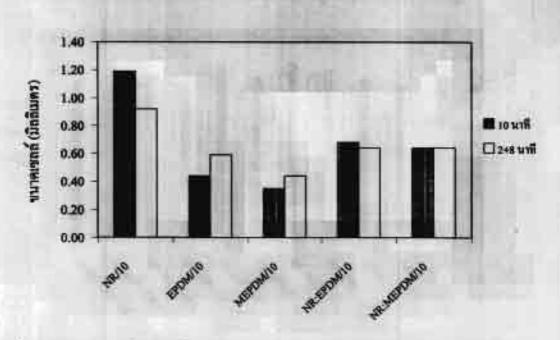
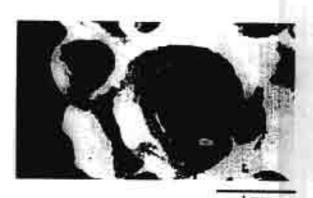


รูปที่ 4.80 ความหนาแน่นของยางชนิดต่างๆ ใช้ดาย 4.0 มิลลิเมตร อบโดยใช้ไมโครเวฟร่วมกับ ตู้อบอากาศร้อนที่อุณหภูมิ 180 °C ที่เวลาอบทั้งหมดใกล้เคียงกันคือ 10 นาที



รูปที่ 4.81 ความหนาแน่นของยางชนิดต่างๆ ใช้ดาย 6.5 มิลลิเมตร อบโดยใช้ไมโครเวฟร่วมกับ ต้อบอากาศร้อนที่อุณหภูมิ 180 °C ที่เวลาอบทั้งหมดใกล้เคียงกันคือ 10 นาที

จากรูปที่ 4.80 และรูปที่ 4.81 พบว่าความหนาแน่นของโฟมยางธรรมชาติมีค่า น้อยที่สุดส่วนยางชนิดอื่นมีคำใกล้เคียงกัน ในยางแต่ละสูตรพบว่าการใช้ไมโครเวฟอบร่วมกับตู้อบ อากาศร้อนจะทำให้โฟมยางมีความหนาแน่นต่ำกว่า การใช้ตู้อบอากาศร้อนเพียงอย่างเตียว กา รอบยางด้วยเครื่องไมโครเวฟ 2 นาที มีแนวโน้มทำให้ความหนาแน่นต่ำกว่าการอบโดยใช้ ไมโครเวฟ 1 นาที และการอบโดยไม่ใช้ไมโครเวฟ ทั้งนี้เนื่องจากการใช้ไมโครเวฟจะทำให้สารฟูใน ยางคอมปาวด์เริ่มสตายตัว หรือแตกตัวให้ก๊าซออกมาบางส่วน ทำให้เมื่อนำเข้าอบต่อด้วยตู้อบ อากาศร้อนทำให้สารฟูแตกตัวต่อ ทำให้ขนาดเซลล์ของโฟมยางเมื่ออบด้วยไมโครเวฟก่อนอบด้วย ตู้อบอากาศร้อนมีขนาดใหญ่กว่าการใช้ดู้อบอากาศร้อนเพียงอย่างเดียว ความหนาแน่นของโฟม ยางจึงต่ำกว่า


4.6.4 ขนาดเซลล์และลักษณะเซลล์

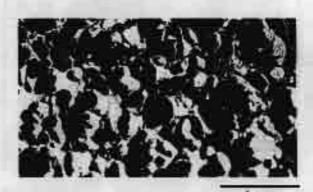
เลือกสูตรยางคอมปาวด์ที่ใช้เขม่าดำ 10 phr ใช้ตายขนาดเส้นฝาคูนย์กลาง 6.5 มิลลีเมตร อบโดยใช้ไมโครเวฟ 2 นาที ร่วมกับคู้อบอากาศร้อน และอบโดยใช้ตู้อบอากาศร้อนนำ ไปวัดขนาดเซลล์ได้ผลดังรูปที่ 4.82

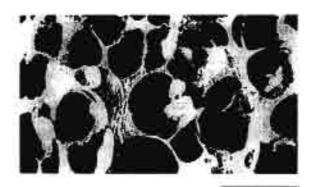
รูปที่ 4.82 ขนาดเชลด์ของยางใช้ดาย 6.5 มิลลิเมตร อบด้วยตู้อบอากาศร้อน 10 นาที และ เครื่องไมโครเวฟ 2 นาทีร่วมกับตู้อบอากาศร้อน 8 นาที

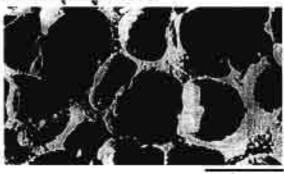
จากรูปที่ 4.82 เปรียบเทียบขนาดเซลล์ของยางที่อบโดยใช้ตู้อบอากาศร้อน 10 นาที กับ โฟมยางที่อบด้วยใมโครเวฟ 2 นาที และคู้อบอากาศร้อน 8 นาที พบว่ายางธรรมชาติมี ขนาดเซลล์ใหญ่ที่สุด และยางมาติเอดอีพีดีเอ็มมีขนาดเซลล์เฉลี่ยเล็กที่สุด เมื่อเปรียบเทียบขนาด เซลล์กับความหนีดมูนนีของยางแต่ละชนิดพบว่า ยางที่มีความหนีดสูงที่สุดคือยางมาติเอดอีพีตี เอ็มมีขนาดเชลล์เล็กที่สุด ส่วนยางที่มีความหนีคมูนนี้น้อยที่สุดคือ ยางธรรมชาติจะมีขนาดเชลล์ ใหญ่ที่สุด เมื่อเปรียบเทียบขนาดเชลล์เฉลี่ยของยางแต่ละชนิดที่อบโดยใช้ดู้อบอากาศร้อน กับอบ โดยใช้ไมโครเวฟร่วมกับตู้อบอากาศร้อนที่เวลาเท่ากัน การอบโดยใช้ไมโครเวฟร่วมกับตู้อบอากาศ ร้อนมีแนวโน้มที่มีขนาดเชลล์ใหญ่กว่าสำหรับยางอีพีดีเอ็ม ยางมาลิเอดอีพีดีเอ็ม และยางเบลนด์

รูปที่ 4.83 ลักษณะเซลล์ของยางธรรมชาติอบด้วยตู้อบอากาศร้อน 10 นาที ที่อุณหภูมิ 180 °C

รูปที่ 4.84 ลักษณะเขลล์ของยางธรรมชาติอบโดยใช้ไมโครเวฟ 2 นาที ร่วมกับตู้อบอากาศร้อน 8 นาที ที่อุณหภูมิ 180 °C


รูปที่ 4.85 ลักษณะเซลล์ของยางอีพีดีเอ็ม อบด้วยตู้อบอากาศร้อน 10 นาที ที่อุณหภูมิ 180 °C


า mm รูปที่ 4.86 ลักษณะเซลล์ของยางอีพีดีเอ็ม อบโดยใช้ไมโดรเวฟ 2 นาที ร่วมกับคู้อบอากาศร้อน 8 นาที ที่อุณหภูมิ 180 °C

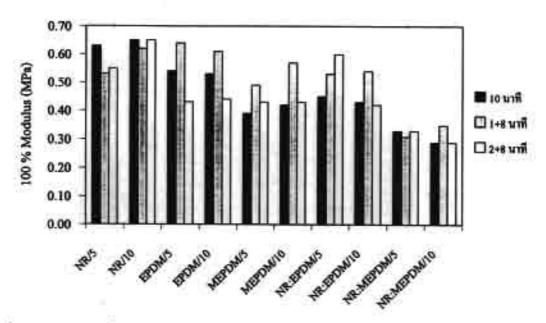

รูปที่ 4.87 ลักษณะเขตล์ของยางมาลิเอดอีพีดีเอ็ม อบด้วยตู้อบอากาศร้อน 10 นาที ที่อุณหภูมิ 180 °C

รูปที่ 4.88 ลักษณะเซลล์ของยางมาลิเอตอีพีดีเอ็ม อบโดยใช้ไมโครเวฟ 2 นาที ร่วมกับคู้อบ อากาศร้อน 8 นาที ที่อุณหภูมิ 180 °C

า mm รูปที่ 4.89 ลักษณะเซลล์ของยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม อบด้วยตู้อบ อากาศร้อน 10 นาที ที่อุณหภูมิ 180 °C

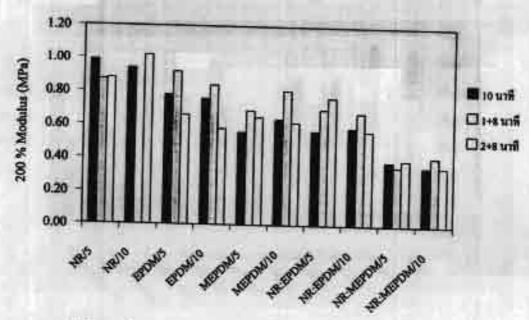
รูปที่ 4.90 ลักษณะเซลล์ของยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม อบโดยใช้ ไมโครเวฟ 2 นาที ร่วมกับคู้อบอากาศร้อน 8 นาที ที่อุณหภูมิ 180 °C

1 mm รูปที่ 4.91 ลักษณะเซลล์ของยางเบลนด์ระหว่างยางธรรมชาติกับยางมาลิเอตอีพีดีเอ็ม อบด้วยคู้ อบอากาศร้อน 10 นาที ที่อุณหภูมิ 180 °C

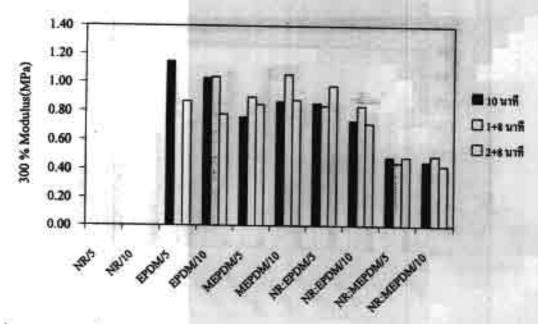


รูปที่ 4.92 ลักษณะเขตด์ของยางเบลนด์ระหว่างยางธรรมชาติกับยางมาติเอตอีพีดีเอ็ม อบโตยใช้ ใมโครเวฟ 2 นาที ร่วมกับตู้อบอากาศร้อน 8 นาที ที่อุณหภูมิ 180 °C

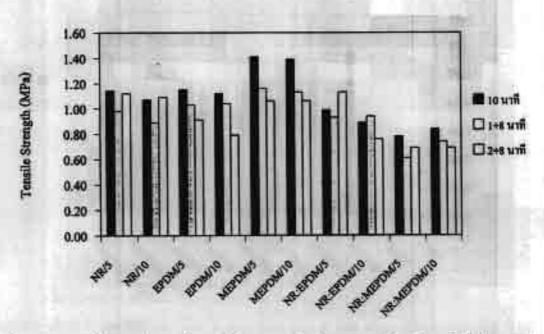
จากรูปที่ 4.83 - 4.92 แสดงลักษณะเชลล์ของยางธรรมชาติ ยางอีพีดีเอ็ม ยาง มาลิ-เอตอีพีดีเอ็ม ยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็มและยางเบลนด์ระหว่างยาง ธรรมชาติกับยางอีพีดีเอ็มและยางเบลนด์ระหว่างยาง ธรรมชาติกับยางที่ดับคั้งยเครื่องในโครเวฟ 2 ยากาศร้อนเพียงอย่างเดียว 10 นาที กับลักษณะเชลล์ของโฟมยางที่อบตัวยเครื่องไมโครเวฟ 2 นาทีร่วมกับตู้อบอากาศร้อน 8 นาที จะเห็นได้ว่าเชลล์ของยางทุกชนิดที่เวลาอบเท่ากัน เป็นเชลล์ ปิด มี ก่อ ขนาดใหญ่ ผนังเชลล์หนา การอบโฟมยางโดยใช้เครื่องไมโครเวฟร้ามกับผู้อบอากาศร้อนใต้โฟมยางที่ขนาดเชลล์ใหญ่กว่าการอบโดยใช้คู้อบอากาศร้อนเพียงอย่างเดียว โฟมยางธรรมชาติมีขนาดใหญ่ที่สุดรองลงมาเป็นโฟมยางเบลนด์ระหว่างยางธรรมชาติ ยางอีพีดีเอ็มและยางเบลนด์ระหว่างยางธรรมชาติกับยางมาลิเอตอีพีดีเอ็ม ยางอีพีดีเอ็ม และยางมาลิเอตอีพีดีเอ็มตาม ลำดับ ทั้งนี้จะเห็นใต้ว่าขนาดเชลล์ของโฟมยางจะขึ้นอยู่กับความหนืดของสูตรยางแต่ละชนิด โดย ยางที่มีความหนืดสูงจะมีขนาดเชลล์เล็กกว่ายางที่ความหนิดตำ ได้โฟมที่มีความหนาแน่นสูงกว่า นั่นเอง


4.6.4 การทดสอบสมบัติมอดูลัส ความด้านทานต่อแรงดึงและความสามารถ ยึดจนชาดของโฟมยาง

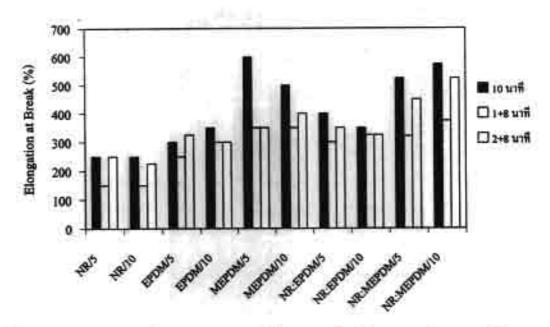
เลือกโฟมยางจากดายขนาดเส้นผ่านศูนย์กลาง 4.5 มิลลิเมตร เพื่อทดสอบสมบัติ มอดูลัส ความด้านทานต่อแรงตึงและความสามารถยึดจนขาดของโฟมยางดามวิธีการทดลองในข้อ 3.3.6.5 ได้ผลแสดงดังรูปที่ 4.93-4.97


รูปที่ 4.93 มอดูลัสที่ระยะยึด 100 % ของโฟมยางอบด้วยตู้อบอากาศร้อน 10 นาที ไมโครเวฟ 1 นาทีร่วมกับคู้อบอากาศร้อน 8 นาที และไมโครเวฟ 2 นาทีร่วมกับคู้อบอากาศร้อน 8 นาที

จากรูปที่ 4.93 แสดงค่ามอดูลัสที่ระยะยึด 100 % ของโฟมยางอบโดยใช้เวลา ใกล้เคียงกันคือใช้คู้อบอากาศร้อน 8 นาที และใช้ไมโครเวฟ 1 นาทีร่วมกับคู้อบอากาศร้อน 8 นาที และใช้ไมโครเวฟ 2 นาทีร่วมกับคู้อบอากาศร้อน 8 นาที พบว่ายางชนิดเดียวกันใช้เขม่าดำต่างกัน 5 phr ให้ค่ามอดูลัสที่ระยะยึด 100 % ไม่ต่างกัน แต่ชนิดยางมีผลต่อค่ามอดูลัสที่ระยะยึด 100 % มากกว่าคือ ยางธรรมชาติมีค่ามอดูลัสที่ระยะยึด 100 % มากที่สุด เนื่องจากความด้านทานต่อแรง ดึงที่ดีของยางธรรมชาติ ส่วนยางแบลนด์ของยางธรรมชาติกับยาง มาลิเอดอีพีดีเอ็มให้ค่ามอดูลัสที่ระยะยึด 100 % น้อยที่สุด การใช้ไมโครเวฟทำให้ค่ามอดูลัสที่ระยะยึด 100 % ของยางอีพีดี เอ็ม ยางมาลิเอดอีพีดีเอ็มและยางเบลนด์ เพิ่มขึ้น


รูปที่ 4.94 มอดูลัสที่ระยะยึด 200 % ของโฟมยางอบด้วยดู้อบอากาศร้อน 10 นาที ใมโครเวฟ 1 นาทีร่วมกับดู้อบอากาศร้อน 8 นาที และไมโครเวฟ 2 นาทีร่วมกับดู้อบอากาศร้อน 8 นาที

จากรูปที่ 4.94 แสดงค่ามอดูลัสที่ระยะยึด 200 % ของโฟมยางที่อบโดยใช้เวลา อบใกล้เคียงกันพบว่ามอดูลัสที่ระยะยึด 200 % ของยางธรรมชาติมีค่ามากที่สุด ที่ทุกสภาวะกา รอบรองลงมาคือ ยางอีพีดีเอ็ม ยางมาลีเอดอีพีดีเอ็ม ยางเบลนด์ระหว่างยางอีพีดีเอ็มและยางธรรม ชาติ ยางเบลนด์ระหว่างยางมาลีเอดอีพีดีเอ็มและยางธรรมชาติตามลำดับ การใช้ในโครเวฟอบยาง 1 นาที ร่วมกับดู้อบอากาศร้อนทำให้ค่ามอดูลัสที่ระยะยึด 200 % สูงขึ้น ยกเว้นในสูตรยางธรรม ชาติ


รูปที่ 4.95 มอดูลัสที่ระยะยึด 300 % ของโฟมยาง อบด้วยคู้อบอากาศร้อน 10 นาที ใบโครเวฟ 1 นาทีร่วมกับคู้อบอากาศร้อน 8 นาที และไมโครเวฟ 2 นาทีร่วมกับคู้อบอากาศร้อน 8 นาที

จากรูปที่ 4.95 แสดงค่ามอดูลัสที่ระยะยึด 300 % ของโฟมยางพบว่ายางธรรม ชาติไม่สามารถยึดได้ถึง 300 % อาจเนื่องมาจากพันธะเชื่อมขวางที่มากกว่า ส่วนยางอีพีดีเอ็ม ยางมาลิเอตอีพีดีเอ็ม ยางแบดนด์ระหว่างยางอีพีดีเอ็มและยางธรรมชาติมีค่าใกล้เคียงกันส่วนยาง เบลนด์ระหว่างธรรมชาติกับยางมาลิเอตอีพีดีเอ็มให้ค่า มอดูลัสที่ระยะยึด 300 % น้อยที่สุดทั้งนี้ เนื่องจากยางมีความหนาแน่นด่ำนั่นเอง

รูปที่ 4.96 ความต้านทานต่อแรงดึงของโฟมยางอบด้วยคู้อบอากาศร้อน 10 นาที ไมโครเวฟ 1 นาทีร่วมกับคู้อบอากาศร้อน 8 นาที และไมโครเวฟ 2 นาทีร่วมกับคู้อบอากาศร้อน 8 นาที

จากรูปที่ 4.96 แสดงค่าความด้านทานต่อแรงดึง พบว่าค่าความต้านทานต่อ แรงดึงของโฟมยางมาลิเอตอีพีดีเอ็มมีค่าสูงที่สุด ส่วนความด้านทานต่อแรงดึงของยาง ธรรมชาติ ยางอีพีดีเอ็ม และยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็มมีค่าใกล้เคียงกัน ส่วนยางเบ ลนด์ระหว่างยางธรรมชาติกับยางมาลิเอตอีพีดีเอ็มให้ค่าความด้านทานต่อแรงดึงน้อยที่สุด โดยจะ สังเกตใต้ว่าความด้านทานต่อแรงดึงมีแนวโน้มขึ้นอยู่กับความหนาแน่นของโฟมยางนั้นคือ โฟม ยางที่มีความหนาแน่นสูงจะมีแนวโน้มให้ความต้านทานต่อแรงดึงสูง

รูปที่ 4.97 ความสามารถยึดจนขาด (%) ของโฟมยางอบด้วยตู้อบอากาศร้อน 10 นาที ใบโครเวฟ 1 นาที ร่วมกับตู้อบอากาศร้อน 8 นาที และไมโครเวฟ 2 นาทีร่วมกับคู้อบ อากาศร้อน 8 นาที

จากรูปที่ 4.97 พบว่ายางเบลนด์ระหว่างยางธรรมชาติกับยางมาลิเอตอีพีดี-เอ็มให้ค่าความสามารถยืดจนขาด (%) สูงที่สุด รองลงมาคือ ยางเบลนด์ระหว่างยางธรรมชาติกับ ยางอีพีดีเอ็ม ยางมาลิเอตอีพีดีเอ็ม ยางอีพีดีเอ็มและยางธรรมชาติดามลำดับ ทั้งนี้เนื่องจาก ปริมาณการเกิดพันธะเชื่อมโยงของยางธรรมชาติมากที่สุดและลักษณะเซลล์ใหญ่มีผนังเชลล์บาง กว่าจึงทำให้สามารถยึดได้น้อย

บทที่ 5 สรุปผลการทดลองและข้อเสนอแนะ

5.1 การเบลนด์ยางธรรมชาติกับยางโบรมีเนตอีพีดีเอ็ม

5.1.1 การเตรียมยางโบรมิเนตอีพีดีเอ็ม

นำยางโบรมีเนตอีพีดีเอ็มวิเคราะห์ด้วยเครื่อง ¹H-NMR พบ เตมิลัตชิพ่ท์ของโปรตอน ที่ดำแหน่ง 4.506 ppm แสดงว่าโบรมีนเข้าไปในโดรงสร้างยางที่ดำแหน่งพันขะคู่

5.1.2 สมบัติทางรีโอโลยีของยาง

ความเค้นเนื่อนและความหนีดเฉือนของยางโบรมิเนตอีพีดีเอ็มที่เตรียมได้มีค่าสูง กว่ายางอีพีดีเอ็มและยางธรรมชาติ และยางเบลนด์ยางธรรมชาติกับยางโบรมิเนตอีพีดีเอ็ม เกิด ความเค้นเฉือนและความหนีดเฉือนที่สูงกว่ายางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็มทุก อัตราส่วนการเบลนด์

5.1.3 อุณหภูมิสภาพแก้ว

ยางโบรมิเนตอีพีดีเอ็มที่เดรียมได้มีคำอุณหภูมิสภาพแก้ว ที่สูงกว่ายางอีพีดีเอ็ม เล็กน้อยและเมื่อนำยางโบรมิเนตอีพีดีเอ็มมาเบลนด์กับยางธรรมชาติ พบว่า อุณหภูมิสภาพแก้ว ของยางเบลนด์นี้ปีสองค่า เช่นเดียวกับยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม

5.1.4 ลักษณะการวัลดาในช์และพลังงานการกระตุ้น

ยางใบรมิเนตพีตีเอ็ม มี Scorch time และ Cure time สั้นกว่ายางอีพีตีเอ็ม คือ วัล ลาในช์ใต้เร็วกว่ายางอีพีตีเอ็ม และเมื่อนำยางโบรมิเนตอีพีตีเอ็มมาเบลนด์กับยางธรรมชาติพบว่า ที่สัดส่วนการเบลนด์ 75/25 และ 50/50 มีค่า Scorch time และ Cure time ใกล้เคียงกับยางเบ ลนด์ระหว่างยางธรรมชาติกับยางอีพีตีเอ็ม แต่เมื่อปริมาณของยางโบรมิเนตอีพีตีเอ็มเพิ่มขึ้น คือ ที่ ลัดส่วน 25/75 คำ Scorch time และ Cure time สั้นกว่ายางเบลนด์ระหว่างยางธรรมชาติกับยางอี พีตีเอ็ม

ยางโบรมิเนตอีพีดีเอ็มมีคำพลังงานการกระตุ้นน้อยที่สุด รองลงมาคือยางธรรมชาติชนิด STR20, STR 5L, RSS NO.3 และยางอีพีดีเอ็ม ตามลำดับ

5.1.5 การกระจายความเข้มพันธะในแต่ละเฟสยาง

การกระจายความเข้มพันธะของยางในแต่ละเฟสของยางเบลนด์ยางธรรมชาติกับ ยางโบรมิเนตอีพีดีเอ็มดีกว่ายางเบลนด์ระหว่ายางธรรมชาติกับยางอีพีดีเอ็ม

5.1.6 ความทนต่อแรงดึงและความสามารถยึดจนชาต

ความทนต่อแรงดึงและความสามารถยึดจนขาดของยางเบลนต์ระหว่างยางธรรม ชาติกับยางโบรมีเนตอีพีดีเอ็มมีค่าสูงกว่ายางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็มทั้งก่อน และหลังบ่มเร่งในทุกอัตราส่วนการเบลนด์ อันเนื่องมาจาก การกระจายตัวของความเข้มพันธะของ ยางแต่ละเฟลในยางเบลนด์ที่ดีขึ้น

5.1.7 ความทุนต่อความร้อน

ยางโบรมิเนตอีพีดีเอ็มสามารถทนความร้อนใต้ดำกว่ายางอีพีดีเอ็ม แต่ยางเบลนด์ ระหว่างยางธรรมชาติกับยางโบรมิเนตอีพีดีเอ็มสามารถทนความร้อนใต้ดีกว่ายางเบลนด์ระหว่าง ยางธรรมชาติกับยางอีพีดีเอ็มในทุกสัดส่วนการเบลนด์ ทั้งยางดิบและยางวัลดาในซ์

5.1.8 ความต้านทานต่อโอโชน

ความต้านทานต่อโอโซนของยางเบลนด์ระหว่างยางธรรมชาติกับยางโบรมิเนตอีพี ดีเอ็มเทียบเท่ากับยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็มที่ทุกอัตราส่วนการเบลนด์

5.2 การเบลนด์ยางธรรมชาติกับยางมาลีเอตอีพีดีเอ็ม

5.2.1 การเตรียมยางมาลีเอตอีพีดีเอ็ม

เมื่อใช้มาลิอิกแอนไฮไดร์เพิ่มมากขึ้นในการเตรียมยางมาลิเอตอีพีดีเอ็มจะทำให้ เปอร์เซ็นด์เจลเพิ่มมากขึ้น เมื่อใช้เวลาและอุณหภูมิในการผสมเพิ่มขึ้นจะทำให้เปอร์เซ็นต์เจลเพิ่ม มากขึ้นการเพิ่มอุณหภูมิผสมมีผลต่อการเพิ่มของเปอร์เซ็นต์เจลมากกว่าเวลาในการผสม เปอร์เซ็นต์เจลของยางมาลิเอตอีพีดีเอ็มสูตร 5m-200 มากที่สุด รองลงมาเป็น 3m-200, 5m-180 และ 3m-180 ตามลำดับ

เมื่อน้ำยางมาติเอดอีพีดีเอ็มมาหาบริมาณการกราฟด์ด้วยเครื่อง FT-IR พบว่าการ เพิ่มปริมาณมาติอีกแอนใชไดรด์ใม่ทำให้บริมาณการกราฟด์เพิ่มขึ้น การแปรบริมาณมาติอีกแอน ใชไดรด์จะให้ปริมาณการกราฟด์มากที่สุดเมื่อใช้มาติอีกแอนใชไดรด์ 2 phr รองดงมาเป็น สูตรที่ใช้ มาติอีกแอนใชไดรด์ 4 phr, 3 phr และ 1 phr ตามลำดับ การแปรสภาวะในการผสมได้บริมาณการ กราฟด์มาติอิกแอนใชไดรด์มากที่สุด เมื่อใช้เวลาการผสม 3 นาที ที่อุณหภูมิ 180 °C รองดงมาตือ ใช้เวลาผสม 5 นาที ที่อุณหภูมิ 200 °C และใช้เวลาผสม 3 นาที ที่อุณหภูมิ 200 °C ตามลำดับ การหาปริมาณการกราฟด์ด้วยวิธีการใตเตรด พบว่า ปริมาณการกราฟด์มีแนวใน้มเดียวกับการหาปริมาณการกราฟด์โดยใช้เครื่อง FT-IR สภาวะที่ให้ ปริมาณการกราฟด์มากที่สุดดือ สภาวะที่ใช้บริมาณมาติอิกแอนใชไดรด์ 2 phr ผสมที่อุณหภูมิ 180 °C เวลาผสม 3 นาที โดยให้ปริมาณกราฟด์เท่ากับ 0.154% โดยน้ำหนัก

5.2.2 การศึกษาสมบัติทางรีโอโลยีของยางดิบ

ความเค้นเนื่อน และความหนีคเนื่อนของยางมาลีเอตอีฟิตีเอ็มที่เตรียมได้มีค่าสูง กว่ายางอีฟิตีเอ็มและยางธรรมชาติ ยางเบลนด์ระหว่างยางธรรมชาติกับยางมาลิเอตอีฟิตีเอ็ม เกิดความเค้นเนื่อนและความหนิดเนื่อนที่สูงกว่ายางเบลนด์ระหว่างยางธรรมชาติกับยางอีฟิตีเอ็ม ทุกอัตราส่วนการเบลนด์

5.2.3 อุณหภูมิสภาพแก้ว

ยางมาลิเอตอีพีดีเอ็มที่เตรียมได้มีอุณหภูมิสภาพแก้วที่ใกล้เคียงกับยางอีพีดีเอ็ม และอุณหภูมิสภาพแก้วของยางเบลนด์ยางธรรมชาติกับมาลีเอดยางอีพีดีเอ็มมีสองค่า เช่นเดียว กับยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม

5.2.4 ลักษณะการวัลดาในซ์ และพลังงานกระตุ้นการวัลดาในช์

ยางมาสีเอตอีพีดีเอ็ม มีค่า Scorch time สั้นลงและ Cure time มีค่าเพิ่มขึ้น เล็กน้อย และเมื่อน้ำยางมาสีเอตอีพีดีเอ็มมาเบลนค์กับยางธรรมชาติพบว่า ที่อัตราส่วนการเบลนค์ NR/MEPDM 75/25, 50/50 และ 25/75 ค่า Scorch time มีค่าน้อยลง และค่ำ Cure time มีค่า มากขึ้น เมื่อเปรียบเทียบกับยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็มที่สัดส่วนเดียวกัน

ยางมาลีเอตอีพีดีเอ็ม มีพลังงานกระคุ้นการวัลคาในข้ที่สูงกว่าขางอีพีดีเอ็มเล้กน้อย โดย ยางธรรมชาติมีคำค่ำกว่า โดยที่ยาง RSS No.3 มากที่สุด รองลงมาคือ STR 5L และ STR 20 ตามลำตับ ซึ่งแสดงให้เห็นว่าขางธรรมชาติใช้พลังงานในการกระคุ้นให้เกิดการวัลคาในข์ที่ค่ำกว่า ขางอีพีดีเอ็ม และขางมาลีเอตอีพีตีเอ็ม

5.2.5 ความเข้มพันธะของยาง

ความเข้มพันธะของยางมาลิเอตอีพีดีเอ็มมีคำน้อยกว่ายางอีพีดีเอ็ม และเมื่อนำ ยางมาลิเอตอีพีดีเอ็มมาเบลนด์กับยางธรรมชาติ ทำให้การกระจายความเข้มพันธะของยาง ในแต่ ละเฟลดีกว่ายางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม

5.2.6 ความทนต่อแรงดึงและความสามารถยึดจนขาด

ความทนต่อแรงดึงและความต้านทานต่อการยึดของยางเบลนด์ระหว่างยางธรรม ชาติกับยางมาลีเอตอีพีดีเอ็มมีค่าสูงกว่ายางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม ทั้งก่อน และหลังบ่มเร่งในทุกสัดส่วนการเบลนด์ อันเนื่องมาจาก การกระจายตัวของความเข้มพันธะของ ยางแต่ละเฟสในยางเบลนด์ที่ดีขึ้น

5.2.7 ความทนต่อความร้อน

ยางมาดีเอตอีพีดีเอ็มสามารถทนความร้อนด้ำกว่ายางอีพีดีเอ็ม ส่วนยางเบลนด์ ระหว่างยางธรรมชาติกับยางมาดีเอตอีพีดีเอ็ม พบว่าที่สัดส่วนยางมาติเอดมาก (50 และ 75%) มี ความทนต่อความร้อนสูงกว่ายางเบลนด์ยางธรรมชาติกับยางอีพีดีเอ็ม แต่ที่อัตราส่วนยางธรรม ชาติกับยางมาลิเอตอีพีดีเอ็มเท่ากับ 75/25 มีค่าต่ำกว่า

5.2.8 ความต้านทานต่อโอโชน

ความต้านทานต่อโอโซนของยางเบลนด์ระหว่างยางธรรมชาติกับยางมาลีเอตอีพีดี เอ็มเทียบเท่ากับยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็มที่ทุกสัดส่วนการเบลนด์ ยกเว้น เฉพาะในยางเบลนด์ NR/MEPOM ที่อัดราส่วน 75/25 มีค่าที่ด้อยกว่ายางเบลนด์ NR/EPOM ที่ อัดราส่วนเดียวกัน

5.3 การเบลนด์ยางธรรมชาติกับยางโบรโมบิวไทส์

5.3.1 การเครียมยางธรรมชาติอิพอกไซต์

เมื่อระยะเวลาในการทำปฏิกิริยาเพิ่มขึ้นจะทำให้เกิดปริมาณหมู่อีพอกไซด์ใน ยางธรรมชาติเพิ่มขึ้น การเตรียมยางธรรมชาติอิพอกไซด์ 25 และ 50 (ENR-25 และ ENR-50) โดยการทำปฏิกิริยาของน้ำยางธรรมชาติชนิดแอมโมเนียสูงกับกรดเปอร์ฟอร์มิกที่อุณหภูมิ 50 °C โดยที่ยางธรรมชาติอิพอกไซด์ 25 ใช้เวลาทำปฏิกิริยา 4.5 ชั่วโมง และยางธรรมชาติอิพอกไซด์ 50 ใช้เวลาทำปฏิกิริยา 7.5 ชั่วโมง

5.3.2 สมบัติทางรีโอโลยีของยางเบลนด์

ค่าความเค้นเฉือนและคำความหนิดเฉือนของยางธรรมชาติอิพอกไซด์ 50 มีค่าสูง ธุด รองลงมาคือ ยางธรรมชาติอิพอกไซด์ 25 ยางโบรโมบิวไทล์ และยางธรรมชาติ ตามลำดับ ยางเบลนด์ระหว่างยางโบรโมบิวไทล์กับยางธรรมชาติทำให้ค่าความเค้นเฉือนและ ค่าความหนีดเฉือนอยู่ระหว่างยางโบรโมบิวไทล์และยางธรรมชาติเดี่ยวทุกอัตราล่วนการเบลนด์

โดยที่อัดราส่วน 25/75 มีค่าสูงสุด รองลงมาคือที่อัตราส่วน 25/75 และ 50/50 ตามสำดับ

ยางเบลนต์ที่มียางธรรมชาติอิพอกใชต์เป็นตัวเชื่อมประสานทำให้คำความเค้น เฉือนและความหนีดเฉือนทุกอัตราส่วนการเบลนด์ต่ำกว่ายางเบลนด์ที่ไม่มียางธรรมชาติอิพอก ใชด์เล็กน้อย

สำหรับยางเบลนด์ระหว่างยางธรรมชาติกับยางโบรโมบิวไทล์ที่มีเดิมเขม่าคำทำ ให้คำความเค้นเฉือนและความหนีดเฉือนทุกอัดราส่วนการเบลนด์สูงกว่ายางเบลนด์ที่ไม่เติม

ยางเบลนด์ระหว่างยางธรรมชาติกับยางโบรโมบิวไทล์พบว่าไม่มีความเข้ากันได้ ขณะที่อัตราส่วน 50/50 และ45/45/10 มีแนวใน้มเข้ากันได้เล็กน้อย และยางเบลนด์ที่เดิมเขม่าตำมี ความเข้ากันได้ทุกอัดราส่วน

5.3.3 อุณหภูมิสภาพแก้ว

อุณหภูมิสภาพแก้วของยางธรรมชาติและยางโบรโมบิวไทล์มีคำเท่ากับ -59.33 และ -58.00°C ตามลำตับ ยางธรรมชาติอิพอกไซด์มีอุณหภูมิสภาพแก้วสูงกว่ายางธรรมชาติ และ สูงขึ้นตามปริมาณหมู่เปอร์เซ็นต์อิพอกไซด์ นั้นคือยางธรรมชาติอิพอกไซด์ 25 และ 50 มีค่าเท่า กับ -38.17 และ -27.50°C ตามลำคับ

อุณหภูมิสภาพแก้วของยางเบลนด์ระหว่างยางธรรมชาติกับยางโบรไมบิวไทล์มี เพียงค่าเดียวคือเท่ากับ -59.5 °C ยางเบลนด์ที่มียางธรรมชาติอิพอกไซด์ 25 และ 50 เป็นตัว เชื่อมประสานมีค่าเดียวเช่นกัน คือมีอุณหภูมิสภาพแก้วเท่ากับ -59.17 และ -59.33°C ตามลำดับ ซึ่งทั้งยางเบลนด์และยางเดี๋ยวมีอุณหภูมิสภาพแก้วที่ไกล้เดียงกัน

5.3.4 ลักษณะการวัลดาในชั

ยางใบรโมบิวไทล์มีลักษณะการวัลคาในช์เป็นแบบ Marching cure ยางธรรมชาติ มีลักษณะการวัลคาในช์เป็นแบบ Flat cure ขณะที่ยางธรรมชาติอิพอกใชด์มีลักษณะการวัลคา ในช์เป็นแบบ Reversion cure ลักษณะการวัลดาในช์ของยางเบลนด์ระหว่างยางธรรมชาติกับยางโบรโมบิวไทล์ที่ อัตราส่วน 75/25 และ 50/50 เป็นแบบ Reversion cure ขณะที่อัตราส่วน 25/75 เป็นแบบ Marching cure

สำหรับยางเบลนด์ที่มียางธรรมชาติอิพอกไซต์เป็นตัวเชื่อมประสานเปรียบเทียบกับ ยางเบลนด์อัตราส่วนใกล้เคียงกันพบว่ามีลักษณะการวัลคาในช์เช่นเดียวกับยางเบลนด์ที่ไม่มียาง ธรรมชาติอิพอกไซด์

5.3.5 สมบัติทางฟิสิกส์ของยางเบลนด์วัลคาในช์

การเพิ่มปริมาณยางโบรโมบิวไทล์ในยางเบลนด์ระหว่างยางธรรมชาติกับยางโบร โมบิวไทล์และยางเบลนด์ที่มียางธรรมชาติอิพอกไซด์เป็นตัวเชื่อมประสาน ทำให้ค่าโมคูลัส ความ ต้านทานต่อแรงดึง ความสามารถในการยึดจนขาด ความกระเด้งตัว และ Compression set (%) ลดลง ขณะที่ค่าความแข็งเพิ่มขึ้น

ยางธรรมชาติอิพอกใชด์ มีคำโมคูลัสและความแข็งสูงกว่ายางธรรมชาติและสูงขึ้น ตามปริมาณหมู่อิพอกใชด์ ขณะที่ค่าความต้านทานต่อแรงดึง ความสามารถในการยึด ความ กระเด้งด้ว และ Compression set (%) ต่ำกว่ายางธรรมชาติและต่ำลงตามปริมาณหมู่อิพอกใชด์ ในยางธรรมชาติ

5.3.6 สมบัติความทนความร้อน

ยางวัลคาในซ์ของยางธรรมชาติอิพอกไซด์ 50 สามารถทนต่อความร้อนดีที่สุด รองลงมาคือ ยางโบรโมบิวไทล์ ยางธรรมชาติอิพอกไซด์ 25 และยางธรรมชาติ ตามลำดับ

ยางเบลนด์ระหว่างยางธรรมชาติกับยางโบรโมบิวไทล์สามารถทนต่อความร้อนได้ ดีกว่ายางธรรมชาติเพี่ยวทั้งยางติบและยางวัลคาในซ์ ความสามารถด้านความทนต่อความร้อน ของยางเบลนด์ติบ และวัลคาในซ์อยู่ระหว่างยางเดี่ยว

สำหรับยางเบลนด์ที่มียางธรรมชาติอิพอกไซด์เป็นดัวเชื่อมประสาน พบว่าความ สามารถทนต่อความร้อนดีขึ้นกว่ายางเบลนด์ที่ไม่มียางธรรมชาติอิพอกไซด์

5.3.7 สมบัติเชิงพลวัติของยางเบลนด์

ยางโบรโมบิวไทล์มีคำ Tan δ สูงกว่ายางธรรมชาติ ขณะที่ยางธรรมชาติอีพอก ใชด์มีคำ Tan δ ต่ำกว่ายางธรรมชาติ โดยที่ยางธรรมชาติอิพอกใชด์ 25 และ 50 มีคำที่ใกล้เคียง กัน

ยางเบลนด์ระหว่างยางธรรมชาติกับยางโบรโมบิวไทล์มีค่า Tan δ ต่ำกว่ายาง ธรรมชาติและยางโบรโมบิวไทล์เดี่ยว

ลำหรับยางเบลนด์ที่มียางธรรมชาติอิพอกใชด์เป็นตัวเชื่อมประสานมีคำ Tan δ ลำกว่ายางเบลนด์ที่ไม่มียางธรรมชาติอิพอกใชด์

5.4 ค่าคงที่ไดอิเล็คตริกของยางวัลคาในช์

5.4.1 ยางเบลนต์ยางธรรมชาติกับยางโบรโมบิวไทส์

ยางธรรมชาติอิพอกใชต์ 50 มีค่าคงที่ใดอีเล็กคริกสูงสุด รองลงมาคือ ยางธรรม ชาติอิพอกใชต์ 25 ยางธรรมชาติ และยางโบรโมบิวใหล่ ตามลำดับ

ยางเบลนด์ระหว่างยางธรรมชาติกับยางโบรโมบิวใทล์ มีค่าคงที่ใดอิเล็กตริกอยู่ ระหว่างยางธรรมชาติและยางโบรโมบิวไทล์เดี่ยว

ยางเบลนด์ที่มียางธรรมชาติอิพอกไซต์เป็นตัวเชื่อมประสาน มีค่าคงที่ไดอิเล็กคริก สูงกว่ายางเบลนด์ที่ไม่มียางธรรมชาติอิพอกไซต์ และการเพิ่มอัตราส่วนยางธรรมชาติอิพอกไซต์ ทำให้ยางเบลนด์มีค่าคงที่ไดอิเล็กตริกสูงขึ้นและเพิ่มขึ้นตามปริมาณหมู่อิพอกไซต์

5.4.2 ยางเบลนด์ยางธรรมชาติกับยางอีพีดีเอ็ม

ค่าคงที่ใดอิเล็กตริกของยางจะเพิ่มขึ้นเมื่อใช้ปริมาณเขม่าคำเพิ่มขึ้น ที่ปริมาณเขม่าคำ 5 phr ค่าคงที่ใดอิเล็กตริกของยางมาลิเอตอีพีคีเอ็มมีค่ามากที่สุด รองถงมาเป็น ยางเบลนด์ระหว่างยาง ธรรมชาติกับยางชีพีคีเอ็ม ยางอีพีคีเอ็ม ยางเบลนด์ระหว่างยางธรรมชาติกับยางมาลิเอตอีพีคีเอ็ม และ ยางธรรมชาติ ตามลำดับ เมื่อใช้เขม่าคำ 10 phr ค่าคงที่ใดอิเล็กตริกของยางธรรมชาติบากที่สุด รองถง มาเป็น ขางมาลิเอตอีพีคีเอ็ม ยางอีพีดีเอ็ม ยางเบลนด์ระหว่างยางธรรมชาติกับยางมาลิเอตอีพีคีเอ็ม และยางเบลนด์ระหว่างยางธรรมชาติกับยางมาลิเอตอีพีคีเอ็ม

5.5 อุณหภูมิที่เพิ่มขึ้นของยางที่ผ่านการอบด้วยคลื่นไมโครเวฟ

5.5.1 ยางเบลนด์ยางธรรมชาติกับยางโบรโมบิวไทล์

ยางคอมเปาว์ที่ผ่านการอบด้วยคลื่นใบโครเวฟ พบว่ายางโบรโบบิวไทล์มีอุณหภูมิ เพิ่มขึ้นสูงที่สุด รองลงมาคือ ยางธรรมชาติอิพอกไซด์ 50 ยางธรรมชาติอิพอกไซด์ 25 และยาง ธรรมชาติ ตามลำดับ

ยางเบลนด์ระหว่างยางธรรมชาติกับยางโบรโมบิวไทล์มีอุณหภูมิเพิ่มขึ้นอยู่ ระหว่างยางธรรมชาติและยางโบรโมบิวไทล์เดี๋ยว

สำหรับยางเบลนด์ที่มียางธรรมชาติอิพอกไซด์เป็นตัวเชื่อมประสานมีอุณหภูมิเพิ่ม ขึ้นสูงกว่ายางเบลนด์ที่ไม่มียางธรรมชาติอิพอกไซด์ และการเพิ่มอัตราส่วนยางธรรมชาติอิพอก ไซด์ทำให้ยางเบลนด์มีอุณหภูมิสูงขึ้นและเพิ่มขึ้นตามปริมาณหมู่อิพอกไซด์

5.5.2 ยางเบลนต์ยางธรรมชาติกับยางอีพีดีเอ็ม

ยางเบลนด์ของยางมาติเอดอีพีดีเอ็มและยางมาติเอดอีพีดีเอ็ม มีอุณหภูมิสูงที่สุด เนื่องจากความเป็นขั้วของยาง ปริมาณเขม่าดำมากขึ้นทำให้ยางมีอุณหภูมิสูงขึ้น 5.6 การเตรียมโฟมยางเบลนด์ระหว่างยางธรรมชาติกับยางมาลีเอตอีพีดีเอ็ม และสมบัติ ของโฟมยางที่ได้

5.6.1 การเตรียมโฟมยาง

สูตรยางที่ใช้ทำโฟมเมื่อผสมที่สภาวะเดียวกันและปริมาณเขม่าดำเท่ากัน ยางมาลิ เอคอีพีดีเอ็มมีคำความหนิดมูนนีมากที่สุด รองลงมาเป็นยางอีพีดีเอ็ม ยางเบลนด์ระหว่างยางธรรม ชาติ กับยางมาลิเอคอีพีดีเอ็ม ยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม และยางธรรมชาติ ตามสำตับ

เมื่อนำยางที่อบด้วยตู้อบอากาศร้อน 10 นาที อบตัวยเครื่องไมโครเวฟ 1 นาที ร่วมกับตู้อบอากาศร้อน 8 นาที และอบตัวยเครื่องไมโครเวฟ 2 นาที ร่วมกับตู้อบอากาศร้อน 8 นาที มาเปรียบเทียบกัน พบว่าเปอร์เซ็นด์การขยายตัวของยางจะขึ้นอยู่กับความหนีตของคอม ปาวด์ ส่วนสภาวะการอบมีผลต่อเปอร์เซ็นต์การขยายตัวคือ การอบโตยใช้เครื่องไมโครเวฟจะได้ ยางที่มีเปอร์เซ็นต์การขยายตัวสูงกว่า

5.6.2 ความหนาแน่นของโฟมยาง

ความหนาแน่นของโฟมยางจะลดลงเมื่อเพิ่มเวลาอบ และจะเริ่มคงที่เมื่ออบ 6 นาที เปรียบเทียบความหนาแน่นของโฟมยางแต่ละชนิดที่ใช้เวลาอบใกล้เคียงกัน พบว่าความหนา แน่นจะขึ้นอยู่กับความหนิดของคอมปาวต์ โดยที่โฟมยางมาลิเอดอีพีดีเอ็มมีความหนาแน่นมากที่ สุด รองลงมาคือโฟมยางอีพีดีเอ็ม โฟมยางเบลนด์ระหว่างยางธรรมชาติกับยางมาลิเอตอีพีดีเอ็ม โฟมยางเบลนด์ระหว่างยางธรรมชาติกับยางมาลิเอตอีพีดีเอ็ม โฟมยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม และโฟมยางธรรมชาติ ตามลำดับ โดย สภาวะการอบยางที่ใช้เครื่องใมโครเวฟร่วมกับดู้อบอากาศร้อนทำให้ความหนาแน่นของโฟมยางมี ค่าน้อยกว่าการอบโดยใช้ดู้อบอากาศร้อนเพียงอย่างเดียว

5.6.3 ลักษณะและขนาดเซลล์ของโฟมยาง

ขนาดเซลล์ของโฟมยางที่อบด้วยตู้อบอากาศร้อน 10 นาที กับยางที่อบด้วยเครื่อง ไมโครเวฟ 2 นาที ร่วมกับตู้อบอากาศร้อน 8 นาที พบว่าการใช้เครื่องไมโครเวฟร่วมกับตู้อบ อากาศร้อนทำให้ขนาดเซลล์ของโฟมยางมีแนวโน้มที่จะโตกว่าการอบโดยใช้ตู้อบอากาศร้อนเพียง อย่างเดียว

โฟมยางที่ได้จากยางทุกชนิดมีลักษณะเป็นเซลล์ปิด มีผนังเซลล์หนาโดยเฉพาะ ยางที่มีความหนีดสูงคือยางมาลิเอดอีพีดีเอ็ม และยางอีพีดีเอ็ม การอบยางที่เวลา 12 และ 14 นาที จะทำให้เซลล์ของโฟมยางบางเซลล์แตกออก โดยเฉพาะในโฟมยางธรรมชาติ โฟมยางธรรมชาติมี ขนาดเซลล์ใหญ่ที่สุด รองลงมาคือโฟมยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม โฟมยาง เบลนด์ระหว่างยางธรรมชาติกับยางมาลิเอดอีพีดีเอ็ม โฟมยางอีพีดีเอ็ม และโฟมยางมาลิเอตอีพีดี เอ็ม ตามลำดับ

5.6.4 มอดูลัสของโฟมยาง

มอดูลัสของโฟมยางที่ระยะยึด 100%, 200% และ 300% ของโฟมยางที่ใช้เวลา อบใกล้เคียงกัน พบว่าโฟมยางธรรมชาติมีค่ามอดูลัสมากที่สุด รองลงมาเป็นโฟมยางอีพีดีเอ็ม โฟม ยางเบลนต์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม โฟมยางมาลิเอตอีพีดีเอ็ม และโฟมยางเบลนด์ ระหว่างยางธรรมชาติกับยางมาลิเอตอีพีดีเอ็มตามลำดับ เมื่อเปรียบเทียบสภาวะการอบ พบว่ากา รอบโดยใช้ไมโครเวฟ 1 นาที ร่วมกับคู้อบอากาศร้อน 8 นาที ให้คำมอดูลัสที่ระยะยึด 100%, 200% และ 300% มีแนวโน้มสูงที่สุด ส่วนการอบโดยใช้เครื่องไมโครเวฟ 2 นาที ร่วมกับคู้อบ อากาศร้อน 8 นาที กับการอบโดยใช้คู้อบอากาศร้อนเพียงอย่างเดียว ให้คำมอดูลัสใกล้เคียงกัน

5.6.5 ความด้านทานต่อแรงดึงของโฟมยาง

โฟมยางมาลิเอตอีพีดีเอ็มปีความต้านทานต่อแรงดึงสูงสุด รองลงมาเป็นโฟมยาง ธรรมชาติ ยางอีพีดีเอ็ม โฟมยางเบลนด์ระหว่างยางธรรมชาติกับยางอีพีดีเอ็ม และโฟมยางเบลนด์ ระหว่างยางธรรมชาติ กับยางมาลิเอตอีพีดีเอ็ม ตามลำดับ

5.6.6 ความสามารถยึดจนชาดของโฟมยาง

โฟมยางเบลนด์ระหว่างยางธรรมชาติกับยางมาสิเอตอีพีดีเอ็มมีความสามารถยึด จนขาดสูงสุด รองลงมาเป็นโฟมยางมาสิเอตอีพีดีเอ็ม โฟมยางเบลนด์ระหว่างยางธรรมชาติกับยาง อีพีดีเอ็ม และยางธรรมชาติ ตามลำดับ

ช้อเสนยแนะสำหรับงานวิจัยในอนาคต

- ควรมีการศึกษาสมบัติทางพลวัติของยางเบลนต์ NR/BIIR/ENR ให้ละเอียด เพราะมี อนาคตในการนำไปใช้ในงานด้านยางรับแรงสั่นสะเทือน และยางล้อรถยนต์
- 2. จากอัดราการวัลดาในข์ที่ดีขึ้นของยางมาลีเดอีพีดีเอ็ม และยางโบรมิเนตอีพีดีเอ็ม การ ทำโฟมยางเบลนด์ยางธรรมชาติกับยางมาลีเอดอีพีดีเอ็มหรือยางโบรมิเนตอีพีดีเอ็ม น่าจะเป็น อนาคตที่ดีในการวิจัยในระดับอุตสาหกรรม ที่การแปรรูปด้วยเครื่องเอ็กซ์ทรูด สามารถทำใต้ที่ อุณหภูมิสูงกว่าที่ห้องปฏิบัติการมาก จะทำให้สามารถแปรรูปยางมาลีเอดอีพีดีเอ็ม และยางเบลนด์ ได้ง่ายขึ้น และตู้อบไมโครเวฟระดับอุตสาหกรรมมีกำลังที่สูงกว่า การออกสูตรโฟมยางทำใต้ง่าย ขึ้นเพื่อให้ได้โฟมยางที่มีความหนาแน่นดำ และมีสมบัติที่ดี

เอกสารอ้างอิง

- เจริญ นาคะสรรค์. 2542. กระบวนการแปรรูปพลาสติก. สำนักพิมพ์นิดิธรรม.กรุงเทพมหานคร.
- บุญธรรม นิธิอุทัย และปรีชา ป้องภัย. 2534. คู่มือปฏิบัติการเทคโนโลยียาง I. คณะวิทยาศาสตร์ และเทคโนโลยี. มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัตตานี.
- พรพรรณ นิธิอุทัย. 2540. ยาง เทคนิคการออกสูตร, คณะวิทยาศาสตร์และเทคโนโลยี. มหาวิทยาลัยสงขลานคริทร์.
- พิมพ์จิต ตามพวรรณ และวัชวินทร์ รุกขไชยศิริกุล. 2539. <u>สเปกโตรสโกปีของสารอินทรีย์</u>. คณะวิทยาศาสตร์ มหาวิทยาลัยสงชลานครินทร์, สงขลา.
- อดิศัย รุ่งวิชานิวัฒน์. 2542. เอกสารประกอบการเรียนวิชา 741-411การวิเคราะห์ยางและสารเคมี ผสมยาง คณะวิทยาศาสตร์และเทคโนโลยี. มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตปัดตานี.
- Alex, R., De, P.P. and De, S.K. 1989. Self-vulcanizable rubber blend system based on Epoxidized Natural rubber and carboxylated nitrile rubber, J. Polym Sci : Part C: Polym Let., 27 : 361-367.
- Boey, F.Y.C. and Rath, Santosh Kumar. 2000. Microwave Radiation Curing of Polymers
 Using a Temperature Equivalent Method for Cure Reaction Analysis. Advances in Polymer Technology, 19(3): 194-202.
- Booth, D.A., Brown, P.P. and Mayor, L. 1965. Selection of Component for Anti-vibration and Shock Absorpion. Rubber and Plastics Age. February: 173
- Brazier, D.W. 1980. Rubber Chemistry and Technology. 53(3): 438
- Brown, P.S., Loadman, M. J. R. and Tinker, A. J. 1992. Applications of FT-NMR to Crosslink Density Determinations in Natural Rubber Blend Vulcanizates. Rubber Chemistry and Technology, 65(4): 744-760.
- Brown, P.S. and Tinker, A.J. 1996. "Effect of Modifying EPDM on the Crosslink Distribution in NR/EPDM Blends". Journal of Natural Rubber Research, 11(4): 227-239.
- Brydson, J.A. 1988. "Rubber materials and their compounds". Elsevier Applied Science.

 London.: 82
- Coran, A.Y. 1988. Blends of Dissimilar rubber-cure-rate Incompatibility. Rubber Chemistry and Technology, 61: 281.
- Coran, A.Y. 1991. Anisotropy of Ultimate Properties in Vulcanize of EPDM/High-Diene-Rubber Blends. Rubber Chemistry and Technology, 64: 801-812.
- Carone, E., Kopcak, U., Goncalves, M.C. and Nunes, S.C. 1999. In Situ

- Compatibilization of Polyamide 6/Natural Rubber Blands with Maleic Anhydride.

 Polymer, 41: 5929-5935.
- Davey, J.E. and Loadman, M.J.R. 1984. Br. Polym. 16: 134-138.
- David, B.R., Lim, K.L. and Law, K.S. 1984. Epoxidation of natural rubber latices: Methods of Preparation and properties of modified rubber. J. Appl. Polym. Sci. 29: :1661-1673.
- Garcia-Martinez, J.M., Laguna, O., Areso, S. and Collar, E.P. 1999. FTIR Quantitative Characterization of Chemically Modified Polypropylene Containing Succinic Grafted Groups. Journal of Applied Polymer Science, 73: 2837-2847.
- Gelling, I.R. 1984. Modification of natural rubber latex with peracetic acid. Rubber Chem.

 Technol. 57: 86-96
- Grigoryeva Olga, P. and Karger-Kocsis, Jozsef. 2000. Melt Grafting of Maleic Anhydride onto an Ethylene-Propylene-Diene Terpolymer (EPDM). European Polymer Journal, 36: 1419-1429.
- Grigoyeva Olga, P.,and Jozsef Karger-Kocsis. 2000. "Melt grafting of maleic anhydride onto an ethylene-Propylene-diene terpolymer (EPDM)". European Polymer Journal, 36: 1419-1429.
- Hanna, F.F., Abdel-Nour, K.N. and Abd-El-Messieh, S.L. 1992. Polymer Degradation and Stability, 35: 49-52.
- Holfmann, W. 1989. Rubber Technology Handbook. Hanser Publishers. Munich. Klemper,
- Klemper, Daneil and Frisch, C. 1991. "Polymeric Foam". Hanser, New York.
- Kundu, P.P. Tripathy, D.K. and Gupta, B.R. 1996. Effect of Rheological Parameters on the Miscibility and Black-Filled Blends of EVAc and CR. J. Appl. Polym. Sci. 61: 1971- 1975
- Kundu, P.P. Bhattachrya, A.K. and Tripathy, D.K. 1997. Rheological properties of the Blends of Polycholoprene with Poly [ethylene (vinyl acetate)]. J. Appl. Polym. Sci. 66: 1759-1765.
- Luccsese, Laurence, Liauw, C.M., Allen, N.S., Edge, M., Thomson, F. and Whitehouse, R.S. 2000. Use of Microwave Dielectric Loss Spectroscopy for Characterisation of Natural Rubber/Carbon Black Composites. *Polymer Bulletin*, 44: 187-194.
- Rizza, E., Loken, C., Bliton, M., Roettiger, K., Burns, J.O. and Owen, F.N. "X-ray and Radio Interactions in the Cores of Cooling Flow Clusters". University of Missouri. USA.

- Sengundid, A. and Konar, B. D. 1997. "Cure characteristics of ethylene propylene diene rubber-polypropylene blends.1.Calculation of state of cure in blends containing conventional sulfur curing system under variable time-temperature conditions". *Journal of Polymer Science*, 66(7): 1231-1236.
- Sudhin, D. and Davis. L. J. 1996. "Polymeric compatabilizers use's and benefits in polymer blends". Hanser Publishing., Cincinnati.
- Schnieder, W.C., Carter, W.C., Margat, M. and Smyth, C.F. 1945. Journal of American Chemical Society, 67: 49-52.
- Tinker, A.J., 1995. "Distribution of crosslink in vulcanized blends". Rubber Chemistry and Technology, 68: 461-479.
- Tsal, C., Huang, C. and Tsiang, R.C. 1999. "Preparing A Functionalized Thermoplastic Elastomer-Bromination and Synthesis of Poly (p-methylstyrene-co-stryrene)-block-poly (ethylene-co-butene)-block-poly(p-methylstyrene-co-styrene)". Journal of Polymer Science Part A: Polymer Chemistry, 37: 4108-4116.
- Ultraki, L. A. and Kamal, M. R. 1982. Polym. Eng. Sci., 22: 96.
- Wake, W.C., Tido, B.K. and Loadman, M.J.R. 1983. "Analysis of rubber and rubber like polymer", Applied Science Publisher. England.
- Yoon, J.R., Hashim, A.S., Kawabata, N. and Kohjiya, S. 1996. "Blends of Brominated EPDM and NR". Rubber World, 213(4): 20-24.
- Younan, A.F., Chonrim, A.M., Tawfik, A.A.A. and Abdel-Nour, K.N. 1995. Polymer Degradation and Stability, 49: 215-222.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

- ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ
- การนำผลงานวิจัยไปใช้ประโยชน์ ในเชิงวิชาการ โดยมีการพัฒนาในการเรียนการสอน ในการวิจัยของนักศึกษา ทำให้นักศึกษาได้พัฒนากระบวนการเรียนรู้ ค้นคว้าหาความรู้ใหม่เพิ่มเดิม
- 3. อื่น ๆ ได้เสนอผลงานในที่ประชุม International Polymer Symposium 2001 ในการ ประชุมวิชาการวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย วทท.27 16-18 ตุลาคม 2544 ณ โรงแรมลีการ์เดนส พลาช่า หาดใหญ่ สงขลา ในหัวข้อเรื่อง Rheological Properties Behaviour and Compatibility of NR/Brominated EPDM and NR/EPDM Blends

ภาคผนวก

บทความที่เตรียมสำหรับตีพิมพ์

- 1. RHEOLOGICAL PROPERTIES BEHAVIOUR AND COMPATIBILITY OF NR/EPDM AND NR/BROMINATED EPDM BLENDS
- 2. EFFECT OF RUBBER RATIO, CARBON BLACK AND ACCELERATOR LEVEL ON NR/BIIR BLEND PROPERTIES

RHEOLOGICAL PROPERTIES BEHAVIOUR AND COMPATIBILITY OF NR/EPDM AND NR/BROMINATED EPDM BLENDS

Chonlada Lewis^{1*}, Sunsanee Bunyung² and Suda Kiatkumjornwong³

^{1*,2}Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000 Thailand, ³Department of Imaging and Printing Technology, Faculty of Science, Chulalongkorn University, Bankok 10330, Thailand

ABSTRACT

EPDM was modified by bromination reaction in this study. Blending the resulted brominated EPDM with natural rubber (STR5L) and the original EPDM with STR5L at various compositions were carried out. The rheological properties of the blends were investigated by using a capillary extrusion. Shear flow curves of the pure rubbers and their blends illustrated their pseudoplastic (shear-thinning) behaviour with the power law index, n, as lower than one. True shear viscosity of all blends showed negative deviation in relation to their additive values. Glass transition temperature of the blends was also measured by a Differential Scanning Calorimetry. Rheological sense and two Tgs found from the DSC thermograms at any blend composition indicated blend incompatibility for both set of blends.

INTRODUCTION

In the rubber industry, rubber blends have been widely used in order to obtain the best characteristics of each single rubber. It has been known that natural rubber vulcanisates have good elasticity and strength properties while showing poor heat and ozone resistance. Blending a suitable amount of low unsaturated ethylene-propylene-diene terpolymer (EPDM) into a diene rubber has been found to improve both heat and ozone resistance. However, the difference in olefin concentration of EPDM and natural rubber resulted in a cure rate incompatible blend. This has been recognised as causing both inferior static and dynamic mechanical properties such as poor tensile strength, fatigue resistance and high hysteresis in the rubber blend. Consequently, many attempts to improve the properties have been reported in order to achieve an equivalent cure rate between the two rubbers. For example, grafting of the vulcanisation inhibitor, PVI groups, onto the EPDM was found to reduce the access of

the NR to the cure system.7 Improvement of crosslink distribution and tensile strength were then achieved. 7,8 Grafting of accelerators onto EPDM has also been reported as being effective to provide cure compatibility.6 Maleic anhydride was grafted and then provided a metal chelating group on the EPDM by Coran .9,10 Carboxylated EPDM and halogenated EPDM were found to increase the number of cure sites resulting in cure compatibility. 11-15 Most attempts clearly showed a significant improvement in overall properties. However, the properties of blends are also closely related to the state of mixing. The rheological behavior of individual gum rubbers and blends play an important role in the quality of mixing and compounding which influence the final product quality. It is therefore important to clarify the miscibility behavior of the rubber blend which has mostly been studied based on viscoelastic and the glass transition measurements. 16,17 It was also found that not enough attention has been given to the rheological properties and miscibility of the modified EPDMs and their blends with natural rubber. In this paper, we have therefore evaluated the rheological properties and compatibility of the modified brominated EPDM (BEPDM) blend with natural rubber (STR5L) and those blends of the original EPDM with STR5L.

METHODOLOGY

Raw Materials

The raw materials used in this study were NR, STR5L, produced by Tavorn Industrial Co., Ltd. Thailand and EPDM namely Keltan 714 with a high ethylidene norbonene content of 8 % manufactured by DSM Elastomers.

Preparation of Brominated EPDM

Bromination of the EPDM was carried out by following reported literature with little modification as follows. ¹⁵ The EPDM (180 g) was first dissolved in 3600 ml of chloroform. After stirring for 24 hours at room temperature, 2-vol. % solution of bromine in chloroform was added. The mixture solution was then stirred to proceed the reaction for 2 hours at room temperature. The brominated EPDM (BEPDM) product was coagulated in methanol and reprecipitated by toluene/methanol to remove traces of bromine. Finally, it was dried in a vacuum oven at 50 °C for 72 hours. ¹H NMR spectra of the EPDM rubber before and after bromination were later recorded on a Varian Unity Inova 500 liquid NMR spectrometer using tetramethylsilane (TMS) as an inner

standard. If the molecular weight of the virgin polymer is known, we can calulate the bromination percentage by combining with the ¹H NMR data. It is also easy to analyse bromine by elemental analysis. Unfortunately, we did not have the high temperature GPC and oxygen combustion flask (Schoniger flask) to conduct the experiments at this time. However, from the reported literature that we followed, the bromine content (by elemental analysis) was 2.4-2.5 % by weight.

Brominated EPDM/NR and EPDM/NR Blends Preparation

Blending of BEPDM/NR and EPDM/NR were carried out in a laboratory-sized two roll mill at a mixing temperature of 60 °C. At any blend composition, the rubber that has the higher amount was masticated first and banded on the mill for 2 minutes. After that the second rubber was mixed and allowed to blend for a further 6 minutes. Finally, the rubber blend was sheeted out and cut into small pieces ready for rheological and DSC measurements.

Rheological Measurements

Rheological properties in terms of shear stress and shear viscosity were studied by using a Rosand single bore capillary rheometer (model RH7). A capillary die of diameter 2 mm, length 32 mm and 180° entry angle with a length-to-radius ratio (L/R) of 32 was used as a long die. The small pieces of the rubber blends were put into a barrel and initially preheated for 5 minutes under pressure at approximately 4 MPa to get a compact mass. The excess rubber was then automatically purged and extruded at shear rates in the range of 10 to 1500 s⁻¹ and test temperature of 100 °C in a program via a microprocessor. During the test, the pressure drop across a capillary channel and melt temperature was captured via a data acquisition system. The apparent values of shear stress, shear rate and shear viscosity were calculated using the derivation of the Poiseuille law for capillary flow and yields: ¹⁸

Apparent wall shear stress (Pa),	(1)
Apparent wall shear rate (s-1),	(2)
Apparent shear viscosity (Pa.s),	 (3)

where is the pressure drop across the channel (Pa), Q is the volumetric flow rate (m³ s⁻¹), R is the capillary radius (m) and L is the length of the capillary (m).

The true wall shear stress was obtained using the Bagley correction. This was done by measuring the pressure drop (P₀) on the zero length die (L/R 0) with the same die diameter and entrance angle. The true shear stress was then calculated:

where is the pressure drop across the channel of the long die (L/R = 32) (Pa) and is the pressure drop across the zero length die (Pa).

The true wall shear rate was obtained by applying the Rabinowitsch correction:

where is the power law index obtained from the slope of the line plots between log

() and log ().

True shear viscosity was therefore calculated:

DSC Measurement

Differential Scanning Calorimetry (DSC) measurements were made by DSC (QC) 085 Apparatus (Rheometric Scientific) in nitrogen atmosphere at a heating rate of 10°C/min. The inflection point of the specific heat change was taken as the glass transition temperature.

RESULTS AND DISCUSSION

¹H NMR spectra in 10 % (w/v) CDCl₃ solution of the original EPDM and after bromination are shown in Figure 1 and 2 respectively. The spectrum of the original EPDM shows two pairs of complex shaped signals between δ 4.9 and 5.7 ppm attributable to the olefinic proton of the ENB diene monomer unit. ¹⁹ Signals characteristic of C(5)-C(6) olefinic hydrogen atoms (Figure 3) of the original ENB

monomer between δ 6.0 and 6.2 ppm cannot be observed. This suggests that ENB has been incorporated into the EPDM through the cyclic C(5)-C(6) double bond. After the bromination, the modified EPDM spectrum does not exhibit the two signals between δ 4.9 and 5.3 ppm but the other two signals between δ 5.5 and 5.7 ppm can still be observed with less intensity. This spectrum also shows an addition signal at δ 4.5 ppm, which indicates bromine attached C-C single bond hydrogen atom. It is therefore concluded that during the bromination reaction, the bromine agent can attack the double bond or substitute hydrogen in the allylic position or the other positions. The possible reaction shown in Figure 3.

Rheological properties and compatibility

The log-log plots of apparent shear stress verses apparent shear rate for STR5L/EPDM and STR5L/BEPDM blends with various blend compositions are shown in Figure 4 and 5 respectively. Flow curves of all blends show reasonable straight lines whose intercept K and slope n corresponding to the power law equation (the Ostwald-de Waele equation): ²¹

(7)

where n is the power law index or the flow behaviour index and K is the consistency of flow or viscosity coefficient index. Table 1 shows the power law index and the consistency of flow of STR5L/EPDM and STR5L/BEPDM blends. The values of n dictate the pseudoplastic nature of STR5L, EPDM, BEPDM and their blends since n values are less than one. Hence, the apparent viscosity of the two sets of blends decreased as shear rate increased as shown in Figure 6 and Figure 7. It also can be seen that for the pure rubbers, BEPDM had the lowest n value and STR5L obtained the highest n value. This accounts for the high pseudoplasticity, the highly shear thinning fluid in the modified BEPDM and the more plug-like profile. Consequently, blends of STR5L/BEPDM tended to have a lower n value at a given blend composition which increased with increasing level of STR5L.

Figure 8 shows the plot of apparent shear stress versus apparent shear rate of pure STR5L, EPDM and BEPDM. It can be seen that the modified EPDM by bromination reaction affect the shear flow property. That is, at a given shear rate, a higher apparent shear stress of pure BEPDM relative to EPDM and STR5L was found. The highest shear viscosity of BEPDM was therefore observed at a given apparent shear rate (Figure 9). It indicates that the Br substituent on the rubber main chain may increase the chain rigidity of the rubber, consequently increasing the ability to resist flow. While STR5L gave the lowest apparent shear viscosity due to its easy molecular weight break down with mastication during sample preparation and shear force during the capillary flow test.

Figure 10 compares the apparent shear viscosity with the level of EPDM or BEPDM in the blend composition at the apparent shear rates of 50, 150 and 500s⁻¹. It was found that the apparent shear viscosity of the blends tended to increase with increasing level of EPDM or BEPDM due to the higher apparent shear viscosity of EPDM and BEPDM. However, at high apparent shear rates, less difference in the apparent shear viscosity of the blends with increasing quantity of EPDM and BEPDM was noticed.

Generally, the true shear viscosity of a polymeric blend follows log additive rule: 23-26

where and are the true shear viscosity of *i*-th component and that of the blend, we is the weight fraction of the *i*-th component. For the miscible blends, rheological properties such as viscosity, die swell, etc. show positive deviation from their additive values. While the immiscible blends give negative deviation in rheological properties.

In this work, the true shear viscosity of STR5L/EPDM and STR5L/BEPDM blends in all blend compositions were evaluated and found to be negative deviations relating to their additive values. It is therefore indicated that the blends of STR5L/EPDM and STR5L/BEPDM were the immiscible blends. It means that there is no specific interaction between the two components of both blends. This may be attributed to the dissimilar low unsaturated structure of EPDM and the polarity of the Br substituent on the BEPDM compared to the unsaturated non polar structure of natural rubber.

The miscibility behavior of the blends was also investigated based on the glass transition measured by thermal analyses. Figure 11 and Figure 12 illustrate the DSC thermograms of both blends with various blend compositions. The glass transition temperature measurements confirmed the rigidity of pure BEPDM as it had a higher

glass transition temperature than the unmodified EPDM. A higher glass transition temperature of both pure EPDM and BEPDM relative to STR5L also supports their high ability to resist flow as discussed above. Two glass transitions were observed at most blend compositions but that appeared less distinct at the composition of 75/25 for both STR5L/EPDM and STR5L/BEPDM blends. The glass transition at the higher temperature side is related to EPDM for STR5L/EPDM blends and to BEPDM for that of STR5L/BEPDM blends. The blends of STR5L/EPDM and STR5L/BEPDM are therefore considered to be immisicible because of two glass transition temperatures in the DSC thermograms.²⁷

CONCLUSIONS

Brominated EPDM was successfully prepared and confirmed by ¹H NMR analysis. Rheological behavior of STR5L/EPDM and STR5L/BEPDM can be represented by a calculated power law index from the slope of log-apparent shear stress against log-apparent shear rate lines. The log additive rule of polymeric blend viscosity and glass transition measurements was used to clarify the blend compatibility. True shear viscosity of the whole sets of blends showed negative deviation with respect to their additive values at all shear rates. The two T₈s from the DSC thermograms at any blend composition were also obtained. From rheological and thermal analysis points of view, it can therefore be concluded that both NR/EPDM and NR/BEPDM blends are thermodynamically incompatible.

ACKNOWLEDGEMENTS

The authors are thankful to the Thailand Research Fund for the research grant.

REFERENCES

- 1. Davidson, J. A. and Woods, M.E., Rubber Chem. Technol., 49, 112, 1976.
- Shershnev, V.A., Rubber Chem. Technol., 55, 537, 1982.
- 3. Whittington, W.H., Rubber Ind., 9, 151, 1976.
- Andrews, E. H., Rubber Chem. Technol., 40, 635, 1967.
- Spenadel, L. and Sutphin, R.L., Rubber Age, 102(12), 55, 1970.
- 6. Baranwal, K.C. and Son, P.N., Rubber Chem. Technol., 46, 88, 1973.
- Hopper, R.J., Rubber Chem. Technol., 49, 347, 1976.
- Brown, P.S. and Tinker, A.J., J. Nat. Rubb. Res., 11(4), 227-239, 1996.

- Coran, A.Y., Rubber Chem. Technol., 61, 281, 1988.
- 10. Coran, A.Y., Rubber Chem. Technol., 64, 801, 1991.
- Donstov, A.A., Novitskaya, S.P. and Dogadkin, B.A., Rubber Chem. Technol.,44, 721, 1971.
- 12. Suma, A., Joseph, R. and Francis, D.J., Kautschuk. Gummi Kunst., 43, 1095, 1990.
- 13. Morrissey, R.T., Rubber Chem. Technol., 44, 1035, 1972.
- Morrissey, R.T., Rubber Chem. Technol., 47, 353, 1975.
- Yoon, J.R., Hashim, A.S., Kawabata, N. and Kohjiya, S., Rubber World, 213(4), 20, 1996.
- Paul, D.R. and Newman, S., Eds., "Polymer Blends, I and II", Academic Press, New York, 1978.
- Olabishi, Robesen L.M., and Shaw, M.T., "Polymer-Polymer Miscibility", Academic Press, New York, 1979.
- Cogswell, F.N. Polymer Melt Rheology: A Giude for Industrial Practice, Woodhead Publishing Limited, Cambridge, 24, 1981.
- Heinen, W., Ballijns, L.N., Wittenburg, W.J.A., Winters, R., Lugtenburg, J. and van Duin, M., Polymer, 40, 4353-4363, 1999.
- Silverstein, R.M., Bassler, G.C. AND Morrill, T.C., Spectrometric Identification of Organic Compounds, 4th ed., John WILEY & Sons, New York, 1981.
- Brydson, J.A. Flow Properties of Polymer Melts, Published for the Plastics Institute, London, 12, 1970.
- McCrum, M.G., Buckley, C.P. and Bucknall, C.B., Principles of Polymer Engineering, Oxford University Press, pp.308-309, 1997.
- 23. Utracki, L.A. Polym. Eng. Sc., 22(2), 96, 1982.
- 24. Kundu, P.P. and Tripathy, D.K., Polymer, 39(10), 1869, 1998.
- 25. Kundu, P.P., Tripathy, D.K. and Gupta, B.R., J. Appl. Polym. Sci., 63, 187, 1997.
- Kundu, P.P., Bhattacharya, A.K. and Tripathy, D.K., . Appl. Polym. Sci., 66, 1759, 1977.
- 27. Yamada, K. and Funayama, Y., Rubber Chem. Technol.,63, 669, 1990.

Table 1 The power law index (n) and consistency of flow (K) for various blend compositions.

NR/EPDM Blends	n	K (KPa)	NR/BEPDM Blends	n	K (KPa)
0/100	0.14	293.0	0/100	0.10	444.6
25/75	0.15	149.9	25/75	0.14	169.0
50/50	0.20	88.7	50/50	0.16	124.5
75/25	0.21	85.1	75/25	0.20	81.8
100/0	0.22	86.8	100/0	0.22	86.8

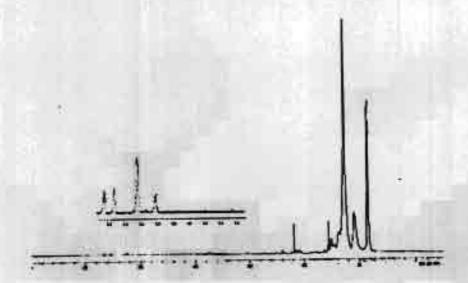


Figure 1 ¹H-NMR Spectrum of the original EPDM

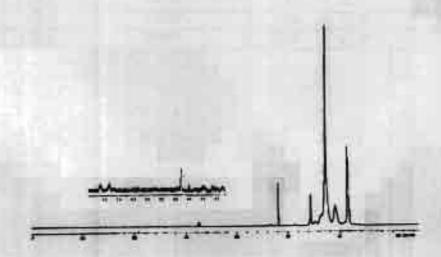


Figure 2 ¹H-NMR Spectrum of the brominated EPDM

Figure 3 Possible bromination reaction of EPDM

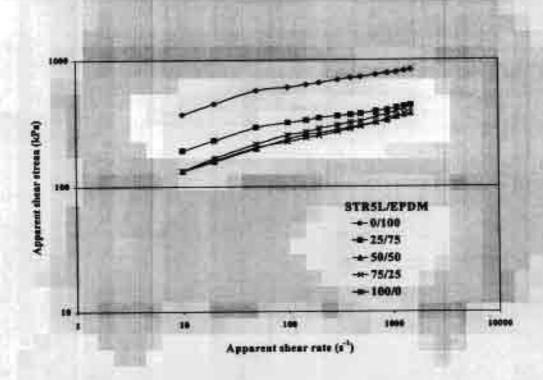


Figure 4 The effect of apparent shear rate and apparent shear stress of STR5L/EPDM blends at various blend compositions

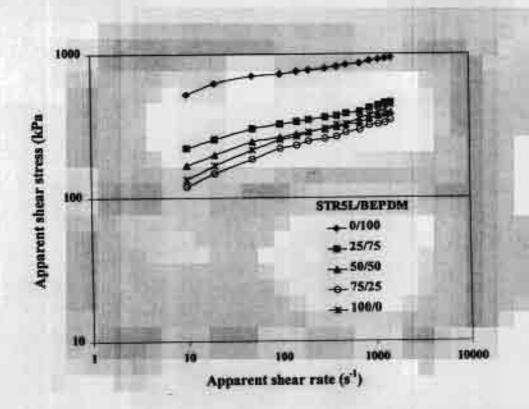


Figure 5 The effect of apparent shear rate on the apparent shear stress of STR5L/BEPDM blends at various blend compositions

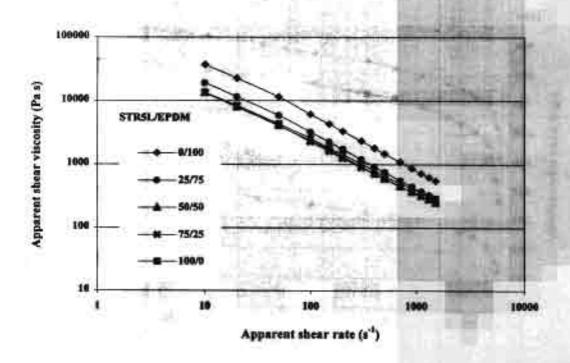


Figure 6 The effect of apparent shear rate on apparent shear viscosity of STR5L/EPDM blends at various blend compositions

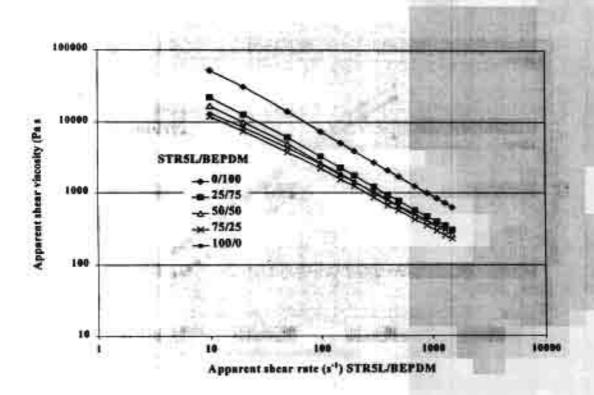


Figure 7 The effect of apparent shear rate on apparent shear viscosity of STR5L/BEPDM blends at various blend compositions

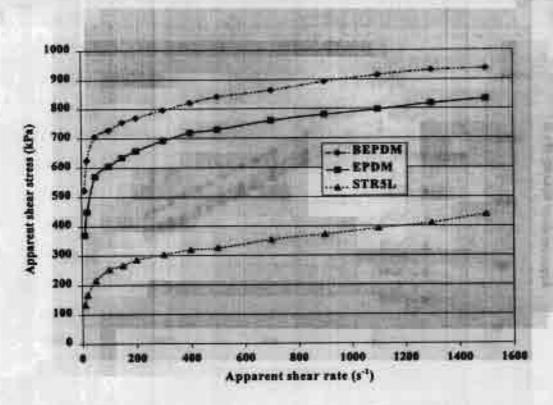


Figure 8 Apparent shear stress of pure STR5L, EPDM and BEPDM as a function of apparent shear rate

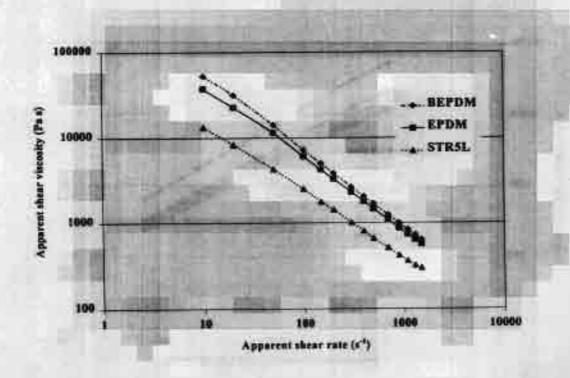


Figure 9 Relationship between apparent shear rate and apparent shear viscosity of pure STR5L and EPDM and BEPDM

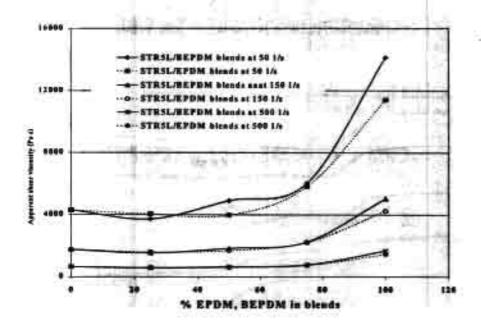


Figure 10 Comparison apparent shear viscosity at apparent shear rate of 50, 150 and 500 s-1 for STR5L blended with various content of EPDM and BEPDM respectivel

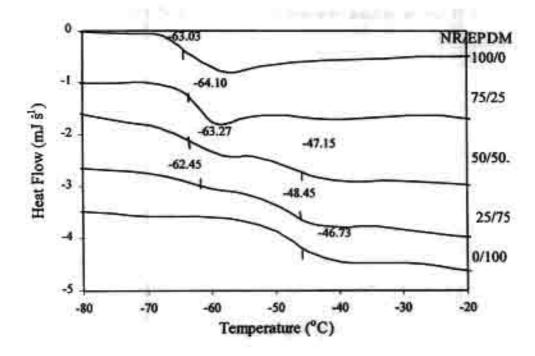


Figure 11 DSC thermograms obtained from NR/EPDM with various compositions.

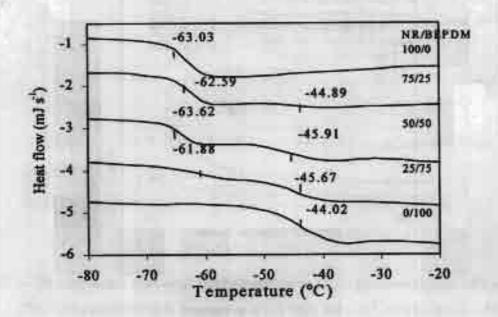


Figure 12 DSC thermograms obtained from NR/BEPDM with various compositions

Effect of rubber ratio, carbon black and accelerator level on NR/BHR blend properties

Chonlada Lewis¹*, Radtapon Buanpa² and Suda Kiatkumjornwong³

^{1*,2}Department of Rubber Technology and Polymer Science, Faculty of Science and Technology, Prince of Songkla University, Pattani 94000 Thailand

³Department of Imaging and Printing Technology, Faculty of Science, Chulalongkorn University, Bankok 10330, Thailand; e-mail address: kchonlad@bunga.pn.psu.ac.th

Abstract

Statistical experimental design, namely, response surface methodology was used to predict and explain the effect of rubber ratio, carbon black and accelerator level on the cure characteristics and physical properties of NR/BIIR blends. With the three independent variables named above, twenty designed compounds were mixed by a two-roll mill and the scorch time, cure time, cure rate index, together with physical properties: hardness, tensile property and compression set were all determined by one operator. Multiple linear regression analysis was used to obtain response equations. The contour plots of the fit equations were then set to illustrate the effect of the three independent variables on each property. The contour plots show in detail the diversity of interactions between independent factors and each property. It was found that carbon black level is the most significant influential factor on most properties. The difference in reactivity towards sulfur vulcanization of NR and BIIR caused cure behavior and physical properties dependent on cross link density of vulcanizates to be dominated by NR content in the rubber ratio factor. The confirmation of the accuracy of the resulting response equations was finally made to predict the required properties.

Introduction

Blends of natural rubber (NR) with other synthetic rubbers have been widely studied. 1-10 The main reason is understandably the desire to achieve a balance of unique properties and cost. Bromobutyl rubber (BIIR) is a modified butyl rubber (IIR, isobutylene isoprene rubber). It is the bromine attached to the carbon bond, which is allylic to the double bond, which gives BIIR greater cure versatility than the unmodified one.11 Its cure compatibility with other rubbers enables the development of interesting blends. For example, BIIR has been blended with NR producing a higher damping and thermal stability compound. 12-14 However there is no report of using a systematic experimental design to measure the systematic change on this blend compound and general physical properties brought about by varying various factors. A statistically designed experiment has been one of the useful tools with which quantitative relationships may be defined by a mathematical equation. Many informative articles have been published on experimental designs. 15-25 Krakowski and Tinker's work 24-25 is one such example that has given an excellent introduction and discussion on using a central composite rotatable designed experiment examining NR/BR blends. The issuing article uses the same designed experiment method, but rather than going into the details of the statistical method used, namely response surface methodology, it will investigate the effect of a wide range of NR/BIIR ratios, carbon black and accelerator level on cure characteristics and general physical blend properties.

Experimental

The central composite rotatable designs are based on a complete two-level factorial design, which is then supplemented by additional points to enable the curvature of the response surface and the experimental error to be estimated. The experimental points are identified by code values, which assign five levels to each variable. The coded five levels

are -a, -1, 0, +1 and +a in which a = 2^{k/4} and k is the number of independent variables in the experiment. In this work, three variables were investigated, namely, rubber blend ratio, carbon black and accelerator level. The range of selected data was defined as 0.25 to 4, 0 to 60 and 0.75 to 1.50 for rubber blend ratio, carbon black and accelerator level respectively. The real values are related to the assigned coded experimental points and scale of variable (S) according to equation 1 and 2.

$$S = Range / (2 \times a) \qquad ...(1)$$

$$R = (S \times code) + Mean \qquad ...(2)$$

Table 1 shows the real values in relation to the code values and an example of calculation is shown as follow;

Scale of NR/BIIR ratio =
$$(4.00-0.25)/(2 \times 2^{(3/4)})$$

= $1.115/$ coded unit

for -1 on the coded scale,

Table 2 gives the full experimental design and real value for each point. The design provides for eight factorial compounds (mix number 1-8), which enables modeling of linear and second order interactive effects, seven star points (9-14), which allow for modeling of quadratic curvature, and replication of the center point six times (15-20), which provides an assessment of error and model adequacy. Through the use of multi-variable linear regression analysis, the data is fit to a second order response surface equation of the general form below:

$$Y = b_0 + \sum_{i=1}^{k} b_i X_i + \sum_{i=1}^{k} b_{ii} X_i^2 + \sum_{i=1}^{k} \sum_{j=1}^{k} b_{ij} X_i X_j \qquad ...(3)$$

in which Y is a response or dependent variable to be fitted, X_i and X_j are independent variables, b_0 is the constant term, b_i is the linear coefficient, b_{ii} is the quadratic coefficient, b_{ij} is the interaction coefficient ($i \neq j$) and k is the number of variables.

Therefore, for three variables experimental design, the equation is as below:

$$Y = b_0 + b_1 X_1 + b_2 X_2 + b_3 X_3 + b_{11} X_1^2 + b_{22} X_2^2 + b_{32} X_3^2 + b_{12} X_1 X_2 + b_{13} X_1 X_3 + b_{23} X_2 X_3 \dots$$
 (4)

An estimate of the variance was obtained from the center points and the usual formulation for standard deviation, SD; that is

$$SD = \sqrt{\frac{\sum (x_i - \overline{x})^{-1}}{n-1}} \qquad ...(5),$$

where n is the number of center points. A test of significance was made on each term in the regression equation using the following standard errors (SE) 18

$$SE.(b_i) = 0.271(SD)$$
 ...(6)

$$SE.(b_{ii}) = 0.263(SD)$$
 ...(7)

$$SE.(b_{ij}) = 0.354(SD)$$
 ...(8)

where SE.(b_i) is the standard error of b₁, b₂ and b₃, SE.(b_{ii}) is the standard error of b₁₁, b₂₂ and b₂₃, and SE.(b_{ii}) is the standard error of b₁₂, b₁₃ and b₂₃.

From Table 2, twenty compounds were prepared based on formulation in Table 3. The rubbers used in this study were NR (STR5L) manufactured by Tavorn Manufacturing Ltd. and BIIR (Polysar Bromobutyl X2, Bayer, with 1.89 % bromine content). Rubber chemicals were standard commercial grade materials. Compounding was performed by mixing in a laboratory-sized two roll mill at room temperature. Two rubbers were first masticated and blended for 5 minutes. The order of adding and mixing time for the remaining ingredients were zinc oxide, antioxidant (6PPD), accelerator (TBBS), carbon

black (HAF N330), stearic acid and sulphur for 2, 2, 2, vary depend on adding level, 2 and 2 minutes respectively.

After thorough mixing to ensure good dispersion, the compound was taken off the mill and stored at room temperature for 24 hours before testing. The cure behavior of the compounds was determined at 160 °C by a Monsanto oscillating disc rheometer (Model ODR 2000) at 1° arc (ASTM D 2084:88). Tensile properties, hardness, compression set were carried out according to the ASTM D 412-98, ASTM D 2240-97 and ASTM D 395-98 respectively.

Statistical results were analyzed via multiple linear regression analysis as detailed in reference number 18. Contour curves were shown using Maple V Release 4 software.

Results and Discussion

Cure Behavior

Table 4 shows the calculated response equations for the parameters measured in the entire experiment. An example response equation for scorch time property for the three variables is here presented in Equation 9.

 $T_52 = 3.109+0.018(NR/BIIR)-1.540(HAF)-0.057(TBBS)-0.083(NR/BIIR)+0.867(HAF)-0.104(TBBS)+0.073(NR/BIIR)(HAF)+0.030(NR/BIIR)(TBBS)+0.090(HAF)(TBBS) (9)$

where NR/BIIR, HAF and TBBS can be any value of NR/BIIR ratio, HAF and TBBS level in coded terms respectively.

The coefficients for the rubber ratio, HAF level and TBBS level are comparatively relative magnitude at 0.018, -1.540 and -0.057 respectively. They indicate the comparative effect of each of those factors on the scorch time response, together with the direction of the effect. That is, the carbon black (HAF) level is the most significant factor affecting the scorch time of the compound followed by the level of TBBS and the NR/BIIR ratio respectively. Figure

I clearly illustrates the contour plot of the fitted equation indicating the effect of HAF and NR/BIIR ratio on the scorch time of the compound (where ratio of TBBS is constant at coded 0, 1.12 phr). An increase in amount of HAF up to 30 phr resulted in a decrease on scorch time possibly due to the basicity of carbon black. However, increasing the level of HAF higher than 66 phr increased the higher content of filler in the low volume of rubber that retarded the curing.

The effect of increasing the TBBS level up to 0.9 phr delayed the scorch, while higher levels than 1.3 phr caused a decrease in scorch time (Figure 2). TBBS is a delayed action accelerator in a benzothiazole sulfenamide group. The accelerator became active as the tertiary butyl amine split off during vulcanization. The base activates 2 mercaptobenzothiazole as it is formed. Consequently TBBS produces a retarded vulcanization start. However, the high amount of TBBS that inversely decreased scorch time can be attributed to the high amount of both amine and MBT which, together, accelerate the vulcanization start. This stands in contrast to the lower amount. Figure 3 moreover however shows that at a fixed ratio of NR/BIIR, TBBS has little effect on the scorch time compared to the HAF level. The result also shows a shaped surface with maximum scorch time in the direction of low HAF, low TBBS and high HAF, high TBBS level.

Since every property is analyzed over identical ranges for variables, i.e., over the same grid, they can be superimposed. Two cure characteristics of 90 % cure time (T₉₀) and cure rate index (CRT) can be seen in Figure 4. The most influential factor affecting cure time in the linear coefficient is the carbon black level, followed by the rubber ratio and the TBBS level respectively. The coefficient for HAF is 1.3 and 4 times higher than that of the rubber ratio and the TBBS level respectively, while the NR/BIIR ratio has the greatest significance the quadratic coefficient. When the level of TBBS is constant at 1.12 phr, the

effect of increasing level of HAF on cure time (Figure 4) is interestingly very similar to that observed from the scorch time. An increase in HAF up to 30 phr resulted in a shorter cure time, but up from 66 phr longer cure time was observed possibly due to the same explanation. Increasing NR/BIIR ratio or increasing NR content causes a decrease in cure time because of the stronger reactivity of carbon double bonds on a natural rubber molecule toward the sulfur-accelerator vulcanization reaction. Figure 5 shows the dependence of cure time on NR/BIIR ratio and TBBS level with the HAF level at the center point of the design, 30 phr. The figure indicates that TBBS has little significant effect on cure time when the NR/BIIR ratio is less than 2.1 (NR/BIIR, 68/32) but it is a significant factor when the NR/BIIR ratio is more than 2.1. That is increasing the level of TBBS while increasing NR content resulted in a decrease in the cure time. As expected, high levels of both TBBS and NR content produce shortest cure time. It is also interesting to see clearly three different responses dependence of cure time on HAF and TBBS level with the NR/BIIR ratio at the center point of the design (Figure 6).

Cure rate index is the 100 times reciprocal T₉₀ minus T₂2 indicating the rate of cure of the compounds. A higher value means a higher rate of the vulcanization. It can be seen from Table 4 and Figure 4 to 6 that the NR/BIIR ratio has the greatest effect: it is approximately 1.7 and 3.5 times greater than TBBS and HAF level respectively. While, the TBBS level has greater effect approximately double the HAF level. Increasing the NR content and the TBBS level increased the cure rate index as expected, while increasing the HAF level resulted in little change.

Table 4 also shows the coefficients of response equations for minimum torque (M_L),
maximum torque (M_H) and their difference (M_H-M_L) from the Monsanto oscillating disk
rheometer data. The HAF level is the most significant factor affecting the minimum torque
as it roughly indicates compound viscosity. As expected, an increase in M_L resulted from

increasing the HAF level. Figure 7 shows the effect of the rubber ratio and TBBS level on M_L when the HAF level is fixed at 30 phr. It can be seen that rubber ratio at low level ratio (high BIIR content) up to 2.1, M_L decreased with increasing NR content. This contributes to the lower viscosity of the NR, however after 3.5, M_L tended to slightly increase. TBBS vaguely affects M_L (compound viscosity). M_H-M_L also indicates the state of cure of the compound and the HAF level is the most influential factor followed by rubber ratio and TBBS respectively. Increasing the HAF level, rubber ratio (increase in NR content) and TBBS level all increase the MH-ML suggesting a higher modulus for the tested compounds.

Physical properties

Table 5 and Figure 8 indicates that the stress required to achieve 300 % strain, ultimate tensile strength and the elongation at break were all affected most significantly by the reinforcing carbon black HAF level. As expected, the significance of the HAF level on the elongation at break has opposite effect from the other properties: increasing HAF level produces the reduction of elongation at break. However, increasing HAF level up from 66 phr was seen lower the ultimate tensile strength. This was due to the reduction of rubber volume fraction. Increasing the NR content also serves to dramatically affect the ultimate tensile strength: the variable of the NR/BIIR ratio is 8.5 times greater than the TBBS level. It has an average increasing effect on ultimate tensile strength of approximately 29 % across the range used in the experiment (Figure 9). The strain crystallization of NR is contributed to the high tensile strength of the vulcanizates. The TBBS level itself has greater influence on 300%modulus than in ultimate tensile strength (compare the coefficient of 0.615 to 0.276). This is because the TBBS level greatly affects the cross-link density which is directly related to the stress required to achieve a specified strain. The

elongation at break was also found to be more affected by the TBBS level than the NR/BIIR ratio. This can be easily observed from the opposite directions of linear coefficient of -38.86 for TBBS level and 15.64 for NR/BIIR ratio. Increasing the level of TBBS serves to decrease the elongation at break due to the high level of cross-link density, while increasing the rubber ratio tended to increase the elongation at break especially at the high level of TBBS (Figure 9), possibly due to the high elasticity of natural rubber. However, the reverse point was observed after the rubber ratio reached about 2.8, the elongation at break lowering with increasing NR content. This can be related to the possibly greater cross-link density of the natural rubber.

Figure 10 shows the dependence of hardness and percentage of compression set of the formulations tested on the three variable factors. The hardness property similar to the 300% modulus was found to be affected most by the level of HAF, followed by the TBBS level and the NR/BIIR ratio respectively, due to the same explanation as previously discussed. The compression set property gives an insight ability of rubber compounds to retain elastic properties after the prolonged action of compressive stresses. The most influential factor affecting compression set was the HAF level. It has a greater influence of 2 and 2.5 times than the NR/BIIR ratio and the TBBS level respectively. The contour curve in Figure 10 interestingly reflects the response of compression set to the HAF level and the NR/BIIR ratio, when the TBBS is constant at the center point of 1.12 phr. It shows distinctly different response regions. Firstly, an increase in the carbon black level higher than 60 phr while increasing the NR content tended to produce a lower compression set. Because the high active surface of carbon black could interact more with the NR molecules to combine with a tight crosslink network due to the high reactivity of the double bond on the NR (at the same time, high load reinforcing the carbon black) will inherent the elastic ability to bear the loaded stresses and recover upon the stresses released. This will enable phr, increasing the NR content resulted in an increase in the compression set. It indicates the poor heat resistance of NR with less tight crosslink network at a lower level of carbon black. The TBBS level is also expected to exercise a significant effect on compression set as shown in Figure 11. At a fixed amount of 30 phr carbon black, increasing amounts of TBBS up to the center point of 1.12 phr reduced the compression set possibly due to an increase in crosslink density, while increasing the rubber ratio tended to slightly increase the compression set. Increasing the level of TBBS higher than 1.4 phr inversely increased the compression set. This is because TBBS is also a sulfur donor accelerator, which at high level may produces more polysulphide crosslink network. Consequently, the network can be easily broken down by heat, causing poor elastic recovery and therefore increasing the compression set. However, at this high region level of TBBS a reduction trend with increasing rubber ratio was observed possibly due to the comparatively higher crosslink density of higher NR content.

Figure 12 illustrates the use of superimposing contour plots to determine compound composition with specific properties. The unshaded area provides many combinations of the rubber ratio and TBBS level at a constant HAF level of 30 phr in compounds that will give 5.5 MPa minimum 300% modulus, 19 MPa minimum tensile strength and 57% maximum compression set. Another operator compounded the two formulations of TBBS:NR/BIIR at 1.35: 2.1(68/32) and 1.13: 2.5 (71.5/28.5) and determined all the properties. It was found that the resulting properties fitted the desired properties well, indicating useful prediction and accuracy of these study response equations.

Conclusions

Contour plots have been generated from response equations in this study and have been found very useful as an indication of the change in any particular property with change in any parameter. The most desirable situation to achieve required optimum properties with an acceptable degree of accuracy could be easily done by superimposing the contour plots. Most of the property responses to the variables presented herein, as we have already seen, are readily explained. Carbon black played the most significant influence on scorch and cure time and all of the physical properties.

As NR is more competitive to sulphur vulcanization and has a higher strength than BIIR it is strongly reflected in the response of cure behavior and most physical properties to the rubber ratio. Compression set is more dependent on crosslink density and type; increasing the TBBS level up to one point increases the crosslink density, but at a higher level may produce an increase in polysulphide crosslinks which in turn increases compression set.

Acknowledgements

The authors are thankful to the Thailand Research Fund for the research grant and Bayer Thai for BIIR supply.

References

- A. J. Tinker and K.P. Jones, "Blends of Natural Rubber: Novel Techniques for Blending with Speciality Polymers", Chapman & Hall, London, 1998.
- A.Y. Coran, Rubber Chem. Technol., 61, 281 (1988).
- Md. Aris bin Ahmad and M. A. Wheelans, NR Technol., 15(4), 78 (1984).
- C. Nakason, A. Kaesaman, Z. Samoh, S. Homsin and S. Kiatkamjiornwong, Polymer Testing, 21(4), 449-455, (2002).

- U. N. Okwu and F.E. Okieimen, European Polymer Journal, 37 (11), 2253-2258 (2001).
- S. H. Goh, Thermochimica Acta, 41(2), 261-264 (1980).
- T. Zaharescu, V. Meltzer and R. vilcu, Polymer Degradation and Stability, 70(3), 341-345 (2000).
- 8. H. Ismail and H. C. Leong, Polymer Testing, 20(5), 509-516 (2001).
- 9. A.J. Tinker, Rubber Chem. Technol., 63(4), 503-515 (1990).
- J. K. Bhattacharyya and S. Chakraborty, Tire Technology International, 97, 109-113 (1997).
- J. A. Brydson, Rubber Materials and their Compounds, Elsevier Applied Science, London, 181, 1988.
- K. A. Mazich, M. A. Samus, P. C. Killgoar, Jr., and H. K. Plummer, Jr., Rubber Chem. Technol., Rubber REV., 59, 623 (1986).
- 13. M. A. Lemieux and P. C. Killgoar, Jr., Rubber Chem. Technol., 57, 792 (1984).
- 14. K. Ritchie and R. J. Weir, Rubber Chem. Technol., 49, 408 (1976).
- W. E. Biles and J. J. Swain, "Optimization and Industrial Experimentation", John Wiley and Sons, New York, 1980.
- W. G. Cochran and G. M. Cox, "Experimental Design", 2nd Ed, John Wiley and Sons, New York, 1957.
- 17. G.C. Derringer, Rubber Chem. Technol., 61, 377-421 (1988).
- W. J. Diamond, "Practical Experimental Designs for Engineers and Scientists, Lifetime Learning Publications, California, 1981.
- 19. J. A. Cornell, "How To Apply Response Surface Methodology" and " How To Run Mixture Experiments for Product Quality", The American Society for Quality Control Basic References in Quality Control, Vol. 8 and 5, 1984.

- 20. P. F. Bertsch, Rubber World, June, 75-81 (1961).
- J. Batchelor, P. K. Freakley, S. N. Ghafouri and D. W. Southwart, Rubber World, July, 18 (1989).
- P. K. Freakley, "Rubber Processing and Product Organisation", Plenum Press, New York, 1985.
- O. L. Davies and P. L. Goldsmith, "Statistical Methods in Research and Production", Oliver and Boyd, Edinburgh, 1972.
- 24. F. J. Krakowski and A. J. Tinker, Elastomerics, 22(7), 24-30 (1990).
- 25. F. J. Krakowski and A. J. Tinker, Elastomerics, 22(7), 31-35 (1990).

Table 1 Relationship between real and code values

Code value	STR5L/BIIR ratio	C-black level (phr)	TBBS level (phr)	
-1.682	0.25 (20/80)	0	0.75	
-1	1.01 (50/50)	12.16	0.90	
0	2.12 (68/32)	30	1.12	
+1	3.24 (76.4/23.6)	47.84	1.35	
+1.682	4.00 (80/20)	60	1.50	

Table 2 Experimental design

	Mix No.	Code		Real value			
		NR/BIIR	C-Black	TBBS	NR/BIIR	C-Black (phr)	TBBS (phr
Factorial points	1	-1	-1	-1	1.01	12.16	0.90
	2	+1	-1	-1	3.24	12.16	0.90
	3	-1	+1	-1	1.01	47.84	0.90
	4	+1	+1	-1	3.24	47.84	0.90
	5	-1	-1	+1	1.01	12.16	1.35
	6	+1	-1	+1	3.24	12.16	1.35
	7	-1	+1	+1	1.01	47.84	1.35
	8	+1	+1	+1	3.24	47.84	1.35
Star points	9	-1.682	0	0	0.25	30	1.12
	10	+1.682	0	0	4.00	30	1,12
	11	0	-1.682	0	2.12	0	1.12
	12	0	+1.682	0	2.12	60	1.12
	13	0	0	-1.682	2.12	30	0.75
	14	0	0	+1.682	2.12	30	1.50
Center-Point replicates	15-20	0	0	0	2.12	30	1.12

Table 3 Based Formulation

Ingredient	phr	
STR5L/BIIR HAF N-330	Variable (0.25-4) Variable (0-60)	
TBBS	Variable (0.75-1.5)	
Zinc Oxide	3	
Stearic acid	2	
6PPD	f	
Sulphur		

N-tert-butyl-2-benzothiazyl sulphenamide (TBBS)
N-phenyl-N'-1,3-dimethylbutyl-p-phenylenediamine (6PPD)

Table 4 Coefficients for response equations of cure characteristics

	T _s 2 (min)	T _{so} (min)	CRI	M _L (lb-in)	M _H (lb-in)	M _H -M
b _o	3.109	6.166	33.063	5.156	23.989	(lb-in) 18.833
b,	0.018	-1.283	6.326	-0.517	1.541	2.058
b ₂	-1.540	-1.730	1.806	2.047	7.008	4.961
b ,	-0.057	-0.432	3.661	0.031	1.674	1.643
P ^{II}	-0.083	0.987	-2.876	0.598	-0.268	-0.866
b ₂₂	0.867	0.747	-0.454	0.271	0.818	0.546
b ₃₃	-0.104	-0.309	0.445	-0.061	-0.280	-0.219
b ₁₂	0.073	0.034	0.768	-0.062	0.181	0.244
b ₁₃	0.030	0.081	0.768	-0.020	-0.341	-0.321
b ₂₃	0.090	0.119	0.034	0.345	1.084	0.739
S.D.	0.1157	0.1949	1.5047	0.7921	1.1008	0.4118
E.(b _i)	0.0314	0.0528	0.4078	0.2147	0.2983	0.1116
.E.(b _{ii})	0.0304	0.0513	0.3957	0.2083	0.2895	0.1083
.E.(b _{ij})	0.0410	0.0690	0.5327	0.2804	0.3897	0.1458

* b₀ -constant, b₁ NR/BIIR, b₂ - HAF level, b₃ - TBBS level

Table 5 Coefficients of response equations for physical properties

	(Shore A)	300% modulus (MPa)	T.S. (MPa)	E.B. (%)	Com. Set
b _e	45.398	5.902	20.775	642.749	54.091
b	1.115	0.428	2.410	15.644	2.574
- 6,	11.122	4.252	2.576	-111.255	5.073
b ₃	1.839	0.615	0.276	-38.860	-2.120
bii	-0.619	-0.197	-0.450	-9.476	1.555
b ₂₂	-0.708	0.647	-2.478	-13.896	-1.548
bn	-0.354	0.099	0.046	3.786	2.419
b ₁₃	-0.188	0.503	-0.356	7.813	-2.122
b _{is}	-0.438	-0.467	0.299	7.813	1.023
b ₂₃	-0.188	0.636	-0.441	-17.188	4.187
S.D.	1.1584	0.7414	0.8031	20.4157	8.4699
S.E.(b,)	0.3139	0.2009	0.2176	5.5327	2.2953
S.E.(b _u)	0.3047	0.1950	0.2112	5.3693	2.2276
S.E.(b _g)	0.4101	0.2625	0.2843	7.2272	2.9983

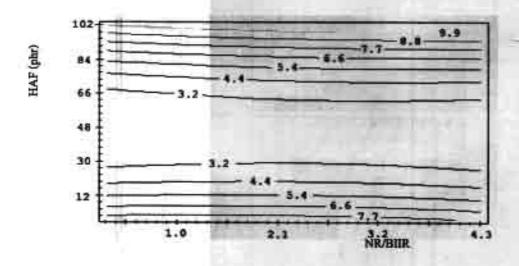


Figure 1 Effect of HAF level and NR/BIIR ratio on scorch time at TBBS coded 0 (1.12 phr).

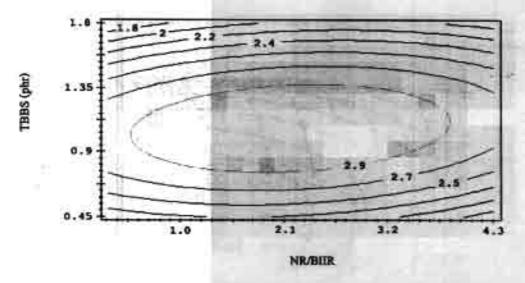


Figure 2 Effect of TBBS level and NR/BIIR ratio on scorch time at HAF coded 0 (30 phr).

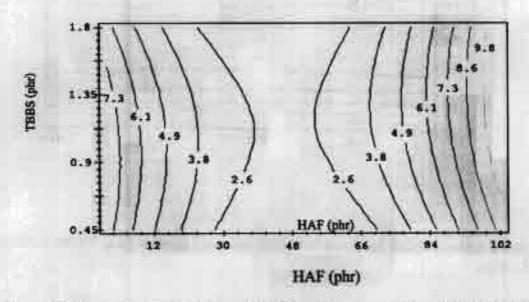


Figure 3 Effect of carbon black and TBBS level on scorch time at STR5L/BIIR coded 0 (68/32).

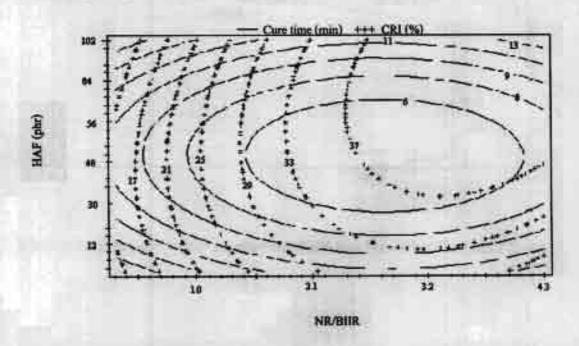


Fig 4 Effect of HAF level and NR/BHR ratio on cure time and cure rate index at TBBS coded 0 (1.12 phr).

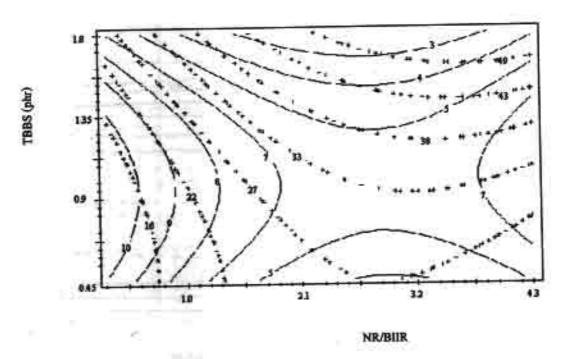


Figure 5 Effect of TBBS level and NR/BIIR ratio on cure time and cure rate index at HAF coded 0 (30 phr).

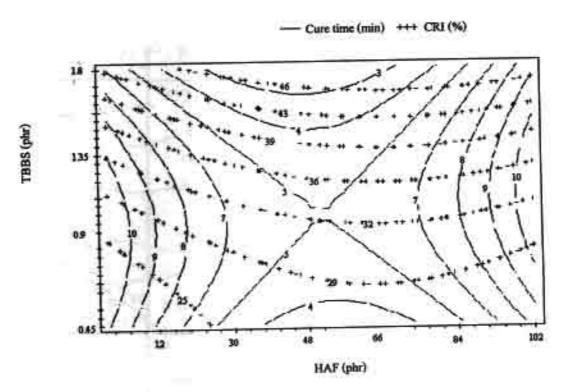


Figure 6 Effect of carbon black and TBBS level on cure time and cure rate index at STR5L/BHR coded 0 (68/32).

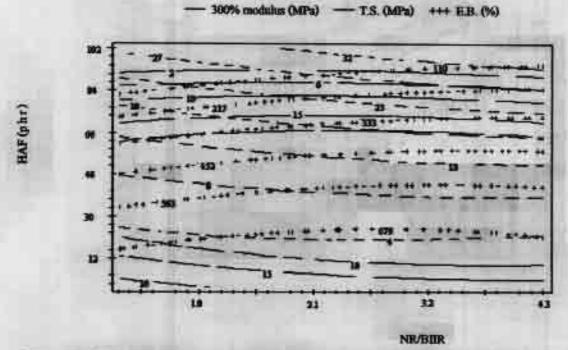


Figure 8 Effect of HAF level and NR/BHR ratio on 300% modulus, tensile strength and elongation at break at TBBS coded 0 (1.12

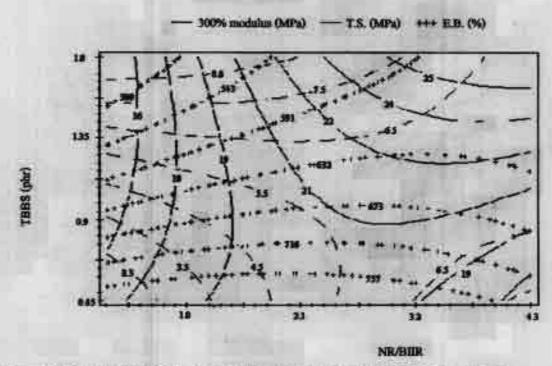



Figure 9 Effect of TBBS level and NR/BIIR ratio on 300% modulus, tensile strength and elongation at break at HAF coded 0 (30 ph)

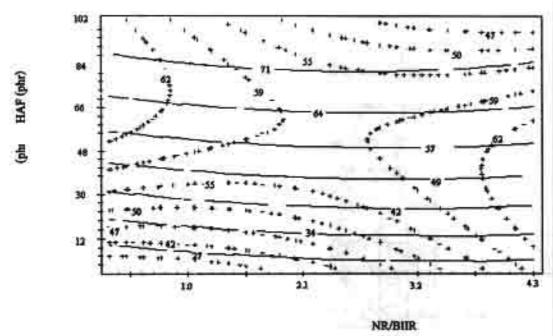
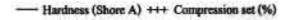



Figure 10 Effect of HAF level and NR/BIIR ratio on hardness and compression set at TBBS coded 0 (1.12 phr).

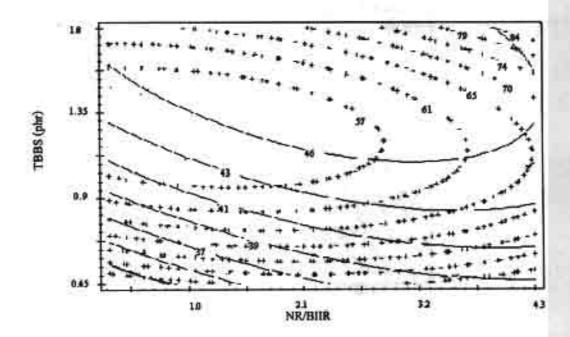


Figure 11 Effect of TBBS level and NR/BIIR ratio on hardness and compression set at HAF coded 0 (30 phr).

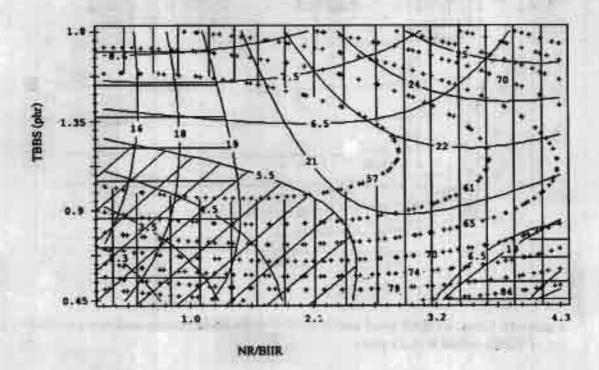


Figure 12 Unshaded area provides many combinations of the rubber ratio and TBBS level at a constant HAF level of 30 phr in an compound that will give 5.5 MPa minimum 300% modulus, 19 MPa minimum tensile strength and 57% maximum compression.

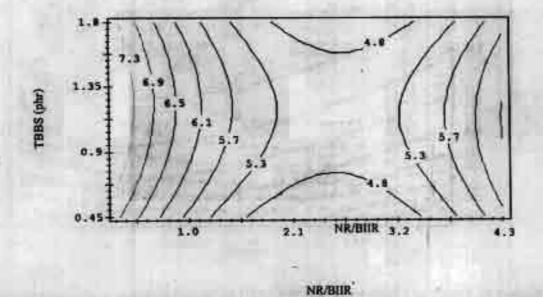


Figure 7 Effect of TBBS level and NR/BIIR ratio on minimum torque at HAF coded 0 (30 phr).

