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Project Code: PDF/35/2543

Project Title: Properties and Relationships among Geometric Quantities of Curves in

Singular Spaces of Curvature Bounded Above

Investigator: Chaiwat Maneesawarng, Mahidoi University.

E-mail Address: tecmn@mucc.mahidol.ac.th

Project Period: July 1, 2000—June 30, 2002

The objective is to generalize the concept of total curvature of curves and to
study its basic properties as well as theorems on length estimate. Total curvature of a
curve in a metric space of curvature bounded above may be defined by approximating
the curve by polysegments. Two curve length estimates—through its total curvature
and chordlength and through its total curvature and the radius of its circumball—are
obtained through the use of Reshetnyak's Majorization Theorem and an analysis of
curves in spaces of constant curvature. The estimates have similar characters as in the
classical setting (the Euclidean space), except in the case of negative spatial curvature
bound for the second estimate, where a combination of a large circumradius and large
total curvature gives rise to a polysegment as an extremal curve--a configuration that
has not previously been seen. For future studies, there are a number of theorems and

properties that are plausible to extend to this generalized setting.

Keywords: Curvature, length estimate, metric space of curvature bounded above.
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Abstract

We introduce the notion of total curvature of curves (which agrees
with the usual one in the piecewise smooth case) in spaces of Alexandrov
curvature bounded above. Basic properties of total curvature, includ-
ing rectifiability of curves of finite total curvature and additivity of rotal
curvature, are then obtained. A sharp upper estimate of a type due to
Schmidt on the length of a curve in a CAT{ /) space is also given in terms
of its total curvature and the distance berween its endpoints.
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1 Introduction

We give in this paper basic properties of total curvature and a sharp upper
estimate on the length of a curve in a CAT( /') space through its total curvature
and chordlength. This estimate is of a type due to E. Schmidt. See [8, 22].

As is done in [8] for arbitrary curves in Euclidean space, we define the total
curvature of curves in a metric space by first considering polysegments. These
are curves that can be expressed as a concatenation of finitely many minimizing
geodesics (distance-realizing curves). Since this most basic extension of total
curvature will involve angles between geodesics. the class of metric spaces we
work in is one for which an angle between two geodesics starting from a common
point always exists. The class of metric spaces M of Alexandrov curvature
bounded above turns out to be a satisfactory one. For any real number K,
a metric space M has Alexandrov curvature at most K if, by definition, each
point of M has an open neighborhood U, called a CAT(K') domain (or an Rg
domain), in which a minimizing geodesic exists joining any given pair of end
points and for any minimizing geodesic triangle in I/ with perimeter less than
2—\/% (= o0 if K < 0), the distance between any two points on the triangle is no
greater than the distance between corresponding points on the triangle in Sg
with the same sidelengths. Here and below Sk is the 2-dimensional spherical,
Euclidean or hyperbolic space of constant curvature K. The triangle in Sk
mentioned above is referred to as a comparison triangle of the original triangle.
The theory of spaces of bounded Alexandrov curvature was developed in the

early 1950’s ([6, 7]; see also [10, 11, 12, 13] and [15].) See [1] for properties of



spaces of constant curvature.

Section 2 gives the definition and basic properties of total curvature. These
include, for example, rectifiability of curves of finite total curvature. The fol-
lowing length estimate in terms of total curvature and chordlength (the dis-
tance between endpoints of a curve) is due to Schmidt [22] for regular curves
in Euclidean space, and to Alexandrov and Reshetnyak (8, Theorem 5.8.1] for
arbitrary curves in Euclidean space. The example of a cylinder (also mentioned
in [3]) shows that this estimate, proved in Sections 3, fails in general. Hence
we require in Section 3 that the space is CAT(A). Sufficient conditions that
guarantee this are given in {3] for A > 0 (see [14, 19] for the smooth case);

and (2, 17, 18] for K < 0 (see also [9, 10, 12]).

Theorem 1.1 Let v be a curve tn a CAT(K ) space, s its arclength, r its
chordlength, and k its total curvature. Suppose that s < ﬁ and that k < 7
ff K <0and s + rvK < 7 if K > 0. Then s < s(r,k), where the maxi-
mum length s(r, k) is realized by isosceles bisegments (curves consisting of two

geodesic segments equal in length) in spaces of constant curvature K.

The following comparison theorem and majorization theorem are due re-
spectively to Alexandrov and Reshetnyak. These are powerful tools to convert
problems in CAT(K') spaces into ones in corresponding model spaces. A nonez-
ponding map is a map between metric spaces that never increases the distance
between points. A convex domain D in Sk majorizes a rectifiable closed curve
4 in a metric space if a nonexpanding map exists from D to the space, with its

restriction to the boundary of D an arclength preserving map onto the image



of v. We shall also say that the boundary of D majorizes .

Theorem 1.2 (Alexandrov [5]) In a CAT(K ) space, the angle between any
two geodesics at their common endpoints exists. If o, az and a3 are angles of a
triangle in a CAT(K ) space corresponding respectively to angles &, a2 and as
of a triangle in Sx with the same sidelengths, then a; < &; fori = 1,2,3. An
equality holds for some i if and only if the two triangles bound totally geodesic

surfaces isometric to each other.

Theorem 1.3 (Reshetnyak [21]) If the length of a rectifiable closed curve in

a CAT(K )} space is less than % then there is @ conver domain in Sk that

majorizes it.



2 Total Curvature

Let X be a CAT(K) space. By a polysegment in X with ordered vertices po,
P1,---, Pk corresponding respectively to parameter values tg < #; < ... < t,
we mean a curve o : [tg,tx] = X with the property that the restriction o; =
olit;_,.t,) of o on each subinterval [¢;_,¢;] is a nonconstant minimizing geodesic.
A bisegment is a polysegment with two geodesic segments and an n-segment is
one with n geodesic segments. If ¢ is a polysegment with ordered vertices py,
D1, ---» Pk, then the angle p; of ¢ at an interior vertex p; is the angle subtended
by the two geodesics p;_1p; and p;p;+; ({6], see [13]), and the total rotation

k" (o) of o is the sum of its retations © — p; at p;:

k—1

k(o) = D (7 — ).

i=1

Let v : [a,b] = X be a curve. A polysegment o is inscribed in -y if there are
a partition a = t; < t; < --- < t; = b of [a,b] and a parametrization of ¢
on [a,b] such that o(t;) = ¥(t;) for 0 < ¢ < k, and &|y,_, ) is 2 minimizing
geodesic for 1 < i < k. Unless otherwise specified, any polysegment inscribed
in a curve is parametrized in this way. Following the terminology used in [8],

for each polysegment o inscribed in -y the modulus of o associated with « is

py(0) = max diam (7lge,y.e)) »

where a =ty < ¢; < --- < tx = b is the partition of [a, b] associated with o as

above. Finally, the total curvature of « is

#£(7) = limsup k*(¢) = lim sup «"(o),
by (@) =0 €=0% ez (v)



where for each € > 0, X.(-y) is the set of polysegments o inscribed in v such that
H+(0) < €. Since angles subtended by pairs of geodesics are independent of the
choice of model spaces [8], it follows that the total curvature of a curve depends
only locally on the metric, and not on the bound K.

In [4], Alexander and Bishop defined total curvature for curves in CAT(0)
spaces, thereby generalized the concept from the Euclidean case [8]. On the
other hand, generalization to Sk for positive K has also been done in [8]. The
definitions in these settings agree with ours. In fact, in CAT(0) spaces (and
hence in all CAT(K) spaces for K < 0), the results in this section can be de-
duced from monotonic increase in total curvature under refinement of inscribed
polysegments [4]. For K > 0, on the contrary, no monotonic property holds in
general, or even in Si. However, Proposition 2.4 can be proved in Si for K > 0
using integral-geometric methods (8, Theorem 6.3.2], which are not applicable
in singular spaces. Yet, total curvature of the inscribed polysegments can be
controlled in arbitrary CAT(K) spaces. We begin by verifying the equivalence

of total rotation and total curvature for polysegments.

Proposition 2.1 For a polysegment in a CAT{K } space, its total curvature

and its total rotation coincide.

Proof. Without loss of generality, we let 5 be a polysegment with at least two
minimizing geodesic segments. That x(n) > &*(n) is easily verified. To show
that k(n) < x*(1), we let po, p1..., pi (kK > 2) be ordered vertices of . Fix
a small positive number e. Let ¢ be an arbitrary polysegment inscribed in 7

with modulus less than €. Foreach i, 1 € ¢ < k— 1, we let m; and g¢; be the



unique consecutive vertices of o such that, as vertices of 5, m; < p; < ¢;. Since
€ is small, we assume that there are at least three vertices of ¢ on each segment
of n. If m; < p;, we let o;, 3 and +; be the interior angles at m;, p; and q;,
respectively, of the geodesic triangle A; defined by these three points, with a;,
E.- and 7, the corresponding angles of a comparison triangle A; of A; in Sk.
Denote by m; and §; the angles of o at m; and g, respectively, and by p; = 5;
the angle of  at p;. Now, by the coinbined use of the triangle inequality for

angles, Alexandrov's angle comparison, and the Gauss-Bonnet formula,

S lr— )+ (r = G@) = (7 = pi)]
1<i<k—1
m, < pi

> e +vi— (7= By
1<i<k-1
m;<p,
ST @i+ B+ -

1<i<k—1
mi<pi

= K Z a;,

1<i<k-1
m, < p

k' (o) — x"(n)

IA

A

where g; is the area of the triangle A;. If K < 0 then we have x* (o) < k*(n),
and thus x(n) < x*(n) as required. Suppose K > 0. Since each a; is bounded
above by the area of a disk with circumference 3¢ in Sg, which tends to zero as

€ tends to zero, it follows that

k{n) = lim sup &k"(o) < K"(n)
e—+0+ g€X.(n)

as required. O

For the purpose of studying total curvature, it is worth rephrasing the fol-

lowing fact, which appeared in {21] as part of the proof of Reshetnyak’s ma-



jorization theorem. Let o be a minimizing geodesic segment of an n-segment -y
in Sg. A supporting half space of v corresponding to o is a closed half space
of Sk containing all segments of vy adjacent to o, with boundary containing o.
Two supporting half spaces corresponding to adjacent segments are compatible
if one can be deformed to the other by rotation about the common vertex in
such a way that the two segments always lie in the intermediate half spaces.
The polysegment ~ is said to be weakly conver with respect to a point O € Sk
if there corresponds to each segment of v a supporting half space containing O
such that each pair of supporting half spaces corresponding to adjacent segments

are compatible. Then Reshetnyak’s fanp construction results in the following

Theorem 2.2 (Reshetnyak [21]) For any n-segment vy in a closed ball of ra-
dius R < ﬁ? centered at a point O in a CAT(K ) space, there exist a closed
disk D of radius R centered at some point ' in Sk, and an n-segment 1 in
D that is weakly convezr with respect to O’ with geodesic segments of the same
sequence of lengths and with an angle at each interior verter no smaller than

the corresponding angle of -y.

To define total curvature for curves in a space of curvature bounded above,
we need the additive property of total curvature in CAT(K) spaces. This follows
from an expression of total curvature of a curve as the limit of the total curvature
of a polysegment inscribed in the curve as its modulus goes to zero. To achieve
this, we need an appropriate curve length estimate in Sg. This estimate is
due to Dekster, and a short version of it is given below. A more general result

appears in [20].



Theorem 2.3 (Dekster [16]) For each real number K, there exists a positive

number Oy <

[ME]

such that if 0 < 6 < 8y then the marimum length among
piecewise C? curves in a closed disk of radius less than #}?‘ in Sy with total

curvature at most 8 is finite and attained by a curve with total curvature 6.

Proposition 2.4 Let 7, be any sequence of polysegments inscribed in a curve
v in a CAT(K ) space such that u,(r,) — 0. Then x(7,) — k(). Furthermore,

if k(v} is finite then v is rectifiable.

Proof. Fix a curve v : [a,b] = X in a CAT(K) space. We consider two cases.

Case I. vy is not rectifiable. Without loss of generality, we assume that v

T

is contained in a closed ball of radius R < SUR

Let 7, be a sequence of
polysegments inscribed in v with u,(7,) — 0. Let us denote the length of any
curve 11 by €(n). Then £(7,) - oo. Given k > 0, we choose a positive integer
N such that €(r,,) > (M + 1)°L for n > N, where M is the greatest integer
not exceeding %g—ﬁ and L is the maximum length referred to in Theorem 2.3.
We shall show that k(r,) > k for n > N, from which it follows that (v} = oo,
that x(7n) — «(7v), and that v must be rectifiable if k() is finite. Suppose on
the contrary that x(r,) < k for some n > N. By Theorem 2.2, there exists
a polysegment 7 in a closed disk of radius R in Sx with €(n) = é(r,) and
k{n) < s{r,) < k. But then there are at most M vertices of n with rotation
more than %BK. These vertices cut 7 into at most M + 1 subarcs, each with
rotation at most %BK at its vertices and with total curvature at most k. Now it
is possible to choose, on each of these subarcs, at most M points that cut it into

subarcs of total curvature at most 8, with at most one having total curvature



less than %9;(. ‘Thus we end up with a decomposition of 7 into at most (Af +1)2
subarcs, each of length at most L, a contradiction.
Case II. v is rectifieble. Let us define for each polysegment ¢ inscribed in v

the mesh of o associated with v, denoted by i, (o), as

Ha(o) = max ¢ (’Y|[t._1.t.]) '

where a = tp < t; < --- < t; = b is the partition of [a, ] associated with the
inscribed polysegment o. Let o, be a sequence of polysegments inscribed in
v such that p,(¢,) — 0 and «(¢,) — k(¥y). Let 7, be an arbitrary sequence
of polysegments inscribed in v such that u(r,,) = 0. Then g, (s,) — 0 and
fiy (T ) = 0 as well [8, p. 30].

Fix n and ¢ = ¢,. Let o(a) = pg, p1,--., P = o{b) be ordered vertices

of o on . Because 7,, — 7 (see also [8, p. 23]), it is possible to find for each

. . Y —
m a finite sequence of points Th(a) = po = pé,m),p(lm),...,p}‘m = pr = Tm(b)
on T, such that p(m) — p; for each i. For each m let 7, = 7,,(n) be a
. . : . ( (m)
polysegment inscribed in 7,, with ordered vertices pf) ,plm), .o, pi . Then

r! — o (see Figure 1), and each 7/, cuts 7., into k polysegments 1’ = 7/'(m),

. ) ) (i)
each with ordered vertices pf’_"l’ = q(()’),q'1 U .,qi‘. (’” Putting g" = q

and Q}:)+1 = qo , we now write for each j, 0 < j < ki,

(i (1)

(1) ZQJ IQJ QJ+13

and for each 12,

(m)_(m)_(m)
6:’ :B;‘(m) = dps 1Pi P;:w
) (i+1)
and &; = 8™ = gl pi™Mgi™Y.

10



See Figure 2.

Figure 1. Construction of 7},.

Figure 2. The angles a;i), B; and 4,.

For each i, let &_(ii), 0 € j < k;, be the angle corresponding to ag-i) of a convex
polygon P; = Pi(m,n) in Sk that majorizes the closed curve formed by 7]’ and
its chord. Then

%(on) < liminf K(ri(m))

11



(see [10, p. 18]), and

k—1 k k-1 ) k—1
w(Tm) = &(17,) = (m=B)=3 > (r—al?)y =3 (r -6
1=1 i=1 j=1 i=]
k k-1 ] A—1
> z (m— a;”) -3l + aly
i=1 j=1 i=1

IV
[~
——
&
|
ard
)
I
Ll
oo

=1
where a; = a;{m,n) is the area of the convex region in Sx bounded by the
polygon P;. Let

k
L{im,n) = Zli(m,n),
1=1

where {;(m,n) is the perimeter of the convex polygon P;, which exists for suffi-
ciently large m and n, i.e., for m and n such that p(m,n) = g, _(7],(n)) < -\7%
Dropping the parameters m and n for simplification and letting A(!) denote the
area enclosed by a circle of circumference { in Sk, since the maximum of the

real-valued function

F(Il.Iz,...,Ik) = ZA(I')

on the set P = {(z1,22,...,Zx) € [0,2u)* : 2, + T2 + - + 1 = L} is at-
tained at a point ¥ = (%1, T2,...,Zs) only if the inequalities 0 < Z; < 2u hold
simultaneously for at most one i, we have for any z € P,

A(24)
2u

F(z) < (g +1)A(2p) < (L +2p)

where L = g - 2u + 7 with g an integer and 0 < 7 < 2u. As a consequence, the

12



k k ;
sum a(m.n) = Z a, is bounded above by Z ALY < (L +2u) '4(2#), and

D
1=1 =1 <H

.)”'
limsup Na(m.n) < A(2((~) + Qﬁ)(an))i(‘f‘_‘r(a"_))
M 2ps (o)

which has a trivial limit as n = 2. Thus as 1 —» .

w{on) < liminf k(7 (n)) < limsup Ra(m.n) + Uiminf &{7,)

rrE— me— H—

implies

Ky = lim mog) < liminf x(r,) < lmsups(r,) < &(7).
n— ML= N 1 — -

This completes the proof of Proposition 2.4. 0

Existence of directions and angles between curves also follows from Propo-
sition 2.4. According to Alexandrov's definition, an arc hes o direction if the
angle with itself exists. An engle at an interior point of a curve is generalized

from the case of polysegments above in an obvious manner.

Proposition 2.5 Let 5, and v2 be curves in a CAT(N ) space originating from
the same point. If k(~) and &(~2) are finite then the angle between the two

CUTVES eTists.

Proof. Let {a.b] be a common closed interval on which 4, and 5» are both
defined with ~i(a) = 72{a) = p. We want to show that Z7,(s) p 72(t) has a
limit as s and ¢ approach a from above. To see this let s,, - a and t,, = a
be convergent sequences of points in (a,b), whose images under v, and v,

respectively, are different from p. For each n let o), be a polysegment inscribed

in 91 with pand 7, (s,) its first two vertices, and with p,, (o},} = diam (y1}(a,s.)}-

13



Likewise, let ¢2 be a polysegment inscribed in w2 with p and v.(t,) its first

two vertices, and with pu,,(02) = diam (72l(a.ta)). Let ¥ = (=) * 72 and

let o, = (—ol) * o2 for every n. Then o, is a polysegment inscribed in «,

M4 (07,) = 0, po,(02) = 0 and p.(0,)} — 0. It follows that
K{on) = k(o) + £(02) + [1 — £ 71(s0) P 72(tn)] < &(0)) + K(02) + 7.

Now because x(cl) = «(71) < 0o and k{62) = k(712) < o© as n — 00, we see

that x(g,)} = &(¥) < 0o and

Jim Zy1(80) pya(tn) =7 — k() + &) + &(72).

Since s, and t, are arbitrarily chosen, we conclude that an angle between v

and ¥y exists. ]

Corollary 2.6 In a CAT(K ) space X, if p 1s an interior point of a curve -y
identified by a fired parameter value, and v, and v, are the lwo subarcs which
p cuts v into, then k() is finite if and only if k(1) and k(~vy2) are both finite.

Furthermore, if k(y) is finite then an angle a of v at p exists and
£(7) = £{m) + k() + (7 — a).

Proof. Immediate. O

Corollary 2.7 Any curve of finite total curvature has left and right directions

at each of its interior points. The directions ezist at the ends as well.

Proof. Immediate. O

14



Now suppose 3 i3 & curve W a spade N of curvature bounded above by

K. We ghall now define the toral ¢nrvatuse of ». Sifice (e image of) 7 is

covered by @ f B CATIR)

alns, by comp prrizing
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3 Chord-curvature Length Estimate

In this section, we constrain ourself to work in a CAT(K) space. Putting

A:{ VIK], if K #£0,

1, if K =0,

it is easily observed that if the length of an isosceles bisegment with minimizing

segments in Sk does not exceed —Z then it is given by

vE
e
% arcsinh (ﬂ?) if K <0,
COS x
S(r"{)Z cozg ifK:O’
2 arcsin sin 5 if K >0
A cos ¥ ! > U,

where r < 7 and k < 7w are respectively the chordlength and the total curva-
ture of the bisegment. This and Theorem 3.3 below imply that a sharp upper
estimate of the length of a curve exists for any given pair of small chordlength
and total curvature, and that an isosceles bisegment in Sy is indeed an opti-

mizing curve. First we need the following deformation lemmas.

Lemma 3.1 /n Sg, K <0, let o be a polysegment with at least four vertices.
Let A,B,C and D be four consecutive vertices of o ordered according to their
parameter values, with A an endpoint. Assume that the segments AB and CD
both lie on the same closed halfspace whose boundary contains the segment BC'.
Let the polysegment deform by fixing all the vertices except B, which moves in
such a way that the length of the segment AB increases but the total length of
the polysegment remains unchanged. Then the deformation can be carried out

without tncreasing the total curvature k(o) until the segments BC and CD form

a geodesic.

16



If A i3 not an endpoint of o, the above result is still valid under edditional
assumptions that the segment AB is tnitiglly no shorter than BC, and that the
segments X A and BC both lie on the same halfspace whose boundary contains

the segment AB, where X # B is the other verter of o adjacent to A.

Proof. Assume that 4 is an endpoint of 0. Let B’ be a new position of B,
and denote by ¢’ the new polysegment corresponding to B’ obtained by the
described deformation. In the triangle ABC, let a,3 and v be the interior
angle at A, B and C, respectively. Likewise, in the triangle AB'C), let o', 3’ and
7' be the interior angle at A, B' and C, respectively. By the law of cosines and
the variation of angles with respect to arclength, it is easily seen that a > a'

and v < +'. Furthermore,

(m=8)+(x— (¥ +N] —[(x = B) + (= (v + 3))]

k{o') - k(o)

= B-8)+(r-7") (1)

where & is a constant angle at C between the segments CA4 and C'D, with a
convention that & is negative if C'D intersects the interior of the triangle ABC.
Now if AB < BC then, by an elementary fact that an isosceles bisegment
gives the smallest total curvature among bisegments with given chordlength
and arclength in Sk, the deformation results in smaller total curvature as long
as the inequality AB' < B’C is satisfied. Thus we assume now that AB > BC.
Let a be the area of the triangie ABC and @' that of AB'C. It is easy to verify

that among triangles in Sk with perimeter and one sidelength fixed, an isosceles
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triangle has the largest area, from which it follows that a > a'. Now

K@—a) = (a+B8+y-m)—(a'+8 ++ - )

= (a—a)+(B-8)+(v-1"), (2)

and thus x(c’) — k(0) = (B~ ') + (v — ') = K(a — a') — (@ — a’) < 0.
If A is not an endpoint of o, then with the additional assumption on the

position of X 4 and BC, Equation (1) becomes
k(@)= k(e) = (a—-a)+(B-3)V+(1 -7 (3)
which is nonpositive as well, due to Equation (2). 0O

Lemma 3.2 In Sk, K > 0, let ¢ be a polysegment with at least four vertices.
Let A, B,C and D be four consecutive vertices of ¢ ordered according to their
parameter values, with A an endpoint. Assume that AB+ BC < ﬁ_‘?, and that
the segments AB and CD both lie on the same closed halfspace whose boundary
contains the segment BC. Then the deformation described in Lemma 3.1 can
be carried out without increasing the total curvature of o until the segments BC
and CD form a geodesic.

If K > 0, and if on the other hand AB + BC > 5oz then the deformation

does not increase the total curvature as long as the new length AB does not

w

exceed IR

Proof. We proceed using the same notations as we did for the case K < 0 in
Lemma 3.1. To prove the first assertion, let us first note that Equations (1)~(3)}

are still valid here. Therefore, if AB < BC then the correct monotonicity is
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obtained as the deformation continues, as long as AB’ < B'C. Thus we consider

the case AB > BC': Rearranging, Equation (1) becomes
k(@) — k(o) =(B+7) - (B +7),

where we note that 8’ is the angle opposite the larger of the unfixed sides of
the triangle AB'C. It is elementary to show that in a class of triangles in Sk,
K > 0, with perimeter and one sidelength fixed, the following statements hold.

(i) If the fixed perimeter is strictly less than = then the sum of the angle
opposite the fixed side and the one opposite the larger of the unfixed sides is
the smallest if the triangle is isosceles, and the sum increases as the differerice
between the unfixed sidelengths increases provided that the fixed sidelength is
strictly less than the sum of the other two.

(ii) For K > 0, if the sum of the unfixed sidelengths is greater than W”F
and if the fixed sidelength is strictly less than the sum of the other two, then
the angle sum also increases as the difference between the unfixed sidelengths
increases, as long as the longer of them does not exceed“zz%/}?.

Thus (i) implies the required assertion in the above case, while {ii) implies
the assertion in the case K > 0 and AB + BC > ﬁ? This completes the

proof. O

Theorem 3.3 Let v be a curve in a CAT(K) space, s its arclength, r its
chordlength and & its total curvature. Assume that 3 < 7’}-;,- aend that kK < ®

if K <0 andx+Ar <w if K> 0. Then

s < s(r,K).
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Proof. Suppose first that -y is a polysegment. Let 3 be a convex polysegment in
Sk which together with its chord defines a closed polysegment that majorizes
the closed polysegment formed by < and its chord. Then 3 has the same ar-
clength and chordlength as v does. By considering the triangle defined by any
three consecutive vertices of ~, its comparison triangle and the triangle defined
by the corresponding vertices of %, it follows from the nonexpanding property,
Alexandrov’s angle comparison theorem and the classical hinge theorem that
K(7) < k(7). We claim that there is a deformation of % into an isosceles biseg-
ment & in Sy with the same arclength and chordlength and with (o) < &(7%).
Since s{r, k) is nondecreasing in &, this implies the required inequality. Note
that for K > 0 the condition x + Ar < 7 allows s{r, k) to be defined. It remains
to prove the existence of . To see this, we first note that the case K’ = 0 is
done in [8, pp. 151-152]. Moreover, the analogue of the following case K < 0
applies in this case as well. We perform induction on the number n of geodesic
segments in 5. The case n < 2 is easy. Suppose n > 3. Note that the convexity
of ¥ impli(-::s that if 4B, BC and CD are any consecutive segments of ¥ then
AB and CD lie on the same halfspace whose boundary contains BC. If K <0
we apply Lemma 3.1 and get a new polysegment with the same arclength and
chordlength as 5 but with smaller number of segments and no greater total
curvature. Applying the induction hypothesis, the existence of & is obtained.
Suppose now that K > 0. We let a;,az2,...,an be the lengths of consecutive

segments of 5. We consider three cases.

Case I. a) + a2 < ﬁ?{- We apply the first part of Lemma 3.2 to get a new
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polysegruent sith smaller number-of segments and with the same properties-for
arclength, chordlength atid totgl Eurvatuie-as in the aheve ease K« 0.

Cusg IL oy ¥ g%z Then n > 3 lnplies fa +an < 5 — a1 € 75 The

irst part of Lemma 3.2 applies ar vhe other-end of 7.

Bl

Case HI. a1 < 7%= aend ay + a5 > We apply the seeond part of

emitd F. 2 untll either the pumber of segment is reduced or the length of the
frst seginent reaches ﬁ If the latter oeeurs, we apply ¢ase IT above:
Te is thias possible vo apply the induction Tirpothesis to alitain a polyseguient
@ with the required properties.
Now we consider the gemeral case. Let g, be a sequence of polysegments

ingeribed il + sueh that p.(o,) —» 0 and wlon) = sim) = & Thén gn by

chordlength # for all ». Sinee flas) € & it alo follews thar for every n we have
on) < Foo Now n < 7 iniplies that for sufficiently large n. the eondition
Kion) < 7 is satisfied. Likewise. & + Ar < @ implies. that for sufficiéntly large
n, the candition s(on) + A < # holds. By fhe aboye resuly in the case of
pulysegnients, flan) £ sir, &ley)) for large n. Taking into censideration the
continufty of s(r &) in & and the faet that an isosceles bisegment gives the
smallest-total curvature among bisegments with given chiordlength and arclengrh

theorem is proved. O

Remark 3.4 Neither a global upper bound nor & lower hound exists for K »

and .5 > -)/% Examples ate easily constructed in an open half:space of Su..
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