key of the table represented by Ey. For theorct-
ical treatment of aggregates in XDD theory, the
reader is referred to [2, 5).

6 Conclusions

As demonstrated in this paper, mapping rules for
transforming UML class diagrams to relational
database schemas can be represented using XML
definite clauses. A prototype UML knowledge-
based system under the framework outlined in
the first section has been developed and satis-
factory results have been obtained. Since XMI
is becoming a standard textual representation
of UML diagrams, it is expected that the pre-
sented framework has several other promising ap-
plications, such as reverse and forward engineer-
ing UML models and consistency verification of
models. As virtually every tool supporting UML
is eapable of reading and writing models using
XMI, integration of the presented knowledge-
based approach into other UML-based software
modeling techniques is possible.

Acknowledgement
This work was supported by the Thailand Re-
search Fund, under Grant No. PDF /31/2543.

References

[1] Akama, K., Declarative Semantics of Logic
Programs on Parameterized Representation
Systems, Advances in Software Science and
Technology, 5, 45-63, 1983.

(2] Akama, K., Anutariya, C., Wuwongse, V.,
and Nantajeewarawat, E., 4 Foundation for
XML Document Databases: Query Formu-
lation and Evaeluation, Technical Report,
CSIM, Asian Institute of Technology, Thai-
land, 1999.

[3] Akama, K., Shimitsu, T., and Miyamoto,
E., Solving Problems by Eguivalent Trans-
formation of Declorative Programs, .
Japanese Society of Artificial Intelligence,
13(6), 944-952, 1998.

[4] Akama, K., Shigeta, Y., and Miyamoto, E.,
Solving Problerns by Equivalent Transfor-
mation of Logic Programs, Proc. 5th Intl.
Conf. on Information Systerms Analysis and
Synthesis, Orlando, Florida, 1999.

[5] Anutariya, C., Wuwongse, V., Nantajee-
warawat, E., and Akama, K., Towards a
Foundation for XML Document Databases,
Proc. Intl. Conf. on E-Commerce and Web
Technologies, London-Greenwich, UK, Lec-
ture Notes in Computer Science, Vol. 1875,
pp. 324-333, Springer-Verlag, 2000.

[6] Booch, G., Rumbaugh, J., and Jacobson, 1.,
The Unified Modeling Language User Guide,
Addison Wesley, 1998.

(7] Brown, K. and Whitenack, B. G., Crossing
Chasms: A Pattern Lenguage for Object-
RDBMS Iniegration, J. Vlissides et. al.
(eds.), Pattern Languages of Program De-
sign 2, ch.14, Addison-Wesley, 1996,

[8] Demuth, B. and Hussmann, H., Us-
ing UML/OCL Constraints for Relational
Database Design, Proc. 2nd Intl, Conf. on
the Unified Modeling Language, Lecture
Notes in Computer Science, Vol. 1723, pp-
508-613. 1999.

[9] Goldfarb, C. F. and Prescod, P., The XML
Handbook, Prentice Hall, 1998.

[10] Keller, W., Mapping Objects to Tables,
Proc. 1997 European Pattern Languages of
Programming Conf., Irrsec, Germany, 1997.

[11] Nantajeewarawat, E., Wuwongse, V., Anu-
tariva, C., Akama, K., and Thiemjarus,
S., Towards Reasoning with UML Dia-
grams Based-on XML Declarative Descrip-
tion Theory, Proc. Intl. Conf. on Intelligent
Technologies, Bangkok, Thailand, pp. 341~
350, 2000.

[12] Nantajeewarawat, E. and Wuwongse, V.,
Defeasible Imheritance Through Specializa-
tion, Computational Intelligence, 17(1), 62—
86, 2001,

[13] Rumbaugh, J., Jacobson, 1., and Booch, G.,
The Unified Modeling Language Reference
Manual, Addison Wesley, 1999.

[14] Wuwongse, V., Anutariva, C., Akama, K.,
and Natajeewarawat, E., XML Declorative
Deseription: A Language for the Semantic
Web, IEEE Intelligent Systems, 16(3), 54—
65, 2001.

[15] Wuwongse, V. and Nantajeewarawat, E.,
Declarative Programs with Implicit Implica-
tion, IEEE Transactions on Knowledge and
Data Engineering. (To appear)

{16] XML Metadate Interchange Format (XMI),
IBM Application Development, www-4.ibm.
com/software/ad/standards /xmihtml.

Appendix

As Equivalent Transformation Interpreter (ETI),
the inference engine used in the current pro-
totype implementation of this work, operates
on facts that are encoded in the form of s-
expressions, XMI representations of UML dia-
grams are converted into data of this form. Such
conversion is straightforward, and can directly
be implemented through the mapping shown in
Figure 17. Furthermore, in order to make infer-
ences from the obtained s-expressions according

\ XMI Representation

l

S-Expression Representation T

<tag oftr; = val; ... attr, = val, />

((tag (attry valy) ... (attr, val,)))

<tag aitr; =valp ...

attrn, = val,> val </tag>

((tag (attr; valy)... [attr, val,)(content val}))

<tag attr; = vael; ...
subElements
<[tag>

attr, = val, >

((tag (attry vely)...(attr, val,)) S)

where 5 is one or more s-expression(s) repre-
senting the XML element(s} subElements

Figure 17: Mapping from XMI representations to S-expressions, where tag is a tag name, the atir
are attribute names, val and the val; are strings, and subElements is one or more XML element(s)

0 /+ The ET rule prepared from the clause Crpyqy */
1 (Rule TNi1-GenTableNm

2 {Head (TABLENAME ¢TN})

3 {Body (exec {= »TN

4 {(TableName (idref *CId)
5 (name *Nm})}))
6
7
8

(FACT *X)
(member ((sTag | *pairs) | 7} =X}
(member (xmi.id «CId} +*pairs)
9 (member (name *Nm)} *pairs)
10 (member *Tag
i1 (UML:Class UML:AssocjationClass))
iz N

13 /* The ET rule prepared from the clause Cop */
14 (Rule CL1-GenColumn

15 {Head (COLUMN *COL})

16 (Body (exec {= *COL

17 ({Column (idref *CI4} (name *ANm)
18 (type *TNm))})))

19 (FACT *X)

20 (member ((*Tag | *pairsi) | *EVAR1) =*X)
21 (member (xmi.id *CId) =*pairsi)

22 {+ 7 ({(UML:Attribute | *pairs2) | 7))
23 ({(+Tag | *pairsl) | *EVARL))

24 {member {(name *ANm) »pairs2)

25 (mamber (type *AType} #pairs2)

28 (FACT ((UML:DataType | *pairsd) | 7)}
27 (member (xmi.id *AType) *pairs3)

28 {member (name *THm) *pairs3)

20 {member *Tag

a0 (UML:Class UML:AssociationClass))
3t N

Figure 18: Examples of ET rules

to the specifications provided by the XML defi-
nite clauses presented in Section 5, a set of pro-
cedural rewriting rules, called Equivalent Trans-
formation (ET) rules, will be prepared from the
clauses. These ET rules together with the control
mechanism of ETI specify a backward-chaining-
like procedure for generating tables and their
components. As illusirative examples, the ET
rules prepared from the clauses Cry in Figure 8
and Cpr; in Figure 9 are shown in Figure 18
(Lines 1-12 and 14-31, respectively), where a
term beginning with the asterisk is regarded as a
variable. Each of these two ET rules consists of
two parts: Head part and Body part. The Head
part of a rule specifies the pattern of expressions
to which the rule is applicable; i.e., the rule is
only applicable to an expression that is more spe-
cific than the specified pattern. When applied,
the rule transforms an expression (which is given

10

({Table (idref "S.7") (name "Student"})
{(Column (name "ID") (isprimary "true')
(isunique “true"} (ismull "false")

(type "Integer")})
({Column (name "studentID") (type "String")))
({Column (name "accGPA") (type "Doubla™)})
({Column (name "majer"} (type "String")))
({Column (name "“creditsEarned")

(type "Integer')))
{{Celumn {(name "staysAt") (typs "Integer')

{reference "Residence")

{isnull “true")))

{name "PersonlID")

(type "Integer") (isunique "true")
(reference "Person"))}))

({Column

Figure 19: A derived s-expression

as a goal) into zero or more expression(s) (which
are then regarded as new goals) of the pattern(s)
specified in its Body part. (In general, an ET rule
may also contain some additional conditions for
determining its applicability.)

Consider, for instance, the clause Cry in Fig-
ure & and the first ET rule in Figure 18. This ET
rule specifies the transformation procedure for
any goal s-expression representing a TableName-
element. When the rule is applied, such a goal
s-expression will be unified with the s-expression
specified in Lines 4-5 and replaced with the five
s-expressions specified in Lines 6-11. After the
Fact-expression (Line 6) is processed (by some
other rule}, the variable *X will be instantiated
into an s-expression representing some diagram
component, say D, from which certain infor-
mation will be extracted and tested according
to the specification given by the clause Crp.
The three member-expressions in Lines 7-9 are
used to extract the tag name and the values of
the attributes xmi.id and name of the XML el-
ement representing the diagram component [,
then, the member-expression in Lines 10-11 tests
whether the extracted tag name is UML:Class or
UML:AssociationClass.

Figure 19 illustrates an s-expression obtained
from the prototype system when it is tested with
the class diagram in Figure 2. This s-expression
represents the generated table for the class Stu-
dent in the diagram. (The idref-expression en-
closed in each Column-expression is omitted.)

Published in Tanprasert, T., aditor, Proceedings of the Second international Conference on intelligent Technalogies
(inTech’2001), Bangkok, Thailand, pages 392-401, Novernber 2001. SBN 974-615-068-5.

Expanding Transformation: A Basis for
Verifying the Correctness of Rewriting Rules

Ekawit Nantajeewarawat
IT Program
Sirindhorn Intl. Inst. of Tech.
Thammasat University
Pathumthani 12121, Thailand
E-mail: ekawit@siit.tu.ac.th

Kiyoshi Akama
Center for Information -
and Multimedia Studies
Hokkaido University
Sapporo 060-0811, Japan
E-mail: akama@cims.hckudai.ac.jp E-mail: koke®cims.hokudai.ac.jp

Hidekatsu Koike
Div. of System & Info. Eng.
Faculty of Engineering
Hokkaido University
Sapporo 060-0811, Japan

Abstract: Unfolding transformation is considered as the compaosition of two
simpler operations, i.e., expanding transformation and unification. Then it is
pointed out that expanding transformation rather than unfolding transforma-
tion serves as a suitable basis for verifying the correctness of rewriting rules by
means of pattern manipulation, which in turn is an underlying mechanism for
systematically generating rewriting rules from a problem description. The cor-
rectness of expanding transformation is established. The correctness of a basic
class of rewriting rules, called general rewriting rules, is shown thereupon. The
application of expanding transformation and the correctness thereof to the cor-
rectness verification of a larger class of rewriting rules, called expanding-based
rewriting rules, by transformation of clause patterns is demonstrated.

Key words: Rule-based equivalent transformation, Rewriting rules, Pattern
matching, Expanding transformation, Unfolding, Semantics preservation, Rule-
based systems, Declarative descriptions

1 Introduction

As a fundamental transformation rule, the un-
tolding rule has long been used in the context of
functional programs for the computation of re-
cursively defined functions and for developing re-
cursive equation programs [8]. The rule consists
in replacing an instance of the left-hand side of a
recursive equation by the corresponding instance
of the right-hand side. By taking its application,
which can be regarded as a symbolic computa-
tion step, to be equivalent to an application of
the resolution inference rule [12], the unfolding
rule hag been adapted to the case of logic pro-
grams [11, 15].

Although the unfolding rule for logic programs
is derived directly from that used in functional
programming, there is a remarkable contrast be-
tween their application. In the case of logic pro-
grams, to unfold a definite clause with respect to
a body atom B using a set of definite clauses P,
B need not be an instance of the head of some
clause in P—it is only required that B is unifi-
able with the head of some clause in F. This
discrepancy stems from the fact that a unifying
substitution is used in a resolution step—not a
pattern-matching substitution, which is used in a
replacement step for functional programs.

It has been argued in [2, 4, 5] that instead
of basing computation solely upon the resolu-
tion inference rule and the fixed procedural in-
terpretation of definite clauses (as it happens
in the logic programming paradigm [9]), more
efficient and effective computation can be ob-
tained through semantics-preserving transforma-
tion of a set of definite clauses by applying user-
definable rewriting rules in a user-controllable
way. This conviction brought about a new pro-
mising computation framework, called equivalent
transformetion (ET) framework {5, 6], which has
provided a solid foundation for knowledge pro-
cessing systems in several application domains
[7, 10, 13, 14, 16].

In the ET paradigm, the applicability of a
rewriting rule is determined by pattern match-
ing rather than unification; as a result, a rewrit-
ing rule can be tailored for some specific pat-
tern of atoms for improvement of computation
efficiency. It will be demonstrated in this paper
that a more basic kind of transformation—called
expanding transformaotion—rather than unfold-
ing transformation provides a suitable basis for
discussing the correctness and application of an
important class of rewriting rules by manipula-
tion of patterns of atoms and patterns of clauses.

Such pattern manipulation in turn forms a basis
for meta-level computation for automatic gen-
eration of rewriting rules from a set of definite
clauses in the framework proposed in [3]. The
purpose of this paper is threefold:

o The concept of expanding transformation will
be introduced; its correctness will be proved
based on an appropriate formulation of the
meanings of declarative descriptions.

o A theoretical basis for justifying the correct-
ness of a rewriting rule will be established. A
basic class of rewriting rules, called general
rewriting rules, will be defined. Their correct-
ness will be proved through the correctness of
expanding transformation.

o A larger class of rewriting rules, called ez-
panding-based rewriting rules, will be intro-
duced. Based on manipulation of atom pat-
terns and clause patterns, the application of
expanding transformation to the eorrectness
verification of rewriting rules in this class will
be illustrated.

By decomposition of an unfolding step into an
expanding step and a unification step, Section 2
provides an informal introduction to expanding
transformation; then, it explains the appropri-
ateness of expanding transformation as a foun-
dation for discussing the correctness of rewriting
rules based on pattern manipulation. Section 3
defines preliminary syntactic components, which
are used for defining declarative descriptions and
their meanings in Section 4, and rewriting rules,
their application, and their correctness in Sec-
tion 6. Section 5 formally defines expanding
transformation and proves its correctness, which
is then used for verifying the correctness of gen-
eral rewriting rules and expanding-based rewrit-
ing rules in Sections 7 and 8, respectively.

2 Motivation

In the ET model, a problem is formulated as a
declerative description, represented by the union
of two sets of definite clauses, one of which is
called the definition part, and the other the query
part. The definition part provides general knowl-
edge about the problem domain and describes
some specific problem instances. The query part
specifies a question regarding the content of the
definition part. The problem is solved by trans-
forming the query part successively, based on the
definition part, into a simpler but equivalent set
of definite clauses from which the answers to the
specified question can be obtained directly.

2.1 Unfolding = Expanding 4 Unification
Consider a simple problem formulated as the
union of a definition part D, consisting of the
three definite clauses

Capyt app([],Y,Y) «
Cop: app([A|X],Y,[A|Z]) « app(X,Y, 2)
Ceg: eq(X, X)

(where app and eq stand for append and equal,
respectively) and a query part (; containing
only the definite clause

Cr: answer{ X' Y") « app(X',[Y'],[7]).

As the app-atom in the body of €] is unifiable
with the head of Cyp,, using the unifying substi-
tution &, = {X'/[],¥/[7],Y'/7}, and with the
head of Clp,, using the unifying substitution
b2 = {X'/[11X1,Y/IY"),A/7, Z/(]}, the query
part ¢ can be transformed by unfolding € us-
ing Dy, into a new query part ¢ consisting of
the two definite clauses

Cy: answer([],7) +
Cs: answer([7|X],Y") « app(X,{¥”),[]).

From (3 and 6, an answer to the query part
@1, ie, X' =[] and ¥’ = 7, can be obtained
effortlessly. Notice that since the body atom of
('3 is not unifiable with the head of any clause in
Dy, no clause can be obtained by unfolding
using Dgp; as a result, there is no other answer
to the query part,

An unfolding step can be considered as the
composition of two successive more elementary
computation steps: an ezpanding step and a uni-
fication step. For instance, the unfolding step
transforming ¢ into @2 can be decomposed as
follows. First, expand C| using D},,—that is,
for each clause C in I2,, whose head is an app-
atom, rewrite C7 into another clause by simply
replacing the app-atom in the body of € with
the body of C along with three eg-atoms equaliz-
ing the arguments of the replaced app-atom and
the corresponding arguments of the head of C.
This expanding step transforms ¢ into a set @)
comprising the two clauses

Cy: answer(X'Y’)
—eg(X’ []), eq([Y'], ¥}, eq([7], Y)
Ci: answer(X' Y')
& eq(X, [A1X]), eq([Y'], Y),
eq([7}, [A| Z]), app(X, Y, Z).

Next, unify the arguments of each eg-atom in)
as well as those of each eg-atom in C}; thereby,
the clauses €5 and (3 are obtained. The for-
mal definition of expanding transformation will
be given in Section 5.

2.2 Pattern Matching and Rewriting
Rules

Instead of using the unfolding rule, one may de-
vise a rewriting rule for transforming atoms of
some specific pattern. From the definition part
Dayp, for example, one may specify as a rule that
an app-atom whose second and third arguments
are both (possibly non-ground) singleton lsts,
say L and L', can be removed from the body of
a clause by

o equalizing the first argument of the app-
atom and the empty list, and

¢ equalizing the element of L and that of L'

Using this rule, the query part §; of Subsec-
tion 2.1 can be transformed in one step into a
query part (s containing only the clause

Cy: answer(X,Y') « eq(X', [}, eq(Y”, 7).

This transformation step can be described more
precisely by the rewriting rule

ri: app(&X, [&Y],[&2])
- eq(&X,[]), eq(&Y, &2},

where the arrow “—” intuitively means “can
be replaced with” and the left-hand side and
the right-hand side of vy specify the pattern of
atoms to which the rule is applicable and the
pattern of replacement atoms, respectively. By
instantiating & X, &Y and & Z, which will be re-
ferred to as meta-variables, into the terms X', ¥’
and 7, respectively, the pattern in the left-hand
side matches the body atom of) and that in
the right-hand side is instantiated into the body
atoms of Cy—that ig, by applying r1 to the body
atom of Cy using this instantiation, C; is trans-
formed into 4. Determination of rule applica-
bility by pattern matching, as epposed to unifica-
tion, makes the rule r; applicable only to atoms
of the desired pattern. The syntax for rewriting
rules as well as their application will be precisely
described in Section 6.

By the application of r1, not only does the re-
sulting clause Cy in J; directly yield an answer
(X' =[land ¥’ = 7) to the query part {1; in ad-
dition, the absence of any other clause in (@3 indi-
cates immediately that there is no other answer.
In comparison, from the set 2 = {Ca,C3} ob-
tained by the application of the unfolding rule in
the preceding subsection, some further computa-
tion is required in order to find that no clause can
be derived by further unfolding C; using D,
and no other answer exists. In particular, if the
body of C; additionally contains some atom that
is unifiable with the head of some clause in D,
then several useless further unfolding steps may

take place. It is demonstrated in [5] that, in gen-
eral, computation efficiency can he significantly
improved by avoiding transformation steps that
increase the number of clauses,

In the ET paradigm, rewriting rules will be
prepared from a given definition part, and a set of
prepared rewriting rules, instead of the definition
part itself, will be regarded as a program. Based
on meta-level manipulation of atom patterns, a
method for systematically generating rewriting
rules from a definition part is developed in [3].

2,3 Expanding Transformation as a
Basis for Meta-Level Transformation

Expanding transformation and transformation
by application of rewriting rules based on pat-
tern matching have a common characteristic,
i.e,, they do not use unification—consequently,
they do not instantiate any variable occurring
in a replaced atom. Considering the body atom
app(X’,[Y",[7]) of Ci and the transformation
steps in Subsections 2.1 and 2.2, for example,
while X’ is instantiated into [] and {7|X] by un-
folding C; nto €'y and Cj, neither X' nor Y’ is
instantiated by expanding C; into €% and Cj,
and neither of them i3 instantiated by rewriting
(1 using the rule ry into Cy.

In the framework for generating rewriting rules
by means of mata-computation—by manipula-
tion of patterns of atoms rather than ordinary
atoms—proposed in [3], meta-variables such as
&X, &Y and &2Z are used to represent arbitrary
ordinary terms. As a representative of all terms,
a meta-variable of this kind should not be in-
stantiated into any specific term in a pattern-
manipulation process. Accordingly, expanding
transformation provides a befitting basis for dis-
cussing the correctness of rewriting rules in this
framework. As an illustrative example, the cor-
rectness of the rewriting rule v of Subsection 2.2
can be justified by transformation of clause pat-
terns as follows. From a clause of the form

él: He ...,app(&X,[&Y],[&Z]),.., !

where H represents an atorma of any arbitrary
pattern and the meta-variables & X, &Y and &2
represent any arbitrary terms, one can expand
o) using D, into

(:/‘2: E =y BQ(&X’”)EEQ([&Y])Y)’
eq([&Z2],Y),...

éﬂ: FI =y eQ(&X! [AlX])seQ([&Y]’Y)s
eq([&Z], [A| Z]),
app(X, Y, Z),... .

Then, €5 can be further expanded using Dy, into

Cii H ..., eq(&X,[A|X)), eq([&Y],Y),
eq([&Z),[4]Z]),
eq(X,[]),eq(Y, Y1),
eq(Z,Y1),...

eq(&X, [4]X1), eq([&Y], Y,
eq([&Z],[A|Z]},

eq(X, [A1|X1]),eq(Y, Y1),
eq(Z,[A1|Z1]),
app{X1,Y1,21),...,

both of which can be deleted by constraint solv-
ing for eg-atoms (for example, C§ can be re-
moved since any ground instantiation equaliz-
ing simultaneously the two arguments of each
of its eg-atom necessarily instantiates Z into
the empty list and, at the same time, a non-
empty list, which is impossible whatever terms
the meta-variables &X, &Y and &2Z represent).
Next, by simplifying its body, €. can be rewrit-
ten into

Gy B eql&X, (), eq(&Y), [&2)), ..,
which can be further simplified into
Cr B . eq(&X,|]),eq(&Y,&2),. .. .

This means a clause containing any atom B of
the pattern app(&X, [&Y],[&Z]) can be trans-
formed into another clause by replacing B with
its corresponding atoms of the patterns eq(&X,
[} and eq(&Y, &Z); thus, the rule 7 is correct
[3, 4, 5].

It is important to note that in general unfold-
ing cannot be employed in such manipulation
of atom patterns. For instance, to unfold
with respect to app(&X, [&Y], [&Z]) using Dy,
the meta-variable &X has to be unified with [],
which is only possible when &X represents a
variable or the empty list. As a result, in the
presence of a meta-variable representing any ar-
bitrary term, unfolding transformation is usually
not applicable.

O B,

3 Basic Syntactic Components
After specifying the alphabet used in the paper,
some basic concepts, e.g., terms and atoms, along
with the concepts of meta-term and meta-atom,
which are used for specifying patterns of terms
and atoms, respectively, will be defined.

Alphabet An &-variable is a variable that be-
gins with the symbol &; e.g., &N and &X are
&-variables. A #-variable is a variable that be-
gins with the symbol #; e.g., #X and #Y are #-
variables. An &-variable as well as a #-variable
is called a meta-variable. &-variables and #-
variables have different instantiation character-
istics, which will be rigorously specified in Sec-
tion 6. An alphabet A = (K, F,V, R) is assumed,

where K is a set of constants, including integers
and nil; F a set of functions, including the bi-
nary function cons; V is the disjoint union of a
set V) of ordinary variables and a set Vi of meta-
variables; and R is the union of two mutually
disjoint sets of predicates Ry = {app,eq, ...} and
Ry = {answer,...}. An ordinary variable in V}
iz assumed to begin with neither & nor #. When
ne confusion is possible, an ordinary variable in
W1 and a meta-variable in V3 will be simply called
a variable and a meta-variable, respectively.

Terms, Meta-Terms, Atoms, Meta-Atoms,
and Substitutions Usual first-order terms on
(K,F,Vi} and on (K,F,V3) will be refeired
to as terms and wneta-terms, respectively, on
A. Given R' C R, usual first-order atoms on
{K,F,Vi,R") and on (K,F, V2, R') will be re-
ferred to as atoms on R’ and meta-atoms on R/,
respectively. The standard Prolog notation for
lists is adopted; e.g., [X,Y] and [7, #X|&Y] are
abbreviations for the term cons{X, cons(Y, nil))
and the meta-term cons(7,cons(#X,&Y)), re-
spectively. First-order atoms on (K, F, 0, R) are
called ground atoms on A. In the sequel, let Ta
be the set of all terms on A, and Ga the set of
all ground atoms on A; also let A4; and A; be the
set of all atoms and the set of all meta-atoms,
respectively, on R;, where i € {1,2}. A substitu-
tionon A is a set of the form {v /t1,...,v/t0},
where each v; belongs to 14, each ¢, is a term
on A such that v; # t;, and the v; are all dis-
tinct. Each v;/t; is called a binding for v;. Let
Sa be the set of all substitutions on A. A sub-
stitution § € S is called a variable-renaming
substitution, if and only if for any binding v/t in
#, t € V) and for any other binding «'/t' in 8,
t#£ ¢

4 Declarative Descriptions and
Their Meanings

In general, the ET model can deal with sev-
eral data structures other than usual first-order
terms, e.g., multisets and XML data, and the
concept of declarative description can be ex-
tended with these data structures [1, 16). For
simplicity, however, only usual terms are used
in this paper. Subsection 4.1 specifies the forms
of definite clauses and declarative descriptions
discussed herein; Subsection 4.2 provides some
basic concepts used for defining the meanings
of declarative descriptions in Subsection 4.3 and
their related results used for verifying the cor-
rectness of expanding transformation in Sec-
tion 5.

4.1 Declarative Descriptions

A definite clause C on A is an expression of the
form A + Bs, where Ais an atom on R and Bs is
a (possibly empty) set of atoms on R. The atom
A is called the head of C, denoted by head(C};
the set Bs is called the body of C, denoted by
Body(C); each element of Body{C) is called a
body atom of C. When Body(C) = B, C will be
called a unit clause. The set notation is used
in the right-hand side of C so as to stress that
the order of the atoms in Body(C) is immaterial.
However, for the sake of simplicity, the braces
enclosing the body atoms in the right-hand side
of a definite clause will often be omitted; e.g., a
definite clause A « {By,..., By} will ofien be
written as A « By,..., By,

Let B! C R. A definite clause C' is said to be
from Ry to R, if and only if each element of the
body of ' is an atom on R; and the head of C
is an atom on R', A declarative description from
R, to R' is a set of definite clauses from R, to
R'. The get of all declarative descriptions from
Ry to R" will be denoted by Dscr(R;, R').

4.2 Basic Definitions and Results

Following the ET framework, a declarative de-
scription in Dser(Ry, Ry) will be used ag a defi-
nition part, while that in Dser(Ry, Rg) a query
part. Given a definition part D and a query part
¢}, a transformation step rewriting € into Q' is
considered to be correct if and only if DUQ and
D U Q' Lave the same meaning. By exploiting
the fact that not a definite clause from R; to R,
but only a definite clause from R; to Ry is trans-
formed, this subsection lays a simple yet general
basis that not only enables precise discussion of
the meanings of declarative descriptions, but also
simplifies the verification of the correctness of ex-
panding transformation.

In the sequel, given a set A, let FP(A) denote
the set of all finite subsets of A.

Definition 1 Given U € §a x FP(Ga), the
meaning of U, denoted by M(U), is defined by

MU) = U, [T (),
where for any set X C Ga, Tu(X) is the set
{head | ({head, body) € U)& (body C X)},

and for each n > 2, [Ty]™(0) =
and [Ty (@) = Ty(@). m

Tu([Tu]*~H{D)),

Theorem 1 Let g € Ga and U € Ga X FP(Ga).
Then, g € M(U) if and only if there exists G €
FP{Ga) such that (g,G) € U and G C M(U).

o

[((5.G) € U)
< (3G € FP(Ga)) :
{(g.)e) & (GC M) =

In the sequel, let {G1,Ga} be a partition of G5
(i.e., G1 UGy = Ga and §1 NGy = ¢); in addition,
let U1 g gl X FP(gl) and U2 - g'_; X FP(gl)

Proposition 1 MU} = MU uILING,.

Proof It will be shown by induction on n that

([To, |™(0) = [Tw,uu)| (@) NGy, for each n > 1,
Base case:
g€ [Tu,]' (D)
= ((g,0) e lh)
= ((g.0) e (Uuly) & (g€ Gi)
= (9 € Twovn]'(0) & (g€ Gi).
Induction Step:
g€ [TUJ]H+1(®)
= (3G € FP(G1)): ((9.G} € Uh)

& (G C [Tu,]™(0))
< (3G € FP(G.)) : ((9,G) € Uy)
&G C ([T, uuan ™ (0) N G1))
{by the induction hypothesis)

== (3G € FP(G)): ((9.G) € (U, UUz))
&{geGi) & (G CTyuu]™0)
&= (3G € FP(G)) : (9 € [Twuum T (9))
& (g€ Gh).
As a result:

MUl nG
= (U?f:][T[U]uUz)]n(m) NG
= U;L.O:I{{T[U:UUz)]n(m NG)
= Unta (T " (®)
= ﬂ'f(Uﬂ n

Definition 2 The set (U1, U3) is defined by

T{Uh,Us) = {head | ((head, body) € Us)
& (body C M(U1))).

Proposition 2
MUy W) € MU) JUT(U,T,).

Proof Let g € MUy U Us). Then, by The
orem 1, there exists G € FP(G) such that
{g,G) e {7y UT2) and G C M{U; Uly). Since
G C G, it follows from Proposition 1 that
G C M(U;). Now suppose that {g,G) € U,.
Then, by Theorem 1, g € M(L;). Next, sup-
pose that (g,G) € Uy, Tt follows directly that
geT(U,Us). ™

Proposition 3

MU UUy) 2 MU UT(U,Uy).

Proof Let g € M(U)UT{Uh,Us). Suppose first
that g € M (U;). It follows from Theorem 1 that
there exists G € FP(G,) such that (g,G) € I
and G C M({Uh). By Proposition 1, M(l;) C
MU Uls). So G € M(U uUs), and, hence,
by Theorem 1, g € M{U, U L),

Next suppose that g € T(U1,U3). Then there
exists G' € FP(;) such that (g,G') € Us and
G' C M({Uh). As MU} € M(Uy UTy) (by
Propaosition 1), G € MUy UU,). Thus g €
MU, UU) by Theorem 1. m

Theorem 2 M(U,0U;) = M(U)UT(U,Us).
Proof The result follows from Propositions 2

and3. w

4,3 The Meanings of Declarative
Descriptions
Let P € Dser(Ry, R). Let Pair(P) be the set

{(Head(C8), Body(C8)) | (C € P) & (8 € Sa)

& (Head(C8) € Ga) & (Body(C8) C Ga)}.

The meaning of P will now be defined.

Definition 3 The meaning M{P) of P is de-
fined by M(P) = M(Pair(P)). =

Together with the results of the preceding sub-
section, the next definition and proposition will
be used for proving the results of Subsection 5.2.

Definition 4 Let D € Dscr(Ry,R;y) and Q €
Dser(Ry, Ry). The set T{D, Q) is defined by

T(D,Q) = T(Pair(D), Pair(Q}). =

Proposition 4 Let D € Dscr{Ry, Ry) and (J,
Ql,Q2 [S DSC’I’(R1,R2). Then, if T(D,Ql) =
T(D,Q), then M(DUQUQ1) = M{DUQLQ,).

Proof

T(D,h) =T(D,Q:)
&= T(Pair(D), Pair(Q1))
= T(Pair(D), Pair(Q3))
= T(Pair(D), Pair(@1))
U T(Pair(D), Pair(Q))
= T(Pair(D), Pair(Q2))
U P(Pair(D), Pair(Q))
&= T(Pair(D), (Pair{Ch) U Pair(Q}))
= T(Pair(D), (Pair((:) U Pair(Q)})
= T(Pair(D}, Pair(QQ U Q1))
= T(Pair(D), Pair(Q U 1))

= T(Pair(D), Pair(Q U Q,))
U M(Pair(D))
= T'(Pair(D), Pair(Q U Q1))
U M(Pair(D))
< M(Pair(D) U Pair{Q U Q1))
= M{Pair(D) U Pair(Q U Qs))
{by Theorem 2}
&= M{Pair(DUQU))
= M(Pair(DUQ U Q,))

= MODUQU) =M{DUQUQ:)). m

5 Expanding Transformation and
Its Correctness

This section formally defines expanding transfor-
mation and proves the correctness thercof.

5.1 Expanding Transformation

In the rest of this paper, let D € Dser(Ry, Ry)
and assume that D contains the unit clause
eq(X,X) + and does not contain any other
clause from R; to {eg}; furthermore, let p be
an n-ary predicate in R; and assume that

Cpy: P(81,...,85) + Bsy,
Coy: p(s2,...,82) + Bsy,
Cpi P87, 87) & Bsp

be all the definite clauses from R to {p} in D.

Definition 5 (Expanding Transformation} Let
C be a definite clause H « {p{t;,...,tn)} UBs
from R; to Rz, Foreachi (1 <i<m),let p; €
&Sa be a variable-renaming substitution such that
¢ and Cy,p; do not have variables in common.
Then, C' can be transformed by ezpanding the
body atom p(ty,...,t,} using D into m definite
clauses CY,...,C}, from R; to Ry, where for each
7 (L £ £m), €} is the clause

H « {eq(ts,sipi),- .. eq(tn, 530}
U Bsp.p; U Bs.

The set {C},...,C},} will be denoted by

Ezpand(C,plt,,--.,tr), D,
((Cpla Pl): (Cpg:p2)1 ey (Cpm: pm»)a

and will be called a result of transforming C by
expanding p(t1,.. ., tn) using D. =

5.2 Correctness of Expanding
Transformation
In the sequel, assume that C is a definite clause

H+ {p(tlr"'stn)}UBS

from R, to Ra; Sel{C) denotes the body atom
plt1, ... ta) of C p1,p3,...,0m are variable-
renaming substitutions in Sa such that for each
i (1 <4 < m), C and Cp,p; have no variable in
cornmon; and

Ezpand(C,p(ty,. .., ta), D,
((Cpl ' P1), (szl J:7) (Cpmapm)})
= {C},...,CL}.

Proposition 5
T ACH CT(D,{C1,..-, Cou 1

Proof Let g € 7{D,{C}). Then, there exists
6 € Sa such that ¢ = HO and ({Sel(C)6} U
Bs#) C M{Pair(D)). Since Sel(C) belongs
to M (Feir(D)), it follows directly from Theo-
rem 1 that there exists G € FP(G;) such that
(Sel(Ch8,G) € Pair(D) and G € M{(Pair(D))].
So there exist 8 € Sa and i (1 <4 < m) such
that S5el(C)0 = Head({Cp,)0' and G = Bsy 0’ C
M(Pair(D)). Now let ;! = {z/y | y/z € p:}
and

© = {z/y € & | z occurs in C}
U {z'/y’ € p;7'8" | =’ occurs in Cp p;}.

Since p; is a variable-renaming substitution such
that C and C,p; have no variable in common, ©
is a well-defined substitution. Then, Sel{C)8 =
Sel(C)8 = Head(Cp,)0' = Head(Cy,p;)©, HY =
HO, Bs# = Bs0O, and Bsy ¢ = (Bsy,pi)0.
Since Sel(C)© = Head(Cp,p:)0, it follows that
for each j (1 < j < n), ;0 = (sp;)®, whence
eq(ti, sip;)® € M(Pair(D)). Moreover, since
Bsf C M(Pair(D)} and Bs, 8 C M(Pair(D)),
(Bs© U (Bsy,p:)0) C M{Pair(D)}. Therefore
Head(C!)© = HO = g € T(D,{C},....Cp,}).
=

Proposition 6
T(D,{CH 2 TP, {C1,....CL .

Proof Let g € T(D,{C{,...,CL}). So there
exist § € Sa and ¢ {1 € ¢ < m) such that
g = Hb, ((Boy,p)0 U Bsb) C M(Pair(D)),
and for each j (1 < j £ n), eq(t;,sip)f
M{(Pair(D)). Since Bs,,(p:8) = (Bsy;pi)f
M(Puair(D)) and (Head(Cp,;){p:#), Bsp,(p:i8))
Pair(D), Head(Cp,)(pif) € M(Pair(D)) by
Theorem 1, Since eq(t;, sipi)8 € M(Pair(D)),
t;0 = (sip;)@ for each j (1 < j < n). Conse
quentIY! SeE(C‘) = p(tlav v vtna) = p(si(p‘la):
s (pi) = Head(C,)(pf) € M(Pair(D)).
As Bs@ C M({Pair(D)), it follows directly that
Head(CWW=H8=geT(D,{C}). n

—

€
<
€

Propuosition 7

T(D,{C})=T(D,{C],....CL}).

Proof The result follows from Propositions 5
and6. =

The main result of this Subsection is:

Theorem 3 {Correctness of Expanding Trans-
formation) Let D € Dser(Ry, Ry) such that D
contains the unit clouse eq(X,X) + and does
not contain any other clause frem Ry to {eq}.
Let Q € Dscr(Ry, Rp). Let C be a definite clause
from Ry to Ry, and Sel(C) € Body(C). Let
{C1,....C},} be a result of transforming C by
erpanding Sel{C) using). Then M(DUQ U
{CH =M(DuUQUC],...,C.}).

Proof The result follows directly from Propo-
sitions Tand 4. B

6 Rewriting Rules and Their

Correctness
The notion of meta-variable instantiation, based
on which the applicability of a rewriting rule is
determined, will be formulated. Tt is followed
by the formal definition of a rewriting rule, its
application, and its correctness.

Meta-Variable Instantiations A meta-voria-
ble instantiation is a mapping € from V5 to Ta
that satisfies the following three conditions:

(MVI-1) For each #-variable v, 8(v) is a vari-
able.

(MVI-2) For any distinct #-variables v and ¢/,
8(u) # 6(v').

{MVI-3) For any &-variable u and #-variable
v, 8(v) does not occur in #(u).

Let E be an expression containing meta-variables
(E’ can be, for example, a meta-term, a meta-
atom, or a set of meta-atoms). Then, given a
meta-variable instantiation #, let E# denote the
expression obtained from E by simultaneously
replacing each occurrence of each meta-variable
u in £ with 8(u).

Rewriting Rules and Their Application A
rewriting rule v on R; takes the form
ﬁ — 531;

— Bs,,

where n > 0, and H € 4; and the Bs; C Ay
For the sake of simplicity, the braces enclos-
ing the meta-atoms in the right-hand side of a
rewriting rule may be omitted; e.g., a rewriting

rmle H — {}§1,...,B’;} will also be written as
H—-) Bl,...,Bg.

Let C be a definite clause A « {B}U Bs from
R to Ry. The rewriting rule = is said to be appli-
cable to € at B by using a meta-variable instan-
tiation 8, if and only if the following conditions

are both satisfied:
(RRA-1) Hé = B.

{RRA-2) For any #-variable v, é(v) occurs in
neither A nor Bs.

When r is applied to C at B by using the
meta-variable instantiation 8, it rewrites € into

n definite clauses 1, .. . Cn, where for each i
{l1<i<n), C;=(4+ Bs;#U Bs).

Correctness of Rewriting Rules Now what
it means for a rewriting rule to be correct will
be formally defined. Let D € Dser{Ry, Ry).
A rewriting rule v on Ry is correct with respect
to D and Rs, if and only if for any declarative
description § € Dscr(Ri, Rz) and any definite
clauses C, C,...,C, from Ry to Ry, if r rewrites
C into Cy,...,Ch, then MDD UQU{C}) =
MDUQU{Cy,...,Cu)).

7 General Rewriting Rules and
Their Correctness

A class of rewriting rules, called general rewriting
rules, with the widest applicability—the most
general pattern of terms is used as the pattern
of each predicate argument in their left-hand
sides—will be introduced. Then their correct-
ness will be proved based on Theorem 3.

7.1 General Rewriting Rules
Let p be an injection from V3 to Vo such that

for each v € V1, p(v) iz a #-variable. In the
sequel, for simplicity, assume that for each v €
11, 2(v) has the same name as v except that
¢(v) begins with #; for instance, g(X) = #X
and g{Y) = #Y. Next, for any term ¢ on A, let
tg denote the meta-terrn on A obtained from ¢
by simultaneously replacing each occurrence in
t of each variable © € V) with the #-variable
o(u}. Likewise, for any atom A4 on R, let Ap
denote the meta-atom on R obtained from A by
simultaneously replacing each occurrence in A of
each term t on A with tp. Furthermore, for any
set Bs of atoms on R, let Bsg = {Bg | B € Bs}.

In the sequel, refer to the declarative descrip-
tion D, the n-ary predicate p, and the definite
clauses C'py, ..., Cy,, of Section 5.

Definition 6 {General Rewriting Rule) The ge-
neral rewriting rule for p with respect to D, de-
noted by General(p, D), is defined as the rewrit-
ing rule

p(&X1, ..., &X,) - Bs,,;

—+ Bs,,

on Ry, where &X,,...,&X,, are arbitrary but
distinct &-variables in 1, and B, is the set

{eq(&X1,s10),...,eq(&X,,s50)} UBs, 0
foreachi (1<i<m). m

Referring to the declarative description D, of
Section 2, for example, General(app, D,,) is the
rewriting rule

app(& X1, & X5, &X3)
i EQ(&XI') []),EQ{&XQ, #Y): EQ(&X;;, #Y)!

= eq(&Xy, [FAIRX]), eq(&Xy, #Y),
eq(&Xs, [#AIH#Z]), app(# X, #Y,#2Z),

which is applicable at an app-atom of any form.

7.2 Correctness of General Rewriting
Rules

The correctness of general rewriting rules will

now be established.

Theorem 4 (Correctness of General Rewriting
Rule) The rewriting rule General(p, D) is correct
with respect to D and Ry.

Proof Let §@ € Dscr(R;, Ry} and C be the
definite clause H « {p(t1,...,t,)} U Bs from
Ry to Ro. Suppose that General(p, D) is ap-
plied to C at the body atom p(t,... t,) by
using a meta-variable instantiation 6. Then
p(&Xy,. ., &X,)8 = plty, ..., ty), le., &X:0 =
t; for each ¢ (1 < i < n), and C is rewritten
into m definite clauses Cy,...,Ch from R; to
Ry, where for each j (1 < j < m),

Cj = (H « {(eg(&X1,570))0,. ..
-5 (eq(& Xy, 51,0))0}
U (Bsp;0)8 U Bs)
(H + {eq(&X16,(s10)0),. ..
- eq(&Xa8, (s1,0)8)}
U (Bsy;0)8 U Bs).

Let k € {1,...,m} and m be the substitution
{v/8(p(v)) | v € Vi and v occurs in Gy, 1.
It is readily seen that

Cr = (H « {eq(ty,s¥7e),. .., eq(tn, sEme))
\J Bsy, m U Bs).

It will now be shown that m, is a variable-
renaming substitution such that C and Cp my
have no variable in common. Let v € ¥;. Since

o(v) i3 a #-variable, var = 8{p(v)) is a vari-
able that occurs neither in H nor Bs by Con-
ditions (MVI-1} and (RRA-2). Moreover, by
Condition {MVI-3} for &, vm, does not occur
in &X;0 = ¢ for each | {1 <1 < n). So vm
does not occur in C; hence, C and Cp, 7y, do not
have any variable in common. Next let v ¢ V)
such that v # v. Since g is an injection from
V1 to V3, g(u) and g(v) are different #-variables,
whence um, = #(p(u}) # #(o{v)) = vre by Con-
dition (MVI-2). Consequently, 7 is a variable-
renaming substitution. As a result,

Ezpand(C,p(ty, ..., tn), D,
((Cpp 7"1): (Cp21 7"2): sy (Cpm:'-"rm]))
- {C’l,...,C’m},

and it follows immediately from Theorem 3 that
MDUQU{C}H =MDUQU{C,...,Cnl}).
]

8 Correctness of Expanding-based
Rewriting Rules

Demonstrated in this section is the application of
expanding transformation in justifying the cor-
rectness of an important class of rewriting rules,
i.e., expanding-based rewriting rules, which sub-
sumes the class of general rewriting rules dis-
cussed in Section 7.

8.1 Expanding-based Rewriting Rules
Rewriting rules whose correctness can be veri-
fied based solely on the correctness of expanding
transformation and constraint solving for equal-
ity will be referred to as expanding-based rewrit-
ing rules. Every general rewriting rule is an
expanding-based rewriting rule.

(iven a definition part D' and a predicate p/
such that the number of clauses in D' whose
Leads are a p'-atom is m’', the rewriting rule
General(p’,D') is always applicable at any p'-
atom in the body of a clause and, when applied,
always rewrites the clause into m' clauses. One
can reduce the number of replacement clauses
in a transformation step by constraining the ap-
plicability of a rewriting rule, i.e., by restricting
the rule to be applicable only at atoms of some
specific pattern, and specifying the application
results only for atoms of this pattern. Minimiz-
ing the number of clauses resulting from a trans-
formation step in general yields considerable im-
provement in computation efficiency [5].

As an illustration, consider the rewriting rule

ry: app(&X,[&E), [&A, &B|&Z])
- eq(& X, [&A|#X1),
app(#X, [&E], [&B|&Z]).

This rule is only applicable at an ep-atom whose
second and third arguments are a singleton list
and a list with at least two elements, respec-
tively; and, when applied to a clause, it trans-
forms the clause into a single clause. As will be
demonstrated in the next subsection, the correct-
ness of this rule can be determined based solely
on Theorem 3 and constraint solving for equality;
it is therefore considered as an expanding-based
rewriting rule. The rule r; of Subsection 2.2 is
also an expanding-based rewriting rule.

8.2 Correctness of Expanding-based
Rewriting Rules

To verify the correctness of the rule ry of the

preceding subsection, consider a clause pattern

Ci: H « {app(&X,[&E), [&A, &B|&Z])}
U Es, :

where H represents an arbitrary atom; &4, &B,
&E,&X and &Z represent any arbitrary terms;
and Bs represents an arbitrary set of atoms. Any
clause of the form 4 can be expanded using D,
into two corresponding clauses of the patterns

ési H+ {EQ(&X:[])’EQ([&E],#YL R
eql[&A, &B|&Z], #Y)} U Bs

Cs: H & {eq(&X,[#A#X]), eq(|&E), #Y),
eq([&A, &BI&Z], (#Al#Z]),
app(#X,#Y,#2)} U Bs,

where #A4,#X,#Y and #Z represent arbitrary
but distinct variables that occur in none of the
terms represented by & A, &B,&E,&X and &2,
and occur neither in the atom represented by H
nor in any atom in the set represented by Bs.
By constraint solving for eg-atoms, any clause
of the form € can be removed (any ground in-
stantiation equalizing simultaneously the two ar-
guments of each eg-atom in its body requires
the variable represented by #Y to be instanti-
ated into a singleton list and a list containing
more than one element, which is a contradiction).
Next, by examination of the eg-atoms in its body,
(s can be simplified into

b H o {eg(&X, [&A|#X]),
app(# X, [&E|, [&B|&Z])} U Bs.

Now let ry be applied to a clause € from Ry to
Ry and assume that this application transforms
C into C'. Obviously, C must be a clause of
the pattern C4 and, moreover, ¢’ must be a cor-
responding clause of ' of the pattern C§f. Next
suppose that C'gzp, and ngp.z are corresponding
clauses of the patterns Cs and Cg, respectively, of
C. It is readily seen that the set {Crap,s CEzpy}

is a result of expanding C' using Dap. Then it
follows from Theorem 3 and the correctness of
constraint solving for eg-atoms that for any @ €
Dser(Ry, Ra), M(DopUQU{C}) = M(DopUQ
U{CEzp;, CEzpy}) = M(DapUQU{C’}). Hence,
the rule ry is correct with respect to D, and Rs.

9 Conclusions
The correctness of rewriting rules is a sufficient

condition for the correctness of computation in
the ET model. For practically checking their cor-
rectness, an appropriate foundation that facili-
tates the verification of systematic generation of
rewriting rules 3] is necessary. The suitability of
expanding transformation as such a foundation is
explained, and the correctness of this operation
is proved. Based on a framework for rigorously
discussing the application and the correctness of
rewriting rules, it is shown that the correctness of
general rewriting rules—rewriting rules with the
widest applicability—follows directly from the
correctness of expanding transformation, The
employment of expanding transformation in ver-
ifying the correctness of expanding-based rewrit-
ing rules—a larger and the most often-used class
of rewriting rules—by manipulation of atom pat-
terns and clause patterns is demonstrated.

Acknowledgement The first author was par-
tially supported by the Thailand Research Fund
{TRF;. The second author was partly supported
by Grant-in-Aid for Scientific Research (B)(2)
#12480076.

References
{1] Akama, K., Kawaguchi, Y., and Miyamoto,

E., Equivalent Transformation for Fqual-
ity Consiraints on Multiset Domains {in
Japanese), J. Japanese Society for Artificial
Intelligence, 13(3}, 395-403, 1098.

[2] Akama, K., Kawaguchi, Y., and Miyamoto,
E., Solving Logical Problems by Equivalent
Transformation—Limitations of SLD Reso-
lution (in Japanese), J. Japanese Society for
Artificial Intelligence, 13(6), 936-943, 1998,

(3] Akama, K., Koike, II., and Miyamoto, E.,
Program Synthesis from a Set of Definite
Clauses and a Query, Proc. 5th Interna-
tional Conference on Information Systems
Analysis and Synthesis, Orlando, Florida,
1999,

[4] Akama, K., Nantajeewarawat, E., and
Koike, H., A Class of Rewriting Rules
and Reverse Transformation for Rule-Based
Equivalent Transformation, Proc. 2nd Inter-
national Workshop on Rule-Based Program-
ming, Firenze, Italy, 2001.

10

[5] Akama, K., Shigeta, Y., and Miyamoto,
E., Solving Problems by Fquivalent Trans-
formation of Logic Programs, Proc. 5th
International Conference on Information
Systems Analysis and Synthesis, Orlando,
Florida, 1999.

(6] Akama, K., Shimizu, T., and Miyamoto,
E., Solving Problems by Equivelent Trans-
formation of Declarative Programs (in
Japanese), J. Japanese Society for Artificial
Intelligence, 13{6}, 944-952, 1998.

[7] Anutariya, C., Wuwongse, V., Nantajee-
warawat, E., and Akama, K., Towards Com-
putation with RDF Elements, Proc. Inter-
national Symposium on Digital Libraries,
Tsukuba, Japan, 1999.

[8] Burstall, R. M. and Darlington, J., A Trans-
formation System for Developing Recursive
Programs, J. ACM, 24(1)}, 44-67, 1977.

[9] Lloyd, J. W., Foundations of Logic Pro-

gramming, Springer-Verlag, 1987.

Nantajeewarawat, E., Wuwongse, V., Anu-

tariya, C., Akama, K., and Thiemjarus,

S., Towards Reasoning with UML Diagrams

Based-on Declarative Description Theory,

Proc. International Conference on Intel-

ligence Technologies, Bangkok, Thailand,

2000.

[11]) Pettorossi, K. and Proietti, M., Transforma-
tion of Logic Programs, Handbook of Logic
in Artificial Intelligence and Logic Program-
ming, Vol. 5, Oxford University Press, pp.
697-787, 1998,

{12] Robinson, J. A., A Machine-Oriented Logic

Buased on the Resolution Principle, J. ACM,

12, 23-41, 1965.

Suita, K., Akama, K., and Miyvamoto, E.,

Solving Constraint Satisfaction Problems by

Equivalent Transformation (in Japanese),

IEICE Tech. Report 5896-18, pp. 1-8, 1966.

[14] Suita, K., Akama, K., and Miyamoto,
E., Constructing Naturel Lenguage Un-
derstanding Systems Based-on Eguivelent
Transformation (in Japanese}, [IEICE Tech.
Report §597-35, pp. 23-30, 1997.

[15] Tamaki, K. and Sato, T., Unfold/Fold
Transformation of Logic Pragrams, Proc.
2nd International Conference on Logic Pro-
gramming, Uppsala, Sweden, 1984.

[16] Wuwongse, V., Anutariya, C, Akama, K.,
and Nantajeewarawat, E., XML Declaorative
Description: A Language for the Semantic
Web, IEEE Intelligent Systems, 16(3), 54—
65, 2001.

[10]

[13]

Electronic Notes in Theoretical Compuler Science 58 No. 4 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume59.html 16 pages

A Class of Rewriting Rules and
Reverse Transformation for
Rule-based Equivalent Transformation

Kiyoshi Akama !

Center for Information and Multimedia Studies
Hokkaido University
Sapporo, Hokkaido, 060-0811, Japan

Ekawit Nantajeewarawat 3

IT Program, Sirindhorn Internetional Institute of Technology
Thammasaet University, Rongsit Campus
P.0O. Box 22, Thammasat-Rangsit Post Office, Pathumthani 12121, Thailand

Hidekatsu Koike ®

Division of System and Information Engineering
Hokkaido University
Sapporo, Hokkaido, 060-0811, Japan

Abstract

In the rule-based equivalent transformation (RBET) paradigm, where computation
is based on meaning-preserving transformation of declarative descriptions, a set of
rewriting rules is regarded as a program. The syntax for a large class of rewriting
rules iz determined. The incorporation of meta-variables of two different kinds
enables precise control of rewriting-rule instantiations. As a result, the applicability
of rewriting rules and the results of rule applications can be rigorously specified.
A theoretical basis for justifying the correctness of rewriting rules is established.
Reverse transformation operation in the RBET framework is discussed, and it is
shown that a correct rewriting rule is reversible, i.e., a correct rewriting rule can in
general be constructed by syntactically reversing another correct rewriting rule,

Akama was partly supported by Grant-in-Aild for Scientific Research (B)(2} #12480076.
Fmail: akama®cims.hokudai.ac.jp

Nantajeewarawat was supported partially by the Thailand Research Fund.

Email: ekawit@siit.tu.ac.th

Email; koke@cims.hokudai.ac.jp

L I L I~ I

(©2001 Published by Elsevier Science B. V.

AKAMA, NANTAJEEWARAWAT AND KOIKE

1 Introduction

Rule-based equivalent transformation of declarative descriptions (RBET) [1] is
a new promising method of problem solving. In the RBET framework, a prob-
lem is formulated as a declarative description, represented by the union of two
sets of definite clauses, one of which is called the definition part, and the other
the query part. The definition part provides general knowledge about the prob-
lem domain and descriptions of some specific problem instances. The query
part specifies a question regarding the content of the definition part. From
the definition part, a set of rewriting rules—rules for transforming declarative
descriptions—is prepared. The problem is then solved by transforming the
query part successively, using the prepared rewriting rules, into another set
of definite clauses from which the answers to the specified question can be
obtained easily and directly.

Example 1.1 Consider a simple problem formulated as the union of a defi-
nition part Dy, consisting of the four definite clauses

initial(X, Z) — append(X,Y, Z)
append([], Y, Y)

append([A|X], Y, [AZ]) — append(X, Y, Z)
equal(X, X) «—

and a query part ¢} containing only the definite clause
Cy: ans{X) «— dnitial(X, [1,2,3]), initial (X, [1, 3, 5]).

To solve this problem, i.e., to find the answers to the query part ¢}, by means of
RBET, ¢) will be transformed successively, using some rewriting rules prepared .
from Dj,;, until the simpler query part @' consisting of the two unit clauses

ans([]) —
ans([1]) —

is obtained, from which the answers, i.e., X = (] and X = 1], can be directly
drawn. One possible successive transformation of Q) into ' is demonstrated
in the appendix.]

A rewriting rule specifies, in its left-hand side, a pattern of atomic formulas
(atoms) to which it can be applied, and defines the result of its application
by specifying, in its right-hand side, one or more patterns of replacement
atoms. The rule is applicable to a definite clause when the pattern in the
left-hand side matches atoms contained in the body of the clause—in other
words, when atoms contained in the body of the clause are instances of the
specified pattern. When applied, the rule rewrites the clause into a number of
clauses, resulting from replacing the matched body atoms with instances of the
patterns in the right-hand side of the rule. Determination of rule applicability
by pattern matching, rather than unification, allows one to tailor a rewriting
rule for some specific pattern of atoms for the sake of computation efficiency.

2

AKAMA, NANTAIEEWARAWAT AND KOIKE

Hlustrations of rewriting rules are deferred until Section 2.

The crucial roles of atom patterns in determining rule applicability and
specifying the results of rule applications necessitate an appropriate syntactic
structure for representing the patterns in such a way that their instantiations
can be precisely and suitably controlled. For this purpose, the notion of meta-
atom 1s introduced. Meta-atoms have the same structure as usual atoms
except that two kinds of meta-variables—&-variables and #-variables—are
used instead of ordinary variables. The two kinds of meta-variables have
different instantiation characteristics. Not only do the differences allow precise
specifications of rewriting rules; they enable rigorous investigation of several
important properties of several kinds of transformation steps, e.g., correctness
of expanding transformation (7|, and, moreover, as shown in [3|, systematic
generation of correct rewriting rules from a problem specification.

In the RBET framework, the correctness of computation relies solely on the
correctness of each transformation step. Given a declarative description DUQ,
where D and) represent the definition part and the query part, respectively,
of a problem, the query part () is said to be transformed correctly in one step
into a new query part ¢’ by an application of a rewriting rule, if and only if
the declarative descriptions D U @ and D U Q' are equivalent, i.e., they have
the same declarative meaning. A rewriting rule is considered to be correct, if
and only if its application always results in a correct transformation step. A
correct rewriting rule will be referred to as an Equivalent Transformation rule
(ET rule). If ET rules are employed in all transformation steps, the answers
obtained by means of RBET are guaranteed to be correct.

1.1 Comparison Between RBET and the Logic Programming Paradigm

Comgputation

Although declarative descriptions considered in this paper have the same form
as definite logic programs [5], computation in RBET differs significantly from
that in logic programming. Computation in logic programming is based on
logical deduction—computation is viewed as the process of constructing, based
on the resolution principle [10], a proof of an existentially quantified query by
finding variable substitutions, called computed substifutions, that make the
query follow logically from a given logic program. In RBET, by contrast,
computation is regarded as transformation of declarative descriptions rather
than logical deduction.

Separation of Programs from Declarative Descriptions

In logic programming, a set of definite clauses has a dual function: it serves asa
declarative description of a problem—it declaratively represents the knowledge
about the problem domain and defines what the problem is-—while at the
same time functions as a program—it specifies how to solve the problem.
The programnming character of a set of definite clauses arises from viewing

3

AKAMA, NANTAIEEWARAWAT AND KOIKE

it as a description of a search whose structure is determined by interpreting
the logical connectives and quantifiers as fixed search instructions [6]. The
procedural expressive power of a logic programming language, such as Prolog,
is limited by such fixed procedural interpretation and the fixed search strategy
embedded in the proof procedure associated with the language.

In the RBET framework, instead of a set of definite clauses, a set of rewrit-
ing rules is regarded as a program. The procedural interpretation of definite
clauses can be realized using rewriting rules of a basic kind, called unfolding-
based rewriting rules [1]. However, several other rewriting rules can addition-
ally be employed in RBET, thereby a wider variety of computation paths are
allowed and a more efficient program can consequently be achieved [1]. The use
of a set of rewriting rules as a program also enables flexible computation—
an effective control strategy can be materialized by means of, for example,
rule-firing control and user-defined priority-based selection of rules [1].

Theoretical Foundation for Correctness

While the correctness of computation in RBET is based solely on meaning
preservation of declarative descriptions, the correctness of computation in logic
programming is grounded upon the logical consequence relation {|=), i.e., given
a logic program P and an atom g, a computed substitution & is correct if and
only if P |= V¥(gf). The notion of logical consequence in turn relies on the
elementary concepts, e.g., the concepts of interpretation, satisfaction, and
model, of the model theory associated with first-order logic. These concepts
are not necessary in the RBET framework.

The correctness of computation in logic programming cannot be guaran-
teed by the correctness of inference rules solely; it also depends on the com-
putation procedure employed. When the computation procedure is improved
or extended, the correctness of the procedure as a whole has to be proven.
In comparison, to verify the correctness of computation in RBET, it suffices
to prove the correctness of each individual rewriting rule. A program in the
RBET framework can therefore be decomposed; consequently, RBET-hased
systems are amenable to modification and extension.

1.2 Comparison Between RBET and Program Transformation in Logic Pro-
gramming

Objectives and Transformed Parts

The objective of RBET is different from that of program transformation in
logic programming (PT) [8,9]. While RBET is a method for computing the
answers to a question with respect to a given definition part, PT is a method-
ology for deriving an efficient logic program from the definition part. Let a
definition part Dg be given. In RBET, to compute the answers to a query
part Qg with respect to Dy, one constructs from GJo, by successive application
of rewriting rules prepared from Dy, a sequence g, .. ., &}, such that for each

4

AKAMA, NANTAJEEWARAWAT AND KOIKE

i (0 <@ <mn), DouU@; and Dy U @iy have the same declarative meaning
and the answers can be directly obtained from @),,. The definition part Dy is
unchanged throughout the transformation process. In comparison, in PT only
the definition part is transformed. That is, from Dy, which is regarded as the
initial logic program, one constructs by using transformation rules, such as
the unfolding and folding rules, a sequence of logic programs Dy, .. ., D,, such
that Dy and D, yield the same answers to some class of queries, but D,, is
more efficient than Dy; then, when a query in that class is given, the program
Dy, will be used for computing the answers to the query by means of some
proof procedure.

Example 1.2 Consider the definition part D,,;; of Example 1.1. Following
PT, D, may be transformed successively, using the unfolding and folding

rules, into the logic program D ;.

initial([],Y) «

inttial([A| X], [A|Z]) — initial(X, Z)
append([],Y,Y) —

append([A|X],Y, [A|Z]) «— append(X.Y, Z)

Dipy and D, ,, have the same declarative meaning with respect to the predi-
cates initial and append; however, computing the answers to a query contain-
ing the predicate inétial using D], ,, requires fewer number of resolution steps

than using Dipn. O

In PT the efficiency of the program resulting from a transformation pro-
cess, rather than the transformation process itself, is the primary concern. In
RBET, on the other hand, as transformation is the main computation mech-
anism, transformation processes are required to be efficient. The efficiency of
a transformation process in RBET is achieved by the employment of efficient
rewriting rules and appropriate rule-application control strategies [1].

Correctness and Independence of Rules

In PT, a transformation step which derives Dy, from a transformation se-
quence Dy, ..., D is correct, if and only if for each query g containing only
predicate symbols which occur in Dy, D and Dy, provide the same answers
te ¢. The correctness of a transformation step in PT can in general not be
determined independently; e.g., the correctness of a folding step deriving Dy 4
from a transformation sequence Dy, .. ., I}, requires some conditions to ensure
that enough unfolding steps have been performed in the sequence Dy, ..., Dy
[9]. The next example shows that an application of the folding rule may yield
an incorrect transformation step. :

Example 1.3 Refer to the definition part D,,;; of Example 1.1. Folding the
first clause, i.e.,
initial(X, Z) — append(X,Y, Z),
5

AKAMA, NANTAJEEWARAWAT AND KOIKE

using itself results in the logic program DY

init*
inttial(X, Z) — initial(X, Z)
append(],Y,Y) «
append([A|X],Y, [A|Z]) « append(X.Y, Z)

Since the meaning of the predicate initial defined in Djn;, is lost in D}, this
transformation step does not preserve the answers to queries concerning the

predicate initial and is therefore not correct. a

In RBET, by contrast, since only a query part, which depends exclusively
on a fixed definition part, is transformed, the correctness of a transformation
step can be justified independently, i.e., given a definition part D, the correct-
ness of a transformation step deriving a query part ¢;1 from a query part Q;
is determined by the meanings of DUQ; and DUQ;,, solely, regardless of its
preceding transformation steps. Consequently, the correctness of a rewriting
rule can also be determined independently in the RBET framework. Such
independence of rewriting rules is apparently desirable for the construction of
large-scale rule-based systems.

1.8 Objectives of the Paper

Syntax for Rewriling Rules. The first objective of this paper is to determine
appropriate syntax for a large class of rewriting rules. The syntactic struc-
ture of rewriting-rule components as well as their instantiations should be
suitably defined in order that they can be used to precisely specify rule ap-
plicability and the results of rule applications.

Theoretical Framework for Correctness of Rewriting Hules. The next objective
is to establish, based on meaning-preserving transformation of declarative
descriptions rather than logical inference, a theoretical framework for dis-
cussing the correctness of rewriting rules,

Reverse Transformation. The third objective is to introduce the reverse trans-
formation operation, and to show that in the RBET framework an ET rule
is reversible, i.e., one can obtain a rewriting rule the operation of which
reverses that of another rewriting rule by syntactically reversing the lat-
ter rewriting rule, and the correctness of the former depends solely on the
correctness of the latter.

Section 2 explains the necessity of meta-variables, and provides introduc-
tory examples of rewriting rules, reverse transformation, and reverse rewriting
rules. Section 3 defines preliminary syntactic components, which are used for
defining declarative descriptions and their meanings in Section 4, and rewrit-
ing rules, their applications, and their correctness in Section 5. Section 6
investigates the correctness of reverse rewriting rules.

6

AKAMA, NANTAJEEWARAWAT AND KOIKE

2 Meta-Variables and Reverse Rewriting Rules

The need for the use of meta-variables of two distinet kinds for specifying
patterns of atoms, and the necessity of conditions for regulating meta-variable
instantiations will be described first. Reverse transformation operation and
reverse rewriting rules will then be introduced.

2.1 Need for Meta-Variables of Two Kinds

Consider the definition part Dj, and the query parts @ and @’ of Example 1.1,
As the first step of a possible transformation sequence leading to @, the clause

Cy: ans(X) «— matial(X, [1,2,3]), inetial (X, [1, 3, 5])

in @ may be transformed by replacing its first body atom with append(X,Y, [L,
2, 3]), resulting in the clause

Cy: ans(X) — append(X,Y, [1,2, 3]}, initial{ X, [1, 3, 5]).

This transformation step is correct since Djni U {C1} and Dy U {C3} have
the same meaning.
The above transformation step can be described by the rewriting rule

ry: initial(&X, &Z) — append(&X, &Y, &2Z),

where the arrow “—” intuitively means “can be replaced with” and the left-
hand side and the right-hand side of r, specify the pattern of atoms to which
the rule is applicable and the pattern of replacement atoms, respectively. The
symbols & X, &Y and &Z are used in r; as instantiation wild cards, i.e., each
of them can be instantiated into an arbitrary term, and also as equality con-
straints, i.e., each occurrence of the same wild card must be instantiated into
the same term. By instantiating &X, &Y and &Z into the terms X, Y and
[1,2, 3], respectively, the pattern in the left-hand side matches the first body
atom of ¢y and that in the right-hand side is instantiated into the first body
atom of Cy—that is, by applying r; to the first body atom of C; using this
instantiation, C; is transformed into Cs.

The dual role of the symbols & X, &Y and &2 as wild cards and equal-
ity constraints is reminiscent of the concept of variable. Notwithstanding,
these svmbols should be distinguished from ordinary variables that are used
in definite clauses since they are used differently; for example, they can be
instantiated into ordinary variables but they are not substituted for ordinary
variables in any substitution application. To emphasize the differences, the
symbols &X, &Y and &Z will be regarded as meta-variables, and will be
referred to as &-variables.

However, the rewriting rule r; does not always specify a correct transfor-
mation step. For example, the application of r; to the first body atom of C,
by instantiating &Y into the variable X transforms C) into the clause

Cy: ans{X) — append(X, X, [1, 2, 3]),initial (X, [1, 3, 5]},
7

AKAMA, NANTAJEEWARAWAT AND KOIKE

but D U {Ci} and Dy U {Cs} have different meanings.

To ensure a correct transformation step, some restrictions on rule instan-
tiations are required. Another kind of meta-variable, called #-variables, is
introduced for this purpose. As an example, a #-variable, #Y, will be used
instead of the &-variable &Y in the right-hand side of ry, i.e., the rule

ro: initial(&X,&Z) — append(&X,#Y,&2)

will be used instead of v;. Then, any instantiation of this rule is regulated in
such a way that the #-variable #Y can only be instantiated into an ordinary
variable that does not appear in the other part of the clause resulting from an
application of the rule. This instantiation constraint precludes the instantia-
tion of #Y into the ordinary variable X when the rule r; is applied to the first
body atom of Cy; as a result, the transformation of ¢} into Cj is prevented.

2.2 Reverse Transformation

In the RBET framework, the reverse of a correct transformation step is always
a correct transformation step. For instance, from the step transforming C;
into C, illustrated in the preceding subsection, one can have the reverse step
transforming C, into C}, which may be described by the rewriting rule

ry: append(&X, &Y, &Z) — initial(& X, &Z),

and the correctness of the latter step follows from the correctness of the former
step. In general, however, the application of the rule r3 may result in an
incorrect transformation step. For example, by instantiating the &-variable
&Y into X, the application of r3 to the first body atom of the clause Cj of the
previous subsection yields an incorrect transformation step deriving C; from
Cl.

Again the employment of meta-variables of the two kinds, with different
instantiation characteristics, remedies this problem. Instead of using rj, the
transformation of € into € can be described using the rewriting rule

rqe: append(&X, #Y,&2Z) — initial(&X, &7),

while the application of ry to the first body atom of Cj3 can be ruled out by
appropriately restricting the instantiation of the #-variable #Y, ie., #Y is
only allowed to be instantiated into a variable that does not occur in the other
part of Ci.

Rigorous description of rewriting rules and their applications demands pre-
cise conditions for instantiations of meta-variables in rule applications. For
the sake of generality and regularity, the conditions should not be specialized
for any particular case, but common to all rewriting rules. Such common con-
ditions will be defined in Section 5 (Conditions (MVI-1), (MVI-2), (MVI-3)
and (RRA-2)).

Notice that the rule r4 can be obtained by simply reversing the rule r4 of
the preceding subsection. It will be shown in Section 6 that in the RBET

8

AKAMA, NANTAJEEWARAWAT AND KOIKE |

framework a correct rewriting rule can in general be constiucted by reversing
another correct rewriting rule.

3 Basic Syntactic Components

The alphabet used in the paper will now be given; then, the notions of term
and atom, which are basic components of definite clauses and declarative
descriptions, and those of meta-term and meta-atom, which are used for spec-
ifying patterns of terms and atoms, respectively, will be defined.

Alphabet
An &-variable is a variable that begins with the symbol &; for example, &N
and &X are &-variables. A #-varieble is a variable that begins with the
symbol #; for example, #X and #Y are #-variables. An &-variable as well
as a ##-variable is called a meta-varieble. An ordinary variable is assumed to
begin with neither & nor #.

Throughout the paper, an alphabet A = (¥, F, V| R) is assumed, where K
is a set of constants, including integers and nil; F a set of functions, including
the binary function cons; V is the disjoint union of two sets

= 1) of ordinary variables,

« V, of meta-variables;

and R i1s the union of two mutually disjoint sets of predicates
» Ry = {initial, append, equal, ... },

« Ry = {ans,yes, ... }.

When no confusicn is possible, an ordinary variable in V] and a meta-variable
in V5 will be simply called a variable and a meta-variable respectively.

Terms, Meta-Terms, Atoms, and Meta-Atoms

Usual first-order terms on (K, F,V}) and on (K, F, V,) will be referred to as
terms and meta-terms, respectively, on A. Given R C R, usual first-order
atoms on (K, F, V1, R") and on (K, F, V5, R} will be referred to as atoms on
R’ and meta-atoms on R/, respectively. For example, assume that {X, Y} C 1,
and {& X, #Y} C V,. Then, nil, X and cons(X, cons(Y,nil)} are terms on A;
nil, &X and cons(& X, cons(#Y, nil}) are meta-terms on A; initial (X, cons(X,
cons(Y,nil))) is an atom on fi;; and initéial(&X, cons(&X, cons(#Y, nil))) is
a meta-atom on f;. The standard Prolog notation for lists is adopted; e.g.,
[X,Y] and {7, #X|&Y] are abbreviations for the term cons(X, cons(Y, nil))
and the meta-term cons(7, cons(#X, &Y')), respectively.

First-order atoms on (K, F,§), R} are called ground atoms on A. In the
sequel, let 7 be the set of all terms on A, and G the set of all ground atoms
on A; also let A; and fi,, be the set of all atoms and the set of all meta-atoms,
respectively, on R;, where 7 € {1, 2}.

AKAMA, NANTAJEEWARAWAT AND KOIKE

4 Declarative Descriptions and Their Meanings

In general, the RBET framework can deal with several data structures other
than usual first-order terms, e.g., multisets, strings; and a declarative descrip-
tion can be represented by a set of definite clauses extended with these data
structures (2,4]. For simplicity, however, only usual terms are used in this pa-
per; that is, a declarative description is a set of usual definite clauses. Definite
clauses and declarative descriptions considered herein as well as the meanings
of declarative descriptions will now be defined.

Definite Clauses and Declarative Descriptions
A definite clause C on A is an expression of the form A «— Bs, where A is
an atom on R and Bs is a (possibly empty) set of atoms on R. The atom A
is called the head of C, denoted by head(C); the set Bs is called the body of
C, denoted by Bedy(C); each element of Body(C) is called a body atom of C.
When Body(C) = 9, C will be called a unit clause. The set notation is used in
the right-hand side of C so as to stress that the order of the atoms in Body{C)
is immaterial. However, for the sake of simplicity, the braces enclosing the
body atoms in the right-hand side of a definite clause will often be omitted;
e.g., the definite clause ans{(X) «— {append(Y, X, Z), initial(Y, Z)} will often
be written as ans(X) — append(Y, X, Z), initial(Y, Z).

Let 2 € {1,2}. A definite clause C is said to be from R, to R;, if and only
if Body{C) C A, and head(C) € A;. A declarative deseription from Ry to R;
is a set of definite clauses from R; to R;. The set of all declarative descriptions
from R; to R; will be denoted by Dscr(Ry, R:).

Meanings of Declarative Descriptions

Let S be the set of all substitutions on (K, ¥, V7). The application of a sub-
stitution # to an expression E (which can be, for example, a term, an atom, a
set of atoms, or a definite clause) will be denoted by Ef. Given a declarative
description P ¢ Dser(Ry, R;), the mapping Tp on 29 is given by

Tr(X) — {head(C8) | (C € P) & (A € S)
& (head(C8) € G) & (Body(C0) C X))},

and then, the meaning of P, denoted by M(P), is defined by
M(P) = THOYUTE@) U TE@)U - = UL TR(9),
where TH(0) = Tp(#) and TR(B) = Te(Th™'(8)) for each n > 2.

5 Rewriting Rules, Their Applications, and Their Cor-
rectness

The syntax for a large class of rewriting rules is next presented. Coupled with
some restrictions on meta-variable instantiations, this syntax enables one to

10

| AKAMA, NANTAJEEWARAWAT AND KOIKE

~control the' applicability of rewriting rules and to specify the results of rule
applications in a precise way. '

Syntax of Rewriting Rules
A rewriting rule on R; takes the form

Hs — Bsy,
— Bs,,

where n 2 0, and Hs and the Bs; are subsets of .fil. For the sake of simplic-
ity, the braces enclosing the meta-atoms in each side of a rewriting rule may be
omitted; e.g., the rewriting rule {initial(& X, &Z)} — {append(& X, #Y,&2Z)}
will also be written as initial(&X, &Z) — append(&X, #Y,&2).

Meta-Variable Instantiations
A meta-variable instantiation is a mapping & from V, to 7 that satisfies the
following three conditions:

(MVI-1) For each #-variable v, 8(v) is a variable.

(MVI-2) For any distinct #-variables v and ¢/, 8(v) # 8(v').

(MVI-3}) For any &-variable u and #-variable v, 6{v) does not occur in
2(u).

Let £ be an expression containing meta-variables (E can be, for example,
a meta-term, a meta-atom, or a set of meta-atoms). Then, given a meta-
variable instantiation @, let £ denote the expression obtained from £ by
simultaneously replacing each occurrence of each meta-variable u in £ with

f{u).

Applicability of Rewriting Rules
Let r be a rewriting rule on R,

Hs — Bsy;
— Bs,
wheren > 0, and Hs and the Bs; are subsets of Ay. Let C be a definite clause

A «— BsUB§

from R, to Ry. The rewriting rule r is said to be applicable to C at Bs by
using a meta-variable instantiation €, if and only if the following conditions
are both satisfied:

(RRA-1) Hsf = Bs.
(RRA-2) For any #-variable v, 8(v) occurs in neither A nor Bs'.
11

AKAMA, NANTAJEEWARAWAT AND KOIKE

When 7 is applied to C at Bs by using the meta-variable instantiation g, it
rewrites C' into n definite clauses C, ..., C,, where for each i {1 <7 < n),

Ci = (A « Es,ﬂUBs’).

When Bs is a singleton set {8}, the application of » to C' at Bs will also be
referred to as the application of r to the body atom B of C.

When there are more than one applicable rewriting rule, one of them will
be nondeterministically selected; hence, computation in RBET is nondeter-
ministic.

Examples illustrating the application of rewriting rules are given below.

Example 5.1 Refer to the rewriting rules v, and r4 and the definite clauses
C1, Co and C; of Section 2. Let #: Vo — 7 such that 8(&X) = X, 8(#Y) =Y,
#(&Z) = [1,2,3] and @ satisfies Conditions (MVI-1}, (MVI-2) and (MVI-3).
Then, since Y occurs in neither the head nor the second body atom of Cy, o
can be applied to C) at {initial(X,[1,2,3])} by using 6, and this application
rewrites C into Cs. Likewise, the application of r4 to C; at {append(X,Y, (1,
2,3))} by using ¢ rewrites C; into C;. Now consider the clause C3. The rule
T4 18 not applicable to Cj, since every ¢ : Vo — 7 such that

append(&X, #Y,&2)o = append(X, X, (1,2, 3])
requires that o(&X) = X = o(#Y), violating Condition (MVI-3). a
Example 5.2 Consider the rewriting rule
rs. append(&X, &Y, &Z)
— equal(&X, []), equal(&Y, &2);
— equal(&X, [#A|#X]), equal(&Z, [# Al# 2},
append(#X, &Y, #72),
and the clause
Cy: ans(X) « append{X,[E],[1,2]).
The application of the rule r5 to C, transforms Cj into the two definite clauses
Cs: ans(X) — equal(X,[]), equal ([F], [1, 2])
Cs: ans(X) — equal(X,[A1|X1]), equal{[1, 2], {A1|Z1]),
append(X 1, [E], Z1)
by using a meta-variable instantiation # such that 8(&X) = X, §(&Y) = [E],
B(&Z) = [1,2], (#A) = Al, 6(#X) = X1 and 6(#Z) = Z1. The clause
Cg can he further transformed by the application of r5. Notice that r5 1s also
applicable to the clause Cy of Section 2 at {append(X,Y,[1,2,3])}. O

Since the rule ry of Section 2 and the rule ry of Example 5.2 are applicable
to an initiel-atom of any pattern and an append-atom of any pattern, respec-
tively, and their applications correspond to the unfolding operation, they will
be referred to as unfolding-based general rewriting rules. The next example
illustrates rewriting rules that are devised for atoms of specific patterns.

12

AKAMA, NANTAJEEWARAWAT AND KOIKE

Example 5.3 Referring to the definition part D;,;; of Example 1.1, consider
the query part consisting only of the clause Cy of Example 5.2, Suppose that
the rewriting rules prepared from the definition part Dy,;; include the rules:

re: append(& X, [&F], [&A, &B|&Z])

— equal{&X, [&A|#W)), append(#W, [&E], [&B|&Z])

re. append(&X, [&E), [&A]) - equal(&X,[]), equal (& E, & A)
The rewriting rule rg can be applied to Cy at {append(X,[E], [1,2])}, trans-
forming €4 into the clause

C?': CLTLS(X) A equal(X, [IIW])1 append(wn [E]? [2])
Then, by applying the rule r; to C; at {append(W, [E], [2])}, C; can be trans-
formed into the clause

Cyg: ans(X) « egqual(X, [1|W]), equal(W, []), equal(E, 2),

from which the answer, X = [1], can be derived. In comparison to the applica-
tion of the rule r5 in Example 5.2, notice that neither the application of rg nor
that of ry increases the number of clauses in the query part. In general, the
efficiency of computation can be improved by avoiding transformation steps
that increase the number of clauses. @]

Next, what it means for a rewriting rule to be correct is formally defined.

Correctness of Rewriling Rules

Let D € Dscr(Ry, Ry). A rewriting rule » on Ry is correct with respect to
D and Ry, if and only if for any declarative description @@ € Dscr(Ry, R)
and any definite clauses C,Cy,...,C, from R; to Ra, if r rewrites C into
Ci,...,Cy, then

M{DUQU{CY) = MDUQUI{CL,...,Cu}).

6 Correctness of Reverse Rewriting Rules

Based on the established foundation for correctness of rewriting rules, it will
now be shown that one can in general construct a correct rewriting rule by
simply reversing another correct rewriting rule.

Theorem 6.1 (Correctness of Reverse Rewriting Rules)
Let D € Dscr(Ry, Ri}). Let r be a rewriting rule

As — Bs
on Ry. Let reverse(r) be the rewriting rule
Bs — As
on Ry. Ifr is correct with respect to D and Ry, then reverse(r) is also correct
with respect to I} and Rs.
13

AKAMA, NANTAJEEWARAWAT AND KOIKE

Proof. .
Let @ be a declarative description in Dser(Ry, Ry}, C a definite clause

C. H « BsUBS¢

from R, to Ra, and let r be correct with respect to D and Rp. Suppose that
reverse(r) is applied to C at Bs by using a meta-variable instantiation 6.
Then, Bs = Bs# and reverse(r) rewrites C into the clause

¢ H «— As#UBs.
It has to be shown that M(DUQU{C}) = M(DUQU{C'}). Clearly, by
using the meta-variable instantiation @, r is applicable to C’ at the set. Asf.
This application of r rewrites the set As# in the body of C’ into Bsé, which
is equal to Bs. That is, C’ is rewritten into C by this application. Since 7 is

correct with respect to I and Ry, M(DU QU {C}) and M{(DUQU {C'})
are equal. So reverse(r) is correct with respect to D and Ro. O

7 Conclusions

Each resolution step in the proof procedures associated with logic program-
ming corresponds to an unfolding transformation step in RBET, which can be
realized by the employment of unfolding-based general rewriting rules. How-
ever, while resolution is the only means of inference in logic programming,
a variety of other rewriting rules can be used in RBET. The RBET frame-
work therefore allows a wider variety of computation paths and, as a result,
more efficient programs. Despite its simplicity, the RBET framework enables
the development of a solid theoretical basis for determining the correctness of
rewriting rules of various kinds. As long as correct rewriting rules are used
throughout a transformation process, correct computation is always obtained.
Experimental RBET-based knowledge processing systems in various applica-
tion domains have been implemented at Hokkaido University, and satisfactory
results revealing the usefulness of the framework have been obtained.

In this paper, the syntax for a large class of rewriting rules is proposed.
This class of rewriting rules can represent unfolding-based general rewriting
rules (e.g., the rules r3 and ry of Subsection 2.1 and Example 5.2, respec-
tively), folding-like rules (e.g., the rule 74 of Subsection 2.2}, and rules that
are applicable to atoms of specific patterns {e.g., the rules 74 and »ry of Ex-
ample 5.3). By incorporation of meta-variables of two kinds (&-variables and
#-variables), the proposed syntax facilitates precise control of rewriting-rule
instantiations and applications, which is necessary for ensuring the correctness
of computation. A theoretical basis for verifying the correctness of rewriting
rules is formulated. The reverse transformation operation is introduced, and
it is shown that in general a correct rewriting rule can he obtained by simply
reversing another correct rewriting rule.

In addition to the necessity identified in this paper of the use of meta-

14

AKAMA, NANTAIEEWARAWAT AND KOIKE

variables of the two kinds for specifying atom patterns in rewriting rules, it
is demonstrated in [3] that the distinction between these two kinds of meta-
variables also enables meaningful manipulation of atom patterns in the process
of systematically generating rewriting rules from a definition part by means
of meta-rules and is essential for controlling the generation process. Although
reverse transformation may lead to an infinite loop in ordinary computation, it
provides a foundation of folding-like meta-level transformation in the genera-
tion of rewriting rules and the correctness of reverse rewriting rules is essential
for verifying the correctness of folding-like meta-rules.

Appendix

Referring to Example 1.1, @ can be transformed into @' as follows. (The
selected atom in each step is underlined.)

1: ans(X) — append(X,Y1,(1,2,3]), tnitial(X, (1,3, 5])
2. ans([]) « indtial(]],[1, 3, 5))
ans([1|X1]) «— append(X1,Y1,(2,3]), initial([1|X1],[1, 3, 5])
3: ans([]) « append([],Y2,[1,3,5)])
ans{[1|X1]) «— append(X1,Y1,[2,3]), initial([1|1X1], (1,3, 5])
4: ans{[]}
ans([1|X 1]} « append(X1,Y1,[2,3]), initial([1|X1], [L, 3, 5])
5 ans{[]) <
ans([1]) « enitial([1],[1,3,5])
ans([1][2|X2]]) « append(X2,Y1, (3]}, initial{[1|[2|X2]], [1, 3, 5])

6: ans([]) <

ans([1]) — append([1],Y3,[1, 3, 5])

ans([ﬂmXQ]]) — append(X2,Y1,[3]), initial([1|[2|X 2], [1, 3, 5])
70 ans{]

ans([1]} — append([],Y3,[3,5])

ans{{1][2|X2]]) «— append(X2,Y1,([3]), initial([1|[2|X2]], [1, 3, 5])
H: mm%[{H

ans([1][2(X2]]) « append{X2,Y1, (3]}, inttial([1][2] X 2]], [1. 3, 5])
9 ans(]]) «

ans([1]) «

ans([1[2|X2)]) «— append(X2,Y1, [3]), append{[1|[2|X2]], ¥ 4,[1, 3, 5])
10 (”HEH

rns{]l1

ans([1][21X2]]) — append(X2,Y1, [3]), append({2| X 2], Y4, [3,5])
11: ans([]) «

ans([1]) —

There are several other possible ways of transforming @ into ¢}, some of
which mayv result in a sequence that is shorter than the one shown above.

15

AKAMA, NANTAJEEWARAWAT AND KOIKE
References

|1] Akama, K., Shigeta, Y., and Miyamoto, E., Solving Problems by Egquivalent
Transformation of Logic Programs, in Proceedings of the Fifth International
Conference on Information Systems Analysis and Synthesis (ISAS’99), Orlando,
Florida, 1999,

{2] Akama, K., Kawaguchi, Y., and Miyamoto, E., Equivalent Transformation
for Equality Constraints on Multiset Domains {in Japanese), Journal of the
Japanese Society for Artificial Intelligence 13 (1998), pp. 395-403.

[3] Akama, K., Koike, H., and Miyamoto, E., Program Synthesis from a Set
of Definite Clauses and a Query, in Proceedings of the Fifth International
Conference on Information Systems Analysis and Synthesis (ISAS'99), Orlando,
Florida, 1999,

[4] Akama, K., Okada, K., and Miyamoto, E., A Foundation of Equivelent
Transformation of Negative Constraints on String Domains (in Japanese),
IEICE Technical Report, SS97-91, pp. 33-40, 1998.

[5] Lloyd, J. W., “Foundations of Logic Programming”, second, extended edition,
Springer-Verlag, 1987.

|6] Loveland, D. W. and Nadathur, G., Proof Procedures for Logic Programming, in:
Gabbay, D. M., Hogger, C. J., and Robinson, J. A. {eds.), “Handbook of Logic
in Artificial Intelligence and Logic Programming”, Vol. 5, Oxford University
Press, 1998, pp. 163-234.

[7] Nantajeewarawat, E., Akama, K., and Koike, H., Erpanding Trensformation
as a Basis for Correctness of Rewriting Rules, in Proceedings of the Second
International Conference on Intelligent Technologies (InTech’01), Bangkok,
Thailand, 2001.

[8] Pettorossi, K. and Proietti, M., Transformation of Logic Programs: Foundations
and Technigques, Journal of Logic Programming 19/20 (1994), pp. 261-320.

[9] Pettorossi, K. and Proietti, M., Transformation of Logic Programs, in: Gabbay,
D. M., Hogger, C. J., and Robinson, J. A. (eds.), “Handbook of Logic in
Artificial Intelligence and Logic Programming”, Val, 5, Oxford University Press,
1098, pp. 697-787.

[10] Robinson, J. A., Machine-Oriented Logic Bused on the Resolution Principle,
Journal of the ACM 12 (1965), pp. 23-41.

16

Published in Proceedings of the Joint International Canference of SNLP - Oriental COCOSDA 2002
Hua Hin, Prachuapkirikhan, Thaifand, pages 89-86, May 2002. {SBN 974-572.947-7,

The Roles of Ontologies in Manipulation of XML Data

Hataichanok Unphon

Ekawit Nantajecwarawat

Information Technology Program
Sirindhorn International Institute of Technology, Thammasat University
P.0. BOX 22, Thammasat Rangsit Post Office, Pathumthani 12121, Thailand
e-mail : unphon@siit.tu.ac.th, ekawit@siit.ta.ac.th

Abstract

Generally defined as a formal specifica-
tion of shared conceptualizations of a
domain, an ontology provides a com-
mon understanding of topics that can be
communicated between people and het-
erogeneous application systems. Limita-
tions of Data Type Definitions and Re-
source Description Framework Schemas
as ontology languages are identified;
then, an ontology language, called
Lonto, 18 presented. As its distinctive
features, Lonyo Separates class assertions
clearly from class definitions and allows
the inclusion of individuals in class ex-
pressions. The formal semantics of
Lonto 18 provided by means of a transla-
tion into description logics and, alter-
natively, a translation into F-logic.
Based-on these translations, the reason-
ing services provided by description lo-
gics as well as the resolution-based
proof theory of F-logic can be applied
for reasoning with ontologies and their
instances.

1 Introduction

The Extensible Markup Language (XML) (Gol-
dfarb and Prescod, 1998) has been widely
known in the Internet community as a funda-
mental language that provides the underlying
syntax of data for a rapidly growing number of
Web-based applications and activities. XML it-
self, however, does not imply any interpretation
of data; any intended semantics is outside the
realm of XML specification (Decker et al,
2000; Klein, 2001). A qualitatively better level
of XML-based automated information access
and machine-understandable information provi-
sion necessitates additional explicit repre-
sentation of the semantics of data and domain

theories (Fensel and Musen, 2001; Fensel, 2001;
Hendler, 2001).

The concept of ontology has been employed
in knowledge engineering, natural language pro-
cessing, and intelligent information integration
as a formal, explicit specification of shared con-
ceptualizations (i.e., meta-information) that de-
scribe the semantics of data (Uschold and Grun-
inger, 1996; Fensel, 2001). Tt has recently been
adopted by the Semantic Web circles as a speci-
fication of a collection of knowledge terms, their
semantic interconnections, some simple rules of
inference, and logic for some particular domain
(Hendler, 2001). In its simplest form, an ontol-
ogy typically contains hicrarchies of concepts
(or classes) and describes properties of each
concept through an attribute-value mechanism.
It provides a common vocabulary for informa-
tion exchange and a common understanding of a
domain.

In this paper, limitations of using Data Type
Definitions (DTDs) (Goldfarb and Prescod,
1998) and Resource Description Framework
Schemas (RDF Schemas) (Brickley and Gubha,
2000) for defining ontologies are identified
(Section 2}. Thereafier, an ontology language,
i.e., a language for describing ontologies, called
LanTo, Is presented (Section 3). Lonto provides a
clear distinction between assertional perperties
and definitional properties of individuals and al-
lows the use of individuals in class expressions.
The precise semantics of Lonto is defined by
means of a translation into description logics
(Borgida, 1995; Donini et al., 1996) (Section 4),
and, alternatively, a translation into F-logic
(Kifer et al.,, 1995) (Section 5). Through these
translations, the inference mechanisims provided
by description logics and F-logic can be em-
ployed for reasoning with ontologies and object-
level XML data. Comparison of Lonto with the
core language of the Web-based ontology infra-
structure OIL (Deacker et al., 2000; Fensel et al.,
2001} is made (Section 6).

<SlIT-Student id="#088"
first-name="Bhurit” last-name="Sittikul">
<major>|T</major>
<status>sohomora</status>
<degree-prag>BSc</degree-prog>
<taker>
<course id="1T214"f>
<course id="TU110"/>
<ftaker>
</S1IT-Student>

Figure 1. A well-formed XML element.

<S|IT-Student id="#088">
<name>Bhurit</name>
<family-name>Sittikul</family-name>
<department>|T</dapartmant>
<status>second year</status>
<degree-prog>BSc</degree-prog>
<courses idrefs="IT214 TU110">

</SIIT-Student>

Figure 2. A well-formed XML element.

<IE{ EMENT SiIT-Student
{major, status, degree-prog, taker,}>
<IELEMENT major (#PCDATA)>
<!-. major cheices: CE, EE, IE, IT, ME —>
<IELEMENT status (fPCDATA)>
<}-- status choices:
freshy, sophomore, junior, senior, etc —>

<IELEMENT degree-prog (#PCDATA)>
<i-- degree-prog choices: BSc, BEng, MSe, Phd —>
<I[ELEMENT taker (course)>
<IELEMENT course EMPTY>
<IATTLIST SHT-Student

id ID #REQUIRED

first-name CDATA #IMPLIED

last-name CDATA #MPLIED>
<ATTLIST course id ID #REQUIRED>

Figure 3. A simple DTD.

2 Limitations of DTDs and RDF
Schemas

Different well-formed XML documents may
provide the same information; for example, the
well-formed XML elements in Figures 1 and 2
may equivalently describe a specific SIOT stu-
dent. The parties that use XML for their data
exchange must agree beforechand on the vo-
cabulary (c¢.g., the names of elements and attrib-
utes) and its use. Such an agreement can be
partly specified by a Data Type Definition
(DTD) (Goldfarb and Prescod, 1998), which
serves as a context-free grammar for XML
documents. Using the DTD in Figure 3, for in-
stance, the XML element in Figure 1 is valid,
whereas that in Figure 2 is not.

A DTD, however, provides only a simple
structure prescription; it only defines the legal
lexical nestings of elements, their order, their
possible attributes, and the locations where nor-
mal text is allowed. It does not serve as a ma-
chine-processable description of the semantics
of XML data. In the DTD in Figure 3, for ex-
ample, the possible values of a major-element,
which imply the meaning of the tag major and its
usage, can only be given as a comment!, which
is not machine-understandable. Consequently,
content-based semantic constraints on informa-
tion cannot be specified using DTDs; for exam-
ple, one cannot assert that if the major of an un-
dergraduate SIIT student is IT, then his/her de-
gree program is necessarily BSc. Moreover,
generalization relationship (subclass relation-
ship) among XML elements, which is a funda-
mental abstraction mechanism for relating the
elements semantically, cannot be described by a
DTD.

Resource Description Framework Schemas
(RDF Schemas) (Brickley and Guha, 2000) pro-
vide a mechanism for expressing the semantics
of data through metadata descriptions. Their
basic modeling primitives include class defini-
tions and subclass-of statements (which together
allow the construction of a generalization hier-
archy of classes), property definitions along
with domain and range statements (for re-
stricting the possible combinations of properties
and classes), and fpe statements (for declaring
an object as an instance of a class). For exam-
ple, the RDF Schema in Figure 4 asserts that
taker is a property (attribute) of every instance of
the class SIIT-Student and the values of this prop-
erty must be instances of the class Course, and
that SIIT-GradStudent is a subclass of SIfT-Student;
accordingly, SIIT-GradStudent inherits the prop-
erty taker and its range restriction from SNiT-
Student.

s lype

Figure 4. An RDF graph.

' A comment in a DTD is enclosed within a pair of
<l-- and ->.

Nevertheless, properties are defined globally
and are not encapsulated as attributes of classes
in RDF Schemas (Fensel, 2001). As a conseq-
uence, the range restriction of a property of a
certain subclass cannot be further refined. For
cxample, one cannot provide an additional con-
straint that any value of the property taker of an
instance of SIIT-GradStudent must be an instance
of some specific subclass of Course, say Ad-
vancedCourse. Such refinement of range restric-
tion is apparently necessary for specifying se-
mantic constraints for a subclass.

In RDF Schemas, only assertional properties
of the instances of a class, i.e., necessary condi-
tions for membership of the class, can be speci-
fied. There is no mechanism for providing an
insight into the meaning of a class by specifying
necessary and sufficient conditions for member-
ship of the class. As a result, a class cannot be
defined intensionally based on the properties of
its instances; one cannot define, for example,
SHT-GradStudent as the class of all instances of
SHT-Student whose degree programs ar¢ cither
MSc or Phd. The distinction between assertions
and definitions is important for a clearer under-
standing of the semantics of conceptual repre-
sentation (Woods, 1991).

3 An ontology Language, Lonto

This section presents an ontology language,
which will be referred to as Lonto- An ontology
in fonro 1s itself an XML document, consisting
of slot declarations and class declarations. The
syntax of Lonto is formally defined by the DTD
in Figure 5.2 For improvement of readability, a
more compact pseudo XML syntax will be used,
where opening tags are indicated by bold faced
text, grouping of subcontents is indicated by in-
dentation, and closing tags are omitted. Fur-
thermore, the tag of a slotName-element and that
of a className-element will be omitted, the con-
tent of a set-clement will be written using the
usual set notation, and the and-tag will be used
as an infix operator.

An Lonro ontology is illustrated in Figure 6.
It contains one slot declaration and four class
declarations. The declaration of the slot taker

2 Note that the DTD in Figure 5 does not define an
ontology, but an ontology language, which is used to
describe ontologies.

<l-- DTD for Lonro =>
<IELEMENT ontolagy (slot*, class*)>

<!— Slot Declaration —> -
<|ELEMENT siot (slotName, domain, range)>
<|ELEMENT slotName CDATA #REQUIRED>
<IELEMENT domain CDATA #REQUIRED>
<IELEMENT range CDATA #REQUIRED>

<l Class Declaration —=>
<IELEMENT class (className, %property;)>
<IELEMENT className CDATA #REQUIRED>

<|— Class Property —>
<IENTITY %property
“{{definition assertion) | definition | assertion)">
<|ELEMENT definition (%constraint;)+>
<{ELEMENT assertion (Yoconstraint;)+>

<!-- Constraint -->

<IENTITY %constraint “(subclass-of | slot-constraint)™>
<|ELEMENT subclass-of (className)>

<IELEMENT slot-constraint (slotName,

{value-type | unique-value-in | soma-value-in))>
<IELEMENT value-type (%classExpression;)>
<IELEMENT unique-value-in {%classExpression;)>
<IELEMENT some-value-in (%ciassExprassion; >

<i-- Class Expression —>
<IENTITY %classExpression
*{className | set | and | slot-constraint)'>
<IE EMENT and (%classExprassion;,
{%classExpression;)+)>
<tELEMENT set (li+)>
<IELEMENT li CDATA #REQUIRED>

Figure 5. DTD specification for Lonro.

simply asserts that if an individual x is related to
an individual y by this slot relation, then x and y
must be instances of the classes Student and
Course, respectively. The declaration of a class
contains an assertion part and a definition part,
one of which may be omitted. The assertion part
specifies necessary but not sufficient conditions
for membership of the class; by contrast, the
definition part provides necessary and sufficient
conditions for the membership. Each of the two
parts is a combination of subclass-of statements
and slot-constraint statements. A slot constraint
is a class expression that takes one of the three
forms

1) R value-type E,
2) R some-value-in E,
3) R unigue-value-in £,

where R is a slot name and £ is a class expres-
sion. The slot constraints of the first, the sec-
ond, and the third forms, respectively, denote

¢ the class consisting of every individual that is
not related by R to any individual that is not
an instance of the class denoted by £,

» the class consisting of every individual that is
related by R to at least one instance of the
class denoted by E (and is possibly also re-
lated by R to some individual of some other
class),

» the class consisting of every individual that is
related by R to exactly one individual in the
class denoted by E and is not related by R to
any other individual.

The first class declaration in Figure 6 asserts
that every instance of SI/7-Student is necessarily

ontology

slot taker
domain Srudernt
range Course

class SIT-Student
assertion
subclass-of Student
slot-constraint degree-prog
unique-value-in
{BSc, BEng, MSc, Phd}
slot-constraint major
unique-value-in {CE, EE, IE, IT, ME}
class S/IIT-Undergrad
definition
subclass-of SHT-Student
slot-constraint degree-prog
value-type {B5c, Bfng}
assertion
slot-constraint starus
unique-value-in
{freshy, sophomore, junior, senior}

class {7-Undergrad
definition
subclass-of SHT-Undergrad
slot-constraint major
value-type {/T}
assertion
slot-constraint prog-lang
some-value-in {C}
slot-constraint prog-lang
some-value-in {Java}
slot-constraint degree-prog
value-type {BSc}

class S/T-GradStudent
definition
subclass-of SI{T-Student
slot-constraint degree-prog
value-type {MSc, Phd}
assertion
slot-constraint taker
value-type Course
and slot-constraint Jecturer
value-type FullProfessor

Figure 6. An ontology in Lonto.

an instance the class Stﬁdent, the class denoted
by the slot constraint (degree-prog unique-
value-in {BSc, BEng, MSc, Phd}), and also the
class denoted by the slot constraint (major
unique-value-in {CE, EE, IE, IT, ME}); how-
ever, there may exist some individual that is an
instance of each of these three classes but is not
an instance of SHT-Student. In plain words, this
class declaration asserts that every SIIT student
has a unique degree program, which is one of
BSe, BEng, MSc, and Phd, and a unique major,
which is one of CE, EE, IE, IT, and ME; but it
does not provide the definition of an SIIT stu-
dent. The next class declaration defines SIfT-
Undergrad as the class consisting of every in-
stance of SITT-Student that is also an instance of
the class denoted by the slot constraint (degree-
prog value-type {BSc, BEng}). Intuitively, it
defines an SIIT undergrad(uate) as an SIIT stu-
dent whose degree program is either BSc or
BEng. Then, it specifies as an assertion that
every instance of SIIT-Undergrad is necessarily
an instance of the class denoted by the slot con-
straint (sfatus unique-value-in {freshy, sopho-
more, junior, senior}), but not vice versa.
Likewise, the third and the fourth class declara-
tions provide the definitions of the classes /7-
Undergrad and SHT-GradStudent, respectively,
and describe some of their properties as asser-
tions. Note that since a slot constraint is itself a
class expression, it may be used to specify an-
other slot constraint; the nested slot constraint in
the last assertion part in Figure 6, for example,
intuitively denotes the class consisting of every
individual that takes no course that is not lec-
tured by a full processor.

4 Translation into Description Logics

The formal semantics of Lonto will be defined
in this section by means of a translation into a
concept language in description logies.

4.1 Description Logics

Description logics (also called terminological
logics) (Borgida, 1995; Donini et al., 1996) stem
from Semantic Networks and Frames. They deal
with the representation of structured concepts,
their semantics and reasoning with them. The
structure of a concept is described using a lan-
guage, called concept language, comprising
Boolean operators (conjunction, disjunction, ne-

C,D — Al{T|L|-4|CND
[VR.C|3R|3R.C
|2nR)|(<nR)

’ {alx = an}

Figure 7. Syntax of ALENO concepts.

T = A
1t = &
(‘114)" = AN A
(cnm = onbs
(VRO = el |Vdy: (ddh)eRI=deCr}

(3Ry = ldieA|3dy: (d\,d) e RY)
(ER.C)" = {d[€ AS | Hdg . (d| ,dg) e RiA dz e}
(znR)y = {dedlj#d|(d.d)eR}2n}
EaR) = {dcAii#d|(d.d)eR}<n;
(o}t = i ayl)

Figure 8. Conditions for an interpretation 1.

gation) and various forms of quantification over
the roles (also called attributes or slots) of the
concept. The langnage ALENO in the com-
monly known family of 4f-languages (Donini
et al., 1996; Schaerf, 1994) will be used as the
target concept language in this paper. Given an
alphabet ¢ of primitive concepts, an alphabet ®
of roles and an alphabet O of individuals, a con-
cept in ALENO is constructed by means of the
syntax rule in Figure 7, where C and D denote
concepts, and 4, R and the a; belong to the al-
phabets @, ® and O, respectively.

An interpretation { = (Af, -} consists of a
nonempty set A’ (the domain of 1) and a function
-1 (the interpretation function of I) that maps

every concept to a subset of Af, every role to a
subset of AT x A’ and every individual to an ele-
ment of A’ such that the equations in Figure 8
are all satisfied. In addition, it is assumed that
different individuals denote different elements in
At (Unique Name Assumption), i.e., for any pair
of individuvals a, b € 0, if a # b, then ar= b*.

An interpretation ! is a model for a concept C
if C' is nonempty. A concept is satisfiable if it
has a model, and unsatisfiable otherwise.

A knowledge base built using description lo-
gics consists of two components: the intensional
one, called T-box, and the extensional one,
called A-box. A statement in a T-box has either
the form C = D or the form C = D, where C and
D are concepts. An interpretation [satisfies the
statement C = D if ¢/ < D4, and the statement C
=D if Ct = DI An interpretation [is a mode! for
a T-box Tif Isatisfies every statement in 7.

A statement in an A-box takes either the
form C(a)} or R(a, b), where C is a concept, R is
a role, and a, b are individuals. An interpreta-
tion I satisfies the statement Cla) if o/ € 7, and
the statement R(a, b) if (a’, &) € R". An inter-
pretation 7 is a mode! for an A-box A4 if I satis-
fies every statement in 4,

An interpretation 7 is a mode! for a knowl-
edge base Z = (7, A), where 7'is a T-box and 4 1s
an A-box, if I is both a model for a Tand a
model for 4. A knowledge base X logically im-
plies a statement o, written as L E ¢, if every
mode! of ¥ satisfies c.

a{antology slotDecls classDecls)
a(slotDecl, ... slotDecl)

dclassDecl, ... classDecl,)

ofslot R domain 4 range B)

olclass A definition cownstraints)

o{class A assertion counstrainis)

olelass A delinition consirainis, assertion constrainis,)

HsubclConstr, ... subclConstr, slotConstr) ... siotConstr,,)
a(subclass-of 4)

o(slot-constraint R value-type classExpr}
oislot-constraint R unique-value-in classExpr}

o (slot-constraint R some-value-in classExpr)
OlclassExpry and ... and classExpr,)

o A)

ol{a, ... di})

= olslatDecls) \u dlclassDecls)

alslotDecl\y U ... v olslotDecl,)
dlelassDecl)) U ... Ud(classDecl,)
{(FR.T = o)), (TE VR A(BY)

{(4 = T olconstrains))}

{A = T M oleonstrains))

a(class A definition constrains) U

olclass 4 assertion constrainis,)
GsubclConstr)) M ..M dlsubclConstr,)
M a{slotConstry M ..M o{slotConsir,,)
A

(Y R.olclassExpr})

(3R.olclassExpry M {< 1 RY)

(AR . o(classExpry)

(olclassExpry O ... 01 o(classExpr,))
A

{ay, ..., a,}

Figure 9. Translation of Lonro into ALEND.

4.2 Translation of fonto into ALEND

A translation ¢ that maps ontologies in Lonvo
into T-boxes in ALENO is defined in Figure 9,
where A , B denote class names and R denotes a
slot name. As an illustration, by using the trans-
lation o, the ontology in Figure 6 is transformed
into a T-box consisting of the statements in Fig-
ure 10. While class declarations and slot
declarations in an ontology is transformed into
T-box statements, object-level XML elements
(XML elements describing specific objects) will
be transformed in a straightforward way into
statements in an A-box. For example, the XML
element in Figure 1 is converted into the A-box
statements in Figure 11.

To demonstrate reascning with ontologies
and object-level XML data based on description
logics, assume that 7is a T-box consisting of the
statements in Figure 10, 4 is an A-box contain-
ing the statements in Figure 11, and X is the
knowledge base (7, 4). Now let I=(A/, -} bea
model for . From the third and the fourth
statements in Figure 10, I necessarily satisfies
the statement SI/T-Undergrad(#058). Hence,

X & SHT-Undergrad(#088),

i.e., the implicit information that the individual
#088 belongs to the class SHT-Undergrad can
be derived. Then, from the third and the sixth
T-box statements in Figure 10, it is readily seen
that

2 E {T-Undergrad(#058).

Next, it follows from the seventh statement in
Figure 10 that the model I necessarily satisfies
the statements prog-lang#088, C) and prog-
lang(#088, Java). Therefore,

2 prog-lang(#088, C),
2 = prog-lang(#088, Java).

Consequently, the elements

<prog-lang>C</prog-lang>
<prog-lang>Java</prog-lang=
are both derived as implicit subelements of the
SIIT-Student-clement in Figure 1.

Besides derivation of implicit information,
the framework of description logics also facili-
tates content-based validation of object-level
XML data with respect to a given ontology For
instance, suppose that the status-subelement in
Figure | is replaced with the element

—

(3raker.T = Student)
2. (T &= Viaker.Course)
3. (SHT-Student -
C T 1 Student
M (3degree-prog. {BSc, BEng, MSc, Phd}
ri(< | degree-prog))
1 (Amajor. {CE, EE, IE, IT, ME} M1 (2 | major)))
4, (SHT-Undergrad
=T M SHT-Student T (Vdegree-prog. {BSe, BEng}))
5. (SHT-Undergrad
C T M (Tstatus. {freshy, sophomore, junior, senior}
(< 1 status)))
6. ({T-Undergrad
=T M SHT-Undergrad 1 (Vmajor {IT} Y}
7. ({T-Undergrad
= 7 M (Jprog-lang {C}) M (Gprog-lang. {Java})
M (Vdegree-prog. {BSc}))
8. (SHT-GradStudent
=T M SIT-Student M (Vdegree-prog. {MSc, Phd}})
9. (SHT-GradStudent
= T M (Vtaker.(Course M Viecturer FullProfessor)))

Figure 10. Resulting T-box statements.

SHT-Student(#088)
last-name(#058, Sittikul)
status(#088, sophomore)
taker{#088, IT214)
taker(#088, TU11(0)

Jirst-name(#088, Bhurin)
major(#088, IT)
degree-prog(#088, BSc)
Course(IT214)
Course(TUT10)

Figure 11. A-box statements.

<status>single</status>,

and, accordingly, the statement stafus(#088, so-
phomore) in the A-box 4 is replaced with

Status(#088, single).

Since X logically implies the statement SHT-
Undergrad(#088), it follows that every interpre-
tation that satisfies the statement starus(#088,
single) does not satisfy the fifth statement in
Figure 10. As a result, the replacement leads to
the inexistence of any model for %, which indi-
cates that 2 becomes inconsistent. This incon-
sistency reflects the fact that the resulting XML
element does not conform to the ontology in
Figure 6, which asserts as a necessary condition
that the status of an individual of the class SI/T-
Undergrad can only be freshy, sophomore, jun-
ior, or senior,

5 Translation into F-Logic

Alternatively, the semantics of Loyt can be de-
fined by means of a translation into a subclass of

F-logic (Kifer et al., 1995)—a full-fledged logic
that has been widely recognized as a well-
established theoretical foundation for the object-
oriented paradigm. After identifying the sub-
class considered in this paper of F-logic, such a
translation will be presented in this section.

Given an alphabet O of individuals, an alpha-
bet ¢ of class names, an alphabet ® of attribute
names and an alphabet 7 of variables, an F-logic
atomic formula (F-atom) used in this paper takes
one of the three forms

1) id-term:A,
2) A[R=>> B],
3) id-term{R ->> id-term’],
where id-term and id-term” are clements of O U

1, 4 and B belong to ¢, and R belongsto R. A
ground (variable-free) F-atom of the first form is

intended to mean “the object denoted by id-term
is an instance of the class 4, that of the second
form is intended to mean *“each value of the at-
tribute R of an instance of the class 4 is neces-
sarily an instance of the class B”, and that of the
third form is intended to mean “the object de-
noted by id-ferm’ is a value the attribute R of the
object denoted by id-term”. F-logic statements,
called F-formulas, are constructed inductively
out of F-atoms by means of standard logical
connectives and quantifiers in the usual way:

e F-atoms are F-formulas;

¢ If @ and y are F-formulas, then -, ¢ A
oV Yy, o=V, @ < y are F-formulas;

e If ¢ and y are F-formulas and x, y € 7,
then Vx(¢) and Jy(y) are F-formulas.

plslotDecl; ... slotDecl,)
plelassDecl| ... classDecl,)

pslot R domain 4 range B)
plclass 4 definition constraints)

plelass A4 assertion constraints)
plclass 4 definition constraints, assertion constraints;)

P, subclConstry ... subclConstr, slotConstr, ...slotConsiry,)

P (i, subelass-of A)
pli, slet-constraint R value-type classExpr)
pli, slot-constraint R unique-value-in classfxpr)

pli, slot-constraint R some-value-in classExpr)
pli, classExpr) and ... and classExpr,)

pli, A)

pU, fay, .., a,l)

plontology slotDecls ... classDecls) = p(slotDecis) v p{classDecls)

plslotDech) L ... U p{slotDecl,)
plelassDecl YV ... U p{classDecl,)
A[R =>>B]

{¥x; (x,: A & p(1, constraints))}

{¥x) (x) 1 A = p(1, constraints))}

plclass A definition constraints;)

U pclass A assertion constraints;)

(pli, subclConstr)) a ... ~ p{i, subclConstr,)
~ P, slotConstr)) A ... A pli, slotConstr,,)}
{x,: A)

Uxin (xR =2 xpq] = p(i+], classExpr))
i (x[R == xjas] A V(X [R —=>>ph =y =x4))
~ plitl, classExpry)

xR =22 x40] A pi+l, classExpr))
(pli, classExpri} a ... A U, classExpr,))
(x;:4)

(i=a v ... vXx=da,)

Figure 12. Translation of Lonro into F-Logic.

Studeni(taker =>> Course)
Y {x:SUT-Srudermt = ({x:Student)

A dxolx [degree-prog === x3} A V(x| degree-prog =>> v] = y = x3) A (xa=HSc v x;= BEng v xy = MSc v x;= Phd))
A dnlx [major =22 xa] A ¥Y(x [major =2 y] =S y=x) A (= CEva=EEv X =1Ev x;=IT v x,= MEW)

Vo (x:SAT-Undergrad < ({x:SHT-Studend) ~ Vxi(x|[degree-prog —=>> x;] = (x2= BSe v x;= BEng))))

Vx (x :SHT-Undergrad = (3xa(x [status —>> x;] & Fyix [status —>> y] =y =1x3)

A (x2= freshy v x;= sophomare v x; = junior v Xz = seaior))))
Y Ly A T-Undergrad < ((x:SHT-Undergrad) » Vxo(x\[major —>> x3] = (x;=IT}))
Y\ bxy fT-Undergrad = (A, (x| [prog-lang —>> x3] A (xa = OV A Txalx [prog-tang —=> x3] A (X3 = Java))
A Vxs(x, [degree-prog === x;3] = {x;= B5¢))))
Vx (x:SHT-GradStudent < ((x:SHT-Student) ~ ¥x{x|[degree-prog —>> x3] = (x;= MSc v x,= Phd))})}
Vx\(x :SUT-GradStudent = (Vxy(x[taker —>> x3] = ((x:Course) A Vy(x[lecturer —>> x3] = (x3:FullProfessor))))))

Figure 13. Resulting statements in F-logic.

#088:SHT-Student _ #088{first-name —>> Bhurit)
#088[last-name —>> Sittikul] #088[major —>> IT]
#08S[status - sophomore] #088[degrec-prog —>> BSc)
#088[taker —>=> IT214] 1T214:Course

#U88(raker ->> TUT 10} TU110:Course

Figure 14. Object-level F-formulas.

The reader is referred to (Kifer et al., 1995) for
the formal semantics of F-logic.

Figure 12 defines a mapping p for translating
an fonto ontology into a set of F-formulas.
Through p, the ontology in Figure 6 is trans-
formed into a set consisting of F-formulas in
Figure 13. Together with the transformation of
a given ontology, object-level XML elements
can also be translated in a direct way into F-
formulas; for example, the F-formulas obtained
from the XML element in Figure 1 are shown in
Figure 14, By means of the mapping p, the
model-theoretic semantics and the resolution-
based proof theory of F-logic, which are elabo-
rated in (Kifer et al., 1995), can be employed for
reasoning with ontologies and object-level XML
elements.

6 Related Work

In their coliaborative proposals, Decker et al.
{2000) and Fensel et al. (2001) enriched RDF
Schemas with additional modeling primitives
imto an influential Web-based onlotogy infra-
structure called Ontology Inference Layer
(OIL), which partly inspires the work presented
in this paper. OIL provides a core ontology lan-
guage, in comparison with which Lonto has two
distinctive features: a clearer distinction between
class definitions and class assertions, and the in-
clusion of individuals in class expressions. In
the core language of OIL, necessary but insuffi-
_cient conditions for class membership can only
be specitfied for a primitive class but not for a
defined class, and the use of individuals in
specifying slot values or defining extensional
class expressions (i.e., class expressions dcfined
by enumerating individuals) is not allowed. The
core language of OIL, however, provides richer
modeling primitives for specifying global con-
straints that apply to slot relations, e.g., a slot
relation can be specified to be transitive, sym-
nietric, or an inverse of another slot relation.

Acknowledgement
This work was supported by the Thailand Re-
search Fund, under Grant No, PDF/31/2543.

References

Borgida, A., Description Logics in Data Man-
agement, [EEE Transcations on Knowledge
and Data Engineering, 7(5). 671-682, 1995,

Brickley, D. and Guha, R. V., Resource Descrip-
tion Framework (RDF) Schema Specification
1.0, http/fwww.w3c.org/TR/2000, 2000.

Decker S., Melnik, 5., van Harmelem, F.
Fensel, D., Kicin M., Broekstra, J., Erdman,
M., and Horrocks, I. The Semantic Web: The
Roles of XML and RDF, IEEE [nternet
computing, 4(5): 63-74, 2000.

Donini, F., Lenzerini, M., Nardi, D., and
Schaerf A., Reasoning in Description Logics,
in Brewka, G., editor, Principles of Knowl-
edge Representation and Reasoning, CLSI
Publication, pp. 193238, 1996.

Fensel, D., Ontologies: 4 Silver Bullet for
Knowledge Management and Electronic Com-
merce, Springer-Verlag, 2001.

Fensel, D. and Musen, M. A., The Semantic
Web: A Brain of Humankind, /EEE [ntelligent
Systems, 16(2), 24-25, 2001.

Fensel, D., van Harmelen, ¥., Harrocks, I,
McGuinness, D. L., and Petel-Scheider, P. F.,
OIL: An Ontology Infrastructure for the Se-
mantic Web, IFEE Intelligent Systems, 16(2):
38-45, 2001

Goldfarb, C. F. and Prescod, P., The XML
Handbook, Prentice Hall, 1998,

Hendler, J., Agents and the Semantic Web,
[EEE Intelligent Systems, 16(2): 30-37, 2001.
Kifer, M., Lausen, G., and Wu, J., Logical
Foundations of Object-Oriented and Frame-
Based Languages, Journal of Association of
Computing Machinery, 42(4). 741-843, 1995.

Klein, M., XML, RDF, and Relatives, JEEE In-
telligent Systems, 16(2): 26-28, 2001.

Schaerf, A., Reasoning with Individuals in Con-
cept Languages, Data and Knowledge
Fngineering, 13(2): 141-176, 1994,

Uschold, M. and Gruninger, M., Ontologies:
Principles, Methods and Applicaions, Know/-
edge Engineering Review, 11(2). 93-136,
1996.

Woods, W. A., Understanding Subsumption and
Taxonomy: A Framework for Progress, in
Sowa, 1., editor, Principles of Semantic Net-
works, Morgan Kaufman Publishers, 1991.

