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Abstract

In recent years, interest in high speed ground transportation has encouraged the study of 

vehicle-guideway systems that can operate at 240 to 480 kph (150 to 300 mph).  The 

system considered here consists of a multiple axle, passive suspension vehicle model, 

random surface roughness model and a linear elastic structure model.  This research 

provides insights on system modeling, system analysis and system design. 

 A series of 2DOF vehicle model with a constant velocity are used and a fixed 

wheelbase or distance between axles.  The vehicle is coupled with the structure at the 

spatial positions of the axles.  The interface between the vehicle and the structure 

determines the appearance of parametric terms in system matrices.  If a mass-spring-

dashpot interface is used, then all the system matrices are paramtetric.  If a spring 

interface is used, then only the stiffness matrix is parametric. 

 Surface roughness is modeled as a stationary spatial random process.  A Markov 

vector model that includes multiple interface points is formulated. 

 A two-span beam is used as a structure model.  It is defined in the modal domain 

by natural frequencies, mode shapes and damping values.  All vehicle, roughness and 

structure parameters are nondimensionalized and the equations of motion of the vehicle-

guideway coupled system are written in state form.  Then, by taking expectations, 

stochastic state equation is decoupled into two matrix equations.  One is for the 

evolutionary mean vector and the other is for the evolutionary covariance matrix.  The 

matrix equation for the evolutionary mean vector has parametric and deterministic 

additive excitation.  The equation for the evolutionary covariance matrix has parametric 

and random additive excitation.  Structural responses are normalized by maximum static 

responses, so the evolutionary means and variances of dynamic amplification factors are 

computed. 

 Effects of parameters on mean and variance responses are studied.  The 

nondimensional span passage rate and the nondimensional axle arrival rate are two 

parameters that affect responses significantly.  At very high velocities, the axle arrival 

rate can be equal to fundamental frequencies of the structure, causing large mean values 

of responses.  Effects of the number of axles are also studied.  Effects of different surface 



x

roughnesses, including those corresponding to current surface roughness specifications, 

on the responses of the high speed vehicle-guideway coupled system are presented. 



xi

Executive Summary 

Dynamics of high speed vehicle-guideway coupled systems is an important problem for 

future ground transportation systems.  The system considered here consists of a multiple

axle, passive suspension vehicle model, random surface roughness model and a linear 

elastic structure model.  This research provides insights on system modeling, system

analysis and system design. 

A series of 2DOF vehicles were used as models.  A distance between axles, a so-

called wheelbase, was fixed to be equal for all axles.  The vehicle-structure interface 

model determines the appearance of parametric excitation in system matrices.  If an 

unsprung mass-dashpot-spring is used, all matrices have parametric terms.  If a spring is 

used, then only the stiffness matrix contains parametric terms.

Linear filter equations are used to incorporate roughness into the system state 

equations.  The roughness process and perhaps its derivatives should have a finite 

variance.  The interface model determines the order or number of filters required.  If a 

mass-spring-dashpot is used as interface, three first order linear filters are needed for the 

first and second derivatives of roughness processes to exist and have finite variance.  If a

spring is used, only one first order linear filter is sufficient.

Multiple axle vehicles have a kinematic filtering effect on system excitation.

Multiple interface points are taken into account by adding a first order filter to model an

excitation with lag.  The filter equations are excited by correlated white noises in order to

have an appropriate zero-time-lag cross-correlation between any two roughness 

processes.

High speed vehicles will operate on multiple-span, elevated guideways.  A two-

span beams, used a structure model herein, is a possible choice.  The formulation

presented uses a modal domain model of the structure.  Mode shapes of a two-span

symmetric beam are either antisymmetric or symmetric.

Nondimensional parameters of the system are defined.  They are wheelbase-to-

span length ratio ( L� ) , vehicle-to-guideway mass ratio ( )M m L , nondimensional

velocities such as span passage rate ( )vf and axle arrival rate ( )af , suspension

parameters (
ikf and )cf , and modal damping ratio ( )� .
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A matrix first order linear stochastic differential equation was formed and, taking 

expectations, two deterministic first order equations are obtained: evolutionary mean

vector equation and evolutionary covariance matrix equation.  The first has parametric

and deterministic additive excitation.  The second equation has parametric and random 

additive excitation. 

Effects of a sudden change of surface, smooth and rigid to rough and flexible,

were also studied.  Amplification of the beam responses varies for different types of 

responses.  Such surface change does not affect the expected values of beam responses 

significantly.  The sudden change affects varaince of vehicle responses substantially. 

Variances of vehicle responses overshoot after a surface change then decay to stationary

values.  Vehicle damping affects this phenomenon; vehicle variances spike higher if a 

vehicle is highly damped.

There are two important parameters that have strong effects on evolutionary mean

and variance responses.  One is the nondimensional span passage rate, vf .  Variances of

beam responses become larger with increasing vf .  Expected values of beam responses 

tend to increase also, in most cases, but they also depend on L� .  The other significant 

parameter is the axle arrival rate, af .  At high speed, for reasonable values of L�  and 

M m L , the axle arrival rate, af , can match the first or even second natural frequency of 

the beam.  Therefore, the moment at the interior support which is dominated by the 

secondmode shape (first symmetric mode shape), may be significantly amplified.

Expected values of dynamic amplification of beam responses can be up to 1.40. 

Moreover, variances of beam responses seem to have large contribution to the RMS 

responses if current surface roughness specifications are used.  Roughness can cause 

standard deviations of dynamic amplification up to 0.20.  It is found that one specific 

value of a nondimensional parameter may cause a maximum in one responses while a 

different value may cause a maximum in another response.
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CHAPTER 1 

INTRODUCTION
 

1.1 Significance and Motivation 

High speed rail (HSR) with speed between 200 and 350 km/h has a crucial role to 

transport people.  It has been of increasing interest nowadays and has great 

advantages for third world countries.  China’s largest city, Shanghai, is going to 

launch the first commercial maglev train of the world.  With the power of 

electromagnetic levitation, magnetic levitated (maglev) vehicle can convey 

passengers up to the speed of 430 km/h.  Using German technology maglev line of 30 

km at a cost of $1.2 billion has been in service since summer 2003.  It can carry

passengers from Shanghai’s financial district to its international airport in eight

minutes, while a car usually takes from 45 minutes to 1 hour.  Maglev supporters

expect that the Shanghai’s maglev project would lead to other HSR projects 

worldwide.  In Thailand, the plan of building HSR was started in 1995 when the 

National Economic and Social Development Board (NESDB) hired Wilbur Smith

Associates to do a feasibility study of HSR interconnecting the second Bangkok 

international airport (Suvarnabhumi) and Rayong.  However, recently the Ministry of

Transport has planned to provide budget of 18.5 million baths in 2004 for a feasibility

study of 260 km-HSR from Bangkok to Nakhon Ratchasima.  Hence, it is important

to provide some aspects of system-modeling, -analysis, and –design for Thai 

engineers.

Engineers have traditionally studied vehicle and structure systems separately. 

Civil engineers might consider a vehicle load as a moving point load because it is the

easiest way to analyze a structure.  It is applicable if the inertia of the vehicle is small

[31, 32, 38].  Today it is possible to analyze models that capture the interaction 

between a vehicle and a structure.  System excitations may be either deterministic or

random.  Normally the weight of the cars is considered deterministic.  Random 

excitation may come from surface irregularities.  Surface irregularities in turn affect 

ride quality and structural response. 

The principal objective of this research is to quantify the effects of vehicle and 

structure parameters on the dynamic behavior of vehicle-structure coupled systems. 
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The goal is to provide guidelines for structural design by nondeterministic approach.  

By modeling vehicle-structure coupled system, parametric excitation, deterministic 

excitation and random excitation can be taken into account.  Results from system 

analysis are statistical moments of the system.  One is the evolutionary mean vector 

and the other is the evolutionary covariance matrix. 

 In this research nondimensional parameters are introduced, thus formulations 

can be simply applied to any unit systems.  Responses are presented in terms of 

dynamic amplification factor (DAF) which is defined as dynamic response divided by 

maximum static response.  The concepts can be applied to any systems, i.e., car-

bridge, train-railway, high speed rail system and magnetic levitated vehicle depending 

on range of velocities and interface between vehicle and structure. 

 It is essential for designers to know about system responses at resonant 

condition, especially at high speed.  Excessive vibration imposes a great danger.  It 

may lead to disastrous accident.  Parameters involving in how resonant condition 

occurs are span crossing rate, axle arrival rate [34], fundamental frequencies of 

vehicle and structure, damping properties of vehicle and structure, and mass ratio.   

1.2 Objectives 

� To study dynamic behaviors of vehicle-structure coupled system, particularly 

an interaction force and amplitude of responses at resonant condition. 

� To study effects of vehicle parameters such as vehicle velocities, number of 

axles, axle-arrangement and mass of vehicle to mean values and variances of 

structural responses. 

Vehicle velocities – At high speed, axle arrival rate can cause resonance at the 

higher modal frequency and it can strongly amplify structural response corresponding 

to that modal frequency such as negative bending moment at the interior support [34].  

At lower speed, especially when wheelbase to span ratio is less than 0.5, the same 

phenomena occurs.  Hence, it is interesting to investigate how it affects amplitude of 

responses.

Number of axles – When more axles (interface points) are added to the 

vehicle, load configuration is changed from two-point load to eight-point load 

(maglev can have up to eight magnetic pads).  Maximum response may be lower since 
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it approaches a uniform load.  However, how many interface points is optimal is still 

questionable.

Axle-arrangement and mass ratio – This parameter can be studied as follow: 

Truck – Typical truck weight 20 to 40 ton crossing bridge with speed 50-80 

km/h, i.e., at a bridge across the Chaopraya river in Nakhon Sawan vibration is 

sensible while trucks traverse it. 

Train – Normally a train has two parts, locomotives at the front and at the end, 

and carriages in the middle.  Locomotives usually are much heavier than carriages.  

Different mass distribution in train can affect structural responses. 

Intercity rapid transit – Configuration of this kind of vehicle normally is three 

or four bogies.  It travels with speed higher than the other two previously mentioned 

cases.  This system was partly investigated [34].  Only two parameters, span crossing 

rate and axle arrival rate were studied.  Other vehicle parameters that can affect 

amplitude of structural responses will be studied. 

� To study effects of surface roughness to mean values and variances of system 

responses.  By the nature of surface roughness it does not have a dominant 

peak.  It has, however, an additional amplification to system responses.  At 

low speed it affects mainly to passenger ride comfort.  It may not be as crucial 

to the structure.  At high speed surface roughness must be considered in the 

design.

1.3 Literature Review 

Since the 1960s, extensive research on coupled vehicle-structure systems has been 

done in the United States and Europe.  Early studies of beam-vehicle system 

dynamics concentrated on a simply supported beam traversed by a simple vehicle 

model [1, 9, 39].  Investigations arising out of AASHTO road test [10] expanded 

studies to three span continuous beams with more complicated vehicle models.  More 

recently, orthotropic plate theory has been applied to dynamic analyses by 

Marchesiello, et al. [26].  Most of these studies have used simple vehicle models and 

equations of motion have been solved by numerical integration.  Many researchers, 

Lin and Trethewey [24], Henchi, et al. [16, 17] and Hino, et al. [18] used the finite 

element method to model and analyze structures.  Several others employed Fourier 

series and Fourier transforms [37].  The state space approach was also used by many 

groups including Harrison and Hammond [11, 12, 13, 14], Yadav [41] and Narayanan 
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, et al. [28].  In general, vehicle-structure interaction is significant.  Law, et al [4, 19, 

20, 21, 44] tried to obtain the real interaction force when a vehicle traverses a 

structure and studied moving force identification both experimentally and analytically 

using both time domain and frequency domain approaches.  The modal properties of 

the bridge were measured by impulse tests with an instrumented hammer [10] and 

compared with a simple mathematical model.  Of course the real interaction force is 

not constant, it is affected by surface roughness, vehicle suspension and stiffness of

the structure.  Other work on identifying interaction force can be found in references 

[5, 25].  A few papers related to analysis of roughness-vehicle-structure coupled 

systems are briefly reviewed here: 

Marchesiello, et al. [26] used a seven-DOF vehicle model, including pitch, roll

and heave motions for an analysis of dynamic interaction of multi-span continuous

bridges modeled by isotropic plates with MDOF vehicles moving at constant speed. 

Modal superposition was adopted and vehicle-bridge interaction was computed.

Bridge surface irregularities were modeled as an ergodic stationary Gaussian random 

process with cut-off spatial frequencies.  A technique to implement flexural and 

torsional modes of structure was presented.  Contribution of torsional modes on 

displacement at midspan and the importance of surface roughness and vehicle speed

were pointed out.  A three span continuous bridge was analyzed by finite element

method as an example.  The result showed that the dynamic amplification factor was 

very sensitive to the damping of the vehicle suspension and to the roughness of the

road.  At the center of the bridge, dynamic amplification factor of beam deflection can 

increase from 1.05 to 1.35, when roughness was included for relatively low 

suspension damping.  They found that for a realistic range of velocities, the span 

crossing frequency (velocity divided by span length) does not cause resonance in 

beam structures. 

Smith, Gilchrist and Wormley [36] develop analyses to determine the dynamic

performance of vehicles interacting with single and multiple span structures.  They 

used a two-dimensional rigid body vehicle that is capable of heave and pitch motion

and used the modal analysis technique to derive the finite multiple-span guideway-

vehicle model.  Studies indicated that the largest dynamic amplification factor occurs 

at vehicle crossing frequencies (also called nondimensional velocity)   ~ 2 (  = cv cv

sv f� ,  is vehicle speed,  is natural frequency, v f s�  is span length).  This basic
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observation is made by Timoshenko, et al. [39], Biggs [1] and Fryba [9], and it 

appears in many other references [8, 36].  For < 1 guideway damping has very little 

influence to the responses.  For larger values of > 1 guideway dynamics become

important for all of case studies.  So for high-speed (150-300 mph) systems a dynamic

analysis is required.  They note that: 1) For advanced transportation systems, which 

must provide good ride quality, the complete vehicle-guideway system must be

considered in design.  2) Improvements in both guideway design and vehicle 

performance influence the overall system material requirements and economic

feasibility significantly.

cv

cv

Doran and Mingori [8] examined two approaches for analysis of vehicle-

guideway systems.  The first approach was based on a combined analytical and 

numerical study of the exact governing equations (fully coupled equations).  The 

second approach was based on the analytical solution of a set of approximate

governing equations (partially coupled equations).  This approach takes advantage of

the fact that a requirement for acceptable vehicle acceleration is a small fraction of g

to reduce complications of the governing equation.  This study showed that if ride 

comfort constraints were satisfied (maximum vertical acceleration < 0.1 g), maximum

accelerations based on partially coupled equations agree closely with those based on

fully coupled equations.  Note that in this work vehicle was modeled as SDOF and

only a simply supported beam was considered.  For high-speed and more complex

vehicle/guideway coupled systems using partially coupled equations may not be 

sufficient.

Cai, Chen, Rote and Coffey [3] studied dynamic interactions between a

maglev vehicle and guideway.  The vehice model, two suspensions and two masses

(primary and secondary), was used.  Their results showed that dynamic interaction of 

vehicle and guideway had little influence on the secondary suspension at the given 

parameter.  The effect on guideway displacement was smaller for v/vc = 0.25 than for 

v/vc = 0.5, however the acceleration of the primary suspension was greater for v/vc = 

0.25 than for v/vc = 0.5.  With other parameters fixed, the ratio of vehicle mass to 

guideway mass had less influence on vehicle than on guideway displacement.  Only 

guideway displacements were computed, other important responses such as moment

were not included.
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 Henchi, Fafard, Dhatt and Talbot [16] presented an exact dynamic stiffness 

formulation using finite element approximation to study the dynamic behavior of 

multispan beams under moving loads.  The modal technique was used with an FFT 

algorithm to obtain the dynamic responses of continuous bridges.  Three examples 

were considered: free vibrations of a multispan beam, a single span beam under a 

convoy of moving loads and the three span beam under a moving force.  In this work 

vehicle/structure interaction was not considered.  In later work [17] they presented an 

algorithm to solve the coupled dynamic system using a modal superposition method 

for the bridge and the physical components for the vehicles.  The vehicles were 

modeled as a linear discrete mass-spring-damper system.  The road roughness was 

also taken into account through the power spectral density.  The numerical examples 

studied 2D and 3D vehicles traveling on a bridge modeled from simple supported 

beam and plate.  The results obtained from the proposed formulation (using the 

central difference method and inverse of pseudo-static mass matrix) were in 

agreement with those reported in the past work [2, 15].  Several of simple numerical 

examples were used to test efficiency of the algorithm, there was no parametric study. 

 Some aspects of vehicle-structure and surface roughness modeling are 

presented in [33].  Surface roughness can have deterministic or stochastic (random 

process) models.  The stochastic model may be either stationary or non-stationary and 

it may be formulated in a time or frequency domain.  Several models are defined for 

the interface between a multi-car vehicle and structure.  A Markov vector model that 

includes multiple interface points is formulated. 

 In [34, 35] one-car and three-car systems with a constant velocity and a fixed 

wheelbase are used as vehicle models.  The vehicle is coupled with the structure at the 

spatial positions of the axles.  A series of two-span beams is used as a structure 

model.  It is defined in the modal domain by natural frequencies, mode shapes and 

damping values.  Effects of parameters on mean and variance responses are studied.  

The nondimensional span passage rate and the nondimensional axle arrival rate are 

two parameters that affect responses significantly.  At very high velocities, the axle 

arrival rate can be equal to fundamental frequencies of the structure, causing large 

mean values of responses.  Other parameters are still needed to be explored. 

 Liang, Zhu and Cai [23] presented dynamic analysis of the vehicle-subgrade 

model of a vertical coupled system.  The interactions between the vehicle running 

quality and the subgrade design parameters were investigated.  They used the six-
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DOF, two at the center of mass and one at each wheel as a vehicle model.

Quadrangle finite elements were used to model track and subgrade.  Modal analysis 

and the Newmark- �  method were performed.   Elastic deformation of base surface 

was computed for various subgrade design parameters.  It was found that if the

foundation stiffness was given in, the range De � 10 MPa, the elastic deformations of 

base structure were in the range of 1.2-3.7 mm. 

Yau, We and Yang [42] studied impact response of bridges with elastic 

bearings to moving point loads.  Elastic bearings were often adopted as base isolators

in bridge engineering to prevent the damage from severe earthquake.  The span length 

of the beam was assumed to be no greater than twice the interval between two 

consecutive moving loads.  It was found that the resonance response for the damped

beam remained practically constant regardless of the number of moving loads passed 

the beam unlike the undamped case.  It was concluded that the elastic bearing may

increase the response of the beam under most resonance conditions.  The more 

flexible the elastic bearings, the larger the response of the beam is. 

Degrande and Schillemans [6] presented the experimental data of the high-

speed train track between Brussels and Paris, free field vibrations and track response 

were measured during the passage of a Thalys high-speed train at speeds varying

between 223 and 314 km/h.  This data set can be used for the validation of numerical

prediction models for train-induced vibrations. 

Verichev and Metrikine [40] examined the stability of vibration of a bogie 

uniformly moving along a Timoshenko beam on viscoelastic foundation.  The bogie 

was modeled by a spring and a dashpot connected in parallel.  They showed that when 

the velocity of the bogie exceeds the minimum phase velocity of waves in the beam, 

the vibration of the system may become unstable (the amplitude of vibrations grow

exponentially in time).  They also found that the stability of the model depended on 

the damping in the supports and the mass of the bogie bar was the least influential 

factor.

Zheng and Fan presented the derivation of the governing equations for the 

stability of vibration of a train-and-rail coupling system.  The train consists of a 

convoy of two-axle wagons.  Each axle was modeled as a mass-spring-damper

vibration unit.  The rail was an infinite long Euler beam rested on a viscoelastic 

foundation.  The equations were solved by Fourier and Laplace transforms.  It was 
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found that the total mass was the critical parameter (unlike in [40]). Various variables 

were found influencing the critical mass to different extent.  Amongst them, the 

effects of axle, total number of axles were investigated.  Furthermore, the governing 

equations reveal the existence of negative damping in the coupled system.  A stiffer 

foundation can diminish the negative damping and reduce the danger of instability. 

 Michaltsos [27] examined the influence of loads moving with variable speeds 

on the dynamic behavior of a single-span beam.  Three cases wre considered.  Firstly, 

the concentrated load, moving with time-varying velocity, secondly the vehicle (with 

wheelbase), moving also with time-varying velocity and lastly, the influence of light 

damping on the above case of a moving vehicle.  He concluded that the effect of a 

variable speed was significant for deflections of the bridge.  The acceleration tends to 

induce larger deflection than the deceleration.  Regarding of type of model, the 

loading by a two-axle model is more accurate than that by a single-axle model.  

Single-axle model may be more favorable in the case of long span bridge.  The last 

conclusion was the influence of external damping can be neglected. 

 Lei and Noda [22] formulated a dynamic model for the vehicle and track 

coupling system by means of finite element method.  Also the track vertical profile 

was included in this model.  Analyses for the coupling system were performed in time 

and frequency domains.  The system was solved by the iterative scheme and the 

conventional Hertz formula.  The interaction force, the acceleration of vehicle and rail 

were obtained for various speeds and various irregularity.  It is very good presentation 

for system modeling.  However, the results and conclusions obtained from this 

literature and preliminary, it does not provide much insight. 

 Demic, Lukic and Milic [7] attempted to develop criteria for ride comfort 

improvement.  An investigation of the human body behavior under random vibration 

was reported.  The results showed that humans are very sensitive to vertical random 

vibration of frequencies below 1 Hz, and are least sensitive of frequencies above 5 

Hz.  Moreover, humans are more sensitive to random multi-directional vibration than 

to one-directional vibration. 

 Paddan and Griffin [29, 30] measured the vibration in 100 different vehicles.  

They tried to model a comprehensive comparison of the evaluation methods in BS 

6841 and ISO 2631.  For most measurements, the vertical axis on the seat gave the 

greatest acceleration magnitude.  Evaluations of vibration in accord with ISO 2631 

(using the most severe axis) gave lower values than those in accord with BS 6841.  It 
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is because of a combination of different frequency weighting, different axis multiplier 

(for horizontal vibration) and the use of one versus for axes in the calculation. 

1.4 Conclusions from Literatures 

� Only a few studies have concentrated on analyses of dynamic of coupling 

system with random surface. 

� None of them discussed about reliability of the system. 

� None of them used the more systematic method, i.e. response surface 

methodology, for making decision about significance of parameters. 

� There are many types of vehicle models to choose for the analysis of a 

roughness-vehicle-structure coupled system.  The selection depends on 

physical nature of the system. 
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CHAPTER 2 

RANDOM ROUGHNESS AND INTERFACE MODELS FOR MULTI-

AXLE MOVING VEHICLES 

2.1 Introduction 

Vehicle-structure models and interface models have been studied for a long time [4,7,18]. 

Some aspects of surface roughness modeling [7,20,25] and interface models are

discussed in this chapter. Surface roughness can have deterministic or stochastic (random 

process) models [10,11]. Stochastic models may be either stationary or nonstationary and 

may be formulated in a time or frequency domain [1,15,16]. Moreover, there are several 

interface points between a multi-car vehicle and a structure. A Markov vector model that 

includes multiple interface points is formulated in this Chapter.

2.2 Filtered White Noise and Existence of Derivatives of Filtered Processes 

To incorporate roughness processes into the vehicle-structure model, the system state

equations may be augmented by  shaping filter equations [12]. The filters may be either

low-pass or high-pass, first order or higher order. In general, filter transfer functions are

expressed in terms of wavenumber, r (the inverse of wavelength,� ), and one or more

filter parameters. Some common filters and their transfer functions are as follow:

A first order filter is given by the equation:

d
d d

f

h h W
r
	 


�
(2.1)

the transfer function between  and ,dW dh ( )H r , is: 
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and the square of the absolute value is: 

� �
� �
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Returning to Equation 2.1, the transfer function between anddW d

f

h
r

�
 is:

� � � �
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f

f

r r
H r

r r i
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and the square of the absolute value is: 

� � � �
� �
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Figure 2.2 : Square of the Absolute Value of the Transfer Function between d fh r� and

 in Equation 2.1 dW

Figure 2.1 shows that if  is white noise, its high wavenumber components are filtered

out and  has only low wavenumber content. 

dW

dh fr  is the wavenumber at which the square 
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of the absolute value of the transfer function is equal to 0.5. Figure 2.2 shows that if is

white noise, the response 

dW

d fh r� retains the high wavenumber content. 

A second order filter may be defined by: 

2

2 fd
d d

f f

h h h W
r r d

�
	 	 


�� � (2.6)

The transfer function between and ,dW dh � �H r  , is: 

� �
� � � �2

1

1 2f f

H r
r r r r i�



� 	 f

 (2.7) 

and the square of the absolute value is: 

� �
� �� � � �

2

22 2

1

1 2f f

H r
r r r r�



� 	 f

 (2.8) 

Figure 2.3 shows � � 2
H r of Equation 2.8. At � � � �2 21, 1 2fr r H r �
 
 . For high values 

of f�  the peak shifts from 1fr r 
  toward the low wavenumber range. 

If  is viewed as white noise and dW � �d dh x as a surface roughness the Power Spectral 

Density (PSD) of ,can be obtained from the following basic stationary input-

output equation, (Note that in this work all PSD's are two-sided PSD's):

� �,
d dd h hh S r

� � � � 2
0d dh hS r H r S
 (2.9)
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dh

dW

in which  is the intensity of the white noise process, and the variance of the 

roughness process, , is found from the integral of its PSD: 

0S ,dW

� �d dh x

� � � � 22
0h hd d

r H r S�



�



 � dr  (2.10) 

The variance of the first derivative of the process is: 

� � � � 22 2
0h hd d

r r H r S�
� �




�



 � dr  (2.11) 

and the variance of the second derivative of the process is: 

� � � � 22 4
0h hd d

r r H r S�
�� ��




�



 � dr  (2.12) 



 18

Because these integrals are functions of m nr r , for a finite variance  must be less 

than . Therefore the derivative process from Equation 2.1 does not exist, whereas the 

derivative process from Equation 2.6 does. The importance of the existence of derivative

processes is explained in Section 2.4, which discusses various vehicle-structure interface

models.

m

n

2.3 Roughness Models 

The system equations of motion are herein solved in the time domain. Since

roughness is a spatial function and has a dimension of length, it must be transformed

from the spatial domain to the time domain and then nondimensionalized. The procedure 

is as follows:

2.3.1 Dimensioned Spatial Process 

Here, surface roughness is modeled as the output of a first order filter driven by 

white noise and expressed in a real spatial domain by the following linear ordinary 

differential equation:

� � � � � �d d
c d d d

d

dh x
h x W x

dx
� 	 
 d  (2.13) 

in which � �d dW x  is a zero mean Gaussian white noise with dimension of 

� �1 , 1clength r� 
 f  is a correlation distance, � �d dh x  is a real, spatial, zero mean

roughness process with dimension of �  is the white noise intensity with 

dimension of and the subscript d  refers to a dimensioned quantity. 

�1 0,length S

� 3length�
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Let  and 5 3
0 8 10S x m�
 fr  = 0.02,0.03 and 0.04 m-1. Figure 2.4 shows that if 1f cr 
 �

increases, the PSD of � �d dh x , given by Equations 2.3 and 2.9, expands to the right which

adds power. In other words, the surface has more high wavenumber roughness. Because 

the white noise and roughness have �  dimension, their autocovariances have 

dimensions of � . The autocovariance of

�

�

1length

2length � �d dW x  is a Dirac delta function. The 

stationary autocovariance of the zero mean process � �d dh x  given by Equation 2.13 , 

which is the Fourier transform of � �2
d dh hS r�  , is as follows:

� � � � � � 0 exp
2d dd d d d h h

c c

qCOV h x h x R
� � �

	 � 
 � 
 �� � � �� � � �� �
 (2.14) 

in which  is a spatial lag,  is the strength of the white process,� 0q � �d dW x ,which is 

related to the intensity as follows:

0 2q 0S�
 (2.15)



 20

The variance of � �d dh x  is: 

� � � � 00
2d dd d h h

c

qVAR h x R
 
� �� � �
 (2.16) 

Equation 2.16 implies that the variance, � �0
d dh hR , decreases as c�  increases.

The stationary autocorrelation function of � �d dh x , � �
d dh h� � ,is defined as: 

� � � � � �
� �

exp
d d

d d d d
h h

cd d

COV h x h x
VAR h x

�
	 �� � � � �� �� 
 
 �� ��� � � �� �

 (2.17) 

The correlation distance, , is then the spatial lag at which c� � � 1
d dh h e� �� 
 .
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Figure 2.5 : Spatial Autocorrelation Function of � �d dh x

Figure 2.5 shows the decay rate of the autocorrelation. For high fr or low  the 

autocorrelation decays faster because it is a decaying exponential function of

c�

c� � .
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2.3.2 Dimensioned Temporal Process 

Denote the constant velocity of a vehicle asV . Let d dx Vt
 and ,then the 

spatial process

ddx Vdt
 d

� �d dh x  is transformed to a temporal random process defined by the 

equation:

� � � � � �c
d d d d d dh t h t W t

V
�

	 
�  (2.18) 

in which  is a temporal roughness process with dimension of  is

a temporal white noise process with dimension of � .From the fact that the

variance of the process must be the same after transforming to  the  time  domain,  the

intensity and strength of the white noise are scaled to 

� �d dh t � � �1 , d dlength W t �

�1length

1 0S S V
  and 1 0q q V
  and their 

dimensions are . The PSD and stationary autocovariance of � � �2length time�1 � �d dh t  are 

shown in Figure 2.6. 
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The stationary autocovariance of � �d dh t  is:

� � � � � � � �
1 exp

2
d

d d d d d
c c

qCOV h t h t
V V

�
�

� �
	 
 �� � � �� � � �� �

 (2.19) 

in which d�  is a time lag. 

And the variance of � �d dh t  is:

� � � �
01

2 2d d
c c

qqVAR h t
V


 
� �� � � �
 (2.20) 

The velocity that is used in transforming to the time domain affects the characteristics of 

the PSD and covariance function. Let c� = 50 m, at higher velocities the power in the low

frequency range is lower but the power in the high frequency range is higher. The

autocovariance function decays very fast for high velocities as shown in Figure 2.6. The 

stationary autocorrelation function of � �d dh t  is:

� � exp
d d

d
h h d

c V
�

� �
� �


 �� ��� �
 (2.21) 

Define
cd�  as the lag at which � � 1

d d ch h d e� � �
 .From Equation 2.21, 
cd�  is: 

c

c
d V
� �

 (2.22)
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Figure 2.7 shows that the process becomes uncorrelated more quickly for higher 

velocities.

2.3.3 Nondimensionalization of � �d dh t and � �d dW t

The processes � �d dh t and � �d dW t may be nondimensionalized as � � � �d d dh t h t L
 and

� � � �d d dW t W t L
 in which L  is a span length. Thus,  the filter equation (Equation 2.18) 

is changed (the subscript d is dropped) to: 

� � � � � �c
d dh t h t W t

V d
�

	 
�  (2.23) 
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Figure 2.8 : PSD and  Autocovariance of Nondimensional � �dh t

Note that the strength, ,of the nondimensional temporal white noise is related to 

the strength in the spatial domain by 

2q

� �2
2 0q q VL
 . The stationary autocovariance and 

variance can also be written as 

� � � � � � � �
2 exp

2
d

d d d
c c

qCOV h t h t
V V

�� �
	 � 
 �� � � �� � � �� �

 (2.24) 

and

� � � �
02

22 2 2d
c c

qq VVAR h t
V VL L


 
 
� �� � � �
0

2
c

q
�

 (2.25) 

The PSD and autocovariance function of the nondimensionalized process are

shown in Figure 2.8.The stationary autocorrelation function of 

� �dh t

� �dh t is:



 25

� � exp d
hh d

c V
�

� �
� �


 �� ��� �
(2.26)

The autocorrelation time remains:

c

c
d V
� �

 (2.27)

2.3.4 Nondimensionalization of Time

Define nondimensional time, t , by: 

d
d

t Vt t
L V L


 
 (2.28)

d
V
L

� �
 (2.29)

in which t    is time nondimensionalized by the time required to cross a span, L , with a

velocity, V ,and �  is a nondimensional time lag. The filter equation is now written as:

� � � � � �c h t h t W t
L
�

	 
� (2.30)

in which  now denotes differentiation with respect to nondimensional time.h�

Assuming that the span length of a guideway is 30 m, the values of the parameter c L�

corresponding to the assumed wave numbers, fr  in Section 2.3.1 (Figure 2.4) are 1.7, 1.0 
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and 0.8 respectively.The PSD and autocovariance of the nondimensional process � �h t  in 

nondimensional time are shown in Figure 2.9: 
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Figure 2.9 : PSD and Autocovariance of Nondimensional � �h t  in Nondimensional Time

Domain

Denote the nondimensional intensity and strength of the nondimensional white 

process in nondimensional time as 3
3 0S S L
 and 3

3 0q q L
 . The autocovariance and 

variance of  are: � �h t

� � � � � � � �
3 exp

2 c c

qCOV h t h t
L L

�
�

� �
	 
 �� � � �� � � �� �

 (2.31) 

and

� � � �
� �
� �

3
03 0

22 2 2c c c

q Lq qVAR h t
L L L


 
 
� �� � � � �
 (2.32) 
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The autocorrelation function and the nondimensional correlation time of  are: � �h t

� � exphh
c L
�

� �
� �


 �� ��� �
(2.33)

and

c
c L
� �

 (2.34)

Note that the autocovariances in Figure 2.9 cross. This is an effect of 

nondimensionalization. However, the autocorrelations in Figure 2.10 do not cross. At a 

particular �  the correlation function is lower if c L�  is smaller.
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Figure 2.10 : Autocorrelation Function of Nondimensional Process  with a 

Nondimensional Time Lag 

� �h t

The parameters 3
0q L  and c L�   may be adjusted to fit the roughness model to real 

data.
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2.3.5 Modeling Actual Roughness

Shaping filter parameters (strength and c� ) may be chosen so that the PSD of the

filter response matches a target PSD such as the U.S. DOT rail specification. 

Figure 2.11 : Modeling Actual Roughness 

Figure 2.11 shows the U.S. DOT target PSD and four PSD's of filter response,

determined using the following parameters:

For L = 30 m and  = 8x100S -5 m3,

PSD A: 3
0S L = 3x10-9, c L� = 1.67,

PSD B: 3
0S L = 3x10-9, c L� =  3.33,

PSD C: 3
0S L = 3x10-9, c L� = 5.33,

PSD D: 3
0S L = 3x10-9, c L� = 6.67.

PSD A is the better fit to the U.S. DOT rail specification. From now on these PSD's,

labeled A,B,C and D, are used to study effects of roughness on responses. 
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2.4 Interface Models

Interface models can be linear or nonlinear. Common nonlinear models consider loss-of-

contact [2, 27] or nonlinear elastic springs [19]. A mass or dashpot or spring or any 

parallel combination can be used as interface elements [21]. Only linear interface

elements are considered here. The three basic cases of a linear spring interface, a parallel

spring and dashpot interface and a rigid mass with a spring and dashpot in parallel are 

analyzed next to understand the nature of the coupling and requirements for roughness 

models. The displacement, � �,t
d d dv x t , at a contact point, dx  , depends on the vertical 

displacement of the beam, � �,d d dv x t , and the irregularity, � �d dh x :

� � � � � �, ,t
d d d d d d d dv x t v x t h x
 	  (2.35) 

in which the vertical displacement of the beam can be written in terms of modal 

coordinates and mode shapes, � � � � �1
, n

d d d i d i di
v x t x y t�




 �� .The total temporal

derivatives of the displacement at a contact point [21, 23, 26] are obtained as:

 (2.36) � � � � � � � � � � � �1 1
, n nt

d d d i d i d d i d i d d d di i
v x t x y t x x y t x h x� �


 

�
 	 	� �� � � ��

 (2.37) 
� � � � � � � � � � � � � �

� � � � � � � �

2
1 1 1

2
1

, 2n n nt
d d d i d i d d i d i d d i d i di i i

n
d i d i d d d d d d di

v x t x y t x x y t x x y t

x x y t x h x x h x

� � �

�

 
 





� ��
 	 	

� �� �	 	 	

� � �
�

�� �� � � �

�� � ��

Assuming that a vehicle is traversing with a constant velocity, then . dx V
� and 0dx 
�� .
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Figure 2.12: SDOF System with Linear Spring Interface with Elastic Beam

Figure 2.12 shows a single-degree-of-freedom (SDOF) system with a linear 

spring interface with an elastic beam. Let the dynamic displacement, , be the vehicle

DOF. The vehicle equilibrium equation and the modal equations of the beam are:

vdv

� � � � � �� �,
v v v

t
d d d d d d dMv t k v t v x t 0	 ��� 
  (2.38) 

� � � � � � � � � �2
12i d i i d i i d d d dy t y t y t P x t Vt�� � �	 	 
�� � ,  (2.39) 

in which

� � � � � �� �1 ,
v v

t
d d d d d d dP x t k v t v x t Mg
 � �,  (2.40) 

The equations of motion of the system may be expressed in matrix form as follow:

� � � � � � � � � �d d d d dMx t Cx t K t x t F t	 	 
�� �  (2.41) 

in which

� � 1v

T

d d nx t v y y� �
 � ��  (2.42) 



 31

1
1

1

M

M

� �
� �
� �
� �

� �
� �
� �� �

�
 (2.43) 

1

2

0
2

2

2 n

C
��

��

��

� �
� �
� �
�

� �
� �
� �� �

�
�  (2.44) 

� �

� � � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �

1 2
2 2

1 1 1 2 1 1
2 2

2 1 2 2 2 2

2 2
1 2

d d n

d d d d n d

d d d d d n d d

n d d n d d n d n n d

k k Vt k Vt k Vt
k Vt k Vt k Vt Vt k Vt Vt

K t k Vt k Vt Vt k Vt k Vt Vt

k Vt k Vt Vt k Vt Vt k Vt

� � �
� � � � � � �
� � � � � � �

� � � � � � �

� � �� �
� �� 	� �
� �
 � 	
� �
� �
� �� 	� �

�
�
�

� � � � �
�

d

d

n

(2.45)

� � 1
1 1 2

T

dF t F F F F� �
 � ��  (2.46) 

in which

� �1
1 d dF kh Vt
 (2.47)

� � � �i d d iF kh Vt Mg Vt�
 � �� �� � d  (2.48) 

Note that with a linear elastic interface element, the stiffness matrix on the LHS, � �dK t ,

is a known function of time. Temporally varying stiffnesses represent ’parametric’

excitation terms.



 32

Consider next a SDOF with parallel spring and dashpot interface elements [5, 30] 

as shown in Figure 2.13.

Figure 2.13: SDOF System with Parallel Spring and Dashpot Interface Elements with 

Elastic Beam 

The governing equations are:

� � � � � �� � � � � �� �,
v v v

t t
d d d d d d d d d d d dMv t c v t v x t k v t v x t	 � 	 ��� � � , 0
  (2.49) 

� � � � � � � � � �2
22i d i i d i i d d d dy t y t y t P x t Vt�� � �	 	 
�� � ,  (2.50) 

in which

� � � � � �� � � � � �� �2 , ,
v v v

t t
d d d d d d d d d d d dP x t c v t v x t k v t v x t Mg
 � 	 � �� � ,  (2.51) 

The equations of motion may be expressed in matrix form as follow:

� � � � � � � � � � � �d d d d d dMx t C t x t K t x t F t	 	 
�� �  (2.52) 

in which
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1
1

1

M

M

� �
� �
� �
� �

� �
� �
� �� �

�
 (2.53) 

� �

� � � � �
� � � � � � � � � � � �
� � � � � � � � � � � �

� � � � � � � � � � � �

1 2
2

1 1 1 2 1 1
2

2 1 2 2 2 2

2
1 2

2
2

2

d d n

d d d d n d

d d d d d n d

n d d n d d n d n n d

c c Vt c Vt c Vt
c Vt c Vt c Vt Vt c Vt Vt

C t c Vt c Vt Vt c Vt c Vt Vt

c Vt c Vt Vt c Vt Vt c Vt

� � �
� �� � � � � �
� � � �� � � �

� � � � � �� �

� � �� �
� �� 	� �
� �
 � 	
� �
� �
� �� 	� �

�
�
�

� � � � �
�

�d

d

d

n

(2.54)

� �

1 1 2 2
2 2

1 1 1 1 1 2 1 2 1 1 1
2 2

2 1 2 1 2 2 2 2 2 2 2

2 2
1 1 2 2

n n

n n

d n n

n n n n n n n n

k cV k cV k cV k
k cV k cV k cV k

K t k cV k cV k cV k

k cV k cV k cV k

� � � � � �
� � �� � � � � � � � � �
� �� �� � � � � � � � �

� �� �� � � � � � � � �

� � �� � � � � �� �
� �� � �� 	 	 	 	� �

� � �� �
 � 	 	 	 	
� �
� �
� �� � �� 	 	 	� �

�
�
�

� � � � �
� 	

n

 (2.55) 

� � 1
1 1 2

T

dF t F F F F� �
 � ��  (2.56) 

in which

� � � �1
1 d d d dF cVh Vt kh Vt�
 	  (2.57) 

� � � � � �i d d d d i dF cVh Vt kh Vt Mg Vt��
 � � ��� ��  (2.58) 

When a dashpot is added as an interface element the damping matrix,  , becomes a 

known function of time. The effective forces on the RHS depend on both 

� �dC t

� �d dh t

and � �d dh t� . Therefore the roughness model must be such that both � �d dh t and � �d dh t� exist

and have finite variances. Therefore if filtered white noise is used as a model for
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roughness, the order of the filter equation must be such that the first derivative exists and 

has a finite variance.

Consider next a SDOF with a rigid mass in addition to the parallel spring and

dashpot as interface elements, as shown in Figure 2.14. The equations of motion are:

Figure 2.14: SDOF System with Rigid Mass and Parallel Spring and Dashpot as Interface

Elements with Elastic Beam

� � � � � �� � � � � �� �,
v v v

t t
d d d d d d d d d d d dMv t c v t v x t k v t v x t	 � 	 ��� � � , 0
  (2.59) 

� � � � � � � � � �2
32i d i i d i i d d d dy t y t y t P x t Vt�� � �	 	 
�� � ,

�

 (2.60) 

in which

� � � � � � �� �
� � � �� � � �

3 , ,

,
v

v v

t t
d d d d d d d d d d

t
d d d d d

P x t mv x t c v t v x t

k v t v x t M m g


 � 	 �

	 � � 	

�� � � ,
 (2.61) 

The equations of motion of the system may be expressed in matrix form as follow:

� � � � � � � � � � � � � �d d d d d d dM t x t C t x t K t x t F t	 	 
�� �  (2.62) 

in which
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 (2.63) � �
� � � � � � � � � �
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2
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�

d
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2
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2
1 1 2 2
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n
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d n n

n n n n n n n n

c c c c
c mV c mV c mV c

C t c mV c mV c mV c

c mV c mV c mV c

� � �
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� �� �� �� �� � �� ��

� �� �� �� �� �� �� �
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 � 	 	 	 	
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�
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�
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 (2.64) 
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1 1 2 2
2 2 2 2 2

1 1 1 1 1 1 1 2 1 2 1 2 1 1 1 1
2 2 2 2 2

2 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2

n n
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d n n n

n

k cV k cV k cV k
k mV cV k mV cV k mV cV k

K t k mV cV k mV cV k mV cV k

k m

� � � � � �
� � �� �� � �� �� �� �� �� ��
� �� �� �� � �� �� � �� �� ��
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� � �� � � � � �
�� � �� � �� �� 	 	 	 	 	 	 	
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 � 	 	 	 	 	 	 	

�

�
�
�
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2 2 2 2

1 1 1 2 2 2n n n n n n n n n n nV cV k mV cV k mV cV k�� �� �� �� �� �� � �� �� �

� �
� �
� �
� �
� �
� �
� ��� � �� � �� �	 	 	 	 	 	 	� ��

(2.65)

� � 1
1 1 2

T

dF t F F F Fn� �
 � ��  (2.66) 

in which

� � � �1
1 d d d dF cVh Vt kh Vt�
 	  (2.67) 

� � � � � � � � �2
i d d d d d d n �dF mV h Vt cVh Vt kh Vt M m g Vt��� �� �
 � � � � 	� �  (2.68) 

When a mass, spring and dashpot are used as interface elements, all matrices are time

dependent and the effective forces are functions of � �d dh Vt , � �d dh Vt� and � �d dh Vt�� .

Therefore the roughness model must be such that � �d dh Vt , � �d dh Vt�  and exist�d dh Vt�� �
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and have finite variances. Therefore if filtered white noise is used as a model for

roughness, the order of the filter equation must be such that the second derivative exists

and has a finite variance.

The vehicle model considered thus far has one contact point or axle. Realistic

vehicle models have multiple axles. Therefore the effects of multiple axles are examined

next.

2.5 Modeling Lags 

� � ,d dh Vt Vtd  fixed, and � � ,d d dh Vt l Vt l� � fixed, are two random variables whose 

correlation is controlled by the filter parameter, c� , and the wheelbase, l . It is proposed 

here to replace � �d dh Vt l� by another process � �
2d dh Vt , which has the same

autocovariance as and is such that the correlation coefficient between 

and is the same as the correlation coefficient between and

�d dh Vt �

� � ��d dh Vt �
2d dh Vt �d dh Vt

� �d dh Vt l� . This is possible because the correlation between two filter responses can be

controlled by the assumed zero-time-lag correlation between components of vector-

valued white excitation. This is shown as follows: Consider two linear first order ODE's,

driven by stationary white noises 

� � � � � �
1 1 1

c
d d d d d dh t h t W t

V
�

	 
�  (2.69) 

� � � � � �
2 2 2

c
d d d d d dh t h t W t

V
�

	 
�  (2.70) 

The equations are decoupled but � �
1d dW t and � �

2d dW t have the following covariance 

matrix

� �
1 2d dW W Q� �
� (2.71)
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in which

1 2

1 2

0

1

1
d d

d d

W W

W W

Q q
�

�

� �

 � �

� �� �
(2.72)

0q  is the strength of both and� �
1d dW t � �

2 1 2
,

d dd d W WW t �  is the zero-time-lag correlation 

between and� �
1d dW t � �

2d dW t . The two equations can be written in matrix, first order

form, as:

� � � � � �d d d d d dh t Ah t BW t
 	�  (2.73) 

in which

� �
1 2

T

d d d dW t W W� �
 � � (2.74)

1 0

10

c

c

V
A

V

� ��� ��� �

� �

�� ��� �

(2.75)

1 0

10

c

c

V
B

V

� �
� ��� �

� �
� ��� �

(2.76)



 38

The expected value matrix of � �d dh t can be obtained by solving the following equation: 

� � � � � � � � � �exp 0 0d d d d d dE h t At E h t E h
 
  � � � � �� � � � � ��  (2.77) 

in which is a transition matrix, given by: � �dt 

� �

1exp 0

10 exp

c
d

c

V
t

V

� �� �
�� �� ��� �� � 
 � �� �� ��� �� ��� �� �

 (2.78) 

The zero-time-lag covariance matrix of  is given by: dh

(2.79)� � � � � � � � � � � � � � � � � �0 0
0 0

d dd d d d

t t
T T

d d d dh hh t h t t t t u B Q u v B t v�
! "


  	  � �  �# $
% &

� � � � T dv du

in which u  and v  arbitrary times between 0 and  andt d u v� 
 � . Since and are

Gaussian white noises, the double convolution integral reduces to 

1dW
2dW

 (2.80) � � � � � � � � � � � � � � � �0 0
0

d dd d d d

t
T T T

d d d dh hh t h t t t t u BQB t
  	  �  �� � � u du

For stationary responses, the first term becomes zero. Therefore, 

� � � � � � � �
0

d d d d

t
T T

d d d d dh t h t t BQB t d� � �
  �  �� �  (2.81) 
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Solving the integral, the zero-time-lag covariance matrix is:

� � � �
1 2

1 2

0

11
14
d d

d d d d

d d

W Wc
h t h t

W W

q
V

�

�

� ��

 � �

� �� �
�  (2.82) 

Therefore,

� �
1 2 1 2

0
d d d dh h W W� �
 (2.83)

That is, the correlation between � �
1d dh t and � �

2d dh t is equal to the correlation between

and� �
1d dW t � �

2d dW t . Therefore lags are modeled as follows:

From the stationary response of a first order filter, the correlation function, 

� � � �d d d dh Vt h Vt l� � , is known for any lag, l , then 
1 2d dW W�  is set equal to � � � �d d d dh Vt h Vt l� � . Let 

 and . So, a first order filter equation is added to model�
1d d dh h Vt
 �

2d d dh h Vt l
 �� �

� �d dh Vt l�  and both filter equations are excited by correlated white noises with

� � � �1 2d d d d d dW W h Vt h Vt l� � �
 . Then � � � � � � � �1 2d d d d d d d dh Vt h Vt h Vt h Vt l� � �
 .

,M C and for the 4DOF vehicle/guideway coupled system in Equation 

remain the same, can be rewritten as

� �dK t

� �dF t

� � � � � �
1 22 2 10 0

T

d d d d d nF t k h t k h t F� �
 � �� F  (2.84) 

in which

� � � � � � � �

� � � �

1 22

2

i d d i d d d i d

i d i d

F k h t Vt h t Vt l

MVt Vt l m g

� �

� �

� �
 � 	 �� �
! "	 	 � 	� � # $� � % &

 (2.85) 
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2.6 Conclusions 

� Existence of variances of derivative processes depends on the order of linear filter

equations (driven by white noise).

� Appearance of higher order derivative processes, h� and h�� ,and parametric terms

in system equations depend on type of interface between vehicle and guideway,

i.e., a mass-dashpot-spring interface has ,h h�  and h��  (whose variances must

exist) in the forcing function. It also has parametric terms in 

� � � �,M t C t and .� �K t

� Multiple axle vehicles have a kinematic filtering effect on system excitation. A 

first order filter is added to model an excitation with lag and filter equations are

excited by correlated white noises in order to have an appropriate zero-time-lag

cross-correlation between any two roughness processes. 

� In this work, only interfaces between a vehicle and guideway are considered,

therefore first order filters are sufficient.
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CHAPTER 3 

DYNAMIC RESPONSES  OF A TWO-SPAN BEAM SUBJECTED TO

HIGH SPEED 2DOF SPRUNG VEHICLES

3.1   Introduction

The principal objective of this work is to perform studies of coupled vehicle-structure 

dynamic systems to guide the design of structures for high-speed vehicles. The random

roughness is modeled by filtered white noise. The structure is modeled as a two-equal-

span prismatic flexure beam. The vehicle is modeled as a series of 2DOF vehicles. 

System parameters are nondimensionalized and the equations of motion are written in 

state space. Here the equations for the mean and zero-time-lag covariance matrices of the

state vector are solved using modal technique. Static values of a set of responses are 

determined, the statistical moments of the dynamic responses are normalized by the 

corresponding maximum static values. Therefore statistical moments of all responses are 

expressed in terms of dynamic amplification factors (DAF). Extensive parametric studies

are presented that identify effects of important nondimensional parameters on the 

behavior of coupled vehicle-structure systems. This work provides designers of structures 

for high-speed vehicles insights on effects of nondimensional system parameters on 

behavior and quantifies values of DAF that may be produced by high-speed vehicles. 

3.2  Coupled vehicle-structure system equations in state space 

The dynamic response of a structure traversed by a vehicle is assumed to be completely

defined by a vertical displacement function, [1].  The vertical displacement of the 

structure is here expressed in the modal domain as follows: 

( , )v x t

 

1

( , ) ( ) ( )
n

i i
i

v x t y t x�




�    (3.1) 
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in which ( )i x� is the mode shape and is modal coordinate. The total 

displacement at an interface of a vehicle with a structure having surface roughness, ,

is [2]:

thi ( )iy t thi

( )h x

( , ) ( , ) ( )tv x t v x t h x
 	    (3.2) 

The surface profile, , can be modeled as an output of a shaping filter to a white noise

[3, 4] expressed by: 

( )h x

( ) ( ) ( )ch x h x W x�� 	 
 (3.3)

in which is a correlation distance and is a zero-mean white process with

intensity or strength .

c� ( )W x

0S 0q

The coupled vehicle-structure models considered in this research are shown in 

Fig. 3.1. Figure 3.1a) shows two of 2DOF vehicle models, each one can be considered as 

a half-car model [5].  Then, a distance between two models is called wheelbase, . Figure 

3.1b) shows a model for eight of 2DOF vehicle models with the total length equal to the 

wheelbase in Fig. 3.1a). It can be used to study effects of number of vehicle axles to the 

system. Structure model considered here is a two-equal-span prismatic flexure beam as 

shown in Fig. 3.1.

�
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Figure  3.1 Models of coupled vehicle structure system: a. two of 2DOF vehicle model,

b. eight of 2DOF vehicle model
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The coupled linear system equations driven by correlated white noises are then 

written in state form:

( ) ( ) ( ) ( ) ( ), (0)X t A t X t BW t C t X
 	 	� (3.4)

in which X(t) is a state vector, W(t) is a vector of correlated white noises, A and B are 

matrices of appropriate dimension, C(t) is a vector  of deterministic excitation and X(0) is 

an initial condition of the system. Taking the expectation operator, the equation for

expected value vector is:

[ ( )] ( ) [ ( )] ( ), [ (0)]E X t A t E X t C t E X
 	�    (3.5) 

in which E[X(t)] is a vector of expected values of state variables with an initial condition,

E[X(0)]. The term BW(t) disappears because W(t) is a zero mean vector.

             The zero-time-lag covariance matrix of the state vector, XX� , may be solved

from the well-known first order Lyapunov equation, given by: 

, (0)T T
XX XX XX XXA A BQB� 
 � 	� 	 �� (3.6)

in which is an initial condition of the covariance matrix and Q is a strength 

matrix for the vector white noises,

(0)XX�

0

1

1

i j

i j

WW

W W

Q q

�

�

! "
# $


 # $
# $
% &

�

� � �
�

(3.7)

in which  is a strength of the white noise and 0q
i jW W�  is the zero-time-lag correlation

coefficient between  two white noises.
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3.3   Parametric study and results 

The equations of motion of this coupled system are written in state space. To facilitate 

parametric studies, all quantities are nondimensionalized as follow,

Position - , Time - , Roughness -/x L /Vt L /  and /W L h L

White noise intensity – = 0.0625x103
0 /q L -6 for rail roughness 

Autocorrelation distance - = 2.50 /c L�

Distance between two vehicles - (show in Table 4.1) / L�

Masses - /M mL' 
 = 0.20, /m mL( 
  = 0.1'  

Frequencies - 
1

1
2
1

/
k

k mLf
�


 = 0.05,
2

2
2
1

/
k

k mLf
�


 = 0.20, 2
1

/
g

g Lf
�


 = 0.01, 

1

/
c

c mLf
�


 = 0.02 

Speed -
1

/
v

V Lf
�


   = 0.06, 0.08, 0.10, 0.12

Fundamental frequencies of a two-span beam - 1/i if � �


Damping ratio,� , for the beam is assumed 0.01. 

For design of the guideway structure, the statistical moments of the structure 

responses are essential. The computed beam responses are displacement and moment at 

midspan, moment at the middle support and the shear at 0.95L. Time histories of the

expected values of beam responses are plotted in Figures 3.2 to 3.11 for  = 0.5, 0.6,

0.7 and

/ L�

vf  = 0.06, 0.08, 0.10, 0.12.

3.3.1 Effect of span passage rate, vf  - Span passage rate is a ratio of  to a first beam

frequency,

/V L

1� . Assuming that a 20m-two-span beam has a frequency of 7 Hz, 

. /(2 )
7 Hz /(2*20m)

280m/s

resf V L
V

V










48

A velocity of 280 m/s or 1000 km/h is impossible for a ground transportation system [6].  

However, there are many other frequencies in the system, including the vehicle axle 

arrival rate and the fundamental frequencies of the vehicle. 

3.3.2 Effect of axle arrival rate, af  - The axle arrival rate is  or, in terms of rad/sec,/V �

2 /V� � . It can be nondimensionalized by 1� . The nondimensional arrival rate, denoted by 

af , may be written in terms of vf  and  as shown in Table 3.1.  The nondimensional

frequencies of the first two modes of the two-span beam are 

/ L�

1f  = 1 and 2f  = 1.57.

Table  3.1  Vehicle axle arrival rate and span passage rate for high speed 

af for L = 20 m vf (speed, km/h)

and beamf = 7Hz. 0.06(190) 0.08 0.10 0.12(380)

0.40 0.94 1.26 1.57 1.88

0.50 0.75 1.01 1.26 1.51

/ L� 0.60 0.63 0.84 1.05 1.26

0.70 0.54 0.72 0.90 1.08

             For vf = 0.06 to 0.12 (V = 190 to 380 km/h for beam span 20 m and frequency 7 

Hz) - at high velocity level - vehicle is assumed to be rail vehicle system. Thus, the 

roughness model for the rail system is used here. The combinations of vf  and  that 

cause resonance are shown in Table 3.1.  If  = 0.5 and 

/ L�

/ L� vf = 0.08 the axle arrival rate

equals the fundamental frequency. For typical values of 1�  and L, vf =0.08 corresponds

to a velocity of 70 m/s (250 km/h). If = 0.5 and / L� vf = 0.12, the axle arrival rate equals

the second natural frequency. Therefore it is possible for the axle arrival rate to be in 

resonance with the first and second beam frequencies, for feasible vehicle speeds. Let 

 be fixed at 0.5 and the span passage rate, / L� vf , be 0.08 ()  250 km/h). Figures 3.2 and 
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3.3 show that the displacement and the moment at midspan have the largest 

amplification. The maximum expected values of dynamic amplifications are 1.32 and

1.22 respectively (recall that multiples of standard deviations of amplification factors

must be added to determine design amplification factors). It is simply because the first 

mode is excited, af  matches 1f , and the displacement and moment at midspan are two 

responses dominated by this fundamental asymmetric mode. When the span passage rate 

increases to 0.12 ()  380 km/h), the moment at the interior support is amplified by as 

much as 1.32 (Fig. 3.4) which is more than the other responses. In this case the second

mode, the symmetric mode, is excited. A response dominated by this symmetric second 

mode is the moment at the interior support.  For  =0.6 and 0.7, only the first mode is 

excited (Figs. 3.2 and 3.3) for realistic velocities (less than 380 km/h). If  is greater 

than 0.5, the axle arrival rate is unlikely to be in resonance with the second mode since 

the velocity corresponding to that resonance mode is well above a practical level. If 

is greater than 1, 

/ L�

/ L�

/ L�

af  will never match 1f  and resonance due to af  never occurs.
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Solid lines: fa in resonance with f2 (1.57)

Dot  lines: fa in resonance with f1 (1.00)

Figure  3.2 Time history of expected values and variances of displacement at midspan
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Figure  3.3 Time history of expected values and variances of moment at midspan
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Figure  3.4 Time history of expected values and variances of moment at interior support
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Figure 3.5 Time history of expected values and variances of shear at 0.95L
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Figure  3.6 Time history of expected values and variances of beam acceleration at 

midspan
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The shear (figure 3.5) is different from the other responses as all of the modes (both 

asymmetric and symmetric modes) participate in this response.  Figure 3.6 shows time

history of expected value and variance of beam acceleration at midspan. It is found that 

the maximum expected beam acceleration is 0.4g (quite high) and occurs after vehicles

left the span.  

            For a high-speed ground transportation system there is a possibility to have 

resonance between the axle arrival rate and the second mode frequency. For this 

condition the moment at the middle support needs to be examined closely. 

3.3.3 Effect of number of axles (interfaces) 

For high speed vehicle, i.e. maglev (magnetic levitated vehicle), the suspension system

can have more than two contact points. More contact points can benefit the design of the 

system. Figures 3.7 to 3.10 (also Table 3.2 and 3.3) show the expected beam responses 

reduce, i.e. E[M(L)] reduces from 1.32 to 1.10, when eight suspensions are used. This 

suspension arrangement can also reduce strong fluctuation in VAR[M(L)] dramatically

(Figs. 3.4 and 3.9). Figure 3.11 shows the expected beam acceleration at midspan reduces 

from 0.4g in figure 4.6 to 0.16g. 

Table  3.2  The maximum beam responses when af is in resonance with 1f  for two

different suspension configurations 

Y = Structural

Responses

Two contact 

points

Eight contact 

points

[ ]E Y [ ]VAR Y [ ]E Y [ ]VAR Y

(0.5 )v L 1.32 0.0200 1.20 0.0105

(0.5 )M L 1.22 0.0125 1.15 0.0105

( )M L 1.10 0.2100 1.10 0.0280

(0.95 )S L 1.00 0.0090 1.10 0.0090

(0.5 ) /v L�� g 0.30 0.0040 0.14 0.0025
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Table  3.3  The maximum beam responses when af is in resonance with 2f  for two

different suspension configurations 

Y = Structural

Responses

Two contact 

points

Eight contact 

points

[ ]E Y [ ]VAR Y [ ]E Y [ ]VAR Y

(0.5 )v L 1.05 0.015 1.25 0.0100

(0.5 )M L 1.20 0.019 1.20 0.0100

( )M L 1.32 0.041 1.10 0.0260

(0.95 )S L 1.05 0.010 1.10 0.0085

(0.5 ) /v L�� g 0.40 0.003 0.16 0.0035
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Figure  3.7 Time history of expected values and variances of displacement at midspan
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Figure 3.8 Time history of expected values and variances of moment at midspan
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Figure  3.9 Time history of expected values and variances of moment at interior support
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Figure  3.10 Time history of expected values and variances of shear at 0.95L
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Figure  3.11 Time history of expected values and variances of beam acceleration at 

midspan
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3.3.4 Effect of fundamental frequencies of vehicle 

Natural frequencies of the car body (normally low) may not be equal to the first mode 

frequency of a typical short-span bridge unless the primary and secondary springs are 

very stiff. It is not realistic to have such a stiff suspension [7], since passenger comfort 

criteria may not be met. For a structure with low frequency such as a large suspension 

bridge [8], there is a chance of a structure frequency matching a vehicle frequency. 

However, the mass of the vehicle is very small compared to the mass of a suspension 

bridge, so significant dynamic amplification is not likely. 

3.4   Conclusion

Random vibration time history analyses provide vehicle and structure responses that can 

define appropriate surface smoothness requirements and design amplification factors for 

structure for high speed vehicles. Mean value and covariance matrix of system responses 

can be determined. 

            It is found that one specific value of a nondimensional parameter may cause a 

maximum in one response while a different value may cause a maximum in another 

response. For two-span beam, the moment at the interior support can have high dynamic 

amplification factors when axle arrival rate matches to the second natural frequency of 

the beam.  

            For high speed rail system, an appropriate suspension configuration of vehicle can 

reduce the expected value and variance of DAF of beam responses.  
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CHAPTER 4 

CONCLUSIONS 

The interface model determines which system matrices become time-dependent and 

whether derivatives of roughness enter the governing equations.  If a simple axial spring 

is used as an interface model, then only the system stiffness matrix is nonautonomous and 

derivatives of roughness are not needed.  For a linear spring interface, roughness may be

modeled by the responses of cascaded linear first order differential equations driven by 

white noise. 

Multi-axle vehicle models introduce a length parameter or wheelbase into the 

governing equations.  This length leads to ystem equations that depend on the roughness 

at several positions that lag behind the leading axles.  Here, roughness processes with 

lags are also modeled by responses of linear first order differential equations.  The vector 

of roughness processes is driven by a vector of correlated white noises such that all

roughness processes have the same autocovariance function and the appropriate zero-

time-lag cross-correlation.  This new formulation for the excitation, , in turn allwos

a Markov vector random vibration approach. 

( )W t

All qutities of the interface, vehicle, roughenss and structure models are 

nondimensionalized.  The vehicle speed and its wheelbase are represented by the span 

crossing rate, 
1

v
V Lf
�


 , and the axle arrival rate, 
1

a
Vf
�



� .  Time is

nondimensionalized by the time required to cross one span of a structure. 

The coupled system equations are written as a linear, first order, matrix stochastic 

differential equaiton.  The equation has deteministic parametric excitation in the sense

that the system matrix is a known function of time.  It has deterministic additive 

excitation from the mass of the moving vehicle entering a span and it has random

additive excitation from the random roughness.  Deterministic linear ordinary differential 

equations for the mean and covariance matrices of the state vector follow directly.  These
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moments of the state vector may in turn be used to compute corresponding moments of 

any structural responses. 

Important system parameters include the wheelbase-to-span ratio, L�  and the 

span crossing rate, 
1

2 v
V Lf

f
� 
 . For realizable combinations of L� and

1

V L
f

, the axle 

arrival rate, 
1

2 a
Vf

f
� 


� , can become equal to the first or second frequencies of typical 

structures.  If this occurs, high expected values of dynamic amplification factors are 

likely.  The number of axles also has effects to the structure.  For the two-span beam, it 

yields the lower dynamic amplification factors for the vehicle with more axles. 

Values of dynamic amplification factors are computed for a set of responses of a 

two-span beam traversed by a series of 2DOF vehicle model. Different parameter

combinations yield the largest dynamic amplification factors for different responses.  For 

the two-span beam, the moment at the interior support can have high dynamic

amplification factors.

This work considers only planar systems and passive vehicle models.  For design, 

it may be necessary to use three-dimensional models and, possibly, vehicle model with 

variable speed.
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ABSTRACT : The deflection-, bending moment-, shear- and acceleration-time histories of a 

two-span beam subjected to moving sprung vehicles are presented. The vehicle model is a 2DOF 

system with a constant velocity. The two-span beam with rough surface is used as structure 

model. It is defined in modal domain by natural frequencies, mode shapes and modal damping 

values. The rough surface is modeled by filtered white noise. The equations of motion for the 

coupled vehicle-structure system are formulated. All variables in the system equation are 

nondimensionalized. The first order linear stochastic differential equations are solved. The effects 

of the span passage rate and other important parameters are studied.

Keywords : Coupled vehicle-structure system; Random roughness; Dynamic response; Two-span 

beam. 

1.   Introduction

The problem of vehicle-structure interaction has been the subject of study during the last few 

years.  Early work adopted to model vehicle-bridge system by Biggs1, Fryba2 and Timoshenko, et
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al.,3 considered simply supported beam with a moving point load/sprung mass at constant speed 

along its span. Since guideway structures are getting lighter and more flexible, while the speed 

and the weight of vehicular loads tend to be higher, other detailed models were developed.  

Multiple axle, multiple degree of freedom models were used for vehicle models,4-6 and different 

kinds of structures such as simply supported beam, multiple-span beam or nonprismatic beam 

were analyzed.7-10 Most of these studies have solved equations of motion by numerical 

integration. Many researchers, Lin, et al.,11 Henchi, et al.,12 and Hino, et al.13 used the finite 

element method to model and analyze structures. Several others employed Fourier series and 

Fourier Transforms.8  Later, more studies have concentrated on analyses of dynamic responses of 

the vehicle and structure coupling system with random roughness surface. Power spectral density 

technique of representing random surface roughness have been developed. 14-19

  The principal objective of this work is to perform studies of coupled vehicle-structure 

dynamic systems to guide the design of structures for high-speed vehicles. The random roughness 

is modeled by filtered white noise. The structure is modeled as a two-equal-span prismatic flexure 

beam. The vehicle is modeled as a series of 2DOF vehicles. System parameters are 

nondimensionalized and the equations of motion are written in state space. Here the equations for 

the mean and zero-time-lag covariance matrices of the state vector are solved using modal 

technique. Static values of a set of responses are determined, the statistical moments of the 

dynamic responses are normalized by the corresponding maximum static values. Therefore 

statistical moments of all responses are expressed in terms of dynamic amplification factors 

(DAF). Extensive parametric studies are presented that identify effects of important 

nondimensional parameters on the behavior of coupled vehicle-structure systems. This work 

provides designers of structures for high-speed vehicles insights on effects of nondimensional 

system parameters on behavior and quantifies values of DAF that may be produced by high-speed 

vehicles.
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2.  Coupled vehicle-structure system equations in state space 

The dynamic response of a structure traversed by a vehicle is assumed to be completely defined

by a vertical displacement function, .( , )v x t 2  The vertical displacement of the structure is here

expressed in the modal domain as follows: 

 

1
( , ) ( ) ( )

n

i i
i

v x t y t x�
�

��    (1) 

in which ( )i x� is the mode shape and is modal coordinate. The total displacement at

an interface of a vehicle with a structure having surface roughness, , is:

thi ( )iy t thi

( )h x  14-19

( , ) ( , ) ( )tv x t v x t h x� �    (2) 

The surface profile, , can be modeled as an output of a shaping filter to a white noise( )h x 15, 20-22

expressed by:

( ) ( ) ( )ch x h x W x�� � � (3)

in which is a correlation distance and is a zero-mean white process with intensity or

strength .

c� ( )W x 0S

0q

The coupled vehicle-structure models considered in this research are shown in Fig. 1. 

Figure 1a) shows two of 2DOF vehicle models, each one can be considered as a half-car model.5

Then, a distance between two models is called wheelbase, . Figure 1b) shows a model for eight 

of 2DOF vehicle models with the total length equal to the wheelbase in Fig. 1a). It can be used to 

�
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study effects of number of vehicle axles to the system. The 2DOF vehicle model has two vertical

DOFs denoted by  and  located at the center of mass of the car and the suspension mass.

Each vehicle axle has primary and secondary suspensions. The primary suspension is a linear 

spring, . This spring may represent a tyre stiffness or a magnetic force in the case of magnetic

levitated vehicle (maglev). The secondary suspension which attached between mass

vv 1v

2k

M and is

a kelvin type of interface; i.e. a linear spring, ,and dashpot, , in parallel. Note that 

m

1k c

M represents mass of car, m represents a suspension mass, and vehicle speed, V , is assumed

constant. Other parameters in the vehicle-structure system are: span length, L ,  unit mass of a 

two-equal-span prismatic flexure beam, m .

The coupled linear system equations driven by correlated white noises are then written in 

state form:

( ) ( ) ( ) ( ) ( ), (0)X t A t X t BW t C t X� � �� (4)

in which X(t) is a state vector, W(t) is a vector of correlated white noises, A and B are matrices of 

appropriate dimension, C(t) is a vector  of deterministic excitation and X(0) is an initial condition

of the system. Taking the expectation operator, the equation for expected value vector is: 

[ ( )] ( ) [ ( )] ( ), [ (0)]E X t A t E X t C t E X� ��    (5) 

in which E[X(t)] is a vector of expected values of state variables with an initial condition,

E[X(0)]. The term BW(t) disappears because W(t) is a zero mean vector.

     The zero-time-lag covariance matrix of the state vector, XX� , may be solved from the 

well-known first order Lyapunov equation, given by:
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, (0)T T
XX XX XX XXA A BQB� � � �� � �� (6)

in which is an initial condition of the covariance matrix and Q is a strength matrix

for the vector white noises,

(0)XX�

0

1

1

i j

i j

WW

W W

Q q

�

�

	 

� �

� � �
� �

 �

�

� � �
�

(7)

in which  is a strength of the white noise and 0q
i jW W�  is the zero-time-lag correlation coefficient 

between  two white noises. 
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3.   Parametric study and results 

The equations of motion of this coupled system are written in state space. To facilitate parametric

studies, all quantities are nondimensionalized as follow,

Position - , Time - , Roughness -/x L /Vt L /  and /W L h L

White noise intensity – = 0.0625x103
0 /q L -6 for rail roughness 

Autocorrelation distance - = 2.50 /c L�

Distance between two vehicles - (show in Table 1) / L�

Masses - /M mL� � = 0.20, /m mL� �  = 0.1�  

Frequencies - 
1

1
2
1

/
k

k mLf
�

� = 0.05, 
2

2
2
1

/
k

k mLf
�

� = 0.20, 2
1

/
g

g Lf
�

� = 0.01, 

1

/
c

c mLf
�

� = 0.02 

Speed -
1

/
v

V Lf
�

�   = 0.06, 0.08, 0.10, 0.12

Fundamental frequencies of a two-span beam - 1/i if � ��

Damping ratio,� , for the beam is assumed 0.01. 

For design of the guideway structure, the statistical moments of the structure responses

are essential. The computed beam responses are displacement and moment at midspan, moment

at the middle support and the shear at 0.95L. Time histories of the expected values of beam

responses are plotted in Figures 2 to 11 for  = 0.5, 0.6, 0.7 and/ L� vf  = 0.06, 0.08, 0.10, 0.12.
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3.1 Effect of span passage rate, vf  - Span passage rate is a ratio of  to a first beam

frequency,

/V L

1� . Assuming that a 20m-two-span beam has a frequency of 7 Hz, 

. /(2 )
7 Hz /(2*20m)

280m/s

resf V L
V

V

�
�
�

 

A velocity of 280 m/s or 1000 km/h is impossible for a ground transportation system.6  However,

there are many other frequencies in the system, including the vehicle axle arrival rate and the 

fundamental frequencies of the vehicle. 

3.2 Effect of axle arrival rate, af  - The axle arrival rate is  or, in terms of rad/sec, /V � 2 /V� � . 

It can be nondimensionalized by 1� . The nondimensional arrival rate, denoted by af , may be 

written in terms of vf  and  as shown in Table 1.  The nondimensional frequencies of the first 

two modes of the two-span beam are 

/ L�

1f  = 1 and 2f  = 1.57.

 
             For vf = 0.06 to 0.12 (V = 190 to 380 km/h for beam span 20 m and frequency 7 Hz) - at

high velocity level - vehicle is assumed to be rail vehicle system. Thus, the roughness model for

the rail system is used here. The combinations of vf  and  that cause resonance are shown in 

Table 1.  If  = 0.5 and

/ L�

/ L� vf = 0.08 the axle arrival rate equals the fundamental frequency. For 

typical values of 1�  and L, vf =0.08 corresponds to a velocity of 70 m/s (250 km/h). If = 0.5 

and

/ L�

vf = 0.12, the axle arrival rate equals the second natural frequency. Therefore it is possible 

for the axle arrival rate to be in resonance with the first and second beam frequencies, for feasible 

vehicle speeds. Let  be fixed at 0.5 and the span passage rate, / L� vf , be 0.08 ( �  250 km/h).

Figures 2 and 3 show that the displacement and the moment at midspan have the largest
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amplification. The maximum expected values of dynamic amplifications are 1.32 and 1.22 

respectively (recall that multiples of standard deviations of amplification factors must be added to 

determine design amplification factors). It is simply because the first mode is excited, af

matches 1f , and the displacement and moment at midspan are two responses dominated by this

fundamental asymmetric mode. When the span passage rate increases to 0.12 ( �  380 km/h), the 

moment at the interior support is amplified by as much as 1.32 (Fig. 4) which is more than the 

other responses. In this case the second mode, the symmetric mode, is excited. A response

dominated by this symmetric second mode is the moment at the interior support.  For  =0.6

and 0.7, only the first mode is excited (Figs. 2 and 3) for realistic velocities (less than 380 km/h).

If  is greater than 0.5, the axle arrival rate is unlikely to be in resonance with the second

mode since the velocity corresponding to that resonance mode is well above a practical level. If 

 is greater than 1, 

/ L�

/ L�

/ L� af  will never match 1f  and resonance due to af  never occurs. The shear

(figure 5) is different from the other responses as all of the modes (both asymmetric and

symmetric modes) participate in this response. Figure 6 shows time history of expected value and

variance of beam acceleration at midspan. It is found that the maximum expected beam

acceleration is 0.4g (quite high) and occurs after vehicles left the span.  

    For a high-speed ground transportation system there is a possibility to have resonance 

between the axle arrival rate and the second mode frequency. For this condition the moment at 

the middle support needs to be examined closely.



9

3.3 Effect of number of axles (interfaces) 

For high speed vehicle, i.e. maglev (magnetic levitated vehicle), the suspension system can have 

more than two contact points. More contact points can benefit the design of the system. Figures 7 

to 10 (also Table 2 and 3) show the expected beam responses reduce, i.e. E[M(L)] reduces from 

1.32 to 1.10, when eight suspensions are used. This suspension arrangement can also reduce 

strong fluctuation in VAR[M(L)] dramatically (Figs. 4 and 9). Figure 11 shows the expected beam 

acceleration at midspan reduces from 0.4g in figure 6 to 0.16g.  

3.4 Effect of fundamental frequencies of vehicle 

Natural frequencies of the car body (normally low) may not be equal to the first mode frequency 

of a typical short-span bridge unless the primary and secondary springs are very stiff. It is not 

realistic to have such a stiff suspension 23, since passenger comfort criteria may not be met. For a 

structure with low frequency such as a large suspension bridge 5, there is a chance of a structure 

frequency matching a vehicle frequency. However, the mass of the vehicle is very small 

compared to the mass of a suspension bridge, so significant dynamic amplification is not likely. 

4.   Conclusion

Random vibration time history analyses provide vehicle and structure responses that can define 

appropriate surface smoothness requirements and design amplification factors for structure for 

high speed vehicles. Mean value and covariance matrix of system responses can be determined. 

            It is found that one specific value of a nondimensional parameter may cause a maximum 

in one response while a different value may cause a maximum in another response. For two-span 

beam, the moment at the interior support can have high dynamic amplification factors when axle 

arrival rate matches to the second natural frequency of the beam.  

            For high speed rail system, an appropriate suspension configuration of vehicle can reduce 

the expected value and variance of DAF of beam responses.  
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Table 1  Vehicle axle arrival rate and span passage rate for high speed 

af for L = 20 m vf (speed, km/h)

and beamf = 7Hz. 0.06(190) 0.08 0.10 0.12(380)

0.40 0.94 1.26 1.57 1.88

0.50 0.75 1.01 1.26 1.51

/ L� 0.60 0.63 0.84 1.05 1.26
0.70 0.54 0.72 0.90 1.08

 
Table  2  The maximum beam responses when af is in resonance with 1f  for two different
suspension configurations 

Y = Structural 
Responses

Two contact 
points

Eight contact 
points

[ ]E Y [ ]VAR Y [ ]E Y [ ]VAR Y

(0.5 )v L 1.32 0.0200 1.20 0.0105

(0.5 )M L 1.22 0.0125 1.15 0.0105

( )M L 1.10 0.2100 1.10 0.0280

(0.95 )S L 1.00 0.0090 1.10 0.0090

(0.5 ) /v L�� g 0.30 0.0040 0.14 0.0025

Table  3  The maximum beam responses when af is in resonance with 2f  for two different
suspension configurations

Y = Structural 
Responses

Two contact 
points

Eight contact 
points

[ ]E Y [ ]VAR Y [ ]E Y [ ]VAR Y

(0.5 )v L 1.05 0.015 1.25 0.0100

(0.5 )M L 1.20 0.019 1.20 0.0100

( )M L 1.32 0.041 1.10 0.0260

(0.95 )S L 1.05 0.010 1.10 0.0085

(0.5 ) /v L�� g 0.40 0.003 0.16 0.0035
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Figure  1 Models of coupled vehicle structure system: a. two of 2DOF vehicle model, b. eight of
2DOF vehicle model
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SIGNIFICANCE OF SURFACE ROUGHNESS TO MOVING VEHICLES AND 

INFRASTRUCTURES 
 

�!"#�$�% $&���'��% (Pritsathat Seetapan)1 
*�+��#,�- .����/��  (Akesit Maiwattana)2 
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5#��6��� : �������	
����
�����������������������
�������!�"����#$�� %&'���*�*+�������,	��/� ������*�����1 23�*15������
6��7���*�����
�"����� (Power Spectral Density function) �����������
���� �����8$��9�**��7"����"2���	��1  PSD 9��":����7
��
*��*��9��������*������	'����������'����� ; ���<"�$2�1��
���� <����'�$"��
���������9��*��9��8��":�5>���������� 
��5�'����	' 
�*�
1�%	�� 7����� <���%
 �����
�*��
����7��9������5���������61�����
����
��������$�� <��*��!5�2?��1����1$��1���%1  
7��9�������������6�� 2DOF ����'���	'�����%&'��	*��
&**����7��7�������*!5��":���������!�*��
�>""����+��*	'��*�� ����	'
���!6����������>�����
����%&'�!5�����>������
�����������6�� 7��*���9�����<���
������
�A�� 
 
ABSTRACT : Actual road surface elevation data in Thailand collected by using Bump Integrater are presented. Power Spectral 
Density (PSD) function of the surface roughness can be computed by Fourier Transform. It shows the wavelength content of surface 
profile. Typical road surfaces may be considered as realizations of stationary Gaussian random processes. Analytical model of 
random surface can be constructed by using filtered white noise.  An example of a  2DOF vehicle travelling on a randomly 
corrugated road is presented. The issue of specifying surface roughness tolerances to control vehicular response and displacement of 
the infrastructure is discussed. 
 
KEYWORDS : Road surface, Power spectral density, Bump integrater, Vehicle response  
 
1.  5#��� 
������6����":�*��������6��*�	'
����J���"����# !�7��
�����  ������6������7��*����������%
�� ; 6������
� 9�*
*������'���	'��������6�� ���$"
�������
	�6�����<���
����
��
�������  ���'�!6�*�����9
��7��"������
K������":�$"

������	"��
��,�K�� 9&����*���*+�������������������>���
�����
���������������'�������/�������*�����1 (Bump Integrator ) 
7�� 7"����"2���	��1 6�23�*15������6��7���*�����
�"�����  
(Power Spectral Density function, PSD) 7���"�	����	������	'
���!6����������>�����
��������������A��
�*� 9�*��
�

�������#�
������
�

��������$�%&����	��'&��( )*                                                       ��"#�� + – , �-/��	� +0,1 
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���*��
����7��9�������
�����������2?��1����1$��1���%1 ���'�
#&*M������������>�����
��������	'�	��� ����
���*
���
������!5������6�� 7�������
������<���
������
�A�� 
!�7����5���������+���������6��  
2.  ���++�
�������#&890�9������;�� 
2.1 �����4"�
"�
�5!��6�	
��5�#5��5�&�7'�8�
��& 
��/� ������*�����1 (Bump Integrater, BI ) �":�����'�������
���	'
�	������������
�� 
���������������	��
�������������*�� $��
��������<����� �>*
K���*��!5����������6��� <�����'����
*������&*������ ���'������1����'���	'��*9�*9>����'���� 7�����
*���*+����*���&
�-���������6���
�
� 
������$"�	'N��1�7��1 
ROMDAS ���*��7"��
�JJ�8
��$"�	'����������1 
����������1���*������&*������ ���������>�����/�������*�����1  
������� ������+������1  $��!�$2�1��� �>* ; 1,000 ���� <��
$���������*��9�������1�	'����&* ���'��&�5����	'�":�
����6���
�����8�	'�	*��*��
���� ���	'$��9�**����� �����5�	5	
�������
��>��������� (International Roughness Index) 6�����":� 
������������*�<����� ���������	' 1 
��
��#&8 1   ��5�	5	
���������>���������  


K�����  ��5�	5	
���������>��������� (IRI) 
�	                                                                  0 - 3 
"��*���                                                     3 - 4  
7��                                                                4 - 5 
7����*                                                           > 5            

 
2.2 ���$��&�6�96������ (Fourier Transform) 
����!5�*�������*��������!�*�������8�����#�*��� �":�*��
7"����"23�*15��!�<��������(6����������) !6� �":�23�*15��
!�<���������	'  6����	' � �	 �*�� �  23 �*15������6��7���           
*�����
�"����� (Power Spectral Density function, PSD)   ���
7
��!�
�*���	'  (1)  !���"9������5��%��� 7��9��������'�    
(wave number, r )  

� � 2( ) irxY r y x e dx�
�

�

��

� �               (1) 

2.3 ���	;��
�	%��<��(� Root-Mean-Square, RMS  
*��6�����Y�	'�
��6��� 7�����<���%
��
� ����6�9�*��� root-
mean-square !�<���������	'6�$��9�*  
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0

1 1( ) ( )
S

RMS y x dx Y r dr
S S

�

��

� �� �             (2) 

<�� S  ������������������� 
6��� �������������
�������������  ��� RMS  ��96�$��9�*

�*���	' (3) 

� � � �2RMS E x VAR x� �                     (3) 
<�� [ ]E x  ��� ����Y�	'� 6��� ����	'���6��� ��� x (mean or 
expected value of x) ,   [ ]VAR x  ��� �������7"�"������ x 
(variance of x)  
3.  
���3�����

�

�
��<��9��
�*#$.#� 
��������<"�$2�1������6���6������6�&'� �*+�������������,	 
��/� ������*�����1 7
��!���"�	' 1  �������	��"����
�'���
�� ����� 

��5�'����	' �*�
1�%	�� 7����� <���%
 (homogenous random 
process)[1,4]  

0 100 200 300 400 500 600
0

50

100

150

200

250

300

350
Road Data 

Distance(Kilometers) 

R
ou

ng
hn

es
s 

M
et

er
s(

m
m

./k
m

.) 

 

3�#&8 1 7
����������<"�$2�1���������6������6�&'�!�"����#$�� 

 
 
 
 
 
 
 
 
 
 
 


3�#&8 2 7
�� PSD ���<"�$2�1���������!���"�	' 1 
��"�	' 2 7
�� PSD ���������>������������!���"�	' 1 ��
7*� y 7
�����*�������� PSD 
���7*� x 7
�����9��������'� 
(wave number, r )  !������":�9��� PSD 9��	
�������	
��*M8�
�������
����������*7���� (!���"�	' 2 7
������
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��*������
�)<��9�7
�����*�������� PSD �	'9��������'�
(�����	') ���� ; 9�* ��  �&� � <����'�$"9��	���*�������� PSD

���	'9��������'��'�� ;  (low wave number) 7��9��	���*�������� 
PSD �'�����	'9��������'�
���&
� (high wave number)  ���9�����
���'�����*��
���*����������������'� ( 1/r �� ) �����
�

0r �  9�$����� � ��  %&'���9��8�$������":������2�%�9�*
#���1 (offset) 7���	' 0r �  9�$�����7��"��9��
��
>����<���%

������>���[3] 
     PSD ����������	
 ���$"!5��":�7��9������"Z�6����	'9�
����
�&
����'�!5��":� ����>�!6�*�� ���������6��-<���
����
��
�A�� 
4.  �55;������������#�� �������� ��� ��
��
���������� 
4.1  $""�;���&	
��5�#5���7'�8�
��&   ��*
�����&
�9�* 
�*��
2?��1����1 %&'��":�
�*����>���,1�	'�	$��1���%1 (white noise, W ) 
�":� ����>� (input) 7���	���������>�����
���� ( h ) �":� ����>� 
(output) ���
�*���	' (4)  

'( ) ( ) ( )ch x h x W x� � �               (4) 
<�� c�  ��� �������1�	��5�'� (correlation distance)  7�� 0S ��� 
�����������$��1���%1 (white noise intensity) �����!5�!�*��
"���������'�!6�$�� PSD ���������>����	'����*�� !������9���	
 
$��
����7��9����� PSD ���������>�����
����
��6��� PSD 
�"Z�6���!���"�	' 2 (%&'�����!��*8\1����A��
�*�
��6������ 
(PSD A) �����"�	' 3),   7�� PSD C 
��6���������
��7����� 
(rail) <��!5����*��6��������
6��A�����*� �":��"Z�6���  
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US Rail Specification   

PSD A:RMS = 0.010 m 

PSD B:RMS = 0.004 m  

PSD C:RMS= 0.002 m 

 

3�#&8 3 7
�� PSD ���7��9�����<"�$2�1��������� (PSD A), ��
����

������� (PSD C) 7�� PSD B 


��6������ PSD B �":� PSD �	'�	������>���������6�������7��
������
��7����� <��"���������7"�!6� 7��9����� PSD �	
��"�����	'!*����	�� 7���	��� RMS �	'
�������*���"Z�6����	'�	���� 
 
4.2  $""�;���&��������  ��9!5��":� SDOF 6��� MDOF �	'�	 

"��� ���6���� ���6����������>� "��*���":�����5�'��  !�
�����9���	
����*!5� 2DOF �	'�	
"����":�����5�'�� ���'��	'9�$�����!6�
�*��"3J6�!�*�������8�������7"�"���  �����"�	' 4  
 
4.3  $""�;���&�	�&��!�&�7'�@��  ��9�":�
����5�����	��6���
6���5��� 6��� �����
������A��������7�����6�>��[2,7] !�
�����9���	
!5����5�����	�� �����"�	' 4 7��!5�������*���������61
<���� (modal analysis) 

 
 
 
 
 

 

3�#&8 4 7
��7��9����������6��7��<���
�����	'!5�!������9�� 


�*����>���,1�������9�����!� 
���
�"% (state space)  
7
��!�
�*���	' (5 )   
X AX BW C� � ��     (5 ) 

<��      X    ���   
����������1 (state vector),  W  ��� $��1���%1 
�������1 (vector of white noise),   A  B  7�� C  �":������*%1 
7
������
�����,1��6����������>��� �����6�� 7��
<���
������
�A�� !�*���������61���� ���7"����� ; 9���*9��
����!���" ���7"�$��6���� (dimensionless parameter) �����
����
7"�$��6����7�������9��":���
�����*��[5,6] 

1

/
v

V Lf
�

� ,
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1
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/
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k mLf
�

� ,
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2
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/
k

k mLf
�

�

1

/
c

c mLf
�

� , 2
1

/
g

g Lf
�

�  , /M mL� � , /m mL� �  

�����
�����������	'��
�A�����
����<6���	' i  ���<6���	' 1 
-  1/i if � �� , <�� 1f =1.00  7�� 2f =4.00 
����������1���7��9�����������>��� - /c L� ,  3

0 /S L  
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5.  ��+�
��*�
���% 
9�**��!5�������7"� 
�����	'!�*������5������,  vf  

vf =  0.02, 0.03, 0.04, 0.05 
��6���5���������+�"*�� 
      = 0.06, 0.08, 0.10, 0.12 
��6���5���������+�
�� 

��6���
�����	'�	5��������� 20 ���� 7�� �	�����	'��
�A�� 7 
�N���%1  5���������+�"*��6����&� 60 �&� 160 *�.��� 5�. 7��  
5���������+�
�� 6����&� 190 �&� 380 *�.��� 5�. 
 

1kf = 0.05, 
2kf = 0.2, cf  = 0.02, gf = 0.01 

��� 
1kf 2kf cf  7�� gf  ��*�����89�*������ ������	'
"��� ���

6����7��7��<�������<�*9�*���� suspension �����6�� 
�����
�����������������6�����������
����, 
�  =  0.2 , � = 0.02,  ����6�������<���
���� -�  = 0.01, 

/c L� = 2.50, 3
0 /S L = 0.0625x10-6(PSD C) 0.25x10-6(PSD B) 

7�� 1.25x10-6(PSD A)  
     ����Y�	'� 7���������7"�"��� ��������
���������� 

����������8$��<�� ��,	�5������������<"�7*�� MATLAB 
 
5.1  8���"���&5�&�������� 
<����'�$"�����
�����������6���	'
�!9�����������!�
6���<��
�� %&'������*�������
&*������!5������6�� ������
����A�� ISO 2631 7
��!�������	' 2 
��
��#&8 2  7
��������������
��
>��	'�	������������
&*������!5������6�� 
�������A�� ISO 2631 

��������	
�	
�
 �������
����	�������������� 
<  0.032 g 
�
��
��� 

0.032 g to 0.064 g ���
�
��
������	 ��!����� 
0.051 g to 0.102 g ��"��#����
�
��
���  
0.082 g to 0.160 g ���
�
��
���  
0.127 g to 0.255 g ���
�
��
��� ��� 

> 0.200 g ���
�
��
��� $%&
�
 
 
9�*��"�	' 5 7�� 6 ����Y�	'������������7����'���������6��
!�5���������+�"*�� ����
�����	'�	������>���9��������� PSD 
A 9��	�������!�5��� 0.005g �&� 0.012g ����!�5����	'���!5�
�����6��������$�� 7���	�������7"�"���
�� 0.004 �&� 
0.012 
��6��������6��������+�
�������
�����	������>���
����*�� PSD A 9�!6�����Y�	'� !�5��� 0.018g �&� 0.032g %&'�*+�����

����!��*8\1�	' ���!5������6�����
&*
���*
��� 7���������
7"�"����	���
����* !�5��� 0.015 �&� 0.025 
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t = Vt/L  

For fv = 0.02-0.05:E[Vv�� /g] = 0.005-0.012  

Change from smooth to rough surface  Change from rough to smooth surface  

Vehicle reaches stationarity  

Variances are constant with time   

For fv = 0.02-0.05:VAR[Vv�� /g] = 0.004-0.012 

 

3�#&8 5 7
�� time history �������Y�	'�7���������7"�"��������������

��������6�� !�5���������+�"*�� ���������>��� PSD A 
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t = Vt/L  

For fv = 0.06-0.12:E[Vv�� /g] = 0.018-0.032  

Change from smooth to rough surface  Change from rough to smooth surface   

Vehicle reaches stationarity  

Variances are constant with time  

For fv = 0.06-0.12:VAR[Vv�� /g] = 0.015-0.025    

 

3�#&8 6 7
�� time history �������Y�	'�7���������7"�"��������������

��������6�� !�5���������+�
�� ���������>��� PSD A 
��"�	' 7 7
������Y�	'� RMS  �����������7����'�!������6�� �	
��� 0.07g �&� 0.11g 
��6��������6��������+�"*�� 7���	��� 
0.12g �&� 0.16g 
��6��������6��������+�
�� 9��6+�$����� ���'�
����������7"�"�������!�*�������8����Y�	'� RMS 7���
��������7����'�!������6�� �	���
�� 9����!6����<��
��!�
�����6�����
&*$��
���*
��� 9&�����	'9�"�����������>���
�����
���� %&'������*���"�	'����!5�������>�����
�����	'���� 
(PSD B 7�� C) 7
������!���"�	' 8 ������������7"�"���
�����������*���'����$"�����8 ����Y�	'� RMS 9�$������	'������ 
<�� *�8	 vf = 0.05 ����Y�	'� RMS  �����������7����'�!�
�����6�� �	�������9�* 0.11g (
��6��� PSD A) �":� 0.051g 
7�� 0.025g 
��6��� PSD B 7�� C ��������� 
���*�8	 vf = 
0.12 ����Y�	'� RMS  �����������7����'�!������6�� �	���
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����9�* 0.16g (
��6��� PSD A) �":� 0.078g 7�� 0.045g 

��6��� PSD B 7�� C ��������� 
     ��*9�*�	
 *�8	�	'�	*���"�	'��7"��������>�����
����7��
Y� �� �� �  9 � �� � ! 6� � *� � �� � � � � � 7 " � " � � � �	' 
� � � *� � "* �� 
(overshoot) !���������7����'���������6�� 7�� !�*�8	
�����6������'���	'����������+�
�� ��������7����'�9�����
�� 

��5�'����	'(stationary) $��5��*��� *�8	������+��'�� 
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pp
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] For fv = 0.06-0.12: 
RMS[ Vv�� /g]=0.12-0.16  

For fv = 0.02-0.05: 
RMS[ Vv�� /g]=0.07-0.11  

t = Vt/L  
 


3�#&8 7 7
�� time history ��� RMS �������������������6�� 
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t = Vt/L  

For fv =0.05, PSD A RMS = 0.010m: VAR[Vv�� /g] = 0.010   

For fv =0.05, PSD B RMS = 0.004m: VAR[Vv�� /g] = 0.0025  

For fv =0.05, PSD C RMS = 0.002m: VAR[Vv�� /g] = 0.0005 

For fv =0.12, PSD A RMS = 0.010m: VAR[Vv�� /g] = 0.025  

For fv =0.12, PSD B RMS = 0.004m: VAR[Vv�� /g] = 0.005   

For fv =0.12, PSD C RMS = 0.002m: VAR[Vv�� /g] = 0.001   

 

3�#&8 8 7
�� time history ����������7"�"�����������������
�����6�� ���'� vf  = 0.05  7�� 0.12 �	'�����������>������� ; 

  
5.2  8���"���&5�&�	�&��!�& 
9�*��"�	' 9 7�� 10 !�5���������+�"*����������6�� ����Y�	'�
��� DAF (Dynamic Amplification Factor)  �������<*���	'
*&'�*������
����5�����	������!�5��� 1.05 �&� 1.15 7�����'��&
�
$���&� 1.50 
��6��������6��������+�
�� 
     �������7"�"��� (variance) ��� DAF �������<*���	'
*&'�*���
����5�����	�� *�8	������+�"*��7��������>��� 
PSD A �	�������!�5��� 0.05 �&� 0.11 (6����	�����	'���������A�� 

(standard deviation) !�5��� 0.22 �&� 0.33) 7���	���
���&
�$���&� 
0.20 (�����	'���������A������*��  0.45)
��6��������6��
������+�
��7��������>��� PSD A  
���'���� vf  
���&
� �������7"�"����������<*���	'*&'�*���

�����	*�������&
����	'�>�7����*�&
� (strongly fluctuated) 
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t = Vt/L  

For fv = 0.02-0.05: E[V(0.5L)] = 1.05-1.15  

For fv = 0.02-0.05: VAR[V(0.5L)] = 0.05-0.11  
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<*��*&'�*������ ���'� vf  = 0.02-0.05 
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t = Vt/L  

For fv = 0.06-0.12: E[V(0.5L)] = 1.16-1.50  

Static 
displacement  

For fv = 0.06-0.12: VAR[V(0.5L)] = 0.13-0.20 

 

3�#&8 10 7
�� time history �������Y�	'�7���������7"�"����������

<*��*&'�*������ ���'� vf  = 0.06-0.12 
 
����Y�	'� RMS  (!���"�	' 11) ��� DAF �������<*���	'*&'�*���

�����	��� 1.05 �&� 1.17 ���'� vf = 0.02  �&� 0.05 7���	������'�
�":� 1.15 �&� 1.55 ���'� vf = 0.06  �&� 0.12 
         ��� vf  $��*��!6��*��*��
�'����� (resonance)  �������� vf  
9�����*�� 1 *+������'������6������'���	'����������+��	'
����* 
�*���	'�����6�������9�����'���	'$�� (
��6���
�����	'�	
��������	'��
�A������!��*8\1"*��) 
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t = Vt/L  

For fv = 0.02-0.05:  
Max RMS [v(0.5L)] = 1.05-1.17 

For fv = 0.06-0.12: Max RMS [v(0.5L)] = 1.15-1.55 

 

3�#&8 11 7
�����
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>������� RMS �������<*��*&'�*������ 
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t = Vt/L  

For fv =0.05, PSD A RMS = 0.010m: VAR[Vv��  (0.5L)/g] = 0.040   

For fv =0.05, PSD B RMS = 0.004m: VAR[Vv��  (0.5L)/g] = 0.008   

For fv =0.05, PSD C RMS = 0.002m: VAR[Vv��  (0.5L)/g] = 0.002   

For fv =0.12, PSD A RMS = 0.010m: VAR[Vv��  (0.5L)/g] = 0.090   

For fv =0.12, PSD B RMS = 0.004m: 
VAR[Vv��  (0.5L)/g] = 0.017   

For fv =0.12, PSD C RMS = 0.002m: VAR[Vv��  (0.5L)/g] = 0.005   

 

3�#&8 12 7
�� time history ����������7"�"���������������	'*&'�*���

��� �	'�����������>������� ; 
��"�	' 12 ������������7"�"���
��
>������������7����'��	'
*&'�*���
���������������* <��*�8	 vf = 0.05     �������
7"�"���
��
>������������7����'��	'*&'�*���
���� �	�������
9�* 0.04 (
��6��� PSD A) �":� 0.008 7�� 0.002 
��6��� PSD B 
7�� C ��������� 
���*�8	 vf = 0.12 �������7"�"���
��
>�
�����������7����'��	'*&'�*���
���� �	�������9�* 0.09 
(
��6��� PSD A) �":� 0.017 7�� 0.005 
��6��� PSD B 7�� C 
��������� 
6.  �
����+�
��;�� 
     9�*������������>�����
������� 
�����
����7��9�����
<��!5�
�*��2?��1����17�� low-passed %&'��	����������1
����� 
��� �������1�	��5�'� (correlation distance, c� )  7����������
���$��1���%1 (white noise intensity, 0S ) 9��":����*��6�
��"�������7��9����� PSD ��*9�*�	
 ����Y�	'� RMS ����	���
!*����	�� *��������>���9���  

     ������>����	���������7"�"��� 7��$���	���������Y�	'�
��������
���������� ���'��9�* $��1���%1 �":� <���%
�	'
�	����Y�	'��":�#���1 �����
�!�
�*���	' (5) �9�1 BW 9�6��$"���'� 
���*��6�����Y�	'� 7����� RMS �����89�*��
�����Y�	'�7���������
7"�"��� �����
� �����
������>�����* 9����!6�      �������
7"�"���
�� 
����!6���� RMS 
����� 
     <����'�$" �����
�����������6��9�����
�� 
��5�'����	' 
��'���� ����7"�"���9����	'6���9�*�����6������'���	'��
��
������>���$"5�������6�&'� 7��
��6��������
������
<���
������
�  *�����������������7"�"���$������
�� 
��5�'�
���	' 
     *���������61����������*��
�'�
������7��
>��( random 
vibration time history) �������������>���-�����6��-
<���
���� 
����������*���*��6��
��6���������	�����
��
����   7�� �� ���� ����5��
����  �����
 ������
������
�����6��7��72�����1*� ��� ������5� ���#�
��1���
<���
������
�A����������*7��$�� 
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ABSTRACT : The deflection-, bending moment-, shear- and acceleration-time histories of a two-span beam subjected 
to moving sprung vehicles are presented. The vehicle model is a 2DOF system with a constant velocity. The two-span 
beam with rough surface is used as structure model. It is defined in modal domain by natural frequencies, mode shapes 
and modal damping values. The rough surface is modeled by filtered white noise. The equations of motion for the 
coupled vehicle-structure system are formulated. All variables in the system equation are nondimensionalized. The first 
order linear stochastic differential equations are solved. The effects of the span passage rate and other important 
parameters are studied.     
 
KEYWORDS : Coupled vehicle-structure system, Random roughness, Dynamic response, Two-span beam.  
 
1.   Introduction 
The principal objective of this work is to perform studies 
of coupled vehicle-structure dynamic systems to guide 
the design of structures for high-speed vehicles. A new 
formulation for modeling random roughness at the 
interfaces between a structure and a series of 2DOF 
vehicles is presented therein. System parameters are 
nondimensionalized and the equations of motion are 
written in state space. Here the equations for the mean 
and zero-time-lag covariance matrices of the state vector 
are solved using MATLAB. Static values of a set of 
responses are determined the statistical moments of the 
dynamic responses are normalized by the corresponding 
maximum static values. Therefore statistical moments of 
all responses are expressed in terms of dynamic 
amplification factors (DAF). Extensive parametric 
studies are presented that identify effects of important 
nondimensional parameters on the behavior of coupled 
vehicle-structure systems. This work provides designers 
of structures for high-speed vehicles insights on effects of 
nondimensional system parameters on behavior and 
quantifies values of DAF that may be produced by high-
speed vehicles. 
 
2.  Coupled vehicle-structure system equations in state 
space 
The dynamic response of a structure traversed by a 
vehicle is assumed to be completely defined by a vertical 
displacement function, ( , )v x t .  The vertical 
displacement of the structure is here expressed in the 
modal domain as follows: 

1
( , ) ( ) ( )

n

i i
i

v x t y t x�
�

��                                                   (1) 

in which ( )i x� is the thi mode shape and ( )iy t is 
thi modal coordinate. The total displacement at an 

interface of a vehicle with a structure having surface 
roughness, ( )h x , is : 

( , ) ( , ) ( )tv x t v x t h x� �           (2) 
 
 
 
 
 
 
 

Figure 1 shows models of coupled vehicle structure 
system 

 
The surface profile, ( )h x , can be modeled as an output 
of a shaping filter to a white noise expressed by: 

( ) ( ) ( )ch x h x W x�� � �                         (3) 
in which c� is a correlation distance and ( )W x is a zero-
mean white process with intensity 0S or strength 0q . The 
covariance matrix of two white noise is   

1 2 1 2( )W W Q x x�� � �                          (4) 

a) 

b) 

��������	
������
��
���	
������������������� )*                                     ��"#�� + – , �-/��	� +0,1 
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Figure 2 shows power spectral density (PSD) and 

correlation functions of rough surface 
The coupled vehicle-structure models considered in 

this research are shown in Fig. 1. Figure 1a) shows two of 
2DOF vehicle models, each one can be considered as a 
half-car model. Then, a distance between two models is 
called wheelbase, � . Figure 1b) shows a model for eight 
of 2DOF vehicle models with the total length equal to the 
wheelbase in Fig 1a), it can be used to study effects of 
number of vehicle axles to the system. Structure model 
considered here is a two-equal-span prismatic flexure 
beam as shown in Fig. 1.  
     The coupled linear system equations driven by 
correlated white noises are then writen in state form: 

( ) ( ) ( ) ( ) ( ), (0)X t A t X t BW t C t X� � ��           (5) 
in which X is a state vector, W is a vector of correlated 
white noises, A and B are matrices of appropriate 
dimension, and  C is a vector  of deterministic excitation. 
Taking the expectation operator, the equation for 
expected value vector is: 

[ ( )] ( ) [ ( )] ( ), [ (0)]E X t A t E X t C t E X� ��  (6) 
The term BW(t) disappears because W(t) is a zero mean 
vector. 
The zero-time-lag covariance matrix of the state vector, 

XX� , may be solved from the well-known first order 
Lyapunov equation, given by: 

, (0)T T
XX XX XX XXA A BQB� � � �� � ��             

(7) 
in which Q is a strength matrix for the vector white 
noises, 

0

1

1

i j

i j

W W

W W

Q q

�

�

	 

� �

� � �
� �

 �

�

� � �

�

              

(8) 
in which  0q  is a strength of the white noise and 

i jW W�  is 

the zero-time-lag correlation coefficient between  two 
white noises 

 
3.   Parametric study and results 
Position - /x L , Time - /Vt L , Roughness -

/  and /W L h L  

White noise intensity – 3
0 /q L = 1.250x10-6 for road 

roughness 
                                     = 0.0625x10-6 for rail 
roughness 
Autocorrelation distance - /c L� = 2.50 
Distance between two vehicles - / L� (show in Table 1 
and 2) 
Masses - /M mL� � = 0.20, /m mL� �  = 
0.1�  

Frequencies - 
1

1
2
1

/
k

k mLf
�

� = 0.05,  
2

2
2
1

/
k

k mLf
�

� = 

0.20, 2
1

/
g

g Lf
�

� = 0.01, 
1

/
c

c mLf
�

� = 0.02 

Speed - 
1

/
v

V Lf
�

� = 0.02, 0.03, 0.04, 0.05 for normal 

velocity 
                        = 0.06, 0.08, 0.10, 0.12  for high 
velocity 
Fundamental frequencies of a two-span beam - 

1/i if � ��  
Damping ratio,� , for the beam is assumed 0.01. 
Effect of span passage rate, vf  - Span passage rate is a 
ratio of /V L  to a first beam frequency, 1� . Assuming 
that a 20m-two-span beam has a frequency of 7 Hz, 

.    /(2 )
7 Hz. /(2*20m)

      280m/s

resf V L
V

V

�
�
�

 

A velocity of 280 m/s or 1000 km/h is impossible for a 
ground transportation system [4]. However, there are 
many other frequencies in the system, including the 
vehicle axle arrival rate and the fundamental frequencies 
of the vehicle. 
 
Effect of axle arrival rate,  af  - The axle arrival 
rate is /V �  or, in terms of rad/sec, 2 /V� � . It can be 
nondimensionalized by 1� . The nondimensional arrival 
rate, denoted by af , may be written in terms of vf  and 

/ L�  as shown in Table 1 and 2. 
Table 1  Vehicle axle arrival rate and span passage rate 
for normal speed  

af for L = 20 m                          vf (speed, km/h) 

and  beamf  = 
7Hz. 

0.02(60) 0.03 0.04 0.05(160)

 0.08 1.57 2.36 3.14 3.93 
 0.12 1.05 1.57 2.09 2.62 
    

/ L�  
0.16 0.79 1.18 1.57 1.96 

 0.18 0.70 1.05 1.40 1.75 
 0.20 0.63 0.94 1.26 1.57 
 0.24 0.52 0.79 1.05 1.31 
 0.30 0.42 0.63 0.84 1.05 
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Table 2  Vehicle axle arrival rate and span passage rate 
for high speed 

af for L = 20 
m 

                         vf (speed, km/h) 

 and beamf  = 
7Hz. 

0.06(190) 0.08 0.10 0.12(380)

 0.40 0.94 1.26 1.57 1.88 
 0.50 0.75 1.01 1.26 1.51 
    

/ L�  
0.60 0.63 0.84 1.05 1.26 

 0.70 0.54 0.72 0.90 1.08 
The nondimensional frequencies of the first two modes of 
the two-span beam are 1f  = 1 and 2f  = 1.57. 
At normal speed  ( vf  = 0.02 to 0.05) 
     The vehicle model in Fig.1a) is considered here. 
Roughness model with parameters 3

0 /q L = 0.0625x10-6 
and /c L� = 2.50 is used, it is the model of a road with 
RMS roughness = 0.01 m.  
Figures 3 and 4 show the expected value and variance of 
moments at midspan and at interior support for 1af f�  
and 2af f� . The behaviors of expected beam responses 
are similar (displacement at midspan and shear at 0.95L 
are not shown here), DAF of those are between 1.05 to 
1.10. Variances of beam responses in Figs. 3 and 4 can be 
separated into four pairs for each value of vf (0.02, 0.03, 
0.04, 0.05). In each pair it is clearly that 2af f� causes 
strong fluctuation in variances, especially in VAR[M(L)]. 
Note that variances in the case of 1af f�  are slightly 
higher than those 2af f�  for the moment at midspan, 
and vice versa for the moment at interior support. 
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Figure 3 shows time history of expected values and 
variances of moment at midspan for af = 1 and 1.57 
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Figure 4 shows time history of expected values and 

variances of moment at interior support for af = 1 and 
1.57 

Figure 5 shows the mean values and variances of 
midspan acceleration. The maximum midspan 
acceleration in this velocity range is 0.1g which is the 
level that people on the bridge can feel uncomfortable. 
Moreover, the variances are quite high, 0.02 to 0.045. 
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Figure 5 shows time history of expected values and 

variances of beam acceleration at midspan for af = 1 and 
1.57 

At high speed  ( vf  = 0.06 to 0.12)    
     For vf = 0.06 to 0.12 (V = 190 to 380 km/h for beam 
span 20 m and frequency 7 Hz). At this high velocity 
level vehicle is assumed to be rail vehicle system. Thus, 
the roughness model for the rail system is used here. The 
combinations of vf  and / L�  that cause resonance are 
shown in Table 2.  If / L�  = 0.5 and vf  = 0.08 the axle 
arrival rate equals the fundamental frequency. For typical 
values of 1�  and L, vf  = 0.08 corresponds to a velocity 
of 70 m/s (250 km/h). If / L�  = 0.5 and vf  = 0.12, the 
axle arrival rate equals the second natural frequency. 
Therefore it is possible for the axle arrival rate to be in 
resonance with the first and second beam frequencies, for 
feasible vehicle speeds. Let / L�  be fixed at 0.5 and the 
span passage rate, vf , be 0.08 (�  250 km/h). Figures 6 
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and 7 show that the displacement and the moment at 
midspan have the largest amplification. The maximum 
expected values of dynamic amplifications are 1.32 and 
1.22 respectively (recall that multiples of standard 
deviations of amplification factors must be added to 
determine design amplification factors). It is simply 
because the first mode is excited, af  matches 1f , and the 
displacement and moment at midspan are two responses 
dominated by this fundamental asymmetric mode. When 
the span passage rate increases to 0.12 (�  380 km/h), the 
moment at the interior support is amplified by as much as 
1.32 (Fig. 8) which is more than the other responses. In 
this case the second mode, the symmetric mode, is 
excited. A response dominated by this symmetric second 
mode is the moment at the interior support.  For / L�  = 
0.6 and 0.7, only the first mode is excited (Figs. 6 and 7) 
for realistic velocities (less than 380 km/h). If / L�  is 
greater than 0.5 the axle arrival rate is unlikely to be in 
resonance with the second mode since the velocity 
corresponding to that resonance mode is well above a 
practical level. If / L�  is greater than 1, af  will never 
match 1f  and resonance due to af  never occurs. The 
shear (Fig. 9) is different from the other responses as all 
of the modes (both asymmetric and symmetric modes) 
participate in this response.  
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Figure 6 shows time history of expected values and 

variances of displacement at midspan for af = 1 and 1.57 
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Figure 7 shows time history of expected values and 
variances of moment at midspan for af = 1 and 1.57 
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Figure 8 shows time history of expected values and 

variances of moment at interior support for af = 1 and 
1.57 
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Figure 9 shows time history of expected values and 

variances of shear at 0.95L for af = 1 and 1.57 
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Figure 10 shows time history of expected values and 

variances of beam acceleration at midspan for af = 1 and 
1.57 

.   
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Figure 11 shows time history of expected values and 

variances of displacement at midspan for af = 1 and 1.57 
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Figure 12 shows time history of expected values and 
variances of moment at midspan for af = 1 and 1.57 
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Figure 13 shows time history of expected values and 
variances of moment at interior support for af = 1 and 

1.57 
Figure 10 shows time history of expected value and 
variance of beam acceleration at midspan. It is found that 
the maximum expected beam acceleration is 0.4g (quite 
high) and occurs after vehicles left the span.  
     For a high-speed ground transportation system there is 
a possibility to have resonance between the axle arrival 
rate and the second mode frequency. For this condition 

the moment at the middle support needs to be examined 
closely 
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Figure 14 shows time history of expected values and 

variances of shear at 0.95L for af = 1 and 1.57 
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Figure 15 shows time history of expected values and 

variances of beam acceleration at midspan for af = 1 and 
1.57 

 
Effect of number of axles (interfaces) 
     For high speed vehicle, i.e. maglev, the suspension 
system can have more than two contact points. More 
contact points can benefit the design of the system. 
Figures 11 to 14 (also Table 3 and 4) show the expected 
beam responses reduce, i.e. E[M(L)] reduces from 1.32 to 
1.10, when eight suspensions are used. This suspension 
arrangement can also reduce strong fluctuation in 
VAR[M(L)] dramatically (Figs. 8 and 13). Figure 15 
shows the expected beam acceleration at midspan reduces 
from 0.4g in Fig. 10 to 0.16g.  
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Table 3  shows the maximum beam responses when af is 
in resonance with 1f  for two different suspension 
configurations 
Y = Structural  Two contact 

points 
Eight contact 

points 
       Responses [ ]E Y  [ ]VAR Y  [ ]E Y  [ ]VAR Y

(0.5 )v L  1.32 0.0200 1.20 0.0105 
(0.5 )M L  1.22 0.0125 1.15 0.0105 
( )M L  1.10 0.2100 1.10 0.0280 

(0.95 )S L  1.00 0.0090 1.10 0.0090 
(0.5 ) /v L g��  0.30 0.0040 0.14 0.0025 

 
Table 4  shows the maximum beam responses when af is 
in resonance with 2f  for two different suspension 
configurations 
Y = Structural Two contact 

points 
Eight contact 

points 
       Responses [ ]E Y  [ ]VAR Y  [ ]E Y  [ ]VAR Y

(0.5 )v L  1.05 0.015 1.25 0.0100 
(0.5 )M L  1.20 0.019 1.20 0.0100 
( )M L  1.32 0.041 1.10 0.0260 

(0.95 )S L  1.05 0.010 1.10 0.0085 
(0.5 ) /v L g��  0.40 0.003 0.16 0.0035 

 
Effect of fundamental frequencies of vehicle - Natural 
frequencies of the car body (normally low) may not be 
equal to the first mode frequency of a typical short-span 
bridge unless the primary and secondary springs are very 
stiff. It is not realistic to have such a stiff suspension [7], 
since passenger comfort criteria may not be met. For a 
structure with low frequency such as a large suspension 
bridge, there is a chance of a structure frequency 
matching a vehicle frequency. However, the mass of the 
vehicle is very small compared to the mass of a 
suspension bridge, so significant dynamic amplification 
is not likely. 
 
4.   Conclusion  
Random vibration time history analyses provide vehicle 
and structure responses that can define appropriate 
surface smoothness requirements and design 
amplification factors for structure for high speed 
vehicles. Mean value and covariance matrix of system 
responses can be determined. 
     It is found that one specific value of a nondimensional 
parameter may cause a maximum in one response while a 
different value may cause a maximum in another 
response. For two-span beam, the moment at the interior 
support can have high dynamic amplification factors 
when axle arrival rate matches to the second natural 
frequency of the beam.  
     For high speed rail system, an appropriate suspension 
configuration of vehicle can reduce the expected value 
and variance of DAF of beam responses.  
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