PDF/31/2543 mg. andwe) Wundsdand

o KL J}
T R F

=y s r d
TN HIVUAVUaHL T

3 & ws d 1 L
iﬂ‘jﬁn‘li IREN R HuﬂFI'J'I‘.”LTUIW‘Hﬁ[UENrlﬂfl?:’lﬂﬂﬁ‘.”ﬂ)‘ﬂ1 UML

TaglinguilUsunsu@alszmadiniy XMUXML i Duig

{On the Relationships between UML Diagrams
Based-on XMI/XML Declarative Program Theory)

& e, ¢« w - T 5 - ‘
L AN GRS T T It o el TR N VAR B {2 b

T 24

a

Yy uauR PDF/31/2543

e Iduativauysol

Tnsams m‘sﬁmuﬂmmi’fuﬁ’uﬁmaﬂﬂazsmmmm UML

TasldnquillaunsuBalszmadmiu XMUXML dutugm

(On the Relationships between UML Diagrams
Based-on XMI/XML Declarative Program Theory)

= ¢ o w o o & as
WAL A3, LoNIYY WuUNIIgTan antuma Tulagunmnadsuss

PHIRNGUFITUAIAAS

#.935. Je1m e antfuma TuTasuvvede

=3 cl 5
afvayulasd inauneauaiEUNTINY b IR 16

TN
BT 00041
R, enpanpariensarares
Ly U l’ﬂr
e e u3
Tt TR YE T 1) IR - S
(amuniulunesauiiduvesdiso am. liduihidsaiudraeus) 2

‘numummmmu (SELRTATI R Ty (AN)

U
N
F L5 013 o PRTTEIRDISvLs b
i tn) 17-71 avrera Tam i wnaa unaulu 7
Canan i ngaina 10400

i 03ORLEES HI YT 208-04T6

Home pase @ htipdiwww irforah /‘

E-mund it loietrforah

faanssulszne

wunnudenanfirieuelularemst Wedwnanduusihaiadeliasivami lazems
ldfuan el Jma e davannasimiinensssArinndmiuineiinud
Wygninussenvesimilasamsluszvingd) w.a. 2533-2540 udh Galdnnunsansimhmis
in3spfEpsnaslasamaday v'hwvfﬂmam's“lGT%’un”ﬁﬁﬂ'umgu'lm‘%aa‘nua:tﬁumama"lnm‘s
UsARAUULENLA Fadunalnmsdszuranandniildlulasannsil anmaasansd dled azanus
wazlailamariauniuludmwmngummnujsminalnnisdsznanauvuauya ludoaa
mufifthuan seiiniduusasszuugpmanuilulasensiignianndy Taglduanutiumie
TN PEAWT BUAIUE {IN ADUATE LAz WADTUN duKa Tmamsﬁ"lﬁ%’ummﬁhmumnﬁwﬁmm
nasuaiLayunsITe (Witswasligguen an.)

Abstract
Project Code : PDF/31/2543

Project Title : On the Relationships between UML Diagrams
Based-on XMI/XML Declarative Program Theory

Investigator : Ekawit Nantajeewarat
Sirindhorn International Institute of Technology
Thammasat University

E-mail Address : ekawit@siit.tu.ac.th

Project Period : 1 July 2000 — 30 June 2002

Objective: To establish a foundation for representing knowledge and reasoning
in the domain of UML based on XML declarative descriptions.

Methods: Graphical diagrams in a UML model are encoded as XML elements, which
are regarded as facts about a specific problem instance in a knowledge base, and the
general knowledge in the UML domain, such as inherent interrelationships among
diagram components and implicit properties of diagrams, is represented as a set of
XML definite clauses. Equivalent transformation is employed as the underlying com-

putation mechanism for reasoning with the represented diagrams.

Results: A framework for knowledge representation and reasoning in the domain of
UML, based on XML Declarative Description Theory, is proposed. To represent
UML diagrams in a standard way, the XML Document Type Definition (DTD)
specified by XML Metadata Interchange Format (XMI), a technology recommended
lately by the Object Management Group (OMG), is employed. Representation of
general rules in the UML domain using XML definite clauses is demonstrated. The
framework has been applied to the representation of transformation rules for
generating relational database schemas from the static parts of UML models. A
prototype UML knowledge-based system under the proposed framework has been

developed and tested, and satisfactory results have been obtained.

Conclusion: Since XMI/XML is becoming a standard textual representation of UML
diagrams, it is expected that the presented framework has several promising ap-
plications, such as forward and reverse engineering, consistency verification of
models, and automatic generation of database schemas. Integration of the proposed
framework into other UML-based software modeling tools and techniques is also
possible inasmuch as virtually every tool supporting UML is capable of reading and
writing models in XMI format.

Keywords: UML, XML, Knowledge Representation, Knowledge-Base Systems,
Declarative Descriptions, Deduction, Software Engineering

UNAALD
sWalAsIN1T : PDF/31/2543

falasonis: nammuaanudiusueslaazunsune) oML Tasldngus
TusunsanBarlsznadmu XMUXML iwiwgn

Ho¥n39u uazanin: wndrg wwnIiied
o uma T Tadu I AATUST WSS UATERS

E-mail Address : ekawit@siit.tu.ac.th
sruEAIlAsINTg 1 nangnaa 2543 — 30 Hquiou 2545

’Jﬁnﬂs.,mﬂ Lwaaﬂaaaﬂmmﬂwmmumiﬁmmumwm WAZTITOUN \Apaiy
LUL8841895 UL UAEITHIMNEY Unified Modeling Language (UML) 1@ olingw]
Tdsunsuidadsemagimin Extensible Markup Language (XML) dudugin

35m7: leezunsy UML Uszinneéiig luuuumﬂawaaswumm o mnm"Lﬂammu'Lu
guanuludansuzvastoyalugluy XML dmanuiAgTua NI RS T la
mmmﬂs"mﬂmm a*nnamrgmluanum“mmnganm‘g[mﬂunumaa Definite Clause
MU XML I@ﬂﬁ]vl'nn'rsﬂi'mawal,l,uuﬂuumﬂuna‘lnﬂ%n'lummmuLLﬂ ZMTEUING
mmnmi{ammaamumqm

wavaslazams o Amsdmiumidadivenui uaznisdai \Aearuuuuassues
sovruiidouiulumen UML ”l,@mnLﬁma":jruuuﬂnmwuamqugmmmumﬂ'ﬁ:mﬂ
#1730 XML lasdin13i XML Document Type Definition (DTD) wnnmmmﬂmu XML
Metadata Interchange Format (XMI) anldifluanasgmlunisdafivlaasunsusineg uazle
finTuaa019TaLawiansle Definite Clause %3 XML 'Lum'nmnummauwuﬁ
'a'vwmmuﬂ's-ﬂawaﬂmaam‘;‘mm.ngmrufnm‘lﬂ’lﬂmmmaa UML 9nfslimauans
m‘sm’mm‘mtﬁuamu‘lﬂﬂ?unﬂ'l'ﬁ'lumwﬂLnungtnmmnﬂiﬁiwaIﬂsaaﬁomwnaummu
FUWUT {Relational Database Schema) mnuuumaaa‘s"um’mmu‘lmﬂwaa UML ULy
maanuumummi"lﬂnnwmmmmwammﬂaawuwumu

g3t/ - uiimanisinitnsfaseduionh luysegndl s femnshunsdaniung
mmfnmmﬂﬂﬂmnm:szunm'mt.mumﬂaa‘s*umm LASITUNNEHIUNNIATITFY
anunndassanndastasuLitaasuuny wenaniifadianu il idfesiniing
iﬂﬂﬂﬁusnﬂ'ﬁnunmﬁmsau~]'n'l°nau'lwﬁaﬂ‘nmemumum‘mwmLmumaaa‘:uuu
UAN G maomnfnawmmmmua'm’lmmmmmmu wartuAnuuudnaaasruuaule
JUuuy XMIXML

AMEN : UML, XML, n’mmnumﬂm i~uumumws Tusunsuidadsznne,
MY, ".\mmm‘nawmm

J& =y 0
DWW IO
UNHI

mM3aF1UU§iae (Model) voaszuuaududesd ulust v lunsWannaowiinng Tnsmme
VA @ P ' 9 s a Y ge o v Y -
st lumsianngeriniune lny wwudnswesszvuszsoi i insnedsruuiazd1szuui
Y w 9 - ¥ o 3 b = i . Ay va
A lensasuluszuuauiidesms wazseimihfiludedmunsnuazidon (Specifications) o 1H i
AauTdsunsuaieTdsunsu Idedngadosmuniudeamsvesdlfszuy anudwyvoauiiany
sruuaw lumsiamserhiadidfou ldfus nuddyvesiuiiies (Blueprint) Tumsreaiwams fa
uAta1d 1997 (Hudunt /w1 Unified Modeling Language (UML) [1, 2, 3] 185UmMI5U504370 Object
4 4. L
Management Group (OMG) " Fuffusanmsivimyhfidmumnasglugaamassuzevinas Wil
eI g AT uRsUIU U180 U59IngU093Z UV (Object-Oriented Model) MBIUML 15:noy
- r A a :
Aoleozunsudinmdszand1g emnsniT s lumsussoeTasaadaveaszuy (Static Model)

o o ' @ 'd]] ' ¥
!L’ﬂSﬂlSﬂ'lH‘lJ.ﬂﬂ'li1‘1'N'ENiﬂuﬂuﬂlﬂdﬂiﬂﬂizﬂﬂﬂﬂﬂﬂﬂ'ldﬂ UDITEUU (Behavioral Model) %HLNHMWN‘]

A Vas o d? ' o =l s o I'd
fipavnmy1 UML TafumsWannduednsiaig 1 laolius swdnauainningaamnssuse g
a o W 1 & w o 4 g
dundn Jymddgestmitavasniy uML ullegiuffio msvasingrumanguiiivifiuanurue
{ o , o a o '
fiEaiau (Precise Formal Semantics) HazAuduiuisznaduved laszunsulsannaneg singma
ar 1 y.:l o 1 a = o 1y Ly 1
nouffnanifinudiayoiai lunsiinswdiasesnasuanugndsansiiuves leesunsudian Tu
o 0 q.939 ¥ ya . ¥ et = » ° Ao 4
nUUS 109 nazre IR 1Fss 00 guasizdszuy vasfieu Tusunsy Sanud s huuudassfidouiu
o = i = H nt o o
asaffu aatoRawmalumsdomsfioedatulunszuoumsianaoiinl mafmusnoumnoias
v W { o o | " 4 ¢ 1
aruduRundausnih higmaiamunseaiionaveviiud (Software Tools) Ailinramnsalunis
aswapuANUgndoIrenndsszn g Ml TEneuAq vesszuY neuflszTuasiiofeu Tsunsuan
o L. o v y 4 A ¢ Pp w
UDTLULN U TZYNG (Application Programs) nazezit llgmsadiuaiesdenisrorimnidmiums

' o’ sy [3 4 1 T Y s
¥ Tsunsuaen TuszuuauTeeda Tudaninnuusians farzteaananmza ldtieTumsimun

seuvam Iaiiuediann

¥

anddsuiijadu linsaduessanudmilums 14 Tsunsudalsen et (Declarative Program) [4]
fil4oyalugtiuunues XML Metadata Interchange Format (XMI)’ ﬁ‘lu%’ﬂyaﬁyujm’lumiﬁmuﬂmm
Fuiusnanmineveslassunsudag Tu UML tiosntn XMISugduunasgdmiueann/fou
%ﬂualﬁuuﬁuﬁwﬂs:naumm YoIUVUT1apIveesE U waz dlTEnaua1en vea T1lsunsuuu Intemet

14
LAz World Wide Web sasnrmidiiszanandosfununiufinlumedannlsunsuunvuda yaainslu

swaztduare1afinT OMG anniag den hitp:/www.omg.org/

2
TwaziBoaves XMl annseq 18 hitp:rwww.omg.orgitechnology/documents

Output 910lasam 5o lasunuern am

- = = a = '
NEN114‘ﬂlﬁ‘uﬂ1“l»l1‘]1]13'1131“1\1?151?1111!1“'111151 (sagio Uﬂﬂg1uﬂ1ﬂﬂu1ﬂ)

E. Nantajeewarawat, V. Wuwongse, C. Anutariya, K. Akama, and S. Thiemjarus.
“Towards Reasoning with UML Diagrams Based-on XML Declarative Description
Theory”, in V. Kreinovich and J. Daengdej, editors, Proceedings of the First
International Conference on Intelligent Technologies (InTech’ 2000}, Bangkok,
Thailand, pages 341-350, December 2000. ISBN 974-615-055-3.

E. Nantajeewarawat and R. Sombatsrisomboon. “On the Semantics of UML
Diagrams Using Z Notation”, in V. Kreinovich and J. Daengdej, editors, Proceedings
of the First International Conference on Intelligent Technologies (InTech’2000),
Bangkok, Thailand, pages 325-334, December 2000. ISBN 974-615-055-3.

E. Nantajeewarawat, V. Wuwongse, S. Thiemjarus, K. Akama, and C. Anutariya.
“Generating Relational Database Schemas from UML Diagrams Through XML
Declarative Descriptions”, in T. Tanprasert, editor, Proceedings of the Second
International Conference on Intelligent Technologies (InTech'2001), Bangkok,
Thailand, pages 240-249, November 2001. ISBN 974-615-068-5.

E. Nantajeewarawat, K. Akama, and H. Koike. “Expanding Transformation: A Basis
for Verifying the Correctness of Rewriting Rules”, in T. Tanprasert, editor,
Proceedings of the Second International Conference on Intelligent Technologies
(InTech’2001), Bangkok, Thailand, pages 392-401, November 2001, ISBN 974-615-
068-5.

K. Akama, E. Nantajeewarawat, and H. Koike. “A Class of Rewriting Rules and
Reverse Transformation for Rule-Based Equivalent Transformation™, in M. van den
Brand and R. Verma, editors, Proceedings of the Second International Workshop on
Rule-Based Programming (RULE-2001)}, Firenze, Italy, pages 4-18, September 2001.
[Also published in Electronic Notes in Theoretical Computer Science, Vol. 59, No. 4,
16 pages, 2001. Elsevier Science Publishers. ISBN 0444510761.]

H. Unphon and E. Nantajeewarawat. “The Roles of Ontologies in Manipulation of
XML Data”, in Proceedings of the Joint International Conference of SNLP-Oriental
COCOSDA 2002 (the Fifth Symposium on Natural Language Processing & Oriental
COCOSDA Workshop 2002), Hua Hin, Prachuapkirikhan, Thailand, Pages 89-96,
May 2002. ISBN 974-572-947-7.

unanuids e sunsRosandenuihifIdlumsdinlnsm Snmsunona

E. Nantajeewarawat, V. Wuwongse, C. Anutariya, K. Akama, and S. Thiemjarus.
“Towards Reasoning with UML Diagrams Based-on XML Declarative Description
Theory”. Submitted to International Journal of Intelligent Systems.

E. Nantajeewarawat and R. Sombatsrisomboon. “On the Semantics of UML
Diagrams Using Z Notation”. Submitted to International Journal of Intelligent
Systems.

4w ¢ ¢] o i o 4 § o
AuRannzevliirunsofzdialuaauiinie fu uazldafosdfonreraniuisdaumandaluns
° ' - w @ =] y | w

W ludruiiauesfuAryoy unzuamldoudon Toedue1an veerzyudidodu Tas 15 unve

xMIiTufenatd HussuuATe1s Internet
ar o - o dy
TagszaafvesInsamsiidede 14l

A4y « v 2 @ o '
1. 1Wﬂfﬁ'|~16\lﬂﬂ’ﬂﬂi‘iﬂulluﬂﬁﬂ'I'H'Nﬂﬂ'J'“JHU']Ullﬁzﬂ'J'mﬁlJWNﬁilﬂﬂqﬂﬂ$llﬂ‘illﬂ']~1r| 1'“!'!']151'}

UML Tagldmguii Tusunsu¥alszmadiniy XML [5, 6] Lfluﬁ{ugm

2. A 1Aun 3 inIislY Meduction) Ao ves T sunsuFnlsenma Taoldi3nsildou

wlaaTauauyn (Equivalent Transformation) [7, 8, 9] Wunalpiugulumsszuiana

a -y ar é)
3. #nmitannieaanud W lumsinivfeadadnlszneuvesszuuannlszgadliaen

¥ o = o o o
“ﬂfl'ENﬂ‘lJ‘ﬂElﬁSlﬂﬂﬂﬂﬂTHHﬂ”l}ﬂulm‘ﬂ‘ﬂ']ﬂD\ﬂl LR R ThIRN T

4. #gnvmlFeudvunyammamssmuanuduiutiasanuvueves laozunsyluniy) UML Tay

1#TsunsuFatsema fuuumudu wu madmuaanuduius Tnoldn z (10

bt
B
T o a a o w W 4
Tasamsiiduanawmavaumgs] ldsunsudalssard msudoyaieglugiuuuvos XML Meta-
A ‘g L4 1 @ 1 '
data Interchange Format (XMD) titedlufugmlumsuaasmnuduiui landsszninlaezunsudieg veq
a @ w] oo
nuufiaeaszuvd nazmsuasnnuduRusseninlaesunsududnnlsznevvetssuuauizged
¥
- 1 = o A Qe
Tavldldsunsundadiznin - dedsmsAnunduaifansiinioauifonvesgrunnud eviguaulid
o A as . 4 @] Ll 3 9
Tamisvadlaezunsy uazedunszddiudssponeesannlszynd (Gedn @y Inseadegmdoya
1 3
puudniut) srnuuiines TavldmsdszuanauumsnfouudasTasauyadunalondn drdudu

»
o

neud g lumsitelidane Ui

i : 2 = Yo

I BOMILY Specialization System TMINEauieiiuInTeaadmundiemansdmiuasuaan
v oW o s a = v A o
duiussznindeyanoglugduuuves xmr Taveriimvneglnuvens xvi Idawnsolimsld

o & A)] 3 d'! 1 3 cl 1
fuls (Varisblesy 1osvan Toadausnay veadeya uaziouamaduvasdayai himmizinizan
Y = & g - we & o -
18 Specialization System ARALUUTMITRsgMINN TR uRUg T umIimua TdsunsuEs

152 AIREINT XMI/XML

2. Anyideauduius lanmiensanunineyed laezunivdneg luaiet oML wazusToeAIN

3 v 1 o
Fuwufinarii Taold TsunsanFarlsnsuRug 9 91 Specialization System A uaTUlUtD |

; " » .
3. Anwidaismsisteauitem luTdsunsufiafaiulude 2 Taeldnisdszuamanuumsiddou

wladTavauyaiflunalandn

o 1

- A o o L |1
4. anwmsivouTlsunsudalsene enaatnnuduiuiseninlaozunsuluniyr ume fuaou

Uszapuvesszuunulszgnd Aaeandssfunisazduaiiimua i lunuuiassvesszunau

= o w A o1 oo a \ 2 o wa
5. f’fﬂl—]']fniu'iuﬂlwaﬁﬂlﬂ513“'ff']uﬂ'izﬂﬂu‘ﬂﬁ‘mmUFNﬁ'Ju1]'@\1'531]1'\1111ﬂizqnﬂiﬂﬂﬂﬂiuum 2R
o do d Iy u w Y o
wuuswesRdanuegugluuyves xv Taoldwugiuoinds 1 90 3 uesde 4 uasimungiu

¥y W a v =
anugauuuy Taglymsidsduuumsnaounlaslavauya

=X =l a d J [aw A o 3 g) ' W oo =
6. l‘l]itl‘l]l‘ﬂU'Llllu’lﬂ’]'lilﬂﬂ“ﬂlﬁuﬂ'ﬂuﬂﬂﬂu’l‘ﬂﬂﬂu"} NNYIVoY AMVUNTU TUVDIUATIYHIUIE IR

r 3
Tunqu precise UML
[< = s [' 1y o a4
ferulsaunsofn it as@eavesiimsdanan ldonunanmiiswsaw i lunmsuan

Wavaaln3IanIs

{ o a @ w o] i
1. TATDBALY Specialization System ANz ENd M S uMsuamn A WAL sz doyafioglugl

HULUBY XMI

2. FEnndmiunsdafuanud uazmsiisde Meadueuusaesvesszuuauiidsuiulun
uML TauldmguiTusupsmdalszmedmiy XML dhuiug ldgaauein Taslinmi xmL
. o o 4 ¥ d o & W
Document Type Definition (DTD) fignimuaiulag XM1ulfithianasgulumssanudaya

ey lanzunsneiag

3. imsaeppuahtoimaintenuiomuTbsusu@alszmedmiy xvr Taoldmslse-

wananuumsiiouulasTasauyaidiunalondn

a [L o . as v o B oRe
4. fimsueasedadauia35ms 19 Definite Clause Ay XML lumsSamuanuduiutuazng

i U Ty Tawmues UML

oo 4 H @ i o) Qs
5. Pmsuaaamnidsmsiieuetu W szgad lumsianunguaminisadsdulszneundn
4 : Y o ,
dumitaves Tusunsudssynd vdude Tnsaadagmdoyanuuduius (Relational Database

Schema) 1INLUUSWBATEUUIUABE Iugves UML

3
swazBuruaaRgN PUML mutsaq tdun hitp://www.cs.york.ac.uk/puml/

Y - P
6. Aunyyvasguanug lagnianniduiensnaaey

o o
swazdeavaanaves Tnsamsansog lwnnumanuisusw B3 lumanuin
=y &

nivisel

o 1 [-] i y & o o o
Wudimanieidinsaweduiiszannsnb lUuszgpd 1 Afunumadumsiad unginus
ar & w e B
ndunssidn)Isneuveaszunaniszgnd lnesa Tl nuuus1easz uuau tazaum i s
¥ '

AsvapUANNgNABIRBARdstouLSaeIszuuN wenvnildiinudiul 1dReni i dsegnd e
] L | A oo v v oo ar 3 1 1 4 k4
FwAvdimagug 1 ldeglureriinddmiviwnsianuuudasaszyuauang wesnnaening

maridmingasos i uaztufinuuudrassssruaulugiuog XMEXML

A a) & a o o oo 9 o

nuITERnIsIsi luemAaRBiiednInlasansil Aemslfutyalssfnimmniedmanugs
o ¥y ' £y ¥ ¥ 4 g 4 A
vosnszyumsiisiylaslsteyaviiaivy msnaasuilesdulaldgmanuidunuvnadntients
& 4 f] ,
naaoy uaas Miuhdeya xMyXML funulaezunsuaien Tuaw ume dudeyaiiivuadoud
o a8 W aa P & 3 Y oAy o
Tng) SadhimststdeauTimsfieueiu v Mnagndasedsidesms anuilumnlszunanad
Ha o] aw o = A o o 1 a o
arreg lasunisdiudse astinsduadifomuaumenunatiniszsrslumsmuanuilunis
N & @ =, i H ¥
Yszsranatoyavuialvg Tasldnalalumslszusesanuvamya Fauensinvzd it nsienoduil
a) a - J 0, 1 a oa
ourogmithllssgnd ldedrihlsz@ninmuintaiunds fzdumsainerianudlnitunsisi
' A
Tnal¥oyavinaluglugyuunves XML Tasswdnais tlesnnnalnlumsyszinanauuuauya iy
q_ ¥ > a o) Y ﬂ o 19 ¥
nalnfigneenuuuuldemsaseasunsnaugumsiinielaslddionvesdoyadlundn Taelildns
o @ o A4 < a [A {

AILRuULDATed) mavenmaiadesnlszAnimumstszmasminzaiusedudu ity Tae

= ool ‘: = A oy L U Q’: = L
ﬂ’)iﬁﬂ15'3'?!U!WNlﬂijﬂluﬁﬂi‘liﬂw‘ll'ﬂﬂNﬂﬂ\iﬂﬁ11‘l‘l~ﬂu'ﬂ1~l‘ﬂ§]kl§ LLﬁBﬂ']\'Iﬂ'lﬂﬂﬂEl'E]\ﬂ‘]NnglJﬁ

BNAITE1D

[1] Rumbaugh, I, Jacobson, L, and Booch, G., The Unified Modeling Language Reference
Manual, Addison Wesley, 1999.

[2] Booch, G., Rumbaugh, J., and Jacobson, L, The Unified Modeling Language User Guide,
Addison Wesley, 1999,

[3] Jacobson, 1., Booch, G., and Rumbaugh, J., The Unified Software Development Process,
Addison Wesley, 1999,

(4] Akama, K., Declarative Semantics of Logic Programs on Parameterized Representation
Systems, Advances in Software Science and Technology, vol. 5, pp. 45-63, 1993,

(5] Wuwongse, V., Anutariya, C., Akama, K., and Nantajeewarawat, E., XML Declarative
Description: A Language for the Semantic Web, IEEE Intelligent Systems, May/June 2001, pp.

54-65.

[6]

(71

(6]

(93

(10]

Wuwongse, V., Akama, K., Anutariya, C., and Nantajeewarawat, E., A Data Model for XML
Databases, Lecture Notes in Artificial Intelligence, vol. 2198, pp. 237-246, 2001.

Akama, K., Shigeta, Y., and Miyamoto, E, Solving Problems by Equivalent Transtformation of

Logic Programs, Proceedings of the 5" International Conference on Information Systems
Analysis and Synthesis, Orlando, Florida, 1999,

Akama, K, Shimizu, T., and Miyamoto, E., Solving Problems by Equivalent Transformation of

Declarative Programs, Journal of the Japanese Society for Artificial Intelligence, vol. 13, no.
6, pp. 944-952, 1998,

Akama, K, Nantajeewarawat, E,, and Koike, H.,, A Class of Rewriting Rules and Reverse
Transformation for Rule Based Equivalent Transformation, Electronic Notes in Theoretical
Computer Science, vol. 59, no, 4, Elsevier Science, 2001.

Spivey, I. M., The Z Notation — a Reference Manual, Prentice Hall, 2nd Edition, 1992.

NIANUIN

Published in Kreinovich, V. and Dasngdej, J., editors, Proceedings of the First International Conference on Intelligent
Technolagies (InTech'2000), Bangkok, Thailand, pages 341-350, December 2000, ISBN 874-615-055-3.

Towards Reasoning with UML Diagrams
Based-on XML Declarative Description Theory

Vilas Wuwongse! and Chutiporn Anutariya?
CSIM, School of Advanced Technologies

Ekawit Nantajeewarawat
IT, Sirindhorn International Inst. of Tech.

Thammasat University, Rangsit Campus
Pathumthani 12121, Thailand
E-mail: ekawit@siit.tu.ac.th

Kiyoshi Akama

Center of Information and Multimedia Studies

Hokkaido University, Sapporo 060, Japan
E-mail: akama®@cims.hokudai.ac.jp

Asian Institute of Technology
Pathumthani 12120, Thailand
E-mail: vw!,ca’@cs.ait.ac.th

Surapa Thiemjarus

IT, Sirindhorn International Insi. of Tech.

Thammasat University, Rangsit Campus
Pathumthani 12121, Thailand

Abstract: A practical framework for representing knowledge and reasoning
in the domain of UML is proposed. In this framework, graphical diagrams in a
UML model are encoded as XML/XMI elements, which are regarded as facts
about a specific problem instance in a knowledge base, and the general knowl-
edge on UML, such as inherent interrelationships among diagram components
and implicit properties of diagrams, is represented as a set of XML definite
clauses. Based on Akama’s theory of declarative descriptions, the semantics of
such a knowledge base can be precisely determined. Equivalent Transformation
is employed as a fundamental computation mechanism for reasoning with the
UML diagrams represented in the knowledge base.

Key words: UML, XML/XMI, Declarative description, Knowledge represen-

tation, Automated reasoning, Knowledge-based software engineering

1. Introduction

The Unified Modeling Language (UML) [8] is a
graphical language, adopted as a standard by the
Object Management Group (OMG), for visual-
izing, specifying, constructing, and documenting
the artifacts of a software-intensive system. As
reported by recent works on the formal seman-
tics of UML, e.g., [4, b, 7], there exist inherent
interrelationships between components of a UML
meodel. These interrelationships are essentially
general knowledge about the domain of UML,
which may be used, for example, for deriving im-
plicit properties and verifying the consistency of
the model. With this knowledge, a system ana-
lyst can make use of the information contained
in one diagram to add more components to some
other related diagrams, thereby improving the
completeness of the model.

This paper proposes a solid practical frame-
work for knowledge representation and reason-
ing in the domain of UML. The framework is
based on the theory of XML declarative descrip-
tions [3, 9], which in turn uses Akama’s theory
of declarative descriptions {DD theory) [1] as its
primary foundation. As outlined in Figure 1, the
diagrams in a UML mode! will be represented

as textual structured data in Extensible Markup
Language (XML) [6], and the general knowledge
about the UML domain as an XML declarative
description. Equivalent Transformation (ET) [2]
is used as a computation mechanism for inferring
the answers to posed queries or for automatic re-
finement of the encoded UML diagrams accord-
ing to the represented general knowledge.

One serious question about the feasibility of
this approach is how to construct a sufficiently
comprehensive XML Document Type Definition
(DTD) that can serve as an appropriate schema

S

More Complete

UML Model
KB XML Dec;la.rative
Description
XML o XML
Representation Equivalent " | Representation
Transfermation

Figure 1: Overview of the Framework

for representing UML diagrams in XML. XML
Metadata Interchange Format (XMI) [10], a
technology recommended lately by OMG, pro-
vides a realistic answer to this. XMI specifies an
open information interchange model that facili-
tates the exchange of programming data over the
Internet in a standardized way. It identifies stan-
dard XML DTD for UML, and, therefore, pro-
vides the presented framework with the ontology
of the UML domain, Moreover, the conversion
between UML diagrams and XML/XMI repre-
sentations can be automated by currently avail-
able software tools, such as UCI's Arge/UML
and IBM’s XMI Toolkit.

To start with, DD theory and the concept of
XML declarative description are briefly reviewed
in Sections 2 and 3, respectively. Section 4 de-
scribes, by means of examples, a UML knowledge
base represented as an XML declarative descrip-
tion, and Section 5 demonstrates computation
with UML diagrams, based on ET paradigm, in
the presented framework.

2. Declarative Description Theory
Akama’s DD theory [1] is an axiomatic theory
which purports to generalize the concept of con-
ventional logic programs to cover a wider variety
of data domains. The theory suppresses the dif-
ferences in the forms of (extended) atomic formu-
lae in various definite-clause knowledge represen-
tation languages, and captures the common in-
terrelations between atornic formulae and substi-
tutions by a mathematical abstraction, called a
speciclization system. Despite its simplicity, the
specialization system provides a sufficient struc-
ture for defining declarative descriptions together
with their meanings. DD theory has provided a
template for developing declarative semantics for
declarative descriptions in various specific data
domains.

2.1 Specialization Systems
The concepts of specialization system and declar-
ative description will be reviewed first.

Definition 1 (Specialization System) A spe-
cialization system is a quadruple (A, G, S, u) of
three sets A,G and 8, and a mapping p from
8 to partiel_.map(A) (i.e., the set of all partial
mappings on .4), that satisfies the conditions:

1. (Vs',5" € 8)(Is € S) : us = (us") o (us’),
2. (35 € 8){Va € A) : (ps)a = q,
3.GC A

The elements of A are called afoms, the set §
interpretation domain, the elements of § special-
ization parameters or simply specializations, and

the mapping p specialization operator. A special-
ization s € & is said to be applicable to a € A, if
and only if a € dom(us). O

In the sequel, let ' = {4,G, 8, p) be a special-
ization system. A specialization in & will often
be denoted by a Greek letter such as 4. For the
sake of simplicity, a specialization ¢ € § will he
identified with the partial mapping ¢8 and used
as a postfix unary (partial) operator on A, e.g.,
(nf)a = af.

2.2 Declarative Descriptions and Their
Meanings

A declarative description on I' will now be de-
fined. Every logic program in the conventional
theory can be regarded as a declarative descrip-
tion on some specialization system.

Definition 2 (Definite Clause and Declara-
tive Description) Let X be a subset of 4. A
definite clause C on X is a formula of the form:

a bl,...,bn

where n > 0 and a,b,..., b, are atoms in X,
The atom a is denoted by head(C) and the set
{b1,...,ba} by Body(C). A definite clause C
such that Body(C) = @ is called unit clause.
The set of all definite clauses on X is denoted
by Delause(X). A declarative description on T
is a (possibly infinite} subset of Delause(A), O

Let C be a definite clause {«¢ + b1,...,b,) on
A. A definite clause €’ is an instance of €, if and
only if there exists § € & such that 8 is applicable
to a,b1,...,b, and &' = (af « bi6,... 0,8).
Denote by €& such an instance C of C' and by
Instance(C) the set of all instances of C.

Next, let P be a declarative description on I'.
Denote by Gelause{ P} the set

U (Instance(C) M Delause(G)),
CeP

i.e., the set of all instances of clauses in P which
are constructed solely out of atoms in G. Asso-
ciated with P is the mapping Tp on 29, defined
as follows: for each X C &, Tp(X) is the set

{head(C) | C € Gelause(P) & Body(C) C X}.

The meaning of P, denoted by AM(P), is then
defined by

M(Py =) TR(®),
n=1

where T5(0) = Tp(B) and T2 (B} = Te(TE~1(0))
for each n > 1.

3. XML Declarative Descriptions
XML is a textual representation of structured or
semistructured data, adopted as a standard by
the World Wide Web Consortium (W3C). The
forms of conventional XML elements will be re-
called first, and then extended by incorporation
of variables. The concepts of XML specialization
system and XML declarative description [3, 9]
will next be presented.

3.1 XML Elements

A conventional XML element takes one of the
forms:

Gy = U/ >,

i = Um > Upil </t>|
Om = V> €]+ 8n <1,

o J{iuy =1 -
o Jluy =1y -
e <lay=vyp ---

where n,m > 0, t is a tag name {or element
type}, the a; are distinct attribute names, the v
are strings and the e; are XML elements. An
XML element of the first, the second, and the
third forms are called empty, simple; and nested
elements, respectively.

In the next subsection the concept of an XML
element with variables, called an XML ezpres-
sion, will be introduced. A variable has two
roles. First, it is used as a specialization wild
card, i.e., a variable can be specialized into an
XML element or a component of an XML ele-
ment. As its second role, a variable behaves as
an equality constraint imposed on components
of XML expressions, i.e., all occurrences of the
same variable in an expression must be special-
ized into identical components.

3.2 XML Expressions
Assume that Ex is an alphabet comprising the
symbals from the following seven sets:
1. A set C of characters.
2. A set N of tag names and attribute names,
3. A set Vy of name-variables, or, for short,
N-variables.
4. A set Vs of string-variables, or, for short,
S-variables.
5. A set Vp of attribute-value-pair-variables,
or, for short, P-variables.
8. A set Vg of XML-expression-variables, or,
for short, E-variables.
7. A set Vr of intermediate-expression-varia-
bles, or, for short, [-variables.

Also assume that ‘'$” ¢ C', no element of N begins
with ‘¢’ and the elements of Vn, Vs, Vp, Vg and
Vr begin with “$N:”, “$5:”, “$P:”, “$E:” and
“$I:”, respectively.

Definition 3 (XML Expression) An XML
expression on Ly takes one of the following
formas:

1. »g,
2.<tar=v1 - Gm =V Up, - UR/[>,
3. <ta1_—.v1 cee ey = U vp, v UP;>
Vm+1
<[>,
4 <day=vy - Qm = Uy vp, .- vp >
€]+ By
<ft>,

5. <wr> e en <fur>,

where I,m,n > 0; vg € Vg, t,e4 € N U Vn,
Uit € C* U Vg oy A ap ili #7 (1 < <
m;1 <& <m);vp, € Vp (1<) <) vre vy
and e, is an XML expressionon Ex (1 < k < n).
The order of the m pairs a; = ¥+ am = vm
and the order of the [P-variables vp, --- vp, are
immaterial, but the order of the n expressions
ey -« &y is important. An XML expression with
no occurrence of any variable is called a ground
XML expression. An XML expression of the sec-
ond, the third or the fourth form is referred to
as a t-expression, while that of the fifth form as
a vr-ezpression. A ground t-expression will also
be called a {-clement. When n = 0, an XML
expression '

<lay =V v Gm 2=V, VP - Up <[>

of the fourth form is assumed tc be identical to
the XML expression

<tayr=1v1 -0 G, =Uy Vp, - Vp />

of the second form. The parts enclosed by a pair
of < and />, a pair of < and >, or a pair of
</ and > are referred to as tegs. For each i
(1 <i<m),ifae &N, a; will be called an
atiribute name, and if a; € Vi, 1t will be called
an attribute-name variable. O

3.3 XML Specialization System and XML
Declarative Descriptions
The concept of an XML specialization genera-
tion system will be presented first. Based on this
structure, the notion of an XML specialization
systern will then be defined.

Definition 4 {XML Specialization Genera-
tion System) Let Ax be a quadruple

{Adx,Gx,Cx,vx),

where Ay is the set of all XML expressions on
¥x, Gx is the set of all ground XML expressions
on Ly, Cx is the union of the following sets:

Vn x N

(Ve x C*)U (Vg x Ax)

(Vv x V) U (Vs x Vs)U(Vp X Vp)U(VE X
Vg)u (Vr x V)

e Vp x (Vv x Vi x Vp)

VE X (VE X VE)

(VP U V) x {¢}

Vi x {e}

V]X(VNXVPXVEXVEXW);

.

and vy : Cx — partial_map(Ayx) is defined as
follows: Let c € Cx and a € Ax.

[N -Veriable Instantiation]
If e = (v,b) € Vy x N and each tag con-
taining ¢ as an attribute-name variable in
a does not contain b as an attribute name,
then (rxc)a is the XML expression obtained
from a by simultaneously replacing each oc-
currence of v in a with &.

[5- or E-Variable Insiantiation]
If e = (v,8) € (Vs x C*)U (Vg x Ax), then
(vx c)ais the XML expression obtained from
a by simultaneously replacing each occur-
rence of v in o with b.

[Variable Renaming]
Ife=(v,u) e (VyxVaU(Vex Vs}U(Vp x
Vp) U (Ve x Vg) U (Vr x Vi), then (vxc)a
is the XML expression obtained from a by
simultaneously replacing each occurrence of
v in a with «.

[P-Varichle Expansion]

If ¢ = (v, {x,w,v)) € Vp x (Vn x Vg x Vp)
and each tag containing v in a does not con-
tain » as an attribute-name vartable, then
{vx c)a is the XML expression obtained from
@ by simultaneously replacing each occur-
rence of v in a with the pair u = w followed
by .

[E-Variable Expansion]
If ¢ = (v,(u,w)) € Vg x (Vg x Vg), then
(vx c)a is the XML expression obtained from
a by simultaneously replacing each occur-
rence of v in a with u followed by w.

[P- or E-Variable Removal]
If e =(v,¢) € (Vp UVE) x {€}, then (vx¢)a
is the XML expression obtained from a by
removing each occurrence of v in a.

[{-Variable Removal]
If ¢ = {v,¢6) € Vi x {¢}, then (vxe)a is the
XML expression obtained from e by remov-
ing each occurrenice of <v> and each occur-
rence of </v> in a.

[1-Variable Instantiation]
If ¢ = (vr,(un,up,ug,wg,v})) € V; x
(Vv x Vp x Vg x Vg x Vi), then (rxcla is
the XML expression obtained from a by si-
multaneously replacing each occurrence in a
of each vy-expression

<vr> ey en Lfur>
with the upy-expression

<UN Up>
ug <vy>ep--- e, <JUi> wg
<Jun>.

Ax will be referred to as the XML specialization
generation system on Ly. 0O

Next, an XML specialization system is defined.

Definition 5 (XML Specialization System)
Based on Ay, the specialization system for XML
exrpressions on Ex, denoted by 'y, is defined by

Ix = {(Ax,6x,.Sx,ux),

where Sx = C%, L.e., the set of all sequences over
Cx, and px : & — partial_map(Ayx) 1s given
as follows: Foreach ¢ € Ay,

o (pxA)a = a, where A denotes the null se-
quence, and

s for each ¢ € Cx, 5 € 8x, (pxlc s))a =
(pxs)((wxc)a)). B

Obviously, I'y satisfies all the three conditions
of Definition 1. Examples demonstrating the ap-
plication of specializations in Sx to XML expres-
sions will be seen in Section 5.

An XML declarative description is then de-
fined as a declarative description on T'y, and
its declarative meaning follows dirvectly from DD
theory.

4. UML Knowledge Base

Subject to the XML DTD for UML specified
by XMI, a UML model will be converted into a
number of XML elements {ground XML expres-
sions), which are regarded as specific facts about
the model. These specific facts will be formal-
ized as ground XML unit clauses, constituting an
XML declarative description Kp. By contrast,
inherent interrelationships among components of
UMI. diagrams will be represented as another
XML declarative description Kp, which basi-
cally consists of non-unit XM definite clauses
{or rules). The union of K and Ky will then
be considered as a knowledge base for the model.

Movie Show
- myvName ; Su';ng 1 has 0% | -cinemaNo : Inleger
- category : String - showTime : Tima
+ soundtrack : Boolean
+ getNama
1
Ticket 1| seatingPlan

- movieName ; Siring ¥ 1 "

- movariam seat 4P| SeatingPlan
- lime : Tima

- cinemaNo ! Intagar
- s8atNo : Seat

SellTicketWindow

Figure 2: A UML Class Diagram

<Class xmi.id="C1.4">
<name>Movie</name>
<associationEnd>
<AssociationEnd xmi.idref=s"(C1.8.2"/>
</associationEnd>
<feature>
<Attribute xmi.id="C1.4.1">
<name>nvName</name>
<visibility xmi.value="private"/>
<type>
<Primitive xmi.idref="1.1.21"/>
</type>
</Attribute>
<Attribute xmi.id="C1.4.2">
<name>category</name>
<visibility xmi.value="private"/>
<type>
<Primitive xmi.idref="1.1.21"/>
</type>
</Attribute>
<Operation xmi.id="C1.4.11">
<name>getName</name>
<visibility xmi.value="'public"/>
</0Operation>
</feature>
</Class>

Figure 3: A Class-element, Cpp

4.1 Encoding UML Diagrams: Examples

Consider the UML class diagram in Figure 2.
Fach class in this diagram is represented in
XML/XMI by a Class-element, and each asso-
ciation by an Association-element. For exam-
ple, the class Movie in Figure 2 is represented
by the Class-element in Figure 3, and the as-
sociation bas in Figure 2 by the Association-
element in Figure 4. The associationEnd-
element of the Class-element in Figure 3 spec-
ifies that Movie is a class at an endpoint of
the association has by referring to the second
AssociationEnd-element of the connection-

<Asaociation xmi.id="C1,8">
<name>haa</name>
<connection>
<AssociationEnd xmi.id="C1.8.1">
<name/>
<isNavigable xmi.value="true"/>
<aggregation xmi.value="none"/>
<multiplicity>0..#</multiplicity>
<type>
<Clags xmi.idref="Cl1.3"/>
</type>
</AssociationEnd>
<AssociationEnd xmi.id="C1.8.2">
<name/>
<isNavigable xmi.value="true"/>
<aggregation xmi.value="none"/>
<multiplicity>1</multiplicity>
<type>
<Class xmi.idref="C1.4"/>
</type>
<fAssociationEnd>
</connection>
</hssociation>

Figure 4: An Association-element, Cjg,

% ‘:§ellTickefWindow’ ‘ m:Movie—’ ' s: Show |

TickstSeller

imovieSelected(m)

disglayShquisl(sL Isi

showSelscted(s) i i
! getSealingPland} _
: »

5
S 1A S :
displaySeatingPlan{$p} :

! reserveSeat(n) __
¥,

prinTicket(} ! !

]

Figure 5: A UML Sequence Diagram

sealSelected(n)

element in Figure 4. The feature-element in
Figure 3 describes the attributes and operations
of Movie. Each AssociationEnd-element inside
the connection-element in Figure 4 details an
endpoint, e.g., its multiplicity, connected class
and navigability, of the association has. {In the
figure, assume that the identifiers of the Class-
elements representing the classes Show and Movie
are C1.3 and C1.4, respectively.)

<Collaboration xmi.id="S$3">
<name>SellingMovieTicket</name>
<ownedElement>
<ClassifierHole>
<name>TicketSellar</name>
<message>
<Message xmi.idref="520"/>
<Message xmi.idref="521"/>
<Message xmi.idref="8§22"/>
</message>
</ClassifierRole>
<ClassifierRole>
<name/>
<message>
<Message xmi.idref="523"/>
<Message xmi.idref="524"/>
<Message xmi.idref="525"/>
<Message xmi.idref="526"/>
<Message xmi.idref="S27"/>
<Message xmi.idref="528"/>
<Message xmi.idref="§29"/>
</message>
<message>
<Message xmi.idref="520"/>
<Message xmi.idref="820.5"/>
<Message xmi.idref="521"/>
<Message xmi.idref="$21.5"/>
<Message xmi.idref="822'/>
</messagel>
<base>
<Class xmi.idref="C1.2"/>
</base>
</ClassifierRels>
<ClassifierRole>
<name>n</name>
<message>
<Message xmi.idref="§20.5"/>
</message>
<messagel>
<Message xmi.idref="523"/>
</messaged>
<hase>
<Class xmi.idref="C1.4"/>
</basze>
</ClassifierRole>
<ClassifierRole>
<name>s</name>

<fClassifierRole>
<ClassifierRole>
<name/>

</ClassifierRole>

</ownedElement>
<interaction>

</interaction>
</Collaboration>

Figure 6: A Collaboration-element, C,¢q

<SendAction xmi.id="85138'">
<name>movieSelected</name>
<izAsynchronous xmi.value="true"/>
<Action.message>
<Message xmi.idref="820"/>
</Action.message>

<actualArgument>
<Argument>
<name>mn</name>
</Argument>
</actualArgument>
<fSendAction>

Figure 7: A SendAction-element, O, ;

<CallAction xmi.id="5141">
<name>getlist0fShowa</name>
<isAsynchronous xmi,value="false"/>
<Action.message>
<Message xmi.idref="523"/>
</Action.message>
</CallAction>

Figure 8: A CallAction-element, Cy

<CallAction xmi.id="5143">
<name>displayShowlist</name>
<isAsynchronous xmi.value="false'/>
<Action.message>
<Message xmi.idref="524"/>
</Action.message>
<actualArgument>
<Argument>
<name>sList</name>
</Argument>
</actualArgument>
</CallAiction>

Figure 89: A CallAction-element, Cy,,p

<ReturniAction xmi . id="5142">
<name/>
<isAsynchronous xmi.value="false'/>
<Action.message>
<Message xmi.idref="520.5"/>
</Action.message>
<actuallrgument>
<Argument>
<namerslList</namea>
</Argument>
</actualArgument>
</Returniction>

Figure 10: A Returniction-element, Cp.;

Figure 6 illustrates the XML/XMI rcpresen-
tation of the UML sequence diagram in Figure
5, which describes a normal scenario of the use
case “Selling Movie Ticket” of a movie-ticketing
system. The ownedElement-subelement of the
Collaboration-element in Figure 6 contains
five ClassifierRole-elements, each of which
describes an object or an actor participating
in the sequence diagram. A ClassifierRole-
element typically has one message-element and
one message2-clement, referring to the messages
sent and received, respectively, by the object or
the actor the element describes. For example, the
message-element in the first ClassifierRole-
element in Figure 6 indicates that the actor
TicketSeller sends three messages, which are
described by the Message-elements having the
identifiers S20, S21 and S22, respectively, and
the absence of the message2-element signifies
that this actor receives no message. Like-
wise, the message-element and the message2-
element in the second ClassifierRole-element
itemize the messages the anonymous SellTick-
etWindow object sends and receives, respec-
tively. A ClassifisrRole-element describing
an object, such as the second and the third
ClassifierRole-clements, normally contains a
bass-element, which refers to the class of the de-
scribed object. (Assume that the identifier of the
Class-element for the class SellTicketWindow is
c1.2.)

The Message-clements referred to by the me-
ssage-elements and the message2-elements, to-
gether with the predecessor relation and the
successor relation on their corresponding mes-
sages in the sequence diagram, are defined within
the interaction-subelement (the last subele-
ment) in Figure 6. Due to space limitation,
the details of this interaction-element and the
ClassifierRole-clements for the Show object s
and the anonymous Ticket object are not shown.

The action of each message is specified by a
SendAction-element, a CallAction-element or
a Returndction-element, depending on the type
of the message. For example, the operation of
the Message-element having the identifier 520,
i.e., the first message the actor TicketSeller sends,
is detailed by the SendAction-element in Fig-
ure 7. Similarly, the operations of the Message-
elements having the identifiers 523 and 524, i.e.,
the first and the second messages the SellTick-
etWindow object sends, are described by the
CallAction-elements in Figures 8 and 9, respec-
tively; and the Message-element with the identi-
fier §20.5, i.e., the first return message the Sell-
TicketWindow object receives, is defined by the
ReturnAction-element in Figure 10,

<Class xmi.id=$35:CID $P:1> $E:1
<feature> $E:2
<Operation>
<name>$S:NM</name>
</Operation>
</feature>
</Class>

(_

<$I:1>
<classifierRole> $E:3
<message2> $E:4
<Message xmi.idref=$35:MID/> $E:5
</message2> $E:6
<base>
<Class xmi.idref=$8:CID/>
</base>
</classifierRole>
</31:1>,
<CallAction $P:2>
<name>$5:NM</name> $E:7
<Action.message>
<Message xmi.idref=3$S:MID/>
<fAction.message> $E:8
</Calliction>,
<Class xmi.id=$S5:CID $P:1> 3E:1
<feature> $E:2
</feature>
</Class>

Figure 11: A Definition Clause, Cpg;

4.2 General Knowledge about the Domain

The detailed formal analysis of the semantics of
UML in [4, 5, 7] uncovers several inherent in-
terrelationships between UML diagrams as well
as implicit properties of diagram components,
The descriptions of these interrelationships and
properties can be regarded as axioms (or general
rules) in the domain of UML, which will be rep-
resented as XML definite clauses in the proposed
framework.

As an illustration, the axiomatic assertion that
“the operation of any message received by an ob-
ject in a sequence diagram must be an operation
provided by the class of that object in a class dia-
gram”, given in (7], can be encoded as the XML
definite clause in Figure 11. More comprehen-
sively, this definite clause states that if

e the $I:1-expression in its body can be spe-
cialized into an XML-element that con-
tains a classifierRole-element for an ob-
ject having a Message-element identified by
$S:MID as the representation of one of its re-
ceived messages and having a Class-element
identified by $5:CID as the representation of
its class, and

e there is a CallAction-element that has as
its name $S:NM and refers to the Messzage-
element having the identifier $5:MID,

then the feature-clement of the Class-element
with the identifier $S:CID has an Operation-
element with the name $S:NM. Observe that
the Class-expression in the head and that In
the body of this clause are identical except
that the expression in the head has an addi-
tional Operat ion-expression inside its feature-
subexpression. Each of the E-variables occurring
in the clause, e.g., $E: 1 and $E:2, can be instan-
tiated into zero or more XML elements.

Figure 12 provides another example of an en-
coded general rule. The XML definite clause in
the figure represents the axiom “a class inher-
its from its superclass the associations that the
superclass has with other classes along with the
information about the multiplicities of the end-
points that connect the associations with those
classes”, by stating that if there are

e a Gemeralization-element, describing a
generalization relationship, of which the
child-subelement and the parent-sub-
element refer to the Class-elements having
the identifiers $5:5ubID and $S:Supld, re-
spectively, and

¢ an Association-element with an Associ-
ationFnd-element referring to the Class-
element identified by $S:Supld,

then one can construct another Agssociation-
element that lLas the same content as the
former Association-element except that the
first AssociationEnd-element is replaced with
an AssociationEnd-clement that refers to the
Class-element identified by $S:SubId and con-
tains no multiplicity-element, and the sec-
ond AssociationEnd-element is replaced with
an AssociationEnd-element having the same
multiplicity-element and the same type-
element.

5. Equivalent Transformation
Equivalent Transformation {ET) paradigm [2] is
a new computational model for solving prob-
lems hased on semnantics-preserving transforma-
tion. In ET framework, the specification of a
problem is formalized as a declarative descrip-
tion, and the problem will be solved by trans-
forming this declarative description successively
into a simpler but equivalent declarative descrip-
tion, from which the solutions to the problem can
be obtained easily and directly.

The correctness of the computation mecha-
nism in ET paradigm relies solely on the equiva-

<Association>
<$I:1>
<AssociationEnd>
<type>
<Clasg xmi.idref=%$S5:5ubID/>
</type>
</AssociationBnd>
<AssociationEnd>
<multiplicity>$5:M2</multiplicity>
<type>$E:C</type>
</AssociationEnd>
</3$Ii1>
</Association>

e

<Generalization> $E:1
<child>
<Class xmi.idref=$%$5:35ubID/>
</child>
<parent>
<Clags xmi.idref=$3:3upID/>
</parent>
</Generalization>,

<Association $P:1>
<$L:1i>
<hssociationEnd $P:2> $E:2
<multiplicity>$5:M1</multiplicity>
<type> ,
<Class xmi.idref=38:SupID/>
</type>
</AssociationEnd>
<AssociationEnd $P:3> $E:3
<multiplicity>$5:M2</multiplicity>
<type>$E:C</type>
</AssociationEnd>
</3L:1>
<fAssociation>

Figure 12: A Definite Clause, Cpa

lence of all declarative descriptions in a transfor-
mation process. Two declarative deseriptions P
and P’ are said to be eguivalent if and only if they
have exactly the same meaning, i.e., M(P) =
M(P"). In this paper, only unfolding transfor-
mation will be applied. In general, other kinds
of semantics-preserving transformation can also
be used, especially to improve computation effi-
ciency.

To demonstrate computation with XML/XMI
elements under ET framework, assume that
Cmov, Chas,caem Crmus, Cget: Cdap and C,.; are
the unit clauses the heads of which are the
XML/XMI elements in Figures 3,4, 6,7, 8, 9 and
10, respectively; also that Cgy and Cge are, re-
spectively, the definite clauses in Figures 11 and
12. Then, let KB be the XML declarative de-
scription consisting of these nine definite clauses.
Now suppose that one wants to find the names of
the operations provided by the class Movie. The

problem can be formuliated as the declarative de-
scription

P, = KBU{GCy},
where Cy is the definite clause

<answer>$S:X</answer> &

<Class $P:Y1>
<name>Movie</name> $E:Y2
<feature> $E:Y3
<Operation $P:Y4>
<name>$S5:%X</name> 3E:Y5
</Uperation> $E: Y6
</feature>
</Class>,

T'he ¢lass-cxpression in the body of Cy is unili-
able with the head of the unit clause Cpq {Fig-
ure 3) using the specialization

{($P:Y1, (8N:V1, $S:V2, $P:V3}),
($8:v1, xmi.id), ($5:V2, "C1.4"), ($P:V3,€),
($E:Y2, E}), ($E:Y3, ($E:V4, $E:V5))},
(3E:v4, Eq}, ($E: VS, E3),
(8P:Y4, ($N:V6, $8:V7, $P:V8})),
{$N:v6, xmi.id), (§5:¥7, "C1.4,11"),
($P:v8,¢), ($5:X, getName),
($E:¥5, Ey), ($E:Y6,¢))

in & as a unifier, where Ei,FEq, E3 and E4
denote the associationEnd-element, the first
and the second Attribute-elements and the last
visibility-element, respectively, in Cpppy. This
class-expression in Cp is moreover unifiable
with the head of the clause Cg) (Figure 11} using
the unifier

(($P:Y1, (SN:W1, $5:W2, $P:W3}),

($N:W1, xmi.id), ($S:W2, $5:CID), ($P:W3, $P:1]),
{$E:1, ($E:W4, $E:W5)),

($E W4, <name>Mov1e</name>)

(SE:WS5, $E:Y2), ($E:2, SE: Y3), {$P:Y4,€),
($S:NM, $3:X), ($E:¥5,¢), ($E:¥6,€)).

By unfolding Cp, Py can thus be transformed into
Py = KBU{Cy,Ch},
where ' is the unit clause
<answerrgetName</answer> 4—

and Cq is the definite clause with the head
<answer>$S:X</answer> and with the same body
as that of Cg; except that $5:NM is replaced with
$5:% and the Class-expression in the body is
changed into

<Class xmi.id=%$S:CID $P:1>
<name>Movie</name> 3E:Y2
{feature> $E: Y3

</feature>
</Class>.

At this step, one answer, i.e., getName, is directly
obtained from Cj. Other answers may be com-
puted by further transforming P;. The Class-
expression in the body of C; is unifiable with
the unit clanse Cpyor (Figure 3) using the unifier

{($s:01D, "C1.4"), ($P:1,¢€), ($E:¥2, Fy),
{$E:¥3, ($E:U1, $E:U2)), ($E:U2, ($E: U3, $E:U4)),
($E:U1, By), (SE:U3, F3), ($£:U4, E5)),

where Ep, &9, F3 and Eg denote the associa-
tionEnd-element, the first and the second At-
tribute-elements and the Opsration-element,
respectively, in O . By resolving Cy with O,y
upon this Clasg-cxpression, f% is rewritten inlo

= KBU{C,Cs},

where the head of the clause 3 is the same
as that of Cy, and the body of (3 is same as
the body of Cgi except that $S:WM is replaced
with $3:X, $5:CID with "C1.4" and the Class-
expression in the body is removed. Next, the
$1:1-expression in the body of Cs can be unified
with the unit clause C,.q (Figure 6) using the
specialization

{{$T:1,($N:Z1, $P:22, $E:Z3, $E:24, $1:25)),
($N:21, Collaboration), ($E:24, K],
($P:22, ($N:Z6, $3:27, $P:28)),

($N:26, xmi.id), ($5:27, "S3"), ($P:28,¢),

($E:23, <name>SellingMovieTicket</name>},

($1:5,{$N:29,$P:Z10, $E:Z11, $E:Z12, $1:213}),

($M:29, ownedElement), ($P:210,¢),

($E:211, ($E:214, $E: Z15)],

($E:Z12, ($E: 216, $E: Z17)),

($8:214, E7), ($E: 215, Eg),

($E:218, Ey), ($E:217, Eqp),

($1:13,¢),($E:3, (SE: 218, $E: 219)),

($E:218,<name>m</name>),($E:219,lf11L

($E:4,¢), (SE:5, ¢}, ($E:6,¢), (35:MID,"523"))

in Sx, where Es,E'r,Eg,Eg,Em and Eu de-
note the interaction-element, the first, the sec-
ond, the fourth and the fifth ClassifierRole-
elements, and the message-subelement of the
third ClassifierRole-element, respectively, in
Cieq- As aresult, Py can be transformed into

Py = RKBU {ij,C@},
where C, is the clause

<answer>$S:X</answer>

<CallAction $P:2>
<name>$5:X</name> $E:7
<Action.message>
<Message xmi.idref="323"/>

</Action.message> $E:8
</Calliction>.

Obviousty, by further resolving the clause C4
with the unit clause Cg.; (Figure 8), Py can be
transformed into

Ps = KEBU {C1,C§},
where Cj Is the unit clause
<answer>getListDfShows</ansver> + ,

from which the second answer, i.e., getList0f-
Shows, can be directly drawn. As neither C; nor
Cy can further e transformed, no other answer
will be derived. Since only unfolding transfor-
mation, which always preserves the equivalence
of declarative descriptions, is used in each step,

M(Py) = M(Ps),

and the two obtained answers are guaranteed
to be correct with respect to K B. Providing
that KB is augmented with the XML/XMI el-
ements representing all componenis of the dia-
grams in Figures 2 and 5, one can derive, for ex-
ample, the names of the operations offered by the
class Show, i.c., getSeatingPlan and reserveSeat,
through the clause Cgy, in a similar way (al-
though the class Show has no explicitly declared
operation in the class diagram of Figure 2).

6. Concluding Remarks

Apart from the general rules illustrated in this
paper, encoding other known implicit interrela-
tionships between UML diagrams as XML def-
inite clauses along with discovering additional
inherent interrelationships in the UML domain
is in progress. The development of a proto-
type UML knowledge-based system under the
proposed framework is now under way at AIT
and SIIT. Since program code, e.g., Java code,
can also be represented as XML data, the pre-
sented framework furthermore has a significant
application in forward engineering—the process
of transforming a model into code through a

UML Mode! » Java Code
Forward Engineering
Knowledge
XML/XMI o XML
Representatian Equivalent " | Representation:
Transformation

Figure 13: Forward Engineering Framework

10

mapping to an implementation language. As de-
picted by Figure 13, general rules specifying the
mapping, i.e., forward engineering knowledge,
can be expressed as an XML declarative descrip-
tion, and Equivalent Transformation can be used
as underlying inference machinery for generating
program code from a UML model. Acquisition
of forward engineering knowledge in the UMI,
domain is also an ongoing research at SIIT.

Acknowledgement
This work was supported by the Thailand Re-
search Fund, under Grant No. PDF/31/2543.

References

(1] Akama, K., Declarative Semantics of Logic
Programs on Parameterized Representation
Systems, Advances in Software Seience and
Technology, vol. 5, pp. 4563, 1993.

[2] Akama, K., Shimitsu, T. and Miyamote, E.,
Solving Problems by Equivalent Transfor-
mation of Declarative Programs, J. JSAL
vol. 13, no. 6, pp. 944-952, 1998,

[3] Anutariya, C., Wuwongse, V., Nantajee-
warawat, E. and Akama, K., Towards a
Foundation for XML Document Databases,
Proc. Ist International Conference on E-
Commerce and Web Technologies, UK, Lec-
ture Notes in Computer Science, vol. 1875,
pp. 324-333, Springer-Verlag, 2000.

[4] Evans A. S., Reasoning with UML Class Di-
agrams, Proc. Znd IEEE workshop on In-
dustrial-Strength Formal Specification Tech-
nigues, Florida, IEEE Press, 1998,

[6) France, R., Evans, A. S., Lano, K. and
Rumpe, B., The UML as a Formal Model-
ing Notation, Computer Standards and In-
terfaces, vol. 19, no. 7, pp. 325-334, 1998.

[6] Goldfarb, C. F. and Prescod, P., The XML
Handbook, Prentice Hall, 1998.

[7] Nantajeewarawat, E. and Sombatsrisom-
boon, R., On the Semantics of UML Di-
agrams Using Z Notaion, Proc. Interna-
tional Conference on [ntelligent Technolo-
gies, Bangkok, Thailand, 2000.

[8] Rumbaugh, J., Jacobson, 1. and Booch, G,
The Unified Modeling Language Heference
Manual, Addison Wesley, 1999.

[9] Wuwongse, V., Akama, K., Anutariya, C.
and Nantajeewarawat, E., A Foundation for
XML Document Databases: Data Model,
Technical Report, CSIM, AIT, 1999,

[10] XML Metadata Interchange Format (XMI),
IBM Application Development, www-4.ibm.
com/software/ad/standards/xmi.html,

Published in Kreinovich, V. and Daengdsj, J., edifors, Proceedings of the First Intemational Conference on Intelligent

Technologies (InTech'2000), Bangkek, Thailand, pages 325-334, December 2000, ISBN 974-615-055-4.

On the Semantics of UML Diagrams
Using Z Notation

Ekawit Nantajeewarawat and Ratanachai Sombatsrisomboon
Information Technology Program
Sirindhorn International Institute of Technology
Thammasat University, Rangsit Campus
Pathum Thani 12121, Thailand
E-mail: ekawit@siit.tu.ac.th

Abstract: After the method war in the early 90's, the Unified Modeling Language
(UML) has emerged as a de facto standard notation for object-oriented system
analysis and design. However, due to the lack of the precise semantics of UML, in-
terrelationships among components of UML models can hardly be analyzed and the
consistency of the models cannot be formally verified. As a step towards the precise
semantics of UML, this paper employs the Z notation, an expressive mathematical
language, to develop formal specifications for two important parts of UML, ie.,
class diagrams and sequence diagrams, and to precisely define the well-formedness
rules and the model-theoretic semantics of these two kinds of diagrams. Based on
this established foundation, a number of sound deductive inference rules, which can
be used for rigorously reasoning with UML class diagrams and sequence diagrams,
are presented.

Key words: UML, Model-theoretic semantics, Formal deduction, Entailment, In-

ference rules, Inheritance, Diagrammatical transformation

1. Introduction

In response to the popularity of object-oriented
software development, more than thirty different ob-
ject-oriented modeling methods and languages were
proposed during 1889-1994. The differences be-
tween these methods and notations were nonetheless
often superficial, e.g., the same concept was often
realized using subtly different graphical syntax and
terminology in different methods. System analysts
and software developers had difficulty in choosing a
suitable modeling language that met their require-
ments completely and in understanding software
specifications written in varions modeling lan-
guages. Before long, three leading object-oriented
methodologists, Booch, Jacobson and Rumbaugh,
were motivated to unify the modeling notations of
their methods, i.e., the Booch method, Jacobson's
OOSE and Rumbaugh's OMT, and to incorporate
ideas from other modeling languages, and began to
develop the Unified Modeling Language (UML) {1,
5, 7, 8, 9], which has become a standard modeling
language for object-oriented systems.

Although the UML. architects have claimed that
UML has a well-defined semantics, as defined in the
UML Semantics Document [9], its current semantics
is only described in a “semi-formal™ style that com-
bines graphical notation and formal language with
lengthy and loose explanations in natural language
(English), and is not sufficiently precise. The lack
of the precise semantics is a serious hindrance to the
detailed and accurate analysis of the interrelation-
ships between model components as well as their

properties, the verification of the consistency and
correctness of designs, and, moreover, the construc-
tion of rigorous system-modeling and auntomation
tools.

1.1 Related Works

Being well aware of the necessity of the formal and
precise semantics and a solid theoretical basis, inter-
national researchers and practitioners in the precise
UML group (pUML) [10], who share the aim of de-
veloping UML as a precise modeling language, have
attempted to clarify and make precise the semantics
of UML {2, 3, 4]. The Z notation [11, 12, 13}, a ma-
ture and expressive mathematical language that is
well supported by tools, is employed to describe the
abstract syntax and constraints on the syntactic
structures of graphical object-oriented notation in
UML, define the semantics domain and associate
meanings with well-formed syntactic structures.
The concept of entailment between UML diagrams
is formulated, and a set of sound inference rules,
called diagrammatical transformation rules, each of
which transforms a given diagram into some of its
logical consequence, is introduced as a tool for prov-
ing properties of and reasoning about components of
UML models.

As an illustration of reasoning through diagram-
matical transformation, consider the UML class dia-
gram in Figure 1, which describes the relationship
between students and instructors and that between
students and courses. In addition to specifying that
each student has exactly one instructor as his/her ad-
visor, the diagram also asserts that each full-time

student takes at least three but at most ten courses,
and, on the other hand, at least fifteen students take
each course. In order to deduce the relationship be-
tween students and courses in general, a few infer-
ence rules introduced by [2] can be successively ap-
plied to transform the class diagram in Figure 1 into
the class diagram in Figure 2, from which the con-
clusion that some student may take no course can be
directly drawn.

Student - ! Instructor
advisor
ZF Course
3.0
PartTime FullTime T takes

Figure 1: A Class Diagram

15.* takes 0,3.10

Student Course

Figure 2: Part of a Derived Class Diagram

However, the works reported by this group [2, 3,
4] presently capture the syntax and semantics of only
some components of UML class diagrams, ie.,
classes, associations and generalization relation-
ships, and the inference rules presented in these
works can only be used for reasoning about the
properties of these components. How to deal with
internal components of classes, e.g., attributes and
operations, how to formulate the concrete semantics
of other prominent kinds of UML diagrams, ¢.g., se-
quence diagrams, collaboration diagrams, statechart
diagrams and activity diagrams, and how to formally
analyze and reason about their interrelationships and
their properties remain challenging issues.

1.2 The Presented Work

As a step towards the precise semantics of UML,
this paper first extends the abstract syntax of and the
well-formedness rules for class diagrams in [2, 3, 4]
to embrace attribute declarations and operation dec-
larations, which are important internal components
of classes, and defines the abstract syntax of UML
sequence diagrams as well as the well-formedness
rules for them (Section 2). An appropriate seman-
tics domain for assigning meanings to components
of UML class diagrams and to those of UML se-
quence diagrams is then specified, and the model-
theoretic semantics of these two kinds of diagrams is
developed (Section 3). The proposed semantics en-
ables the precise discussion on inheritance of attrib-

utes and operations and, morcover, the analysis of
the inherent interrelationships between class dia-
grams and sequence diagrams. Sound inference
rules for deductive reasoning about inheritance and
about interconnections between components of the
two kinds of UML diagrams are presented (Section
4). Applicability of the proposed inference rules in
computer-aided software engineering tools is ex-
plained (Section 5).

2. Well-Formed Diagrams
Subsection 2.1 briefly recalis the abstract syntax of
some basic concepts, i.e., AssociationEnd and Asso-
ciation, defined by [2, 4], and, then, defines the ab-
stract syntax of attributes and operations together
with the concept of a well-formed class diagram.
Subsection 2.2 defines the abstract syntax ol the
components of UML sequence diagrams along with
the notion a well-formed sequence diagram.
Throughout the paper, the sets ClassName, Ob-
JectName, Actor and Name are assumed as basic
types. These four sets are presumed to contain all
class names, object names, actors, and other names
{e.g., attribute names, operation names, association
names, association-end names, and parameter
names), respectively, used in a model.

2.1 Well-Formed Class Diagrams

An association represents a structural relationship
among objects. An association typically has two
end-points, called association ends, each of which
connects the association with a class of objects. The
schema for association ends is given below.

__AssociationEnd_________
relename . Name

class : ClassName
multiplicity 1PN

multiplicity = {0}

A role name of an association end specifies the role
that an object of its connected class plays in an asso-
ciation. A multiplicity specifies the possible number
of objects that may be connected across an associa-
tion instance. A multiplicity is defined as a non-
empty subset of the set M of non-nepative integers.
Since the multiplicity {0} of an association end indi-
cates that the association does not actually exist, the
constraint that a multiplicity cannot be the singleton
set {0} is imposed. An association has two associa-
tion ends with different role names.

__Association________
name . Name
e, ey: AssociationEnd

e rolename = ez rolename

Example 1 Consider the class diagram in Figure 3.
The set ClassName is assumed to contain Person,
Student, Instructor, Course, String, Money, Year and
Integer, and the set Name is assumed to contain ad-
visor, takes, name, addr, chngAddr, salary, spouse,
getSalary, v, code and credit. This class diagram
contains four association ends, i.e., ae|, e, ae; and
aey. The value of ae;.rolename is advisor, while the
rolename of each of the other three association ends
is undefined. The values of ae,.class and ae;.class
are Student and Instructor, respectively, while those
of aey.class and ae,.class are Student and Course, re-
spectively, The multipicity of ae| is unspecified,
the multiplicity of ae; is the singleton set {1}, and

the multiplicitics of aey and aey are the infinite sets

{n e N | n =15} and N, respectively. There are
two associations in the figure, ie., a; and a;, where
ay.name is undefined, a.e, and a,.e; are ae, and ae,,
respectively, and az.name, az.e; and ay.e, are rakes,
aey and ae,, respectively. m

Person o
s

name: String |/
| addr: String
attr]”
attr,” | chngAddr()

4"”
A 3

cy |

ra

ae; @ Instructor

1| salary: Money
advisgf| Spouse: Person

s

15.* ae; | Money genglary(y_: Year)
ae; *, R"-.
takes op:
Course

: . <

a; 0* code: String L;
| name: String

ae, | credit: Integer

Figure 3: A Class Diagram

A class may have attributes and operations as its
components. An attribute has a name and a type
specifying its possible values.

ttribute.
name ;. Name
type : ClassName

The signature of an operation is a combination of
its name, its type and a number of formal parameters
(formal arguments). The type of an operation speci-
fies the range of possible values the operation may
return when it is invoked. To capture the order of
parameters, the component arguments of an opera-
tion is defined as a finite partial function from N to
Parameter (the set of all formal parameters) the do-
main of which is the set {(n e N | 1 £ n £ m}, for

some non-negative integer m. Let the set of all such
functions be denoted by seq(Parameter).

__Parameter
name : Name
type : ClassName

Operation
name : Name

type : ClassName
arguments : seq(Parameter)
numOfArgs N

numOfArgs = #dom arguments

A clasy is then considered as an abstract entity
that has as its components a name, a finite number of
declared attributes and a finite number of declared
operations.

Class.
name : ClassName
declrAtirs : F Attribute
declrOpers : F Operation

Example 2 The class diagram in Figure 3 has four
classes, i.e., ¢, ¢, c1 and ¢4, the names of which are
Person, Student, Instructor and Course, respectively.
The value of ¢|.declrArtrs is the set {afry, arrl,
where the names of atry and arer; are name and
addr, respectively, and their types are String. The
value of ¢.declrOpers is the singleton set {op,}. No
attribute and operation is declared in ¢;, whence both
cpdecirAttrs and codecirOpers are the empty set.
The value of the component declrOpers of the class
¢y is the set {op,}, where op;.name, opytype,
oprarguments and op.numOfArgs are getSalary,
Money, the mapping {(1, p;}}, and the integer I, re-
spectively. The values name and type of the pa-
rameter p, are y and Year, respectively. =

The notion of a well-formed class diagram will
now be defined. A well-formed class diagram con-
sists of a finite set, classes, of classes, a finite set,
associations, of associations, a partial function, su-
perclass, which defines superclass relationships, a
partial function, allsubs, associating with a class the
set of its subclasses, and a set, top clusses, of the
classes that are considered as the highest classes in
the ontological classification taxonomy of the sys-
tem being modeled. The schema for well-formed
class diagrams is given below.

WFD_CD
classes | F Class
associations | F Association
superclass : Class — Class
allsubs ;. Class - F Class

topelasses ; F Class

Ve, ¢ clusses « ¢ 2 ¢' = c.name # ¢ .name
Y ¢ : topclasses -

(¢ e classes A c & dom superclass)
Ve, c':classes

(c' e allsubs(c) & superclass(c”) = ¢)
Ve : classes - ¢ € allsubs(c)

The constraints of this schema ensure that each class
has a unique name, cach top class does not have any
superclass, the partial functions superclass and all-
subs are consistent with each other, and, further-
more, a class can be neither a superclass nor a sub-
class of itself (i.e., circular inheritance is not al-
lowed).

Example 3 The class diagram in Figure 3 can be
considered as a well-formed class diagram Dy, where
the component classes of D is the set {¢), ¢z, 3, &1},
the component topclasses is the set {c|, ¢4}, which
means ¢ and ¢4 are assumed to have no superclass,
the component associations is the set {a), a3}, the
component superciass is the mapping {{(cz, cy), (3.
¢}, and the component allsubs is the mapping {{c|,
{C2= Cﬂ})’ (C29 @), (C3v @), (64! @)}- u

2.2 Well-Formed Sequence Diagrams

A sequence diagram describes an interaction ar-
ranged in time sequence. It specifies participating
objects, their lifelines and the sequence of messages
they exchange, but does not show the structural as-
sociations among the objects, Objects and messages
are basic components of a sequence diagram. An ¢b-
Jject is an individual instance of some class. It has
two components, i.e., name and type, which refers to
its class.

Object.
name : ObjectName
type : Class

The concept of action encompasses messages
that are exchanged between objects. Two basic
types of actions are considered, i.e., action calls and
return actions.

Action = ActionCall U ReturnAction

__ActionCall

source : Object U Actor
target - Object

opName : Name
actualArgs : seq{Object)
numOfActArgs - N

numOfActArgs = #dom actualArgs

ReturnAction .. _
source : Object

target : Object U Actor

return : Object

An action call has source, target, opName, actu-
alArgs and numOfActArgs as its components. The
component source refers to the caller, which can ei-
ther be an actor or an object, of the action, whereas
the component rarget refers to the object that re-
ceives the call. The components opName and actu-
alArgs refer to the namne and the actual parameters
(actual arguments), respectively, of the called opera-
tion. The component actualdrgs of an action call
and the component arguments of an operation have
the same structure (see the schema Operation) ex-
cept that an actual argument is an object rather than
a formal parameter. A return action also has the
components source and target, but instead of having
an operation name and actual arguments, it has a re-
turned object as its part.

g [

: §

% o, | ekawit: Instructor | | aceNe: Account
accountant "%,
3 ",

act
r"l 3

transfer(m) +
os

Figure 4: A Sequence Diagram

Example 4 Assume that the set ObjectName con-
tains ekawit, thisYear, m, accNo and ok, the set Ac-
tor contains accountant and the set Name containg
getSalary, getAccount and transfer. Consider the
sequence diagram in Figure 4, in which twa objects,
i.e., o) and o,, and one actor, i.c., accountant, par-
ticipate. The objects oy, for instance, has ekawir as
its name and the class ¢; of Figure 3 as its type.
There are three action calls in the diagram, i.e., act,,
acty and acts, whetre the source of each of them is the
actor accountant, their targets are ¢, 0, and o, re-
spectively, and their operation names are getSalary,
getAccount and rransfer, respectively. The values of
actualArgs of oy, 01, and o5 are the mappings {{1,
o:)}, @ and {(1, o4)}, respectively. The diagram
contains three return actions, i.e., r, # and ry,
where, for example, r.source is o, rj.1arget is ac-
countant and r.return is o4. Observe that r.return
and rpreturn are also used as the actual argument
and the target object, respectively, of act;. =

A well-formed sequence diagram consists of a
finite set of objects, a finite set of actors, a finite set
of action calls, a finite set of return actions, a partial
injective function that specifies the order of actions,
and a partial injective function that associates with
an action call its corresponding return action.

_WFD_SD
objects - F Object

actors : F Actor

calls : F ActionCall

returns . F ReturnAction

order : Action »» N

matchRet : ActionCall = ReturnAction

dom order = (calls U returns)

ran order = L. #{calls U returns)

dom matchRet = calls

ran matchRet = returns

Va:calls.
(a.source = matchRet(a).target
A~ a.target = matchRet(a).source
A~ a.order < matchRet(a).order
A a.source € objects U actors
A atarget € objects)

YVr:returns.
{r.source € objects
A rtarger € objects U actors)

By the constraints of this schema, the sender of an
action call must be the receiver of its matching re-
turn action, and, conversely, the sender of a return
action must be the receiver of its matching action
call. Morcover, an action call always occurs in time
sequence before its matching return action.

Example 5 The sequence diagram in Figure 4 can
be regarded as a well-formed sequence diagram D,
where Dh.abjects is the set {0y, 01}, Da.actors is the
singleton set {accountant}, the components calls
and returas of D, are the sels {act;, acty, acty] and
{r), 2, ra}, respectively, and the components order
and matchRet of D, are the partial injections {(act),
1), (r, 2), (gcts, 3}, (r, 4), (acty, 5), (rs, 6)} and
{{acty,), (actz, 1), (acky, ry)}, respectively. =

As only class diagrams and sequence diagrams are
considered in this paper, a well-formed diagram is
either a well-formed class diagram or a well-formed
sequence diagram. In the sequel, let WFD be the un-
ion of WFD_CD and WFD_SD.

3. Semantics

In classical logic, a well-formed formula has differ-
ent interpretations in different possible worlds.
Likewise, a well-formed UML diagram has many
possible interpretations. The notion of a set assign-
ment will be used to capture the concept of an inter-
pretation in the context of UML. Under a set as-
signment, for example, a class has a set of object

identities as its meaning, an association has a binary
relation on object identitiers as its mecaning. A set
assignment also assigns possible meanings to ob-
Jects, attributes and operations.

3.1 Preliminary

In the rest of the paper, the set Ofd of all object iden-
tifiers is assumed, and let the terms Tuple, Map-
Tuple, AllMapOIldTuple and TupleProjection be de-
fined using the following abbreviation definitions,

o Tuple(X,n) == {x, .., %, X+ (xi, ..., x,)}
o MapTuple(X, n) == Tuple(X, n) + X
¢ AliMapOldTuple ==
[Nt n=1 9+ MapTuple(Ofd, n)}
TupleProjection(i,n, T} ==
[xpy e k) Tk NI k=iA kS n)- x;)

That is, Tuple(X, n) denotes the set of all n-tuples of
clements of X; MapTuple(X, n) the set of all partial
functions which maps an s-tuple of elements of X to
some element of X; AllMapOldTuple the collection
comprising the sets MapTuple(X, r) for each posi-
tive integer n; and TupleProjection(i, n, T) the set
consisting of the ith-element of each n-tuple in 7.

3.2 Set Assignment
The schema S for set assignments is now defined.

_S

| 0bj : Class P OId

links : Name —» (Old + Old)

arribute : Attribute - (Old — Ofd)
operation : Operation - U AllMapOldTuple
id: Object = Old

Ya :dom attribute ; d¢ : dom objf »
dom attribute(a) = obj(c)
Yop : dom eperation -
(operation(op) €
MapTuple(Old, op.numOfargs + 13) A
(Jc: dom obj - 0bj(c) =
TupleProjection(l, op.numOfargs + 1,
dom operation{op)))

The components obyj, links, attribute, and operation
of a set assignment provide interpretations of basic
abstract components of a class diagram, i.e., classes,
assoctations, attributes and operations, respectively,
whereas the component id simply assigns a single
object identifier to an object. Suppose that a set as-
signment s is given. A class ¢ has the set s.0bj(c} of
object identifiers as its extension under s, and an as-
sociation name a has as its meaning under s the bi-
nary relation s.links(a) on the set of object identifi-
ers.

An attribute arer is interpreted by 5 as the partial
function s.attribute(attr) associating with the identi-
fier of each object o at most one object identifier,
which will be regarded as the value of the attribute

attr of o under s. It is specified as a constraint of the
schema that whenever s.artribute(astr) is defined, its
domain must be the extension of some class ¢; and,
consequently, the value of the attribute attr of each
object belonging to such class ¢ is defined under s.

An operation ep with n parameters is interpreted
by s as the partial function s.operation(op) associat-
ing at most one object identifier oid, with each
{n+1)-tuple (oidy, eid,, ..., oid,) of object identifiers,
where oid, is regarded as the value returned by the
operation op when it is invoked with the actual pa-
rameters oid,, ..., oid, on the host object identified
by oidy. The schema also requires that for every op-
eration op, if the partial function s.operation{op) is
defined, then the set of the identifiers of the host ob-
jects in its domain must be the extension of some
class, and, as a result, every object in this class pro-
vides the operation op.

3.3 Components of Diagrams and Their Satisfac-
tory Conditions

Intuitively, when the meaning of a diagram compo-
nent o under a set assignment s conforms to some
possible consistent instance of a model (of some sys-
tem) containing o, the set assignment s will be con-
sidered 10 satisfy the component ¢, denoted by 5 F o
Referring to Figure 3, for example, if the meanings
of the classes ¢, and ¢, under a set assignment s are
sets O, and O, respectively, of object identifiers and
O, includes O, then the set assignment s can be
considered to satisfy the generalization relationship
between ¢, and ¢y,

In order to specify the precise satisfactory condi-
tions for diagram components, the (free type) defini-
tion, Component, of the components of UML dia-
grams considered in this paper is first given.

Component =
class€Class) |
top{Class) |
gen{Class % Class) |
association{Association} |
declrAttribute{Attribute X Classy |
avaliAttributeArtribute X Class) |
declrOperation{Operation X Class} |
availOperation{Operation X Classh |
classWid{WFD_CD} |
prepObjiObjecty |
call{ActionCall} |
seqgWidgWFD_SDY |
Wi{WFD)

The relation F is then defined as a relation from S to
Component. For any set assignment s and any com-
ponent ¢, when s F ¢, s can be regarded as a model!
of o (in the sense of a model of a weli-formed for-
mula in classical logic). The satisfactory conditions
for each element of Component will be described in
the next two subsections.

3.4 Satisfactory Conditions for Class Diagrams
The satistactory conditions for the components of a
class diagram will now be given.

Class

E: 8+ Component

Y55, c:.Class .
skclass(c) & cedoms.ob)

Generalization
Vs: 8¢, ¢ Clasg
skgen(c, &) < s5.0bj(c) Cs.0bjic)

That is, given any classes ¢ and ¢’, a set assignment s
satisfies the component class(c) if and only if the ex-
tension of ¢ under s is defined, and satisfies the
component gen(c, ¢’} if and only if the extension un-
der s of ¢’ includes that of ¢.

Associations
Vs 8, r:Association .
§ kassoctation(r} <
(dom(s.links(r.name)) C s.obj(r.e|.class) ~
ran{s.links{r.name)) < s.obj(r.esclass)y A
(Vo :s.0bj(r.e,.class) -
#{o': 5s.0bj(resclass) |
(0, o) e s.links (r.name)}
€ r.ea.multiplicity) A
(Vo':s.0bj(r.esclass) .
#{o: s.obj(r.e|.class) |
(o, @) e s.links(r.name) }
e r.e|.mulriplicity}

Intuitively, for any association (relationship) r, a set
assignment s satisfies the component association(r)
if and only if, under s, the association r only relates
objects belonging to the classes indicated at its asso-
ciation ends, and the number of objects participating
in the association conforms to the multiplicity speci-
fied at the association ends.

From the abstract syntax of class diagrams de-
fined in Subsection 2.1, a class typically has a num-
ber of declared attributes and opcrations. In addition
to these declared components, the class may have
some other attributes and operations through inheri-
tance. In order to precisely define the meanings of
these internal components of a class, the notions of
declared components and available components are
introduced. A declared antribute of a class is an at-
tribute that is declared explicitly in the class,
whereas an available attribute of a class is an atirib-
ute that is either declared explicitly in the class or
inherited from some ancestor of the class.

Available Attribute
Vis:8 ¢:Class; a:Anribute -
§ FavailAuribute(a, €) <=
(s.0bj(c) « dom s.attribute(a)) ~
(Ve': Class | c'.name - a.type »
ran s.attribute(a) < s.obj(c?)

Declared Attribute
V5.8, c:Class, o . Antribute -
sk declrAttribute(a, c) <
(s E availAntribute(a, ¢)) A
{s.0bj(c) = dom s.attribute(a))

Roughly speaking, for an attribute @ and a class ¢, a
set assignment s satisfies the components availAt-
tribute(a,), meaning that a is regarded as an avail-
able attribute of ¢ under s, if the value of the attrib-
ute a of every object in the extension of ¢ under s
belongs to the extension under s of the type of a.
Under the same condition except that every object
the value of the attribute a of which is defined also
belongs to the extension of ¢ under s, the set assign-
ment s satisfies the component declrAttribute{a, c).
It follows directly that:

Proposition 1
Vs S, c: Class;, a: Antribute -
s kdecirAttribute(a, c)
= sk availAttribute(a, c) =

Similarly, while a declared eperation of a class
is an operation that is declared explicitly in the class,
an available attribute of a class is an operation that
the class provides, which may be derived from an
ancestor of the class by means of inheritance.

Available Operation
Vs 8; ¢ : Class; op : Operation «
£ EaqvailOperation(op, ¢) <
TupleProjection(l, op.numQOfirgs + 1,
dom s.operation(op)) 2 5.obj(c} A
(Vi:N; ¢’ Class |
2L i op.numOfArgs + 1 A
c'.name = op.arguments(i - 1).type
TupleProjection(i, op.numQOfargs + 1,
dom s.operation(op)) € s.0bj(c) ~
{(Ve": Class | ¢c".name = op.type +
ran s.operation(op) < s.0bj(c')}

Declared Operation
¥s: S, ¢ . Class; op : Operation «
s FdecirOperation{op, ¢) <
(s FavailOperation(op, c)) A
(TupleProjection(l, op.numOfArgs + 1,
dom s.operation{op)) = 5.0bj(c))

Intuitively, given an operation op and a class ¢, a set
assignment s satisfies the component availOpera-
tion{op, c), if every object in the extension of ¢ un-
der s is a host object of op, and each possible actual
argument belongs to the extension under s of the
class of its corresponding formal parameter, and,
moreover, each possible returned value belongs to
the extension under s of the return type of op. Under
the same condition except that every possible host
object of op also belongs to the extension of ¢ under
s, the set assignment s satisfies the component
declrOperation(op, ¢). The next proposition directly
follows.

Proposition 2
Vs :8; c: Class; op : Operation .
s EdecirOperation(op, ¢)
= 5k availOperation(op, ¢} &

Next, given a class ¢, a set assighment s satisfies
the component top(c), meaning that ¢ can be consid-
ered as one of the highest classes in a classification
taxonomy under s, if and only if there exists no other
class the extension under s of which includes the ex-
tension of ¢ under 5.

Top Class
Vs:S;c:Class+ sketop(c) <
(Ve doms.obi | ¢’ # ¢ s.obi(c) @ s.obi(ch)

Then, for any well-formed class diagram 4, a set
assignment s satisfies the component classWid(ed), if
and only if it satisfies every component of d.

Class Diagrams
s :S; d: WFD_CD .
s FelassWfd(d) <
(Ve :d.classes « s F class(c)) A
(Ve :dom d.superclass -
5 F gen(c, d.superclass(c)}) A
(Va :d.associations + s F association(a)) »
(Ve . d.classes; op : Operation -
op € c.declrOpers
= 5 k declrOperation(op, c)) ~
(Yc -dropclasses + 5 F top(c))

3.5 Satisfactory Conditions for Sequence
Diagrams

The satisfactory conditions for objects participating

in a sequence diagram and for action calis will now

be described.

Participating Object
V.S, 0: Object.
5 F ptepObi(o) &
(o.type € dom s.08)) A (0 = dom s.id) ~
(5.id(0) € s.obj(o.type))

In plain words, for any object o, a set assignment s
satisfies the component prepObj(o} when the identi-
fier of o is consistent with the extension of its type
under 5. The next proposition follows directly.

Propeosition 3
Vs :5; 0: Object
5 ¥ ptepObj(o) = sk class(o.type) m

Next, consider the satisfactory conditions for action
calls. Basically, a set assignment satisfies an action
call, if and only if, under that set assignment, the
class of the receiver of the call provides the opera-
tion of the call and, furthermore, the actual argu-
ments of the call all conform to the signature of the
operation. This is formally described as follows.

Call
Vs .8, act :ActionCall -
sEcall(ach &
(s £ ptepObjlact.target)) A
(dop : Operation
(s F availOperation{op, act.target.type))
{op.name = act.opName) A
(op.numOfArgs = act.numOfActArgs) A
(Vi:NI115 i< op.numOfArgs
(3 e¢:Class -
(op.arguments(i).type = c.name) A
(s.id(act.actualArgs(i)) € 5.0bj(c)N))

Proposition 4, which will be used in the next section,
follows readily.

Proposition 4
Vs 8 act: ActionCall «
sk call{act) = Jop: Operation
(s E availOperation(op, act.target.iype)) A
(op.name = act.opName) A
(op.numOfArgs = act.numCfActArgs)

Next, a set assignment s salisfies a well-formed
sequence diagram d if and only if it satisfies every
component of d; and, finally, a set assignment can
satisfy well-formed class diagrams or well-formed
sequence diagrams, and other kinds of diagrams are
not discussed in this paper.

Sequence Diagrams
Vs: S, d: WFD_SD -
sk segWid(d) <
(Vo : d.objects + s F ptcpObj(0)) ~
(Va :d.calls - s k call{a))

Diagrams
Vs S, d:WFD .
sEwfdld) < (s F seqgWid(d) v s kclassWid(d))

4. Reasoning with UML Diagrams
Inference rules for deducing from a given set of
UML diagrams some of their logical consequences
and for proving their properties are presented in this
section. Before developing such inference rules,
what it means for one diagram to entail another dia-
gram is precisely defined in Subsection 4.1. The no-
tion of entailment is then used as a basis for verify-
ing the soundness of the inference rules described in
Subsection 4.2.

4.1 Entailment Relationship on UML Diagrams
In [2], the entailment relation, in symbols F,, be-
tween well-formed diagrams is defined as follows.

F: WFD «— WFD

vD,D': WFD .
DED & (Vs: 55k wfdD)=> sk wid(DY)

That is, one well-formed diagram entails another
well-formed diagram, i’ and only il cvery sct as-
signment satisfying the former also satisfies the lat-
ter. This definition of F; will be used as a basis for
proving the soundness of inference rules for deriving
from a single diagram some of its implicit properties
or components, e.g., the first three inference rules in
Subsection 4.2.

By means of overloading, the entailment relation
ks will additionally be used in this paper as a relation
that connects a pair of well-formed diagrams with
another well-formed diagram. As formalized below,
given two well-formed diagrams D and D', the pair
(D, D) is considered (o entail another well-formed
diagram D”, if and only if every set assignment that
satisfies both D and D' always satisfies D"

_Es 1 (WFD x WFD) «— WFD

vD, D, D": WFD .
(D.DV D" =
(Vs : 8- (sEwfd(D) A s EwfdDY)
= skwfd(D'")

This extended relation k; wiil be used as the grounds
for justifying the soundness of rules for inferring
some new diagram components from two existing
diagrams, e.g., Rules 4 and 5 in the next subsection,

4,2 Inference Rules for UML Diagrams

Based on the concept of the entailment relation
defined in Subscction 4.1, an inference rule R is said
to be sound if either of the following two conditions
is satisfied.

1) If R infers from a well-formed diagram D a
well-formed diagram DV, then D £, D,

2} If R infers from well-formed diagrams D and
a well-formed diagram D", then (D, DY b, D"

A number of inference rules will now be presented.
The first rule can be considered as the inheritance
mechanism for UML class diagrams.

Rule 1: (Inheritance) Each available attribute {or
operation) of a class ¢ is also an available attribute
(or operation, respectively) of every subclass of the
classe. m

The soundness of Rule 1 follows directly from the
next proposition.

Proposition 5
1) Vs 8 attr:Anribute, ¢, ¢’ Class
(s F availAnribute(attr, ¢) ~ sk gen(c’, ¢))
= sk avallAttribute(attr, ¢°)
2) Vs .8 op:Operation; c, ¢':Class -
(s E availOperation(op, c) ~ sk gen(c’, c))
= sk availOperation(op, ¢’}

Proof Let s e85, atr c Attribute and ¢, ¢’ e Class
such that s F availAntribute(attr, ¢} and s F gen(c’, c).
Since s k availAttribute(arttr, ©), dom s.attribute(ater)
includes s.obf(c). As sk gen(c', ¢), s.0bj(c) includes
s.obj(ch. Thus dom s.attribute(att) 2 s.obj(c’). Asa
consequence, s k availA#tribute(attr, ¢’), and the first
result holds. The second result of this proposition
can be proven in a similar way. =

The next two rules can be used for reasoning
about available and declared attributes/operations of
a class.

Rule 2: (Deriving Available Attributes/Operations
from Declared Altributes/Operations) Each de-
clared attribute {or operation) of a class ¢ is also an
available attribute (or operation, respectively) of the
classc. ®

Rule 3: (Deriving Declared Operations from Avail-
able Operations) Each available operation of a
class ¢ that is not a subclass of any other class is also
adeclared operation of the class¢c. ®

The soundness of Rule 2 follows from Propositions
1 and 2, while that of Rule 3 follows immediately
from the next proposition.

Proposition 6
Vs :S: op :Operation, c : Class -
(s E availOperation{op, c) n s k top{c))
= st declrOperation (op, ¢)

Proof Lets €S, op e Operation and ¢ € Class such
that s F availOperation{op, c} and s k rop{c). Let O
denote the set TupleProjection(l, op.numOfargs + 1,
dom operation{op)). As s F availOperation{op, c),
s.obj(c) € 0. By the constraints of the schema for S,
there exists ¢’ € dom obj such that s.obj(c’)y = O. As-
sume that s.obj(c} # s.obj(c’). Then ¢ # ¢’ and
s.objlc) © s.obj(c). But, as s k top(c), sobj{c)a
£.0bj(c?, which is a contradiction. Hence s.0bj{c) =
s.obj(ch. Tt follows that s.obj(c} = O, and, as a result,
5k declrOperation (op,c}). =&

Some components of a class diagram can be in-
ferred from a sequence diagram by the application of
the next two inference rules.

Rule 4: (Deriving Classes from Sequence Dia-
grams) If ¢ is the class of some object participating
in a sequence diagram D and ¢ does not exist in a
class diagram D', then ¢ can be added into the class
diagramD'. =

Rule 5: (Deriving Available Operations from Se-
quence Diagrams) If an action call of which the
operation is op is invoked on an object of some class

¢ in a sequence diagram D and ¢ is a class in a class
diagram £, then the operation op is an available op-
eration of ¢ in the class diagram D'. =

The soundness of Rules 4 and 5 follow from Propo-
sitions 3 and 4, respectively.

registrar : Regristration c: Course
T I
| withdraw(c, stdld) | !
1 e — ’ 1
i verify(c, stdld) i
! i
i i
1 i
= !
E deductStd) !
: j
[}
: _______
e . |

Figure 5: A Sequence Diagram

Person
- Registration
name: String
addr: String
withdraw(x, y)
chngAddr() verify(x, y} g
|
Enstructor
1| salary: Money
Student advisor| Spouse: Person
5F Money getSalary(y: Year)
takes Course
cade; String
0..%| hame: String

credit: Integer

deductStud()

Figure 6: A Class Diagram

4.3 Example

This subsection illustrates the application of the in-
ference rules presented in Subsection 4.2. Consider
the class diagram in Figure 3 (in Subsection 1.1) and
the sequence diagram in Figure 5. From these two
diagrams, one can use Rule 4 to infer that there ex-
ists a class the name of which is Registration, and
use Rule 5 in infer that this class has at least two
available operations, i.e., withdraw and verify, each
takes two arguments. Rule 5 can furthermore be ap-
plied to infer that deductStud is an available opera-
tion in the class Course. Then, as neither the class
Registration nor the class Course has a superclass,
one can infer that withdraw and verify are declared

operation of the class Registration, and deductStd is
a declared operation of the class Course, using Rule
3. As aresult, the class diagram in Figure 6 is de-
rivable from the class diagram in Figure 3 and the
sequence diagram in Figure 5. Now, from the class
diagram in Figure 6, one can use Rule 2 to infer, for
example, that the class Person has name and addr as
available attributes and chngAddr as an available
operation, and, then, use Rule 1 to infer that the
classes Student and Instructor also have these avail-
able attributes and operation.

5. Concluding Remarks

After a formal semantics of UML class diagrams
(including attribute and operation declarations) and
sequence diagrams is developed, sound inference
rules for reasoning with these two kinds of diagrams
are proposed. The proposed inference rules are
practically useful, for instance, for implementing
computer-aided system modeling tools. In an early
step of a model development process, a system ana-
lyst commonly uses a class diagram for visualizing
the structural aspect of the system being modeled.
Such a class diagram typically focuses solely on the
static relationships among classes of objects in the
problem domain, and the internal components of a
class, such as the operations each class provides, are
often left unspecified. Thereafter, in order to de-
scribe the dynamic behavior of the system, the sys-
tem analyst usually uses sequence diagrams for
specifying how objects in the system collaborate on
performing tasks in various scenarios. By using the
inference rnles, such as Rules 3, 4 and 5, a modeling
tool can make use of the information contained the
sequence diagrams to automatically refine the class
diagram, e.g., to declare necessary operations in
classes. Other inference rules, such as Rules 1 and
2, can then be used, for example, for deriving im-
plicit properties of diagram components and for
checking the consistency of UML models.

The authors believe that the work reported in this
paper provides a solid theoretical basis for the se-
mantics of UML and for the construction of com-
puter-aided software engineering tools. For exam-
ple, using knowledge-based software engineering
approach (e.g., [6]), the presented inferences rules
can be encoded as part of the general knowledge on
the domain of UML, which can then be used by
some inference engine in order to make a UML
mode| more complete and consistent. Furthermore,
once the precise semantics of UML is firmly estab-
lished, the mapping rules for transforming a UML
model to some specific implementation language,
such as Java or C++, can be accurately identified,
and, consequently, forward engineering and reverse
engineering UML models can be (at least partly)
automated.

Acknowledgement
This work was supported by the Thailand Research
Fund, under Grant No. PDF/31/2543.

References

{11 Booch, G, Jacobson, I. and Rumbaugh I, The
Unified Modeling Language User Guide, Ad-
dison-Wesley, 1999,

i2] Evans A. §., Reasoning with UML Class Dia-
grams, Proc. 2™ IEEE Workshop on Indus-
trial-Strength Formal Specification Tech-
niques, Boca Raton, Florida, IEEE Press,
1998.

[3] Evans, A. 8. and Kent, 8., Core Meta-Modeling
Semantics of UML: The pUML Approach, Lec-
ture Notes in Computer Science, vol. 1723, pp.
140-155, Springer-Verlag, 1999,

[4] France, R., Evans, A. §., Lano, K. and Rumpe,
B., The UML as a Formal Modeling Notation,
Computer Standards and Interfaces, vol. 19, no.
7, pp- 325-334, Elsevier Science, 1998.

[51 Jacobson, I, Booch, G. and Rumbaugh, I., The
Unified Software Development Process, Addi-
son Wesley, 1999,

[6] Nantajeewarawat, E.,, Wuwongse, V., Anu-
tariya, C., Akama, K. and Thiemjarus, S., To-
wards Reasoning with UML Diagrams Based-
on XML Declarative Description Theory, Proc.
International Conference on Intelligent Tech-
nologies, Bangkok, Thailand, 2000.

[7] Rumbaugh, I, Jacobson, 1. and Booch, G., The
Unified Modeling Language Reference Man-
ual, Addison Wesley, 1999,

[B] The UML Group, The Unified Modeling Lan-
guage Notation Guide {(version 1.1), hup://
www.rational.com/uml.

[9) The UML Group, The Unified Modeling Lan-
guage Semantics Document (version 1.1),
hetp:/fwww.rational.com/uml.

[10] The precise UML group (pUML), information
available at htp:/fwww.cs.york.ac.uk/puml.

[11] Spivey, J. M., The Z Noration — A Reference
Manual, Prentice Hall, 2nd Edition, 1992,

[12] Woodcock, J. and Davies, 1., Using Z Specifi-
cation, Refinement and Proof, Prentice Hall,
1996.

[13] Wordsworth, J. B., Software Development
with Z - A Practical Approach to Formal
Methods in Software Engineering, Addison-
wesley, 1992,

10

Published in Tanprased, T., editor, Proceedings of the Second International Conference on Intelligent Technologies
{InTech'2001}, Bangkok, Thailand, pages 240-249, Novembear 2001. ISBN 374-615-068-5.

Generating Relational Database Schemas from UML Diagrams
Through XML Declarative Descriptions

Elkawit Nantajeewarawat
IT Program
Sirindhorn Intl. Inst. of Tech.
Thammasat University

E-mail: ekawit@siit.tu.ac.th

Kiyoshi Akama
Center for Information
and Multimedia Studies
Hokkaido University
Sapporo 060-0811, Japan

E-mail; akama@cims.hokudai.ac.jp

Vilas Wuwongse
CSIM Program
School of Advanced Tech.
Asian Institute of Technology
Pathumthani 12121, Thailand Pathumthani 12120, Thailand
E-mail: vw@cs.ait.ac.th

Surapa Thiemjarus
IT Program
Sirindhorn Intl. Inst. of Tech.
Thammasat University
Pathumthani 12121, Thailand
E-mail: st01@doc.ic.ac.uk

Chutiporn Anutariya
CSIM Program
School of Advanced Tech,
Asian Institute of Technology

Pathumthani 12120, Thailand

E-mail: ca@cs.ait.ac.th

Introduction

Abstract: With strong support from leading system-modeling methodologists,
academics and, most importantly, the Object Management Group {OMG), it
comes as no surprise that the Unified Modeling Language (UML) is matur-
ing into a de facto standard object-oriented language for modeling software-
intensive systems. For a variety of reasons, e.g., compatibility with existing
systems and databases, most object-oriented applications still rely upon a re-
lational database management system despite their original object-centered
designs. Integrating relational databases into object-oriented applications ne-
cessitates transformations from the structural parts of object-oriented models
into relational database schemas. It is demonstrated in this paper that map-
ping rules for such transformations, which constitute an important part of
general knowledge in the domain of UML, can be represented as XML defi-
nite clauses. Of central importance to this approach, such definite clauses use
XML expressions as their underlying data structure; consequently, not only
can they directly describe diagram components that are represented in XML
Metadata Interchange format {XMI)—a standard XML-based interchange for-
mat for UML diagrams—in addition, they can seamlessly specify information
to be extracted from the diagram components as well as new information to be
derived.

Key words: UML, XMI, XML declarative descriptions (XDD), Knowledge
representation, Knowledge-based systems, Object-oriented models, Relational
models, Forward engineering, Database schemas

(UML) [6, 13] has undoubtedly become the most

The past decade saw rapid growth in the pop-
ularity of object-oriented (QO) software devel-
opment. Notwithstanding some architectural in-
elegance, most OO applications are still employ-
ing relational databases as their persistent data
repositories. Such practices arise from several
reasons: compatibility with existing legacy sys-
tems, reliability and existing user-awareness of
the relational database technology, and the sim-
plicity, with sound mathematical foundation, of
the relational model [7]. Irrespective of stor-
age technology, the Unified Modeling Language

widely-used standard notation for specifying, vi-
sualizing and documenting the artifacts of large-
scale OO-hased software systems.

This paper discusses a practical area in which
the framework for knowledge representation in
the domain of UML proposed in [11] is applica-
ble; that is, automated database schemas gen-
eration. The framework is based on the con-
cepts of XML specialization system and XML
declarative description {XDD} [5, 14]. UML di-
agrams are represented in XML Metadata In-
terchange (XMI) format [16], a standard text-

<Tablp ighef="5,1"
nama="Sidant” >
<Column name="major*
isnuli="false", ...
Isuniqua="faise /=
<iTable>

4

Relational Database Schema

il

XDO for
Tables Composition

Equivalent
Transformation
XDD for N
Components Derivation
XM :
Represenlation S-Expression
UML Class Diagram

Figure 1: Overview of the framework

based representation for UML, which enhances
the interoperability between UML supporting
tools. General knowledge in the UML domain
is represented as a set of XML definite clauses.
Equivalent Transformation (ET) [3, 4] is em-
ployed as a computation foundation. Altogether,
a knowledge base prototype has been built using
Equivalent Transformation Interpreter (ETI}, an
ET-based reasoning engine recently developed at
Hokkaido University, as its computation appara-
tus.

As outlined in Figure 1, in order to gener-
ate table schemas, represented in the XML for-
mat [9], from persistent classes and their asso-
clations, the components of a UML diagram are
first converted into their XMI representations us-

ing some currently available software tool, such
as Rational Rose, UCI's Argo/UML and IBM’'s
XMI Toolkit. The general knowledge for con-
structing relational database schemas from UML
class diagrams is divided into two layers: com-
ponents derivation and tables composition. Not
only does this two-layer architecture allow de-
rived table components to be rendered in a vari-
ety of formats; it also makes the prototype sys-
tem more amenable to extensions and modifica-
tions. The XMI representations are translated
into s-expressions, while XML definite clauses
representing the general knowledge are imple-
mented as ET rules. The ETI engine operates
on these procedural rules and s-expressions to
generate table components and combine them in
a required form.

The focus of this paper is on the employ-
ment of XML definite clauses in representing
mapping rules for transforming the structural
parts of UML models into relational database
schemas. To start with, Section 2 summarizes
siuch mapping rules. Section 3 illustrates XMI
representations of UML class diagrams. It is
followed by an informal review of XML defi-
nite clauses and XDD theory in Section 4. Sec-
tion 5 shows how to represent the mapping rules
and at the same time explains the use of XML
definite clauses by means of practical examples.
The conversion of XMI representations into s-
expressions along with illustrations of ET-rules
obtained from XML definite clauses is given in
the appendix.

2 Transforming Class Diagrams
into Relational Schemas

To bridge the gap between Q0 constructs and

relational schemas, their interconnections have

been studied extensively and variations of mapp-

- birthDate : Date
- marilaiStatus : Boal
- 5@x : Char

- degrea : String
« speciality : String
- researchArea : String

+ addAdwvisee(s : Studant)

lecturer

praraquisiteOf

Figure 2: A UML class diagram

- nama : String
- credds : Integer
- dascnption : Sinng

Address Residence Student Seclion
- street : Slring - roamMo ; Inleger -1 0..4 | - studentid : String 0..100 0.8 | - secNe : Intager 1.0
~ ity : String - gormCode : String slaysAl - accGPA : Double - - classSchedule: Schedule
- province : String - pddrass ! Address - major ; Slring sludent section| . examDate | Date
- zipCoda : String - phoneNa : Stiing - creditsEarned: Inleger
- country ! Siring + addStudent(s : Sludeanl} has
advisee | 0..30 Takes + updatelnstr{i : Instructor)
+ updateSchedule{) i
workStatus, advises - examScare: Integer |
) - assignScare : Integer section T
Person advisor | 1 - tolalScore ; Integar
Instruclor - grade : Grade Course
- firsiName ; String workStatus]
- lastNama : String - acagdRank ; String - code . 5tring

L]

ings between UML class diagrams and database
tables have been proposed [7, 8, 10]. Although
only a set of selected widely used mapping rules
is discussed in this paper, the presented approach
is directly applicable to other mapping rules.

As a specification of the static design view of
a system, a class diagram contains a collection
of structural model elements, centering round
the concept of class. There are various types of
classes, not all of which should be materialized
as part of a database schema. In general, entity
classes are suitable candidates; regardless of their
surroundings and applications, they model infor-
mation and associated behavior that last long. In
practice, classes of objects that will be stored in
a database for future retrieval are often marked
with the stereotype “persistent”.

Classes, Association Classes, and Their
Internal Components As a commonly used
class-to-table mapping rule, a persistent class
will be mapped into a table. However, not only
are tables generated from persistent classes, they
can also be created, as will be seen later, from
associations of several kinds (e.g., ordinary asso-
ciations, derived associations, and aggregations).
For the sake of uniformity, a distinguished col-
umn named “ID” of type Integer will be used
as the primary key of each generated table. With
the assumption that primitive types are sup-
ported by most relational database systems, an
attribute having a primitive type will simply be
mapped into a column of that type in the ta-
ble for its owner class. Association classes (e.g.,
Takes in Figure 2) will be treated as ordinary
classes.

Associations and Aggregations An associ-
ation will normally be mapped into a separate
table; then, in order to refer to the objects con-
nected across an association instance, the pri-
mary key of the table for the class at each end-
point of the association will be used as a for-
eign key in the table for the association. How-
ever, instead of generating a separate table, when
the multiplicity at its navigable endpoint is not
greater than one, a unidirectional association can
be buried as a foreign key in an existing table—
the table for the class at its non-navigable end-
point. Considering the class diagram in Figure
2, for example, the association staysAt can be
buried in the table for Student as a foreign key
referring to the table for Residence; likewise, the
association has can be buried as a foreign key in
the table for Section. An aggregation is regarded
as a kind of association; therefore, it follows the
same mapping rules.

Derived Associations An attribute having a
non-primitive type will be transformed into an

Address Residence
- slreat : String
- raomNo ! Inte
-cily : String 1 acdress ger

- dormCade . String

- provinca : String - pheneNg : String

- zipCoda : String
- couniry ; Slring

Figure 3: A derived association

<UML:Clags zmj.id="S.7" name="Student"
generalization="G.24">
<UML:Namespace.ownadElement>
<UML:Generalizaiton xmi.id="G,24"

nape="vorkingStatug" vigibility="public"

child="§,7" parent="S.1"/>
</UML:Namespace.cwnedElemant>
<UML:Clagsifier.feature>
<UML:Attribute xmi.id="5.8"
name="studentId" type="G.19">
<UML:StructuralFeature.multiplicity>
CUHL:Multiplicity>
<UML:Multiplicity.range>
<DHL:MultiplicityRange
lower="1" upper="1"/>
</UML:Multiplicity.range>
</UML:Multiplicity>
</UML:StructuralFeature.multiplicity>
<UML:Attribute.initialValue>
<UML:Expresszion bedy="0"/>
</UML:Attribute.initialValua>
</UML:Attribute>

</UML:Classifier.feature>
</UML:Class>

Figure 4: A Class-element

association, called derived association, connect-
ing its owner class with the non-primitive type.
Such an association is always unidirectional; the
non-primitive-type endpoint is navigable and the
multiplicity at this endpoint follows the multi-
plicity of the attribute. For example, the at-
tribute address of the class Residence in the
class diagram in Figure 2 will be transformed
into the derived association shown in Figure 3,
provided that the multiplicity of this attribute
is one. The mapping rules for usual associations
apply to derived associations.

Generalizations There are three basic map-
ping approaches for generalization relationships:
the normal approach, where a class and each of
its subclasses are mapped to separate tables; the
many-subclass approach, which eliminates the ta-
ble for a superclass and replicates all attributes
of the superclass in the table for each of its
subclasses; the one-superclass approach, which
brings all attributes of subclasses up to a super-
class level. Adopted in this paper is the nor-
mal approach, as it straightforwardly harmonizes
with other mapping rules,

3 XMI Representations of Class
Diagrams: Examples

Each class in a class diagram is encoded in the
XMI format as a Class-element, each associa-
tion and each aggregation as an Association-
element, each association class as an Associa-
tionClass-element, each generalization as a Ge~
neralization-element, and each primitive type
as a DataType-element. The namespace UML is
used. Referring to the class diagram in Figure
2, for example, the class Student, the associa-
tion advises and the association class Takes are
represented by the XML elements in Figures 4,
5 and 6, respectively (using XMI version 1.1).
The DataType-element representing the primi-
tive type String is shown in Figure 7. Assuming
that the identifier of the Class-element repre-
senting the class Person is 5. 1, the Generaliza-
tion-element enclosed within the Class-element
in Figure 4 indicates that Student is a subclass
of Person. Each atiribute of Student is repre-
sented by an Attribute-element; due to space
constraints, only the element representing the at-
tribute studentld is shown in Figure 4. Unless
another value is specified in a class diagram, the
multiplicity of an attribute, which is encoded as
a Multiplicity-element, is assumed to be one.

Fach of the two 4ssociationEnd-elements en-
closed in the Association-element in Figure 5
represents one endpoint of the association advises
and describes the adornments, e.g., role name,

<UML:Asscciation xmi.id="G.7" name="advises"
<UML:Association.connection>
<UML:AssociationEnd xmi.id="G.8"
name="advisor" isKavigable="true"
aggregation="none" type="S.12">
<UML:AssociationEnd.muitiplicity>
<UML:Multiplicity>
<UML:Multiplicity.range>
<UML:MultiplicityRange
lower="1" upper="1"/>
</UML:Multiplicity.range>
</UML:Multiplicity>
<fUML:AspociationEnd multiplicity>
</UML:AssociationEnd>
<UML:AssociationEnd xmi.id="G.9"
name="advisee” isNavigable="true"
aggregation="none" typex="S.7"»
<UML:AssociationEnd multiplicity>
<UML:Multiplicity>
<UML:Multiplicity.range>
<UML:MultiplicityRange
lower="0" upper="30"/>
</UML:Multiplicity.range>
</UML:Multiplicity>
</UML:AssociationEnd.multiplicity>
</UML:AssociationEnd>
</UML:Asscciation.connection>
</UML:Agsociatvion>

Figure 5: An Association-element

<UML:AssociationClass xmi.id="S,30" name="Takes">
<UML:Association,connection>
<UML:AssociationEnd xmi.id="G.17"
nape="" isNavigable="true"
aggregation="none" type="5.26">

</UML:AsseciationEnd>

<UML:AssociationEnd =xmi.id="G.18"
name="theStudent" isNavigable="true"
aggregation="none" type="3.7">

</UML: AssociationEnd>
</UML:Asscociation.connection>

<UML:Classifier.feature>
<UML:Attribute xmi.id="S.31"
name="grade" type="G.19">

</UML:Attribute>

</UML:Classifier.feature>
</UML: AssociationClass>

Figure 6: An AssociationClass-element

<UML:DataType xmi.id="G.19" name="String"
visibility="public" isReot="false"
isleaf="false" isAbstract="false"
isSpecification="false"/>

Figure 7: A DataType-element

navigability and multiplicity, of the association
at that endpoint. For instance, the second Ass-
ociationEnd-element indicates that Student is
at one endpoint of advises by referring to the
identifier S.7 through the attribute type, and
describes the navigability and multiplicity of ad-
vises at this endpoint using the attribute isNa-
vigable and a Multiplicity-element, respec-
tively. The attribute aggregation of an Asso-
ciationEnd-element specifies whether the end-
point it represents is an aggregate.

Since an association class, e.g., Takes in Fig-
ure 2, is regarded as both a class and an asso-
ciation, the structure of the AssociationClass-
element representing it, e.g., the element in Fig-
ure 6, subsumes the structure of a Class-element
and that of an Association-element. More
examples of XMI representations of UML dia-
grams, including interaction diagrams, are pro-
vided in [11}.

4 XML Declarative Descriptions:
An Informal Review

XML declarative description {(XDD) theory [5,
14] is developed based on Akama’s theory of
declarative descriptiong [1]—an axiomatic the-
ory that has provided a general template for
discussing the semantics of definite-clause-style
declarative descriptions in a wide variety of data
domains, including typed feature terms {12} and

conceptual graphs [15]. In XDD theory, the
ordinary well-formed XML elements [9] are ex-
tended by incorporation of variables. Such ex-
tended XML elements are called XML ezpres-
sions. A varlable has a dual function: it de-
notes a specialization wildcard (i.e., a variable
can be specialized into an XML expression or
a part thereof) and, at the same time, behaves
as an equality constraint (i.e., any occurrence of
a variable within the same scope must be spe-
cialized in the same way). Five disjoint classes
of variables, with different syntactical usage and
specialization characteristics, are employed: N-
variables (name-variables), S-variables (string
variables), P-variables {attribute-value-pair-var-
iables), E-variables (XML-expression-variables),
and [-variables (infermediate-ezpression-varia-
bles). An N-variable is assumed to be prefixed
with “$N:” and can only be instantiated into ei-
ther a tag name or an attribute name; an 5-
variable prefixed with “$S:” and instantiated
into a string; a P-variable prefixed with “$P:”
and instantiated into zero or more attribute-
value pair{s); an E-variable prefixed with “$E:"
and instantiated into zero or more XML ex-
pression(s); finally, an I-variable prefixed with
“$1:” and instantiated into a part of an XML
expression of some specified pattern. Conven-
tional well-formed XML elements are regarded
as variable-free XML expressions, called ground
XML expressions.

An XML definite clause C is an expression of
the form

H + Bla"'le",ﬁl:"'jﬁnu

where m,n > 0, H and the B; are XML-
expressions, and each of the §; is a predefined
constraint, whose satisfaction is independent of
any XML definite clause and is determined in
advance. The XML expression H and the set
{Bi,..., B, 81, ..., 8} are called, respectively,
the head and the body of C. When its body is the
empty set, C will be referred to as an XML unit
clause and the symbol ‘' will often be omit-
ted. An XML definite clause will alsoc be called a
definite clause or simply a clause, provided that
no confusion is caused. Figure 8 illustrates a
simple XML definite clause, where the member-
expression in its body is a predefined constraint.

The scope of a variable is a single XML defi-
nite clause. For the sake of readability, a variable
that specifies an equality constraint, i.e., a vari-
able with more than one cccurrence in a clause
(such as $5:CId and $N:Tag in Figure 8), will
be underlined. The Prolog notation for anony-
mous variables is adopted; i.e., a variable suffixed
with the symbol ‘?* (such as $E:7 and $P:7 in
Figure 8) is regarded as an anonymous variable

(different occurrences of which are always con-
sidered to be unrelated).

An XML declarative description (XDD) is a
set of XML definite clauses. By means of ex-
amples, the usage of variables and XML definite
clauses will be explained from a practical view-
point in the next section. For theoretical details
of XDD theory, including the precise specializa-
tion operation on XML expressions and the for-
mal semantics of XDDs, the reader is referred to
[5, 11, 14].

5 Representing Transformation
Rules as XML Definite Clauses

The XML elements representing diagram com-
ponents, e.g., those in Figures 4, 5, 6 and 7, will
be regarded as XML unit clauses. The use of
XML (non-unit) definite clauses in describing the
mapping rules discussed in Section 2 will now be
demonstrated.

5.1 Deriving Table Components

From Classes and Association Classes The
clause C'ry, in Figure 8§ specifies that a ta-
ble name can be derived from either a class
or an association class. The $N:Tag-expression
in its body can match a ground Class-element
or AssociationClass-element, say Fo, by in-
stantiating the N-variable $N:Tag into the tag
name UML:Class or the tag name UML:Associ-
ationClase; the S-variables $5:CId and $S:Nm
into the identifier and the name, respectively, of
FE; the anonymous P-variable $P:7 into zero
or more attribute-value pair(s) of Eg; and the
anonymous E-variable $E:7 into zero or more
immediate subelement(s} of Eo. By specifying
the list of the two tag names as its second ar-
gument, the member-constraint in the body of
Cry, disallows any instantiation of $¥:Tag into
any other tag name. Once the body matches
the ground element Ego, a TableName-element
is derived, along with the identifier and the
name of E¢ as its reference and its name, re-
spectively. For instance, by specializing the
body of Crpy into the Student-element in Fig-
ure 4, the element <TableName idref="3.7"
name="Student"/> is obtained.

<dd : TABLENAME>
<TablaName idref=3$3:CId name=3%S:Nm/>
</dd:; TABLENAME>

+— <dd:FACT>
<$N:Tag xmi,id=$8:CId pame=$S:Nm $P:7> $E:7
</$N:Tag>
</dd:FACT>,
member($N: Tag, [UML:Class, UML: AssociationClass])

Figure 8: Clause Cryy, Generating table names
from classes or association classes

<dd : COLUMN>
<Column idref=$S:CId name=§S:ANm type=3S:Thm/>
</dd : COLUMN>

— <dd:FACT>
<§N:Tag xmi.id=$3:CId $P:7>
<§I:1>
<UML:Attribute
name=§S:ANm type=$3:AType §P:?> $E:7
</UML:Attribute>
</$1:1> $E:7
</$N:Tag>
</dd FACT>,
<dd:FACT>
<UML:DataType xmi.id=$5:AType
name=$3:TKm 3P:7> $E:?
</UML :DataType>
</dd {FACT>,
member{$N:Tag, [UML:Clase, UML:AssociationClass])

Figure 9: Clause Cgrq,, Generating columns
from attributes with primitive types

From Attributes The clause Cer; in Figure 9
maps an attribute with a primitive type into a
column of the table for its owner class (or as-
sociation class). The body of this clause refers
to a Class-element or an AssociationClass-
element, say Fe, and a DataType-element, say
Ep. To specify that E. contains an Attri-
bute-element, say £4, representing an attribute
with a primitive type, an equality constraint be-
tween the type of E4 and the identifier of Fp is
imposed using the S-variable $8:AType. When
such elements Eq,Ep and E4 are found, the
clause Cop; generates a Column-element with
the identifier of FEo, the name of E4 and the
name of Ep as its reference, its name and its
type name, respectively, through the S-variables
$S:CId, $S:ANm and $S:TNm.

This clause also illustrates an application of
another kind of variable—I-variable. The I-
variable $I1:1 is used in the body of Cgzy to
form a generic expression, i.e., $I:1-expression,
which can be specialized into any XML ele-
ment containing as its (not necessarily imme-
diate) subelement an Attribute-element of the
pattern specified by the enclosed Attribute-
expression. As an illustration, the $N:Tag-
expression, enclosing the $I:1i-expression, can
be instantiated into the Class-element in Fig-
ure 4; then, since the DataType-expression in the
body matches the DataType-element in Figure 7,
the clause Cpyp, yields among others the el-
ement <Column idref="S.7" name="student-
Id" type="String"/>.

An attribute with a non-primitive type will not
be transformed into a column directly, but into
a derived association, which will then be treated
virtually as an ordinary association. Transfor-

<dd:DERIVED: ASSOCIATION>
<DERIVED:Association idref=$5:AId name=$5:AKm>
<AssgociationEnd type=$5:CId
name=$S:CNm isNavigable="false" §P:?>
<Multiplicity lewer="0" upper="-1"/>
</AssociationEnd>
<AhssociatioenEnd type=$5:AType name=$S:4Nm
attributeType="true" isNavigable="true">
<Multiplicity
lower=$3:Lover upper=§S:Upper/>
</UML:AssociationEnd> -
</DERIVED:Association>
</dd:DERIVED:ASSOCIATION>

+ <dd:FACT>
<§N:Tag xmi.id=$5:CId name=55:ClNm $P:7>
<$I:1>
<UML:Attribute xmi.id=$5:4Id
name=$5:ANn type=$3:AType $P:7>
<$I:2>
<UML:Multiplicity.Range
lower=3S:Lower upper=$3:Upper/>
</$1:2> $E:?
</UML:Attribute>
</$I:1> $E:7
</$N:Tag>
</dd:FACT>,
<dd:FACT>
<UML:Class xmi.id=35:AType $P:7> $E:7
<fUML:Class>
</ad:FACT>,
member($N: Tag, [UML:Class,UML: AssociationClass])

Figure 10: Cpa, Deriving associations from at-
tributes with non-primitive types

mation of such an attribute is described by the
clause Cp4 in Figure 10. The variable $S: AType
in its body specifies that this clause is active
when the type of an Attribute-element, say Fa,
is the identifier of some Class-element, say E¢,
which means the type of F4 is non-primitive.
When active, the clause generates a derived bi-
nary association with the class (or association
class) to which the attribute represented by E,
belongs as one endpoint and the class represented
by E¢ as the other endpoint. The multiplicity
at the former endpoint is unspecified (“-1” de-
notes an unbounded upper limit), while that at
the latter follows the Multiplicity-element en-
closed within E4. Moreover, the latter endpoint
is navigable, whereas the former is not.

From Associations As a special case, a uni-
directional association with the multiplicity at
its navigable endpoint not greater than one will
be mapped into a foreign key in the table for
the class at its non-navigable endpoint, rather
than transformed into a separate table. Deriva-
tion of such a foreign key is described by the
clause Copo in Figure 11. The body of Copg
specifies the pattern of an Association-element,
say Fass, one AssociationEnd-subelement of

<dd:COLUMN>
<Column idref=$5:CIdl name=35:AssocNm
type="Integer" reference=$§S5:CNm2
isnull=$5:IsNull />
</dd: COLUMN>

+— <dd:FACT>
<UML:Association name=$S:Assochm $P:7> 3E:7
<UML:Association.connection>
<UML:AssociationEnd type=$S5:(Id2
jsNavigable="true" $P:7>
<§I:1>
<UKL:Mu}tiplicityRange
lower=§S:Lovwerl upper="1"/>
</81:1> SE:?
</UML:AsgociationEnd>
<UML:AssociationEnd type=$5:CIdl
isNavigable="false" §P:7> $E:7
</UML:AgsociationEnd>
</UML:Association.connection> SE:7
</UML:Association>
</dd:FACT>,
<dd:FACT>
<UML:Class xmi.id=$S:CId2 name=§5:CHm2 $P: 7>
$E:7
</UML:Class>
<¢dd:FACT?,
isnull($S:Loverl,$S: IsNull)

Figure 11: Cerry, Burying unidirectional associ-
ations with suitable multiplicity as foreign keys

<dd:TABLENAME>
<TableName idref=$S:Assocld name=$5;:Associm/>
</dd: TABLENAME>

4+ <ad:FACT>
<UML:Association xmi.id=%:5:Ass0cld
name=$5:AsocNm $P:?> $E:7?
<UML:Asscciation.connection>
<UML:AssociationEnd
isNavigable=$S:Nvi $P:?>
<§1:1>
<UML:MultiplicityRange
upper=$S:Upperl $P:7/>
</$1:1> $E:7
</UML: AascciationEnd>
<UML:AssociationEnd
isNavigable=§:Nv2 3$P:7>
<$1:2>
<UML:MultiplicityRange
upper=§5:Upper2 $P:%7/>
</31:2> §E:7
</UML: AssociationEnd>
</UML:Asscciation.connection> $E:?
</UML:Asseciation>
</dd:FACT>,
seperotedable(35:Nv1, $§S:Nv2, $5: Upperl, $5;:Upper2)

Figure 12: Crpy, Generating table names from
associations to which Ceoyr, is inapplicable

which, say Eg,, represents a navigable endpoint
with the multiplicity upper limit bounded to one,
while the other AssociationEnd-subelement of
which, say Fg,, represents a non-navigable end-
point. When such an Association-element E,,,
is found, a Column-element, say Egq, is derived.

<dd:COLUMN>
<Column idref=$5:Assocld name=3S:EndiNm
type="Integer" reference=$3:Clm
ispull="falge" />
</dd: COLUMN>

+— <dd:FACT>
<UML:Association xmi.id=$S:Ass0cld $P:?> $E:?
<UML:Asscciation.connection>
<UML:AssociationEnd name=$S:EndilNm
isNavigable=var$S:Nvl type=$5:CId $P: 7>
<3I:1>
CUML:MultiplicityRanga
upper=$5:UL $P:7>
. </$1:1> $E:7
</UML:AssociationEnd>
<UML:AszociationEnd
isNavigable=§5:Nv2 $2:7>
<$I:2>
<UML:MultiplicityRange
upper=§5:U2 $P:7/>
</$1:2> $E:?
</UML:AssociationEnd>
</UML:Asseciation.connection» $E:?
</UML:Assaciaticn?>
</dd:FACT>,
<dd:FACT>
<UML:Class xmi.id=%8;CIld
name=$3:CNm $P:7> §E:7
</UML:Class>
</dd :FACT>,
seperatelable($5:0vl, $5:Nv2,358:U1,$5:42)

Figure 13: Cor3, Generating columns from as-
sociations to which Cor4 is inapplicable

The element Egq,; adopts the name of F4,,, and
refers to the type of Eg,, meaning that it repre-
sents a column of the table for the class at the
endpoint represented by Ep,. Furthermore, it
makes a reference to the name of the class at
the endpoint represented by Eg,, which is also
the name of the table generated from this class;
this means the column represented by Fry is
a foreign key referring to this table. Tested by
the {snull-constraint in the body of Copg, if the
lower bound of the multiplicity at the endpoint
described by Eg, is zero, then the column repre-
sented by Ko, may have the null value.

Other associations will be directly transformed
into separate tables. Their transformations
into table names and columns are described
by the clauses Cpng in Figure 12 and Copg
in Figure 13. The 4-ary constraint predicate
seperateToble is used for examining whether
the navigability and multiplicity of the two end-
points of an association do not satisfy the condi-
tion required by the clause Cor4. That is, given
any strings v; and 4, indicating, respectively, the
values of the navigability and multiplicity up-
per bound of one AssociationEnd-element and
any strings v, and us indicating the correspond-
ing values of another AssociationEnd-element,

<dd ; COLUMN>
<Column idref=3S:Parentld
name=$5:CenralizationNm type="char"/»
</dd: COLUMN>

+— <dd:FACT>
<$I:1>
<UML:Generalization
name=$S;:Genralizationlim
parent=$S:Parentld $P:7/>
</81:1> $E:7
</dd:FACT>

Figure 14: Ccp4, Generating additional columns
for parent classes

<dd:COLUMN>
<Column idref=$8:ChildId name=§5:Columnim
type="Integer" isuniquex"true"
reference=$S:Parentlim/>
</dd : COLUMN>

+ <dd:FACT>
<§£i1>
<UML:Generalization child=$5:Childld
parent=§5:Parentld §P:?/>
</$1:1> $E:7
</dd{FACT>,
<dd:FACT>
<UML;:Class xmi,id=$S:ParentId
name=$35:Parentim $P:*> $E:7
</UML:Class>
</dd:FACT>
concat($5;:Parentin,"ID", $5: Columnim),

Figure 15: Cors, Generating additional columns
for child classocs

seperateTable(v;, vj, u:, %;) is not satisfied if and
only if v; = “true”, u; = “1” and v; = “false” for
some 1,7 € {1,2} such that 1 # j. The identi-
fier and the name of an Associatation-element
into which the Associatation-expression in the
body of Cry, is instantiated will be used as the
reference and the name, respectively, of the gen-
erated TableName-clement. As detailed by the
clause Copg, from each endpoint of an associa-
tion that is mapped into a separate table, a col-
umn of that table will be generated.

XML definite clauses for generating table com-
ponents from derived associations obtained from
the clanse Cp4 in Figure 10 are similar to those
for handling ordinary associations, and are omit-
ted due to space limitations.

From Generalizations Following the normal
approach for dealing with generalization rela-
tionships, a table will be generated for each class.
The components of such a table are generated in
a straightforward way using the clauses Cry; in
Figure 8 and C¢y,, in Figure 9. Furthermore, an
additional column will be added into the table
for a parent class; this column is used for indi-
cating a specific class of an object described by

each record in that table. On the other hand,
the table for each child class will have an addi-
tional column used as the foreign key referring
to the table for its parent class. Generation of
such a column for a parent class and that for a
child class are specified by the clauses Cor, in
Figure 14 and Cers in Figure 15, respectively,
where the 3-ary constraint predicate concat in
the body of Cups yields as its third argument
the concatenation of any two strings given as its
first two arguments.

5.2 Combining Table Components

Out of their components, e.g., table names and
columns, generated through the clauses pre-
sented in the preceding subsection, in order to
construct XML representations of derivable ta-
bles, XML definite clauses will be extended with
the concept of set-aggregate. A set-aggregate
used in this paper is an expression of the form

<dd:Aggregate>
<set> ¥ </set>
<pattern> Ep </pattern>
</dd:Agpregate>,

where Ep is an XML expression specifying the
pattern of XML elements of interest and T a col-
lection of all derivable elements of the specified
pattern Ep. As an illustration, consider the ex-
tended XML definite clause Crg in Figure 16.
For each derived TableName-element Ep, the set-
aggregate in the body of Crp collects all deriv-
able Column-elements that refers to the element
Ep; then, the clause Crpg generates a Table-
element, say Er, that adopts the name of Ey
and contains all the collected Column-elements
together with another Column-element represent-
ing the special column “ID”, used as the primary

<dd:TABLE>
<Tabls idref=$S:TabRef name=§5:Tablm>
<Column name="ID" isprimary="true"
isunique="true" isnull="false"
type="Integexr"/>
$E:AllDerivedColumns
</Table>
</dd:TABLE>

+— <dd:TABLENAME>
<TableName idref=$5:TabRef name=§S:TabNm/>
<dd : TABLENAME>,
<dd:Aggregate>
<sat>$E:A1lDerivedColumns </sat>
<pattern>
<dd: COLUMN>
<Column idref=$5:TabRef $P:1/>
</dd : COLUMN >
</pattern>
</dd:Aggregate>

Figure 16: Crp, Constructing a table

