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Abstract

In recent years, interest in high speed ground transportation has encouraged the study of
vehicle-guideway systems that can operate at 240 to 480 kph (150 to 300 mph). The
system considered here consists of a multiple axle, passive suspension vehicle model,
random surface roughness model and a linear elastic structure model. This research
provides insights on system modeling, system analysis and system design.

A series of 2DOF vehicle model with a constant velocity are used and a fixed
wheelbase or distance between axles. The vehicle is coupled with the structure at the
spatial positions of the axles. The interface between the vehicle and the structure
determines the appearance of parametric terms in system matrices. If a mass-spring-
dashpot interface is used, then all the system matrices are paramtetric. If a spring
interface is used, then only the stiffness matrix is parametric.

Surface roughness is modeled as a stationary spatial random process. A Markov
vector model that includes multiple interface points is formulated.

A two-span beam is used as a structure model. It is defined in the modal domain
by natural frequencies, mode shapes and damping values. All vehicle, roughness and
structure parameters are nondimensionalized and the equations of motion of the vehicle-
guideway coupled system are written in state form. Then, by taking expectations,
stochastic state equation is decoupled into two matrix equations. One is for the
evolutionary mean vector and the other is for the evolutionary covariance matrix. The
matrix equation for the evolutionary mean vector has parametric and deterministic
additive excitation. The equation for the evolutionary covariance matrix has parametric
and random additive excitation. Structural responses are normalized by maximum static
responses, so the evolutionary means and variances of dynamic amplification factors are
computed.

Effects of parameters on mean and variance responses are studied. The
nondimensional span passage rate and the nondimensional axle arrival rate are two
parameters that affect responses significantly. At very high velocities, the axle arrival
rate can be equal to fundamental frequencies of the structure, causing large mean values

of responses. Effects of the number of axles are also studied. Effects of different surface



roughnesses, including those corresponding to current surface roughness specifications,

on the responses of the high speed vehicle-guideway coupled system are presented.
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Executive Summary

Dynamics of high speed vehicle-guideway coupled systems is an important problem for
future ground transportation systems. The system considered here consists of a multiple
axle, passive suspension vehicle model, random surface roughness model and a linear
elastic structure model. This research provides insights on system modeling, system
analysis and system design.

A series of 2DOF vehicles were used as models. A distance between axles, a so-
called wheelbase, was fixed to be equal for all axles. The vehicle-structure interface
model determines the appearance of parametric excitation in system matrices. If an
unsprung mass-dashpot-spring is used, all matrices have parametric terms. If a spring is
used, then only the stiffness matrix contains parametric terms.

Linear filter equations are used to incorporate roughness into the system state
equations. The roughness process and perhaps its derivatives should have a finite
variance. The interface model determines the order or number of filters required. If a
mass-spring-dashpot is used as interface, three first order linear filters are needed for the
first and second derivatives of roughness processes to exist and have finite variance. If a
spring is used, only one first order linear filter is sufficient.

Multiple axle vehicles have a kinematic filtering effect on system excitation.
Multiple interface points are taken into account by adding a first order filter to model an
excitation with lag. The filter equations are excited by correlated white noises in order to
have an appropriate zero-time-lag cross-correlation between any two roughness
processes.

High speed vehicles will operate on multiple-span, elevated guideways. A two-
span beams, used a structure model herein, is a possible choice. The formulation
presented uses a modal domain model of the structure. Mode shapes of a two-span
symmetric beam are either antisymmetric or symmetric.

Nondimensional parameters of the system are defined. They are wheelbase-to-
span length ratio (¢/L), vehicle-to-guideway mass ratio (M/mL), nondimensional

velocities such as span passage rate (f,) and axle arrival rate (f,), suspension

parameters (f, and f), and modal damping ratio (&) .
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A matrix first order linear stochastic differential equation was formed and, taking
expectations, two deterministic first order equations are obtained: evolutionary mean
vector equation and evolutionary covariance matrix equation. The first has parametric
and deterministic additive excitation. The second equation has parametric and random
additive excitation.

Effects of a sudden change of surface, smooth and rigid to rough and flexible,
were also studied. Amplification of the beam responses varies for different types of
responses. Such surface change does not affect the expected values of beam responses
significantly. The sudden change affects varaince of vehicle responses substantially.
Variances of vehicle responses overshoot after a surface change then decay to stationary
values. Vehicle damping affects this phenomenon; vehicle variances spike higher if a
vehicle is highly damped.

There are two important parameters that have strong effects on evolutionary mean

and variance responses. One is the nondimensional span passage rate, f,. Variances of
beam responses become larger with increasing f,. Expected values of beam responses
tend to increase also, in most cases, but they also depend on ¢/L. The other significant
parameter is the axle arrival rate, f,. At high speed, for reasonable values of //L and
M/m L, the axle arrival rate, f,, can match the first or even second natural frequency of

the beam. Therefore, the moment at the interior support which is dominated by the
secondmode shape (first symmetric mode shape), may be significantly amplified.
Expected values of dynamic amplification of beam responses can be up to 1.40.
Moreover, variances of beam responses seem to have large contribution to the RMS
responses if current surface roughness specifications are used. Roughness can cause
standard deviations of dynamic amplification up to 0.20. It is found that one specific
value of a nondimensional parameter may cause a maximum in one responses while a

different value may cause a maximum in another response.



CHAPTER 1

INTRODUCTION

1.1 Significance and Motivation
High speed rail (HSR) with speed between 200 and 350 km/h has a crucial role to
transport people. It has been of increasing interest nowadays and has great
advantages for third world countries. China’s largest city, Shanghai, is going to
launch the first commercial maglev train of the world. With the power of
electromagnetic levitation, magnetic levitated (maglev) vehicle can convey
passengers up to the speed of 430 km/h. Using German technology maglev line of 30
km at a cost of $1.2 billion has been in service since summer 2003. It can carry
passengers from Shanghai’s financial district to its international airport in eight
minutes, while a car usually takes from 45 minutes to 1 hour. Maglev supporters
expect that the Shanghai’s maglev project would lead to other HSR projects
worldwide. In Thailand, the plan of building HSR was started in 1995 when the
National Economic and Social Development Board (NESDB) hired Wilbur Smith
Associates to do a feasibility study of HSR interconnecting the second Bangkok
international airport (Suvarnabhumi) and Rayong. However, recently the Ministry of
Transport has planned to provide budget of 18.5 million baths in 2004 for a feasibility
study of 260 km-HSR from Bangkok to Nakhon Ratchasima. Hence, it is important
to provide some aspects of system-modeling, -analysis, and —design for Thai
engineers.

Engineers have traditionally studied vehicle and structure systems separately.
Civil engineers might consider a vehicle load as a moving point load because it is the
easiest way to analyze a structure. It is applicable if the inertia of the vehicle is small
[31, 32, 38]. Today it is possible to analyze models that capture the interaction
between a vehicle and a structure. System excitations may be either deterministic or
random. Normally the weight of the cars is considered deterministic. Random
excitation may come from surface irregularities. Surface irregularities in turn affect
ride quality and structural response.

The principal objective of this research is to quantify the effects of vehicle and

structure parameters on the dynamic behavior of vehicle-structure coupled systems.



The goal is to provide guidelines for structural design by nondeterministic approach.
By modeling vehicle-structure coupled system, parametric excitation, deterministic
excitation and random excitation can be taken into account. Results from system
analysis are statistical moments of the system. One is the evolutionary mean vector
and the other is the evolutionary covariance matrix.

In this research nondimensional parameters are introduced, thus formulations
can be simply applied to any unit systems. Responses are presented in terms of
dynamic amplification factor (DAF) which is defined as dynamic response divided by
maximum static response. The concepts can be applied to any systems, i.e., car-
bridge, train-railway, high speed rail system and magnetic levitated vehicle depending
on range of velocities and interface between vehicle and structure.

It is essential for designers to know about system responses at resonant
condition, especially at high speed. Excessive vibration imposes a great danger. It
may lead to disastrous accident. Parameters involving in how resonant condition
occurs are span crossing rate, axle arrival rate [34], fundamental frequencies of

vehicle and structure, damping properties of vehicle and structure, and mass ratio.

1.2 Objectives

e To study dynamic behaviors of vehicle-structure coupled system, particularly
an interaction force and amplitude of responses at resonant condition.

e To study effects of vehicle parameters such as vehicle velocities, number of
axles, axle-arrangement and mass of vehicle to mean values and variances of
structural responses.

Vehicle velocities — At high speed, axle arrival rate can cause resonance at the
higher modal frequency and it can strongly amplify structural response corresponding
to that modal frequency such as negative bending moment at the interior support [34].
At lower speed, especially when wheelbase to span ratio is less than 0.5, the same
phenomena occurs. Hence, it is interesting to investigate how it affects amplitude of
responses.

Number of axles — When more axles (interface points) are added to the
vehicle, load configuration is changed from two-point load to eight-point load

(maglev can have up to eight magnetic pads). Maximum response may be lower since



it approaches a uniform load. However, how many interface points is optimal is still
questionable.

Axle-arrangement and mass ratio — This parameter can be studied as follow:

Truck — Typical truck weight 20 to 40 ton crossing bridge with speed 50-80
km/h, i.e., at a bridge across the Chaopraya river in Nakhon Sawan vibration is
sensible while trucks traverse it.

Train — Normally a train has two parts, locomotives at the front and at the end,
and carriages in the middle. Locomotives usually are much heavier than carriages.

Different mass distribution in train can affect structural responses.

Intercity rapid transit — Configuration of this kind of vehicle normally is three
or four bogies. It travels with speed higher than the other two previously mentioned
cases. This system was partly investigated [34]. Only two parameters, span crossing
rate and axle arrival rate were studied. Other vehicle parameters that can affect
amplitude of structural responses will be studied.

e To study effects of surface roughness to mean values and variances of system
responses. By the nature of surface roughness it does not have a dominant
peak. It has, however, an additional amplification to system responses. At
low speed it affects mainly to passenger ride comfort. It may not be as crucial
to the structure. At high speed surface roughness must be considered in the

design.

1.3 Literature Review

Since the 1960s, extensive research on coupled vehicle-structure systems has been
done in the United States and Europe. Early studies of beam-vehicle system
dynamics concentrated on a simply supported beam traversed by a simple vehicle
model [1, 9, 39]. Investigations arising out of AASHTO road test [10] expanded
studies to three span continuous beams with more complicated vehicle models. More
recently, orthotropic plate theory has been applied to dynamic analyses by
Marchesiello, et al. [26]. Most of these studies have used simple vehicle models and
equations of motion have been solved by numerical integration. Many researchers,
Lin and Trethewey [24], Henchi, et al. [16, 17] and Hino, et al. [18] used the finite
element method to model and analyze structures. Several others employed Fourier
series and Fourier transforms [37]. The state space approach was also used by many

groups including Harrison and Hammond [11, 12, 13, 14], Yadav [41] and Narayanan



, et al. [28]. In general, vehicle-structure interaction is significant. Law, et al [4, 19,
20, 21, 44] tried to obtain the real interaction force when a vehicle traverses a
structure and studied moving force identification both experimentally and analytically
using both time domain and frequency domain approaches. The modal properties of
the bridge were measured by impulse tests with an instrumented hammer [10] and
compared with a simple mathematical model. Of course the real interaction force is
not constant, it is affected by surface roughness, vehicle suspension and stiffness of
the structure. Other work on identifying interaction force can be found in references
[5, 25]. A few papers related to analysis of roughness-vehicle-structure coupled
systems are briefly reviewed here:

Marchesiello, et al. [26] used a seven-DOF vehicle model, including pitch, roll
and heave motions for an analysis of dynamic interaction of multi-span continuous
bridges modeled by isotropic plates with MDOF vehicles moving at constant speed.
Modal superposition was adopted and vehicle-bridge interaction was computed.
Bridge surface irregularities were modeled as an ergodic stationary Gaussian random
process with cut-off spatial frequencies. A technique to implement flexural and
torsional modes of structure was presented. Contribution of torsional modes on
displacement at midspan and the importance of surface roughness and vehicle speed
were pointed out. A three span continuous bridge was analyzed by finite element
method as an example. The result showed that the dynamic amplification factor was
very sensitive to the damping of the vehicle suspension and to the roughness of the
road. At the center of the bridge, dynamic amplification factor of beam deflection can
increase from 1.05 to 1.35, when roughness was included for relatively low
suspension damping. They found that for a realistic range of velocities, the span
crossing frequency (velocity divided by span length) does not cause resonance in
beam structures.

Smith, Gilchrist and Wormley [36] develop analyses to determine the dynamic
performance of vehicles interacting with single and multiple span structures. They
used a two-dimensional rigid body vehicle that is capable of heave and pitch motion
and used the modal analysis technique to derive the finite multiple-span guideway-
vehicle model. Studies indicated that the largest dynamic amplification factor occurs

at vehicle crossing frequencies (also called nondimensional velocity) v. ~ 2 (v, =

v/l f, v is vehicle speed, f is natural frequency, ¢, is span length). This basic

N



observation is made by Timoshenko, et al. [39], Biggs [1] and Fryba [9], and it

appears in many other references [8, 36]. For v <1 guideway damping has very little
influence to the responses. For larger values of v, > 1 guideway dynamics become

important for all of case studies. So for high-speed (150-300 mph) systems a dynamic
analysis is required. They note that: 1) For advanced transportation systems, which
must provide good ride quality, the complete vehicle-guideway system must be
considered in design. 2) Improvements in both guideway design and vehicle
performance influence the overall system material requirements and economic
feasibility significantly.

Doran and Mingori [8] examined two approaches for analysis of vehicle-
guideway systems. The first approach was based on a combined analytical and
numerical study of the exact governing equations (fully coupled equations). The
second approach was based on the analytical solution of a set of approximate
governing equations (partially coupled equations). This approach takes advantage of
the fact that a requirement for acceptable vehicle acceleration is a small fraction of g
to reduce complications of the governing equation. This study showed that if ride
comfort constraints were satisfied (maximum vertical acceleration < 0.1 g), maximum
accelerations based on partially coupled equations agree closely with those based on
fully coupled equations. Note that in this work vehicle was modeled as SDOF and
only a simply supported beam was considered. For high-speed and more complex
vehicle/guideway coupled systems using partially coupled equations may not be
sufficient.

Cai, Chen, Rote and Coffey [3] studied dynamic interactions between a
maglev vehicle and guideway. The vehice model, two suspensions and two masses
(primary and secondary), was used. Their results showed that dynamic interaction of
vehicle and guideway had little influence on the secondary suspension at the given
parameter. The effect on guideway displacement was smaller for v/v. = 0.25 than for
v/v. = 0.5, however the acceleration of the primary suspension was greater for v/v, =
0.25 than for v/, = 0.5. With other parameters fixed, the ratio of vehicle mass to
guideway mass had less influence on vehicle than on guideway displacement. Only
guideway displacements were computed, other important responses such as moment

were not included.



Henchi, Fafard, Dhatt and Talbot [16] presented an exact dynamic stiffness
formulation using finite element approximation to study the dynamic behavior of
multispan beams under moving loads. The modal technique was used with an FFT
algorithm to obtain the dynamic responses of continuous bridges. Three examples
were considered: free vibrations of a multispan beam, a single span beam under a
convoy of moving loads and the three span beam under a moving force. In this work
vehicle/structure interaction was not considered. In later work [17] they presented an
algorithm to solve the coupled dynamic system using a modal superposition method
for the bridge and the physical components for the vehicles. The vehicles were
modeled as a linear discrete mass-spring-damper system. The road roughness was
also taken into account through the power spectral density. The numerical examples
studied 2D and 3D vehicles traveling on a bridge modeled from simple supported
beam and plate. The results obtained from the proposed formulation (using the
central difference method and inverse of pseudo-static mass matrix) were in
agreement with those reported in the past work [2, 15]. Several of simple numerical
examples were used to test efficiency of the algorithm, there was no parametric study.

Some aspects of vehicle-structure and surface roughness modeling are
presented in [33]. Surface roughness can have deterministic or stochastic (random
process) models. The stochastic model may be either stationary or non-stationary and
it may be formulated in a time or frequency domain. Several models are defined for
the interface between a multi-car vehicle and structure. A Markov vector model that
includes multiple interface points is formulated.

In [34, 35] one-car and three-car systems with a constant velocity and a fixed
wheelbase are used as vehicle models. The vehicle is coupled with the structure at the
spatial positions of the axles. A series of two-span beams is used as a structure
model. It is defined in the modal domain by natural frequencies, mode shapes and
damping values. Effects of parameters on mean and variance responses are studied.
The nondimensional span passage rate and the nondimensional axle arrival rate are
two parameters that affect responses significantly. At very high velocities, the axle
arrival rate can be equal to fundamental frequencies of the structure, causing large
mean values of responses. Other parameters are still needed to be explored.

Liang, Zhu and Cai [23] presented dynamic analysis of the vehicle-subgrade
model of a vertical coupled system. The interactions between the vehicle running

quality and the subgrade design parameters were investigated. They used the six-



DOF, two at the center of mass and one at each wheel as a vehicle model.
Quadrangle finite elements were used to model track and subgrade. Modal analysis

and the Newmark- # method were performed. Elastic deformation of base surface

was computed for various subgrade design parameters. It was found that if the
foundation stiffness was given in, the range De > 10 MPa, the elastic deformations of
base structure were in the range of 1.2-3.7 mm.

Yau, We and Yang [42] studied impact response of bridges with elastic
bearings to moving point loads. Elastic bearings were often adopted as base isolators
in bridge engineering to prevent the damage from severe earthquake. The span length
of the beam was assumed to be no greater than twice the interval between two
consecutive moving loads. It was found that the resonance response for the damped
beam remained practically constant regardless of the number of moving loads passed
the beam unlike the undamped case. It was concluded that the elastic bearing may
increase the response of the beam under most resonance conditions. The more
flexible the elastic bearings, the larger the response of the beam is.

Degrande and Schillemans [6] presented the experimental data of the high-
speed train track between Brussels and Paris, free field vibrations and track response
were measured during the passage of a Thalys high-speed train at speeds varying
between 223 and 314 km/h. This data set can be used for the validation of numerical
prediction models for train-induced vibrations.

Verichev and Metrikine [40] examined the stability of vibration of a bogie
uniformly moving along a Timoshenko beam on viscoelastic foundation. The bogie
was modeled by a spring and a dashpot connected in parallel. They showed that when
the velocity of the bogie exceeds the minimum phase velocity of waves in the beam,
the vibration of the system may become unstable (the amplitude of vibrations grow
exponentially in time). They also found that the stability of the model depended on
the damping in the supports and the mass of the bogie bar was the least influential
factor.

Zheng and Fan presented the derivation of the governing equations for the
stability of vibration of a train-and-rail coupling system. The train consists of a
convoy of two-axle wagons. Each axle was modeled as a mass-spring-damper
vibration unit. The rail was an infinite long Euler beam rested on a viscoelastic

foundation. The equations were solved by Fourier and Laplace transforms. It was



found that the total mass was the critical parameter (unlike in [40]). Various variables
were found influencing the critical mass to different extent. Amongst them, the
effects of axle, total number of axles were investigated. Furthermore, the governing
equations reveal the existence of negative damping in the coupled system. A stiffer
foundation can diminish the negative damping and reduce the danger of instability.

Michaltsos [27] examined the influence of loads moving with variable speeds
on the dynamic behavior of a single-span beam. Three cases wre considered. Firstly,
the concentrated load, moving with time-varying velocity, secondly the vehicle (with
wheelbase), moving also with time-varying velocity and lastly, the influence of light
damping on the above case of a moving vehicle. He concluded that the effect of a
variable speed was significant for deflections of the bridge. The acceleration tends to
induce larger deflection than the deceleration. Regarding of type of model, the
loading by a two-axle model is more accurate than that by a single-axle model.
Single-axle model may be more favorable in the case of long span bridge. The last
conclusion was the influence of external damping can be neglected.

Lei and Noda [22] formulated a dynamic model for the vehicle and track
coupling system by means of finite element method. Also the track vertical profile
was included in this model. Analyses for the coupling system were performed in time
and frequency domains. The system was solved by the iterative scheme and the
conventional Hertz formula. The interaction force, the acceleration of vehicle and rail
were obtained for various speeds and various irregularity. It is very good presentation
for system modeling. However, the results and conclusions obtained from this
literature and preliminary, it does not provide much insight.

Demic, Lukic and Milic [7] attempted to develop criteria for ride comfort
improvement. An investigation of the human body behavior under random vibration
was reported. The results showed that humans are very sensitive to vertical random
vibration of frequencies below 1 Hz, and are least sensitive of frequencies above 5
Hz. Moreover, humans are more sensitive to random multi-directional vibration than
to one-directional vibration.

Paddan and Griffin [29, 30] measured the vibration in 100 different vehicles.
They tried to model a comprehensive comparison of the evaluation methods in BS
6841 and ISO 2631. For most measurements, the vertical axis on the seat gave the
greatest acceleration magnitude. Evaluations of vibration in accord with ISO 2631

(using the most severe axis) gave lower values than those in accord with BS 6841. It



is because of a combination of different frequency weighting, different axis multiplier

(for horizontal vibration) and the use of one versus for axes in the calculation.

1.4 Conclusions from Literatures

Only a few studies have concentrated on analyses of dynamic of coupling
system with random surface.

None of them discussed about reliability of the system.

None of them used the more systematic method, i.e. response surface
methodology, for making decision about significance of parameters.

There are many types of vehicle models to choose for the analysis of a
roughness-vehicle-structure coupled system. The selection depends on

physical nature of the system.
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CHAPTER 2

RANDOM ROUGHNESS AND INTERFACE MODELS FOR MULTI-
AXLE MOVING VEHICLES

2.1 Introduction

Vehicle-structure models and interface models have been studied for a long time [4,7,18].
Some aspects of surface roughness modeling [7,20,25] and interface models are
discussed in this chapter. Surface roughness can have deterministic or stochastic (random
process) models [10,11]. Stochastic models may be either stationary or nonstationary and
may be formulated in a time or frequency domain [1,15,16]. Moreover, there are several
interface points between a multi-car vehicle and a structure. A Markov vector model that

includes multiple interface points is formulated in this Chapter.

2.2 Filtered White Noise and Existence of Derivatives of Filtered Processes

To incorporate roughness processes into the vehicle-structure model, the system state
equations may be augmented by shaping filter equations [12]. The filters may be either
low-pass or high-pass, first order or higher order. In general, filter transfer functions are
expressed in terms of wavenumber, r (the inverse of wavelength, 1), and one or more

filter parameters. Some common filters and their transfer functions are as follow:
A first order filter is given by the equation:
h

Sdp, =W, Q2.1)

¥y

the transfer function between W, and 4,, H(r), is:



and the square of the absolute value is:

b () __

1+(r/rf)2

Returning to Equation 2.1, the transfer function between W, and —< is:

Ty

(’”/”f)
H(r)z 1+(r/rf)i

and the square of the absolute value is:

14

(2.2)

2.3)

2.4)

2.5)
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Figure 2.1 : Square of the Absolute Value of the Transfer Function between /4, and

W, for the First Order Filter given by Equation 2.1
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Figure 2.2 : Square of the Absolute Value of the Transfer Function between /, / r, and

W, in Equation 2.1

Figure 2.1 shows that if /¥, is white noise, its high wavenumber components are filtered

out and 4, has only low wavenumber content. r, is the wavenumber at which the square
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of the absolute value of the transfer function is equal to 0.5. Figure 2.2 shows that if W, is

white noise, the response 4 3 / r, retains the high wavenumber content.

A second order filter may be defined by:

Coae
h—‘;+ihd+hd =W, (2.6)
e 1y

The transfer function between W, and h,,H(r) , is:

1

H(r) = (2.7)
1_(’”/”/)2 +(2¢, ”/’”f)i
and the square of the absolute value is:
2 1
[ (r)) = (2.8)

(1_(r/rf’)2)2 (28, 1/r,)

Figure 2.3 shows ‘H(r)‘zof Equation 2.8. At r/rf =1, H(r)‘2 = 1/(25)2 . For high values

of &, the peak shifts from r/ r, =1 toward the low wavenumber range.

If W, is viewed as white noise and 4, (xd)as a surface roughness the Power Spectral

Density (PSD) of #,,S, , (r) ,can be obtained from the following basic stationary input-

output equation, (Note that in this work all PSD's are two-sided PSD's):

Shun, (r) = ‘H(”)‘z S 2.9)



Hr)?

Figure 2.3 : Square of the Absolute Value of the Transfer Function between /4, and

W, for the Second Order Filter given by Equation 2.6

in which S, is the intensity of the white noise process, W,,and the variance of the

roughness process, #, (xd) , 1s found from the integral of its PSD:

O-hz,m (r) = w”H(r)‘z S,dr

(2.10)
The variance of the first derivative of the process is:
2 o 2
o (r): Ir ‘H(r)‘ S,dr (2.11)

and the variance of the second derivative of the process is:

0

O-lilh},'f (r) = Ir4 ‘H(r)‘2 S,dr

(2.12)

17
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Because these integrals are functions of #”/r", for a finite variance m must be less

thann. Therefore the derivative process from Equation 2.1 does not exist, whereas the
derivative process from Equation 2.6 does. The importance of the existence of derivative
processes is explained in Section 2.4, which discusses various vehicle-structure interface

models.
2.3 Roughness Models

The system equations of motion are herein solved in the time domain. Since
roughness is a spatial function and has a dimension of length, it must be transformed
from the spatial domain to the time domain and then nondimensionalized. The procedure

is as follows:
2.3.1 Dimensioned Spatial Process

Here, surface roughness is modeled as the output of a first order filter driven by
white noise and expressed in a real spatial domain by the following linear ordinary

differential equation:

A —="4h,(x,)=W,(x,) (2.13)

in which Wd(xd) is a zero mean Gaussian white noise with dimension of
(length)',Ag =1/rf. is a correlation distance, hd(xd) is a real, spatial, zero mean
roughness process with dimension of (length)l,S0 is the white noise intensity with

dimension of (length)3 and the subscript d refers to a dimensioned quantity.
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Figure 2.4 : PSD and Autocovariance of 4, (x ;) in Dimensioned Spatial Domain
Let S, =8x10°m’ and r, =0.02,0.03 and 0.04 m’'. Figure 2.4 shows that if r,=1/A,

increases, the PSD of 4, (x d) , given by Equations 2.3 and 2.9, expands to the right which
adds power. In other words, the surface has more high wavenumber roughness. Because

the white noise and roughness have (length)1 dimension, their autocovariances have
dimensions of (length)z. The autocovariance of W, (x,) is a Dirac delta function. The
stationary autocovariance of the zero mean process #, (xd) given by Equation 2.13 ,

which is the Fourier transform of S, , (27zr) , 1s as follows:

COV[hy(x,)h, (x, +A)]=R,, (A)= q—oexp[—m} (2.14)

in which A is a spatial lag, ¢, is the strength of the white process,Wd(xd) ,which is

related to the intensity as follows:

g, =275, (2.15)
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The variance of 4, (x,) is:

VAR[h,(x,)]=R,,, (0) =2‘IT° (2.16)

c

Equation 2.16 implies that the variance, R, , (0), decreases as A, increases.

The stationary autocorrelation function of 7, (x, ), Phn, (A).is defined as:

~ COV[hd (xd)hd (xd +A)] = exp[ |A|} (2.17)

Pa, (A) = VAR h,(x,)]

c

-1

The correlation distance, A, is then the spatial lag at which p, , (A)=e

o

o 1 (A)
Ph h)

=

T
a

—a
3

Figure 2.5 : Spatial Autocorrelation Function of 4, (x,)

Figure 2.5 shows the decay rate of the autocorrelation. For high r or low A, the

autocorrelation decays faster because it is a decaying exponential function of] |A| / A, .
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2.3.2 Dimensioned Temporal Process

Denote the constant velocity of a vehicle asV'. Let x, =Vt and dx, =Vdt, then the

spatial process A, (xd) is transformed to a temporal random process defined by the

equation:

?/C}'Zd(td)—i_hd(td):Wd(td) (2.18)

in which 4, (z,) is a temporal roughness process with dimension of (length)1 (1) is

a temporal white noise process with dimension of (length)l.Frorn the fact that the
variance of the process must be the same after transforming to the time domain, the
intensity and strength of the white noise are scaled to S, =S,/V and ¢, =¢,/V and their
dimensions are (length)’ (time)'. The PSD and stationary autocovariance of 7, (z,) are

shown in Figure 2.6.
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Figure 2.6 : PSD and Autocovariance of Temporal Process 4, (t,)
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The stationary autocovariance of 4, (1, ) is:

cov ] h,(t,)h (t,+7,)]= > (Aq:/V) exp {— (ij;L)} (2.19)

in which 7, is a time lag.

And the variance of A, (1,) is:

VAR B (1,)] = (Aq‘l Ik 2‘20 (2.20)

The velocity that is used in transforming to the time domain affects the characteristics of

the PSD and covariance function. Let A = 50 m, at higher velocities the power in the low

frequency range is lower but the power in the high frequency range is higher. The

autocovariance function decays very fast for high velocities as shown in Figure 2.6. The

stationary autocorrelation function of %, (z,) is:

P, (Td) = exp{—ﬂ} (2.21)

7, == (2.22)



23

1

0.9h
|

\
0.8{1
0.7\
\
0.6+

05|

Phi n2(ta)

0.4
0.3
0.2

01 -4 1=
A\ |
\y:sm
- S~

|
|
0 [ !

0 0.01 0.02 0.03 0.04 0.05 0.06 0.

Figure 2.7 : Temporal Autocorrelation Function of 4, (t d)

Figure 2.7 shows that the process becomes uncorrelated more quickly for higher

velocities.

2.3.3 Nondimensionalization of h,(t,)and W,(t,)

The processes /,(t,)and W, (t,)may be nondimensionalized as h(z,)=h, (td)/L and

W(l d) =W, (t 4 ) / L in which L is a span length. Thus, the filter equation (Equation 2.18)

is changed (the subscript d is dropped) to:

AVL' h(t,)+h(t,)=W(t,) (2.23)
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Figure 2.8 : PSD and Autocovariance of Nondimensional h(t d)

Note that the strength, g,,0f the nondimensional temporal white noise is related to
the strength in the spatial domain by ¢, = ¢, / (VLZ). The stationary autocovariance and

variance can also be written as

CoV [ h(t,)h(t,+4,)] =ﬁexp{— 2l } (2.24)

c

and

VAR[h(td)]:z( 9> GV _ 4 (2.25)

AJV) 20D A, 2AD

The PSD and autocovariance function of the nondimensionalized process h(td) are

shown in Figure 2.8.The stationary autocorrelation function of h(t d) 1s:
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phh(rd)=exp{—ﬂ} (2.26)

T, = VC (2.27)
2.3.4 Nondimensionalization of Time
Define nondimensional time, 7, by:
t 14
f=—9 "¢ 2.28
14
T=—T1 2.29
IAL (2.29)

in which ¢ is time nondimensionalized by the time required to cross a span, L, with a

velocity, V' ,and 7 is a nondimensional time lag. The filter equation is now written as:

(1) ()= () (2.30)

in which 4 now denotes differentiation with respect to nondimensional time.

Assuming that the span length of a guideway is 30 m, the values of the parameter A_/L

corresponding to the assumed wave numbers, 7, in Section 2.3.1 (Figure 2.4) are 1.7, 1.0



and 0.8 respectively.The PSD and autocovariance of the nondimensional process h(t) in

nondimensional time are shown in Figure 2.9:
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q3~D/‘mensfonless
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Figure 2.9 : PSD and Autocovariance of Nondimensional /() in Nondimensional Time

Domain

Denote the nondimensional intensity and strength of the nondimensional white

process in nondimensional time as S; =S, / L’ and ¢, =q, / L’ . The autocovariance and

variance of h(t) are:

COV[h(z)h(zH)]:z(Aq—j/L)exp{—(A'CL/'LJ 2.31)

and

_ E _ Y9 (qO/L3)
VAR[ h(t)]= D) 2AE " 2(a1) (2.32)
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The autocorrelation function and the nondimensional correlation time of h(t) are:

phh(r)=exp{—A|—T/|L} (2.33)

and

7 (2.34)

Note that the autocovariances

in Figure 2.9 cross. This is an effect of
nondimensionalization. However, the autocorrelations in Figure 2.10 do not cross. At a

particular 7 the correlation function is lower if A_/L is smaller.

Phi h2(®)

o
[N —

1=A/L, Dimensionless

Figure 2.10 : Autocorrelation Function of Nondimensional Process / (t) with a

Nondimensional Time Lag

The parameters g, / L’ and A,/L may be adjusted to fit the roughness model to real
data.



28

2.3.5 Modeling Actual Roughness

Shaping filter parameters (strength and A, ) may be chosen so that the PSD of the

filter response matches a target PSD such as the U.S. DOT rail specification.

LS. DOT Aail Specification

—— Road Roughness

\\..\_\‘/

q = "
- .
e -
- -
w
- -

100 10 10
r1/'m

Figure 2.11 : Modeling Actual Roughness

Figure 2.11 shows the U.S. DOT target PSD and four PSD's of filter response,

determined using the following parameters:

For L=30mand S, = 8x10° m’,

PSD A: S,/ =3x10°, A, /L= 1.67,
PSD B: §,/} =3x10°, A, /L= 3.33,
PSD C: S,/L =3x107, A,/L=5.33,
PSDD: S,/ =3x10°, A, /L=6.67.

PSD A is the better fit to the U.S. DOT rail specification. From now on these PSD's,

labeled A,B,C and D, are used to study effects of roughness on responses.
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2.4 Interface Models

Interface models can be linear or nonlinear. Common nonlinear models consider loss-of-
contact [2, 27] or nonlinear elastic springs [19]. A mass or dashpot or spring or any
parallel combination can be used as interface elements [21]. Only linear interface
elements are considered here. The three basic cases of a linear spring interface, a parallel
spring and dashpot interface and a rigid mass with a spring and dashpot in parallel are

analyzed next to understand the nature of the coupling and requirements for roughness

models. The displacement, v} (x,,7,), at a contact point, x, , depends on the vertical

displacement of the beam, v, (xd,t 4 ) , and the irregularity, /, (xd) :

v (xd,td):vd (xd,td)+hd (xd) (2.35)

in which the vertical displacement of the beam can be written in terms of modal
coordinates and mode shapes, v,(x,.7, Z, 1¢ X, y,( ) .The total temporal

derivatives of the displacement at a contact point [21, 23, 26] are obtained as:

4 (x01, Z ¢ (x,) ¥ (¢ +xdz ¢ (x,) v, (t,)+x,1,(x,) (2.36)

xd’ Zz 1¢ xd y, +2xdz ¢ xd y; +xdz, 1¢”

(2 37)
+)'c'dzi:l¢l. X, yl.(td)+)'cdhd(xd)+jc'dhd(xd)

Assuming that a vehicle is traversing with a constant velocity, then. x, =V and X, =0.
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Elastic Benm v

Figure 2.12: SDOF System with Linear Spring Interface with Elastic Beam

Figure 2.12 shows a single-degree-of-freedom (SDOF) system with a linear

spring interface with an elastic beam. Let the dynamic displacement, v, , be the vehicle

DOF. The vehicle equilibrium equation and the modal equations of the beam are:

M, (1) +k (v (1) =95 (x402,)) =0 (2.38)
¥, (t,)+ 28wy, (1,)+ oy, (t,) =P (x,.t,) (V) (2.39)

in which
B (xgty) =k (v, (t,) =i (x40,)) - Mg (2.40)

The equations of motion of the system may be expressed in matrix form as follow:
Mz (1,)+Cx(1,)+ K (2,)x(1,)=F () (2.41)
in which

(t)=[v, w o n] (2.42)



- _
1
M= 1
. 1_
0 ]
28w,
C= 2w,
i 2o,
-k ke, (72,) ke, (V1)

—k¢, (Vt,) @ +kg’ (Vi) kg, (Vi) e (V1))
K(1,)=|-ke,(Vt,) ke, (Vt,)e, (V) @3 +kg; (V)

in which

F =kh,(V1,)

F; = I:_khd (th)_Mg:|¢i (V)

. ke, (V)4 (71,)
. ke, (V1)) 4, (Vt,) |(2.45)

g () k()0 ) k(7))
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(2.43)

(2.44)

k¢, (V1,)

o, +kg; (V1,) |

(2.46)

(2.47)

(2.48)

Note that with a linear elastic interface element, the stiffness matrix on the LHS, K (td ) s

is a known function of time. Temporally varying stiffnesses represent ’parametric’

excitation terms.
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Consider next a SDOF with parallel spring and dashpot interface elements [5, 30]

as shown in Figure 2.13.

Elstic Beam :i: v

Figure 2.13: SDOF System with Parallel Spring and Dashpot Interface Elements with

FElastic Beam

The governing equations are:
My, (td)+c(\'/dv (1,)-v, (xd,td))+k(vdv (1,)-V, (xd,td))zo
Fi(t,)+2803,(1,)+ @y, (t,) = B (x,51,) (V1)
in which
Py (xut,) = (v, (1) = (g0t )) + R (v (1) =5 (x00t,)) — Mg
The equations of motion may be expressed in matrix form as follow:
M (2,)+ C (1) (1) + K (1) x(2,) = F (1)

in which

(2.49)

(2.50)

2.51)

(2.52)
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M= 1 (2.53)

c —cg, (V1) —cg, (V1) —cg, (V1)
—cg (V1,) 28w, +cg’ (Vi,) cd,(Ve,))d (Vt,) ... o, (Ve,)d (V1))
C(t,)=|-co,(Vt,) cd(Vt,)e,(Vt,) 28w, +cd;(Vt,) ... cp,(Vt,)e, (V1) |(2.54)

| —co,(V1,) cp(Vi,)g, (V1,) e, (Ve))g, (Vt,) ... 28w, +cg; (V1,) ]

k -V —kg, —cVg, — kg, - -V —kg,
—kgy @} +cV PGk VES +hdp ... VIS ko
K(t,)=| k¢, Vg, +kdd @ +cVio +kd, ... Vi +kd g, |(2.55)
|k, VI, +kdd, Voo, +kbd, ... @ +cVEP, +kd,
F(,)=[F R F .. F] (2.56)
in which
F'=cVh,(Vt,)+kh,(V1,) (2.57)
F, :[_CVh;(th)_khd(th)_Mg]¢i(th) (2.58)

When a dashpot is added as an interface element the damping matrix, C (t d) , becomes a
known function of time. The effective forces on the RHS depend on both #,(z,)

and 7, (¢, ). Therefore the roughness model must be such that both /4, (7, )and 4} (7, )exist

and have finite variances. Therefore if filtered white noise is used as a model for
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roughness, the order of the filter equation must be such that the first derivative exists and
has a finite variance.
Consider next a SDOF with a rigid mass in addition to the parallel spring and

dashpot as interface elements, as shown in Figure 2.14. The equations of motion are:

Elastic Beam

Figure 2.14: SDOF System with Rigid Mass and Parallel Spring and Dashpot as Interface

Elements with Elastic Beam
My, (td)+c(\>dv (t,)-v, (xd,td))+k(vdv (t,)-V, (xd,td)) =0 (2.59)

¥, (t,)+ 280, (1,)+ !y, (1,) =P (x,.t,)p(Vt,) (2.60)

in which

P (x,.t,)=—mV, (xd,td)+c(\'/dv (,)-V, (xd,td))

t (2.61)
+k("d,, (td)_vdv (xd’td))_(M+m)g
The equations of motion of the system may be expressed in matrix form as follow:
M(t,)%(t,)+C(2,)x(2,)+ K (2,)x(z,)=F(z,) (2.62)

in which



M 0 0
0 mg’ (Vi) mg, (Vi )¢, (V,) ...
M(1,)=| 0 mg (Vt,)s,(V1,) mg; (Vi)

_6 m¢1(th.)¢n(Vzd) mg, (Vt, )¢, (Vt,)

c —Cﬂ —c@
—f 2bm+2mVhh+cff  2mVhd +cpd ..
)=t Vg ropd L2V vef .

| @, 2mV i, +cée, 2mVge +chd,

[k —Vd—kd Vi —kd
i i+ Gh VgV Gh+ Ve
Kt)= R m” ﬂ@w%@%@ o +m” %@fCVMJFk@Z -

ke, mVfg Vg kg, VGV, i,

in which

F'=cVh,(Vi,)+kh,(V1,)

. 20 +2mVE g +C¢n2_

—f,
2mVg @ +ch b
2mVg g +cp b

—Vd—kg,

. R+ VA +kd

i +Vifh +hegh

. & G+ Vg +hd) |

F,=[-mV?h)(Vt,)=cVh, (Vi) kb, (Vi) = (M +m) g |¢, (V,)
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(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

When a mass, spring and dashpot are used as interface elements, all matrices are time

dependent and the effective forces are functions of A, (Vz,),h,(Vt,)and h;(Vt,).

Therefore the roughness model must be such that &, (Vz,),h,(Vt,) and k) (Vt,)exist
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and have finite variances. Therefore if filtered white noise is used as a model for
roughness, the order of the filter equation must be such that the second derivative exists
and has a finite variance.

The vehicle model considered thus far has one contact point or axle. Realistic
vehicle models have multiple axles. Therefore the effects of multiple axles are examined

next.

2.5 Modeling Lags

h,(Vt,),Vt, fixed, and h,(Vt,—1),Vt,~Ifixed, are two random variables whose
correlation is controlled by the filter parameter, A_, and the wheelbase, /. It is proposed
here to replace /,(Vz,~I)by another process #h, (Vz,), which has the same
autocovariance as /%, (Vz,)and is such that the correlation coefficient between
h,(Vt,)and h, (Vt,)is the same as the correlation coefficient between A, (V7,)and

h,(Vt,—1). This is possible because the correlation between two filter responses can be

controlled by the assumed zero-time-lag correlation between components of vector-
valued white excitation. This is shown as follows: Consider two linear first order ODE's,

driven by stationary white noises

?; hdl (t,)+h, (t,)=W, (t,) (2.69)

Sy (1) 4, (1) =W (1) (2.70)

The equations are decoupled but W, (¢,)and w, (#,)have the following covariance

matrix

2w, =00(7) @.71)
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in which

L p
e ] 2.72)

g, is the strength of both W, (z,)and W, (1,),py, ,, is the zero-time-lag correlation

between W, (z,)and W, (z,). The two equations can be written in matrix, first order

form, as:
h,(t,)=A4h,(t,)+BW,(t,) (2.73)
in which
w,(e)=[m, w,.| (2.74)
1
A,V
A= | (2.75)
AV
1
— 0
AV
B= | (2.76)
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The expected value matrix of 4, (td ) can be obtained by solving the following equation:

E|h,(t,)]=exp[At,)E[ h,(0)]|=D(1,)E[ h,(0)] (2.77)

in which ®@(#,) s a transition matrix, given by:

1
exp _W

o (t,)= (2.78)

1
0 exp{—w}

The zero-time-lag covariance matrix of /4, is given by:

0 0

mehd(a,) :qn(rd)zhd(o)hd(o)qf (1,)+ ch(td —u)B[ jQ&(u—v)Bqu (1, —v)dv]du (2.79)

in which # and v arbitrary times between 0 and 7 and 7, =u—v. Since W, and W, are

Gaussian white noises, the double convolution integral reduces to

t

> it =P D oo ® (1) + jqa(zd ~u) BOB'®" (1,~u)du  (2.80)

0

For stationary responses, the first term becomes zero. Therefore,

t

Zhd(’d)hd(fd) - IQD(td _Td)BQBTq)T (td _Td)dz-d (281)

0
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Solving the integral, the zero-time-lag covariance matrix is:

1
1 A, Pw,w,,
2 et b { oy 1 } (2.82)
Therefore,
phdlhdz (O) = delez (2.83)

That is, the correlation between /£, (td)and h,, (td)is equal to the correlation between

W, (t,)and W, (t,). Therefore lags are modeled as follows:

From the stationary response of a first order filter, the correlation function,

Pt ty1) is known for any lag, /, then Py, is set equal to P . Let

Vig)ha(Via=1)
h, =h, (Vt,) and h, =h, (Vi,—1). So, a first order filter equation is added to model
h,(Vt,—1) and both filter equations are excited by correlated white noises with
Purgns, = Pyt TOOR Py 1) = Prytsnt)°

M,Cand K(t,)for the 4DOF vehicle/guideway coupled system in Equation
remain the same, F (¢, )can be rewritten as

n

F(1,)=[0 0 kh,(1,) kh, (1) F .. F] (2.84)
in which

Fy ==k by (t,)6,(V2,)+ by, (1) (V2,~1) ]

+[¢,—(th)+¢1.(th—1)][%+m)g (2.85)
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2.6 Conclusions

Existence of variances of derivative processes depends on the order of linear filter
equations (driven by white noise).

Appearance of higher order derivative processes, 4’ and 4" ,and parametric terms
in system equations depend on type of interface between vehicle and guideway,
i.e., a mass-dashpot-spring interface has h,h" and A" (whose variances must
exist) in the forcing function. It also has parametric terms in
M(1),C () and K (1).

Multiple axle vehicles have a kinematic filtering effect on system excitation. A
first order filter is added to model an excitation with lag and filter equations are
excited by correlated white noises in order to have an appropriate zero-time-lag
cross-correlation between any two roughness processes.

In this work, only interfaces between a vehicle and guideway are considered,

therefore first order filters are sufficient.
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CHAPTER 3

DYNAMIC RESPONSES OF A TWO-SPAN BEAM SUBJECTED TO
HIGH SPEED 2DOF SPRUNG VEHICLES

3.1 Introduction

The principal objective of this work is to perform studies of coupled vehicle-structure
dynamic systems to guide the design of structures for high-speed vehicles. The random
roughness is modeled by filtered white noise. The structure is modeled as a two-equal-
span prismatic flexure beam. The vehicle is modeled as a series of 2DOF vehicles.
System parameters are nondimensionalized and the equations of motion are written in
state space. Here the equations for the mean and zero-time-lag covariance matrices of the
state vector are solved using modal technique. Static values of a set of responses are
determined, the statistical moments of the dynamic responses are normalized by the
corresponding maximum static values. Therefore statistical moments of all responses are
expressed in terms of dynamic amplification factors (DAF). Extensive parametric studies
are presented that identify effects of important nondimensional parameters on the
behavior of coupled vehicle-structure systems. This work provides designers of structures
for high-speed vehicles insights on effects of nondimensional system parameters on

behavior and quantifies values of DAF that may be produced by high-speed vehicles.

3.2 Coupled vehicle-structure system equations in state space
The dynamic response of a structure traversed by a vehicle is assumed to be completely

defined by a vertical displacement function, v(x,7)[1]. The vertical displacement of the

structure is here expressed in the modal domain as follows:

W)=Y 7 04 () 3.1)
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in which ¢ (x)is the i"mode shape and y,(¢)is i”"modal coordinate. The total

displacement at an interface of a vehicle with a structure having surface roughness, #(x),

is [2]:

Vi(x,1) =v(x,1) + h(x) (3.2)

The surface profile, 4(x), can be modeled as an output of a shaping filter to a white noise

[3, 4] expressed by:

A K (x)+ h(x) =W (x) (3.3)

in which A_is a correlation distance and W(x)is a zero-mean white process with
intensity S, or strength ¢, .

The coupled vehicle-structure models considered in this research are shown in
Fig. 3.1. Figure 3.1a) shows two of 2DOF vehicle models, each one can be considered as
a half-car model [5]. Then, a distance between two models is called wheelbase, /. Figure
3.1b) shows a model for eight of 2DOF vehicle models with the total length equal to the
wheelbase in Fig. 3.1a). It can be used to study effects of number of vehicle axles to the
system. Structure model considered here is a two-equal-span prismatic flexure beam as

shown in Fig. 3.1.
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Figure 3.1 Models of coupled vehicle structure system: a. two of 2DOF vehicle model,

b. eight of 2DOF vehicle model
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The coupled linear system equations driven by correlated white noises are then

written in state form:

X)) =AOX@O)+BW(@)+C(t), X(0) (3.4)

in which X{(#) is a state vector, W(t) is a vector of correlated white noises, 4 and B are
matrices of appropriate dimension, C(?) is a vector of deterministic excitation and X(0) is
an initial condition of the system. Taking the expectation operator, the equation for

expected value vector is:

E[X(0)]= ADEX(0)]+C(1),  E[X(0)] (3.5)

in which E[X(#¥)] 1s a vector of expected values of state variables with an initial condition,
E[X(0)]. The term BW(t) disappears because W(t) is a zero mean vector.

The zero-time-lag covariance matrix of the state vector, 2. ,, , may be solved

from the well-known first order Lyapunov equation, given by:

Y =AYy +2 A" +BOB", X ..(0) (3.6)

in which > ,, (0) is an initial condition of the covariance matrix and Q is a strength

matrix for the vector white noises,

Q=q,| o (3.7)

in which ¢, is a strength of the white noise and p,,,, is the zero-time-lag correlation

coefficient between two white noises.
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The equations of motion of this coupled system are written in state space. To facilitate

parametric studies, all quantities are nondimensionalized as follow,

Position -x/ L, Time -V¢/ L, Roughness -W /L and h/ L
White noise intensity — g, / L* = 0.0625x10°° for rail roughness
Autocorrelation distance - A, /L= 2.50

Distance between two vehicles - ¢/ L (show in Table 4.1)
Masses - u=M/mL=0.20, n=m/mL =0.1 u

il il L
Frequencies - f; = /kl/’Z“ 005, f, = 1ML 020, 5 = [EE o1,
a)l a)l a)l

= c/mL _ 0.02
a)l
Speed - f, = VIL 0.06, 0.08, 0.10, 0.12
a)l

Fundamental frequencies of a two-span beam - f, = o,/ o,

Damping ratio, &, for the beam is assumed 0.01.

For design of the guideway structure, the statistical moments of the structure

responses are essential. The computed beam responses are displacement and moment at

midspan, moment at the middle support and the shear at 0.95L. Time histories of the

expected values of beam responses are plotted in Figures 3.2 to 3.11 for ¢//L =0.5, 0.6,

0.7and f, -0.06, 0.08, 0.10, 0.12.

3.3.1 Effect of span passage rate, f, - Span passage rate is a ratio of '/ L to a first beam

frequency, @,.Assuming that a 20m-two-span beam has a frequency of 7 Hz,

Jres. =V I2L)
7 Hz =V /(2*20m)
Vo =280m/s
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A velocity of 280 m/s or 1000 km/h is impossible for a ground transportation system [6].

However, there are many other frequencies in the system, including the vehicle axle

arrival rate and the fundamental frequencies of the vehicle.

3.3.2 Effect of axle arrival rate, f, - The axle arrival rate is V' // or, in terms of rad/sec,
27V /¢ .1t can be nondimensionalized by , . The nondimensional arrival rate, denoted by
/., may be written in terms of f, and //L as shown in Table 3.1. The nondimensional

frequencies of the first two modes of the two-span beam are f, -1and f, - 1.57.

Table 3.1 Vehicle axle arrival rate and span passage rate for high speed

f, forL=20m /. (speed, km/h)

and f, =7Hz. | 0.06(190) 0.08  0.10  0.12(380)

040 | 0.94 126 157 188
0.50 |0.75 101 126 151
(/L | 060 |0.63 084 105 126
0.70 | 0.54 072 090  1.08

For f,=0.06 to 0.12 (¥ =190 to 380 km/h for beam span 20 m and frequency 7

Hz) - at high velocity level - vehicle is assumed to be rail vehicle system. Thus, the

roughness model for the rail system is used here. The combinations of f, and ¢/L that
cause resonance are shown in Table 3.1. If //L = 0.5 and f,= 0.08 the axle arrival rate
equals the fundamental frequency. For typical values of @, and L, f =0.08 corresponds
to a velocity of 70 m/s (250 km/h). If //L= 0.5 and f = 0.12, the axle arrival rate equals

the second natural frequency. Therefore it is possible for the axle arrival rate to be in
resonance with the first and second beam frequencies, for feasible vehicle speeds. Let

¢/ L be fixed at 0.5 and the span passage rate, f,, be 0.08 (= 250 km/h). Figures 3.2 and
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3.3 show that the displacement and the moment at midspan have the largest
amplification. The maximum expected values of dynamic amplifications are 1.32 and
1.22 respectively (recall that multiples of standard deviations of amplification factors
must be added to determine design amplification factors). It is simply because the first
mode is excited, f, matches f, and the displacement and moment at midspan are two
responses dominated by this fundamental asymmetric mode. When the span passage rate
increases to 0.12 (=~ 380 km/h), the moment at the interior support is amplified by as
much as 1.32 (Fig. 3.4) which is more than the other responses. In this case the second
mode, the symmetric mode, is excited. A response dominated by this symmetric second

mode is the moment at the interior support. For ¢/ L =0.6 and 0.7, only the first mode is

excited (Figs. 3.2 and 3.3) for realistic velocities (less than 380 km/h). If //L is greater

than 0.5, the axle arrival rate is unlikely to be in resonance with the second mode since
the velocity corresponding to that resonance mode is well above a practical level. If ¢/ L

is greater than 1, f, will never match f; and resonance due to f, never occurs.
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Figure 3.2 Time history of expected values and variances of displacement at midspan
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The shear (figure 3.5) is different from the other responses as all of the modes (both
asymmetric and symmetric modes) participate in this response. Figure 3.6 shows time
history of expected value and variance of beam acceleration at midspan. It is found that
the maximum expected beam acceleration is 0.4g (quite high) and occurs after vehicles
left the span.

For a high-speed ground transportation system there is a possibility to have
resonance between the axle arrival rate and the second mode frequency. For this
condition the moment at the middle support needs to be examined closely.

3.3.3 Effect of number of axles (interfaces)

For high speed vehicle, i.e. maglev (magnetic levitated vehicle), the suspension system
can have more than two contact points. More contact points can benefit the design of the
system. Figures 3.7 to 3.10 (also Table 3.2 and 3.3) show the expected beam responses
reduce, i.e. E/M(L)] reduces from 1.32 to 1.10, when eight suspensions are used. This
suspension arrangement can also reduce strong fluctuation in VAR/M(L)] dramatically
(Figs. 3.4 and 3.9). Figure 3.11 shows the expected beam acceleration at midspan reduces

from 0.4g in figure 4.6 to 0.16g.

Table 3.2 The maximum beam responses when f, is in resonance with f, for two

different suspension configurations

Y = Structural Two contact Eight contact
Responses points points

E[Y] | VAR[Y] | E[Y] | VAR[Y]

v(0.5L) 1.32 | 0.0200 | 120 | 0.0105
M(0.5L) 122 | 0.0125 | 1.15 | 0.0105
M(L) 1.10 | 0.2100 | 1.10 | 0.0280
S(0.95L) 1.00 | 0.0090 | 1.10 | 0.0090

v(0.5L)/ g 0.30 | 0.0040 | 0.14 | 0.0025
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Table 3.3 The maximum beam responses when f, is in resonance with f, for two

different suspension configurations

Y = Structural Two contact Eight contact
Responses points points
E[Y] | VAR[Y] | E[Y] | VAR[Y]
v(0.5L) 1.05 | 0.015 1.25 | 0.0100
M(0.5L) 1.20 | 0.019 1.20 | 0.0100
M(L) 1.32 | 0.041 1.10 | 0.0260
S(0.95L) 1.05 | 0.010 1.10 | 0.0085
Vv(0.5L)/ g 0.40 | 0.003 0.16 | 0.0035
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3.3.4 Effect of fundamental frequencies of vehicle

Natural frequencies of the car body (normally low) may not be equal to the first mode
frequency of a typical short-span bridge unless the primary and secondary springs are
very stiff. It is not realistic to have such a stiff suspension [7], since passenger comfort
criteria may not be met. For a structure with low frequency such as a large suspension
bridge [8], there is a chance of a structure frequency matching a vehicle frequency.
However, the mass of the vehicle is very small compared to the mass of a suspension

bridge, so significant dynamic amplification is not likely.

3.4 Conclusion

Random vibration time history analyses provide vehicle and structure responses that can
define appropriate surface smoothness requirements and design amplification factors for
structure for high speed vehicles. Mean value and covariance matrix of system responses
can be determined.

It is found that one specific value of a nondimensional parameter may cause a
maximum in one response while a different value may cause a maximum in another
response. For two-span beam, the moment at the interior support can have high dynamic
amplification factors when axle arrival rate matches to the second natural frequency of
the beam.

For high speed rail system, an appropriate suspension configuration of vehicle can

reduce the expected value and variance of DAF of beam responses.
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CHAPTER 4

CONCLUSIONS

The interface model determines which system matrices become time-dependent and
whether derivatives of roughness enter the governing equations. If a simple axial spring
is used as an interface model, then only the system stiffness matrix is nonautonomous and
derivatives of roughness are not needed. For a linear spring interface, roughness may be
modeled by the responses of cascaded linear first order differential equations driven by
white noise.

Multi-axle vehicle models introduce a length parameter or wheelbase into the
governing equations. This length leads to ystem equations that depend on the roughness
at several positions that lag behind the leading axles. Here, roughness processes with
lags are also modeled by responses of linear first order differential equations. The vector
of roughness processes is driven by a vector of correlated white noises such that all
roughness processes have the same autocovariance function and the appropriate zero-

time-lag cross-correlation. This new formulation for the excitation, W (¢), in turn allwos

a Markov vector random vibration approach.
All qutities of the interface, vehicle, roughenss and structure models are
nondimensionalized. The vehicle speed and its wheelbase are represented by the span
V/L V_/f

crossing rate, f =——, and the axle arrival rate, f =
, o,
1 1

Time 1is

nondimensionalized by the time required to cross one span of a structure.

The coupled system equations are written as a linear, first order, matrix stochastic
differential equaiton. The equation has deteministic parametric excitation in the sense
that the system matrix is a known function of time. It has deterministic additive
excitation from the mass of the moving vehicle entering a span and it has random
additive excitation from the random roughness. Deterministic linear ordinary differential

equations for the mean and covariance matrices of the state vector follow directly. These
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moments of the state vector may in turn be used to compute corresponding moments of
any structural responses.

Important system parameters include the wheelbase-to-span ratio, //L and the

V—/L. For realizable combinations of //L and ﬂ, the axle

1 1

span crossing rate, 2z f, =

arrival rate, 27 f, = V—M , can become equal to the first or second frequencies of typical
1

structures. If this occurs, high expected values of dynamic amplification factors are

likely. The number of axles also has effects to the structure. For the two-span beam, it

yields the lower dynamic amplification factors for the vehicle with more axles.

Values of dynamic amplification factors are computed for a set of responses of a
two-span beam traversed by a series of 2DOF vehicle model. Different parameter
combinations yield the largest dynamic amplification factors for different responses. For
the two-span beam, the moment at the interior support can have high dynamic
amplification factors.

This work considers only planar systems and passive vehicle models. For design,

it may be necessary to use three-dimensional models and, possibly, vehicle model with

variable speed.
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ABSTRACT : The deflection-, bending moment-, shear- and acceleration-time histories of a
two-span beam subjected to moving sprung vehicles are presented. The vehicle model is a 2DOF
system with a constant velocity. The two-span beam with rough surface is used as structure
model. It is defined in modal domain by natural frequencies, mode shapes and modal damping
values. The rough surface is modeled by filtered white noise. The equations of motion for the
coupled vehicle-structure system are formulated. All variables in the system equation are
nondimensionalized. The first order linear stochastic differential equations are solved. The effects

of the span passage rate and other important parameters are studied.

Keywords : Coupled vehicle-structure system; Random roughness; Dynamic response; Two-span

beam.

1. Introduction
The problem of vehicle-structure interaction has been the subject of study during the last few

years. Early work adopted to model vehicle-bridge system by Biggs', Fryba” and Timoshenko, et



al.,’ considered simply supported beam with a moving point load/sprung mass at constant speed
along its span. Since guideway structures are getting lighter and more flexible, while the speed
and the weight of vehicular loads tend to be higher, other detailed models were developed.
Multiple axle, multiple degree of freedom models were used for vehicle models,*® and different
kinds of structures such as simply supported beam, multiple-span beam or nonprismatic beam
were analyzed.”'® Most of these studies have solved equations of motion by numerical
integration. Many researchers, Lin, et al.,'! Henchi, e al.,”* and Hino, e al." used the finite
element method to model and analyze structures. Several others employed Fourier series and
Fourier Transforms.® Later, more studies have concentrated on analyses of dynamic responses of
the vehicle and structure coupling system with random roughness surface. Power spectral density
technique of representing random surface roughness have been developed. '*"

The principal objective of this work is to perform studies of coupled vehicle-structure
dynamic systems to guide the design of structures for high-speed vehicles. The random roughness
is modeled by filtered white noise. The structure is modeled as a two-equal-span prismatic flexure
beam. The vehicle is modeled as a series of 2DOF vehicles. System parameters are
nondimensionalized and the equations of motion are written in state space. Here the equations for
the mean and zero-time-lag covariance matrices of the state vector are solved using modal
technique. Static values of a set of responses are determined, the statistical moments of the
dynamic responses are normalized by the corresponding maximum static values. Therefore
statistical moments of all responses are expressed in terms of dynamic amplification factors
(DAF). Extensive parametric studies are presented that identify effects of important
nondimensional parameters on the behavior of coupled vehicle-structure systems. This work
provides designers of structures for high-speed vehicles insights on effects of nondimensional
system parameters on behavior and quantifies values of DAF that may be produced by high-speed

vehicles.



2. Coupled vehicle-structure system equations in state space
The dynamic response of a structure traversed by a vehicle is assumed to be completely defined

by a vertical displacement function, v(x,#).* The vertical displacement of the structure is here

expressed in the modal domain as follows:

V0= 3 (04 () 1)

in which @ (x)is the i"” mode shape and y,(¢)is i” modal coordinate. The total displacement at

an interface of a vehicle with a structure having surface roughness, A(x), is: '**

Vi(x,1) =v(x, 1)+ h(x) 2)
The surface profile, 4(x), can be modeled as an output of a shaping filter to a white noise'> ****

expressed by:
AW (X)+ h(x) =W (x) 3)

in which A_is a correlation distance and W (x)is a zero-mean white process with intensity S, or

strength g, .

The coupled vehicle-structure models considered in this research are shown in Fig. 1.
Figure 1a) shows two of 2DOF vehicle models, each one can be considered as a half-car model.’
Then, a distance between two models is called wheelbase, £ . Figure 1b) shows a model for eight

of 2DOF vehicle models with the total length equal to the wheelbase in Fig. 1a). It can be used to



study effects of number of vehicle axles to the system. The 2DOF vehicle model has two vertical
DOFs denoted by v, and v, located at the center of mass of the car and the suspension mass.
Each vehicle axle has primary and secondary suspensions. The primary suspension is a linear
spring, k,. This spring may represent a tyre stiffness or a magnetic force in the case of magnetic
levitated vehicle (maglev). The secondary suspension which attached between mass M and m is
a kelvin type of interface; i.e. a linear spring, k, ,and dashpot, c¢, in parallel. Note that
M represents mass of car, m represents a suspension mass, and vehicle speed, V', is assumed
constant. Other parameters in the vehicle-structure system are: span length, L, unit mass of a
two-equal-span prismatic flexure beam, .

The coupled linear system equations driven by correlated white noises are then written in

state form:

X =AOX@)+BW()+C(1), X(0) (4)

in which X(2) is a state vector, W(?) is a vector of correlated white noises, A and B are matrices of
appropriate dimension, C(2) is a vector of deterministic excitation and X(0) is an initial condition

of the system. Taking the expectation operator, the equation for expected value vector is:

E[X(0)]= ADEX )]+ C(@),  E[X(0)] 5

in which EfX(#)] is a vector of expected values of state variables with an initial condition,

E[X(0)]. The term BW(?) disappears because W(?) is a zero mean vector.

The zero-time-lag covariance matrix of the state vector, 2. ,, , may be solved from the

well-known first order Lyapunov equation, given by:



Y =AY+ A +BOB",  X,,(0) (6)

in which X, (0) is an initial condition of the covariance matrix and Q is a strength matrix

for the vector white noises,

O=¢q,| = o (7

in which ¢, is a strength of the white noise and p,,, is the zero-time-lag correlation coefficient
iy

between two white noises.



3. Parametric study and results
The equations of motion of this coupled system are written in state space. To facilitate parametric
studies, all quantities are nondimensionalized as follow,

Position -x/ L, Time -Vt/ L, Roughness -W /L and h/ L

White noise intensity — ¢, / L’ = 0.0625x10 for rail roughness
Autocorrelation distance - A,/ L=2.50

Distance between two vehicles - /L (show in Table 1)

Masses - u =M /mL=0.20, n=m/mL =0.1 u

fk /mL /k /mL f /L
Frequencies - fkl = |- r2n =0.05, sz = |2 1211 =0.20, fg - |£ —=0.01,
a)l a)l a)l

il
7=SlmL o0
a)l
L
speed- £, =1L ~0.06,0.08,0.10,0.12
a)l

Fundamental frequencies of a two-span beam - f, = @,/ o,

Damping ratio, &, for the beam is assumed 0.01.

For design of the guideway structure, the statistical moments of the structure responses
are essential. The computed beam responses are displacement and moment at midspan, moment
at the middle support and the shear at 0.95L. Time histories of the expected values of beam

responses are plotted in Figures 2 to 11 for ¢/ L =0.5,0.6,0.7and £, =0.06, 0.08, 0.10, 0.12.



3.1 Effect of span passage rate, f, - Span passage rate is a ratio of ¥/ L to a first beam

frequency, @, .Assuming that a 20m-two-span beam has a frequency of 7 Hz,

S =VIQL)
7 Hz =V /(2*20m)
Vo =280m/s

A velocity of 280 m/s or 1000 km/h is impossible for a ground transportation system.® However,

there are many other frequencies in the system, including the vehicle axle arrival rate and the

fundamental frequencies of the vehicle.

3.2 Effect of axle arrival rate, f, - The axle arrival rate is '/ ¢ or, in terms of rad/sec, 27V /(.
It can be nondimensionalized by @, . The nondimensional arrival rate, denoted by f, , may be
written in terms of £, and ¢/ L as shown in Table 1. The nondimensional frequencies of the first

two modes of the two-span beam are f, =land f, =1.57.

For f,=0.06 to 0.12 (V=190 to 380 km/h for beam span 20 m and frequency 7 Hz) - at

high velocity level - vehicle is assumed to be rail vehicle system. Thus, the roughness model for

the rail system is used here. The combinations of f, and ¢/ L that cause resonance are shown in
Table 1. If //L =0.5and f,= 0.08 the axle arrival rate equals the fundamental frequency. For
typical values of @, and L, f,=0.08 corresponds to a velocity of 70 m/s (250 km/h). If ¢/ L=10.5

and f,= 0.12, the axle arrival rate equals the second natural frequency. Therefore it is possible

for the axle arrival rate to be in resonance with the first and second beam frequencies, for feasible

vehicle speeds. Let //L be fixed at 0.5 and the span passage rate, f,, be 0.08 (= 250 km/h).

Figures 2 and 3 show that the displacement and the moment at midspan have the largest



amplification. The maximum expected values of dynamic amplifications are 1.32 and 1.22

respectively (recall that multiples of standard deviations of amplification factors must be added to

determine design amplification factors). It is simply because the first mode is excited, f,
matches f|, and the displacement and moment at midspan are two responses dominated by this
fundamental asymmetric mode. When the span passage rate increases to 0.12 (= 380 km/h), the
moment at the interior support is amplified by as much as 1.32 (Fig. 4) which is more than the

other responses. In this case the second mode, the symmetric mode, is excited. A response
dominated by this symmetric second mode is the moment at the interior support. For ¢/ L =0.6

and 0.7, only the first mode is excited (Figs. 2 and 3) for realistic velocities (less than 380 km/h).

If //L is greater than 0.5, the axle arrival rate is unlikely to be in resonance with the second
mode since the velocity corresponding to that resonance mode is well above a practical level. If

¢/ L is greater than 1, f, will never match f, and resonance due to f, never occurs. The shear

(figure 5) is different from the other responses as all of the modes (both asymmetric and
symmetric modes) participate in this response. Figure 6 shows time history of expected value and
variance of beam acceleration at midspan. It is found that the maximum expected beam
acceleration is 0.4g (quite high) and occurs after vehicles left the span.

For a high-speed ground transportation system there is a possibility to have resonance
between the axle arrival rate and the second mode frequency. For this condition the moment at

the middle support needs to be examined closely.



3.3 Effect of number of axles (interfaces)

For high speed vehicle, i.e. maglev (magnetic levitated vehicle), the suspension system can have
more than two contact points. More contact points can benefit the design of the system. Figures 7
to 10 (also Table 2 and 3) show the expected beam responses reduce, i.e. E/M(L)] reduces from
1.32 to 1.10, when eight suspensions are used. This suspension arrangement can also reduce
strong fluctuation in VAR/M(L)] dramatically (Figs. 4 and 9). Figure 11 shows the expected beam

acceleration at midspan reduces from 0.4g in figure 6 to 0.16g.

3.4 Effect of fundamental frequencies of vehicle

Natural frequencies of the car body (normally low) may not be equal to the first mode frequency
of a typical short-span bridge unless the primary and secondary springs are very stiff. It is not
realistic to have such a stiff suspension *, since passenger comfort criteria may not be met. For a
structure with low frequency such as a large suspension bridge °, there is a chance of a structure
frequency matching a vehicle frequency. However, the mass of the vehicle is very small

compared to the mass of a suspension bridge, so significant dynamic amplification is not likely.

4. Conclusion

Random vibration time history analyses provide vehicle and structure responses that can define
appropriate surface smoothness requirements and design amplification factors for structure for
high speed vehicles. Mean value and covariance matrix of system responses can be determined.

It is found that one specific value of a nondimensional parameter may cause a maximum
in one response while a different value may cause a maximum in another response. For two-span
beam, the moment at the interior support can have high dynamic amplification factors when axle
arrival rate matches to the second natural frequency of the beam.

For high speed rail system, an appropriate suspension configuration of vehicle can reduce

the expected value and variance of DAF of beam responses.
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Table 1 Vehicle axle arrival rate and span passage rate for high speed

f, forL=20m /. (speed, km/h)
and £, =7Hz |0.06(190) 0.08 0.0  0.12(380)
040 | 0.94 126 157 188
050 |0.75 L0l 126  L5I
¢/L |0.60 0.63 0.84 1.05 1.26
0.70 0.54 0.72 0.90 1.08

Table 2 The maximum beam responses when £ is in resonance with f, for two different

suspension configurations

Y = Structural Two contact Eight contact
Responses points points
E[Y] | VAR[Y] | E[Y] | VAR[Y]
v(0.5L) 1.32 0.0200 1.20 0.0105
M(0.5L1) 1.22 0.0125 1.15 0.0105
M(L) 1.10 0.2100 1.10 0.0280
S(0.95L) 1.00 0.0090 1.10 0.0090
v(0.5L)/ g 0.30 0.0040 0.14 0.0025

Table 3 The maximum beam responses when £ is in resonance with f, for two different

suspension configurations

Y = Structural Two contact Eight contact
Responses points points
E[Y] | VAR[Y] | E[Y] | VAR[Y]
v(0.5L) 1.05 0.015 1.25 0.0100
M(0.5L) 1.20 0.019 1.20 0.0100
M(L) 1.32 0.041 1.10 0.0260
S(0.95L) 1.05 0.010 1.10 0.0085
v(0.5L)/ g 0.40 0.003 0.16 0.0035
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2DOF vehicle model
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ABSTRACT : Actual road surface elevation data in Thailand collected by using Bump Integrater are presented. Power Spectral
Density (PSD) function of the surface roughness can be computed by Fourier Transform. It shows the wavelength content of surface
profile. Typical road surfaces may be considered as realizations of stationary Gaussian random processes. Analytical model of
random surface can be constructed by using filtered white noise. An example of a 2DOF vehicle travelling on a randomly
corrugated road is presented. The issue of specifying surface roughness tolerances to control vehicular response and displacement of
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DYNAMIC RESPONSES OF A TWO-SPAN BEAM SUBJECTED TO
2DOF SPRUNG VEHICLES
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ABSTRACT : The deflection-, bending moment-, shear- and acceleration-time histories of a two-span beam subjected

to moving sprung vehicles are presented. The vehicle model is a 2DOF system with a constant velocity. The two-span

beam with rough surface is used as structure model. It is defined in modal domain by natural frequencies, mode shapes

and modal damping values. The rough surface is modeled by filtered white noise. The equations of motion for the

coupled vehicle-structure system are formulated. All variables in the system equation are nondimensionalized. The first

order linear stochastic differential equations are solved. The effects of the span passage rate and other important

parameters are studied.

KEYWORDS : Coupled vehicle-structure system, Random roughness, Dynamic response, Two-span beam.

1. Introduction

The principal objective of this work is to perform studies
of coupled vehicle-structure dynamic systems to guide
the design of structures for high-speed vehicles. A new
formulation for modeling random roughness at the
interfaces between a structure and a series of 2DOF
vehicles is presented therein. System parameters are
nondimensionalized and the equations of motion are
written in state space. Here the equations for the mean
and zero-time-lag covariance matrices of the state vector
are solved using MATLAB. Static values of a set of
responses are determined the statistical moments of the
dynamic responses are normalized by the corresponding
maximum static values. Therefore statistical moments of
all responses are expressed in terms of dynamic
amplification  factors (DAF). Extensive parametric
studies are presented that identify effects of important
nondimensional parameters on the behavior of coupled
vehicle-structure systems. This work provides designers
of structures for high-speed vehicles insights on effects of
nondimensional system parameters on behavior and
quantifies values of DAF that may be produced by high-
speed vehicles.

2. Coupled vehicle-structure system equations in state
space

The dynamic response of a structure traversed by a
vehicle is assumed to be completely defined by a vertical
displacement  function,  v(x,?). The vertical

displacement of the structure is here expressed in the
modal domain as follows:

Vw0 = Y506 () 0

in which @ (x)is the i”mode shape and y,(¢)is

i” modal coordinate. The total displacement at an
interface of a vehicle with a structure having surface
roughness, /(x), is :

Vi(x,1) =v(x,t)+ h(x)

C 5

2

A 0

b EREeREEE

Figure 1 shows models of coupled vehicle structure
system

The surface profile, /#(x), can be modeled as an output
of a shaping filter to a white noise expressed by:

AN (X)+h(x)=W(x) 3)
in which A_is a correlation distance and W (x)is a zero-

mean white process with intensity S, or strength g,. The
covariance matrix of two white noise is

ZWle =006(x, —x,) 4)
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Figure 2 shows power spectral density (PSD) and
correlation functions of rough surface

The coupled vehicle-structure models considered in
this research are shown in Fig. 1. Figure 1a) shows two of
2DOF vehicle models, each one can be considered as a
half-car model. Then, a distance between two models is
called wheelbase, /. Figure 1b) shows a model for eight
of 2DOF vehicle models with the total length equal to the
wheelbase in Fig 1a), it can be used to study effects of
number of vehicle axles to the system. Structure model
considered here is a two-equal-span prismatic flexure
beam as shown in Fig. 1.

The coupled linear system equations driven by
correlated white noises are then writen in state form:
Xt)=A)X@)+BW(t)+C(1),X(0)
in which X is a state vector, W is a vector of correlated
white noises, 4 and B are matrices of appropriate
dimension, and Cis a vector of deterministic excitation.
Taking the expectation operator, the equation for
expected value vector is:

E[X(1)] = A®)E[X (1)]+ C(¢), E[X(0)] (6)
The term BW(#) disappears because W(¥) is a zero mean

vector.
The zero-time-lag covariance matrix of the state vector,

> ¢ » may be solved from the well-known first order

)

Lyapunov equation, given by:

Y =AY+ A +BOB".Y . (0)

(7)

in which @ is a strength matrix for the vector white
noises,

I Py

U]

0=gq,
Py 1

J

(®)
in which ¢, is a strength of the white noise and py,, is

the zero-time-lag correlation coefficient between two
white noises

3. Parametric study and results
Position -x/L, Time -Vt/L,
W/Landh/L

Roughness -

STR -

White noise intensity — ¢,/ L’= 1.250x10° for road

roughness

= 0.0625x10° for rail
roughness

Autocorrelation distance - A, /L=2.50

Distance between two vehicles - ¢/ L (show in Table 1
and 2)
Masses -

0.1u

k, /mL k. /il
Frequencies - f, :\/7:0'05, £ :\/7:
@, o)

u=M/mL=020,n=m/mL =

/L / mL
020, £, = [E= =001, £, =002

o @,

V /L
Speed - f, = = 0.02, 0.03, 0.04, 0.05 for normal

o
velocity

= 0.06, 0.08, 0.10, 0.12 for high

velocity

Fundamental frequencies of a two-span beam -
fi=o/lo

Damping ratio, &, for the beam is assumed 0.01.

Effect of span passage rate, f, - Span passage rate is a
ratio of V'/ L to a first beam frequency, @, . Assuming

that a 20m-two-span beam has a frequency of 7 Hz,

f.. =VI2L)
7 Hz. =V /(2*20m)
Vo =280m/s

A velocity of 280 m/s or 1000 km/h is impossible for a
ground transportation system [4]. However, there are
many other frequencies in the system, including the
vehicle axle arrival rate and the fundamental frequencies
of the vehicle.

Effect of axle arrival rate, /., - The axle arrival
rate is V' /¢ or, in terms of rad/sec, 27V / ¢ . It can be

nondimensionalized by @, . The nondimensional arrival

rate, denoted by £, , may be written in terms of f, and

¢/ L as shown in Table 1 and 2.
Table 1 Vehicle axle arrival rate and span passage rate
for normal speed

f,forL=20m /. (speed, km/h)
and f,,. = 0.02(60) 0.03 0.04 0.05(160)
THz.
0.08 1.57 2.36 3.14 3.93
0.12 | 1.0 L57 209 262
0.16 0.79 1.18 1.57 1.96
(/L
0.18 0.70 1.05 1.40 1.75
020 | 0.63 094 126 157
0.24 0.52 0.79 1.05 1.31
0.30 0.42 0.63 0.84 1.05
53




Table 2 Vehicle axle arrival rate and span passage rate
for high speed

f,for L = 20 /. (speed, km/h)
m
and [, 0.06(190) 0.08  0.10  0.12(380)
7Hz.
040 | 0.94 126 1.57 188
0.50 |0.75 L0I 126 151
0.60 | 0.63 0.84 105 126
(/L
0.70 | 0.54 0.72 090 108

The nondimensional frequencies of the first two modes of
the two-span beam are f, =1 and f, = 1.57.

At normal speed ( f, =0.02 to 0.05)
The vehicle model in Fig.1a) is considered here.

Roughness model with parameters ¢,/ L= 0.0625x10

and A_ /L= 2.50 is used, it is the model of a road with

RMS roughness = 0.01 m.
Figures 3 and 4 show the expected value and variance of

moments at midspan and at interior support for f = f,
and f, = f,. The behaviors of expected beam responses

are similar (displacement at midspan and shear at 0.95L
are not shown here), DAF of those are between 1.05 to
1.10. Variances of beam responses in Figs. 3 and 4 can be

separated into four pairs for each value of £, (0.02, 0.03,
0.04, 0.05). In each pair it is clearly that f, = f, causes

strong fluctuation in variances, especially in VAR/M(L)].
Note that variances in the case of f, = f, are slightly

higher than those f, = f, for the moment at midspan,

and vice versa for the moment at interior support.

15
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Figure 3 shows time history of expected values and
variances of moment at midspan for f, =1 and 1.57
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Figure 4 shows time history of expected values and
variances of moment at interior support for f, =1 and

1.57
Figure 5 shows the mean values and variances of
midspan  acceleration. The maximum midspan
acceleration in this velocity range is 0.1g which is the
level that people on the bridge can feel uncomfortable.
Moreover, the variances are quite high, 0.02 to 0.045.

Max | (0.5L) =0.1g

E[Vpp(0.5L)/g]

0.5 1 1.5 2
Dot lines: f, in resonance with f; (1.00)

Solid lines: f, in resonance with f; (1.57)
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Figure 5 shows time history of expected values and
variances of beam acceleration at midspan for f, =1 and

1.57
At high speed ( f, =0.06t0 0.12)
For f,=0.06 to 0.12 (V=190 to 380 km/h for beam

span 20 m and frequency 7 Hz). At this high velocity
level vehicle is assumed to be rail vehicle system. Thus,
the roughness model for the rail system is used here. The

combinations of f, and ¢/L that cause resonance are

shown in Table 2. If ¢//L =0.5 and f, = 0.08 the axle

arrival rate equals the fundamental frequency. For typical
values of @, and L, f, = 0.08 corresponds to a velocity

of 70 m/s (250 km/h). If //L = 0.5 and f, = 0.12, the

axle arrival rate equals the second natural frequency.
Therefore it is possible for the axle arrival rate to be in
resonance with the first and second beam frequencies, for
feasible vehicle speeds. Let ¢/ L be fixed at 0.5 and the

span passage rate, f,, be 0.08 (~ 250 km/h). Figures 6
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and 7 show that the displacement and the moment at
midspan have the largest amplification. The maximum
expected values of dynamic amplifications are 1.32 and
1.22 respectively (recall that multiples of standard
deviations of amplification factors must be added to
determine design amplification factors). It is simply
because the first mode is excited, f, matches f|, and the

displacement and moment at midspan are two responses
dominated by this fundamental asymmetric mode. When
the span passage rate increases to 0.12 (= 380 km/h), the
moment at the interior support is amplified by as much as
1.32 (Fig. 8) which is more than the other responses. In
this case the second mode, the symmetric mode, is
excited. A response dominated by this symmetric second
mode is the moment at the interior support. For /L =
0.6 and 0.7, only the first mode is excited (Figs. 6 and 7)
for realistic velocities (less than 380 km/h). If ¢/ L is
greater than 0.5 the axle arrival rate is unlikely to be in
resonance with the second mode since the velocity
corresponding to that resonance mode is well above a

practical level. If //L is greater than 1, f, will never

match f1 and resonance due to fa never occurs. The

shear (Fig. 9) is different from the other responses as all
of the modes (both asymmetric and symmetric modes)
participate in this response.
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Figure 6 shows time history of expected values and
variances of displacement at midspan for f, =1 and 1.57
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Figure 7 shows time history of expected values and
variances of moment at midspan for f, =1 and 1.57
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Figure 8 shows time history of expected values and
variances of moment at interior support for f, =1 and

1.57

Dot lines: f, in resonance with f; (1.00)

Solid lines: f, in resonance with f, (1.57)
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Figure 9 shows time history of expected values and
variances of shear at 0.95L for f =1 and 1.57
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Figure 10 shows time history of expected values and
variances of beam acceleration at midspan for f, =1 and

1.57
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Figure 11 shows time history of expected values and
variances of displacement at midspan for f, =1 and 1.57
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Figure 12 shows time history of expected values and
variances of moment at midspan for f, =1 and 1.57
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Figure 13 shows time history of expected values and
variances of moment at interior support for f, =1 and

1.57

Figure 10 shows time history of expected value and
variance of beam acceleration at midspan. It is found that
the maximum expected beam acceleration is 0.4g (quite
high) and occurs after vehicles left the span.

For a high-speed ground transportation system there is
a possibility to have resonance between the axle arrival
rate and the second mode frequency. For this condition

the moment at the middle support needs to be examined
closely
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Figure 14 shows time history of expected values and
variances of shear at 0.95L for f, =1 and 1.57
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Figure 15 shows time history of expected values and
variances of beam acceleration at midspan for f, =1 and

1.57

Effect of number of axles (interfaces)

For high speed vehicle, i.e. maglev, the suspension
system can have more than two contact points. More
contact points can benefit the design of the system.
Figures 11 to 14 (also Table 3 and 4) show the expected
beam responses reduce, i.e. £/M(L)] reduces from 1.32 to
1.10, when eight suspensions are used. This suspension
arrangement can also reduce strong fluctuation in
VAR[M(L)] dramatically (Figs. 8 and 13). Figure 15
shows the expected beam acceleration at midspan reduces
from 0.4g in Fig. 10 to 0.16g.
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Table 3 shows the maximum beam responses when f is

in resonance with f; for two different suspension

configurations
Y = Structural Two contact Eight contact
points points
Responses E[Y] | VAR[Y] | E[Y] | VAR[Y]
v(0.5L) 1.32 0.0200 1.20 0.0105
M(0.5L) 1.22 0.0125 1.15 0.0105
M(L) 1.10 | 0.2100 1.10 0.0280
S(0.95L) 1.00 | 0.0090 1.10 0.0090
v(0.5L)/ g 0.30 | 0.0040 0.14 0.0025

Table 4 shows the maximum beam responses when f is

in resonance with f, for two different suspension

configurations
Y = Structural Two contact Eight contact
points points
Responses E[Y] | VAR[Y] | E[Y] | VAR[Y]
v(0.5L) 1.05 0.015 1.25 0.0100
M(0.5L) 1.20 0.019 1.20 0.0100
M(L) 1.32 0.041 1.10 0.0260
S(0.95L) 1.05 0.010 1.10 0.0085
v(0.5L)/ g 0.40 0.003 0.16 0.0035

Effect of fundamental frequencies of vehicle - Natural
frequencies of the car body (normally low) may not be
equal to the first mode frequency of a typical short-span
bridge unless the primary and secondary springs are very
stiff. It is not realistic to have such a stiff suspension [7],
since passenger comfort criteria may not be met. For a
structure with low frequency such as a large suspension
bridge, there is a chance of a structure frequency
matching a vehicle frequency. However, the mass of the
vehicle is very small compared to the mass of a
suspension bridge, so significant dynamic amplification
is not likely.

4. Conclusion

Random vibration time history analyses provide vehicle
and structure responses that can define appropriate
surface smoothness requirements and design
amplification factors for structure for high speed
vehicles. Mean value and covariance matrix of system
responses can be determined.

It is found that one specific value of a nondimensional
parameter may cause a maximum in one response while a
different value may cause a maximum in another
response. For two-span beam, the moment at the interior
support can have high dynamic amplification factors
when axle arrival rate matches to the second natural
frequency of the beam.

For high speed rail system, an appropriate suspension
configuration of vehicle can reduce the expected value
and variance of DAF of beam responses.
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