บทคัดย่อ

จากการทดลอง ได้ทำการศึกษาผลของอุณหภูมิที่มีต่อความพร้อมทางชีวภาพของส่วน ประกอบต่าง ๆในน้ำมันดิบระหว่างการย่อยสลายทางชีวภาพโดยเชื้อจุลินทรีย์ Acinetobactor calcoaceticus โดยทำการทดลองในระบบ batch bioreactor ที่ระยะเวลาต่าง ๆ กัน คือ 0, 1, 5, 10, 20, 40 และ 60 วัน ที่ระดับอุณหภูมิ 20° และ 30° C ในการทดลองนี้ลูกหินดินเผาถูกใช้เป็นแบบจำลอง ของดินที่มีการปนเปื้อนน้ำมันดิบ เมื่อครบกำหนดตามระยะเวลาดังกล่าว ตัวอย่างได้ถูกนำไป วิเคราะห์หาปริมาณสารไฮโดรคาร์บอนที่เหลือจากการย่อยสลายโดยวิธีแก๊สโครมาโตกราฟี (gas chromatograhpy) และวิธีการชั่งน้ำหนัก (gravimetry)

ผลการทดลองการวิเคราะห์หาปริมาณสายไฮโดรคาร์บอนที่เหลือจากการย่อยสลายทั้งสองวิธี พบว่าเชื้อ Acinetobactor calcoaceticus สามารถย่อยสลายน้ำมันดิบได้ดีที่สุดที่อุณหภูมิ 30° C จาก ผลการวิเคราะห์โดยวิธีแก๊สโครมาโตกราฟี พบว่าที่อุณหภูมิ 30°C สารไฮโดรคาร์บอนโดยรวม (total hydrocarbons) ถูกย่อยสลายได้ 72.28% และสารไฮโดรคาร์บอนสายตรง (major peak hydrocarbons) ที่มีคาร์บอนอะตอมระหว่าง 9 ถึง 30 ถูกย่อยสลายไป 64.03% และที่อุณหภูมิ 20° C เปอร์เซ็นต์การย่อยสลายของน้ำมันดิบลดลง โดยสารไฮโดรคาร์บอนทั้งหมดถูกย่อยสลายไป 65.26% และสายไฮโดรคาร์บอนสายตรงถูกย่อยสลายไป 60.26% สำหรับผลการวิเคราะห์โดยวิธีชั่งน้ำหนัก พบว่าที่อุณหภูมิ 30° C น้ำมันดิบถูกย่อยสลายไป 67.08% ในระยะเวลา 40 วันของการทดลองและที่ อุณหภูมิ 20° C น้ำมันดิบถูกย่อยสลายเพียง 46.10% ที่ 60 วันของการทดลอง ผลการทดลองนี้แสดง ให้เห็นว่า วิธีวิเคราะห์ปริมาณสารไฮโดรคาร์บอนโดยวิธี GC จะให้ผลที่ถูกต้อง และแม่นยำกว่าการ วิเคราะห์โดยวิธีการชั่งน้ำหนัก นอกจากนี้ผลการศึกษาอัตราการย่อยสลายของน้ำมันดิบต่อพื้นที่ผิว ของลูกหินดินเผา พบว่ามีค่าสูงสุดที่ระดับอุณหภูมิ 30°C ในระยะวันแรกของการทดลอง (31.63 มิลลิกรับต่อตารางเซนติเมตรต่อวัน) และอัตราการย่อยสลายนี้จะลดลงเรื่อย ๆ จนวันสุดท้ายของการ ทดลองอัตราการย่อยสลายต่อพื้นที่ผิวของลูกหิน มีค่าเท่ากับ 0.79 และ 0.72 มิลลิกรัมต่อตาราง เซนดิเมตรต่อวัน ที่ระดับอุณหภูมิ 30° และ 20°C ตามลำดับ จากผลการทดลองข้างต้น แสดงให้เห็น ว่าอุณหภูมิเป็นปัจจัยสำคัญที่ช่วยในการย่อยสลายของน้ำมันดิบ นอกจากนั้น พบว่าการย่อยสลายน้ำ มันดิบสามารถเกิดขึ้นได้โดยวิธีทางกายภาพ (abiotic losses) จากการวิเคราะห์ปริมาณของคาร์บอนที่ มือยู่ในสารไฮโดรคาร์บอนโดยวิธีแก็สโครมาโตกราฟี พบว่าที่อุณหภูมิ 30° C จำนวนคาร์บอนอะตอม ตั้งแต่ 10 ถึง 20 คาร์บอนอะตอม ได้หายไปจาสารไฮโดรคาร์บอน ในอัตราที่เร็วกว่าอุณหภูมิ 20° C โดยกระบวนการทางกายภาพมีส่วนช่วยในการสลายไปของน้ำมันดิบนี้

จากการทดลองสรุปได้ว่า ระบบ bioreactor ที่ศึกษานี้ได้ให้ความรู้ใหม่กับการบำบัดคราบน้ำ มันดิบที่ปนเปื้อนสำหรับประเทศที่ตั้งอยู่ในเขตร้อน และอยู่ในช่วงอุณหภูมิที่ศึกษานี้ อย่างเช่นประเทศ ไทย

ABSTRACT

The objective of this research was to study temperature as a factor effecting the bioavailability of crude oil components during a biodegradation process by an indigenous soil microorganism, *Acinetobactor calcoaceticus*. In this study, the experiments of crude oil degradation were conducted on the batch-bioreactor system incubated at the temperatures of 20° and 30°C for 0, 1, 5, 10, 20, 40 and 60 days. Sphere shaped fired clay stones was used as model of soil particles for studying the biodegradation of oil contaminated soil. The residual oil fractions were determined by gas chromatographic (GC) and gravimetric analysis.

The results by the GC analysis showed that the highest percentages of total oil removal by Acinetobactor calcoaceticus were achieved at 30°C for both the total hydrocarbons (72.28%) and the major peak hydrocarbons (64.03%) at the end of a 60-day period. At 20°C, the percentages of the oil removal were lower, 65.26%, for total hydrocarbons (THC) and 60.26% for major peak hydrocarbons (C₉-C₃₀). Oil removal determined by the gravimetric analysis demonstrated that the highest oil biodegradation was obtained at 30°C (67.08%) during the 40-day run, whereas the oil removal at 20°C was 46.10% during the 60-day run. These results indicated that the GC analysis was more sensitive and accurate for petroleum biodegradation than the gravimetric analysis. In addition, the highest rate of total oil removal per stone surface area also occurred at 30°C during the first day of the incubation period (31.63 mg/cm2/day), while the rate of removal at 20°C was only 22.06 mg/cm²/day. At the end of the experiment, the degradation rate decreased to 0.79 and 0.72 mg/cm²/day for 30° and 20°C, respectively. The results obtained clearly indicated that high temperature significantly enhanced the rate and extent of the oil biodegradation. Furthermore, abiotic hydrocarbon processes also affected the oil degradation. The results of the GC chromatograms showed that the n-alkanes components, especially C₁₀ to C₂₀, disappeared more rapidly at 30°C than at 20°C. This suggested that the physical processes, such as aeration, volatilization, the movement of a liquid medium, and oil solubilization, could contribute to the abiotic losses of oil.

In conclusion, this research could add an effective method to the crude oil bioremediation techniques in the soil environment of tropical regions such ad Thailand.