database technology, and the sim-
plicity, with sound mathematical foundation, of
the relational model [7]. Irrespective of stor-
age technology, the Unified Modeling Language

widely-used standard notation for specifying, vi-
sualizing and documenting the artifacts of large-
scale O0-based software systems.

This paper discusses a practical area in which
the framework for knowledge representation in
the domain of UML proposed in [11] is applica-
ble; that is, automated database schemas gen-
eration. The framework is based on the con-
cepts of XML specialization system and XML
declarative description (XDD) [5, 14]. UML di-
agrams are represented in XML Metadata In-
terchange (XMI) format [16], a standard text-

<Table idkef="5,1"
nama="Sludent” >

Relational Database Schema

iiidil

X090 for
Tables Composition

<Column name="makx"
isnul="false", ...
Isunique="faise />
<fTable>

4

Equivalent

Transformation
XDD for

Components Derivation

4

xMI
Represenlation

4

*

S-Expression

UML Class Diagram

Figure 1: OQverview of the framework

based representation for UML, which enhances
the interoperability between UML supporting
tools. General knowledge in the UML domain
is represented as a set of XML definite clauses.
Equivalent Transformation (ET) [3, 4] is em-
ployed as a computation foundation. Altogether,
a knowledge base prototype has been built using
Equivalent Transformation Interpreter (ETI}, an
ET-based reasoning engine recently developed at
Hokkaido University, as its computation appara-
tus.

As outlined in Figure 1, in order to gener-
ate table schemas, represented in the XML for-
mat [9], from persistent classes and their asso-
ciations, the components of a UML diagram are
first converted into their XMI representations us-

ing some currently available software tool, such
as Rational Rose, UCI's Argo/UML and IBM’s
XMI Toolkit. The general knowledge for con-
structing relational database schemas from UML
class diagrams is divided into two layers: com-
ponents derivation and tables composition. Not
only does this two-layer architecture allow de-
rived table components to be rendered in a vari-
ety of formats; it also makes the prototype sys-
tem more amenable to extensions and modifica-
tions. The XMI representations are translated
into s-expressions, while XML definite clauses
representing the general knowledge are imple-
mented as ET rules. The ETI engine operates
on these procedural rules and s-expressions to
generate table components and combine them in
a required form.

The focus of this paper is on the employ-
ment of XML definite clauses in representing
mapping rules for transforming the structural
parts of UML models into relational database
schemas. To start with, Section 2 summarizes
such mapping rules. Section 3 illustrates XMI
representations of UML class diagrams. It is
followed by an informal review of XML defi-
nite clauses and XDD theory in Section 4. Sec-
tion 5 shows how to represent the mapping rules
and at the same time explains the use of XML
definite clauses by means of practical examples.
The conversion of XMI representations into s-
expressions along with illustrations of ET-rules
obtained from XML definite clauses is given in
the appendix.

2 Transforming Class Diagrams
into Relational Schemas

To bridge the gap between OO0 constructs and

relational schemas, their interconnections have

heen studied extensively and variations of mapp-

Addross Residence Stugent Seclion
- street : Slring - roomMo ; Inleger .1 0..4 | - studentld : String 0..100 .| saeha: \nlege.r 1.10
- city : String - dormCode : String slaysAt ‘accEGPA: Double p— p— -cIassScheQuIe. Schedule
- province ; String - sddress : Address - major ; Slring - examDate : Date
- zipCode : String - phoneNa : String - creditskarned: Integer ~ maeSrdent(s - Studenl
- country : Sirin a udenl(s : Sluden
v advisee | 0..30 Takes + updatelnstrli: Instractor} | 2%
+ updateSchedule{) i
workStatus, advises - examScore: Integer _
) - assignScare : Integer section T
Persan advisor | 1 - tolalScore : Intager
Instruelor - grade : Grage Course
-firslName : String workSlatus e
- lastNama : String - acadRank ; String - code ':;tlrmngg
- birthDate : Date - degrea ! String \ecturer —3 nams : Sul
- marilaiStatus : Boal - speciality ; String - credits .llnta‘ger
- sex : Char - researchArea : String orerequisitaOf - dascrplion : String
+ addAdwiseals : Studant)

Figure 2: A UML class diagram

ings between UML class diagrams and database
tables have been proposed [7, 8, 10]. Although
only a set of selected widely used mapping rules
is discussed in this paper, the presented approach
is directly applicable to other mapping rules.

As a specification of the static design view of
a system, a class diagram contains a collection
of structural model elements, centering round
the concept of class. There are various types of
classes, not all of which should be materialized
as part of a database schema. In general, entity
classes are suitable candidates; regardless of their
surroundings and applications, they model infor-
mation and associated behavior that last long. In
practice, classes of objects that will be stored in
a database for future retrieval are often marked
with the stereotype “persistent”.

Classes, Association Classes, and Their
Internal Components As a commonly used
clags-to-table mapping rule, a persistent class
will be mapped into a table. However, not only
are tables generated from persistent classes, they
can also be created, as will be seen later, from
associations of several kinds (e.g., ordinary asso-
ciations, derived associations, and aggregations).
For the sake of uniformity, a distinguished col-
umn named “ID” of type Integer will be used
as the primary key of each generated table. With
the assumption that primitive types are sup-
ported by most relational database systems, an
attribute having a primitive type will simply be
mapped into a column of that type in the ta-
ble for its owner class. Association classes (e.g.,
Takes in Figure 2) will be treated as ordinary
classes.

Associations and Aggregations An associ-
ation will normally be mapped into a separate
table; then, in order to refer to the objects con-
nected across an association instance, the pri-
mary key of the table for the class at each end-
point of the association will be used as a for-
eign key in the table for the association. How-
ever, instead of generating a separate table, when
the multiplicity at its navigable endpoint is not
greater than one, a unidirectional association can
be buried as a foreign key in an existing table—
the table for the class at its non-navigable end-
point. Considering the class diagram in Figure
2. for example, the association staysAt can be
buried in the table for Student as a foreign key
referring to the table for Residence; likewise, the
association has can be buried as a foreign key in
the table for Section. An aggregation is regarded
as a kind of association; therefore, it follows the
same mapping rules.

Derived Associations An attribute having a
non-primitive type will be transformed into an

Address Residence

- slreat : String

- cily ; String

- province : String
- ZipCede : String
- country ; String

- ronmNo : Integer
- dormCade . String
- phaneia © String

1 acdress

Figure 3: A derived association

<UML:Clags zmi.id="S.7" name="Student"
generalization="G.24">
<UML:Namespace,ownadElsment>
<UML:Generalizaiton xmi.id="G, 24"

name="workingStatus" vigibility="public"

child="8,7" parent="S.1"/>
</UML:Namespace.ounedElemant>
<UML:Classifier.feature>
<UML:Attribuve xmi.id="5.3"
name="studentId" type="G.19">
<UML:StructuralFeature.multiplicity>
<UML:Multiplicity>
<UML:Multiplicity.range>
<UML:MultiplicityRange
lower="1" upper="1"/>
</UML:Multiplicity.range>
<fUML:Multiplicity>
</UML:StructuralFeature.multiplicity>
<UML:Attribute.initialValue>
<UML;Expression bedy="0"/>
</UML:Attribute.initialValue>
</UML:Attribute>

<fUML:Classifier.feature>
</UML:Class>

Figure 4: A Class-element

association, called derived association, connect-
ing its owner class with the non-primitive type.
Such an association is always unidirectional; the
non-primitive-type endpoint is navigable and the
multiplicity at this endpoint follows the multi-
plicity of the attribute. For example, the at-
tribute address of the class Residence in the
class diagram in Figure 2 will be transformed
into the derived association shown in Figure 3,
provided that the multiplicity of this attribute
is one. The mapping rules for usual associations
apply to derived associations.

Generalizations There are three basic map-
ping approaches for generalization relationships:
the normal approach, where a class and each of
its subclasses are mapped to separate tables; the
many-subclass approach, which eliminates the ta-
ble for a superclass and replicates all attributes
of the superclass in the table for each of its
subclasses; the one-superclass approach, which
brings all attributes of subclasses up to a super-
class level. Adopted in this paper is the nor-
mal approach, as it straightforwardly harmonizes
with other mapping rules.

3 XMI Representations of Class
Diagrams: Examples

Each class in a class diagram is encoded in the
XMI format as a Class-element, each associa-
tion and each aggregation as an Association-
element, each association class as an Associa-
tionClass-element, each generalization as a Ge-
neralization-element, and each primitive type
as a DataType-element. The namespace UML is
used. Referring to the class diagram in Figure
2, for example, the class Student, the associa-
tion advises and the association class Takes are
represented by the XML elements in Figures 4,
5 and 6, respectively (using XMI version 1.1).
The DataType-element representing the primi-
tive type String is shown in Figure 7. Assuming
that the identifier of the Class-element repre-
senting the class Person is 8.1, the Generaliza-
tion-element enclosed within the Class-element
in Figure 4 indicates that Student is a subclass
of Person. Each attribute of Student is repre-
sented by an Attribute-element; due to space
constraints, only the element representing the at-
tribute studentld is shown in Figure 4. Unless
another value is specified in a class diagram, the
multiplicity of an attribute, which is encoded as
a Multiplicity-element, is assumed to be one.

Each of the two AssociationEnd-elements en-
closed in the Association-element in Figure 5
represents one endpoint of the association advises
and describes the adornments, e.g., role name,

<UML:Association xmi.id="G.7" name="advises"
<UML:Asseciation.connection>
CUML:AssociationEnd xmi.id="G.8"
name="advisor" isNavigablez"true"
aggregation="none" type=“S.12">
<UML:AssociationEnd.multiplicity>
<UML:Multiplicity>
<UML:Multiplicity.range>
<UML:MultiplicityRange
louer=ll1 n uppg::l!ill,)
</UML:Multiplicity.range>
</UML:Multiplicity>
</UML:AssociationEnd.multiplicity>
</UML:AssociationEnd>
<UML:A=sociationEnd xmi.id="G.9"
name="advigee” isNavigable="tzus"
aggregation="ncne" type="S.7">
<UML:AssociationEnd.multiplicity>
<UML:Multiplicity>
<UML:Multiplicity.range>
<UML:MultiplicityRangs
lower="0" uppar="30"/>
</UML:Multiplicity.range>
</UML:Multiplicity>
</UML:AssociationEnd. .multiplicity>
</UML:AssociationEnd>
</UML;Association.connection>
</UML:Association>

Figure 5: An Association-element

<UML:AssociationClass xmi.id="5.30" name="Takes">»
<UML:Asgociation.connection>
<UML:AssociationEnd xmi.id="G.17"
name="" isNavigable="true"
aggregation="none" type="5.26">

</UML:AsseciationEnd>

<UML:AssociationEnd xmji.id="G.18"
name="theStudent" isNavigable="true"
aggregation="none" type="S.7">

</UML:AssociationEnd>
</UML:Association.connaction>
<UML:Classifier.feature>
<UML:Attribute xmi.id="S§.31"
name="grade" type="G.19">

</UML:Attribute>

</UML:Classifier.feature>
</UML:AssociationClass>

Figure 6: An AssociationClass-element

<UML:DataType xmi.id="G.19" name="String"
vigibility="public" isRoot="false"
isLeaf="falge" isAbstract="false"
isSpecification="false"/>

Figure 7: A DataType-element

navigability and multiplicity, of the association
at that endpoint. For instance, the second Ass-
ociationEnd-element indicates that Student is
at one endpoint of advises by referring to the
identifier $.7 through the attribute type, and
describes the navigability and multiplicity of ad-
vises at this endpoint using the attribute isNa-
vigable and a Multiplicity-element, respec-
tively. The attribute aggregation of an Asso-
ciationEnd-element specifies whether the end-
point it represents is an aggregate.

Since an association class, e.g., Takes in Fig-
ure 2, is regarded as both a class and an asso-
ciation, the structure of the AssociationClass-
element representing it, e.g., the element in Fig-
ure 6, subsumes the structure of a Class-element
and that of an Association-element. More
examples of XMI representations of UML dia-
grams, including interaction diagrams, are pro-
vided in [11].

4 XML Declarative Descriptions:
An Informal Review

XML declarative description (XDD) theory [5,
14] is developed based on Akama’s theory of
declarative descriptions [1]—an axiomatic the-
ory that has provided a general template for
discussing the semantics of definite-clause-style
declarative descriptions in a wide variety of data
domains, including typed feature terms [12] and

conceptual graphs [15). In XDD theory, the
ordinary well-formed XML elements [9] are ex-
tended by incorporation of variables. Such ex-
tended XML elements are called XML ezpres-
sions. A variable has a dual function: it de-
notes a specialization wildcard (i.e., a variable
can be specialized into an XML expression or
a part thereof) and, at the same time, behaves
as an equality constraint (i.e., any occurrence of
a variable within the same scope must be spe-
cialized in the same way). Five disjoint classes
of variables, with different syntactical usage and
specialization characteristics, are employed: N-
variables {name-variables), S-variables (string
variables), P-variables {attribute-value-pair-var-
iables), E-variables { XML-ezpression-variables),
and [-variables (intermediate-expression-varia-
bles). An N-variable is assumed to be prefixed
with “$N:” and can only be instantiated into ei-
ther a tag mame or an attribute name; an 5-
variable prefixed with “$S:” and instantiated
into a string; a P-variable prefixed with “$P:”
and instantiated into zero or more attribute-
value pair(s); an E-variable prefixed with “$E:”
and instantiated into zero or more XML ex-
pression(s); finally, an I-variable prefixed with
“$I:” and instantiated into a part of an XML
expression of some specified pattern. Conven-
tional well-formed XML elements are regarded
as variable-free XML expressions, called ground
XML expressions.

An XML definite clause C is an expression of
the form

H + Bl"":BmJ,Bla"'jﬁnu

where m,n > 0, H and the B; are XML-
expressions, and each of the §; is a predefined
constraint, whose satisfaction is independent of
any XML definite clause and is determined in
advance. The XML expression H and the set
{Bi,...,Bm,f1,. .., B} are called, respectively,
the head and the body of C. When its body is the
empty set, € will be referred to as an XML unit
elause and the symbol ‘' will often be omit-
ted. An XML definite clause will alsc be called a
definite clause or simply a clause, provided that
no confusion is caused. Figure 8 illustrates a
simple XML definite clause, where the member-
expression in its body is a predefined constraint.

The scope of a variable is a single XML defi-
nite clause. For the sake of readability, a variable
that specifies an equality constraint, i.e., a vari-
able with more than one cccurrence in a clause
(such as $S:CId and $N:Tag in Figure 8), will
be underlined. The Prolog notation for anony-
mous variables is adopted; i.e., a variable suffixed
with the symbol ‘7’ (such as $E:7? and $P:7? in
Figure 8) is regarded as an anonymous variable

(different occurrences of which are always con-
sidered to be unrelated).

An XML declarative description (XDD) is a
set of XML definite clauses. By means of ex-
amples, the usage of variables and XML definite
clauses will be explained from a practical view-
point in the next section. For theoretical details
of XDD theory, including the precise specializa-
tion operation on XML expressions and the for-
mal semantics of XDDs, the reader is referred to
5, 11, 14].

5 Representing Transformation
Rules as XML Definite Clauses

The XML elements representing diagram com-
ponents, e.g., those in Figures 4, 5, 6 and 7, will
be regarded as XML unit clauses. The use of
XML (non-unit) definite clauses in describing the
mapping rules discussed in Section 2 will now be
demonstrated.

5.1 Deriving Table Components

From Classes and Association Classes The
clause C'ry, in Figure 8 specifies that a ta-
ble name can be derived from either a class
or an association class. The $N:Tag-expression
in its body can match a ground Class-element
or AssociationClass-element, say Fo, by in-
stantiating the N-variable $N:Tag into the tag
name UML:Class or the tag name UML:Associ-
ationClass; the S-variables $5:CId and $S:Nm
into the identifier and the name, respectively, of
Eq; the anonymous P-variable $P:7 into zero
or more attribute-value pair(s) of Eg; and the
anonymous E-variable $E:7 into zero or more
immediate subelement(s} of Eo. By specifying
the list of the two tag names as its second ar-
gument, the member-constraint in the body of
Cry, disallows any instantiation of $¥:Tag into
any other tag name. Once the body matches
the ground element Ego, a TableName-element
is derived, along with the identifier and the
name of E¢ as its reference and its name, re-
spectively. For instance, by specializing the
body of Cry, into the Student-element in Fig-
ure 4, the element <TableName idref="S§.7"
name="Student"/> is obtained.

<dd : TABLENAME>
<TableName idref=$3:CId name=33:Nm/>
</dd ;: TABLENAME>

+— <dd:FACT>
<$N:Tag xmi.id=$5:CId name=§S:Nm $P:7> $E:7
</3N:Tag>
</dd:FACT>,
member($N: Tag, [UKL:Class, UML: AsseciationClass])

Figure 8: Clause Cry,, Generating table names
from classes or association classes

<dd : COLUMN>
<Column idref=$S:CId name=§5:ANm type=3S:Thm/>
</dd:COLUMN>

i <dd:FACT>
<$N:Tag xmi.id=$3:CId $P:7>
<$I:1>
<UML:Attribute
name=$5;ANm type=$3:AType $P:7> $E:7
</UML:Attribute>
</$1:1> SE:?
</$N:Tag>
</dd:FACT>,
<dd:FACT>
<UML:DataType xmi.id=$5:4Type
name=§5:TNm 3P:?> $E:?
</UML :bataType>
</dd:FACT>,
member{$N:Tag, [UML:Class, UML: AssociationClasE])

Figure 9: Clause Ccyr,, Generating columns
from attributes with primitive types

From Attributes The clause Cop; in Figure 9
maps an attribute with a primitive type into a
column of the table for its owner class (or as-
sociation class). The body of this clause refers
to a Class-element or an AssociationClass-
element, say F¢, and a DataType-element, say
Ep. To specify that Eo contains an Attri-
bute-element, say E4, representing an attribute
with a primitive type, an equality constraint be-
tween the type of E4 and the identifier of Ep is
imposed using the S-variable $5:AType. When
such elements Eqo, Fp and E4 are found, the
clause Cop; generates a Colummn-element with
the identifier of E¢, the name of E4 and the
name of Ep as its reference, its name and its
type name, respectively, through the S-variables
$3:CId, $S:ANm and $S: TNm.

This clause also illustrates an application of
another kind of variable--J-variable. The I-
variable $I:1 is used in the body of Cgpy to
form a generic expression, i.e., $1:1-expression,
which can be specialized into any XML ele-
ment containing as its (not necessarily imme-
diate) subelement an Attribute-element of the
pattern specified by the enclosed Attribute-
expression. As an illustration, the $N:Tag-
expression, enclosing the $I:1-expression, can
be instantiated into the Class-element in Fig-
ure 4; then, since the DataType-expression in the
body matches the DataType-element in Figure 7,
the clause Cgypq yields among others the el-
ement <Column idref="S5.7" name="student-
Id" type="String"/>.

An attribute with a non-primitive type will not
be transformed into a column directly, but into
a derived association, which will then be treated
virtually as an ordinary association. Transfor-

<dd:DERIVED: ASSOCIATION>
<DERIVED:Association idref=35:Ald name=3S:ANm>
<AssociationEnd type=$3:CId
name=$S:CNm isNavigable="false" $P:7>
<Multiplicity lower=“0" upper="-1"/>
</AssociationEnd>
<AssociationEnd type=3$5:AType name=$S5:Alm
attributeType="true" isNavigable="true">
<Multiplicity
lower=$3:Llower upper=$5:Upper/>
</UML: AssociationEnd>
</DERIVED:Association>
</dd:DERIVED:ASSOCIATION>

4+ <dd:FACT>
<§N:Tag xmi.id=$5:CId name=35:CNm $P: 7>
<$1:1>
<UML:Attribute xmi.id=$5:4Id
name=$S:ANn type=$S:AType $P:7>
<$1:2>
<UML:Multiplicity.Range
lower=$S:Lower upper=$5:Upper/>
</$1:2> $E:7
</UML:Attribute>
</$I:1> BE:7
</§N:Tag>
</dd:FACT>,
<dd:FACT>
<UML:Class xmi.id=35:AType $P:7> $E:7
</UML:Class>
</dd:FACT>,
member($¥:Tag, [UML:Class, UML:AssociationClass])

Figure 10: Cpa, Deriving associations from at-
tributes with non-primitive types

mation of such an attribute is described by the
clause C'p 4 in Figure 10. The variable $S: AType
in its body specifies that this clause is active
when the type of an Attribute-element, say Ea,
is the identifier of some Class-element, say E,
which means the type of E4 is non-primitive.
When active, the clause generates a derived bi-
nary association with the class (or association
class) to which the attribute represented by Ej4
belongs as one endpoint and the class represented
by Eo as the other endpoint. The maultiplicity
at the former endpoint is unspecified (“-17 de-
notes an unbounded upper limit), while that at
the latter follows the Multiplicity-element en-
closed within E4. Moreover, the latter endpoint
is navigable, whereas the former is not.

From Associations As a special case, a uni-
directional association with the multiplicity at
its navigable endpoint not greater than one will
be mapped into a foreign key in the table for
the class at its non-navigable endpoint, rather
than transformed into a separate table. Deriva-
tion of such a foreign key is described by the
clause Copo in Figure 11. The body of Crore
specifies the pattern of an Association-element,
say Fass, One AssociationEnd-subelement of

<dd : COLUMN>
<Column idref=$5:CIdl name=$5:AssocNm
type="Integer" reference=§S§:CNm2
isnull=$5:IsNull />
</dd; COLUMN>

+ <dd:FACT>
<UML:Association name=§S:AssocNm §P:7> SE:7
<UML:Association.connection>
<UML:AssociationEnd type=$3:(Id2
isNavigable="true"” $P:7>
<§I:1>
<UML:MultiplicityRange
lower=$S5:Lowerl upper="1"/>
<f$I:1> SE:7
</UML: AsgociationEnd>
<UML:AssociationEnd type=$5:CIdl
isNavigable="falze" $P:?> §E:7
</UML:AgssociationEnd>
</UML:Assaciation.connection> $E:?
</UML: Association>
</dd:FACT>,
<dd :FACT>
<UML:Claea xmi.id=$S:CI1d2 name=§S:CNm2 $P:7>
$E:7
</UML:Class>
<dd:FACT>,
isnull($8:Loverl, $5: IsNull)

Figure 11: Coyy, Burying unidirectional associ-
ations with suitable multiplicity as foreign keys

<dd:TABLENAME>
<TableName idref:=$S:Assocld name=$5:Assockm/>
</dd: TABLENAME>

— <ad:FACT>
<DML:Association xmi.id=$:5:4830cld
name=$5:AsocNm $P:7> $E:?
<UML:Association.connection?
<UML:AssociationEnd
iaNavigable=§3:Nvl $P:?>
<37:1>
<UML:MultiplicityRange
upper=§5:Uppexrl $P:7/>
</$1:1> §E:7
</UML:AsscciationEnd>
<UML:AssociationEnd
igNavigable=$:Nv2 §P:7>
<§I:2>
<UML:MultiplicityRange
upper=§5:Upper2 $P:7/>
</§1:2> §E:7
<fUML: AssociationEnd>
</UML:Asscciation.connection> $E:?
</UML: Asseciation>
</dd:FACT>,
seperatel'able($5:Nv1, $8:Nv2, $5:Upperl, §5:Upper2)

Figure 12: Cra, Generating table names from
associations to which Cery is inapplicable

which, say Eg, , represents a navigable endpoint
with the multiplicity upper limit bounded to one,
while the other AssociationEnd-subelement of
which, say Eg,, represents a non-navigable end-
point. When such an Association-element Eaq,
is found, a Column-element, say Ecg, is derived.

<dd : COLUMN>
<Column idref=$3:Assocld name=3S5:Endllm
type="Integer" reference=$3:Cm
ispull="falee" />
</dd:COLUMN>

+— <dd:FACT>
<UML:Association xmi.id=8§5:As80cld §P:7> $E:7
<UML:Association. connections
<UML:AssociationEnd name=38:Endilm
isNavigable=var§S5:Nvl type=$35:CId $P:7>
<$I:1>
<UML:MultiplicityRange
upper=§S:UL $P: 7>
/811> $E:7
</UML:AssociationEnd>
<UML:AssociationEnd
isNavigable=§S:Nv2 $P:7>
<3I:2>
<UML:MultiplicityRange
upper=§5:U2 $P:7/>
</$1:2> $E:7
</UML:AssociationEnd>
¢/UML:Association.connection> $E:?
</UML:Assaciation>
</dd:FACT>,
<dd:FACT>
<UML:Class xmi.id=%$8:CIld
name=§3:CNm $P: 7> §E:7
</UML:Class>
</dd :FACT>,
seperateTable($3:Nvi, $8: Nv2,$8:UL,$5:02)

Figure 13: Ccpy, Generating columns from as-
sociations to which Ccr, is inapplicable

The element E¢o adopts the name of Eag,, and
refers to the type of Eg,, meaning that it repre-
sents a column of the table for the class at the
endpoint represented by Eg,. Furthermore, it
makes a reference to the name of the class at
the endpoint represented by Eg,, which is also
the name of the table generated from this class;
this means the column represented by Eq, is
a foreign key referring to this table. Tested by
the isnull-constraint in the body of Capg, if the
lower bound of the multiplicity at the endpoint
described by Eg, is zero, then the column repre-
sented by Ko, may have the null value.

Other associations will be directly transformed
into separate tables. Their transformations
into table names and columns are described
by the clauses C'ryy in Figure 12 and Ceoprg
in Figure 13. The 4-ary constraint predicate
seperateT'oble is used for examining whether
the navigability and multiplicity of the two end-
points of an association do not satisfy the condi-
tion required by the clause C'r9. That is, given
any strings v; and u, indicating, respectively, the
values of the navigability and multiplicity up-
per bound of one AssociationEnd-element and
any strings v, and 4, indicating the correspond-
ing values of another AssociationEnd-element,

<dd; COLUMN>
<Column idref=$S:Parentld
name=$5;:GenralizationNm type="char"/>
</dd: COLUMN>

+— <dd:FACT>
<3I:1>
<UML:Generalization
name=§5:Genralizationlim
parent=§S:ParentId $P:?/>
</§1:1> $E:7
</ddiFACT>

Figure 14: Ce¢yr4, Generating additional columns
for parent classes

<dd:COLUMN>
<Column idref=$3:ChildId name=$5:Columnim
type="Integer" isunique="true"
reference=$S:Parentlm/>
</dd: COLUMN>

— <dd:FACT>
<$I:1>
<UML:Generalization child=$3:Childld
parent=§5:ParentId §P:?/>
</$I:1> $E:7
</dd:FACT>,
<dd :FACT>
<UML:Class xmi,id=$5:ParentId
name=$35:Parentnm $P:?> $E:7
</UML:Class>
</dd:FACT>
concal($S: Parentin, "ID", $8;:Columnim),

Figure 15: Ccors, Generating additional columnns
for child classes

seperateT able(v;, v;, ui, u;) is not satisfied if and
only if v; = “true”, u; = “1” and v; = “false” for
some i, € {1,2} such that ¢ # j. The identi-
fier and the name of an Associatation-element
into which the Associatation-expression in the
body of Cray is instantiated will be used as the
reference and the name, respectively, of the gen-
erated TableName-clement. As detailed by the
clause Corg, from each endpoint of an associa-
tion that is mapped into a separate table, a col-
umn of that table will be generated.

XML definite clauses for generating table com-
ponents from derived associations obtained from
the clause Cpa in Figure 10 are similar to those
for handling ordinary associations, and are omit-
ted due to space limitations.

From Generalizations Following the normal
approach for dealing with generalization rela-
tionships, a table will be generated for each class.
The components of such a table are generated in
a straightforward way using the clauses Cpy; in
Figure 8 and C¢y,, in Figure 9. Furthermore, an
additional column will be added into the table
for a parent class; this column is used for indi-
cating a specific class of an object described by

each record in that table. On the other hand,
the table for each child class will have an addi-
tional column used as the foreign key referring
to the table for its parent class. Generation of
such a column for a parent class and that for a
child class are specified by the clauses Copy in
Figure 14 and Ceors in Figure 15, respectively,
where the 3-ary constraint predicate coneat in
the body of Cgry yields as its third argument
the concatenation of any two strings given as its
first two arguments.

5.2 Combining Table Components

Out of their components, e.g., table names and
columns, generated through the clauses pre-
sented in the preceding subsection, in order to
construct XML representations of derivable ta-
bles, XML definite clauses will be extended with
the concept of set-aggregate. A set-aggregate
used in this paper is an expression of the form

<dd:Aggregate>
<set> X </set>
<pattern> Ep </pattern>
</dd:Aggregate>,

where Ep is an XML expression specifying the
pattern of XML elements of interest and T a col-
lection of all derivable elements of the specified
pattern Ep. As an illustration, consider the ex-
tended XML definite clause Crp in Figure 16.
For each derived TableName-element En, the set-
aggregate in the body of Crp collects all deriv-
able Column-elements that refers to the element
Epy; then, the clause Crg generates a Table-
element, say Er, that adopts the name of Ey
and contains all the collected Column-elements
together with another Column-element represent-
ing the special column “ID”, used as the primary

<dd:TABLE>
<Table idref=$8:TabRef name=$S:TabNm>
<Column name="ID" isprimary="true"
isunique="true® isnull="false"
type="Integer"/>
$E:AllDerivedColumns
</Table>
</fdd:TABLE>

< <dd:TABLENAME>
<TableName idref=$5:TabRef name=§S:Tablm/>
<dd: TABLENAME>,
<dd:Aggregate>
<gat>$E:AllDerivedColumns </set>
<pattern>
<dd : COLUMN>
<Column idref=$5:TabRef $P:1/>
</dd: COLUMN>
</pattern>
</dd:Aggregate>

Figure 16: Crg, Constructing a table

key of the table represented by Er. For theoret-
ical treatment of aggregates in XDD theory, the
reader is referred to [2, 5].

6 Conclusions

As demonstrated in this paper, mapping rules for
transforming UML class diagrams to relational
database schemas can be represented using XML
definite clauses. A prototype UML knowledge-
based system under the framework outlined in
the first section has been developed and satis-
factory results have been obtained. Since XMI
is becoming a standard textual representation
of UML diagrams, it is expected that the pre-
sented framework has several other promising ap-
plications, such as reverse and forward engineer-
ing UML models and consistency verification of
models. As virtually every tool supporting UML
is capable of reading and writing models using
XMI, integration of the presented knowledge-
based approach into other UML-based software
modeling techniques is possible.

Acknowledgement

This work was supported by the Thailand Re-
search Fund, under Grant No. PDF/31/2543.

References

[1] Akama, K., Declarative Semantics of Logic
Programs on Parameterized Representation
Systems, Advances in Software Science and
Technology, 5, 45-63, 1993.

[2] Akama, K., Anutariya, C., Wuwongse, V.,
and Nantajeewarawat, E., A Foundation for
XML Document Databases: Query Formu-
lation and Evaluation, Technical Report,
CSIM, Asian Institute of Technology, Thai-
land, 1999.

i3] Akama, K., Shimitsu, T., and Miyamoto,
E., Solving Problems by Fguivelent Trans-
formation of Declarative Programs, J.
Japanese Society of Artificial Intelligence,
13(6), 944-952, 1998.

[4] Akama, K., Shigeta, Y., and Miyamoto, E.,
Solving Problems by Eguivalent Transfor-
mation of Logic Programs, Proc. 5th Intl.
Conf. on Information Systems Analysis and
Synthesis, Orlando, Florida, 1998.

[5] Anutariya, C., Wuwongse, V., Nantajee-
warawat, E., and Akama, K., Towards a
Foundation for XML Document Databases,
Proc. Intl. Conf. on E-Commerce and Web
Technologies, London-Greenwich, UK, Lec-
ture Notes in Computer Science, Vol. 1875,
pp. 324-333, Springer-Verlag, 2000.

[6] Booch, G., Rumbaugh, J., and Jacobson, 1.,
The Unified Modeling Language User Guide,
Addison Wesley, 1998.

(7] Brown, K. and Whitenack, B. G., Crossing
Chasms: A FPattern Language for Object-
RDBMS Integration, J. Vlissides et. al.
(eds.}, Pattern Languages of Program De-
sign 2, ch.14, Addison-Wesley, 1996,

[8] Demuth, B. and Hussmann, H., Us-
ing UML/OCL Constraints for Relational
Database Design, Proc. 2nd Intl. Conf. on
the Unified Modeling Language, Lecture
Notes in Computer Science, Vol. 1723, pp.
508-613. 1999,

(9] Goldfarb, C. F. and Prescod, P., The XML
Handbook, Prentice Hall, 1998.

[10] Keller, W., Mapping Objects to Tables,
Proc. 1997 Buropean Pattern Languages of
Programming Conf., Irrsec, Germany, 1997,

[11] Nantajeewarawat, E., Wuwongse, V., Anu-
tariyva, C., Akama, K., and Thiemjarus,
S., Towards Reasoning with UML Die-
grams Based-on XML Declarative Descrip-
tion Theory, Proc. Intl. Conf. on Intelligent
Technologies, Bangkok, Thailand, pp. 341~
350, 2000,

[12] Nantajeewarawat, E. and Wuwongse, V.,
Defeasibie Inheritance Through Specializa-
tion, Computational Intelligence, 17(1), 62—
86, 2001,

[13] Rumbaugh, J., Jacobson, 1., and Booch, G.,
The Unified Modeling Language Reference
Manual, Addison Wesley, 1999.

[14]) Wuwongse, V., Anutariya, C., Akama, K.,
and Natajeewarawat, E., XML Declarative
Description: A Language for the Semantic
Web, IEEE Intelligent Systems, 16(3), 54—
65, 2001.

[15] Wuwongse, V. and Nantajeewarawat, I,
Declarative Programs with I'mplicit Implica-
tion, IEEE Transactions on Knowledge and
Data Engineering. (To appear)

116] XML Metadata Interchange Format (XMI),
iBM Application Development, www-4.ibm.
com/software/ad/standards/xmi.htmi.

Appendix

As Equivalent Transformation Interpreter (ETI),
the inference engine used in the current pro-
totype implementation of this work, operates
on facts that are encoded in the form of s-
expressions, XMI representations of UML dia-
grams are converted into data of this form. Such
conversion is straightforward, and can directly
be implemented through the mapping shown in
Figure 17. Furthermore, in order to make infer-
ences from the obtained s-expressions according

XMI Representation

S-Expression Representation

<tag attr) = valy ... attr, = val,/>

((tag (attry valy) ... (attry valy)))

<tag aitr; =val; ...

attry, = val,> val </tag>

{(tag (attr1 valy)...(attr, val,)(content val)))

<tag attry =val; ...
subElements
<ftag>

attr, = val, >

((tag (attry vely)... (attr, valy)) S)

where 5 is one or more s-expression(s) repre-
senting the XML element(s) subElements

Figure 17: Mapping from XMI representations to S-expressions, where tag is a tag name, the attr;
are attribute names, val and the val; are strings, and subPlements is one or more XML element(s)

0 /¢ The BT rule prepared from the clause Cryy */
1 (Rule TN1-GenTableNm

2 (Head (TABLENAME «TN))

3 (Body (exec (= »TN

4 {(TableName (idref *CTd}
5 (name *Nm)))}))
B
7
8

(FACT »X)
(member ({*Tag [*pairs) | 7} *X)
(member (xmi,id *CId} *pairs)
9 (member (name »Nm} *pairs}
10 (membar *Tag
i1 (UML:Class UML:AssaciationClass))
iz)

13 [+ The ET rule prepared from the clause Cgp, */
14 (Rule CL1-GenColumn

16 {(Head (COLUMN +COL))

16 (Body (exec {= *=COL

17 ({Column (idref *CId) (name *ANm}
18 (type *TNm)))))

19 {FACT =X)

20 (member ((*Tag | *pairsi) | *EVARL) *X)
21 (member (xmi.id *CId) *pairsl)

22 {(+ 7 ({(UML:Attribute | spairs2) | 7))}
23 ({*Tag | *pairsl) | *EVAR1))

24 {member {(name *AiNm) *pairs2)

25 (member (type *AType} #pairs2)

28 {FACT ((UML:DataType | *pairs3) | 7)}
27 (member (xmi.id *AType) *pairs3)

28 (member {name *TNm) *pairs3)

20 (member *Tag

a0 {UML:Class UML:AssociationClass))
31N

Figure 18: Examples of ET rules

to the specifications provided by the XML defi-
nite clauses presented in Section 5, a set of pro-
cedural rewriting rules, called Equivalent Trans-
formation {(ET) rules, will be prepared from the
clauses. These ET rules together with the control
mechanism of ETI specify a backward-chaining-
like procedure for generating tables and their
components. As illustrative examples, the ET
rules prepared from the clauses Cry, in Figure 8
and Cpr, in Figure 9 are shown in Figure 18
(Lines 1-12 and 14-31, respectively), where a
term beginning with the asterisk is regarded as a
vartable. Each of these two ET rules consists of
two parts: Head part and Body part. The Head
part of a rule specifies the pattern of expressions
to which the rule is applicable; i.e., the rule is
only applicable to an expression that is more spe-
cific than the specified pattern. When applied,
the rule transforms an expression (which is given

10

({Table (idref "5.7") (name "Student"))
{(Column (pame "ID") (isprimary "true")
(isunique “true"} (isnull "false")}

(type "Integex"}))
{(Column {name "studentID") {type “String")}))
((Column (name "accGPA"} (typs "Double"}})
{(Column (name "majer") (type "String")})
{(Column (name "creditsEarned"}

(type "Integer")))
({Column (name "staysht") (type "Integer')

{reference "Residence")

(isnull "true“)))

{name "PersenID"}

(type "Integer") (isunique "true")
{reference "Parszon')}))

({Column

Figure 19: A derived s-expression

as a goal) into zero or more expression(s) {which
are then regarded as new goals) of the pattern(s)
specified in its Body part. (In general, an ET rule
may also contain some additional conditions for
determining its applicability.)

Consider, for instance, the clause C'ry, in Fig-
ure 8 and the first ET rule in Figure 18. This ET
rule specifies the transformation procedure for
any goal s-expression representing a TableNama-
element. When the rule is applied, such a goal
s-expression will be unified with the s-expression
specified in Lines 4-5 and replaced with the five
s-expressions specified in Lines 6-11. After the
Fact-expression (Line 6) is processed (by some
other rule}, the variable *X will be instantiated
into an s-expression representing some diagram
component, say D, from which certain infor-
mation will be extracted and tested according
to the specification given by the clause Cpp,-
The three member-expressions in Lines 7-9 are
used to extract the tag name and the values of
the attributes xmi.id and name of the XML el-
ement representing the diagram component D;
then, the member-expression in Lines 10-11 tests
whether the extracted tag name is UML:Class or
UML: AssociationClass.

Figure 19 illustrates an s-expression obtained
from the prototype system when it is tested with
the class diagram in Figure 2. This s-expression
represents the generated table for the class Stu-
dent in the diagram. (The idref-expression en-
closed in each Column-expression is omitted.)

Publishad in Tanprasert, T., editor, Proceedings of the Second international Conference on intelligent Technalogies
{mTech'2001), Bangkok, Thailand, pages 392-401, Novermber 2001. ISBN 974-815-068-5.

Expanding Transformation: A Basis for
Verifying the Correctness of Rewriting Rules

Ekawit Nantajeewarawat
IT Program
Sirindhorn Intl. Inst. of Tech.
Thammasat University
Pathumthani 12121, Thailand
E-mail: ekawit @siit.tu.ac.th

Kiyoshi Akama
Center for Information -
and Multimedia Studies
Hokkaido University
Sapporo 060-0811, Japan
E-mail: akama®cims.hokudai.ac.jp E-mail: koke@cims.hokudai.ac.jp

Hidekatsu Koike
Div. of System & Info. Eng,.
Faculty of Engineering
Hokkaido University
Sapporo 060-0811, Japan

Abstract: Unfolding transformation is considered as the composition of two
simpler operations, i.e., expanding transformation and unification. Then it is
pointed out that expanding transformation rather than unfelding transferma-
tion serves as a suitable basis for verifying the correctness of rewriting rules by
means of pattern manipulation, which in turn is an underlying mechanism for
systematically generating rewriting rules from a problem description. The cor-
rectness of expanding transformation is established. The correctness of a basic
class of rewriting rules, called general rewriting rules, is shown thereupon. The
application of expanding transformation and the correctness thereof to the cor-
rectness verification of a larger class of rewriting rules, called expanding-based
rewriting rules, by transformation of clause patterns is demonstrated.

Key words: Rule-based equivalent transformation, Rewriting rules, Pattern
matching, Expanding transformation, Unfolding, Semantics preservation, Rule-
based systems, Declarative descriptions

1 Introduction

As a fundamental transformation rule, the un-
folding rule has long been used in the context of
functional programs for the computation of re-
cursively defined functions and for developing re-
cursive equation programs [8]. The rule consists
in replacing an instance of the left-hand side of a
recursive equation by the corresponding instance
of the right-hand side. By taking its application,
which can be regarded as a symbolic computa-
tion step, to be eguivalent to an application of
the resolution inference rule [12], the unfolding
rule has been adapted to the case of logic pro-
grams {11, 15].

Although the unfolding rule for logic programs
is derived directly from that used in functional
programming, there is a remarkable contrast, be-
tween their application. In the case of logic pro-
grams, to unfold a definite clause with respect to
a body atom B using a set of definite clauses P,
B need not be an instance of the head of some
clause in P—it is only required that B is unifi-
able with the head of some clause in P. This
discrepancy stems from the fact that a unifying
substitution is used in a resolution step—not a
pattern-matching substitution, which is used in a
replacement step for functional programs.

It has been argued in [2, 4, 5] that instead
of basing computation solely upon the resolu-
tion inference rule and the fixed procedural in-
terpretation of definite clauses {as it happens
in the logic programming paradigm [9]), more
efficient and effective computation can be ob-
tained through semantics-preserving transforma-
tion of a set of definite clauses by applying user-
definable rewriting rules in a user-controllable
way. This conviction brought about a new pro-
mising computation framework, called equivalent
transformation {ET} framework |5, 6], which has
provided a solid foundation for knowledge pro-
cessing systems in several application domains
[7, 10, 13, 14, 16].

In the ET paradigm, the applicability of a
rewriting rule is determined by pattern match-
ing rather than unification; as a result, a rewrit-
ing rule can be tailored for some specific pat-
tern of atoms for improvement of computation
efficiency. It will be demonstrated in this paper
that a more basic kind of transformation-—called
expanding transformation—rather than unfold-
ing transformation provides a suitable basis for
discussing the correctness and application of an
important class of rewriting rules by manipula-
tion of patterns of atoms and patterns of clauses.

Such pattern manipulation in turn forms a basis
for meta-level computation for automatic gen-
eration of rewriting rules from a set of definite
clauses in the framework proposed in [3]. The
purpose of this paper is threefold:

e The concept of expanding transformation will
be introduced; its correctness will be proved
based on an appropriate formulation of the
meanings of declarative descriptions.

o A theoretical basis for justifying the correct-
ness of a rewriting rule will be established. A
basic class of rewriting rules, called general
rewriting rules, will be defined. Their correct-
ness will be proved through the correctness of
expanding transformation.

o A larger class of rewriting rules, called ex-
panding-based rewriting rules, will be intro-
duced. Based on manipulation of atom pat-
terns and clause patterns, the application of
expanding transformation to the correctness
verification of rewriting rules in this class will
be illustrated.

By decompaosition of an unfolding step into an
expanding step and a unification step, Section 2
provides an informal introduction to expanding
transformation; then, it explains the appropri-
ateness of expanding transformation as a foun-
dation for discussing the correctness of rewriting
rules based on pattern manipulation. Section 3
defines preliminary syntactic components, which
are used for defining declarative descriptions and
their meanings in Section 4, and rewriting rules,
their application, and their correctness in Sec-
tion 6. Section 5 formally defines expanding
transformation and proves its correctness, which
is then used for verifying the correctness of gen-
eral rewriting rules and expanding-based rewrit-
ing rules in Sections 7 and 8, respectively,

2 Motivation

In the ET model, a problem is formulated as a
declarative description, represented by the union
of two sets of definite clauses, one of which is
called the definition part, and the other the query
part. The definition part provides general knowl-
edge about the problem domain and describes
some specific problem instances. The query part
specifies a question regarding the content of the
definition part. The problem is solved by trans-
forming the query part successively, based on the
definition part, into a simpler but equivalent set
of definite clauses from which the answers to the
specified question can be obtained directly.

2.1 Unfolding = Expanding 4+ Unification
Consider a simple problem formulated as the
union of a definition part D,, consisting of the
three definite clauses

Capyt app([],Y,Y) «
Capz: app([AlX]!Y’ [AlZ]) + app(X,Y, Z)
Ceg: eg(X, X) +

{where app and eq stand for append and equal,
respectively) and a query part ¢y containing
only the definite clause

Ci: answer(X",Y") « app(X',[Y"],[7]).

As the app-atom in the body of C; is unifiable
with the head of Cyy,, using the unifying substi-
tution 4, = {X'/[],Y/[7),Y'/7}, and with the
head of Clgp,, using the unifying substitution
b = {X'/[TX],Y/[Y"],A/7,Z/(]}, the query
part 1 can be transformed by unfolding C, us-
ing D,, into a new query part ¢z consisting of
the two definite clauses

Cy: answer([],7) +
Cy: answer([7|X),Y") « app(X,[Y”'),[}).

From Cy and 6y, an answer to the query part
@1, e, X' =[] and ¥’ = 7, can be obtained
effortlessly. Notice that since the body atom of
('3 is not unifiable with the head of any clause in
D,p, no clause can be obtained by unfolding Cj
using Dyp; as a result, there is no other answer
to the query part.

An unfolding step can be considered as the
composition of two successive more elementary
computation steps: an erpending step and a uni-
fieation step. For instance, the unfolding step
transforming ¢y into ¢J2 can be decomposed as
follows. First, expand C) using D, —that is,
for each clause C in ,, whose head is an app-
atom, rewrite € into another clause by simply
replacing the app-atom in the body of ' with
the body of € along with three eg-atoms equaliz-
ing the arguments of the replaced epp-atom and
the corresponding arguments of the head of C.
This expanding step transforms ¢ into a set @)
comprising the two clauses

C5: answer(X'Y)
« eq(X',[]),eq([Y'], V), eq([7),Y)
Ci: answer(X',Y")
« eq(X’, [A1X]), eq([Y'],Y),
eq((7), [A| ZY), app(X, Y, Z).

[

Next, unify the arguments of each eg-atom in C}
as well as those of each eg-atom in Cj; thereby,
the clauses C3 and Cs are obtained, The for-
mal definition of expanding transformation will
be given in Section 5.

2.2 Pattern Matching and Rewriting
Rules

Instead of using the unfolding rule, cne may de-
vise a rewriting rule for transforming atoms of
some specific pattern. From the definition part
Dy, for example, one may specify as a rule that
an app-atom whose second and third arguments
are both {possibly non-ground) singleton lists,
say L and L', can be removed from the body of
a clause by

o equalizing the first argument of the app-
atom and the empty list, and

s equalizing the element of L and that of L'

Using this rule, the query part ; of Subsec-
tion 2.1 can be transformed in one step into a
query part ()3 containing only the clause

Cy: answer(XY') « eq(X', []),eq(Y’, 7).

This transformation step can be described more
precisely by the rewriting rule

ri: opp(&X, [&Y], [&Z])
- eq(&X,[]), eq(&Y, &2},

where the arrow “—” intuitively means “can
be replaced with” and the left-hand side and
the right-hand side of vy specify the pattern of
atoms to which the rule is applicable and the
pattern of replacement atoms, respectively. By
instantiating &.X, &Y and &2Z, which will be re-
ferred to as meta-variables, into the terms X, Y
and 7, respectively, the pattern in the left-hand
gide matches the body atom of €3 and that in
the right-hand side is instantiated into the body
atoms of Cy—that is, by applying ri to the body
atom of C; using this instantiation, C; is trans-
formed into C4. Determination of rule applica-
bility by pattern matching, as opposed to unifica-
tion, makes the rule r; applicable only to atoms
of the desired pattern. The syntax for rewriting
rules as well as their application will be precisely
described in Section 6.

By the application of r1, not only does the re-
sulting clause Cy in (33 directly yield an answer
(X' =[land Y = 7) to the query part ¢1; in ad-
dition, the absence of any other clause in @3 indi-
cates immediately that there is no other answer.
In comparison, from the set @y = {C2,C3} ob-
tained by the application of the unfolding rule in
the preceding subsection, some further computa-
tion is required in order to find that no clause can
be derived by further unfolding C3 using D,;,
and no other answer exists. In particular, if the
body of C; additionally contains some atom that
is unifiable with the head of some clause in D,
then several useless further unfolding steps may

take place. It is demonstrated in [5] that, in gen-
eral, computation efficiency can be significantly
improved by avoiding transformation steps that
increase the number of clauses.

In the ET paradigm, rewriting rules will be
prepared from a given definition part, and a set of
prepared rewriting rules, instead of the definition
part itself, will be regarded as a program. Based
on meta-level manipulation of atom patterns, a
method for systematically generating rewriting
rules from a definition part is developed in [3].

2,3 Expanding Transformation as a
Basis for Meta-Level Transformation

Expanding transformation and transformation
by application of rewriting rules based on pat-
tern matching have a common characteristic,
i.e., they do not use unification—consequently,
they do not instantiate any variable occurring
in a replaced atom. Considering the body atom
app(X',[Y'],[7]) of i and the transformation
steps in Subsections 2.1 and 2.2, for example,
while X' is instantiated into [] and {7|X] by un-
folding C) into Cy and Cj, neither X' nor V' is
instantiated by expanding C) into C} and Cj,
and neither of them is instantiated by rewriting
(1 using the rule ry into Cy.

In the framework for generating rewriting rules
by means of mata-computation—by manipula-
tion of patterns of atoms rather than ordinary
atoms—proposed in [3], meta-variables such as
&X, &Y and &Z are used to represent arbitrary
ordinary terms. As a representative of all terms,
a meta-variable of this kind should not be in-
stantiated into any specific term in a pattern-
manipulation process. Accordingly, expanding
transformation provides a befitting basis for dis-
cussing the correctness of rewriting rules in this
framework. As an illustrative example, the cor-
rectness of the rewriting rule r; of Subsection 2.2
can be justified by transformation of clause pat-
terns as follows. From a clause of the form

Cr: H .. app(&X,[&Y),[&2]),... ,

where H represents an atom of any arbitrary
pattern and the meta-variables & X, &Y and &2
represent any arbitrary terms, one can expand
C’l using D, into

C’Z: IEI ey BQ(&X: ”)’BQ([&Y])Y)’
eg{[&2],Y),...

Ca: H+ ..., eq(&X,[A]X]), eq([&Y],Y),
eq([& 2], [A|Z]),
app(X, Y, Z),... .

Then, (:'3 can be further expanded using D, into

G H+ ..., eq(&X,[AX]), eq([&Y],Y),
eq([&2],[4]Z)),
eq(X,[]),eq(Y, Y1),
eq(Z,Y1),...

Gy B ..., eq(&X,[A]X]), eq([&Y],Y),

eq([&Z),[A|Z]),

eq(X, [A1|X1]),eq(Y, Y1),
eq(Z, [A]'lZl])s
app{X1,Y1,21),... ,

both of which can be deleted by constraint solv-
ing for eg-atoms (for example, €'y can be re-
moved since any ground instantiation equaliz-
ing simultaneously the two arguments of each
of its eg-atom necessarily instantiates Z into
the empty list and, at the same time, a non-
empty list, which is impossible whatever terms
the meta-variables & X, &Y and &2 represent).
Next, by simplifying its body, G can be rewrit-
ten into

Ch: H— ... eq&X,[]),eq((&Y), [&2]),...,
which can be further simplified into
Cl: H ... eq&X,])),eq(&Y,&Z),... .

This means a clause containing any atom B of
the pattern app(&X, [&Y),[&Z]) can be trans-
formed into another clause by replacing B with
its corresponding atoms of the patterns eq(&X,
[]) and eg(&Y,&Z); thus, the rule r; is correct
3, 4, 5].

It is important to note that in general unfold-
ing cannot be employed in such manipulation
of atom patterns. For instance, to unfold &
with respect to app(&X,{&Y], [&Z]) vsing D.p,
the meta-variable &X has to be unified with [],
which is only possible when &X represents a
variable or the empty list. As a result, in the
presence of a meta-variable representing any ar-
bitrary term, unfolding transformation is usually
not applicable.

3 Basic Syntactic Components
After specifying the alphabet used in the paper,
some basic concepts, e.g., terms and atoms, along
with the concepts of meta-term and meta-atom,
which are used for specifying patterns of terms
and atoms, respectively, will be defined.

Alphabet An &-variable is a variable that be-
gins with the symbol &; e.g., &N and &X are
&-variables. A #f-variable is a variable that be-
gins with the symbol #; e.g., #X and #Y are #-
variables. An &-variable as well as a #-variable
is called a meta-variable. &-variables and #-
variables have different instantiation character-
istics, which will be rigorously specified in Sec-
tion 6. An alphabet A = (K, F,V, R} is assumed,

where K is a set of constants, including integers
and nil; F a set of functions, including the bi-
nary function cons; V is the disjoint union of a
set V) of ordinary variables and a set V3 of meta-
variables; and R is the union of two mutually
disjoint sets of predicates By = {app,eq,...} and
R; = {answer,...}. An ordinary variable in ¥}
is assumed to begin with neither & nor #. When
no confusion is possible, an ordinary variable in
V1 and a meta-variable in V3 will be simply called
a variable and a meta-variable, respectively.

Terms, Meta-Terms, Atoms, Meta-Atoms,
and Substitutions Usual first-order terms on
(K,F,V1) and on (K ,F,V,) will be referred
to as terms and meta-terms, respectively, on
A. Given R’ C R, usnal first-order atoms on
{K,F,V{,R"Y and on {K,F, V2, R') will be re-
ferred to as atoms on R' and meta-atoms on R/,
respectively. The standard Prolog notation for
lists is adopted; e.g., [X, Y] and [7, #X|&Y] are
abbreviations for the term cons{X, cons(Y, nil))
and the meta-term cons(7,cons{#X, &Y)), re-
spectively. First-order atoms on (K, F, 0, R} are
called ground aetoms on A. In the sequel, let T
be the set of all terms on A, and Ga the set of
all ground atoms on A; also let 4; and A; be the
set of all atoms and the set of all meta-atoms,
respectively, on R;, where i € {1,2}. A substitu-
tionon A is a set of the form {v/t1,...,vaftn},
where each v; belongs to Vi, each t; is a term
on A such that v; # t;, and the v; are all dis-
tinct. Each v;/t; is called a binding for v;. Let
Sa be the set of all substitutions on A. A sub-
stitution 8 € Sa is called a variable-renaming
substitution, if and only if for any binding v/t in
8, t € V¥ and for any other binding +'/t' in 8,
t# 1t

4 Declarative Descriptions and
Their Meanings

In general, the ET model can deal with sev-
eral data structures other than usual first-order
ierms, e.g., multisets and XML data, and the
concept of declarative description can be ex-
tended with these data structures [1, 16]. For
simplicity, however, only vsual terms are used
in this paper. Subsection 4.1 specifies the forms
of definite clauses and declarative descriptions
discussed herein; Subsection 4.2 provides some
basic concepts used for defining the meanings
of declarative descriptions in Subsection 4.3 and
their related results used for verifying the cor-
rectness of expanding transformation in Sec-
tion 5.

4.1 Declarative Descriptions

A definite clause C' on A i3 an expression of the
form A + Bs, where Ais an atom on R and Bs is
a (possibly empty) set of atoms on R. The atom
A is called the head of C, denoted by head(C);
the set Bs is called the body of ', denoted by
Body(C); each element of Body{C) is called a
body atom of C. When Body(C) = #, C will be
called a unit clause. The set notation is used
in the right-hand side of C so as to stress that
the order of the atoms in Body(C) is immaterial.
However, for the sake of simplicity, the braces
enclosing the body atoms in the right-hand side
of a definite clause will often be omitted; e.g., &
definite clause A « {Bi,...,Ba} will often be
written as A « By,..., B,.

Let B C R. A definite clause C is said to be
from R; to R', if and only if each element of the
body of € is an atom on R; and the head of C
is an atom on R'. A declarative description from
R to R’ is a set of definite clauses from A; to
R'. The set of all declarative descriptions from
R, to R will be denoted by Dscr(R;,R').

4.2 Basic Definitions and Results

Following the ET framework, a declarative de-
scription in Dser(Ry, Ry) will be used ag a defi-
nition part, while that in Dser(Ry, Rg) a query
part. Given a definition part D and a query part
@, a transformation step rewriting @ into Q' is
considered to be correct if and only if DU and
D U Q' have the same meaning. By exploiting
the fact that not a definite clause from R; to B
but only a definite clause from Ry to Rj is trans-
formed, this subsection lays a simple yet general
basis that not only enables precise discussion of
the meanings of declarative descriptions, but also
simplifies the verification of the correctness of ex-
panding transformation.

In the sequel, given a set 4, let FP(A) denote
the set of all finite subsets of A,

Definition 1 Given U € Ga x FP(Ga), the
meaning of I/, denoted by M (U), is defined by

MU) = UpL [Tu]™ (0),
where for any set X C Ga, Ty(X) is the set
{head | ({head, body) € U)& (body C X)},

and for each n > 2, [Ty]™(0)
and [Ty (@) = Ty(@). =

= Ty ([Tu]*~H{B)

Theorem 1 Letg € Ga and U € Ga x FP(Ga).
Then, g € M(U) if and only if there exists G €
FP(Ga) such that {g,G) € U and G C M(U).

(4]

Proof
g€ M(U)
% (3n>=>1):g € [Tu]*(®)
<= (In> 1)(3(}’ € FP(GAY) :
{{g,G) € U) & (G C [Ty]™ ' (B))]
< (3G € FP(Ga)) :
((g.F) e & (GCT MUY =

In the sequel, let {G1,Ga} be a partition of Ga
(i.e., G1 UGy = Ga and G NGy = §}; in addition,
let Uy C Gy x FP(G1) and Uy C Go x FP(Gh).

Proposition 1 MUy = MU, ulLbING.

Proof It will be shown by induction on n that

To, ™0 = [Tw,uun)|"{®) NG, for each n > 1.
Base case:
g€ [TUI] (@)
= ((3.0) €)
= ((g,8) e (U1 U Uz)) (g€ G)
(g € {T(UIUUz]] (g S gl)
Induction Step:
g € [Ty,]**(9)
<= (3G € FP(G1)): ((9,G) € U1)

& {G C [Tu,]™(0))
< (3G € FP(G)) : ((9,G) € Un)
& (G C ([T uuan M (0) N G))
{by the induction hypothesis)
< (IG e FP(G)): ((9,G) € (Uh U L))

& {geGi) & (G C [Tiwuu” {))
— (3G € FP(gl)) !] € [T UIUUQ)} (@))
& {g € Gh).
As a result:

MU Ul gy

(Ule[T(UluUQ}]nl'@)) NG

= U:O=1([T(U1uUz)]n(@) NG:)
Uﬁil[Tu;]”(ﬂ)

M{T). m

Definition 2 The set T'(U1, Us) is defined by

T{Us,Us) = {head | {(head,body) € Us)
& (body C M(U1))}. =

Proposition 2
MU L) € MU UT (U, Ua).

Proof Let g € MU, U U;). Then, by The-
orem 1, there exists ¢ € FP(G) such that
{g,G) € (V1 UUz) and G C M{U; U U,;). Since
G C G, it follows from Proposition 1 that
G C M(U;). Now suppose that {g,&) € Ui.
Then, by Theorem 1, ¢ € M(U;). Next, sup-
pose that (g, G) € Ua. It follows directly that
geT(U,lh). =

Proposition 3

MU uUy) 2 M{UNUT(U,Us).

Proof Let g € M(U)UT{Uh,Us). Suppose first
that g € M(¥/;). It follows from Theorem 1 that
there exists G € FP(G,) such that (g,&) € U
and G C M(Lh). By Proposition 1, M([;) C
M(Ul Uls). So G C M(U1 U UQ), and, hence,
by Theorem 1, g € M{U, UU3).

Next suppose that ¢ € T(U;,U;). Then there
exists &' € FP(G,) such that (9,G") € Up and
G C M(U1). As M(Th) ¢ MUy UTy) (by
Proposition 1), G € M(Uy U U,). Thus ¢ €
MUy JUs) by Theorem 1. =

Theorem 2 M(UUUs) = M(U))UT (U, Us).
Proef The result follows from Propositions 2

and3. w

4.3 The Meanings of Declarative
Descriptions
Let P € Dscr(Ry, R). Let Pair(P) be the set

{(Head{C8), Body(C8)) | (C € P) & (0 € Sa)

& (Head(C8) € Ga) & (Body(CO) C Ga)}.

The meaning of P will now be defined.

Definition 3 The meaning M(P) of P is de-
fined by M(P) = M(Pair(P)). =

Together with the results of the preceding sub-
section, the next definition and proposition will
be used for proving the results of Subsection 5.2.

Definition 4 Let D € Dscr(R;, R1) and @ €
Dscr(Ry, Rz). The set T(D, Q) is defined by

T(D,Q) = T{Pair(D}, Pair(Q)). =

Proposition 4 Let D € Dser(Ry, Ry) and Q,
Q1,82 € Dser(Ry, Rs). Then, if T(D,Ql) =
T(D,Q2), then M(DUQUEQ,) = M{DUQUQ2).

Proof

T(D, Ql) = T(D$Q2)
<= T(Pair(D), Pair(Q1))
= T(Pair(D), Pair(Q3))
= T(Pair(D)}, Pair(Q1))
U T{Pair(D), Pair(Q))
= T(Pair(D), Pair(Qa})
U T(Pair(D), Pair(Q))
&= T{Pair(D),(Pair{((Q,) U Pair(@)))
= T(Pair(D), (Pair(Q2) U Pair(Q)))
<= T(Pair(D), Pair(Q U Q1))
= T(Pair(D), Pair(Q U Q2))

= T(Pair(D), Pair(Q U Q)
U M (Pair{D))
= T(Pair(D), Pair(Q U Q2))
U M(Pair(D))

< M(Pair(D) U Pair{Q U Q1))

= M(Pair(D) U Pair(Q U Q1))

{by Theorem 2)
= M(Pair(DUQUQ,))

= M{Pair(DUQ U G2))
= MDUQUQ) =MDUQUQs). m

5 Expanding Transformation and
Its Correctness

This section formally defines expanding transfor-
mation and proves the correctness thercof.

5.1 Expanding Transformation

In the rest of this paper, let D € Dser(Ry, Ry)
and assume that D contains the unit clause
eq(X,X) + and does not contain any other
clause from R), to {eq}; furthermore, let p be
an n-ary predicate in R and assume that

Cpy: plst,...,sh) + Bsp,
Cpy: plsi,...,s2) « Bsp,
C.‘Pm: p(S?“,...,SKl) +" Bsp.m

be all the definite clauses from Ry to {p} in D.

Definition 5 {Expanding Transformation} Let
C be a definite clause H + {p{t1,...,tn)} UBs
from Ry to Re. Foreach i (1 <i<m),let p; €
Sa be a variable-renaming substitution such that
C and Cy,p; do not have variables in common.
Then, C can be transformed by ezpanding the
body atom p(t1,...,t,) using D into m definite
clauses Cy,. . .,C}, from R; to R, where for each
i (L £j < m), Cjis the clause

H « {eqlt1,s1pj)r- .. eq(tn, shp;)}
U Bsp,p; U Bs.
The set {C},...,Ch,} will be denoted by

E:t:pand(C,p(tl - ,tn), D1
((Cplipl)': (CP2) Pg), sy (Cpmapm))):

and will be called a result of transforming C by
expanding p(ty,...,tn) using D. N

5.2 Correctness of Expanding
Transformation
In the sequel, assume that (' is a definite clause

H + {p(t1,...,tx)} U Bs

from R, to Ra; Sel{C) denotes the body atom
p(t1, ... tn) of €5 p1,pa,. ... pPm are variable-
renaming substitutions in Sa such that for each
i (1 €i < m), C and Cp,p; have no variable in
common; and

Ezpand(C,p(ty,...,ta), D,
((Cpl ’ Pl), (Cpga p?): LR (Cpm’Pm)))
= {Ch...,Cn}-

Proposition 5

T(D,{C}H) € T(D,{C1,..-,Cru})-

Proof Let g € T(D,{C}). Then, there exists
6 & Sa such that ¢ = HO and ({Sel(C)0} U
Bs#) C M({Pair(D)). Since Sel(C) belongs
to M(Pair(D)), it follows directly from Theo-
rem 1 that there exists G € FP(G,) such that
(Sel(C)8,G) € Pair(D) and G € M(Pair(D)).
So there exist &' € Sa and i (1 <4 € m) such
that Sel{(C)0 = Head(Cyp,;)#' and G = Bsy 0 C
M(Pair(D)). Now let o' = {z/y | y/z € pi}
and

© = {z/y € & | z occurs in C}
U {z'/y’ € p;'¢' | =’ occurs in Cp,p;}.

Since p; is a variable-renaming substitution such
that € and C,p; have no variable in common, ©
is a well-defined substitution. Then, Sel(C)}0 =
Sel{(C)8 = Head(Cp)8’ = Head(Cp,p:)0, HI =
HO, Bs§ = Bs©, and Bs,,t = (Bsy0)0.
Since Sel(C)© = Head(Cy,p;)9, it follows that
for each j (1 < j < n), ;0 = (sip:)©, whence
eqlt;, s;p:)© € M(Pair(D)). Moreover, since
Bsf C M(Pair(D)} and Bsy 8’ € M(Pair(D)),
(Bs© U (Bsy,;p:)0) € M(Pair(D)). Therefore
Head(C[}© = HB = g € T(D,{C},...,Cp,})-
]

Proposition 6
T(D,{CH 2 TP, {C],....C})-

Proof Let g € T(D,{C{,...,CL}). So there
exist § € Sa and i (1 < i < m) such that
g = HE, {(Bsp,m)0 U Bs§) C M(Pair(D)),
and for each j (1 < j < n), eq(t;,sip)f
M{Pair(D)). Since Bs,,(p:f) = (Bsppi)f
M({Pair(D)} and (Head{Cp,)(p:?), Bsp,(pif))
Pair(D), Head(Cyp)(pif) € M(Pair(D)) by
Theorem 1. Since eq(t;,s}p:)0 € M(Pair(D}),
t;8 = (sip;)@ for each j (1 £ j < n}. Conse
quently, Sel{C)8 = p(ti8,. ., ta8) = p(s}(pif),
., 55 (pif)) = Head(Cp,)(p:#) € M{Pair(D)).
As Bsf C M(Pair(D)), it follows directly that
Head(C)8 = H8 =g T(D,{C}). m

€
=
¢

Proposition 7

T(D,{C})=T(D,{C],...,CL.}).

Proof The result follows from Propositions 5
and 6. =

The main result of this Subsection is:

Theorem 3 (Correctness of Expanding Trans-
formation) Let D € Dscr(R;,R) such that D
contains the unit clause eq(X,X) + and does
not contain any other clause from Ry to {eq}.
Let @ € Dser(Ry, R2). Let C be a definite clause
from Ry to Rs, and Sel(C) € Body(C). Let
{C4,...,CL} be e result of transforming C by
expanding Sel(C) using D. Then M(D UG U
{CH =MDUQU{CL,...,CL)).

Proof The result follows directly from Propo-
sitions 7and 4. W

6 Rewriting Rules and Their
Correctness

The notion of meta-variable instantiation, based

on which the applicability of a rewriting rule is

determined, will be formulated. It is followed

by the formal definition of a rewriting rule, its

application, and its correctness.

Meta-Variable Instantiations A meta-varia-
ble instantiation is a mapping 8 from V, to Ta
that satisfies the following three conditions:

{MVI-1) For each #-variable v, #(v) is a vari-
able.

(MVI-2) For any distinct #-variables » and ¢/,
8(u) # 6(v').

{MVI-3) For any &-variable v and #-variable
v, 8{v) does not occur in #{u).

Let £ be an expression containing meta-variables
(E can be, for example, a meta-term, a meta-
atom, or a set of meta-atoms). Then, given a
meta-variable instantiation 8, let £ denote the
expression obtained from £ by simultaneously
replacing each occurrence of each meta-variable

u in E with 8(u).

Rewriting Rules and Their Application A
rewriting rule v on Ry takes the form
I;[— BA.5‘1;
— Bsy,
where n > 0, and H € A, and the Bs; C A
For the sake of simplicity, the braces enclos-

ing the meta-atoms in the right-hand side of a
rewriting rule may be omitted; e.g., a rewriting

rule H = {By,..., B} will also be written as
H—-) Bl,...,Bg.

Let C be a definite clause A + {B}U Bs from
R; to Ry. The rewriting rule r is said to be appli-
cable to € at B by using a meta-variable instan-
tiation 8, if and only if the following conditions
are both satisfied:

(RRA-1) Hé = B.

{RRA-2) For any #-variable v, é(v) occurs in
neither A nor Bs.

When r is applied to € at B by using the
meta-variable instantiation 8, it rewrites € into
n definite clauses C1,...,C,, where for each i
(1<i<n), C;=(A+ Bs;#U Bs).

Correctness of Rewriting Rules Now what
it means for a rewriting rule to be correct will
be formally defined. Let D € Dscr{R:, Ri1).
A rewriting rule » on R; is correct with respect
to D and R, if and only if for any declarative
description @ € Dser(R1, Rg) and any definite
clauses C, C1,...,Cy from R; to Ry, if r rewrites
C into C1,...,Ch, then MDD U QU {C}H =
MDUQUA{CH,...,Ca})

7 General Rewriting Rules and
Their Correctness

A class of rewriting rules, called general rewriting
rules, with the widest applicability—the most
general pattern of terms is used as the pattern
of each predicate argument in their left-hand
sides—will be introduced. Then their correct-
ness will be proved based on Theorem 3.

7.1 General Rewriting Rules
Let g be an injection from Vj to V5 such that

for each v € V;, p(v) is a #-variable. In the
sequel, for simplicity, assume that for each v €
V4, o{v) has the same name as v except that
o(v) begins with #; for instance, o(X) = #X
and o(Y) = #Y. Next, for any term ¢ on A, let
te denote the meta-term on A obtained from t
by simultaneously replacing each occurrence in
¢t of each variable u € V) with the #-variable
p{u). Likewise, for any atom A4 on R, let Ag
denote the meta-atom on R obtained from A by
simultaneously replacing each occurrence in A of
each term t on A with tg. Furthermore, for any
set Bs of atoms on R, let Bsg = {Bgp | B € Bs}.

In the sequel, refer to the declarative descrip-
tion [, the n-ary predicate p, and the definite
clauses Cpy, ..., Cp,, of Section 5.

Definition 6 {(General Rewriting Rule) The ge-
neral rewriting rule for p with respect to D, de-
noted by General(p, D), is defined as the rewrit-
ing rule

p(&X1,...,&X,) - Bsyy;

—= Bs, .

on Ry, where &X,,...,&X, are arbitrary but
distinct &-variables in V3 and Bs,, is the set

{eq(&X1,s0),... , eq(&Xn, 5L 0)} UBsy 0
foreachi (1 <i<m). =

Referring to the declarative description D, of
Section 2, for example, General (epp, Do) is the
rewriting rule

a’pp(&Xlr &X21 &X3)
—+ e@(&Xlw []}:EQ(&XE, #Y)>eq(&X?: #Y):»

— EQ(&XI) [#Al#X])w EQ(&X‘L #Y)'l
eq(&Xs, (#A[#Z]), app(# X, #Y, #2),

which is applicable at an app-atom of any form.

7.2 Correctness of General Rewriting
Rules

The correctness of general rewriting rules will

now be established.

Theorem 4 {Correctness of General Rewriting
Rule) The rewriting rule General(p, D) is correct
with respect to D and R,.

Proof Let @ € Dscer(l;, Ry) and C be the
definite clause H « {p(t;,...,tn)} U Bs from
Ri to Ro. Suppose that Generai{p, D) is ap-
plied to € at the body atom p{t;,...,t,) by
using a meta-variable instantiation #. Then
pl&eX1,..., &X)0 = plt1, ..., 1), Le., &X0 =
t; for each ¢ (1 < i < n), and C is rewritten
into m definite clauses C,..., 5 from R; to
R,, where for each j (1 <7 < m),

C; = (H + {(eq(&X1,5]0))8, . ..
ooy (eq(&Xn, s1,0))0}
U (Bsp;0)8 U Bs)
(H ¢ {eq(&X18,(s]0)9),...
o eq(&X a8, (s,0)8)}
u (Bspjg)ﬂ U Bs).

Ii

Let k € {1,...,m} and 7 be the substitution
{v/8{p(»)) | v eV, and v occurs in Cy, }.
It is readily seen that

Cy = (H « {eq(ts, s¥mi), ..., eq(tn, shms)}
U Bs,, m U Bs).

It will now be shown that m, is a variable-
renaming substitution such that € and Cp oy
have no variable in common. Let v € V]. Since

o(v) is a #-variable, vm, = 8(p(v)) is a vari-
able that occurs neither in H nor Bs by Con-
ditions {(MVI-1) and (RRA-2). Moreover, by
Condition (MVI-3)} for #, vm; does not occur
in &X = ¢ for each I (1 <1 < n). So vm
does not occur in C; hence, C and Cp, 7 do not
have any variable in common. Next let u € 1}
such that © # v. Since p is an injection from
V) to 1y, p(u) and g{v) are different #-variables,
whence umy = #{p(u)) # 8(p{v)) = vm by Con-
dition (MVIL-2). Consequently, 7x is a variable-
renaming substitution. As a result,

E:Epand(c,p(t; P 5t‘n)1D:
((Cpp ﬂ'l): (Cp21 772)1 Ty (Gpm:?rm]))
— {C’l,...,C’m},

and it follows immediately from Theorem 3 that
MDUQU{CH =MDUQU{C,...,Cn}).
]

8 Correctness of Expanding-based
Rewriting Rules

Demonstrated in this section is the application of
expanding transformation in justifying the cor-
rectness of an important class of rewriting rules,
i.e., expanding-based rewriting rules, which sub-
sumes the class of general rewriting rules dis-
cussed in Section 7.

8.1 Expanding-based Rewriting Rules
Rewriting rules whose correctness can be veri-
fied based solely on the correctness of expanding
transformation and constraint solving for equal-
ity will be referred to as expanding-bused rewrit-
ing rules. Every general rewriting rule is an
expanding-based rewriting rule.

Given a definition part D' and a predicate p’
such that the number of clauses in D’ whose
Leads are a p'-atom is m', the rewriting rule
General(p',D') is always applicable at any p'-
atom in the body of a clause and, when applied,
always rewrites the clause into m’ clauses. One
can reduce the number of replacement clauses
in a transformation step by constraining the ap-
plicability of a rewriting rule, i.e., by restricting
the rule to be applicable only at atoms of some
specific pattern, and specifying the application
results only for atoms of this pattern. Minimiz-
ing the number of clauses resulting from a trans-
formation step in general yields considerable im-
provement in computation efficiency (5].

As an illustration, consider the rewriting rule

ry: app(&X,|[&E), (&4, &B|&Z))
- eq(&X, [&A[#X]),
app(#X, [&E], (&B|&Z]).

This rule is only applicable at an ap-atom whose
second and third arguments are a singleton list
and a list with at least two elements, respec-
tively; and, when applied to a clause, it trans-
forms the clause into a single clause. As will he
demonstrated in the next subsection, the correct-
ness of this rule can be determined based solely
on Theorem 3 and constraint solving for equality;
it is therefore considered as an expanding-based
rewriting rule. The rule ry of Subsection 2.2 is
also an expanding-based rewriting rule.

8.2 Correctness of Expanding-based
Rewriting Rules

To verify the correctness of the rule r; of the

preceding subsection, consider a clause pattern

Cu: H « {app(&X,[&E),[&A,&B|&Z])}
U Bs, :

where H represents an arbitrary atom; &4, &B,
&E,&X and &Z represent any arbitrary terms;
and Bs represents an arbitrary set of atoms. Any
clause of the form €y can be expanded using D,
into two corresponding clauses of the patterns

C'S-' H {EQ{&Xa[])aeq{[&E]a#Y);)
eq([8A, &B|&Z],#Y)} U Bs

Co: H & {eq(&X, [#A#X]), eq((&E), #Y),
eq(|% A, &BIL 2], #A#Z),
app(#X, #Y, #2)} U Bs,

where #4,# X, #Y and #Z represent arbitrary
but distinct variables that occur in none of the
terms represented by &A,& B, &E,&X and &2,
and occur neither in the atom represented by H
nor in any atom in the set represented by BHs.
By constraint solving for eg-atoms, any clause
of the form €y can be removed {any ground in-
stantiation equalizing simultaneously the two ar-
guments of each eg-atom in its body requires
the variable represented by #Y to be instanti-
ated into a singleton list and a list containing
more than one element, which is a contradiction).
Next, by examination of the eg-atoms in its body,
C’e can be simplified into

Ci: H « {eq(&X, [&AI#X)),
app(#X, [&E], [&Bi&Z]))} U Bs.

Now let 72 be applied to a clause € from Ry to
Rs and assume that this application transforms
C into C'. Obviously, C must be a clause of
the pattern €, and, moreover, C" must be a cor-
responding clause of C of the pattern Cf§. Next
suppose that Cgzp, and Cgzyp, are corresponding
clauses of the patterns Cs and (:’5, respectively, of
C. 1t is readily seen that the set {Cgop,, Crzp,}

is a result of expanding C' using D,p. Then it
follows from Theorem 3 and the correctness of
constraint solving for eg-atoms that for any @ €
Dser(Ry, Ra), M(DapUQU{CYH = M(Dap UQ
U{CEuzp,, CEzpy }) = M(DopUQU{C’}). Hence,
the rule 72 is correct with respect to Dy, and R;.

9 Conclusions
The correctness of rewriting rules is a sufficient

condition for the correctness of computation in
the ET model. For practically checking their cor-
rectness, an appropriate foundation that facili-
tates the verification of systematic generation of
rewriting rules [3] is necessary. The suitability of
expanding transformation as such a foundation is
explained, and the correctness of this operation
is proved. Based on a framework for rigorously
discussing the application and the correctness of
rewriting rules, it is shown that the correctness of
general rewriting rules—rewriting rules with the
widest applicability—follows directly from the
correctness of expanding transformation, The
employment of expanding transformation in ver-
ifying the correctness of expanding-based rewrit-
ing rules—a larger and the most often-used class
of rewriting rules—by manipulation of atom pat-
terns and clause patterns is demonstrated.

Acknowledgement The first author was par-
tially supported by the Thailand Research Fund
{TRRF). The second author was partly supported
by Grant-in-Aid for Scientific Research (B)(2)
#12480076.

References
(1] Akama, K., Kawaguchi, Y., and Miyamoto,

E., Equivalent Transformation for Fgual-
ity Constraints on Multiset Domains (in
Japanese), J. Japanese Society for Artificial
Intelligence, 13(3), 395-403, 1998,

[2] Akama, K., Kawaguchi, Y., and Miyamato,
E., Solving Logical Problems by Fguivalent
Trunsformation— Limitations of SLD Reso-
lution (in Japanese), J. Japanese Society for
Artificial Intelligence, 13(6), 936-943, 1998.

(3] Akama, K., Koike, H., and Miyamoto, E.,
Program Synthesis from a Set of Definite
Clauses and a Query, Proc. 5th Interna-
tional Conference on Information Systems
Analysis and Synthesis, Orlando, Florida,
1999.

4] Akama, K., Nantajeewarawat, E., and
Koike, H., A Class of Rewriting Rules
and Reverse Transformation for Rule-Based
Equivalent Transformation, Proc, 2nd Inter-
national Workshop on Rule-Based Program-
ming, Firenze, Italy, 2001.

10

[5] Akama, K., Shigeta, Y., and Miyamoto,
E., Solving Problems by Fquivalent Trans-
formation of Logic Programs, Proc. 5th
International Conference on Information
Systems Analysis and Synthesis, Orlando,
Florida, 1999,

(6] Akama, K., Shimizu, T., and Miyamoto,
E., Solving Problems by Equivalent Trans-
fermation of Declarative Programs (in
Japanese), J. Japanese Society for Artificial
Intelligence, 13(6), 944-952, 1998,

[7] Anutariya, C., Wuwongse, V., Nantajee-
warawat, E., and Akama, K., Towards Com-
putation with RDF Elements, Proc, Inter-
national Symposium on Digital Libraries,
Tsukuba, Japan, 1999.

18] Burstall, R. M. and Darlington, J., A Trans-

formation System for Developing Recursive

Programs, J. ACM, 24(1)}, 44-67, 1977.

Lloyd, J. W., Foundations of Logic Pro-

gramming, Springer-Verlag, 1987.

[10] Nantajeewarawat, E., Wuwongse, V., Anu-
tariya, C., Akama, K., and Thiemjarus,
S., Towards Reasoning with UML Diagrams
Buased-on Declarative Description Theory,
Proc. International Conference on Intel-
ligence Technologies, Bangkok, Thailand,
2000.

[11) Pettorossi, K. and Proietti, M., Transforma-
tion of Logic Programs, Handbook of Logic
in Artificial Intelligence and Logic Program-
ming, Vol. 5, Oxford University Fress, pp.
697-787, 1998.

[12} Robinson, J. A, 4 Machine-Oriented Logic
Buased on the Resolution Principle, J. ACM,
12, 23-41, 1965.

Suita, K., Akama, K., and Miyamoto, E.,

Solving Constraint Satisfaction Problems by

Fquivelent Transformation (in Japanese),

[EICE Tech. Report 5896-18, pp. 1-8, 1996.

[14] Suita, K., Akama, K., and Miyamoto,
E., Constructing Natural Language Un-
derstanding Systems Based-on Eqguivelent
Transformation (in Japanese), IEICE Tech.
Report §597-35, pp. 23-30, 1997.

[15] Tamaki, K. and Sato, T., Unfold/Fold
Transformation of Logic Pragrams, Proc.
2nd International Conference on Logic Pro-
gramming, Uppsala, Sweden, 1984.

(16) Wuwongse, V., Anutariya, C, Akama, K.,
and Nantajeewarawat, E., XML Declarative
Description: A Language for the Semantic
Web, IEEE Intelligent Systems, 16(3), 54—
65, 2001.

9

[13]

Electronic Notes in Theoretical Computer Science 59 No. 4 (2001)
URL: http://www.elsevier.nl/locate/entcs/volumeb9.html 16 pages

A Class of Rewriting Rules and
Reverse Transformation for
Rule-based Equivalent Transformation

Kiyoshi Akama '

Center for Information and Multimedia Studics
Hokkaido University
Sapporo, Hokkaido, 060-0811, Jopan

Ekawit Nantajeewarawat 34

IT Program, Sirindhorn Internetional Institute of Technology
Thammasat University, Rangsit Campus
P.0. Boz 22, Thammasat-Rangsit Post Office, Pathumthani 12121, Thailand

Hidekatsu Koike®

Division of System and Information Engineering
Hokkaido University
Sapporo, Hokkaido, 060-0811, Japan

Abstract

In the rule-based equivalent transformation (RBET) paradigm, where computation
is based on meaning-preserving transformation of declarative descriptions, a set of
rewriting rules is regarded as a program. The syntax for a large class of rewriting
riles is determined. The incorporation of meta-variables of two different kinds
enables precise control of rewriting-rule instantiations. As a result, the applicability
of rewriting rules and the results of rule applications can be rigorously specified.
A theoretical basis for justifying the correctness of rewriting rules is established.
Reverse transformation operation in the RBET framework is discussed, and it is
shown that a correct rewriting rule is reversible, i.e., a correct rewriting rule can in

gencral be constructed by syntactically reversing another correct rewriting rule.

grode W bk

Akama was partly supported by Grant-in-Aid for Scientific Research {B)(2) #12480076.

Email: akama@cims. hokudai.ac.jp

Nantajeewarawat was supported partially by the Thailand Research Fund.
Email: ekawit@siit.tu.ac.th

Email; koke@cims.hokudai.ac.jp

(©2001 Published by Elsevier Science B. V.

AKAMA, NANTAJEEWARAWAT AND KOIKE

1 Introduction

Rule-based equivalent transformation of declarative descriptions (RBET) [1] is
a new promising method of problem solving. In the RBET framework, a prob-
lem is formulated as a declarative description, represented by the union of two
sets of definite clauses, one of which is called the definition part, and the other
the query part. The definition part provides general knowledge about the prob-
lem domain and descriptions of some specific problem instances. The query
part specifies a question regarding the content of the definition part. From
the definition part, a set of rewriting rules—rules for transforming declarative
descriptions—is prepared. The problem is then solved by transforming the
query part successively, using the prepared rewriting rules, into another set
of definite clauses from which the answers to the specified question can be
obtained easily and directly.

Example 1.1 Consider a simple problem formulated as the union of a defi-
nition part Dy, consisting of the four definite clauses

initial(X, Z) — append(X,Y, Z)
append([],Y,Y) «
append([A|X],Y,[A|Z]} — append(X,Y, Z)
equal(X, X) «—
and a query part ¢} containing only the definite clause
Cr: ans(X) « initial(X, [1, 2, 3]}, indtial(X, 1, 3, 5]).
To solve this problem, i.e., to find the answers to the query part (), by means of

RBET, @ will be transformed successively, using some rewriting rules prepared .
from D, until the simpler query part @' consisting of the two unit clauses

ans([]) —

ans([1]) —
is obtained, from which the answers, i.e., X =[] and X = [1], can be directly
drawn. One possible successive transformation of @ into (' is demonstrated
in the appendix. 0

A rewriting rule specifies, in its left-hand side, a pattern of atomic formulas
(atoms) to which it can be applied, and defines the result of its application
by specifying, in its right-hand side, one or more patterns of replacement
atoms. The rule is applicable to a definite clause when the pattern in the
left-hand side matches atoms contained in the body of the clause—in other
words, when atoms contained in the body of the clause are instances of the
specified pattern. When applied, the rule rewrites the clause into a number of
clauses, resulting from replacing the matched body atoms with instances of the
patterns in the right-hand side of the rule. Determination of rule applicability
by pattern matching, rather than unification, allows one to tailor a rewriting
rule for some specific pattern of atoms for the sake of computation efficiency.

2

AKAMA, NANTAIEEWARAWAT AND KOIKE

Hlustrations of rewriting rules are deferred until Section 2.

The crucial roles of atom patterns in determining rule applicability and
specifying the results of rule applications necessitate an appropriate syntactic
structure for representing the patterns in such a way that their instantiations
can be precisely and suitably controlled. For this purpose, the notion of meta-
atom is introduced. Meta-atoms have the same structure as usual atoms
except that two kinds of meta-variables—&-variables and #-variables—are
used instead of ordinary variables. The two kinds of meta-variables have
different instantiation characteristics. Not only do the differences allow precise
specifications of rewriting rules; they enable rigorous investigation of several
important properties of several kinds of transformation steps, e.g., correctness
of expanding transformation [7], and, moreover, as shown in [3], systematic
generation of correct rewriting rules from a problem specification.

In the RBET framework, the correctness of computation relies solely on the
correctness of each transformation step. Given a declarative description DUQ,
where D and) represent the definition part and the query part, respectively,
of a problem, the query part () is said to be transformed correctly in one step
into a new query part (' by an application of a rewriting rule, if and only if
the declarative descriptions D U @ and D U @' are equivalent, i.e., they have
the same declarative meaning. A rewriting rule is considered to be correct, if
and only if its application always results in a correct transformation step. A
correct rewriting rule will be referred to as an Equivalent Transformation rule
(ET rule). If ET rules are employed in all transformation steps, the answers
obtained by means of RBET are guaranteed to be correct.

1.1 Comparison Between RBET and the Logic Programming Paradigm

Comgputation

Although declarative descriptions considered in this paper have the same form
as definite logic programs [5], computation in RBET differs significantly from
that in logic programming. Computation in logic programming is based on
logical deduction—computation is viewed as the process of constructing, based
on the resolution principle [10], a proof of an existentially quantified query by
finding variable substitutions, called computed substifutions, that make the
query follow logically from a given logic program. In RBET, by contrast,
computation is regarded as transformation of declarative descriptions rather
than logical deduction.

Sepuration of Programs from Declarative Descriptions

In logic programming, a set of definite clauses has a dual function: it serves asa
declarative description of a problem—it declaratively represents the knowledge
about the problem domain and defines what the problem is——while at the
same time functions as a program—it specifies how to solve the problem.
The programming character of a set of definite clauses arises from viewing

3

AKAMA, NANTAJEEWARAWAT AND KOIKE

it as a description of a search whose structure is determined by interpreting
the logical connectives and quantifiers as fixed search instructions [6]. The
procedural expressive power of a logic programming language, such as Prolog,
is limited by such fixed procedural interpretation and the fixed search strategy
embedded in the proof procedure associated with the language.

In the RBET framework, instead of a set of definite clauses, a set of rewrit-
ing rules is regarded as a program. The procedural interpretation of definite
clauses can be realized using rewriting rules of a basic kind, called unfolding-
based rewriting rules [1]. However, several other rewriting rules can addition-
ally be employed in RBET, thereby a wider variety of computation paths are
allowed and a more efficient program can consequently be achieved {1}. The use
of a set of rewriting rules as a program also enables flexible computation—
an effective control strategy can be materialized by means of, for example,
rule-firing control and user-defined priority-based selection of rules [1].

Theoretical Foundation for Correctness

While the correctness of computation in RBET is based solely on meaning
preservation of declarative descriptions, the correctness of computation in logic
programming is grounded upon the logical consequence relation (=), i.e., given
a logic program P and an atom g, a computed substitution # is correct if and
only if P |= ¥(g#). The notion of logical consequence in turn relies on the
elementary concepts, e.g., the concepts of interpretation, satisfaction, and
maodel, of the model theory associated with first-order logic. These concepts
are not necessary in the RBET framework.

The correctness of computation in logic programming cannot be guaran-
teed by the correctness of inference rules solely; it also depends on the com-
putation procedure employed. When the computation procedure is improved
or extended, the correctness of the procedure as a whole has to be proven.
In comparison, to verify the correctness of computation in RBET, it suffices
to prove the correctness of each individual rewriting rule. A program in the
RBET framework can therefore be decomposed; consequently, RBET-based
systems are amenable to modification and extension.

1.2 Comparison Between RBET and Program Transformation in Logic Pro-
gramming

Objectives and Transformed Parts

The objective of RBET is different from that of program transformation in
logic programming (PT) {8,9]. While RBET is a method for computing the
answers to a question with respect to a given definition part, PT is a method-
ology for deriving an efficient logic program from the definition part. Let a
definition part Dy be given. In RBET, to compute the answers to a query
part Qg with respect to Dy, one constructs from (Jo, by successive application
of rewriting rules prepared from Dy, a sequence @y, . .., &n such that for each

4

AKAMA, NANTAJEEWARAWAT AND KOIKE

i (0 <@ <n), DU @ and Dy U @iy have the same declarative meaning
and the answers can be directly obtained from @),,. The definition part Dy is
unchanged throughout the transformation process. In comparison, in PT only
the definition part is transformed. That is, from Dy, which is regarded as the
initial logic program, one constructs by using transformation rules, such as
the unfolding and folding rules, a sequence of logic programs Iy, ..., D,, such
that Dy and D, yield the same answers to some class of queries, but D,, is
more efficient than Dy; then, when a query in that class is given, the program
D, will be used for computing the answers to the query by means of some
proof procedure.

Example 1.2 Consider the definition part D,,; of Example 1.1. Following
PT, D,,; may be transformed successively, using the unfolding and folding
rules, into the logic program D ,,:
initial([],Y)
inttial([A}X], [A|Z]) — initial(X, Z)
append([],Y,Y) «
append([A|X],Y, [A|Z]) «— append(X.Y, Z)

Dipi and D, have the same declarative meaning with respect to the predi-
cates initial and append; however, computing the answers to a query contain-
ing the predicate inétial using D], ,, requires fewer number of resolution steps

than using Diy. O

In PT the efficiency of the program resulting from a transformation pro-
cess, rather than the transformation process itself, is the primary concern. In
RBET, on the other hand, as transformation is the main computation mech-
anism, transformation processes are required to be efficient. The efficiency of
a transformation process in RBET is achieved by the employment of efficient
rewriting rules and appropriate rule-application control strategies [1].

Correctness and Independence of Rules

In PT, a transformation step which derives Dy, from a transformation se-
quence Dy, ..., D is correct, if and only if for each query g containing only
predicate symbols which occur in Dy, D and D,y provide the same answers
te g. The correctness of a transformation step in PT can in general not be
determined independently; e.g., the correctness of a folding step deriving Dyq
from a transformation sequence Dy, ..., D, requires some conditions to ensure
that enough unfolding steps have been performed in the sequence Dy, ..., D
[9]. The next example shows that an application of the folding rule may yield
an incorrect transformation step. :

Example 1.3 Refer to the definition part D,,; of Example 1.1, Folding the
first clause, i.e.,
initial(X, Z) — append(X,Y, Z),
5

AKAMA, NANTAJEEWARAWAT AND KOIKE

using itself results in the logic program D,
initial{ X, Z) «— initial(X, Z)
append([],Y,Y) «

append([A|X],Y, [A|Z]} — append(X.,Y, Z)

Since the meaning of the predicate initial defined in Dy, is lost in D, ,,, this
transformation step does not preserve the answers to queries concerning the
predicate initial and is therefore not correct. a

In RBET, by contrast, since only a query part, which depends exclusively
on a fixed definition part, is transformed, the correctness of a transformation
step can be justified independently, i.e., given a definition part D, the correct-
ness of a transformation step deriving a query part ¢};41 from a query part Q;
is determined by the meanings of DUQ; and DUQ);,, solely, regardless of its
preceding transformation steps. Consequently, the correctness of a rewriting
rule can also be determined independently in the RBET framework. Such
independence of rewriting rules is apparently desirable for the construction of
large-scale rule-based systems.

1.8 Objectives of the Paper

Syntax for Rewriting Rules. The first objective of this paper is to determine
appropriate syntax for a large class of rewriting rules. The syntactic struc-
ture of rewriting-rule components as well as their instantiations should be
suitably defined in order that they can be used to precisely specify rule ap-
plicability and the results of rule applications.

Theoretical Framework for Correctness of Rewriting Rules. The next objective
is to establish, based on meaning-preserving transformation of declarative
descriptions rather than logical inference, a theoretical framework for dis-
cussing the correctness of rewriting rules.

Reverse Transformation. The third objective is to introduce the reverse trans-
formation operation, and to show that in the RBET framework an ET rule
is reversible, i.e., one can obtain a rewriting rule the operation of which
reverses that of another rewriting rule by syntactically reversing the lat-
ter rewriting rule, and the correctness of the former depends solely on the
correctness of the latter.

Section 2 explains the necessity of meta-variables, and provides introduc-
tory examples of rewriting rules, reverse transformation, and reverse rewriting
rules. Section 3 defines preliminary syntactic components, which are used for
defining declarative descriptions and their meanings in Section 4, and rewrit-
ing rules, their applications, and their correctness in Section 5. Section 6
investigates the correctness of reverse rewriting rules.

6

AKAMA, NANTAJEEWARAWAT AND KOIKE

2 Meta-Variables and Reverse Rewriting Rules

The need for the use of meta-variables of two distinct kinds for specifying
patterns of atoms, and the necessity of conditions for regulating meta-variable
instantiations will be described first. Reverse transformation operation and
reverse rewriting rules will then be introduced.

2.1 Need for Meta-Variables of Two Kinds

Consider the definition part Dj,;; and the query parts @ and @’ of Example 1.1,
As the first step of a possible transformation sequence leading to ¢, the clause

Cy: ans(X) — initial(X, (1,2, 3]), initial(X, 1,3, 5])

in may be transformed by replacing its first body atom with append(X,Y, [L,
2, 3]), resulting in the clause

Co: ans{X) +— append(X,Y, 1,2, 3]}, indtial(X, [1, 3, 5]).

This transformation step is correct since Djy; U {C1} and Dy U {Ca} have
the same meaning.
The above transformation step can be described by the rewriting rule

ry: initial(&X, &Z) — append(&X, &Y, &Z),

where the arrow “—" intuitively means “can be replaced with” and the left-
hand side and the right-hand side of r; specify the pattern of atoms to which
the rule is applicable and the pattern of replacement atomns, respectively. The
symbols &X, &Y and &Z are used in r; as instantiation wild cards, i.e., each
of them can be instantiated into an arbitrary term, and also as equality con-
straints, i.e., each occurrence of the same wild card must be instantiated into
the same term. By instantiating &X, &Y and &Z into the terms X, Y and
[1,2, 3], respectively, the pattern in the left-hand side matches the first body
atom of C; and that in the right-hand side is instantiated into the first body
atom of Cy,—that is, by applying r1 to the first body atom of C; using this
instantiation, € is transformed into Cb.

The dual role of the symbols &X, &Y and &7 as wild cards and equal-
ity constraints is reminiscent of the concept of variable. Notwithstanding,
these symbols should be distinguished from ordinary variables that are used
in definite clauses since they are used differently; for example, they can be
instantiated into ordinary variables but they are not substituted for ordinary
variables in any substitution application. To emphasize the differences, the
symbols &X, &Y and &Z will be regarded as meta-variables, and will be
referred to as &-variables.

However, the rewriting rule »; does not always specify a correct transfor-
mation step. For example, the application of 1 to the first body atom of C;
by instantiating &Y into the variable X transforms € into the clause

Cy: ans{X) — append(X, X, (1,2, 3]), initial(X, [1, 3, 5]},
7

AKAMA, NANTAJEEWARAWAT AND KOIKE

but Djpye U {C1} and Dy, U {C3} have different meanings.

To ensure a correct transformation step, some restrictions on rule instan-
tiations are required. Amnother kind of meta-variable, called #-variables, is
introduced for this purpose. As an example, a #-variable, #Y, will be used
instead of the &-variable &Y in the right-hand side of ry, i.e., the rule

ro: tnitial(&X, &Z) — append(&X, #Y,&Z)

will be used instead of r;. Then, any instantiation of this rule is regulated in
such a way that the #-variable #Y can only be instantiated into an ordinary
variable that does not appear in the other part of the clause resulting from an
application of the rule. This instantiation constraint precludes the instantia-
tion of #Y into the ordinary variable X when the rule 75 is applied to the first
body atom of C7; as a result, the transformation of C) into Cj is prevented.

2.2 Rewverse Transformation

In the RBET framework, the reverse of a correct transformation step is always
a correct transformation step. For instance, from the step transforming C,
into Cy illustrated in the preceding subsection, one can have the reverse step
transforming C, into €}, which may be described by the rewriting rule

r3: append(&X,&Y,&Z) — initial(&X,&2Z),

and the correctness of the latter step follows from the correctness of the former
step. In general, however, the application of the rule r3 may result in an
incorrect transformation step. For example, by instantiating the &-variable
&Y into X, the application of r3 to the first body atom of the clause Cy of the
previous subsection yields an incorrect transformation step deriving €y from
Cg.

Again the employment of meta-variables of the two kinds, with different
instantiation characteristics, remedies this problem. Instead of using r3, the
transformation of Cs into C) can be described using the rewriting rule

ra: append(&X, #Y,&Z) — initial(&X, &2),

while the application of r4 to the first body atom of C3 can be ruled out by
appropriately restricting the instantiation of the #-variable #Y, i.e., #Y is
only allowed to be instantiated into a variable that does not occur in the other
part of Cs.

Rigorous description of rewriting rules and their applications demands pre-
cise conditions for instantiations of meta-variables in rule applications. For
the sake of generality and regularity, the conditions should not be specialized
for any particular case, but common to all rewriting rules. Such common con-
ditions will be defined in Section 5 (Conditions (MVI-1), (MVI-2), (MVL-3)
and (RRA-2)). '

Notice that the rule ry can be obtained by simply reversing the rule r, of
the preceding subsection. It will be shown in Section 6 that in the RBET

8

AKAMA, NANTAJEEWARAWAT AND KOIKE |

framework a correct rewriting rule can in general be constructed by reversing
another correct rewriting rule.

3 Basic Syntactic Components

The alphabet used in the paper will now be given; then, the notions of term
and atom, which are basic components of definite clauses and declarative
descriptions, and those of meta-term and meta-atom, which are used for spec-
ifying patterns of terms and atoms, respectively, will be defined.

Alphabet
An &-wvariable is a variable that begins with the symbol &; for example, &N
and &X are &-variables. A #-variable is a variable that begins with the
symbol #; for example, #X and #Y are #-variables. An &-variable as well
as a #-variable is called a meta-variable. An ordinary variable is assumed to
begin with neither & nor #.

Throughout the paper, an alphabet A = (K, F, V| R) is assumed, where K
is a set of constants, including integers and nil; F a set of functions, including
the binary function cons; V is the disjoint union of two sets

= 1) of ordinary variables,

« V, of meta-variables;

and R is the union of two mutually disjoint sets of predicates
» Iy = {initial, append, equal, ... },

« Ry = {ans,yes, ... }.

When no confusion is possible, an ordinary variable in V| and a meta-variable
in V5 will be simply called a variable and a meta-variable respectively.

Terms, Meta-Terms, Atoms, and Meta-Atoms

Usual first-order terms on (K, I, V1) and on (K, F, V,) will be referred to as
terms and meta-terms, respectively, on A. Given R’ C R, usual first-order
atoms on (K, F, V), R") and on (K, F, V5, R") will be referred to as atoms on
R and meta-atoms on R, respectively. For example, assume that {X, Y} C V
and {&X, #Y} C V,. Then, nil, X and cons(X, cons(Y, nil)) are terms on A;
nil, &X and cons(&X, cons(#Y, nil}) are meta-terms on A; initial (X, cons(X,
cons(Y,nil))) is an atom on Ry; and initial(&X, cons(&X, cons(#Y, nil))) is
a meta-atom on £;. The standard Prolog notation for lists is adopted; e.g.,
[X,Y] and {7, #£X|&Y] are abbreviations for the term cons(X, cons(Y, nil))
and the meta-term cons(7, cons(#X, &Y')), respectively.

First-order atoms on (K, F, 0, R} are called ground atoms on A. In the
sequel, let 7 be the set of all terms on A, and G the set of all ground atoms
on A: also let A; and A; be the set of all atoms and the set of all meta-atoms,
respectively, on R;, where i € {1, 2}.

AKAMA, NANTAJEEWARAWAT AND KOIKE

4 Declarative Descriptions and Their Meanings

In general, the RBET framework can deal with several data structures other
than usual first-order terms, e.g., multisets, strings; and a declarative descrip-
tion can be represented by a set of definite clauses extended with these data
structures {2,4]. For simplicity, however, only usual terms are used in this pa-
per; that is, a declarative description is a set of usual definite clauses. Definite
clauses and declarative descriptions considered herein as well as the meanings
of declarative descriptions will now be defined.

Definite Clauses and Declarative Descriptions
A definite clause C on A is an expression of the form A « Bs, where A is
an atom on R and Bs is a (possibly empty) set of atoms on K. The atom A
is called the head of C, denoted by head(C); the set Bs is called the body of
C, denoted by Body(C); each element of Body(C) is called a body atom of C.
When Body(C) =, C will be called a unit clause. The set notation is used in
the right-hand side of C so as to stress that the order of the atoms in Body{C)
is immaterial. However, for the sake of simplicity, the braces enclosing the
body atoms in the right-hand side of a definite clause will often be omitted;
e.g., the definite clause ans(X) «— {append(Y, X, Z), initial{Y, Z)} will often
be written as ans{X) «— append(Y, X, Z), mnitial(Y, Z).

Let i € {1,2}. A definite clause C is said to be from Ry to R;, if and only
if Body(C) C A; and head(C) € A;. A declarative description from Ry to R;
is a set of definite clauses from R; to R;. The set of all declarative descriptions
from R; to R; will be denoted by Dser(Ry, R:).

Meanings of Declarative Descriptions

Let & be the set of all substitutions on (K, F, V1}. The application of a sub-
stitution # to an expression E (which can be, for example, a term, an atom, a
set of atoms, or a definite clause) will be denoted by Ef. Given a declarative
description P € Dscr(Ry, R;), the mapping Tp on 29 is given by

Tp(X) = {head(C8) | (Ce P)& (€ S)
& (head(C8) € G) & {Body{C8) C X)},

and then, the meaning of P, denoted by M(P), is defined by
M(P) = THOYUTE@UTEO) U = U, TA(®),
where Th(0) = Tp(0) and Tp(#) = Te(Tp () for each n > 2.

5 Rewriting Rules, Their Applications, and Their Cor-
rectness

The syntax for a large class of rewriting rules is next presented. Coupled with
gome restrictions on meta-variable instantiations, this syntax enables one to

10

! AKAMA, NANTAJEEWARAWAT AND KOIKE

~control the' applicability of rewriting rules and to specify the results of rule
applications in a precise way. ‘

Syntaz of Rewriting Rules
A rewriting rule on R; takes the form

Hs — Bsy,
— Bsy,

where n > 0, and Hs and the Bs; are subsets of fil. For the sake of simplic-
ity, the braces enclosing the meta-atoms in each side of a rewriting rule may be

omitted; e.g., the rewriting rule {initial(&X,&Z)} — {append(&X, #Y,&2Z)}
will also be written as initial(&X, &Z) — append(&X, #Y, &2).

Meta- Variable Instantiations
A meta-variable instantiation is a mapping ¢ from V, to 7 that satisfies the
following three conditions:

(MVI-1) For each #-variable v, 8(v) is a variable.

(MVI-2) For any distinct #-variables v and ¢/, 8(v) # 6(v').

(MVI-3}) For any &-variable v and #-variable v, 6{v) does not occur in
G{u).

Let £ be an expression containing meta-variables (E‘ can be, for example,
a meta-term, a meta-atom, or a set of meta-atoms). Then, given a meta-
variable instantiation @, let £8 denote the expression obtained from £ by
simultaneously replacing each occurrence of each meta-variable v in £ with

f{u).

Applicability of Rewriting Rules
Let r be a rewriting rule on R,

Hs — B s1;
— Bs,,
wheren > 0, and Hs and the B;s.i are subsets of Al. Let ' be a definite clause

A — BsuUBs

from I?) to 5. The rewriting rule r is said to be applicable to C at Bs by
using a meta-variable instantiation @, if and only if the following conditions
are both satisfied:

(RRA-1) Hst = Bs.
(RRA-2) For any #-variable v, #(v) occurs in neither A nor Bs'.
11

AxaMA, NANTAJEEWARAWAT AND KOIKE

When r is applied to C at Bs by using the meta-variable instantiation 6, it
rewrites C into n definite clauses C,. .., C,, where for each i (1 < i < n},

C; = (A — Bs;#UBs).

When Bs is a singleton set {B}, the application of » to C at Bs will also be
referred to as the application of 7 to the body atom B of C.

When there are more than one applicable rewriting rule, one of them will
be nondeterministically selected; hence, computation in RBET is nondeter-
ministic.

Examples illustrating the application of rewriting rules are given below.

Example 5.1 Refer to the rewriting rules ry and r4 and the definite clauses
C1, Ca and Cy of Section 2. Let 6 : V5 — 7 such that 8(&X) = X, §(#Y) = Y,
0(&Z) = [1,2,3] and @ satisfies Conditions (MVI-1), (MVI-2) and (MVI-3).
Then, since Y occurs in neither the head nor the second body atom of Cy, rp
can be applied to C; at {initial(X, (1,2, 3])} by using 6, and this application
rewrites Cy into C. Likewise, the application of r4 to C; at {append(X, Y, [1,
2,3})} by using 6 rewrites C; into C;. Now consider the clause C3. The rule
T4 is not applicable to Cj, since every o : ¥, — T such that

append(&X, #Y,&Z)o = append(X, X, (1,2, 3])
requires that o(&X) = X = o(#Y"), violating Condition (MVI-3). G
Example 5.2 Consider the rewriting rule
rs: append(&X, &Y, &Z)
— equal(&X,[]), equal (&Y, &Z);
— equal(&X, [#A|#X]), equal(&Z, [# Al#2)),
append(#X, &Y, #27),
and the clause
Cr: ans(X}) — append(X,[E], 1, 2]).
The application of the rule r5 to Cy transforms Cy into the two definite clauses
Cs: o ans(X) — equal(X,), equal([F], [1,2])
Cs: ans(X) — equal(X, [A1|X 1]}, equal([1, 2], [A1]|Z1]),
append(X1, [E], Z1)
by using a meta-variable instantiation & such that 8(&X) = X, 6(&Y) = [E],
8(&Z) = [1,2], 8(#A) = Al, 8(#X) = X1 and 6{(#Z) = Z1. The clause
(s can be further transformed by the application of r5. Notice that rs is also
applicable to the clause C; of Section 2 at {append(X,Y,[1,2,3}}}. c

Since the rule r9 of Section 2 and the rule r5 of Example 5.2 are applicable
to an initial-atom of any pattern and an append-atom of any pattern, respec-
tively, and their applications correspond to the unfolding operation, they will
be referred to as unfolding-based general rewriting rules. The next example
tllustrates rewriting rules that are devised for atoms of specific patterns.

12

AKAMA, NANTAJEEWARAWAT AND KOIKE

Example 5.3 Referring to the definition part Djn; of Example 1.1, consider
the query part consisting only of the clause Cy of Example 5.2. Suppose that
the rewriting rules prepared from the definition part D;,;, include the rules:

re: append{&X, [&E), [&A, &Bl& Z])

“ equal(&X, [AIEW]), append #W, [&5), [BI&eZ)

re. append(&X, [&E], [(&A]) — equal(&X,{]), equal (& E, &A)
The rewriting rule rg can be applied to Cy at {append(X, [E], [1, 2]}}, trans-
forming Cj into the clause

C7. ans(X) — equal(X, [1|W]), append(W, [E], [2]).
Then, by applying the rule r7 to C; at {append(W, [E], [2])}, C; can be trans-
formed into the clause

Cyg: ans(X) « equal(X, [1|W]), equal(W, (]), equal(E, 2),

from which the answer, X = [1], can be derived. In comparison to the applica-
tion of the rule ry in Example 5.2, notice that neither the application of 74 nor
that of ry increases the number of clauses in the query part. In general, the
efficiency of computation can be improved by avoiding transformation steps
that increase the number of clauses. O

Next, what it means for a rewriting rule to be correct is formally defined.

Correctness of Rewriting Rules

Let D € Dscr(Ry, Ry). A rewriting rule r on R, is correct with respect to
D and Ry, if and only if for any declarative description @ € Dscr(R;, Ry)
and any definite clauses C,Cy,...,C, rom R; to Rg, if v rewrites ¢ into
Cy,...,C,, then

M{DUQU{CYH = MDUQUIC,...,Cu}).

6 Correctness of Reverse Rewriting Rules

Based on the established foundation for correctness of rewriting rules, it will
now be shown that one can in general construct a correct rewriting rule by
simply reversing another correct rewriting rule.

Theorem 6.1 (Correctness of Reverse Rewriting Rules)
Let D € Dscr{Ry, R1). Let v be a rewriting rule

As — Bs
on Ry. Let reverse(r) be the rewriting rule

Bs — As
on R. If v is correct with respect to D and Ry, then reverse(r) is also correct
with respect to D and Rj.

13

AKAMA, NANTAJEEWARAWAT AND KOIKE

Proof. : -
Let @ be a declarative description in Dscr(Ry, Ry}, C a definite clause

. H « BsUBs

from R) to Ry, and let r be correct with respect to D and Ry. Suppose that
reverse(r) is applied to C at Bs by using a meta-variable instantiation .
Then, Bs = Bsf and reverse(r) rewrites C into the clause

¢ H « AsfuUBs'.

It has to be shown that M(DUQU {C}) = M(DUQ U {C"}). Clearly, by
using the meta-variable instantiation 8, r is applicable to C' at the set Asé.
This application of r rewrites the set Asf in the body of C’ into Bsf, which
is equal to Bs. That is, " is rewritten into C by this application. Since r is
correct with respect to 2 and Ry, M(DUQ U {C}) and M(DU QU {C"})
are equal. So reverse(r) is correct with respect to D and R,. a

7 Conclusions

Each resolution step in the proof procedures associated with logic program-
ming corresponds to an unfolding transformation step in RBET, which can be
realized by the employment of unfolding-based general rewriting rules. How-
ever, while resolution is the only means of inference in logic programming,
a variety of other rewriting rules can be used in RBET. The RBET frame-
work therefore allows a wider variety of computation paths and, as a result,
more efficient programs. Despite its simplicity, the RBET framework enables
the development of a solid theoretical basis for determining the correctness of
rewriting rules of various kinds. As long as correct rewriting rules are used
throughout a transformation process, correct computation is always obtained.
Experimental RBET-based knowledge processing systems in various applica-
tion domains have been implemented at Hokkaido University, and satisfactory
results revealing the usefulness of the framework have been obtained.

In this paper, the syntax for a large class of rewriting rules is proposed.
This class of rewriting rules can represent unfolding-based general rewriting
rules (e.g., the rules vy and ry of Subsection 2.1 and Example 5.2, respec-
tively), folding-like rules (e.g., the rule 74 of Subsection 2.2), and rules that
are applicable to atoms of specific patterns (e.g., the rules r¢ and 7+ of Ex-
ample 5.3). By incorporation of meta-variables of two kinds (&-variables and
#-variables), the proposed syntax facilitates precise control of rewriting-rule
instantiations and applications, which is necessary for ensuring the correctness
of computation. A theoretical basis for verifying the correctness of rewriting
rules is formulated. The reverse transformation operation is introduced, and
it 1s shown that in general a correct rewriting rule can be obtained by simply
reversing another correct rewriting rule.

In addition to the necessity identified in this paper of the use of meta-

14

AKAMA, NANTAIEEWARAWAT AND KOIKE

variables of the two kinds for specifying atom patterns in rewriting rules, it
is demonstrated in [3] that the distinction between these two kinds of meta-
variables also enables meaningful manipulation of atom patterns in the process
of systematically generating rewriting rules from a definition part by means
of meta-rules and is essential for controlling the generation process. Although
reverse transformation may lead to an infinite loop in ordinary computation, it
provides a foundation of folding-like meta-level transformation in the genera-
tion of rewriting rules and the correctness of reverse rewriting rules is essential
for verifying the correctness of folding-like meta-rules.

Appendix

Referring to Example 1.1, @ can be transformed into Q" as follows. (The
selected atom in each step is underlined.)

I: ans(X) « append(X,Y1,[1, 2, 3]}, initial(X, [1, 3, 5]}
2. ans([]) « nitial([], [1, 3, 5])
ans([1|X 1)) «— append(X1,Y1,(2,3]), initial([1|X1], [1, 3, 5)])
3: ans([]) < append([],Y2,[1,3,5])
ans([1]X1]) — append(X1,Y1,(2, 3]}, initial([1|X 1], [1, 3, 5])
4: ans({])
ans([1}X1]) — append(X1,Y1,[2,3}), initial([1|X1], [L, 3, 5])
5 ans{[]) <
ans([1]) « nitial([1], (1, 3, 5])
ans([1][2|X2]]) «— append(X2,¥1, [3]), initial([1][2|X 2]], (1, 3, 5])

6: ans([]) —

ans([1]) « append([1],Y3,[1, 3, 5])

ans([1[2|X2]]) — append(X2, Yl (3]), tnitial({1([2| X 2)), (1, 3, 5])
7. ans{|]} —

ans([11) — append([], Y3, (3, 5])

ans({1][2|X2]]) «— append(X2,Y1,[3]), initial([1|[2|X2]], 1. 3,5])
8: aneg[[]%

ans(|1l

ans([1][2|X2]]} « append(X2,Y1,[3]), initial([1|[2| X 2]], [1. 3, 5])
9 ans([]) «

ans([1]) «

ans{[1][2|X2]]) « append(X2,Y1,[3]), append([1][2|X2]], Y 4,1, 3,5])
10: aqu]])

ans((l

ans({1}[21X2]]) — append(X2,Y1,[3]), append([2| X 2], Y4, [3, 5])
11: ans{[]) «

ans{]1]) «

There are several other possible ways of transforming ¢ into @, some of
which may result in a sequence that is shorter than the one shown above.

15

AKAMA, NANTAJEEWARAWAT AND KOIKE
References

[1] Akama, XK., Shigeta, Y., and Miyamoto, E., Solving Problems by Equivalent
Transformation of Logic Programs, in Proceedings of the Fifth International
Conference on Information Systems Analysis and Synthesis (ISAS’99), Orlando,
Florida, 1999,

(2] Akama, K., Kawaguchi, Y., and Miyamoto, E., Eguivalent Transformation
for Egquality Constraints on Multiset Domains (in Japanese), Journal of the
Japanese Society for Artificial Intelligence 13 (1998), pp. 395-403.

[3] Akama, K., Koike, H., and Miyamoto, E., Program Synthesis from a Set
of Definite Clauses and a Query, in Proceedings of the Fifth International
Conference on Information Systems Analysis and Synthesis (ISAS'99), Orlando,
Florida, 1999.

[4] Akama, K., Okada, K., and Miyamoto, E., 4 Foundation of Eguivalent
Transformation of Negative Constraints on String Domains (in Japanese),
IEICE Technical Report, S897-91, pp. 3340, 1998.

[5] Lloyd, J. W., “Foundations of Logic Programming”, second, extended edition,
Springer-Verlag, 1987.

[6] Loveland, D. W. and Nadathur, G., Proof Procedures for Logic Programming, in:
Gabbay, D. M., Hogger, C. J., and Robinson, J. A. (eds.), “Handbook of Logic
in Artificial Intelligence and Logic Programming”, Vol. 5, Oxford University
Press, 1998, pp. 163-234.

[7] Nantajeewarawat, E., Akama, K., and Koike, H., Erpanding Trensformation
as a Basis for Correctness of Rewriting Rules, in Proceedings of the Second
International Conference on Intelligent Technologies (InTech’01), Bangkok,
Thailand, 2001.

[8] Pettorossi, K. and Proietti, M., Transformation of Logic Programs: Foundations
and Technigues, Journal of Logic Programming 19/20 (1994), pp. 261-320.

[9] Pettorossi, K. and Proietti, M., Transformation of Logic Programs, in: Gabbay,
D. M., Hogger, C. J., and Robinson, J. A. {eds.), “Handbook of Logic in
Artificial Intelligence and Logic Programming”, Vol. 5, Oxford University Press,
1998, pp. G97-787.

[10] Robinson, J. A., Machine-Oriented Logic Based on the Resolution Principle,
Journal of the ACM 12 {1965), pp. 23-41.

16

Published in Proceedings of the Joint International Conference of SNLP - Oriental COCOSDA 2002
Hua Hin, Prachuapkitikhan, Thatland, pages 89-96, May 2002, ISBN 974-572-947-7,

The Roles of Ontologies in Manipulation of XML Dath

Hataichanok Unphon

Ekawit Nantajecwarawat

Information Technology Program
Sirindhorn International Tnstitute of Technology, Thammasat University
P.0. BOX 22, Thammasat Rangsit Post Office, Pathumthani 12121, Thailand
e-mail : unphon@stit.tu.ac.th, ekawit@stit.ta.ac.th

Abstract

Generally defined as a formal specifica-
tion of shared conceptualizations of a
domain, an ontology provides a com-
mon understanding of topics that can be
communicated between people and het-
erogeneous application systems. Limita-
tions of Data Type Definitions and Re-
source Description Framework Schemas
as ontology languages are identified;
then, an ontology language, called
Lontos 18 presented. As its distinctive
features, LonTo Separates class assertions
clearly from class definitions and allows
the inclusion of individuals in class ex-
pressions. The formal semantics of
Lonto is provided by means of a transla-
tion into description logics and, alter-
natively, a translation into F-logic.
Based-on these translations, the reason-
ing services provided by description lo-
gics as well as the resolution-based
proof theory of F-logic can be applied
for reasoning with ontologies and their
instances.

1 Introduction

The Extensible Markup Language (XML) (Gol-
dfarb and Prescod, 1998) has been widely
known in the Internet community as a funda-
mental language that provides the underlying
syntax of data for a rapidly growing number of
Web-based applications and activities, XML it-
self, however, does not imply any interpretation
of data; any intended semantics is outside the
realm of XML specification (Decker et al.,
2000; Klein, 2001). A qualitatively better level
of XML-based automated information access
and machine-understandable information provi-
sion necessitates additional explicit repre-
sentation of the semantics of data and domain

theories (Fensel and Musen, 2001; Fensel, 2001;
Hendler, 2001).

The concept of ontology has been employed
in knowledge engineering, natural language pro-
cessing, and intelligent information integration
as a formal, explicit specification of shared con-
ceptualizations (i.¢., meta-information) that de-
scribe the semantics of data (Uschold and Grun-
inger, 1996; Fensel, 2001). It has recently been
adopted by the Semantic Web circles as a speci-
fication of a collection of knowledge terms, their
semantic interconnections, some simple rules of
inference, and logic for some particular domain
(Hendler, 2001). In its simplest form, an ontol-
ogy typically contains hierarchies of concepts
(or classes) and describes properties of each
concept through an attribute-value mechanism.
It provides a common vocabulary for informa-
tion exchange and a common understanding of a
domain.

In this paper, limitations of using Data Type
Definitions (DTDs) (Goldfarb and Prescod,
1998) and Resource Description Framework
Schemas (RDF Schemas) (Brickley and Guha,
2000) for defining ontologies are identified
(Section 2). Thereafter, an ontology language,
ic., a language for describing ontologies, called
Lano, Is presented (Section 3). Lonto provides a
clear distinction between assertional perperties
and definitional properties of individuals and al-
lows the use of individuals in class expressions.
The precise semantics of Lonro is defined by
means of a translation into description logics
(Borgida, 1995; Donini et al., 1996) (Section 4),
and, alternatively, a translation into F-logic
(Kifer et al., 1995) (Section 5). Through these
translations, the inference mechanisms provided
by description logics and F-logic can be em-
ployed for reasoning with ontologies and object-
level XML data. Comparison of £on7o With the
core language of the Web-based ontology infra-
structure OIL (Decker et al., 2000; Fensel et al.,
2001} is made (Section 6).

<3IT-Student id="#088"
first-name="Bhurit” last-name="Sittikul">
<maijor>|T</major>
<status>sohomora</status>
<degree-prag>BSc</degree-prog>
<taker>
<course id="T214">
<course id="TU110"/>
</taker>
</SlIT-Student>

Figure 1. A well-formed XML element.

<S8IIT-Student id="#088">
<name>Bhurit</name>
<family-name=>Sittikul</family-name>
<department>IT</dapartment>
<status>second year</status>
<degree-prog>BSc</degree-prog>
<courses idrefs="1T214 TUM10%>

</SIIT-Student>

Figure 2. A well-formed XML element.

<IELEMENT SiIT-Student
{major, status, degree-prog, taker,)>
<IELEMENT major (BPCDATA)>
<!-- major choices: CE, EE, IE, IT, ME —>
<IELEMENT status (#PCDATA)>
<t-- status choices:
freshy, sophomare, junior, senior, et ~>

<IELEMENT degree-prog (#PCDATA)>
<i-- degree-prog choices: BSc, BEng, MS¢, Phd —>
<{ELEMENT taker (course*)>
<IELEMENT course EMPTY>
<IATTLIST SHT-Student

id 1D #REQUIRED

first-name CDATA #IMPLIED

last-name CDATA #IMPLIED>
<IATTLIST course id ID #REQUIRED>

Figure 3. A simple DTD.

2 Limitations of DTDs and RDF
Schemas

Different well-formed XML documents may
provide the same information; for example, the
well-formed XML elements in Figures 1 and 2
may equivalently describe a specific SIIT stu-
dent. The parties that use XML for their data
exchange must agree beforehand on the vo-
cabulary (c.g., the names of elements and attrib-
utes) and its use. Such an agreement can be
partly specified by a Data Type Definition
(DTD) (Goldfarb and Prescod, 1998), which
serves as a context-free grammar for XML
documents. Using the DTD in Figure 3, for in-
stance, the XML element in Figure 1 is valid,
whereas that in Figure 2 is not.

A DTD, however, provides only a simple
structure prescription; it only defines the legal
lexical nestings of elements, their order, their
possible attributes, and the locations where nor-
mal text is allowed. It does not serve as a ma-
chine-processable description of the semantics
of XML data. In the DTD in Figure 3, for ex-
ample, the possible values of a major-element,
which imply the meaning of the tag major and its
usage, can only be given as a comment!, which
is not machine-understandable. Consequently,
content-based sermantic constraints on informa-
tion cannot be specified using DTDs; for exam-
ple, one cannot assert that if the major of an un-
dergraduate SIIT student is IT, then his/her de-
gree program is necessarily BSc. Moreover,
generalization relationship (subclass relation-
ship) among XML elements, which is a funda-
mental abstraction mechanism for relating the
elements semantically, cannot be described by a
DTD.

Resource Description Framework Schemas
(RDF Schemas) (Brickley and Guha, 2000) pro-
vide a mechanism for expressing the semantics
of data through metadata descriptions. Their
basic modeling primitives include class defini-
tions and subclass-of statements (which together
allow the construction of a generalization hier-
archy of classes), property definitions along
with domain and range statements (for re-
stricting the possible combinations of properties
and classes), and fype statements (for declaring
an object as an instance of a class). For exam-
ple, the RDF Schema in Figure 4 asserts that
taker is a property (attribute) of every instance of
the class SliT-Student and the values of this prop-
erty must be instances of the class Course, and
that SIIT-GradStudent is a subclass of SIiT-Student;
accordingly, SlIT-GradStudent inherits the prop-
erty taker and its range restriction from SIIT-
Student.

rdfs:Propery

rdfs:subClassOf

rdfs:comaln
Figure 4. An RDF graph.

! A comment in a DTD is enclosed within a pair of
<l-- and >,

Nevertheless, properties are defined globally
and are not encapsulated as attributes of classes
in RDF Schemas (Fensel, 2001). As a conseq-
uence, the range restriction of a property of a
certain subclass cannot be further refined. For
example, one cannot provide an additional con-
straint that any value of the property taker of an
instance of SIIT-GradStudent must be an instance
of some specific subclass of Course, say Ad-
vancedCourse. Such refinement of range restric-
tion is apparently necessary for specifying se-
mantic constraints for a subclass.

In RDF Schemas, only assertional properties
of the instances of a class, i.e., necessary condi-
tions for membership of the class, can be speci-
fied. There is no mechanism for providing an
insight into the meaning of a class by specifying
necessary and sufficient conditions for member-
ship of the class. As a result, a class cannot be
defined intensionally based on the properties of
its instances; one cannot define, for example,
SHT-GradStudent as the class of all instances of
SHT-Student whose degree programs ar¢ either
MSc or Phd. The distinction between assertions
and definitions is important for a clearer under-
standing of the semantics of conceptual repre-
sentation (Woods, 1991).

3 An ontology Language, LonTo

This section presents an ontology language,
which will be referred to as Lonto- An ontology
in Lonro 1s itself an XML document, consisting
of slot declarations and class declarations. The
syntax of Lonto is formally defined by the DTD
in Figure 5.2 For improvement of readability, a
more compact pseudo XML syntax will be used,
where opening tags are indicated by bold faced
text, grouping of subcontents is indicated by in-
dentation, and closing tags are omitted. Fur-
thermore, the tag of a slotName-¢lement and that
of a className-element will be omitted, the con-
tent of a set-element will be written using the
usual set notation, and the and-tag will be used
as an infix operator.

An fownto ontology 1s illustrated in Figure 6.
It contains one slot declaration and four class
declarations. The declaration of the slot faker

2 Note that the DTD in Figure 5 does not define an
ontology, but an ontology language, which is used to
describe ontologies.

<l-- DTD for Lonro =>
<IELEMENT ontolagy (slot*, class*)>

<!— Slot Declaration —> -
<|ELEMENT siot (slotName, domain, range)>
<|ELEMENT slotName CDATA #REQUIRED>
<|ELEMENT domain CDATA #REQUIRED>
<IELEMENT range CDATA #REQUIRED>

<l— Class Declaration —>
<IELEMENT class (className, %property;)>
<IELEMENT className CDATA #REQUIRED>

<l— Class Property —>
<IENTITY %property
“{{definition assertion) | definition | assertion)™>
<IELEMENT definition (%constraint;j+>
<IELEMENT assertion (%constraint;)+>

<!-- Constraint —->

<IENTITY %constraint "(subclass-of | slot-constraint)*>
<IELEMENT subclass-of (className)>

<IELEMENT slot-constraint (slotName,

{value-type | unique-value-in | soma-value-in))>
<IELEMENT value-type (%classExpression;)>
<IELEMENT unique-value-in {%classExpression;)>
<IELEMENT some-value-in (%ciassExprassion; >

<i-- Class Expression —>
<IENTITY %classExpression
*{className | set | and | slot-constraint)'>
<IE EMENT and (%classExprassion;,
{%classExpression;)+)>
<tELEMENT set (li+)>
<IELEMENT)i CDATA #REQUIRED>

Figure 5. DTD specification for Lono.

simply asserts that if an individual x is related to
an individual y by this slot relation, then x and y
must be instances of the classes Student and
Course, respectively. The declaration of a class
contains an assertion part and a definition part,
one of which may be omitted. The assertion part
specifies necessary but not sufficient conditions
for membership of the class; by contrast, the
definition part provides necessary and sufficient
conditions for the membership. Each of the two
parts is a combination of subclass-of statements
and slot-constraint statements. A slot constraint
is a class expression that takes one of the three
forms

1) R value-type E,
2) R some-value-in F,
3) R unigue-value-in £,

where R is a slot name and F 1s a class expres-
sion. The slot constraints of the first, the sec-
ond, and the third forms, respectively, denote

+ the class consisting of every individual that is
not related by R to any individual that is not
an instance of the class denoted by £,

* the class consisting of every individual that is
related by R to at least one instance of the
class denoted by E (and is possibly also re-
lated by R to some individual of some other
class),

o the class consisting of every individual that is
related by R to exactly one individual in the
class denoted by £ and is not related by R to
any other individual.

The first class declaration in Figure 6 asserts
that every instance of SIIT-Student is necessarily

ontology

slot taker
domain Srudent
range Course

class SHT-Student
assertion
subclass-of Student
slot-constraint degree-prog
unique-value-in
{BSc, BEng, MSc, Phd}
slot-constraint major
unique-value-in {CE, EE, IE, IT, ME}
class SHT-Undergrad
definition
subclass-of SIIT-Student
slot-constraint degree-prog
value-type {B8Sc, BEng}
assertion
slot-constraint starus
unique-value-in
{freshy, sophomore, junior, senior}

class [T-Undergrad
definition
subclass-of SHT-Undergrad
slot-constraint major
value-type {/T}
assertion
slot-constraint prog-lang
some-value-in {C}
slot-constraint prog-lang
some-value-in {Javg}
slot-constraint degree-prog
value-type {BSc}

class S/IT-GradStudent
definition
subcelass-of SHT-Student
slot-constraint degree-prog
value-type {MSc, Phd}
assertion
slot-constraint raker
value-type Course
and slot-constraint lecturer
value-type FullProfessor

Figure 6. An ontology in Lonto-

an instance the class Student, the class denoted
by the slot constraint (degree-prog unique-
value-in {BSc, BEng, MSc, Phd}), and also the
class denoted by the slot constraint (major
unique-value-in {CE, EE, [E, IT, ME}); how-
ever, there may exist some individual that is an
instance of each of these three classes but is not
an instance of SIfT-Student. In plain words, this
class declaration asserts that every SIT student
has a unique degree program, which is one of
BSe, BEng, MSc, and Phd, and a unique major,
which is one of CE, EE, IE, IT, and ME; but it
does not provide the definition of an SIIT stu-
dent. The next class declaration defines ST/7-
Undergrad as the class consisting of every in-
stance of S//T-Student that is also an instance of
the class denoted by the slot constraint (degree-
prog value-type {BSc, BEng}). Intuitively, it
defines an SIIT undergrad(uate) as an SIT stu-
dent whose degree program is either BSc or
BEng. Then, it specifies as an assertion that
every instance of SIIT-Undergrad is necessarily
an instance of the class denoted by the slot con-
straint (status unique-value-in {freshy, sopho-
more, junior, senior}), but not vice wversa.
Likewise, the third and the fourth class declara-
tions provide the definitions of the classes J7-
Undergrad and SHT-GradStudent, respectively,
and describe some of their properties as asser-
tions. Note that since a slot constraint is itself a
class expression, it may be used to specify an-
other slot constraint; the nested slot constraint in
the last assertion part in Figure 6, for example,
intuitively denotes the class consisting of every
individual that takes no course that is not lec-
tured by a full processor.

4 Translation into Description Logics

The formal semantics of Lonro Will be defined
in this section by means of a translation into a
concept language in description logics.

4.1 Description Logics

Description logics (also called terminological
logics) (Borgida, 1995; Donini et al., 1996) stem
from Semantic Networks and Frames. They deal
with the representation of structured concepts,
their semantics and reasoning with them. The
structure of a concept is described using a lan-
guage, called concept language, comprising
Boolean operators (conjunction, disjunction, ne-

C,D — AIT|L|-4|CND
[VR.C|3R|3R.C
|2nR)|(<nR)

! {alx == an}

Figure 7. Syntax of ALENO concepts.

T/ = A
11 = &
(-4} = A4
cnmt = onps
(VRCY = |dielA|Vdy:(ddh)eRI=deCl}

@R = {d,eA7|3dy: (d),dh) e R}
BR.OY = {dieAf|3dy:(dd)eRind, e}
@nRY = {d €A #Hd|(d.d) R} 2n)
(EnRy = {dicd#d|(d.d)sR}<n}
fay ...a.} = {a/... a’}

Figure 8. Conditions for an interpretation 1

gation) and various forms of quantification over
the roles {also called attributes or slots) of the
concept. The language ALENO in the com-
monly known family of A£-languages (Donini
et al., 1996; Schaerf, 1994) will be used as the
target concept language in this paper. Given an
alphabet @ of primitive concepts, an alphabet ®
of roles and an alphabet O of individuals, a con-
cept in ALENU is constructed by means of the
syntax rule in Figure 7, where C and D denote
concepts, and 4, R and the a; belong to the al-
phabets @, ® and O, respectively.

An interpretation f = (A4 -9} consists of a
nonempty set A’ (the domain of) and a function
- (the interpretation function of I) that maps

every concept to a subset of A/, every role to a
subset of AT x Al and every individual to an ele-
ment of A’ such that the equations in Figure 8
are all satisfied. In addition, it is assumed that
different individuals denote different elements in
Af (Unique Name Assumption), i.e., for any pair
of individvals a, b € O, if a # b, then a‘=# b'.

An interpretation I is a model for a concept C
if C’ is nonempty. A concept is satisfiable if it
has a model, and unsatisfiable otherwise.

A knowledge base built using description lo-
gics consists of two components: the intensional
one, called T-box, and the extensional one,
called A-box. A statement in a T-box has either
the form € = D or the form C = D, where C and
D are concepts. An interpretation [satisfies the
statement C = D if C/ < D¢, and the statement C
=D if C' = D! An interpretation 7 is a mode! for
a T-box Tif Isatisfies every statement in 7.

A statement in an A-box takes cither the
form C(a) or R(a, b), where C is a concept, R is
a role, and a, b are individuals. An interpreta-
tion I satisfies the statement Cla) if o/ € €/, and
the statement R(a, b) if (a’, &) € R' An inter-
pretation 7 is a mode! for an A-box A4 if I satis-
fies every statement in 4.

An interpretation 7 is a model for a knowl-
edge base Z = (7, A4), where 7'is a T-box and 4 1s
an A-box, if 7 is both a model for 2 Tand a
model for 4. A knowledge base X logically im-
plies a statement o, written as X E ¢, if every
mode! of ¥ satisfies c.

a{antology slotDecls classDecls)
a(slotDecl, ... slotDecl)

classDecl) ... classDecl)

oislot R domain 4 range B)

olclass A definition constraints)

da{class A assertion constrainis)

olclass 4 definition conmstrainis| assertion constrainis;)

olsubciConstr ... subclConstr, slotConstr| ... slotConstr,)
ofsubclass-ef 4)

O(slot-constraint R value-type classfxpr}
o(slot-constraint £ unique-value-in classExpr)

a (slot-constraint R some-value-in classExpr)
ol(classExpry and ... and classExpr,)

o(A4)

o(len, ... d.})

= olslatDecls) u d{classDecls)

fl

a(slotDecl\y U ... v olslotDecl,)
dalelassDecl)) U ... Ud(classDecl,)
{(FR.T = o)), (TE VR A(BY)

{(4 = T olconstrains))}

{A = T M oleconstrains))}

a(class 4 definition conrstrains) U

o(class A assertion constraintsy)
GlsubclConstr)) M ..M olsubclConstr,)
M of{slorConstr)) M ..M ofslotConsir,,)
A

(VR.olclass Expr})

(3R.olclassExpry M {< 1 RY)

(AR . o(classExpry)

(olclassExpr)) 1 ... 1 olclassExpr,))
A

{01.---, ﬂn}

Figure 9. Translation of Lonro into ALEND.

4.2 Translation of Lonro into ALEND

A translation ¢ that maps ontologies in Lonto
into T-boxes in ALENO is defined in Figure 9,
where A , B denote class names and R denotes a
slot name. As an illustration, by using the trans-
lation o, the ontology in Figure 6 is transformed
into a T-box consisting of the statements in Fig-
ure 10. While class declarations and slot
declarations in an ontology is transformed into
T-box statements, object-level XML elements
(XML elements describing specific objects) will
be transformed in a straightforward way into
statements in an A-box. For example, the XML
element in Figure 1 is converted into the A-box
statements in Figure 11.

To demonstrate reasoning with ontologies
and object-level XML data based on description
logics, assume that Tis a T-box consisting of the
statements in Figure 10, 4 is an A-box contain-
ing the statements in Figure 11, and X is the
knowledge base (7, 3). Now let I=(A/,"}bea
model for £. From the third and the fourth
statements in Figure 10, I necessarily satisfies
the statement SIT-Undergrad(#088). Hence,

X & SHT-Undergrad(#088),

i.e., the implicit information that the individual
#088 belongs to the class SHT-Undergrad can
be derived. Then, from the third and the sixth
T-box statements in Figure 10, it is readily seen
that

T E1T-Undergrad(#058).

Next, it follows from the seventh statement in
Figure 10 that the model 7 necessarily satisfies
the statements prog-lang(#088, C) and prog-
lang(#088, Java). Therefore,

Z = prog-lang(#088, C),
2 = prog-lang(#088, Java).

Consequently, the elements

<prog-lang>C</prog-lang>
<prog-lang>Java</prog-lang>

are both derived as implicit subelements of the
SIIT-Student-clement in Figure 1.

Besides derivation of implicit information,
the framework of description logics also facili-
tates content-based validation of object-level
XML data with respect to a given ontology For
instance, suppose that the status-subelement in
Figure | is replaced with the element

1. (3taker. T = Student)
2. (7 =Viaker.Course)
3. (SHT-Stdent -
C T M Student
M (3degree-prog. {BSc, BEng, MSc, Phd}
(< 1 degree-prog))
M (Amajor. {CE, EE, IE, IT, ME} 11 (< | major)))
4, (SHT-Undergrad
=T M SHT-Student M (Veegree-prog. {BSe, BEng}))
5. (SHT-Undergrad
C T M (Tstatus. {freshy, sophomore, junior, senior)
(< 1 status)))
6. (T-Undergrad
= T M SHT-Undergrad m (Y major, {IT}))
7. (T-Undergrad
= T (dprog-lang. {C}) M (Jprog-lang. {Java})
M (Vdegree-prog.{BSc}))
8. (SHT-GradStudent
=T M ST-Student M (Vdegree-prog. { MSe, Phd}))
9. (SHT-GradStudent
= 7 (Vtaker.(Course M Viecturer FullProfessar)))

Figure 10. Resulting T-box statements.

SHT-Student(#088)
last-name(#058, Sittikul)
status(#088, sophomore)
taker{#088, IT214)
taker(#088, TU/110)

Jirst-name(#088, Bhurit)
major(#088, IT)
degree-prog(#088, BSc)
Course(IT214)
Course(TUT10)

Figure 11. A-box statements.

<status>single</status>,

and, accordingly, the statement status(#088, so-
phomore) in the A-box 4 is replaced with

status(#088, single).

Since X logically implies the statement SI77-
Undergrad(#088), it follows that every interpre-
tation that satisfies the statement siafus(#088,
single) does not satisfy the fifth statement in
Figure 10. As a result, the replacement leads to
the inexistence of any model for Z, which indi-
cates that 2 becomes inconsistent. This incon-
sistency reflects the fact that the resulting XML
element does not conform to the ontology in
Figure 6, which asserts as a necessary condition
that the status of an individual of the class SIJT-
Undergrad can only be freshy, sophomore, jun-
ioF, O Senior.

5 Translation into F-Logic

Altemnatively, the semantics of Loyt can be de-
fined by means of a translation into a subclass of

F-logic (Kifer et al., 1995)—a full-fledged logic
that has been widely recognized as a well-
established theoretical foundation for the object-
oriented paradigm. After identifying the sub-
class considered in this paper of F-logic, such a
translation will be presented in this section,

Given an alphabet O of individuals, an alpha-
bet C of class names, an alphabet & of attribute
names and an alphabet 1/of variables, an F-logic
atomic formula (F-atom) used in this paper takes
one of the three forms

D) id-term:A,

2) A[R=>>E],
3) id-term{R ->> id-term’],

where id-ferm and id-term’ are elements of O U
1, A and B belong t0 ¢, and R belongsto ®. A
ground {variable-free) F-atom of the first form is

intended to mean “the object denoted by id-term
is an instance of the class 4, that of the second
form is intended to mean *“each value of the at-
tribute R of an instance of the class 4 is neces-
sarily an instance of the class B”, and that of the
third form is intended to mean “the object de-
noted by id-ferm’ is a value the attribute R of the
object denoted by id-term”. F-logic statements,
called F-formulas, are constructed inductively
out of F-atoms by means of standard logical
connectives and quantifiers in the usual way:

e F-atoms are F-formulas;

¢ If g and y are F-formulas, then —¢, ¢ A v,
@V Y, o=y @ <y are F-formulas;

¢ If ¢ and y are F-formulas and x, y € ¥,
then ¥x(¢) and 3)(y) are F-formulas.

plontology sfotDecls ... classDecls) =

plslotDecl ... slotDecl,)
plelassDecl, ... classDecl,)}

pislot R domain 4 range B)
plclass 4 definition constraints)

plclass A assertion consiraints)
plclass 4 definition constraints, assertion constrainis,)

pli, subctCanstr, ... subclConstr, slotConstr| ...slotConstr,,)

p (f, subelass-of 4)
pli, slot-constraint R value-type classExpr)
pli, slot-constraint R unique-value-in classExpr)

P, slot-constraint R seme-value-in classExpr)
2Ai, elassExpr, and ... and classExpr,)

Pl A)

Pl a0 aq})

plstotDecls) u plclassDecls)

plslotDecl v ... L plslotDecly}
PleiassDecl)V ... U p(classDecl,)

A[R =>> B]

{¥x,(x, 1 A & p(1, constraints))}

{Vx) (x) 1 4 = p(l, constraints))}

p(elass 4 definition constraints,)

 plclass A assertion constraints,)

(p(i, subclConstr)) ~ ... A (Xi, subciConstr,)
~ Pl storConstr)) n ... ~ pli, slotConstr,,)}
{x;: A}

Vx (xR —>> xp1] = pli+], classExpr))
T (xR =22 xiaa] A V(xR =>> y} =y =x31)
A plitl, classExpr))

xR === x| A plitl, classExpr))
(oli, classExpr) A ... A p(i, classExpr,))
{xpd)

(;=a v ... vXx;=a,)

Figure 12. Translation of £gyro into F-Logic.

Studeni[taker =>> Course]
Y {x:SUT-Studernt = ({x,:Studenr)

A Axolx [degree-prog === x33 A V(x| degree-prog —>> v] = v=x3) A (xa= BSc v x3= BEng v x3 = MSc v x;= Phd))

A nlx[major —2> x3] A ¥Y(x | [major —>2 p] = y=x3) A (x3= CEv xa= EE v x3 = I1E v x;= T v xa= MEW))
Vi (x:SAT-Undergrad < {{x:SHT-Studen) ~ ¥xi(x|[degree-prog —>> x;] = (x3= BS¢ v x;= BEng))))
Vx| (x :SHT-Undergrad = (Jxa(x [status —=>> x| & Yylx[status —>>y]| = y=13)
A (xy= freshy v xy = sophomare v x; = junior v X3 = senior))))
Yo, (xy IT-Undergrad < ((x:SHT-Undergrad) A ¥x,(x[major —=> x3] = (x;= 1T}
Yoy (x S T-Undergrad = (Ao (x [prog-lang —=> x3) A (x3 = OY) A Txalx|[prog-lang ~>> x;] A (x2 = Java))
A Vxa(x [degree-prog —>> x3] = (x= BSc))))
Yx () :SHT-GradStudent < ((x:SHT-Student) ~ Vxi(x [degree-prog —=> x3] = {x;= MSe v x,= Phd})))
Y (x :SUT-GradStudent = (Vx(x|[taker —>> x;3] = ((x3:Course) ~ Vxs(x;y[lecturer —>> x3] = (x3:FullProfessor))))))

Figure 13. Resulting statcments in F-logic.

#088:SHT-Student #088{first-name —>> Bhurit)
#088[last-name —>> Sittikul] #088[major —>> IT]
#08S[status - sophomore] #)88[degrec-prog —>> BSc)
#088[taker —>=> IT214] 1T214:Course

#U88(raker ->> TUT 10} TU110:Course

Figure 14. Object-level F-formulas.

The reader is referred to (Kifer et al., 1995) for
the formal semantics of F-logic.

Figure 12 defines a mapping p for translating
an Lonro ontology into a set of F-formulas.
Through p, the ontology in Figure 6 is trans-
formed into a set consisting of F-formulas in
Figure 13. Together with the transformation of
a given ontology, object-level XML elements
can also be translated in a direct way into F-
formulas; for example, the F-formulas obtained
from the XML element in Figure 1 are shown in
Figure 14, By means of the mapping p, the
model-theoretic semantics and the resolution-
based proof theory of F-logic, which are elabo-
rated in (Kifer et al., 1995), can be employed for
reasoning with ontologies and object-level XML
elements.

6 Related Work

In their colfaborative proposals, Decker et al.
{2000) and Fensel et al. (2001) enriched RDF
Schemas with additional modeling primitives
imto an influential Web-based onlotogy infra-
structure called Ontology Inference Layer
(OIL), which partly inspires the work presented
in this paper. OIL provides a core ontology lan-
guage, in comparison with which Lonto has two
distinctive features: a clearer distinction between
class definitions and class assertions, and the in-
clusion of individuals in class expressions. In
the core language of OIL, necessary but insuffi-
_cient conditions for class membership can only
be specified for a primitive class but not for a
defined class, and the use of individuals in
specifying slot values or defining extensional
class expressions (i.e., class expressions defined
by enumerating individuals) is not allowed. The
core language of OIL, however, provides richer
modeling primitives for specifying global con-
straints that apply to slot relations, e.g., a slot
relation can be specified to be transitive, sym-
mietric, or an inverse of another slot relation.

Acknowledgement
This work was supported by the Thailand Re-
search Fund, under Grant No, PDF/31/2543.

References

Borgida, A., Description Logics in Data Man-
agement, [EEE Transcations on Knowledge
and Data Engineering, 7(5): 671-682, 1995.

Brickley, D. and Guha, R. V., Resource Descrip-
tton Framework (RDF) Schema Specification
1.0, http:/f’www.w3c.org/TR/2000, 2000.

Decker S., Melnik, 5., van Harmelem, F.,
Fensel, D., Kiein M., Broeckstra, J., Erdman,
M., and Horrocks, I. The Semantic Web: The
Roles of XML and RDF, IEEE [Internet
computing, 4(5): 63-74, 2000.

Donini, F., Lenzerini, M., Nardi, D., and
Schaerf A., Reasoning in Description Logics,
in Brewka, G., editor, Principles of Knowl-
edge Representation and Reasoning, CLSI
Publication, pp. 193238, 1996.

Fensel, D., Ontologies: 4 Silver Bullet for
Knowledge Management and Electronic Com-
merce, Springer-Verlag, 2001.

Fensel, D. and Musen, M. A., The Semantic
Web: A Brain of Humankind, /EEE Intelligent
Systems, 16(2), 24-25, 2001.

Fensel, D., van Hammelen, ¥., Harrocks, I,
McGuinness, D. L., and Petel-Scheider, P. F.,
OIL: An Ontology Infrastructure for the Se-
mantic Web, IEEE Intelligent Systems, 16(2):
38-45, 2001.

Goldfarb, C. F. and Prescod, P., The XML
Handbook, Prentice Hall, 1998,

Hendler, J., Agents and the Semantic Web,
[EEE Intelligent Systems, 16(2): 30-37, 2001.
Kifer, M., Lausen, G., and Wu, J., Logical
Foundations of Object-Oriented and Frame-
Based Languages, Journal of Association of
Computing Machinery, 42(4). 741-843, 1995.

Klein, M., XML, RDF, and Relatives, /JEEE In-
telligent Systems, 16(2); 26-28, 2001.

Schaerf, A., Reasoning with Individuals in Con-
cept Lanpuages, Data and Knowledge
Engineering, 13(2): 141-176, 1994,

Uschold, M. and Gruninger, M., Ontologies:
Principles, Methods and Applicaions, Know!-
edge FEngineering Review, 11(2); 93--136,
1996.

Woods, W. A, Understanding Subsumption and
Taxonomy: A Framework for Progress, in
Sowa, 1., editor, Principles of Semantic Net-
works, Morgan Kaufman Publishers, 1991,

