

รายงานวิจัยฉบับสมบูรณ์

โครงการ สมบัติและความสัมพันธ์ระหว่างปริมาณทางเรขาคณิตของ เส้นโค้งในปริภูมิเอกฐานที่มีความโค้งซึ่งมีขอบเขตบน

โดย ซัยวัฒน์ มณีสว่าง และคณะ

รายงานวิจัยฉบับสมบูรณ์

โครงการ สมบัติและความสัมพันธ์ระหว่างปริมาณทางเรขาคณิตของ เส้นโค้งในปริภูมิเอกฐานที่มีความโค้งซึ่งมีขอบเขตบน

โดย ชัยวัฒน์ มณีสว่าง และคณะ

มิถุนายน 2545

สุรนักงานกองทบลบับสายยาก โล้ย (สกา.)
ชั้น 14 กาลาร เกิด การ ยาก ค่า เลาเก็จวิชา7-21 การยอกการแกก มาย กาสนใน ค่าการยู่ ใบ ชรุงเกลง (เรอก โลส 298-0455 โรรสาร โรร 647 6 thome page (http://www.ni.or.th E-mail (ni-onlocate) or th

รายงานวิจัยฉบับสมบูรณ์

โครงการ สมบัติและความสัมพันธ์ระหว่างปริมาณทางเรขาคณิตของ เส้นโค้งในปริภูมิเอกฐานที่มีความโค้งซึ่งมีขอบเขตบน

คณะผู้วิจัย

1. นายชัยวัฒน์ มณีสว่าง

2. นางยงค์วิมล เลณบุรี มหาวิทยาลัยมหิดล

สังกัด

มหาวิทยาลัยมหิดล มหาวิทยาลัยมหิดล

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

ผู้วิจัยขอขอบพระคุณสำนักงานกองทุนสนับสนุนการวิจัยซึ่งเป็นผู้ให้การสนับสนุนทุน วิจัยศาสตราจารย์ยงค์วิมล เลณบุรี นักวิจัยที่ปรึกษา Prof. Richard L. Bishop และ Prof. Stephanie B. Alexander ซึ่งได้ให้คำปรึกษาที่มีคุณประโยชน์ยิ่งต่องานวิจัยและการเตรียม manuscript สำหรับส่งเพื่อตีพิมพ์ในวารสารนานาชาติ Project Code: PDF/35/2543

Project Title: Properties and Relationships among Geometric Quantities of Curves in

Singular Spaces of Curvature Bounded Above

Investigator: Chaiwat Maneesawarng, Mahidol University.

E-mail Address: tecmn@mucc.mahidol.ac.th

Project Period: July 1, 2000-June 30, 2002

The objective is to generalize the concept of total curvature of curves and to study its basic properties as well as theorems on length estimate. Total curvature of a curve in a metric space of curvature bounded above may be defined by approximating the curve by polysegments. Two curve length estimates—through its total curvature and chordlength and through its total curvature and the radius of its circumball—are obtained through the use of Reshetnyak's Majorization Theorem and an analysis of curves in spaces of constant curvature. The estimates have similar characters as in the classical setting (the Euclidean space), except in the case of negative spatial curvature bound for the second estimate, where a combination of a large circumradius and large total curvature gives rise to a polysegment as an extremal curve--a configuration that has not previously been seen. For future studies, there are a number of theorems and properties that are plausible to extend to this generalized setting.

Keywords: Curvature, length estimate, metric space of curvature bounded above.

รหัสโครงการ: PDF/35/2543

ชื่อโครงการ: สมบัติและความสัมพันธ์ระหว่างปริมาณทางเรขาคณิดของเส้นโค้งในปริภูมิเอกฐานที่มี ความโค้งซึ่งมีขอบเขตบน

ชื่อนักวิจัย: ชัยวัฒน์ มณีสว่าง มหาวิทยาลัยมหิดล

ระยะเวลาโครงการ: 1 กรกฎาคม 2543—30 มิถุนายน 2545

วัตถุประสงค์ของโครงการคือ การขยายขอบเขตของหลักการของความโค้งรวมของเส้นโค้ง และ การศึกษาสมบัติพื้นฐานของความโค้งรวม รวมทั้งทฤษฎีประมาณค่าความยาวของเส้นโค้ง ความโค้งรวมของเส้นโค้งในปริภูมิเอกฐานที่มีความโค้งซึ่งมีขอบเขตบนสามารถนิยามได้โดยการ ประมาณเส้นโค้งด้วยเส้นหัก ทฤษฎีประมาณค่าความยาวของเส้นโค้งสองทฤษฎี คือประมาณจาก ความโค้งรวมและความยาวของคอร์ด และประมาณจากความโค้งรวมและความยาวรัศมีของวงกลม ล้อม สามารถพิสูจน์ได้โดยใช้ Majorization Theorem ของ Reshetnyak และจากการวิเคราะห์เส้น โค้งในปริภูมิที่มีความโค้งคงที่ ทฤษฎีที่ได้มีความคล้ายคลึงกับในกรณีของปริภูมิยุคลิดที่มีมาแต่เดิม ยกเว้นในกรณีของปริภูมิที่มีความโค้งที่มีขอบเขตบนเป็นลบ สำหรับทฤษฎีประมาณความยาวแบบที่ สอง ซึ่งหากเส้นโค้งมีความโค้งรวมมากและอยู่ในวงกลมล้อมขนาดใหญ่ เราจะได้เส้นโค้งสุดขีดเป็น เส้นหัก ซึ่งเป็นลักษณะที่ไม่เคยพบมาก่อนในกรณีของปริภูมิยุคลิด นอกจากนี้ ยังมีทฤษฎีและสมบัติ อื่นๆ ที่เกี่ยวข้องกับความโค้งรวม ซึ่งสามารถนำมาพิจารณาความเป็นไปได้ในการขยายขอบเขตไป ยังปริภูมิเอกฐาน ซึ่งจะเป็นหัวข้องานวิจัยต่อไปได้ ในอนาคต

คำหลัก: Curvature, length estimate, metric space of curvature bounded above.

บทนำ

การศึกษาสมบัติของเส้นโค้ง ในอดีตจะกระทำกันในปริภูมิซึ่งมีโครงสร้างเอื้ออำนวยต่อการ สร้างทฤษฎี เช่น ปริภูมิยุคลิด หรือแมนิโฟลด์แบบรีมันน์ เป็นต้น แม้ว่าทฤษฎีที่ได้จะมีขอบเขต ครอบคลุมการใช้งานที่จำกัด ทั้งนี้เนื่องจากความเข้าใจเกี่ยวกับสมบัติของปริภูมิเอกฐาน ยังไม่ ลึกซึ้งกว้างขวางพอ ปริภูมิเอกฐาน ในทางเรขาคณิต เป็นคำที่ไม่มีการนิยามชัดเจน ใช้เรียก ปริภูมิที่ปราศจากข้อสมมติเชิงอนุพันธ์ หรือข้อสมมติของแมนิโฟลด์แบบรีมันน์ กล่าวอีกนัยหนึ่ง ว่า เป็นปริภูมิที่มีโครงสร้างทางเรขาคณิตค่อนข้างจำกัดนั่นเอง หลังจากที่ A. D. Alexandrov ได้ให้นิยามของปริภูมิอิงระยะทางเอกฐานที่มีความโค้งซึ่งมีขอบเขตบน ในช่วงทศวรรษ 1950 แล้ว จึงได้มีผู้สนใจทำการวิจัยเกี่ยวกับเรขาคณิตของปริภูมิเอกฐาน มากขึ้น กล่าวโดยย่อ นิยาม ของ Alexandrov ระบุว่า ปริภูมิอิงระยะทางจะมีความโค้งซึ่งมีขอบบนเป็น K เมื่อทุกๆ จุดใน ปริภูมิมีย่านใกล้เคียงที่เป็นเซ็ตเปิด และ เป็นโดเมนแบบ CAT-K ซึ่งคือเซ็ตเปิด U ที่มีสมบัติ 2 ประการดังนี้

- 1. สำหรับทุกๆ จุด x และ y ใดๆ ใน U จะมี geodesic (เส้นโค้งที่เชื่อมระหว่างจุดและมี ความยาวเท่ากับระยะทางระหว่างจุดคู่นั้นๆ) ใน U ที่เชื่อมระหว่าง x และ y
- 2. สำหรับสามเหลี่ยม T ใดๆ ใน U ที่มีเส้นรอบรูปสั้นกว่า $\frac{2\pi}{\sqrt{K}}$ จะมีสามเหลี่ยม T' ใน ปริภูมิสองมิติที่มีความโค้งคงที่เป็น K (ระนาบยุคลิด ทรงกลม หรือระนาบไฮเพอร์โบลิก ขึ้นอยู่กับค่า K ว่าเป็นศูนย์ บวก หรือลบ) ซึ่งมีด้านที่สมนัยกัน และมีสมบัติที่ว่า ระยะ ทางระหว่างจุดคู่ใดๆ บน T มีค่าไม่เกิน ระยะทางระหว่างจุดคู่ที่สมนัยกันบน T'

โดยนิยามนี้ เราจะได้ว่า แมนิโฟลด์แบบรีมันน์ที่มีความโค้งภาคดัด (sectional curvature) ซึ่งมีขอบเขตบน ย่อมเป็นปริภูมิอิงระยะทางที่มีความโค้งซึ่งมีขอบเขตบน ตามความหมายของ Alexandrov ด้วย ความจริงข้อนี้ เป็นผลที่ตามมาจากทฤษฎีในวิชาเรขาคณิตแบบรีมันน์ แต่ นิยามของ Alexandrov จะครอบคลุมปริภูมิอิงระยะทางซึ่งไม่มีสมบัติเชิงอนุพันธ์ดังกล่าวอีก จำนวนมาก

อย่างไรก็ตาม ผลงานวิจัยทางด้านนี้ยังจำกัดอยู่ในขอบเขตของสมบัติของปริภูมิดังกล่าวนั้น เอง การศึกษาสมบัติของโครงสร้างย่อยๆ เช่น เส้นโค้งในปริภูมิประเภทนี้ ยังมีน้อย ตัวอย่างผล งานที่มีอยู่แล้ว เช่น ผลงานของ S. Alexander และ R. Bishop ซึ่งได้ให้ทฤษฎีเปรียบเทียบ สำหรับความยาวของเส้นโค้งที่มีความโค้งซึ่งมีขอบเขตบนเป็นค่าคงที่ ในปริภูมิเอกฐานที่มีความโค้งซึ่งมีขอบเขตบน แม้แต่ทฤษฎีที่เป็นแบบฉบับ (classical theorems) หลายๆ ทฤษฎี ซึ่งได้ รับการพิสูจน์แล้วว่ามีความสมเหตุสมผลในปริภูมิยุคลิต ก็ยังไม่ได้มีการขยายขอบเขตให้ครอบ คลุมถึงกรณีของปริภูมิเอกฐาน ส่วนใหญ่จะขยายไปอย่างมากถึงระดับแมนิโฟลด์แบบรีมันน์ที่มีขอบเท่านั้น ตัวอย่างเช่น ผลงานวิจัยของ B. Dekster ในเรื่องการประมาณค่าความยาวของ เส้นโค้งในแมนิโฟลด์แบบรีมันน์ที่มีขอบ และ ความยาวของเส้นโค้งในปริภูมิที่มีความโค้งไม่เกิน K (ในผลงานชิ้นหลัง ผู้เขียนใช้คำว่า ปริภูมิ ในความหมายของแมนิโฟลด์แบบรีมันน์)

เนื่องจากทฤษฎีทางเรขาคณิตสำหรับปริภูมิเอกฐานยังมีอยู่เป็นจำนวนน้อย ในขณะที่มีปริภูมิที่มี สมบัติเป็นปริภูมิเอกฐานอยู่เป็นจำนวนมากดังกล่าว ทำให้การประยุกด์ใช้งานของทฤษฎีที่มีอยู่ ทั้ง ในทางคณิตศาสตร์บริสุทธิ์ คณิตศาสตร์ประยุกด์ และฟิสิกส์เชิงทฤษฎี ทำได้อย่างจำกัด การพัฒนา ทฤษฎีเกี่ยวกับเรื่องนี้ จะทำให้การศึกษาด้านเรขาคณิตของปริภูมิ เอกฐาน มีความสมบูรณ์ยิ่งขึ้น ซึ่งจะเป็นพื้นฐานในการสร้างทฤษฎีใหม่ๆ ทางฟิสิกส์ และคณิตศาสตร์ต่อไป เป้าหมายหลักของ โครงการอยู่ที่การสร้างองค์ความรู้ใหม่ และการขยายขอบเขตความสมเหตุสมผล (validity) ขององค์ ความรู้เดิม ให้กว้างขวางยิ่งขึ้น ตามรายละเอียดดังนี้

- 1. เพื่อสร้างทฤษฎีเปรียบเทียบ (comparison theorems) และทฤษฎีสภาพแข็งเกร็ง (rigidity theorems) สำหรับประมาณค่าความยาวของเส้นโค้งในปริภูมิเอกฐาน
- 2. เพื่อศึกษาสมบัติ และความสัมพันธ์ระหว่างปริมาณทางเรขาคณิดของเส้นโค้งใน ปริภูมิเอกฐาน อันได้แก่ ความยาวส่วนโค้ง, ความยาวคอร์ดและความโค้ง

วิธีการทดลอง

โครงการวิจัยนี้ประกอบด้วย 3 ลำดับขั้น ได้แก่

- การขยายขอบเขตของนิยามของปริมาณทางเรขาคณิดที่เกี่ยวข้อง ในปริภูมิที่จะ ศึกษา รวมทั้งการตรวจสอบความแจ่มชัดของนิยาม โดยใช้คณิดวิเคราะห์ และ เรขาคณิดของปริภูมิที่มีความโค้งคงที่เป็นเครื่องมือ
- 2. การสร้างทฤษฎีเปรียบเทียบ ซึ่งจะมีประโยชน์ในการประมาณความยาวของเส้นโค้ง และทฤษฎีสภาพแข็งเกร็ง ซึ่งใช้บอกสมบัติเฉพาะของเส้นโค้งที่มีค่าปริมาณทาง เรขาคณิตบางปริมาณมากถึงค่าสุดขีด โดยจะพิจารณาทฤษฎีทั้งสองประเภท
- 3. การคันหาสมบัติซึ่งเป็นแบบฉบับ (classical properties) ในทางเรขาคณิดของเส้น โค้ง และปริมาณทางเรขาคณิตที่เกี่ยวข้อง

การวิจัยในลำดับขั้นที่ 2 และ 3 ดำเนินการโดยอาศัยคอมพิวเตอร์ ศึกษาความเป็นไปได้ของ สมมติฐานเสียก่อน เพื่อคงไว้เพียงสมมติฐานเดียว แล้วพิสูจน์ความสมเหตุสมผลของทฤษฎีโดยใช้ คณิตวิเคราะห์ และเรขาคณิตของปริภูมิที่มีความโค้งคงที่

ผลการทดลอง

สามารถขยายขอบเขตของนิยามของความโค้งรวม (total curvature) ของเส้นโค้งในปริภูมิ เอกฐานที่มีความโค้งซึ่งมีขอบเขตบน โดยนิยาม total rotation ของเส้นหักในปริภูมิที่เป็น CAT(K) ก่อน ให้มีค่าเป็นผลรวมของส่วนต่างจากมุมตรงของมุมที่จุดยอดของเส้นหัก จากนั้นจึงนิยาม total curvature ของเส้นโค้งในปริภูมิที่เป็น CAT(K) ให้เป็น limit supremum ของ total curvature ของเส้น หักที่แนบในเส้นโค้งนั้น เมื่อ ค่าสูงสุดของ diameter ของส่วนของเส้นโค้งที่ถูกดัดโดยเส้นหัก เข้าใกล้ จากนั้นจึงนิยาม total curvature ของเส้นโค้งในปริภูมิที่มีความโค้งซึ่งมีขอบเขตบนเป็น K โดย cover เส้นโค้งที่กำหนดให้ ด้วย finite family ของ ปริภูมิแบบ CAT(K) ซึ่งสามารถหาได้โดย อาศัยคุณสมบัติทาง topology คือ compactness ของเส้นโค้ง ซึ่งเป็น continuous image ของช่วงปิด และโดยอาศัย completeness ของเชตของจำนวนจริง ประกอบกับ บนเชตของจำนวนจริง continuity ของเส้นโค้ง เราสามารถแสดงได้ว่า มี partition ของโดเมนของเส้นโค้งที่มีสมบัติที่ว่า แต่ ละส่วนของเส้นโค้งที่นิยามบน subintervals ที่มีจุดใน partition ที่อยู่ดิดกัน เป็นจุดปลายนั้น จะถูก cover ด้วยปริภูมิแบบ CAT(K) ปริภูมิใดปริภูมิหนึ่งใน finite cover ที่หาได้ในตอนต้นเสมอ ดังนั้น เราจึงสามารถนิยามให้ total curvature ของเส้นโค้งเริ่มต้นมีค่าเท่าก้บผลรวมของความโค้งของส่วน ของเส้นโค้งที่ถูกแบ่งด้วย partition ดังกล่าว รวมกับ ผลรวมของมุมระหว่างส่วนของเส้นโค้งที่อยู่ดิด กัน (กรุณาดูรายละเอียดใน manuscript ซึ่งอยู่ในภาคผนวก)

โดยนิยามนี้ เราจะพบว่า หากเราเริ่มดันด้วย family ของปริภูมิแบบ CAT(K) ด่าง family กัน ย่อมมีความเป็นไปได้ที่จะคำนวณ total curvature ได้ด่างกัน ซึ่งจะทำให้นิยามนี้ ไม่แจ่มชัด (well-defined) แต่เราสามารถแสดงได้ด้วยเหตุผลที่ว่า มุมระหว่างเส้นหักในปริภูมิแบบ CAT(K) นั้น เป็น local property และดังนั้นการใช้ finite cover ของปริภูมิแบบ CAT(K) ที่ต่างกัน จึงไม่มีผลทำให้ได้ total curvature ที่ต่างกันได้ อย่างไรก็ตามนิยามนี้ยังขึ้นอยู่กับการมีของมุมระหว่างส่วนของเส้นโค้ง ที่อยู่ดิดกัน และ การมีค่าเป็นค่าจำกัดหรืออนันต์ของ total curvature ของส่วนของเส้นโค้ง ทำให้ ต้องหันมาศึกษาสมบัติการรวมกันได้ของ total curvature ของส่วนของเส้นโค้งเสียก่อน และเราพบ ว่า total curvature ของเส้นโค้งใน ปริภูมิแบบ CAT(K) จะเท่ากับ ผลรวมของ total curvature ของ ส่วนของเส้นโค้งที่ประกอบเป็นเส้นโค้งนั้น รวมกับมุมระหว่างส่วนของเส้นโค้งที่อยู่ติดกันเสมอ ไม่ว่า total curvature ของเส้นโค้ง และของส่วนของเส้นโค้ง จะมีค่าจำกัดหรืออนันด์ ก็ตาม ทำให้ได้สมบัติ สองประการของ total curvature ตามมาว่า เส้นโค้งจะมี total curvature เป็นค่าจำกัด ก็ต่อเมื่อ ทุก ส่วนของเส้นโค้งของมันมี total curvature เป็นค่าจำกัด และ ก็ต่อเมื่อมุมระหว่างส่วนของเส้นโค้งที่อยู่ ดิดกันจะหาค่าได้เสมอ

ทฤษฎีเปรียบเทียบทฤษฎีแรกที่นำมาพิจารณาคือส่วนขยายของทฤษฎีประมาณค่าความยาว ของเส้นโค้งจากรัศมีของทรงกลมล้อมและความโค้งรวมในปริภูมิยุคลิด ซึ่งกล่าวไว้ดังนี้ ถ้า γ เป็นเส้นโค้งในปริภูมิยุคลิด ที่บรรจุอยู่ในทรงกลมรัศมี R และมีความโค้งรวม K แล้ว ความยาวของ γ จะมีค่าไม่เกินความยาวของเส้นโค้ง Γ ในจานรัศมี R บนระนาบยุคลิด ซึ่งมีสมบัติ ดังนี้

- 1. ถ้า K ≤ π/2 โ คือเส้นหักที่ประกอบด้วยสองเซ็กเมนด์ซึ่งยาวเท่ากัน มีความโค้งรวม K และความยาวคอร์ด 2R
- 2. ถ้า π/2 ≤ K ≤ 2π/3 Γ คือเส้นหักที่ประกอบด้วยสองเช็กเมนด์ซึ่งยาวเท่ากัน มีความ โค้งรวม K และมีจุดยอดอยู่บนขอบของจานรัศมี R
- 3. ถ้า $K \ge 2\pi/3$ Γ คือเส้นโค้งที่มีความโค้งรวม K ที่ประกอบด้วยส่วนโค้งของจานรัศมี R ที่ถูกขยายต่อออกไปทั้งสองปลายของส่วนโค้งด้วยคอร์ดของจานซึ่งทำมุม $\pi/3$ กับเส้นสัมผัสขอบ จาน ณ ดำแหน่งจุดปลายส่วนโค้งนั้น

เราสามารถขยายขอบเขตของความสมเหตุสมผลของทฤษฎีไปยังปริภูมิแบบ CAT(K) และพบว่าทฤษฎีที่ขยายขอบเขตไป ไม่เป็นจริงในปริภูมิที่มีความโค้งซึ่งมีขอบเขตบน (กล่าวคือ ไม่ สามารถขยายขอบเขดไปบนปริภูมิที่มีความเป็นทั่วไปมากกว่าความเป็นปริภูมิแบบ CAT(K) ได้) ทั้ง นี้ มีตัวอย่างของปริภูมิที่ไม่สามารถมีทฤษฎีนี้ได้ คือ ให้ X เป็น ปริภูมิอิงระยะทางที่ประกอบด้วยจุด ในระนาบยุคลิดที่ไม่อยู่ในจานเปิดรัตมี r>0 รอบจุดกำเนิด กับฟังก์ชันระยะทางที่ inherit จากฟังก์ชัน ระยะทางบนระนาบยุคลิดเดิม จะได้ว่า X เป็นปริภูมิอิงระยะทางที่มีความโค้งซึ่งมีขอบเขตบนเป็น ขอบของจานเปิดที่กำหนดให้ซึ่งเป็นวงกลมรัศมี r คือ image ของ geodesic ใน X ซึ่ง parametrized ด้วยมูมที่กวาดไปจากแกนราบ เนื่องจาก เราสามารถต่อ geodesic นี้ ให้ยาวมากขึ้น โดยไม่มีขอบเขตจำกัด ดังนั้นความยาวของ geodesic (ซึ่งมี total curvature เป็นศูนย์) ที่มีจุดปลาย อยู่บนขอบของจานเปิดที่กำหนดให้ข้างดัน จึงไม่มีขอบเขดบน สำหรับทฤษฎีที่ได้ในปริภูมิแบบ CAT (K) นั้น ในกรณีที่ 1 และ 2 เราได้เส้นโค้งที่ให้ความยาวสูงสุดอยู่ในปริภูมิที่มีความโค้งคงที่ (ระนาบ ยุคลิต ทรงกลม หรือระนาบไฮเพอร์โบลิก ขึ้นอยู่กับค่า K ว่าเป็นศูนย์ บวก หรือลบ) ในลักษณะเดียว กับทฤษฎีเดิม แต่ขอบเขตบนและล่างของค่า K ในแต่ละกรณีเปลี่ยนไป และขึ้นอยู่กับรัศมีของทรง กลมล้อม ในขณะที่ในกรณีที่ 3 เส้นโค้งที่ให้ความยาวสูงสุดมีลักษณะเดียวกับทฤษฎีเดิม ถ้า K≥0 แต่จะมีลักษณะที่ไม่เคยปรากฏให้เห็นมาก่อน ถ้า K≤0 กล่าวคือ เป็นเส้นหักที่มีจุดยอดอยู่ที่ขอบขอ งวงกลมล้อม โดยที่มุมที่ segment แต่ละเส้นทำกับเส้นรอบวงต้องเป็นไปตามเงื่อนไขชุดหนึ่ง เงื่อนไข ชุดนี้แรงพอที่จะทำให้เส้นหักที่อยู่ในข่ายที่จะให้ความยาวสูงสุดนั้นมีเพียงจำนวนจำกัด ชึ่งทำให้ถึงแม้เราจะยังไม่สามารถระบุได้แน่นอนว่าเป็นเส้นหักใด แต่เราจะสามารถหา ขอบเขตบนของความยาวของเส้นโค้งได้ เมื่อกำหนดความโค้งรวมและรัศมีของทรงกลมล้อม โดยการ เปรียบเทียบความยาวของเส้นหักที่อยู่ในข่ายซึ่งมีอยู่เป็นจำนวนจำกัดนั้น

ทฤษฎีเปรียบเทียบทฤษฎีที่นำมาพิจารณาอีกทฤษฎีหนึ่ง คือส่วนขยายของทฤษฎีประมาณ ค่าความยาวของเส้นโค้งจากความยาวคอร์ดและความโค้งรวมในปริภูมิยุคลิด ซึ่งกล่าวไว้ดังนี้ ถ้า γ เป็นเส้นโค้งในปริภูมิยุคลิด ที่มีคอร์ดยาว r และมีความโค้งรวม κ ≤ π แล้ว ความ ยาว κ ของ κ จะมีค่าไม่เกินความยาวของเส้นโค้ง κ บนระนาบยุคลิด ที่มีคอร์ดยาว κ มีความโค้ง รวม κ ซึ่งเป็นเส้นหักที่ประกอบด้วยสองเช็กเมนด์ซึ่งยาวเท่ากัน

เราสามารถขยายขอบเขตของความสมเหดุสมผลของทฤษฎีไปยังปริภูมิแบบ CAT(K) ได้ดัง นี้

ถ้า γ เป็นเส้นโค้งในปริภูมิแบบ CAT(K) ที่มีคอร์ดยาว r มีความโค้งรวม K ซึ่ง K+r $\sqrt{K} \le \pi$ สำหรับ K>0 และ K $\le \pi$ สำหรับ K ≤ 0 และมีความยาว s น้อยกว่า $\frac{2\pi}{\sqrt{K}}$ แล้ว s จะมีค่าไม่เกิน ความยาวของเส้นโค้ง Γ บนระนาบยุคลิด ที่มีคอร์ดยาว r มีความโค้งรวม K ซึ่งเป็นเส้นหักที่ ประกอบด้วยสองเซ็กเมนด์ซึ่งยาวเท่ากัน

เงื่อนไข $\mathbf{K}+\mathbf{r}\sqrt{\mathbf{K}} \leq \pi$ เป็นเงื่อนไขที่จำเป็นที่จะทำให้มีเส้นโค้ง Γ ที่มีสมบัติดังระบุในด้ว ทฤษฎี (กรุณาดูรายละเอียดในภาคผนวก)

บทวิจารณ์

การขยายขอบเขตของนิยามของปริมาณที่เกี่ยวข้อง (ความโค้งรวม) สามารถ ทำได้ในปริภูมิที่มีความโค้งที่มีขอบเขตบน แต่ทฤษฎีที่นำมาศึกษา ไม่สามารถขยาย ขอบเขตความสมเหตุสมผลไปยังปริภูมิดังกล่าวได้ ทั้งนี้เนื่องจากสมบัติการมี unique geodesic ระหว่างจุดสองจุดได้สูญเสียไปเนื่องจากการที่เรายอมลดเงื่อนไข จากที่ว่า "ปริภูมิต้องเป็นโดเมนแบบ CAT(K)" ให้เหลือเพียง "ทุกๆ จุดมี neighborhood ที่เป็น โดเมนแบบ CAT(K)" ในกรณีของปริภูมิที่มีความโค้งซึ่งมีขอบเขตบน ซึ่งจะเห็นว่าเป็น เงื่อนไขที่อ่อนกว่ามาก ทำให้เป็นไปได้ที่จะมี geodesic ที่เป็น loop ซึ่งเป็นต้นเหตุของ สมบัติที่ไม่พึงประสงค์ของปริภูมินั้นๆ อย่างไรก็ตาม เมื่อมองในมุมกลับกัน เงื่อนไขที่ว่า ตัวปริภูมิเองเป็น CAT(K) neighborhood ของจุดใดๆ ในปริภูมิ จึงเป็นเงื่อนไขที่แรงพอ ที่จะทำให้การขยายขอบเขตความสมเหตุสมผลของทฤษฎีที่นำมาศึกษา มีความเป็นไป ได้ และเป็นขอบเขตที่ควรพิจารณาในการขยายทฤษฎีอื่นๆ ต่อไป

หนังสืออ้างอิง

- [ASV] D. V. Alekseevskij, A. S. Solodovnikov and E. B. Vinberg, Geometry of spaces of constant curvature, Geometry II. Spaces of Constant Curvature. Encyclopaedia of Math. Sciences (E. B. Vinberg, ed.), vol. 29, Springer-Verlag, Berlin-Heidelberg, 1993, pp. 6-138.
- [AB1] S. B. Alexander and R. L. Bishop, Comparison theorems for curves of bounded geodesic curvature in metric spaces of curvature bounded above, Differential Geometry and its Applications 6 (1996), 67-86.
- [AB2] S. B. Alexander and R. L. Bishop, The Fary-Milnor theorem in Hadamard manifolds, Proc. Amer. Math. Soc. 126 (1998), 3427-3436.
- [A1] A. D. Alexandrov, Theory of curves based on the approximation by polygonal lines, Nautch.sess.Leningr.univer., Tesisy dokl. na sektch. matem. nauk. (1946).
- [A2] A. D. Alexandrov, Theory of curves based on the approximation with polygonal lines. Uspekhi matem.nauk 2 (1947), no. 4, 182-184.
- [A3] A. D. Alexandrov, Internal Geometry of Convex Surfaces, Gostekhizdat, Moscow, 1948.
- [A4] A. D. Alexandrov, A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov. 38 (1951). 5-23.
- [A5] A. D. Alexandrov, Über eine Verallgemeinerung der Riemannschen Geometrie, Schr. Forschungsinst. Math. 1 (1957), 33-84.
- [AR] A. D. Alexandrov and Yu. G. Reshetnyak, General Theory of Irregular Curves, Kluwer Academic Publishers, Dordrecht, 1989.
- [Ba] W. Ballmann, Lectures on Spaces of Nonpositive Curvature, Birkhäuser, Basel, 1995.
- [BN] V. N. Berestovskii and I. G. Nikolaev. Multidimensional generalized Riemannian spaces, Geometry IV. Non-regular Riemannian Geometry. Encyclopaedia of Math. Sciences (Yu. G. Reshetnyak, ed.), vol. 70, Springer-Verlag, Berlin-Heidelberg, 1993, pp. 165-244.
- [BH] M. Bridson and A. Haefliger, Metric Spaces of Nonpositive Curvature, to appear.
- [Buy] S. Buyalo, Lecture notes on spaces of nonpositive curvature, course taught at UIUC Spring (1995).
- [C] S. S. Chern, Curves and surfaces in Euclidean spaces, Global Differential Geometry, Studies in Math. (S. S. Chern, ed.), vol. 27, Mathematical Association of America, Washington, D. C., 1989, pp. 99-139.
- [dC] M. P. do Carmo, Differential Geometry of Curves and Surfaces, Englewood Cliffs, New Jersey, 1976.
- [D1] B. V. Dekster, Upper estimates of the length of a curve in a Riemannian manifold with boundary, J. Differential Geometry 14 (1979), 149-166.
- [D2] B. V. Dekster, The length of a curve in a space of curvature ≤ K, Proc. Amer. Math. Soc. 79 (1980), 271-278.
- [H] J. Haantjes, Curvature in abstract metric spaces, Proc. Kon. Akad. Wet. Amsterdam 50 (1947), 496-508.
- [M] K. Menger, Untersuchungen über allgemeine Metrik, Mat. Ann. 103 (1930), 466-501.

- [Mi] J. W. Milnor, On the total curvature of knots, Ann. of Math. 52 (1950), no. 2, 248-257.
- [MP] A. Mukherjea and K. Pothoven, Real and Functional Analysis, Plenum Press, New York, 1978.
- [N1] I. G. Nikolaev, Solution of Plateau's problem in spaces of curvature at most K, Siberian Math. J. 20 (1979), 246-252.
- [N2] I. G. Nikolaev, The tangent cone of an Alexandrov space of curvature $\leq K$, Manu. Math. 86 (1995), 137-147.
- [P] C. Pauc, Courbure dans les espaces métriques, Atti Acad. di Lincei, Series 6 24 (1936), 109-115.
- [R] Yu. G. Reshetnyak, Inextensible mappings in a space of curvature no greater than K, Siberian Math. Jour. 9 (1968), 683-689.
- [Sc] E. Schmidt, Über das Extremum der Bogenlänger einer Raumkurve bei Vorgeschriebenen Einschränkungen ihrer Krümmung, Sitz. bericht preuss. Akad. Wissensch. 25 (1925), 485-490.

Output จากโครงการวิจัย

- ้ 1. ผลงานดีพิมพ์ในวารสารวิชาการนานาชาติ
 - Chaiwat Maneesawarng and Yongwimon Lenbury, Total curvature and length estimate for curves in CAT(K) spaces, Differential Geometry and Its Applications (Editorial Office ของ วารสาร Differential Geometry and Its Applications ยังไม่ได้แจ้งให้ทราบว่าบทความดังกล่าวจะถูกนำลงตีพิมพ์ในวารสารประจำปีใด เล่มใด แต่ได้ตอบรับว่าจะตีพิมพ์บทความข้างต้นแล้ว ดังจดหมายอิเลคทรอนิกส์ และ manuscript ซึ่งปรากฏในภาคผนวก)
 - 2. การนำผลงานวิจัยไปใช้ประโยชน์เชิงวิชาการ
 - นักศึกษาระดับปริญญาเอกของภาควิชาคณิตศาสตร์ มหาวิทยาลัยมหิดล ได้เห็นความเป็น ไปได้ในการวิจัยทางเรขาคณิตของปริภูมิเอกฐานในประเทศไทย ซึ่งเป็นสาขาที่มีผู้ทำการ วิจัยน้อย
 - 3. อื่นๆ
 - การเสนอผลงานในที่ประชุมวิชาการ ได้แก่ การประชุมเพื่อเสนอผลงานวิจัย โครงการทุน วิจัยหลังปริญญาเอก

ภาคผนวก

ภาคผนวกประกอบด้วย manuscript ของบทความ และจดหมายจากบรรณาธิการ ตอบ รับบทความเรื่อง Total curvature and length estimate for curves in CAT(K) spaces เพื่อดีพิมพ์ในวารสาร Differential Geometry and Its Applications

```
From meyerw@math.uni-muenster.de Mon Jun 10 16:00:45 2002
Return-Path: <meyerw@math.uni-muenster.de>
Received: from saturn.mahidol.ac.th (saturn.mahidol.ac.th [202.28.162.2])
    by mucc.mahidol.ac.th (8.9.3/8.9.3) with ESMTP id QAA16647
for <tecmn@mahidol.ac.th>; Mon, 10 Jun 2002 16:00:38 +0700 (GMT+0700) Received: from mumail.mahidol.ac.th (mumail.mahidol.ac.th [202.28.162.14])
    by saturn.mahidol.ac.th (8.10.0/8.10.0) with SMTP id g5A95i728302
    for <tecmn@mahidol.ac.th>; Mon, 10 Jun 2002 16:05:49 +0700 (GMT+0700)
Received: from 202.28.171.33 by mumail.mahidol.ac.th (InterScan E-Mail VirusWall NT); M.
Received: from kuiper.uni-muenster.de (kuiper [128.176.181.22])
    by escher.uni-muenster.de (8.9.1a/8.9.0) with ESMTP id LAA26732 for <tecmn@mahidol.ac.th>; Mon, 10 Jun 2002 11:00:13 +0200 (MEST)
Received: from math.uni-muenster.de (localhost [127.0.0.1])
    by kuiper.uni-muenster.de (8.9.1a/8.9.0) with ESMTP id LAA24624 for <tecmn@mahidol.ac.th>; Mon, 10 Jun 2002 11:00:13 +0200 (MEST)
Message-Id: <200206100900.LAA24624@kuiper.uni-muenster.de>
To: Chaiwat Maneesawarng <tecmn@mahidol.ac.th>
Subject: Re: Paper submission
In-Reply-To: Your message of "Mon, 03 Jun 2002 19:44:54 +0200."
Date: Mon, 10 Jun 2002 11:00:13 +0200
From: "Prof. W. Meyer" <meyerw@math.uni-muenster.de>
Status: RO
X-Status:
RE:
            Total curvature and length estimate
                for curves in CAT(K) space
Dear Mr. Maneesawarng,
the editors are happy to accept the above paper for
publication in the Journal of Differential Geometry and its
Applications. The referee's reprt is included below.
Please include the corrections suggested by the referee in
your electronic files.
 At this stage we need the the revised source TeX file with the embodied eps files
of your manuscript.
 Please submit the rivised version of your source files via e-mail.
 Sincerely,
 Wolfgang Meyer
 -----referee's report-----
                                             Report on
                              Total curvature and length estimate
                                   for curves in CAT(K) space
                              by C. Maneesawarng and Y. Lenbury
 > I think the paper is acceptable for publication in DGA. It contains some original
 > results and is written in a clear and precise style.
 > A few corrections/ comments:
             line 2:
 > page 2,
                           estimates --> estimate
             line 6:
 > page 5,
                                      --> ordered
                           that total --> that the total
 > page 6,
             line 3:
                           not the --> not on the
 > page 6,
              line 4:
              line 9:
                           segements --> segments
 > page 8,
                           k 1 --> k i
 > page 12, line 4:
 > page 12, line 7- 10: This should be explained more carefully.
> page 19, line 6: from nonexpanding --> from the nonexpand
                           from nonexpanding --> from the nonexpanding
                           Bogen\"anger --> Bogenl\"ange,
   page 24, [22]
                           Vorgeschrieben --> vorgeschrieben,
                           preuss --> Preuss
```

----end referee's report-----

Total curvature and length estimate for curves in CAT(K) spaces

Chaiwat Maneesawarng*
Yongwimon Lenbury
Department of Mathematics, Faculty of Science
Mahidol University, Rama VI Road
Bangkok 10400, Thailand

July 30, 2002

Abstract

We introduce the notion of total curvature of curves (which agrees with the usual one in the piecewise smooth case) in spaces of Alexandrov curvature bounded above. Basic properties of total curvature, including rectifiability of curves of finite total curvature and additivity of total curvature, are then obtained. A sharp upper estimate of a type due to Schmidt on the length of a curve in a $\operatorname{CAT}(K)$ space is also given in terms of its total curvature and the distance between its endpoints.

Keywords: Curvature bounded above, CAT(K), length estimate

^{*}E-mail:tecmn@mucc.mahidol.ac.th

1 Introduction

We give in this paper basic properties of total curvature and a sharp upper estimate on the length of a curve in a CAT(K) space through its total curvature and chordlength. This estimate is of a type due to E. Schmidt. See [8, 22].

As is done in [8] for arbitrary curves in Euclidean space, we define the total curvature of curves in a metric space by first considering polysegments. These are curves that can be expressed as a concatenation of finitely many minimizing geodesics (distance-realizing curves). Since this most basic extension of total curvature will involve angles between geodesics, the class of metric spaces we work in is one for which an angle between two geodesics starting from a common point always exists. The class of metric spaces M of Alexandrov curvature bounded above turns out to be a satisfactory one. For any real number K, a metric space M has Alexandrov curvature at most K if, by definition, each point of M has an open neighborhood U, called a CAT(K) domain (or an R_K domain), in which a minimizing geodesic exists joining any given pair of end points and for any minimizing geodesic triangle in U with perimeter less than $\frac{2\pi}{\sqrt{K}}$ (= ∞ if $K \le 0$), the distance between any two points on the triangle is no greater than the distance between corresponding points on the triangle in S_K with the same sidelengths. Here and below S_K is the 2-dimensional spherical, Euclidean or hyperbolic space of constant curvature K. The triangle in S_K mentioned above is referred to as a comparison triangle of the original triangle. The theory of spaces of bounded Alexandrov curvature was developed in the early 1950's ([6, 7]; see also [10, 11, 12, 13] and [15].) See [1] for properties of spaces of constant curvature.

١

Section 2 gives the definition and basic properties of total curvature. These include, for example, rectifiability of curves of finite total curvature. The following length estimate in terms of total curvature and chordlength (the distance between endpoints of a curve) is due to Schmidt [22] for regular curves in Euclidean space, and to Alexandrov and Reshetnyak [8, Theorem 5.8.1] for arbitrary curves in Euclidean space. The example of a cylinder (also mentioned in [3]) shows that this estimate, proved in Sections 3, fails in general. Hence we require in Section 3 that the space is CAT(K). Sufficient conditions that guarantee this are given in [3] for K > 0 (see [14, 19] for the smooth case); and [2, 17, 18] for $K \le 0$ (see also [9, 10, 12]).

Theorem 1.1 Let γ be a curve in a CAT(K) space, s its arclength, r its chordlength, and κ its total curvature. Suppose that $s < \frac{\pi}{\sqrt{K}}$ and that $\kappa < \pi$ if $K \leq 0$ and $\kappa + r\sqrt{K} < \pi$ if K > 0. Then $s \leq s(r, \kappa)$, where the maximum length $s(r, \kappa)$ is realized by isosceles bisegments (curves consisting of two geodesic segments equal in length) in spaces of constant curvature K.

The following comparison theorem and majorization theorem are due respectively to Alexandrov and Reshetnyak. These are powerful tools to convert problems in CAT(K) spaces into ones in corresponding model spaces. A nonexpanding map is a map between metric spaces that never increases the distance between points. A convex domain D in S_K majorizes a rectifiable closed curve γ in a metric space if a nonexpanding map exists from D to the space, with its restriction to the boundary of D an arclength preserving map onto the image

of γ . We shall also say that the boundary of D majorizes γ .

١

Theorem 1.2 (Alexandrov [5]) In a CAT(K) space, the angle between any two geodesics at their common endpoints exists. If α_1 , α_2 and α_3 are angles of a triangle in a CAT(K) space corresponding respectively to angles $\tilde{\alpha}_1$, $\tilde{\alpha}_2$ and $\tilde{\alpha}_3$ of a triangle in S_K with the same sidelengths, then $\alpha_i \leq \tilde{\alpha}_i$ for i = 1, 2, 3. An equality holds for some i if and only if the two triangles bound totally geodesic surfaces isometric to each other.

Theorem 1.3 (Reshetnyak [21]) If the length of a rectifiable closed curve in a CAT(K) space is less than $\frac{2\pi}{\sqrt{K}}$ then there is a convex domain in S_K that majorizes it.

2 Total Curvature

Let X be a CAT(K) space. By a polysegment in X with ordered vertices p_0 , p_1, \ldots, p_k corresponding respectively to parameter values $t_0 < t_1 < \ldots < t_k$, we mean a curve $\sigma: [t_0, t_k] \to X$ with the property that the restriction $\sigma_i = \sigma|_{[t_{i-1}, t_i]}$ of σ on each subinterval $[t_{i-1}, t_i]$ is a nonconstant minimizing geodesic. A bisegment is a polysegment with two geodesic segments and an n-segment is one with n geodesic segments. If σ is a polysegment with ordered vertices p_0 , p_1, \ldots, p_k , then the angle $\widehat{p_i}$ of σ at an interior vertex p_i is the angle subtended by the two geodesics $p_{i-1}p_i$ and p_ip_{i+1} ([6], see [13]), and the total rotation $\kappa^*(\sigma)$ of σ is the sum of its rotations $\pi - \widehat{p_i}$ at p_i :

$$\kappa^*(\sigma) = \sum_{i=1}^{k-1} (\pi - \widehat{p_i}).$$

Let $\gamma:[a,b]\to X$ be a curve. A polysegment σ is inscribed in γ if there are a partition $a=t_0< t_1< \cdots < t_k=b$ of [a,b] and a parametrization of σ on [a,b] such that $\sigma(t_i)=\gamma(t_i)$ for $0\leq i\leq k$, and $\sigma|_{[t_{i-1},t_i]}$ is a minimizing geodesic for $1\leq i\leq k$. Unless otherwise specified, any polysegment inscribed in a curve is parametrized in this way. Following the terminology used in [8], for each polysegment σ inscribed in γ the modulus of σ associated with γ is

$$\mu_{\gamma}(\sigma) = \max_{1 \le i \le k} \operatorname{diam} \left(\gamma|_{[t_{i-1},t_i]} \right),$$

where $a = t_0 < t_1 < \cdots < t_k = b$ is the partition of [a,b] associated with σ as above. Finally, the *total curvature* of γ is

$$\kappa(\gamma) = \limsup_{\mu_{\gamma}(\sigma) \to 0} \kappa^{*}(\sigma) = \lim_{\epsilon \to 0^{+}} \sup_{\sigma \in \Sigma_{\epsilon}(\gamma)} \kappa^{*}(\sigma),$$

where for each $\epsilon > 0$, $\Sigma_{\epsilon}(\gamma)$ is the set of polysegments σ inscribed in γ such that $\mu_{\gamma}(\sigma) < \epsilon$. Since angles subtended by pairs of geodesics are independent of the choice of model spaces [8], it follows that the total curvature of a curve depends only locally on the metric, and not on the bound K.

In [4], Alexander and Bishop defined total curvature for curves in CAT(0) spaces, thereby generalized the concept from the Euclidean case [8]. On the other hand, generalization to S_K for positive K has also been done in [8]. The definitions in these settings agree with ours. In fact, in CAT(0) spaces (and hence in all CAT(K) spaces for $K \leq 0$), the results in this section can be deduced from monotonic increase in total curvature under refinement of inscribed polysegments [4]. For K > 0, on the contrary, no monotonic property holds in general, or even in S_K . However, Proposition 2.4 can be proved in S_K for K > 0 using integral-geometric methods [8, Theorem 6.3.2], which are not applicable in singular spaces. Yet, total curvature of the inscribed polysegments can be controlled in arbitrary CAT(K) spaces. We begin by verifying the equivalence of total rotation and total curvature for polysegments.

Proposition 2.1 For a polysegment in a CAT(K) space, its total curvature and its total rotation coincide.

Proof. Without loss of generality, we let η be a polysegment with at least two minimizing geodesic segments. That $\kappa(\eta) \geq \kappa^*(\eta)$ is easily verified. To show that $\kappa(\eta) \leq \kappa^*(\eta)$, we let $p_0, p_1 \ldots, p_k$ $(k \geq 2)$ be ordered vertices of η . Fix a small positive number ϵ . Let σ be an arbitrary polysegment inscribed in η with modulus less than ϵ . For each $i, 1 \leq i \leq k-1$, we let m_i and q_i be the

unique consecutive vertices of σ such that, as vertices of η , $m_i \leq p_i < q_i$. Since ϵ is small, we assume that there are at least three vertices of σ on each segment of η . If $m_i < p_i$, we let α_i , β_i and γ_i be the interior angles at m_i , p_i and q_i , respectively, of the geodesic triangle Δ_i defined by these three points, with $\widetilde{\alpha}_i$, $\widetilde{\beta}_i$ and $\widetilde{\gamma}_i$ the corresponding angles of a comparison triangle $\widetilde{\Delta}_i$ of Δ_i in S_K . Denote by \widehat{m}_i and \widehat{q}_i the angles of σ at m_i and q_i , respectively, and by $\widehat{p}_i = \beta_i$ the angle of η at p_i . Now, by the combined use of the triangle inequality for angles, Alexandrov's angle comparison, and the Gauss-Bonnet formula,

$$\kappa^{*}(\sigma) - \kappa^{*}(\eta) = \sum_{\substack{1 \leq i \leq k-1 \\ \overline{m}_{i} < p_{i}}} \left[(\pi - \widehat{m}_{i}) + (\pi - \widehat{q}_{i}) - (\pi - \widehat{p}_{i}) \right]$$

$$\leq \sum_{\substack{1 \leq i \leq k-1 \\ \overline{m}_{i} < p_{i}}} \left[\alpha_{i} + \gamma_{i} - (\pi - \beta_{i}) \right]$$

$$\leq \sum_{\substack{1 \leq i \leq k-1 \\ \overline{m}_{i} < p_{i}}} \left[\widetilde{\alpha}_{i} + \widetilde{\beta}_{i} + \widetilde{\gamma}_{i} - \pi \right]$$

$$= K \sum_{\substack{1 \leq i \leq k-1 \\ \overline{m}_{i} < p_{i}}} a_{i},$$

where a_i is the area of the triangle $\widetilde{\Delta}_i$. If $K \leq 0$ then we have $\kappa^*(\sigma) \leq \kappa^*(\eta)$, and thus $\kappa(\eta) \leq \kappa^*(\eta)$ as required. Suppose K > 0. Since each a_i is bounded above by the area of a disk with circumference 3ϵ in S_K , which tends to zero as ϵ tends to zero, it follows that

$$\kappa(\eta) = \lim_{\epsilon \to 0^+} \sup_{\sigma \in \Sigma_{\epsilon}(\eta)} \kappa^{*}(\sigma) \le \kappa^{*}(\eta)$$

as required.

For the purpose of studying total curvature, it is worth rephrasing the following fact, which appeared in [21] as part of the proof of Reshetnyak's majorization theorem. Let σ be a minimizing geodesic segment of an n-segment γ in S_K . A supporting half space of γ corresponding to σ is a closed half space of S_K containing all segments of γ adjacent to σ , with boundary containing σ . Two supporting half spaces corresponding to adjacent segments are compatible if one can be deformed to the other by rotation about the common vertex in such a way that the two segments always lie in the intermediate half spaces. The polysegment γ is said to be weakly convex with respect to a point $O \in S_K$ if there corresponds to each segment of γ a supporting half space containing O such that each pair of supporting half spaces corresponding to adjacent segments are compatible. Then Reshetnyak's fan construction results in the following Theorem 2.2 (Reshetnyak [21]) For any n-segment γ in a closed ball of radius $R < \frac{\pi}{2\sqrt{K}}$ centered at a point O in a CAT(K) space, there exist a closed disk D of radius R centered at some point O' in S_K , and an n-segment η in D that is weakly convex with respect to O' with geodesic segments of the same sequence of lengths and with an angle at each interior vertex no smaller than

To define total curvature for curves in a space of curvature bounded above, we need the additive property of total curvature in CAT(K) spaces. This follows from an expression of total curvature of a curve as the limit of the total curvature of a polysegment inscribed in the curve as its modulus goes to zero. To achieve this, we need an appropriate curve length estimate in S_K . This estimate is due to Dekster, and a short version of it is given below. A more general result appears in [20].

the corresponding angle of γ .

Theorem 2.3 (Dekster [16]) For each real number K, there exists a positive number $\theta_K < \frac{\pi}{2}$ such that if $0 \le \theta \le \theta_K$ then the maximum length among piecewise C^2 curves in a closed disk of radius less than $\frac{\pi}{2\sqrt{K}}$ in S_K with total curvature at most θ is finite and attained by a curve with total curvature θ .

Proposition 2.4 Let τ_n be any sequence of polysegments inscribed in a curve γ in a CAT(K) space such that $\mu_{\gamma}(\tau_n) \to 0$. Then $\kappa(\tau_n) \to \kappa(\gamma)$. Furthermore, if $\kappa(\gamma)$ is finite then γ is rectifiable.

Proof. Fix a curve $\gamma:[a,b]\to X$ in a CAT(K) space. We consider two cases.

Case I. γ is not rectifiable. Without loss of generality, we assume that γ is contained in a closed ball of radius $R < \frac{\pi}{2\sqrt{K}}$. Let τ_n be a sequence of polysegments inscribed in γ with $\mu_{\gamma}(\tau_n) \to 0$. Let us denote the length of any curve η by $\ell(\eta)$. Then $\ell(\tau_n) \to \infty$. Given k > 0, we choose a positive integer N such that $\ell(\tau_n) > (M+1)^2 L$ for $n \geq N$, where M is the greatest integer not exceeding $\frac{k}{\frac{1}{2}\theta_K}$ and L is the maximum length referred to in Theorem 2.3. We shall show that $\kappa(\tau_n) > k$ for $n \geq N$, from which it follows that $\kappa(\gamma) = \infty$, that $\kappa(\tau_n) \to \kappa(\gamma)$, and that γ must be rectifiable if $\kappa(\gamma)$ is finite. Suppose on the contrary that $\kappa(\tau_n) \leq k$ for some $n \geq N$. By Theorem 2.2, there exists a polysegment η in a closed disk of radius R in S_K with $\ell(\eta) = \ell(\tau_n)$ and $\kappa(\eta) \leq \kappa(\tau_n) \leq k$. But then there are at most M vertices of η with rotation more than $\frac{1}{2}\theta_K$. These vertices cut η into at most M+1 subarcs, each with rotation at most $\frac{1}{2}\theta_K$ at its vertices and with total curvature at most k. Now it is possible to choose, on each of these subarcs, at most M points that cut it into subarcs of total curvature at most θ_K , with at most one having total curvature

less than $\frac{1}{2}\theta_K$. Thus we end up with a decomposition of η into at most $(M+1)^2$ subarcs, each of length at most L, a contradiction.

Case II. γ is rectifiable. Let us define for each polysegment σ inscribed in γ the mesh of σ associated with γ , denoted by $\widetilde{\mu}_{\gamma}(\sigma)$, as

$$\widetilde{\mu}_{\gamma}(\sigma) = \max_{1 \leq i \leq k} \ell \left(\gamma |_{[t_{i-1}, t_i]} \right),$$

where $a=t_0 < t_1 < \cdots < t_k = b$ is the partition of [a,b] associated with the inscribed polysegment σ . Let σ_n be a sequence of polysegments inscribed in γ such that $\mu_{\gamma}(\sigma_n) \to 0$ and $\kappa(\sigma_n) \to \kappa(\gamma)$. Let τ_m be an arbitrary sequence of polysegments inscribed in γ such that $\mu_{\gamma}(\tau_m) \to 0$. Then $\tilde{\mu}_{\gamma}(\sigma_n) \to 0$ and $\tilde{\mu}_{\gamma}(\tau_m) \to 0$ as well [8, p. 30].

Fix n and $\sigma = \sigma_n$. Let $\sigma(a) = p_0, p_1, \ldots, p_k = \sigma(b)$ be ordered vertices of σ on γ . Because $\tau_m \to \gamma$ (see also [8, p. 23]), it is possible to find for each m a finite sequence of points $\tau_m(a) = p_0 = p_0^{(m)}, p_1^{(m)}, \ldots, p_k^{(m)} = p_k = \tau_m(b)$ on τ_m such that $p_i^{(m)} \to p_i$ for each i. For each m let $\tau_m' = \tau_m'(n)$ be a polysegment inscribed in τ_m with ordered vertices $p_0^{(m)}, p_1^{(m)}, \ldots, p_k^{(m)}$. Then $\tau_m' \to \sigma$ (see Figure 1), and each τ_m' cuts τ_m into k polysegments $\tau_i'' = \tau_i''(m)$, each with ordered vertices $p_{i-1}^{(m)} = q_0^{(i)}, q_1^{(i)}, \ldots, q_{k_i}^{(i)} = p_i^{(m)}$. Putting $q_{-1}^{(i)} = q_{k_i}^{(i)}$ and $q_{k_i+1}^{(i)} = q_0^{(i)}$, we now write for each j, $0 \le j \le k_i$,

$$\alpha_j^{(i)} = \angle q_{j-1}^{(i)} q_j^{(i)} q_{j+1}^{(i)},$$

and for each i,

$$eta_i = eta_i^{(m)} = \angle p_{i-1}^{(m)} p_i^{(m)} p_{i+1}^{(m)},$$
 and $\delta_i = \delta_i^{(m)} = \angle q_{k_i-1}^{(i)} p_i^{(m)} q_1^{(i+1)}.$

See Figure 2.

Figure 1. Construction of τ_m' .

Figure 2. The angles $\alpha_j^{(i)}, \beta_i$ and δ_i .

For each i, let $\widetilde{\alpha}_j^{(i)}$, $0 \leq j \leq k_i$, be the angle corresponding to $\alpha_j^{(i)}$ of a convex polygon $P_i = P_i(m,n)$ in S_K that majorizes the closed curve formed by τ_i'' and its chord. Then

$$\kappa(\sigma_n) \leq \liminf_{m \to \infty} \kappa(\tau'_m(n))$$

(see [10, p. 18]), and

$$\kappa(\tau_m) - \kappa(\tau'_m) = \sum_{i=1}^{k-1} (\pi - \beta_i) - \sum_{i=1}^k \sum_{j=1}^{k_i - 1} (\pi - \alpha_j^{(i)}) - \sum_{i=1}^{k-1} (\pi - \delta_i)$$

$$\geq \sum_{i=1}^k \sum_{j=1}^{k_i - 1} (\pi - \alpha_j^{(i)}) - \sum_{i=1}^{k-1} (\alpha_0^{(i)} + \alpha_{k_i}^{(i)})$$

$$\geq \sum_{i=1}^k \left((k_i - 1)\pi - \sum_{j=0}^{k_i} \widetilde{\alpha}_j^{(i)} \right)$$

$$= -K \sum_{i=1}^k a_i,$$

where $a_i = a_i(m, n)$ is the area of the convex region in S_K bounded by the polygon P_i . Let

$$L(m,n) = \sum_{i=1}^{k} l_i(m,n),$$

where $l_i(m,n)$ is the perimeter of the convex polygon P_i , which exists for sufficiently large m and n, i.e., for m and n such that $\mu(m,n) = \tilde{\mu}_{\tau_m}(\tau'_m(n)) < \frac{\pi}{\sqrt{K}}$. Dropping the parameters m and n for simplification and letting A(l) denote the area enclosed by a circle of circumference l in S_K , since the maximum of the real-valued function

$$F(x_1,x_2,\ldots,x_k)=\sum_{i=1}^k A(x_i)$$

on the set $P = \{(x_1, x_2, \dots, x_k) \in [0, 2\mu]^k : x_1 + x_2 + \dots + x_k = L\}$ is attained at a point $\overline{x} = (\overline{x}_1, \overline{x}_2, \dots, \overline{x}_k)$ only if the inequalities $0 < \overline{x}_i < 2\mu$ hold simultaneously for at most one i, we have for any $x \in P$,

$$F(x) \le (q+1)A(2\mu) < (L+2\mu)\frac{A(2\mu)}{2\mu}$$

where $L = q \cdot 2\mu + r$ with q an integer and $0 < r \le 2\mu$. As a consequence, the

sum
$$a(m,n) = \sum_{i=1}^k a_i$$
 is bounded above by $\sum_{i=1}^k A(l_i) \le (L+2\mu) \frac{A(2\mu)}{2\mu}$, and
$$\limsup_{m \to \infty} Ka(m,n) \le K(2\ell(\gamma) + 2\tilde{\mu}_{\gamma}(\sigma_n)) \frac{A(2\tilde{\mu}_{\gamma}(\sigma_n))}{2\tilde{\mu}_{\gamma}(\sigma_n)}.$$

which has a trivial limit as $n \to \infty$. Thus as $n \to \infty$.

$$\kappa(\sigma_n) \leq \liminf_{m \to \infty} \kappa(\tau_m'(n)) \leq \limsup_{m \to \infty} Ka(m,n) + \liminf_{m \to \infty} \kappa(\tau_m)$$

implies

$$\kappa(\gamma) = \lim_{n \to \infty} \kappa(\sigma_n) \le \liminf_{m \to \infty} \kappa(\tau_m) \le \limsup_{m \to \infty} \kappa(\tau_m) \le \kappa(\gamma).$$

This completes the proof of Proposition 2.4.

Existence of directions and angles between curves also follows from Proposition 2,4. According to Alexandrov's definition, an arc has a direction if the angle with itself exists. An angle at an interior point of a curve is generalized from the case of polysegments above in an obvious manner.

Proposition 2.5 Let γ_1 and γ_2 be curves in a CAT(K) space originating from the same point. If $\kappa(\gamma_1)$ and $\kappa(\gamma_2)$ are finite then the angle between the two curves exists.

Proof. Let $\{a,b\}$ be a common closed interval on which γ_1 and γ_2 are both defined with $\gamma_1(a) = \gamma_2(a) = p$. We want to show that $\angle \gamma_1(s) \ p \ \gamma_2(t)$ has a limit as s and t approach a from above. To see this let $s_n \to a$ and $t_n \to a$ be convergent sequences of points in (a,b), whose images under γ_1 and γ_2 , respectively, are different from p. For each n let σ_n^1 be a polysegment inscribed in γ_1 with p and $\gamma_1(s_n)$ its first two vertices, and with $\mu_{\gamma_1}(\sigma_n^1) = \text{diam } (\gamma_1|_{[a,s_n]})$.

Likewise, let σ_n^2 be a polysegment inscribed in γ_2 with p and $\gamma_2(t_n)$ its first two vertices, and with $\mu_{\gamma_2}(\sigma_n^2) = \operatorname{diam}\left(\gamma_2|_{[a,t_n]}\right)$. Let $\gamma = (-\gamma_1) * \gamma_2$ and let $\sigma_n = (-\sigma_n^1) * \sigma_n^2$ for every n. Then σ_n is a polysegment inscribed in γ , $\mu_{\gamma_1}(\sigma_n^1) \to 0$, $\mu_{\gamma_2}(\sigma_n^2) \to 0$ and $\mu_{\gamma}(\sigma_n) \to 0$. It follows that

$$\kappa(\sigma_n) = \kappa(\sigma_n^1) + \kappa(\sigma_n^2) + [\pi - \angle \gamma_1(s_n) \ p \ \gamma_2(t_n)] \le \kappa(\sigma_n^1) + \kappa(\sigma_n^2) + \pi.$$

Now because $\kappa(\sigma_n^1) \to \kappa(\gamma_1) < \infty$ and $\kappa(\sigma_n^2) \to \kappa(\gamma_2) < \infty$ as $n \to \infty$, we see that $\kappa(\sigma_n) \to \kappa(\gamma) < \infty$ and

$$\lim_{n\to\infty} \angle \gamma_1(s_n) \ p \ \gamma_2(t_n) = \pi - \kappa(\gamma) + \kappa(\gamma_1) + \kappa(\gamma_2).$$

Since s_n and t_n are arbitrarily chosen, we conclude that an angle between γ_1 and γ_2 exists. \square

Corollary 2.6 In a CAT(K) space X, if p is an interior point of a curve γ identified by a fixed parameter value, and γ_1 and γ_2 are the two subarcs which p cuts γ into, then $\kappa(\gamma)$ is finite if and only if $\kappa(\gamma_1)$ and $\kappa(\gamma_2)$ are both finite. Furthermore, if $\kappa(\gamma)$ is finite then an angle α of γ at p exists and

$$\kappa(\gamma) = \kappa(\gamma_1) + \kappa(\gamma_2) + (\pi - \alpha).$$

Proof. Immediate.

Corollary 2.7 Any curve of finite total curvature has left and right directions at each of its interior points. The directions exist at the ends as well.

Proof. Immediate.

Now suppose γ is a curve in a space X of curvature bounded above by K_* . We shall now define the total curvature of γ . Since (the image of) γ is covered by a family of CAT(K) domains, by compactness of the parametrizing interval the total curvature of γ can be defined by first subdividing γ into finitely many subarcs so that each subarc lies entirely in one of these CAT(K) domains. If one of these subarcs has infinite total curvature then we let $\kappa(\gamma)$ be infinity. Otherwise, using Corollary 2.6, we define $\kappa(\gamma)$ to be the sum of the total curvatures of the subarcs and the supplementary angles of the angles at the subdividing points. Since both angle and total curvature depend only on the metric, the sum so obtained is well-defined and hence agrees with the previous definition of total curvature if X is itself a CAT(K) space.

3 Chord-curvature Length Estimate

In this section, we constrain ourself to work in a CAT(K) space. Putting

$$\lambda = \left\{ \begin{array}{ll} \sqrt{|K|}, & \text{if } K \neq 0, \\ 1, & \text{if } K = 0, \end{array} \right.$$

it is easily observed that if the length of an isosceles bisegment with minimizing segments in S_K does not exceed $\frac{\pi}{\sqrt{K}}$ then it is given by

$$s(r,\kappa) = \begin{cases} \frac{2}{\lambda} \arcsin \left(\frac{\sinh \frac{\lambda r}{2}}{\cos \frac{r}{2}}\right) & \text{if } K < 0, \\ \frac{r}{\cos \frac{r}{2}} & \text{if } K = 0, \\ \frac{2}{\lambda} \arcsin \left(\frac{\sin \frac{\lambda r}{2}}{\cos \frac{r}{2}}\right) & \text{if } K > 0, \end{cases}$$

where $r < \frac{\pi}{\sqrt{K}}$ and $\kappa < \pi$ are respectively the chordlength and the total curvature of the bisegment. This and Theorem 3.3 below imply that a sharp upper estimate of the length of a curve exists for any given pair of small chordlength and total curvature, and that an isosceles bisegment in S_K is indeed an optimizing curve. First we need the following deformation lemmas.

Lemma 3.1 In S_K , $K \leq 0$, let σ be a polysegment with at least four vertices. Let A, B, C and D be four consecutive vertices of σ ordered according to their parameter values, with A an endpoint. Assume that the segments AB and CD both lie on the same closed halfspace whose boundary contains the segment BC. Let the polysegment deform by fixing all the vertices except B, which moves in such a way that the length of the segment AB increases but the total length of the polysegment remains unchanged. Then the deformation can be carried out without increasing the total curvature $\kappa(\sigma)$ until the segments BC and CD form a geodesic.

If A is not an endpoint of σ , the above result is still valid under additional assumptions that the segment AB is initially no shorter than BC, and that the segments XA and BC both lie on the same halfspace whose boundary contains the segment AB, where $X \neq B$ is the other vertex of σ adjacent to A.

Proof. Assume that A is an endpoint of σ . Let B' be a new position of B, and denote by σ' the new polysegment corresponding to B' obtained by the described deformation. In the triangle ABC, let α, β and γ be the interior angle at A, B and C, respectively. Likewise, in the triangle AB'C, let α', β' and γ' be the interior angle at A, B' and C, respectively. By the law of cosines and the variation of angles with respect to arclength, it is easily seen that $\alpha \geq \alpha'$ and $\gamma \leq \gamma'$. Furthermore,

$$\kappa(\sigma') - \kappa(\sigma) = [(\pi - \beta') + (\pi - (\gamma' + \delta))] - [(\pi - \beta) + (\pi - (\gamma + \delta))]$$
$$= (\beta - \beta') + (\gamma - \gamma'), \tag{1}$$

where δ is a constant angle at C between the segments CA and CD, with a convention that δ is negative if CD intersects the interior of the triangle ABC. Now if AB < BC then, by an elementary fact that an isosceles bisegment gives the smallest total curvature among bisegments with given chordlength and arclength in S_K , the deformation results in smaller total curvature as long as the inequality $AB' \leq B'C$ is satisfied. Thus we assume now that $AB \geq BC$. Let a be the area of the triangle ABC and a' that of AB'C. It is easy to verify that among triangles in S_K with perimeter and one sidelength fixed, an isosceles

triangle has the largest area, from which it follows that $a \ge a'$. Now

$$K(a - a') = (\alpha + \beta + \gamma - \pi) - (\alpha' + \beta' + \gamma' - \pi)$$
$$= (\alpha - \alpha') + (\beta - \beta') + (\gamma - \gamma'), \tag{2}$$

and thus
$$\kappa(\sigma') - \kappa(\sigma) = (\beta - \beta') + (\gamma - \gamma') = K(a - a') - (\alpha - \alpha') \le 0$$
.

If A is not an endpoint of σ , then with the additional assumption on the position of XA and BC, Equation (1) becomes

$$\kappa(\sigma') - \kappa(\sigma) = (\alpha - \alpha') + (\beta - \beta') + (\gamma - \gamma'), \tag{3}$$

which is nonpositive as well, due to Equation (2).

Lemma 3.2 In S_K , $K \ge 0$, let σ be a polysegment with at least four vertices. Let A, B, C and D be four consecutive vertices of σ ordered according to their parameter values, with A an endpoint. Assume that $AB + BC \le \frac{\pi}{2\sqrt{K}}$, and that the segments AB and CD both lie on the same closed halfspace whose boundary contains the segment BC. Then the deformation described in Lemma 3.1 can be carried out without increasing the total curvature of σ until the segments BC and CD form a geodesic.

If K>0, and if on the other hand $AB+BC>\frac{\pi}{2\sqrt{K}}$, then the deformation does not increase the total curvature as long as the new length AB does not exceed $\frac{\pi}{2\sqrt{K}}$.

Proof. We proceed using the same notations as we did for the case $K \leq 0$ in Lemma 3.1. To prove the first assertion, let us first note that Equations (1)-(3) are still valid here. Therefore, if AB < BC then the correct monotonicity is

obtained as the deformation continues, as long as $AB' \leq B'C$. Thus we consider the case $AB \geq BC$. Rearranging, Equation (1) becomes

$$\kappa(\sigma') - \kappa(\sigma) = (\beta + \gamma) - (\beta' + \gamma'),$$

where we note that β' is the angle opposite the larger of the unfixed sides of the triangle AB'C. It is elementary to show that in a class of triangles in S_K , $K \geq 0$, with perimeter and one sidelength fixed, the following statements hold.

- (i) If the fixed perimeter is strictly less than $\frac{\pi}{\sqrt{K}}$, then the sum of the angle opposite the fixed side and the one opposite the larger of the unfixed sides is the smallest if the triangle is isosceles, and the sum increases as the difference between the unfixed sidelengths increases provided that the fixed sidelength is strictly less than the sum of the other two.
- (ii) For K>0, if the sum of the unfixed sidelengths is greater than $\frac{\pi}{2\sqrt{K}}$ and if the fixed sidelength is strictly less than the sum of the other two, then the angle sum also increases as the difference between the unfixed sidelengths increases, as long as the longer of them does not exceed $\frac{\pi}{2\sqrt{K}}$.
- Thus (i) implies the required assertion in the above case, while (ii) implies the assertion in the case K>0 and $AB+BC>\frac{\pi}{2\sqrt{K}}$. This completes the proof. \square

Theorem 3.3 Let γ be a curve in a CAT(K) space, s its arclength, r its chordlength and κ its total curvature. Assume that $s < \frac{\pi}{\sqrt{K}}$ and that $\kappa < \pi$ if $K \leq 0$ and $\kappa + \lambda r < \pi$ if K > 0. Then

$$s \leq s(r, \kappa)$$
.

19

Proof. Suppose first that γ is a polysegment. Let $\tilde{\gamma}$ be a convex polysegment in S_K which together with its chord defines a closed polysegment that majorizes the closed polysegment formed by γ and its chord. Then $\tilde{\gamma}$ has the same arclength and chordlength as γ does. By considering the triangle defined by any three consecutive vertices of γ , its comparison triangle and the triangle defined by the corresponding vertices of $\tilde{\gamma}$, it follows from the nonexpanding property, Alexandrov's angle comparison theorem and the classical hinge theorem that $\kappa(\tilde{\gamma}) \leq \kappa(\gamma)$. We claim that there is a deformation of $\tilde{\gamma}$ into an isosceles bisegment $\tilde{\sigma}$ in S_K with the same arclength and chordlength and with $\kappa(\tilde{\sigma}) \leq \kappa(\tilde{\gamma})$. Since $s(r, \kappa)$ is nondecreasing in κ , this implies the required inequality. Note that for K>0 the condition $\kappa+\lambda r<\pi$ allows $s(r,\kappa)$ to be defined. It remains to prove the existence of $\tilde{\sigma}$. To see this, we first note that the case K=0 is done in [8, pp. 151-152]. Moreover, the analogue of the following case K < 0applies in this case as well. We perform induction on the number n of geodesic segments in $\tilde{\gamma}$. The case $n \leq 2$ is easy. Suppose $n \geq 3$. Note that the convexity of $\tilde{\gamma}$ implies that if AB,BC and CD are any consecutive segments of $\tilde{\gamma}$ then AB and CD lie on the same halfspace whose boundary contains BC. If K<0we apply Lemma 3.1 and get a new polysegment with the same arclength and chordlength as $\widetilde{\gamma}$ but with smaller number of segments and no greater total curvature. Applying the induction hypothesis, the existence of $\tilde{\sigma}$ is obtained.

Suppose now that K > 0. We let a_1, a_2, \ldots, a_n be the lengths of consecutive segments of $\tilde{\gamma}$. We consider three cases.

Case I. $a_1 + a_2 \leq \frac{\pi}{2\sqrt{K}}$. We apply the first part of Lemma 3.2 to get a new

polysegment with smaller number of segments and with the same properties for arclength, chordlength and total curvature as in the above case K < 0.

Case II. $a_1 \ge \frac{\pi}{2\sqrt{K}}$. Then $n \ge 3$ implies $a_{n-1} + a_n \le s - a_1 \le \frac{\pi}{2\sqrt{K}}$. The first part of Lemma 3.2 applies at the other end of $\tilde{\gamma}$.

Case III. $a_1 < \frac{\pi}{2\sqrt{K}}$ and $a_1 + a_2 > \frac{\pi}{2\sqrt{K}}$. We apply the second part of Lemma 3.2 until either the number of segment is reduced or the length of the first segment reaches $\frac{\pi}{2\sqrt{K}}$. If the latter occurs, we apply case II above.

It is thus possible to apply the induction hypothesis to obtain a polysegment with the required properties.

Now we consider the general case. Let σ_n be a sequence of polysegments inscribed in γ such that $\mu_{\gamma}(\sigma_n) \to 0$ and $\kappa(\sigma_n) \to \kappa(\gamma) = \kappa$. Then σ_n has chordlength r for all n. Since $\ell(\sigma_n) \leq s$, it also follows that for every n we have $\ell(\sigma_n) < \frac{\pi}{\sqrt{K}}$. Now $\kappa < \pi$ implies that for sufficiently large n, the condition $\kappa(\sigma_n) < \pi$ is satisfied. Likewise, $\kappa + \lambda r < \pi$ implies that for sufficiently large n, the condition $\kappa(\sigma_n) + \lambda r < \pi$ holds. By the above result in the case of polysegments, $\ell(\sigma_n) \leq s(r, \kappa(\sigma_n))$ for large n. Taking into consideration the continuity of $s(r, \kappa)$ in κ and the fact that an isosceles bisegment gives the smallest total curvature among bisegments with given chordlength and arclength in S_K , the inequality in question is obtained by taking limits as $n \to \infty$. The theorem is proved. \square

Remark 3.4 Neither a global upper bound nor a lower bound exists for K > 0 and $s > \frac{\pi}{\sqrt{K}}$. Examples are easily constructed in an open half space of S_K .

Acknowlegement

This work is a continuation of part of a Ph.D. thesis guided by Stephanie Alexander and Richard Bishop, to whom the authors are very grateful. The authors would also like to thank David Berg, Robert Kaufman, Igor Nikolaev and John Sullivan for their helpful conversations, and the Thailand Research Fund for its financial support (contract number PDF/35/2543).

References

- [1] D. V. Alekseevskij, A. S. Solodovnikov and E. B. Vinberg, Geometry of spaces of constant curvature, in: E. B. Vinberg, (Ed.), Geometry II Spaces of Constant Curvature, Encyclopaedia Math. Sci. 29, 1993, pp. 6-138.
- [2] S. B. Alexander and R. L. Bishop, The Hadamard-Cartan theorem in locally convex metric spaces, Enseign. Math. 36 (1990) 309–320.
- [3] S. B. Alexander and R. L. Bishop, Comparison theorems for curves of bounded geodesic curvature in metric spaces of curvature bounded above, *Differential Geom. Appl.* 6 (1996) 67-86.
- [4] S. B. Alexander and R. L. Bishop, The Fary-Milnor theorem in Hadamard manifolds, Proc. Amer. Math. Soc. 126 (1998) 3427–3436.
- [5] A. D. Alexandrov, Theory of curves based on the approximation by polygonal lines, Nautch. sess. Leningr. univer., Tesisy dokl. na sektch. matem. nauk. (1946).
- [6] A. D. Alexandrov, A theorem on triangles in a metric space and some of its applications, Trudy Mat. Inst. Steklov 38 (1951) 5-23 (in Russian).
- [7] A. D. Alexandrov, Über eine Verallgemeinerung der Riemannschen Geometrie, Schr. Forschungsinst. Math. 1 (1957) 33-84.
- [8] A. D. Alexandrov and Yu. G. Reshetnyak, General Theory of Irregular Curves, Kluwer Academic Publishers, Dordrecht, 1989.

- [9] W. Ballman, Singular spaces of non-positive curvature, in: E. Ghys and P. de la Harpe, (Eds.), Sur les Groupes Hyperboliques d'apres Gromon, Birkhäuser, Boston.
- [10] W. Ballman. Lectures on Spaces of Nonpositive Curvature Birkhäuser. Basel, 1995.
- [11] V. N. Berestovskii and I. G. Nikolaev. Multidimensional generalized Riemannian spaces. in: Yu. G. Reshetnyak. (Ed.). Geometry IV Non-regular Riemannian Geometry. Encyclopaedia Math. Sci. 70, 1993, pp. 165-244.
- [12] M. Bridson and A. Haeffiger, Metric Spaces of Non-positive Curvature.
 Springer-Verlag, Heidelberg, 1999.
- [13] D. Burago, Yu. Burago and S. Ivanov, A Course in Metric Geometry. Graduate Studies in Mathematics 33, Amer. Math. Soc., Providence, 2001
- [14] P. Buser and H. Karcher, Gromov's almost flat manifolds, Asterisque 81, 1981, 148 pp.
- [15] S. Buyalo, Lecture Notes on Spaces of Nonpositive Curvature (course taught at University of Illinois at Urbana-Champaign), 1995.
- [16] B. V. Dekster, Upper estimates of the length of a curve in a Riemannian manifold with boundary, J. Differential Geom. 14 (1979) 149-166.
- [17] M. Gromov, Hyperbolic manifolds, groups and actions, in: I. Kra and B. Maskit, (Eds.), Riemann Surfaces and Related Topics, Ann. of Math. Stud. 97, Princeton University Press, Princeton, 1981, 183-213.

- [18] M. Gromov, Hyperbolic groups, in: S. M. Gersten, (Ed.), Essays in Group Theory, M.S.R.I. Publications 8, Springer-Verlag, New York et al., 1987, pp. 75-264.
- [19] J. Jost, Eine geometrische Bemerkung zu Sätzen über harmonische Abbildungen, die ein Dirichletproblem lösen. Manus. Math. 32 (1980) 51-57.
- [20] C. Maneesawarng. Length estimate for curves in circumballs, to appear,
- [21] Yu. G. Reshernyak. Inextensible mappings in a space of curvature not greater than K. Siberian Math. J. 9 (1968) 683-689.
- [22] E. Schmidt, Über das Extremum der Bogenlänge einer Raumkurve bei vorgeschriebenen Einschränkungen ihrer Krümmung Sitz. bericht Preuss. Akad. Wissensch. 25 (1925) 485-490.