จากรูป 12 เมื่อเปรียบเทียบแถบขนาดของ PCR product ใน Lane ที่ 2 และ 3 กับ DNA marker ใน Lane ที่ 1 พบว่า PCR product ในหลุมที่ 2 และ 3 มีขนาดใกล้เคียงกับขนาดของ DNA ประมาณ 1 Kb แปล ผลได้ว่า PCR product จากเชื้อ B. pseudomailei สายพันธุ์ 1902a (Lane 2) และ สายพันธุ์ E15 (Lane 3) มีขนาดใกล้เคียงกับ class B β-lactamase-like gene

13. การหาลำดับเบลของ class B β-lactamase-like gene จากเชื้อ B. pseudomallei

เนื่องจาก PCR product ที่ได้จากเชื้อ B. pseudomallei สายพันธุ์ 1902a และ E15 มีขนาดใกล้เคียง กับ PCR product ที่ต้องการ ดังนั้นเพื่อเป็นการตรวจสอบว่าเป็น class B β-lactamase-like gene จึงทำการ หาลำดับเบสของ PCR product โดยการทำ PCR product ให้บริสุทธิ์แล้วส่งไปหาลำดับเบสที่หน่วยบริการ ชีวภาพ (BioService Unit) ผลที่ได้แสดงในรูป 13

Open reading frame นี้มีความยาวทั้งหมด 924 bp (307 กรดอะมิโน) และให้ชื่อว่า bpsII ปริมาณ GC content สูงคลอคสาย มี predicted pI = 5.8 และ estimated molecular weight = 33.5 KDa

จากนั้นน้ำ predicted amino acids มาศึกษา homology กับโปรตีนที่รู้ลำคับกรดอะมิโนแล้วใน EMBL database พบว่ามีความคล้ายคลึงกับ glyoxalaseII จาก *Arabidopsis thaliana* (32 % identity) ²⁰ และ metallo β-lactamases (class B β-lactamases) subgroup B3 เช่น THIN-B²¹, FEZ-1²², LI²³ และ GOB-1²⁴ (30%, 27%, 26% และ 24% identity ตามลำคับ)

```
20
                  30
     1.0
                         40
                                50
ATGGGCTCCAGGAGAAACCTCGTGACAACAGCGTCCACGATGACGGTCGAAGGCTTTTTC
M G S R R N L V T T A S T M T V E G F F
                90
                      100
          80
                               110
GACCCGGCGACATGCACGATCAGCTATTTGCTGTTCGATTCCGGCAGCGGCGAATGCGCG
D P A T C T I S Y L L F D S G S G E C A
              150
    130
          140
                         160
                               170
CTGATCGACAGCGTGCTCGACTACGACCCGAAATCCGGCCGCACGCGCACCGCGAGCGCG
LIDSVLDYDPKSGRTRTASA
          200
                  210
                         220
                               230
DQLIARVAALGARVRWLLET
       260 270 280 290
CACGTGCACGCCGACCATCTGTCGGCCGCCGTACCTGAAAACGCGGGTCGGCGGCGAG
HVHADHLSAAPYLKTRVGGE
          320
                  330 340 350
ATCGCGATCGGCCGCCACGTGACGCGCGTGCAGGACGTGTTCGGCAAGCTGTTCAACGCA
I A I G R H V T R V Q D V F G K L F N A
    370 380 390 400 410
GGCCCGCGTTCGCGCACGACGGCAGCCAGTTCGACCGCCTGCTCGACGACGCGACACG
G P A F A H D G S Q F D R L L D D G D T
    430
           440
                  450
                        460
                            470
CTCGCGCTCGGCGCGCTCTCGATCCGCGCGATGCATACGCCGGGCCACACGCCGGCGTGC
LALGALSIRAMHTPGHTPAC
    490 500 510 520 530
YVVTEAHAAHDARDAGAF
    550
          560
                  570
                         580
                               590
GTCGGCGATACGCTGTTCATGCCCGACTACGGCACCGCGCGCTGCGACTTCCCCGGCGGC
V G D T L F M P D Y G T A R C D F P G G
    610 620 630 640 650
D A R S L Y R S I R K V L S L P P A T R
                               710
    670
           680
                  690
                         700
CTGTACATGTGCCACGACTATCAGCCGAACGGCCGCGATCCAGTACGCGAGCACCGTC
L Y M C H D Y Q P N G R A I Q Y A S T V 730 740 750 760 770 780
GCCGACGAGTTGCGCGAGAACGTGCACATCCGCGAAGGCGTCACCGAGGACGATTTCGTC
A D E L R E N V H I R E G V T E D D F V
790 800 810 820 830 840
GCGATGCGCACCGCGCGACGCGACGCTCGACATGCCGGTGCTGATGCTGCCCTCGGTG
A M R T A R D A T L D M P V L M L P S V
                  870 880
                               890
          860
CAGGTCAACATGCGCGCGGGCCGCCTGCCCGAGCCCGAGGACAACGGCGTGCGCTACCTG
QVNMRAGRLPEPEDNGVRYL
                  930
    910
          920
AAGATCCCGCTCGACGCGATCTGA
KIPLDAI *
```

31 13. Nucleotide and deduced amino acid sequences of class B-like β-lactamase from B. pseudomallei strain 1902a.

14. การโคลน class B-like β-lactamase จาก B. pseudomailei โคยวิธี TOPO® Cloning

เนื่องจาก PCR product ที่ได้จากเชื้อ *B. pseu*domallei สายพันธุ์ 1902a และ E15 มีขนาดใกล้เคียง กับ class B-like β-lactamase gene และเป็น ผลิตผลหลักที่ได้โดยที่ไม่มี DNA อื่นปน ขั้นตอนต่อไปคือการ นำชิ้นส่วน DNA นี้ไปต่อกับเวคเตอร์ pCR® T7/CT-TOPO® และ transform เข้าไปใน *E. coli* TOP10F'

เมื่อได้โคโลนีของ E. coli TOP10F' ที่มี recombinant plasmid อยู่แล้วก็ต้องมีการการตรวจสอบ ทิศทางของ insert ที่เข้าไปรวมกับเวลเตอร์เช่นเดียวกับการโคลน class D β-lactamase gene คังนั้นจึงด้องมี การตรวจสอบโคลนที่ได้จากว่ามีการรวมตัวกันของ PCR product และเวลเตอร์อย่างถูกทิศทางหรือไม่ ซึ่ง สามารถทำได้โดยใช้วิธี PCR (ข้อ 8) ในกรณีนี้ template ที่ใช้คือ recombinant plasmid ที่สกัดออกมาจาก E. coli TOP10F' ส่วน primers ที่ใช้คือ

forward primer: ใช้ primer ที่จับกับเบสในส่วนของเวกเตอร์ ในที่นี้คือ T7 forward ซึ่งมีลำคับเบส คังนี้ 5'-TAATACGACTCACTATAGGG-3'

reverse primer: ใช้ primer ที่จับกับเบสในส่วนปลายของ PCR product ในที่นี้คือ BR3

โดยอาศัยหลักการที่ว่าเมื่อใช้ T7 forward และ BR3 เป็น primer จะให้ PCR product ซึ่งมี ขนาดประมาณ 1 kb ถ้า insert เข้ารวมกับเวคเตอร์อย่างถูกทิศทาง (รูป 14a) แต่จะไม่เกิด PCR product ถ้า insert เข้ารวมกับเวคเตอร์ผิดทิศทาง (รูป 14b)

ซึ่งก็จะได้โคลน E. coli TOP10F' ที่มี class B β-lactamase-like gene จากเชื้อ B. pseudomallei สายพันธุ์ 1902a และ E15 ต่ออยู่กับเวคเตอร์ในลักษณะ correct orientation โดยจะมีโครงสร้างดังรูป 15

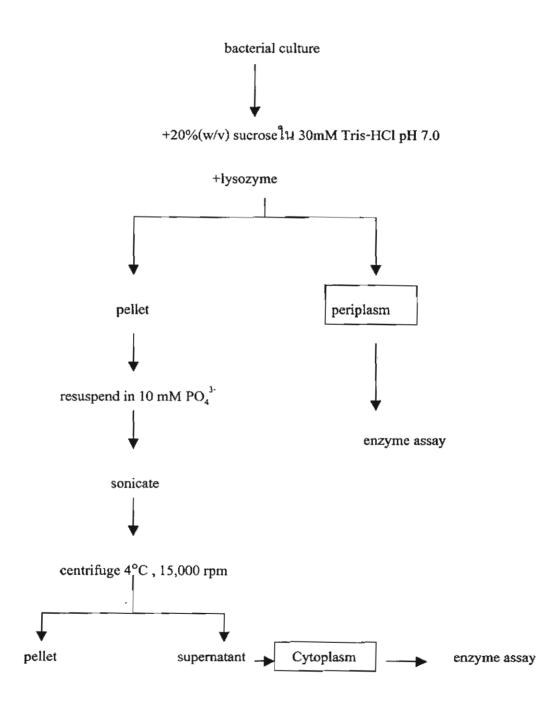
รูป 14 แสคงการตรวจสอบทิศทางการเข้ารวมกันระหว่าง PCR product กับเวคเตอร์ pCR® T7/CT-TOPO® ในปฏิกิริยาลูกโซ่โพลิเมอร์เรส โคยใช้ Forward primer คือ T7 forward และ Reverse primer คือ BR3

- (a). การรวมตัวที่ถูกทิศทางจะเกิด PCR product
- (b). การรวมตัวที่ผิดทิศทางโดยจะไม่เกิด PCR product

รูป 15 แสคงโครงสร้างของ pCR $^{\otimes}$ T7/CT-TOPO $^{\otimes}$ -bpsII

ZeocinR=Zeocin-resistant gene, AmpR=Ampicillin-resistant gene, RBS= Ribosome Binding Site

15. การหา β-lactam susceptibilities และ β-lactamase activity ของ E. coli ที่มี class B β-lactamase-like gene


เช่นเคียวกันกับการหา β-lactamase activity ของ E. coli ที่มี β-lactamase- class D gene (ข้อ 9) โดย ในขั้นแรกก็จะทำการสกัด recombinant plasmid แล้ว transform เข้าไปใน E. coli BL21(DE3) pLysS (Invitrogen) ก่อนเพื่อที่จะได้มีการแสดงออกของยืนมากขึ้น จากนั้นนำมาหาการหา β-lactam susceptibilities (MIC) ด้วยวิธี Agar dilution method และหา β-lactamase activity เปรียบเทียบกับ E. coli ที่ไม่มียืนใดอยู่

โดยทั่วไปแล้วเอนไซม์ β-lactamase ในแบกทีเรียแกรมลบจัดเป็น periplasmic enzyme ซึ่งในสาย โพลีเปปไทด์นั้นจะต้องมีโครงสร้างที่เรียกว่า signal sequence อยู่ที่บริเวณ N-terminal (รูป 16) โดย signal sequence นี้จะประกอบไปด้วย hydrophobic amino acid หลายๆตัวมาต่อกันประมาณ 22-24 ตัว ซึ่งโครง สร้างส่วนนี้จะทำให้เอนไซม์ β-lactamase สามารถแทรกตัวผ่านชั้นของพ่อสโฟลิปิดที่เซลเมมเบรนออก ไปสู่บริเวณ periplasm ได้ แต่เมื่อได้ทำการวิเคราะห์ลำดับของกรดอะมิโนของ class B β-lactamase-like จากเชื้อ B. pseudomallei สายพันธุ์ 1902a อย่างละเอียดโดยใช้โปรแกรม SignalP (http://www.cbs.dtu.dk/services/SignalP/) แล้วพบว่าไม่มี signal sequence ดังนั้นเอนไซม์นี้จึงอาจจัดว่าเป็น cytoplasmic enzyme

รูป 16 แสคงโครงสร้างของเอนไซม์ β-lactamase

ดังนั้นจึงทำการตรวจสอบ class B β-lactamase carbapenemase activity ในชั้นของ periplasm แยก จากไซโตพลาสซึมโดยทำการแยก periplasm ตามวิธีการในรูป 17 จากนั้นนำสารสกัดจาก periplasm และ ไซโตพลาสซึมมาตรวจหา activity ของเอนไซม์เบ่รียบเทียบกัน ผลการทดลองแสดงในตารางที่ 6

รูป 17 แสดงใคอะแกรมการสกัดเอนไซม์ β-lactamase ในชั้นของ periplasm และไซโตพลาสซึม

ทาราง 6 แสคง Specific Activity ของ E. coli BL21 (DE3) pLysS (bpsII-1902a) หรือ (bpsII-E15) ในชั้น	1
ของ periplasm และ ไซ โตพลาสซึม	

strains	Мегор	enem	Imipo	enem	Ampicillin		
	Cyto plasm	Peri plasm	Cyto plasm	Peri plasm	Cyto plasm	Peri plasm	
BL21(DE3)pLysS	2.4 ± 0	0	0.8 ± 0.4	0	15.9±3.5	0	
BL21(DE3)pLysS(bpsII-1902a)	9.5 ± 1.4	0	2.6 ± 0	0	ND	5652 ± 247	
BL21(DE3)pLysS (bpsII-E15)	8.8 ± 0.7	0	3.1 ± 0.1	0	ND	904 ± 255	

หมายเหตุ ND= No Detectable activity

bpsII-1902a=classB β-lactamase-like gene จาก B. pseudomallei สายพันธุ์ 1902a

bps/l-E15= classB β-lactamase-like gene จาก B. pseudomallei สายพันธุ์ E15

จากตาราง 6 พบว่าสารสกัดใชโตพลาสซึมจาก E. coli BL21(DE3) pLysS (bpsII-1902a) หรือ (bpsII-E15) สามารถย่อยสลาย carbapenem ได้เมื่อเปรียบเทียบกับกลุ่มควบคุมคือ เชื้อ E. coli BL21(DE3) pLysS ที่ไม่มี recombinant plasmid อยู่ จากผลการทดลองสามารถสรุปได้ดังนี้

- 1. activity ต่อ imipenem และ meropenem ของ E. coli BL21(DE3) pLysS (bpsII-1902a) และ (bpsII-E15) จะอยู่ในชั้นของไซโตพลาสซึม แต่จะไม่พบใน periplasm
- 2. activity ต่อ ampicillin ของ E. coli BL21(DE3) pLysS (bpsII-1902a) และ (bpsII-E15) นั้น พบมากในชั้นของ periplasm ซึ่งเป็นผลมาจาก ampicillin-hydrolysing enzyme จากเวคเตอร์ ในส่วนของไซโตพลาสซึมก็พบ activity ต่อ ampicillin บ้างเช่นกัน (แต่จะน้อยกว่าใน periplasm มาก)

ซึ่งทั้ง carbapenemase และ ampicillinase activity นี้น่าจะเป็นผลมาจากขึ้น bpsII จาก recombinant plasmid

^{*} มีหน่วยเป็น μ mole substrate hydrolysed min mg protein -

3. สารสกัดจาก periplasm ไม่มี activity ต่อ carbapenem

เนื่องจาก เอนไซม์ carbapenemase ในแบคทีเรียกรัมสบนั้นจะอยู่ในส่วนของ periplasm ซึ่งจาก การผลการทดลองนี้ชี้ให้เห็นว่าตำแหน่งของ BpsII นั้นน่าจะอยู่ในชั้นของไซโตพลาสซึม แสดงให้เห็นว่า BpsII นั้นอาจไม่ใช่ true carbapenemase แต่อาจมีหน้าที่อื่นเช่นทำหน้าที่เป็น glyoxalase II ซึ่งก็จะต้องมี การศึกษาต่อไป

เอกสารอ้างอิง

- 1. White, N. J., Dance, D. A. B., Chaowagul, W., Wattanagoon, Y., Wuthiekanun, V. & Pitakwatchara, N. (1989). Halving of mortality of severe melioidosis by ceftazidime. *Lancet* 2, 697-701.
- 2. Dance, D. A., Wuthiekanun, V., Chaowagul, W. & White, N. J. (1989). The antimicrobial susceptibilities of *Pseudomonas pseudomallei*: Emergence of resistance *in vitro* and during treatment. *Journal of Antimicrobial Chemotherapy* 24, 295-309.
- 3. Dance, D. A., Wuthiekanun, V., Chaowagul, W., Suputtamongkol, Y. & White, N. J. (1991). Development of resistance to ceftazidime and co-amoxiclav in *Pseudomonas pseudomallei*. *Journal of Antimicrobial Chemotherapy* 28, 321-4.
- 4. Godfrey, A. J., Wong, S., Dance, D. A., Chaowagul, W. & Bryan, L. E. (1991). Pseudomonas pseudomallei resistance to β -lactam antibiotics due to the alteration in the chromosomally encoded β -lactamase. Antimicrobial Agents and Chemotherapy 35, 1635-40.
- 5. Livermore, D. M., Chau, P. Y., Wong, C. I. & Leung, Y. K. (1987). β-Lactamases of *Pseudomonas pseudomallei* and its contribution to antibiotic resistance. *Journal of Antimicrobial Chemotherapy* 20, 313-21.
- 6. Baxter, I. A. & Lambert, P. A. (1994). Isolation and partial purification of a carbapenem-hydrolyzing metallo-β-lactamase from *Pseudomonas cepacia*. *FEMS Microbiology Letters* **122**, 251-6.
- 7. Michel-Briand Y., Nicolas, T., Godard, C., & Plesiat, P. (1992). β-Lactamases Id of ceftazidimeresistant *Pseudomonas aeruginosa* strains. Microbiologica.15: 65-9.
- 8. Arnoff, S. C. (1988). Derepressed β-lactamase production as a mediator for high level β-lactam resistance in *Pseudomonas cepacia*. *Pediatric Pulmonology* 4, 72-7.
- 9. Walsh, T. R., Stunt, R. A., Nabi, J. A., MacGowan, A. P. & Bennett, P. M. (1997). Distribution and expression of β-lactamase genes among *Aeromonas* spp. *Journal of Antimicrobial Chemotherapy* 40, 171-8.

- 10. Nordmann, P., Poirel, L., Kubina, M., Casetta, A. & Naas, T. (2000). Biochemical-genetic charracterisation and distribution of OXA-22, a chromosomal and inducible class D β-lactamase from Ralstonia (Pseudomonas) pickettii. Antimicrobial Agents and Chemotherapy 44, 2201-4.
- 11. Rasmussen, B. A., Keeney, D., Yang, Y. & Bush, K. (1994). Cloning and expression of cloxacillin-hydrolysing enzyme and a cephalosporinase from *Aeromonas sobria* AER14M in *Escherichia coli*, requirement for an *E. coli* chromosomal mutation for efficient expression of classD enzyme. *Antimicrobial Agents and Chemotherapy* 38, 2078-85.
- 12. Walsh, T. R., Hall, L., MacGowan, A. P. & Bennett, P. M. (1995). Sequence analysis of two chromosomally mediated inducible β-lactamase from *Aeromonas sobria. Journal of Antimicrobial Chemotherapy* 36, 41-52.
- 13. Avison, M. B., Niumsup, P., Walsh, T. R. & Bennett, P. M. (2000). Aeromonas hydrophila AmpH and CepH β-lactamase: derepressed expression in mutants of Escherichia coli lacking creB. Journal of Antimicrobial Chemotherapy 46, 695-702.
- 14. Tomalsky, M. E. (1990). Sequencing and expression of *aadA*, *bla* and *tnpR* from the multiresistance transposon Tn1331. *Plasmid* 24, 218-26.
- 15. Ouellette, M., Bissonette, L. & Roy, P. H. (1987). Precise insertion of antibiotic resistance determinations into Tn21-like transposons, nucleotide sequence of the OXA-1 β-lactamase gene. Proceedings of the National Academy of Sciences (USA) 84, 7378-82.
- 16. Gniadkowski, M., Schneider, I., Jungwirth, R., Hryniewicz, W. & Bauernfeind, A. (1998). Ceftazidime-resistant Enterobacteriaceae isolates from three Polish hospitals: identification of three novel TEM- and SHV-5-Type extended spectrum β-lactamase. *Antimicrobial Agents and Chemotherapy* 42, 514-20.
- 17. Franceschini, N., Perilli, M., Segatore, B., Setacci, D., Amicosante, G., Mazzariol, A. & Cornaglia, G. (1998). Ceftazidime and aztreonam resistance in *Providencia stuartii*: characterisation of a natural TEM-derived extended spectrum β-lactamase, TEM-60. *Antimicrobial Agents and Chemotherapy* 42, 1459-62.

- 18. Tribuddharat, C., Moore, R. A. & Woods, D. E. (2001). β-Lactamase-mediated β-lactam resistance in *Burkholderia* spp. In *Delegate Handbook and Abstracts, World Melioidosis Congress, Perth, Australia, 2001*. Abstract 15, p 21. Australian Society for Microbiology.
- 19. Hartman, G. C., Keith, K., Crossett, B. Titball, R. W., Brown, K. A., & Walsh, T. R. (2001). Identification and Characterisation of a class A and class C β-lactamase and their AmpR regulators in *Burkholderia pseudomallei*. In the Abstracts of the Interscience Conference on Antimicrobial Agents and Chemotherapy, 2001. Illinois, USA. Abstract C1-1496.
- 20. Newman, T., de Bruijn, F. J., Green, P., Keegstra K., Kende, H., & McIntosh, L. (1994). Genes galore: a summary of methods for accessing results from large scale partial sequencing of anonymous *Arabidopsis* cDNA clones. *Plant Physiology* **106**, 1241-55.
- Rossolini, G. M., Condemi, M.A., Pantanella, F., Docquier, J.-D., Amicosante, G. & Thller, M. C.
 (2001). Metallo β-lactamase producers in Environmental Microbiota: New molecular class B Enzyme in
 Janthinobacterium lividum. Antimicrobial Agents and Chemotherapy 45, 837-44.
- 22. Boschi, L., Mercuri, P.S., Riccio, M. L., Amicosante, G., Gallni, M., Frere, J.-M. & Rossolini, G. M. (2000). The Legionella (Fluoribaacter) gormanii metallo β-lactamase: a new member of the highly divergent lineage of molecular subclass B3 β-lactamases. Antimicrobial Agents and Chemotherapy 44, 1538-43.
- 23. Walsh, T. R., Hall, L., Assinda, S. J., Nichols, W. W., Cartwright, S. J., MacGowan, A. P. & Bennett, P. M. (1998). Sequence and analysis of the L1 metallo β-lactamases from *Xanthomonas maltophilia*. *Biochemica and Biophysica Acta* 1218, 199-201.
- 24. Bellais, S., Poirel, L., Leotard, S., Naas, T. & Nordmann, P. (2000). Genetic Diversity of carbapenem-hydrolysing β-lactamases from Chryseobacterium (Flavobacterium) indologenes.

 Antimicrobial Agents and Chemotherapy 44, 3028-34.

Output ที่ใด้จากโครงการ

- นำเสนอในการประชุม World Melioidosis Congress ณ เมือง Perth ประเทศออสเตรเลีย เมื่อวันที่ 2629 กันยายน 2544 (ภาคผนวก 1)
- นำเสนอในการประชุมวิชาการของสำนักงานกองทุนสนับสนุนการวิจัย ในเดือน ตุลาคม 2544 ณ โรง
 แรมเฟลิกซ์ริเวอร์แคว จ. กาญจนบุรี โดยได้รับรางวัลการเสนอผลงานวิจัยดีเด่น (ภาคผนวก 2)
- นำเสนอในการประชุมวิชาการของมหาวิทยาลัยนเรศวรเมื่อเคือนกุมภาพันธ์ 2545 (ภาคผนวก 3)
- ที่พิมพ์ในวารสารระดับนานาชาติ Journal of Antimicrobial Chemotherapy (ภาคผมวก 4)

ภาคผนวก

World Melioidosis Congress

incorporating the inaugural

Emerging Infectious Diseases of the Indian Ocean Rim (EIDIOR) Workshop

> 26th - 29th September, 2001 Burswood International Resort Convention Centre Perth, Western Australia

> > Delegate Handbook and Abstracts

CEFTAZIDIME- AND IMIPENEM- HYDROLYZING BETA-LACTAMASE FROM BURKHOLDERLA PSEUDOMALLEI

Niumsup P* & Wuthiekanun V2

¹Department of Microbiology, Faculty of Medicine, Naresuan University, Phitsanuloke 65000, Thailand

²Wellcome Trust Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

The antibiotic of choice for the treatment of melioidosis is ceftazidime. Ceftazidime-resistant Burkholderia pseudomallei has been identified and B-lactamases implicated in resistance. In this study, 20 strains of B. pseudomallei (12 clinical and 8 environmental strains) were examined for their ability to yield mutants derepressed for ß-lactamase expression. Ceftazidimeresistant mutants were readily selected, by plating organisms on ceftazidime-containing media, at high frequencies and displayed a 4-8 fold increase in MICs against ceftazidime, as determined by the agar dilution method. B-Lactamase activities in both parent and mutant B. pseudomallei strains were determined by a spectrophotometric method. All strains tested possess B-lactamase activity against ampicillin. 12 mutants (7 clinical and 5 environmental strains) had approximately 2-10 fold higher ceftazidimase activity compared with their parent strains. Furthermore, 12 of these mutants (60%) demonstrated a significant increase in imipenemase activity, usually indicative of a metallo ßlactamase. B-Lactamase induction in B. pseudomallei was also investigated using ceftazidime as an inducer. Preliminary results show that moderate level B-lactamase expression (against ampicillin, ceftazidime and imipenem) could be induced with sub-MIC levels of cefrazidime. The fact that a single inducer can cause an increase in expression of multiple B-lactamase activities, suggests that the expression of these enzymes are linked. More strains are currently being investigated for B-lactamase induction to obtain a further understanding of how these clinically important enzymes are controlled.

กำหนดการและบทคัดย่อ

การประชุมเพื่อเสนอผลงานวิจัย โครงการทุนวิจัยหลังปริญญาเอก ครั้งที่ ๒

ISBN 974-8196-98-4 ณ โรงแรมเฟลิกซ์ จ.กาญจนบุรี ระหว่างวันที่ 12-14 ตุลาคม 2544

สำนักงานกองทุนสนับสนุนการวิจัย

The Thailand Research Fund

TITLE: CEFTAZIDIME- AND IMIPENEM- HYDROLYZING

BETA-LACTAMASE FROM Burkholderia pseudomallei

AUTHOR (S): Pannika Niumsup¹ and Vannaporn Wuthekanun²

ADDRESS: Department of Microbiology, Faculty of Medicine, Naresuan

University, Phitsanuloke 65000, Thailand. Wellcome Trust Unit,

Faculty of Tropical Medicine, Mahidol University, Bangkok,

Thailand

Objective: To investigate the β-lactam resistance in B. pseudor...allei.

Methods: Ceftazidime-resistant B. pseudomallei strains were selected, by plating organisms on ceftazidime-containing agar. MICs and β -lactamase activities of both parent and mutant strains were examined by agar dilution method, according to NCCLS guidelines, and spectrophotometric method, respectively.

Results: 20 strains of *B. pseudomallei* (12 clinical and 8 environmental strains) were examined for their ability to yield mutants derepressed for β -lactamase expression. Ceftazidime-resistant mutants were readily selected at high frequencies and displayed a 4-8 fold increase in MICs against ceftazidime. All strains tested possess activities against ampicillin. 12 mutants (7 clinical and 5 environmental strains) had approximately 2-10 fold higher ceftazidimase activity compared with their parent strains. Furthermore, 12 of these mutants (60%) demonstrated a significant increase in imipenemase activity, usually indicative of a metallo β -lactamase. β -Lactamase induction in *B. pseudomallei* was also investigated using ceftazidime as an inducer. Preliminary results show that moderate level β -lactamase expression (against ampicillin, ceftazidime and imipenem) could be induced with sub-MIC levels of ceftazidime.

Conclusion: The presence of β -lactamases in β . pseudomallei strains suggested the involvement of these enzymes in β -lactam resistance. The fact that a single inducer can cause an increase in expression of multiple β -lactamase activities, suggest that the expression of these enzymes may be co-ordinately controlled.

Selected references:

- 1. Livermore D.M., Chau P.Y., Wong C.I. and Leung Y.K. (1987). β-Lactamases of *Pseudomonas pseudomallei* and its contribution to antibiotic resistance. J Antimicrob Chemother 20,313-321.
- 2. Sookpranee T., Sookpranee M., Mellencamp M.A. and Preheim L.C. (1991). *Pseudomonas pseudomallei*, a common pathogen in Thailand that is resistant to the bactericidal effects of many antibiotics. Antimicrob Agents Chemother 35: 484-489.

Keywords: Burkholderia pseudomallei, β-lactamases, ceftazidime

บันทึกข้อความ

ส่วนราชการ สำนักงานอธิการบดี กองบริการการศึกษา งานวิจัย โทร. ๑๑๔๖ ที่ ทม ๑๙๐๑.๐๓(๓)/ 🗘 ซุชๆ วันที่ ซุซ มกราคม ๒๕๔๕

เรื่อง ขอเรียนเชิญนำเสนอโครงการวิจัยที่ได้รับรางวัล

เรียน ดร.พรรณิกา เนียมทรัพย์

ด้วยมหาวิทยาลัยนเรศวร จะจัดแสดงนิทรรศการโครงงานของนิสิตมหาวิทยาลัยนเรศวร ประจำปี ๒๕๔๕ และการสัมมนาทางวิชาการเรื่อง "ทิศทางการวิจัยของมหาวิทยาลัยนเรศวรในปัจจุบัน และอนาคต" ขึ้นในระหว่างวันที่ ๑๘–๒๐ กุมภาพันธ์ ๒๕๔๕ ณ ศูนย์บริการเทคโนโลยีสารสนเทศและ การสื่อสาร รายละเอียดตามโครงการแนบท้าย

เพื่อเป็นการเผยแพร่ผลงานวิจัยของท่านและสร้างแรงจูงใจในการทำงานวิจัยให้กับนิสิต และอาจารย์ ในการนี้มหาวิทยาลัยใคร่ขอเรียนเชิญท่านนำเสนอโครงการวิจัยที่ได้รับรางวัล ประมาณ ๑๕ นาที ในวันที่ ๒๐ กุมภาพันธ์ ๒๕๔๕ ระหว่างเวลา ๐๙.๐๐–๑๐.๐๐ น. ณ ศูนย์บริการเทคโนโลยี สารสนเทศและการสื่อสาร ห้อง Main Conference ตามกำหนดการที่แนบมาพร้อมนี้

จึงเรียนมาเพื่อโปรดพิจารณา และแจ้งผลตอบรับมายังงานวิจัย ภายในวันที่ ๒๕ ุ มกราคม ๒๕๔๕ หวังว่าคงได้รับความอนุเคราะห์จากท่านด้วยดี จึงขอขอบคุณมา ณ โอกาสนี้

> โภา ปักทาง (ศาสตราจารย์ ดร.บรรพต สุวรรณประเสริฐ)

> > รองอธิการบดีฝ่ายวิจัย

กำหนดการ

การแสดงนิทรรศการโครงงานของนิสิตมหาวิทยาลัยนเรศวร

และ

การสัมมนาทิศทางการวิจัยของมหาวิทยาลัยนเรศวรในปัจจุบันและอนาคต ระหว่างวันที่ 18-20 กุมภาพันธ์ 2545

ณ ศูนย์บริการเทคโนโลยีสารสนเทศและการสื่อสาร ห้อง Main Conference

วันจันทร์ที่ 18 กุมภาพันธ์ 2545

08.30-09.00 น.

- ลงทะเบียน

09.00-09.30 N.

- เปิดการแสดงนิทรรศการ

- รองอธิการบดีฝ่ายวิจัยกล่าวรายงาน / อธิการบดีกล่าวเปิดงาน

- การแสดงออกซึ่งวัฒนธรรมไทย

10.00-16.00 น.

- แขกผู้มีเกียรดีร่วมชมนิทรรศการ

13.00-16.00 น.

- คณะกรรมการให้คะแนนโครงงาน/สัมภาษณ์โครงงาน

วันอังคารที่ 19 กุมภาพันธ์ 2545

09.00-09.15 น.

- ลงทะเบียน

09.15-09.30 น.

- กล่าวต้อนรับและพิธีเปิด โดย อธิการบดีมหาวิทยาลัยนเรศวร

09.30-10.30 น.

- บรรยายหัวข้อ "ทิศทาง ส่งเสริม สนับสนุน การวิจัยของมหาวิทยาลัย

นเรศวร" โดย รศ.ดร.มณฑล สงวนเสริมศรี อธิการบดี

10.30-10.45 น.

- พักรับประทานอาหารว่าง

10.45-12.00 น.

- บรรยายหัวข้อ "แนวโน้ม จุดเน้น และการเสนอโครงการวิจัย เพื่อขอรับทุนสนับสนุนจาก สำนักงานกองทุนสนับสนุนการวิจัย โดย รองผู้อำนวยการสำนักงานกองทุนสนับสนุนการวิจัย

(ผู้ช่วยศาสตราจารย์วุฒิพงศ์ เดชะดำรงสิน)

12.00-13.00 น.

- พักรับประทานอาหารกลางวัน

13.00-14.45 น.

- บรรยายหัวข้อ "แนวโน้ม จุดเน้น และการเสนอโครงการวิจัย เพื่อขอรับทุนสนับสนุนจาก สำนักงานคณะกรรมการวิจัยแห่งชาติ

โดย รองเลขาธิการคณะกรรมการวิจัยแห่งชาติ

(นายซอบวิทย์ ลับไพรี)

14.45-15.00 น.

- พักรับประทานอาหารว่าง

วันอังคารที่ 19 กุมภาพันธ์ 2545 (ต่อ)

15.00-16.00 น.

- สรุปอภิปรายและตอบประเด็นซักถามโดย ผู้อำนวยการสำนักงานกองทุนสนับสนุนการวิจัย เลขาชิการคณะกรรมการวิจัยแห่งชาติ

รองอธิการบดีฝ่ายวิจัย

16.00-16.30 น.

- พิธีปิดและมอบของที่ระลึก

วันพธที่ 20 กุมภาพันธ์ 2545

08.30-09.00 น.

- ลงทะเบียน

09.00-10.00 น.

- การนำเสนอโครงการวิจัยที่ได้รับรางวัล (คนละ 15 yrn)

** เรื่อง "การใช้จุลินทรีย์ร่วมการกระดุ้นพืชในการสร้างภูมิคุ้มกัน" โดย ผศ.ตร.กัลชลี เจดิยานนท์ ได้ทุนสนับสนุนการวิจัยหลังปริญญาเอกจาก สกว. และได้รับรางวัล การเสนอผลงานวิจัยดีเต่น ในปี 2544

🗱 เรื่อง "ผลของเอมไซม์ eta-Lactamase ต่อความสามารถในการต้านยา eta-Lactam"

โดย คร.พรรณิกา เนียมทรัพย์ ได้ทุนสนับสนุนการวิจัยหลังปริญญาเอกจาก สกว. และได้รับรางวัล การเสนอผลงานวิจัยดีเด่น ในปี 2544

รั้ง เรื่อง "ริงที่มอดูลเอกฐานเป็นวีคลี่อินเจคทีฟ" โดย รศ.ดร.สมยศ พลับเที่ยง ได้รับรางวัลชมเชยจากสำนักงานคณะกรรมการวิจัยแห่งชาติ ประเภทวิทยานิพนธ์ประกอบการศึกษาระดับปริญญาเอก ในปี 2544

10.00-11.00 น.

- ประกาศผลและมอบรางวัลโครงงานของนิสิต โดยอธิการบดีมหาวิทยาลัยนเรศวร (รศ.ตร.มณฑล สงวนเสริมศรี)

11.00-11.20 น.

พิธีปิดงานแสดงนิทรรศการโครงงานของนิสิต
 โดยรองอธิการบดีฝ่ายวิจัย (ศ.ดร.บรรพต สุวรรณประเสริฐ)

Characterization of beta-lactamases

in B. pseudomallei

Pannika Niumsup* and Vanaporn Wuthiekanun**

- *Department of Microbiology and Parasitology, Faculty of Medical Sciences, Naresuan University, Phitsanuloke, 65000.
- **Wellcome Trust Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok.

Burkholderlapsendomallef

- -first isolated in 1912, motile G-bacillus
- -formerly known as Pseudomonas aeruginosa
- -environmental saprophyte
- -abscess-forming infections (Melioidosis)

Wellcome Trust Unit

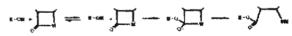
Melioidosis

- -A rainy season disease (June-November)
- -Affects all ages (40-59)
- -Male more than female (3:2)
- -Affects predominantly rice farmers and their families
- -Risk factors: diabetic, chronic renal failure, smoking, alcoholism

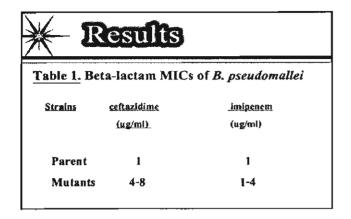
Melioidosis

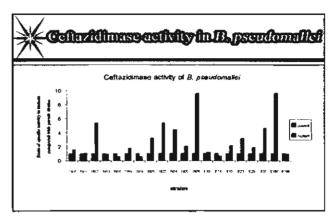
- -Endemic area: N/E Thailand& NT. Australia
- -Systemic infection: abscesses in lungs, spleen, liver, kidney, muscle etc.
- -Septicaemia
- -Mortality rate 40%
- -beta-lactams: Cestazidime & imipenem

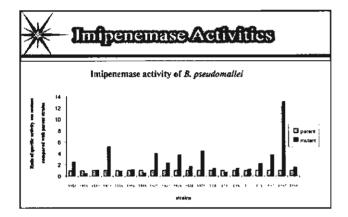
Melioidosis

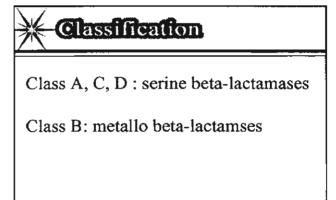

UBON RATCHATANI 1986-1997

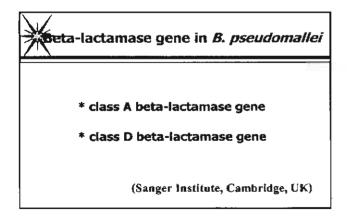
1504 patients(233 children) (Wellcome Trust Unit)

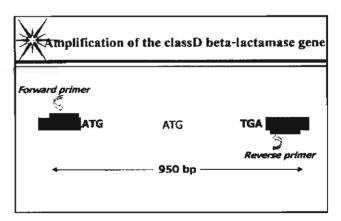

- Mortality 51%
- Male 58%
- Known underlying disease 55%
- Septicaemic 62%

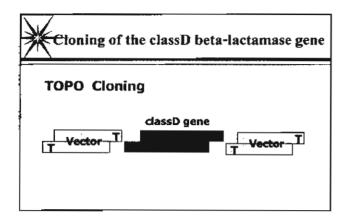


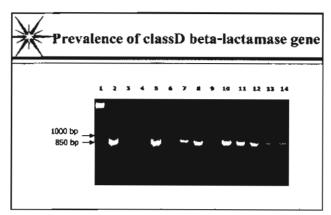

Beta-lactamases

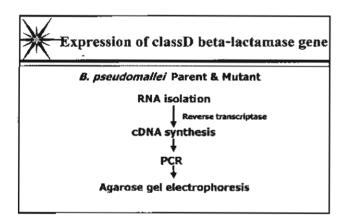


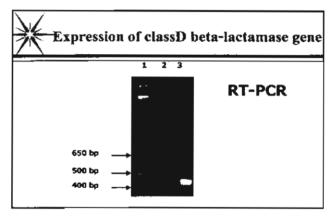

Michaelis comples Fett ubeckni internediate Acylemyn

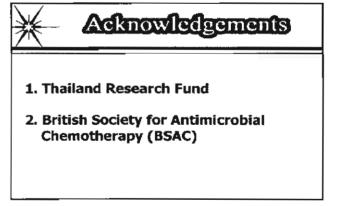












Conclusions

- 1. Beta-lactam-resistant B. pseudomallei possess activity against ceftazidime, imipenem
- 2. Class D beta-lactamase gene is involved in the beta-lactam resistant B. pseudomallei

Acknowledgements

- •Welfcome Trust Unit
 - Prof. Nicholas J. White
 - Vanaporn Wuthlekanun
- •Bristol,UK
 - -Dr. Timothy R. Walsh
- •Dept. of Micro&Parasite,Naresuan University

Part of this work was present at the "World Melioidosis Congress", Perth, Australia 26-28th September 2001

Advance Access published September 6, 2002

Journal of Antimicrobial Chemotherapy (2002) 50

DOI: 10.1093/jac/dkf165

JAC

Cloning of the class D β-lactamase gene from Burkholderia pseudomallei and studies on its expression in ceftazidime-susceptible and -resistant strains

Pannika Niumsup1* and Vanaporn Wuthiekanun2

¹Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanuloke 65000; ²Wellcome Trust Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand

Received 10 January 2002; returned 15 April 2002; revised 11 June 2002; accepted 3 July 2002

Ceftazidime is the antibiotic of choice for the treatment of melioidosis. Ceftazidime-resistant Burkholderia pseudomallei have been identified and β -lactamase production implicated in resistance. In this study, 25 strains of B. pseudomallei (15 clinical and 10 environmental strains) were examined for their ability to yield mutants that overexpress β -lactamase. Ceftazidime-resistant mutants were selected readily at high frequency and displayed four- to eight-fold increases in the MICs of ceftazidime. β -Lactamase activities in both parent and mutant B. pseudomallei strains were examined by a spectrophotometric method. Twelve mutants (48%) showed approximately two- to 31-fold higher ceftazidimase activity compared with their parent strains and 10 (40%) demonstrated more than two-fold increases in imipenemase activity. A class D β -lactamase gene from B. pseudomallei was cloned and sequenced. The encoded enzyme is an oxacillinase and is homologous to oxacillinases from Ralstonia pickettii and members of the genus Aeromonas. Reverse transcriptase PCR showed that transcription of the class D β -lactamase gene is increased in ceftazidime-resistant mutants.

Introduction

Melioidosis, a fatal disease caused by Burkholderia pseudo-mallei, is endemic in Thailand, especially in the north-east. Patients with systemic B. pseudomallei infection require prompt antimicrobial therapy, as the mortality rate is exceptionally high. Currently, the antibiotic of choice for the treatment of acute melioidosis is ceftazidime. Resistance to ceftazidime was recognized soon after this antibiotic became the treatment of choice for severe melioidosis. Resistance was shown to be the result of β -lactamase production. The carbapenems were therefore evaluated as an alternative treatment, although their use is still limited. Furthermore, in some other Gram-negative pathogens such as Enterobacter cloacae and Acinetobacter baumannii, as Enterobacter cloacae and Acinetobacter baumannii, acarbapenem resistance has emerged, particularly because of the production of specific β -lactamases.

To date, there is relatively little information on β -lactamase expression in B. pseudomallei. In 1987, Livermore et al.⁹ reported that nine strains of B. pseudomallei possess a weakly

inducible cephalosporinase that is active against carbenicillin, cefotaxime and cefuroxime. Later, Dance et al.^{3,4} noted the presence of a clavulanic acid-susceptible ceftazidimase. Godfrey et al.¹⁰ reported that β -lactam resistance in B. pseudomallei resulted from overexpression of chromosomal β -lactamases, and this has also been shown to result in high-level resistance to β -lactams in Burkholderia cepacia.¹¹ In contrast, 194 strains of B. pseudomallei were examined for β -lactamase expression by Sookpranee et al.,¹² who concluded that the β -lactamases found were non-inducible.

Carbapenemases have recently become more prominent among β -lactam-hydrolysing enzymes, and have also been described in carbapenem-resistant *B. cepacia*. This organism produces an inducible metallo- β -lactamase, designated PCM-1, that hydrolyses imipenem, meropenem and, to a lesser extent, ceftazidime. Therefore, it is not unreasonable to speculate that carbapenem-hydrolysing enzymes may also be present in *B. pseudomallei*. However, sequencing of the genome of *B. pseudomallei* strain K96243 has revealed the

P. Niumsup and V. Wuthiekanun

presence of class A, C and D β -lactamase genes, but not a class B (metallo-) β -lactamase gene (Sanger Institute, Cambridge, UK). The phenotypic significance of the β -lactamase genes located has not yet been elucidated.

When bacteria carrying a β -lactamase gene(s) are exposed to β -lactams, they come under strong selective pressure to develop resistance. Many Gram-negative bacteria, including B. cepacia, have been reported to produce, at high frequencies, mutants that overexpress β -lactamase. If In this study, environmental and clinical strains of B. pseudomallei were examined for their abilities to yield mutants that overexpress β -lactamase expression. The frequency of mutation to ceftazidime resistance, and the β -lactam resistance profiles and levels of β -lactamase production of the resultant mutants, were investigated. The genes encoding class D β -lactamases were cloned and sequenced from two B. pseudomallei strains. Expression of this gene in one ceftazidime-resistant mutant compared with its parent was also measured.

Materials and methods

Bacterial strains

The clinical *B. pseudomallei* strains (1901a-1928a) used in this study were isolated from patients in Ubon Ratchatani, north-east Thailand. Environmental strains (E10-E188) were isolated from rice fields in the north-east of Thailand (Table 1).

Selection of ceftazidime-resistant mutants

Ceftazidime-resistant mutants were selected by plating an overnight culture of B. pseudomallei onto ceftazidime-containing Mueller-Hinton agar at 4×MIC. The same culture

was also diluted, plated on agar without antibiotic and incubated at 37°C to determine the viable cell count. The mutation frequency was calculated as the number of resistant colonies compared with the number of cells in the original culture.

Susceptibility testing

MICs were determined by a standard agar dilution method. Inocula were prepared by diluting an overnight culture of each strain. Using a multipoint inoculator, ~10⁴ cells were spotted onto dried Mueller–Hinton agar containing serial dilutions of the appropriate antibiotic. Antibiotic concentrations ranging from 0.125 to 512 mg/L with doubling increments were used. After 18 h incubation at 37°C, the MIC was recorded as the lowest concentration of antibiotic that inhibited visible growth.

Preparation of crude cell extracts containing β-lactamase

The *B. pseudomallei* cultures were grown until mid-log phase. Then, toluene was added to the cultures in order to kill bacteria, as described by Livermore *et al.*⁹ The cells were harvested and washed once with 10 mM phosphate buffer (pH 7.0). The cultures were then disrupted on ice by four cycles of 20 s sonications with 15 s rest intervals between cycles (Vibra Cell; Sonics & Materials Inc., Newtown, CT, USA), and centrifuged at 13 000 rpm at 4°C for 10 min (Beckman J2-MC; Beckman, CA, USA). The supernatant was used in β-lactamase assays.

Crude cell extracts from *Escherichia coli* carrying the oxacillinase gene were prepared by periplasmic extraction as described by Lindström *et al.*¹⁴

Table 1. Time a	nd area of isolation of B.	pseudomallei strains used in this study
-----------------	----------------------------	---

Strains	Year of isolation	Area of isolation
1901a, 1902a, 1904a, 1907a, 1911a, 1912a, 1914b, 1916a, 1918a, 1921a, 1922a, 1923a, 1924a, 1926a, 1928a	1998	north-east Thailand
E10, E14, E15, E19, E23, E25, E26, E37, E187, E188	1990	north-east Thailand
60.66	1960	Australia
59.6	1959	_
55,135,56.91	1955	Victnam
53.238, 52.239	1952	Vietnam
52.237	1950	Vietnam
A202, A203	1947	Vietnam

^{-,} no information available.

Burkholderia pseudomallei class D β-lactamase gene

β-Lactamase assays

B-Lactamase activities were measured by monitoring hydrolysis of β-lactams by spectrophotometric assay (Spectronic Genesys™ 5; Milton Roy Company, Rochester, NY, USA) at a wavelength of optimal absorbance for the β-lactam ring of each drug. 9,15 Antibiotic solutions were prepared freshly in 10 mM phosphate buffer (pH 7.0). Ceftazidime, imipenem (Merck & Co., Inc., West Point, PA, USA), ampicillin and cefalothin (Sigma, St Louis, MO, USA) were assayed at concentrations of 100, 300, 500 and 100 µM, respectively. Prior to each assay, a background reading of each antibiotic was performed to ensure that any decrease in substrate was solely the result of adding the enzyme extracts. All assays were run in triplicate. The protein concentration was measured using a Bio-Rad protein assay based on the Lowry method (Bio-Rad, Hercules, CA, USA). Specific activities were calculated as nanomoles of β-lactam hydrolysed per minute per milligram of protein.

Amplification and cloning of class D β -lactamase genes from B, pseudomallei

Chromosomal DNA was isolated from B. pseudomallei parent strains 1902a and E15 using an Easy-DNA kit (Invitrogen, Groningen, The Netherlands), and was used directly as a template in PCR. The primers used were based on the genome sequence of B. pseudomallei K96243, which is available online (at http://www.sanger.ac.uk/Projects/B_pseudomallei/). PCR primers were purchased from Sigma-Genosys Ltd (Pampisford, UK). The class D gene primers were: (forward) 5'-ATGAGCCATTCCCCACTCTT-3' and (reverse) 5'-TT-TTGCCGTTCACGAAGAC-3', which are 32 bp upstream from the start codon and 83 bp downstream from the stop codon, respectively. The predicted PCR product was ~900 bp. Reactions were performed with 50 µL of mixture containing 100 ng of template, 0.25 µM each oligonucleotide primer, 200 µM dNTPs and 1 U of SuperTaq (HT Biotechnology Ltd, Cambridge, UK) together with its reaction buffer. The conditions comprised one cycle at 94°C for 5 min, followed by 50 cycles at 94°C for 1 min, 55°C for 1.3 min and 72°C for 2.3 min, and a final elongation at 72°C for 10 min.

The amplified class D gene products generated by PCR were cloned into the pCR T7/CT-TOPO vector (Invitrogen), according to the manufacturer's instructions. The recombinant plasmids were transformed into chemically competent E. coli TOP10F' cells by heat shock, as described by the supplier. Transformants were plated on nutrient agar containing ampicillin (100 mg/L) and zeocin (50 mg/L), and incubated at 37°C overnight. Ten colonies were picked randomly and recombinant plasmids were isolated using the Hybaid Recovery Plasmid Prep Kit (Hybaid, Teddington, UK). The orientation of the inserts was verified by PCR.

Measuring expression of class D β -lactamase genes in B. pseudomallei using reverse transcriptase-PCR (RT-PCR)

Total RNA from B. pseudomallei, both parent and mutant strains, was isolated by Hybaid RiboLyser Kit BLUE using a HYBAID RiboLyser Instrument. The RNA was quantified and cDNAs were synthesized using RevertAid H Minus M-MuLV Reverse Transcriptase (MBI Fermentas, Vilnius, Lithuania), according to the supplier's instructions. RNAs (5 μg) were mixed with specific primers, incubated at 70°C for 5 min and chilled on ice. Then, reaction buffer was added, followed by dNTPs to a final concentration of 1 mM. This reaction was incubated at 70°C for 5 min. Two hundred units of RevertAid H Minus M-MuLV Reverse Transcriptase were added and incubated at 42°C for 60 min. Finally, the reaction was terminated by heating at 70°C for 10 min and chilled on ice. The synthesized cDNA was used directly as template in RT-PCR without further purification. The oligonucleotide primers were designed within the gene: (forward) 5'-GCT-GCTGGTGCAGGACGGCG-3' and (reverse) 5'-CGTCAT-GTCGACGGCTGTG-3'. The predicted PCR product was 435 bp. Amplification reactions were performed as described earlier and the PCR conditions were as followed: one cycle at 94°C for 5 min, followed by 50 cycles at 94°C for 1 min, 58°C for 1 min and 72°C for 2 min, with a final elongation at 72°C for 10 min. The amplified products were analysed on 1% agarose gel electrophoresis.

Table 2. Frequencies of mutation and β -lactam susceptibilities of B. pseudomallei strains used in this study

	Eraguanaias af	Range of ceftazi	dime MIC (mg/L)	Range of imipenem MIC (mg/L)			
Strains	Frequencies of mutation	parent	mutant	parent	mutant		
Clinical (1901a-1928a)	10-6-10-9	1–2	4–8	1	1–4		
Environmental (E10-E188)	10-9-10-10	1	4-8	1	1–2		

P. Niumsup and V. Wuthiekanun

Results

Isolation of ceftazidime-resistant B. pseudomallei mutants

Ceftazidime-resistant mutants of 25 B. pseudomallei strains (15 clinical and 10 environmental strains) were selected by plating overnight cultures of B. pseudomallei onto ceftazidime-containing agar. It should be noted that the 'ceftazidime-resistant mutant' in this article refers to strains having four-to eight-fold increases in the MIC of ceftazidime compared with the parent strain. The mutation frequencies determined are shown in Table 2.

Ceftazidime-resistant mutants from clinical isolates were selected at frequencies of 10⁻⁶-10⁻⁹ (mostly 10⁻⁸). For environmental isolates, the mutation frequencies (for se-

lecting ceftazidime-resistant mutants) were slightly lower (10⁻⁹-10⁻¹⁰). The frequencies of mutant isolation suggested that point mutations leading to gene disruption were most likely to be responsible for the resistant phenotype, as seen in *B. cepacia*, ¹¹ Aeromonas spp. ¹⁶ and Stenotrophomonas maltophilia. ¹⁷ One mutant of each strain was chosen randomly for further investigation.

 β -Lactam susceptibilities and β -lactamase production of B. pseudomallei, parent and mutant strains

The MICs of ceftazidime and imipenem against 25 parent and ceftazidime-resistant *B. pseudomallei* mutants were determined. The ranges of MICs against all strains are shown in Table 2. The parent strains were susceptible to both ceftazid-

Table 3. B-Lactamase activities of B. pseudomallei parent strains and mutant progeny

	S	pecific activity ag	ainst ceftazidime ^a	Specific activity against imipenema				
Strains	parent	mutant	approximate fold increase ^b	parent	mutant	approximate fold increase		
1901a	6.1 ± 1.5	170.9 ± 11.9	28.0	32.4±1.8	137.8±40.2	4.3		
1902a	10.7 ± 1.6	339.1 ± 110.9	31.7	7.3 ± 2.4	383.6 ± 33.2	52.5		
1904a	8.9 ± 1.6	4.5 ± 1.1	_	9.0 ± 1.8	4.6 ± 0.7	-		
1907a	13.0 ± 2.5	20.6 ± 1.5	_	16.6 ± 6.9	42.4 ± 11.0	2.6		
1911a	19.9±0	26.6 ± 0		15.8 ± 5.3	8.5 ± 1.7	_		
1912a	4.9 ± 2.6	26.4 ± 6.2	5.4	19.1 ± 3.0	20.3 ± 4.9			
1914b	19.3 ± 5.0	11.8 ± 5.2	-	10.8 ± 1.7	9.5 ± 0.6	_		
1916a	3.5 ± 1.2	6.4 ± 1.8	_	5.1 ± 2.3	5.8 ± 2.5	_		
1918a	6.0 ± 1.9	3.2 ± 0.4	_	7.4 ± 0.9	4.5±0	_		
1921a	24.6±0	107.7 ± 25.4	3.2	27.8 ± 6.3	110.1 ± 11.2	4.0		
1922a	5.8 ± 3.3	31.3 ± 6.4	5.4	2.2 ± 0.4	4.9 ± 1.6	2.3		
1923a	6.0 ± 1.9	3.8 ± 1.1	_	8.5 ± 2.8	4.8 ± 1.2	_		
1924a	5.6 ± 2.1	25.0 ± 0	4.5	15.4±1.7	57.6 ± 15.6	3.7		
1926a	3.3 ± 1.3	16.5 ± 7.0	5.0	3.4 ± 1.2	5.9 ± 0	_		
1928a	1.2 ± 0.7	11.3 ± 3.5	9.6	6.1 ± 1.1	26.8 ± 8.1	4.4		
E10	15.8 ± 2.8	13.7 ± 1.3		7.7 ± 0.8	10.5 ± 1.1	_		
E14	6.4±1.4	4.3 ± 1.0	_	9.1 ± 0.8	6.8 ± 0.6	_		
E15	1.7±0	16.6±5,4	9.8	8.7 ± 2.6	11.4 ± 2.0	~~		
E19	4.4 ± 0.9	2.2 ± 1.3	_	6.6 ± 0.9	5.2 ± 0.5			
E23	6.1 ± 2.2	19.1±7.9	3.2	5.5 ± 2.1	6.9 ± 2.9	_		
E25	4.4 ± 1.5	8.3 ± 1.0		4.3 ± 1.6	9.6 ± 2.1	2.2		
E26	11.8±4.0	7.2 ± 2.7	_	6.2 ± 1.6	3.9 ± 1.2	_		
E37	2.1 ± 0.4	9.7 ± 3.6	4.6	3.9 ± 0.9	14.4±0.9	3.7		
E187	15.7±2.6	150.6 ± 0	9.6	15.0 ± 2.5	195.7 ± 43.1	13.0		
E188	15.3 ± 2.8	12.4 ± 1.9	_	10.8 ± 1.2	10.8 ± 1.3	_		

The values given are the average number from three separate experiments. 1901a-1928a and E10-E188 are clinical and environmental strains, respectively. *One unit: nanomoles of substrate hydrolysed per minute per milligram of protein.

An increase in activity greater than two-fold is considered significant.

Burkholderia pseudomallei class D β-lactamase gene

ime and imipenem. The mutants displayed up to eight- and four-fold increases in MICs of ceftazidime and imipenem, respectively.

To investigate whether the increase in MICs of ceftazidime and imipenem was the result of B-lactamase production, β-lactamase activities were determined, specifically against imipenem and ceftazidime. The imipenemase and ceftazidimase activities of 25 B. pseudomallei strains (both parent and mutant strains) are shown in Table 3. Twelve ceftazidimeresistant mutants (48%) (1901a, 1902a, 1912a, 1921a, 1922a, 1924a, 1926a, 1928a, E15, E23, E37, E187) showed two-to 31-fold increases in activities against ceftazidime. Increased imipenemase activity was found in 10 ceftazidime-resistant mutants (40%), which displayed two- to 52-fold higher activities compared with their parent strains (1901a, 1902a, 1907a, 1921a, 1922a, 1924a, 1928a, E25, E37, E187). Ceftazidimeresistant mutants of strains 1901a, 1902a, 1921a, 1922a, 1924a, 1928a, E37 and E187 (31% of all mutants) displayed a more than two-fold increase in activity against both imipenem and ceftazidime. Ceftazidime-resistant mutants of strains 1904a, 1911a, 1914b, 1916a, 1918a, 1923a, E10, E14, E19, E26 and E188, despite increases in MICs, displayed B-lactamase activities similar to their parents. Ceftazidime resistance in these mutants may have resulted from other mechanisms, e.g. alteration in outer membrane proteins or drug efflux.

Amplification, sequencing and cloning of class D β-lactamase genes from B. pseudomallei

The genome sequence of B. pseudomallei has revealed the presence of class A (contig 93), class C (contig 421) and class D (contig 14) β -lactamase genes. B. pseudomallei strains 1902a and E15 were randomly chosen as representatives of clinical and environmental strains, respectively, for cloning of the class D β -lactamase genes. Genomic DNAs were extracted and amplification of class D β -lactamase genes from B. pseudomallei, strains 1902a and E15, were performed. A single, discrete band of ~900 bp was obtained for each strain, which was consistent with the predicted PCR product for a class D β -lactamase gene.

Sequencing of the PCR product from strain 1902a revealed an open reading frame of 810 nucleotides, encoding a product of 269 amino acids. The nucleotide sequence of this open reading frame and its deduced amino acids are shown in Figure 1 (EMBL accession number AJ488302). The GC content is high throughout the open reading frame (65.9%), which corresponds to the overall GC content of the B. pseudomallei chromosome. This new class D β -lactamase, designated OXA-42, has a predicted pI of 9.4 and an estimated molecular weight of 29.5 kDa. Like other β -lactamases, the primary translation product has a strong hydrophobic

N-terminus, typical of periplasmic proteins. The predicted cleavage site is likely to be between alanine and lysine at position 23–24. Within the enzyme, the conserved Ser-Thr-Phe-Lys active site was found at position 53–56. Four other conserved regions for class D β -lactamases were also identified (Figure 1): Tyr-Gly-Asn (position 130–132); Trp-Xaa-Gly-Xaa-Xaa-Leu-Xaa-Ile-Ser (position 149–157), Gln-Xaa-Xaa-Leu (position 161–165); and Lys-Thr-Gly (position 201–203).

The predicted amino acid sequence of OXA-42 (from strain 1902a) is almost identical to the gene sequenced by the Sanger Institute (from strain K96243) with one amino acid difference. When OXA-42 was compared with other β-lactamases in the EMBL database, this protein displayed high homology with several oxacillin-hydrolysing β-lactamases such as OXA-22 from Ralstonia pickettii¹⁸ (51% identity); AsbB1, AmpS and AmpH, the class D enzymes from Aeromonas jandaei, ¹⁹ Aeromonas veronii²⁰ and Aeromonas hydrophila, ¹⁵ respectively (45% identities); OXA-18 from Pseudomonas aeruginosa²¹ (43% identity); and OXA-9 from Klebsiella pneumoniae encoded on multiresistant transposon Tn1311²² (41% identity).

The nucleotide sequence of the amplified class D β -lactamase gene from *B. pseudomallei* strain E15 was also determined (EMBL accession number AJ488303). The deduced amino acid sequence, designated OXA-43, is virtually identical to that of OXA-42, differing by two amino acids. Figure 2 presents the alignment of OXA-42 and OXA-43 with the deduced amino acid sequence of the class D β -lactamase gene from *B. pseudomallei* strain K96243, OXA-22, AsbB1, AmpH, OXA-18 and OXA-9.

Prevalence of class D β-lactamase genes in B. pseudomallei

Eleven B. pseudomallei strains were investigated for the presence of class D β-lactamase genes. These strains were isolated from Thailand (1901a, 1921a), Vietnam (52.239, 56.91, A203, 52.238, 59.6, A202, 52.237, 55.135) and Australia (60.66) (Table 1). Chromosomal DNAs were isolated and used as templates in PCR amplification. The oligonucleotide primers and PCR conditions were exactly the same as those for strains E15 and 1902a. Strains 1902a and E15 were also included in this amplification as positive controls. The PCR products obtained from eight strains (except 60.66, 52.238 and 52.237) were ~900 bp in length, which corresponded to the predicted PCR product size, regardless of the geographical origin and isolation time (Figure 3 and Table 1). The PCR products were sequenced at both ends to verify that these PCR products were the class D β-lactamase genes (data not shown).

P. Niumsup and V. Wuthiekanun

		10)			20			30			4	0			50			60
CCC	ACT	CTTI	'GC	3GA	ACA	ACA	ATG	AA	ATTC	CGA	CAC	GCG	CTG	TCG	AGC	GCA	TTC	GT"	TTG
			-		_		M	K	F	R	н	A	L	s	S	A	F	V	L
		70)			60			90			10	0		1	10			120
CTG	GGT	TGCA	TC	3CC	GCG	TCG	GCG	CAT	r'GCG	AAG	ACG	ATC	TGC	ACG	GCG	ATC	GCC	GA7	rgcg
L	G	C	1	A	A	S	A	H	A	K	T	I	C	T	A	I	A٠	D	A
		130			_	40			150			16	_		_	70			180
GGC	ACG	GGCA	AG(CTG	CTG	GTG	CAG	GAC	CGGC	GAT	TGC	GGC	CGC	CGC	GCA	TCG	CCC	GCC	TCG
G	T	G	K	L	L	V	Q	D	G	D	C	G	R	R	Α	S	P	A	s
		190			_	00			210			22			_	30			240
ACGTTCAAGATCGCGATCAGCCTGATGGGCTACGACGCAGCCTTCCTGCGCAACGAGCAT																			
T	F	K	I	A	I	-	L	M		Y	D		G	F	L	R	N	E	H
		250				60			270			28			-	90			300
		GTGC																	
D	P	-	L	₽	Y		D	S	_	I	A		G	G		A	W	K	Q
		310				20			330			34	_			50			360
		GATO																	
P	T	D	p	T	ĸ	•••	L	K	-	S	v	•	• •	Y	S	Q	Q	٧	A
		370			_	86			390			40	_		_	10			420
		CTCG																	
H	H	_	G	A	Q		F	A	_	Y	A		A	F	G	_	G	N	A
		430		-	_	40			450			46	-		_	70			480
		TCCG																	
D	V	S	G	D	P	-	Q	N	N	G	L	_	R	A	₩	I	G	g	8
		490				00			510		~~~	52	_		_	30			540
		ATCT													CTC L		CGC.	AAC K	L
L	Q	I	B	Þ	r	_	Q	L	≅ 570	7	Ļ	58	K	M		N 90	R	~	600 71
200	oma	550 TCGC			_	60 amo	a 8 a	n enc		~ * ~	~~~		_	~~ *	-		18 000	r-enter	
P	V.	S	P	T	A A		GAC D	ATC M	T	GAG E	R		V V	GAA E	S	T	T	L	A
P	V	610	-	T		20	ט	Į.	630	£	K	64	-	£	_	50		ш	660
ar.c	000	ACGG		ירעיי	_		220	200		GTG	тсс		_	രസവ			CAC	aa.	
D	G		V	A A F CA	H		AAG K	T	G	V	s		P	L	L	A	D	G	T
D	G	670	-	٧		80	1	•	690	٧	3	70	_	ш	_	10		0	720
000	~~~	TGGG		יישייטיי	_		000	maca.		CTC	ccc		-	രൗര			አ አ ጥ	<u> </u>	
R	D		A	R	G		G	W		V	G	W		v	R	G	N N	0	T
ĸ	D	730		K	~	40	G	**	750	•	G	76	_	٧		70	14	¥	780
CTC	CTC	TTCG		30.C	-		CAC	ימאר		cac	a a C		-	شبلت			ממר	מידה	
L	V	F	A	R R	L	T T	Q	D	E	R	K	Q		v	s	A	G	I	R
1.1	٧	790		K		00	¥	D	810	Α.		82		•		30		_	840
B.C.C	ccc	GAGG		ræ~			CAC	TTY		രവ	(ጥጥ			GCG			CCT	רה	
T	R	E	A	F	L		D	L			L		A	A	R	*			
1	44.	850		T.	_	60	-		870			88							
acc	<u>የ</u> ረምር	CGCG		عرارة	-		ሮልር	ממר		ፈ ሞይ		30	-						
GCC	GIC.		,	3	300	CGM	CAG	المار	JAC		•								

Figure 1. Nucleotide and deduced amino acid sequences of class D β -lactamase from B. pseudomallei strain 1902a. Bold letters represent the conserved region of class D β -lactamase. The putative ribosome binding site is underlined.

β-Lactam susceptibilities and β-lactamase activities of the E. coli BL21(DE3) pLysS carrying either bla_{OXA-42} or bla_{OXA-43}

The 900 bp $bla_{OXA.42}$ and $bla_{OXA.43}$ products from B. pseudomallei 1902a and E15 parent strains were ligated directly into pCR T7/CT-TOPO and transformed into E. coli TOP10F' as described in Materials and methods. One clone for each strain was selected for further study. The recombinant plasmids were extracted and transformed into E. coli BL21(DE3) pLysS.

β-Lactam susceptibilities and β-lactamase (prepared by periplasmic extraction) activities of the E. coli BL21(DE3) pLysS carrying the β. pseudomallei class D β-lactamase genes were determined. The results are shown in Table 4. Extracts of E. coli BL21(DE3) pLysS carrying bla_{OXA-42} or bla_{OXA-43} displayed oxacillinase activity, which was not found in extracts of E. coli without plasmid or E. coli (pUC18). In contrast, E. coli BL21(DE3) pLysS carrying bla_{OXA-42} or bla_{OXA-43} did not show any resistance to ceftazidime or imipenem, and ceftazidime or imipenem hydrolytic activity was not detected in cell extracts.

Burkholderia pseudomallei class D β-lactamase gene

```
MKFRHALSSAFVLIGCIAASAH-------AKT-ICTAIADAGTGKLLVQDGDCGRR 48
OXA-42
               MKFRHALSSAFVLLGCIAASAH------AKT-ICTAIADAGTGKLLVQDGDCGRR 48
OXA-43
K96423
               MKFRHALSSAFVLLGCIAASAH------AKT-ICTAIADAGTGKLLVODGDCGRR 48
               MKRRHAAIG--ALLAALATFAH------ABHPICTIVADAATGKAVLHEGKCDER 47
OXA-22
               MORSLSMSGKRHFIFAVSFVISTVCLTFSPANAAOKLSCTLVIDEASGDLLHREGSCDKA 60
OXA-18
OXA-9
               MKDTLMK--KILLLHMLVFVSATLPISSVASDEVETLKCTIIADAITGNTLYETGECARR 58
AsbB1
               MSRLLLSG---LLATGLLCAVP------ASAASGCFLYADG-NGQTLSSEGDCSSQ 46
               MSRLLLSG~~-LLGAGLLFSLP------ASAATGCFLYADG-NGQALSSEGDCSSO 46
НошА
                                                         :*: :*
                                                      • :
                                                                 :
               ASPASTFKIAISLMGYDAGFLRNEHDPVLFYRDSYIAWGGEAWKOPTDPTRWLKYSVVWY 108
OX8-42
OXA-43
               ASPASTFKIAISLMGYDAGFLRNEHDPVLPYRDSYIAWGGEAWKQPTDPTRWLKYPVVWY 108
X96423
               ASPASTFKIAISLMGYDAGFLRNEHDPVLPYRDSYIAWGGEAWKQPTDPTRWLKYSVVWY 108
OXA-22
               VTPASTFKLALAVMGFDHGFLKDEHTPVEHFRHGDPDWGGEAWHQPIDPALWLKYSVVWY 107
OXA-18
               FAPMSTFKLPLAIMGYDADILLDATTPRWDYKPEFNGYKSQQ--KPTDPTIWLKDSIVWY 118
OXA-9
               VSPCSSFKLPLAIMGFDSGILQSPKSPTWELKPEYNPSPRDRTYKQVYPALWQSDSVVWF 118
AabB1
               LPPASTFKIPLALMGYDSGFLVNEEHPALPYKPSYDGW-LPAWRETTTPRRWETYSVVWF 105
AmpK
               LPPASTPKIPLALMGYDSGFLVDEEHPALPFKPGYDDW-LPAWRETTTPRRWETYSVVWF 105
                 *:*:** : ::**:* ::*
                                         • :::
                                                            .... : #:::::: ##:
                                      •
                                                    1
                                                         : :
OXA-42
               SOOVAHHIGAORFAOYAKAFGYGNADVSGDPGONNGLDRAWIGSSLOISPLEOLEFIGKM 168
OXA-43
               SOOVAHHLGAORFAOYAKAFGYGNADVSGDPGONNGLDRAWIGSSLOISPLEOLEFLGKM 168
               SOOVAHHIGAORFAOYAKAFGYGNADVSGDPGONNGLDRAWIGSSLOISPLEOLEFIGKM 168
K96423
OXA - 22
               SORITHAMGAOTFOAYVRKLGYGNMDVSGDPGKNNGMDRSWITSSLKISPEROVGLMRRI 167
OXA-18
               SOBLTRRIGESRFSDYVORFDYGNKDVSGDPGKHNGLTHAWLASSLKISPEROVRFLRRF 178
OXA-9
               SOOLTSRLGVDRFTEYVKKFEYGNODVSGDSGKHNGLTOSWLMSSLTISPKEOIOFLLRF 178
AsbB1
               SQQITEWLGMERFQQYVDRFDYGNRDLSGNPGKHDGLTQAWLSSSLAISPEBQARFLGKM 165
HqmÄ
               SQQITEWLGMBRFQQYVDRFDYGNRDLSGNPGKHDGLTQAWLSSSLAISPQBQARFLGKM 165
                                                      . *
                                  . *** *:**::*: :*:
                          1 * 1 * 1
OXA-42
               LNRKLPVSPTAVDNTRRIVESTTLADGTVVHGKTGVSYPLLA----DGTRDWARGSGWFV 224
               LNRKLPUSPTAUDMTRRIVESTTLADGTVVHGKTGVSYPLLA - - - - DGTRDWARGSGWPV 224
OXA-43
               LNRKLPVSPTAVDMTERIVESTTLADGTVVHGKTGVSYPLLA----DGTRDWARGSGWFV 224
K96423
               VNROLPVSAHTYEMLDRTVOTWOVPGGWAVOGKTGTAGPAPGNTSPDGTWDOAHAYGWFV 227
OXA-22
               LRGELPVSEDALEMTKAVVPHFEAGD-WDVOGKTGTGSLSDA----KG---GKAPIGWFI 230
OXA - 18
               VAHKLPVSEAAYDMAYATIPQYQAAEGWAVHGKSGSGWLRDN----NGKINESRPQGWFV 234
P-4XO
               VSGKLPVSAOTLOYTANILK-VSEVEGWOIHGKTGMGYPKKL----DGSLNRDOQIGWFV 220
AsbBl
               VSGKLPVSAQTLQYTANILK-VSESDGWQIHGKTGMGYPKKL----DGSLNREQQIGWFV 220
HqmA
                  . ****
                                         11 11**:*
                                                             . *
                           :: :
                                                    ::
0XA-42
               GWIVRGNQTLVFARLTQDERKQPVSAGIRTREAFLRDLPRLLAAR-- 269
OXA-43
               GWIVRGKOTLVFARLTODERKOPVSAGIRTREAFLRDLPRLLAAR-- 269
K96423
               GWIVRGKOTLVFARLTODERKOPVSAGIRTREAFLRDLPRLLAAR-- 269
0XA-22
               GWARKGDKTYVFANLIQDDKVEPTSGGIRSRDALFARLSEVLAFAGH 274
               GWATRDDRRVVFARLTVGARKGEQPAGPAARDEFINTLPALSENF-- 275
OXA-18
               GWAEKNGROVVFARLEIGKEKSDIPGGSKAREDILVELPVLMGNK-- 279
OXA-9
AsbB1
               GWASKPGKQLIFVHTVVQ-KPGKQFASIKAKEEVLAALPAQLKKL-- 264
               GWASKPGKQLIFVHTVVQ-KPGKQFASLKAKERVLAALPAKLKTL-- 264
AmpH
```

Figure 2. Alignment of class D β -lactamase from B. pseudomallei 1902a and E15, OXA-42 and OXA-43, respectively, with the deduced amino acid sequence of the class D gene from B. pseudomallei strain K96243 and other related oxacillinases, such as OXA-22, ¹⁷ OXA-18, ²⁰ OXA-9, ²¹ AsbB1¹⁸ and AmpH.¹⁵ The two amino acid differences between OXA-42 and OXA-43 are underlined and indicated by ' $\frac{1}{3}$ '. Amino acid sequences that are found in all eight class D β -lactamases are indicated by an asterisk. ':' indicates an amino acid that is found in at least five proteins.

Expression of class D β -lactamase in B. pseudomallei E15, parent and ceftazidime-resistant mutant strains

To examine whether the class D β -lactamase is overexpressed in ceftazidime-resistant mutants, RT-PCR was performed on one parent strain and its resistant mutant progeny. B. pseudo-mallei strain E15 was chosen for this study because it was isolated from soil and hence is unlikely to have been exposed to

 β -lactams at growth inhibitory concentrations. Total RNAs were isolated and quantified. Primers used in cDNA synthesis and RT-PCR are described in Materials and methods. The RNA from both the parent and the ceftazidime-resistant mutant strains was used to synthesize cDNAs, which were further used as templates in amplification. The predicted PCR product is 435 bp. The results showed clearly that the expression of the class D β -lactamase gene is increased significantly

P. Niumsup and V. Wuthiekanun

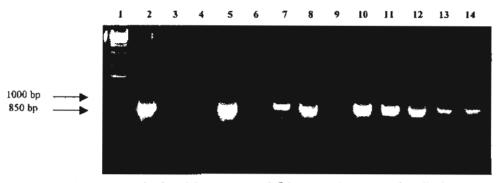


Figure 3. One percent agarose gel electrophoresis of amplification of class D β-lactamase from B. pseudomallei. Lane 1, 1 kb plus DNA ladder; lanes 2–14, class D PCR products from B. pseudomallei strains 52.239, 56.91, 60.66, A203, 52.238, 59.6, A202, 52.237, 55.135, 1901a, 1902a, 1921a and £15, respectively.

Table 4. β-Lactam susceptibilities and β-lactamase activities of E. coli BL21(DE3) pLysS carrying either the bla_{OXA-42} or bla_{OXA-43} gene from B. pseudomallei

	M	IICs (mg/L)	Specific activities ^a			
Strains	CAZ	IPM	OXA	CAZ	IPM	OXA	
BL21(DE3) pLysS	<0.125	0.5	256	ND	ND	ND	
BL21(DE3) pLysS (pUC18)	< 0.125	0.5	512	ND	ND	371 ± 0	
BL21(DE3) pLysS (bla _{OXA-42}) ^b	< 0.125	0.5	512	ND	ND	18707 ± 1062	
BL21(DE3) pLysS (bla _{OXA-43}) ^b	< 0.125	0.5	512	ND	ND	1432 ± 130	

CAZ, ceftazidime; IPM, imipenem; OXA, oxacillin; ND, no detectable activity.

*Nanomoles of substrate hydrolysed per minute per milligram of protein.

in the ceftazidime-resistant mutant compared with the parent strain (Figure 4). This experiment was repeated three times and the results were consistent.

Discussion

β-Lactam resistance poses a potential problem in the treatment of B. pseudomallei infection. β-Lactam resistance can emerge in several ways, but the most important mechanism is the production of chromosomally mediated β-lactamase(s). However, mutants in which β-lactamase(s) are produced constitutively at high levels can occur naturally. In this study, ceftazidime-resistant mutants of B. pseudomallei were selected at high frequencies. This indicates that if B. pseudomallei is exposed repeatedly to ceftazidime, there exists the possibility that resistance will emerge rapidly.

Many ceftazidimases are plasmid encoded, arising as a result of mutations in TEM-, SHV- or the OXA-type β -lactamases, leading to the extended-spectrum β -lactamases (ESBLs). Livermore et al. 9 reported β -lactamases from

B. pseudomallei that were strongly active against many cephalosporins, but not ceftazidime. However, specific ceftazidimase activity in B. pseudomallei was reported by Godfrey et al. 10 The 25 B. pseudomallei tested in this study displayed β -lactamase activities against different β -lactams. The ability to hydrolyse ampicillin or cefalothin was not surprising, but the finding that 48% of B. pseudomallei strains tested possess the ability to produce ceftazidimase activity is worrying, as ceftazidime is the antibiotic of choice for the treatment of melioidosis.

The ability of bacteria to hydrolyse imipenem is often mediated by a metallo- β -lactamase, although some serine enzymes have been reported to be able to hydrolyse carbapenems. ^{6,23} Increased imipenemase activity (more than two-fold) in the *B. pseudomallei* mutant strains was found in 40% of those tested in this study. There is no direct evidence of a metallo- β -lactamase gene in the *B. pseudomallei* genome currently being sequenced, but genome sequencing has revealed the presence of class A, C and D β -lactamase genes. In *P. aeruginosa*, variants of class D β -lactamases are recognized increasingly as being significant in resistance to cef-

^bBL21(DE3) pLysS (bla_{0XA-2}) and BL21(DE3) pLysS (bla_{0XA-43}) are E. coli carrying the oxacillinase genes from B. pseudomallei strains 1902a and E15, respectively.

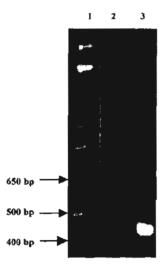


Figure 4. Expression of class D β -lactamases of B. pseudomallei E15, parent and mutant strains, by RT-PCR. Lane 1, 1 kb plus DNA ladder; lane 2, amplified product from E15 parent strain; lane 3, amplified product from E15 ceftazidime-resistant mutant (see Materials and methods for more details).

tazidime, i.e. OXA-15,²⁴ OXA-18²¹ and OXA-28.²⁵ Some OXA-type enzymes have also been reported to hydrolyse carbapenems, e.g. OXA-23,²⁶ OXA-24,⁷ OXA-25, OXA-26 and OXA-27.⁸ It was therefore decided to clone and sequence the class D β-lactamase genes from *B. pseudomallei* strains 1902a and E15 and measure their substrate profiles to estimate the role of these enzymes in resistance to imipenem and ceftazidime.

The amino acid sequences of the two B. pseudomallei class D β -lactamases, OXA-42 and OXA-43, are almost identical and show significant homology to chromosomally encoded oxacillinases from R. pickettii and Aeromonas spp. The presence of class D β -lactamase seems to be ubiquitous among B. pseudomallei strains, as the geographical origins of these strains were diverse, and the organisms were isolated at different times (one was isolated 55 years ago). Of considerable interest, strain E15 possesses the class D β -lactamase gene but was isolated from a rice field and has never been exposed to β -lactams at therapeutic concentrations. These results support the possibility that the function of β -lactamases is not only to inactivate β -lactams but may also play some other role in cell physiology. If the β -lactamases are involved in crucial cellular functions, then the genes will be maintained in these organisms.

The expression of $bla_{\rm OXA-43}$ is increased in the ceftazidimeresistant B. pseudomallei E15 mutant compared with its parent strain, as shown by RT-PCR. However, the results of β -lactamase assays of extracts of E. coli carrying either $bla_{\rm OXA-42}$ or $bla_{\rm OXA-43}$ showed no detectable activities against ceftazidime or imipenem, so it is unlikely that overexpression of the class D enzyme is the reason for ceftazidime hydrolytic

activity seen in some ceftazidime-resistant *B. pseudomallei* mutants. It should be noted, however, that there have been reports of oxacillinases associated with increases in MIC of ceftazidime up to 128 mg/L, even though they possess no detectable ceftazidimase activity, e.g OXA-16 from *P. aeruginosa* strains 906 and 961,²⁷ and OXA-17 from *P. aeruginosa* strains 871 and 873.²⁸ More commonly, however, resistance to third-generation cephalosporins is caused by the production of class A ESBLs^{29,30} or the overexpression of class C β -lactamases.³¹ Class A and C β -lactamases have already been shown to be involved in β -lactam resistance in *B. pseudomallei*,^{32,33} so ceftazidime resistance may be caused by multiple β -lactamases. Their relative roles now need to be elucidated.

The production of multiple β -lactamases has been reported from many bacterial species. For example, expression of three β -lactamases in Aeromonas spp. is co-ordinated despite the genes being unlinked. ^{15,16,19} In the case of B. pseudomallei, the observed activities against different β -lactam substrates as well as the results from genome sequencing suggest the presence of multiple β -lactamases. Whether the expression of these enzymes is co-ordinated or not has yet to be determined, but the finding that the class D β -lactamase is overexpressed in mutants selected for resistance to a β -lactam most likely to be hydrolysed by one of the host's other two β -lactamases does suggest some co-ordination of β -lactamase expression.

Acknowledgements

We would like to thank Professor N. J. White, Wellcome Trust Unit, Bangkok, for supplying B. pseudomallei strains isolated in Thailand and the ceftazidime, and for critical reading of the manuscript. B. pseudomallei strains isolated from Vietnam and Australia were obtained from Dr Giles Hartman, Department of Pathology and Microbiology, University of Bristol. This work was funded by the Thailand Research Fund (TRF grant no. PDF/66/2543) and BSAC (grant no. 339). V.W. is supported by the Wellcome Trust-Mahidol University-Oxford Tropical Medicine Research Programme funded by the Wellcome Trust of Great Britain.

References

- 1. White, N. J. (2001). Clinical features of melioidosis. In *Delegate Handbook and Abstract, World Melioidosis Congress, Perth, Australia, 2001.* Abstract 6, p. 16. Australian Society for Microbiology, Melbourne, Australia.
- 2. White, N. J., Dance, D. A., Chaowaguf, W., Wattanagoon, Y., Wuthiekanun, V. & Pitakwatchara, N. (1989). Halving of mortality of severe melioidosis by ceftazidime. *Lancet* II, 697–701.
- 3. Dance, D. A., Wuthiekanun, V., Chaowagul, W. & White, N. J. (1989). The antimicrobial susceptibilities of *Pseudomonas pseudomallei*: emergence of resistance *in vitro* and during treatment. *Journal of Antimicrobial Chemotherapy* 24, 295–309.

P. Niumsup and V. Wuthiekanun

- 4. Dance, D. A., Wuthiekanun, V., Chaowagul, W., Suputtamongkol, Y. & White, N. J. (1991). Development of resistance to ceftazidime and co-amoxiclav in *Pseudomonas pseudomailei*. *Journal of Antimicrobial Chemotherapy* 28, 321–4.
- **5.** Simpson, A. J., Suputtamongkol, Y., Smith, M. D., Angus, B. J., Rajanuwong, A., Wuthiekanun, V. *et al.* (1999). Comparison of imipenem and ceftazidime as therapy for severe melloidosis. *Clinical Infectious Diseases* **2**, 381–7.
- **6.** Nordmann, P., Mariotte, S., Naas, T., Labia, R. & Nicolas, M. H. (1993). Biochemical properties of a carbapenem-hydrolysing β-lactamase from *Enterobacter cloacae* and cloning of the gene into *Escherichia coli*. *Antimicrobial Agents and Chemotherapy* 37, 939–46
- 7. Bou, G., Oliver, A. & Martínez-Beltrán, J. (2000). OXA-24, a novel class D β-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical isolate. Antimicrobial Agents and Chemotherapy 44, 1556–61.
- **8.** Afzal-Shah, M., Woodford, N. & Livermore, D. M. (2001). Characterisation of OXA-25, OXA-26, and OXA-27, molecular class D β-lactamases associated with carbapenem resistance in clinical isolates of *Acinetobacter baumannii*. *Antimicrobial Agents and Chemotherapy* **45**, 583–8.
- **9.** Livermore, D. M., Chau, P. Y., Wong, A. I. & Leung, Y. K. (1987). β-Lactamase of *Pseudomonas pseudomallei* and its contribution to antibiotic resistance. *Journal of Antimicrobial Chemotherapy* **20**, 313–21.
- **10.** Godfrey, A. J., Wong, S., Dance, D. A., Chaowagul, W. & Bryan, L. E. (1991). *Pseudomonas pseudomallei* resistance to β-lactam antibiotics due to the alteration in the chromosomally **encoded** β-lactamase. *Antimicrobial Agents and Chemotherapy* **35**, **1635–40**.
- 11. Amoff, S. C. (1988). Derepressed β-lactamase production as a mediator for high level β-lactam resistance in *Pseudomonas cepacia*. *Pediatric Pulmonology* 4, 72–7.
- **12.** Sookpranee, T., Sookpranee, M., Mellencamp, M. A. & Preheim, L. C. (1991). *Pseudomonas pseudomallei*, a common pathogen in Thailand that is resistant to the bacterial effects of many antibiotics. *Antimicrobial Agents and Chemotherapy* **35**, 484–9.
- **13.** Baxter, I. A. & Lambert, P. A. (1994). Isolation and partial purification of a carbapenem-hydrolysing metallo-β-lactamase from *Pseudomonas cepacia. FEMS Microbiology Letters* **122**, 251–6.
- 14. Lindström, B. E., Boeman, H. G. & Steele, B. B. (1970). Resistance of *Escherichia coli* to penicillins. *Journal of Bacteriology* 101, 218–31.
- **15.** Avison, M. B., Niumsup, P., Walsh, T. R. & Bennett, P. M. (2000). *Aeromonas hydrophila* AmpH and CepH β-lactamases: derepressed expression in mutants of *Escherichia coli* lacking *creB. Journal of Antimicrobial Chemotherapy* **46**, 695–702.
- 16. Walsh, T. R., Stunt, R. A., Nabi, J. A., MacGowan, A. P. & Bennett, P. M. (1997). Distribution and expression of β -lactamase genes among *Aeromonas* spp. *Journal of Antimicrobial Chemotherapy* 40, 171–8.
- 17. Avison, M. B., Higgins, C. S., Ford, P. J., von Heldreich, C. J., Walsh, T. R. & Bennett, P. M. (2002). Differential regulation of L1 and L2 β-lactamase expression in *Stenotrophomonas maltophilia*. *Journal of Antimicrobial Chemotherapy* 49, 387–9.

- 18. Nordmann, P., Poirel, L., Kubina, M., Casetta, A. & Naas, T. (2000). Biochemical-genetic characterisation and distribution of OXA-22, a chromosomal and inducible class D β -lactamase from Ralstonia (Pseudomonas) pickettii. Antimicrobial Agents and Chemotherapy 44, 2201–4.
- 19. Rasmussen, B. A., Keeney, D., Yang, Y. & Bush, K. (1994). Cloning and expression of cloxacillin-hydrolysing enzyme and a cephalosporinase from *Aeromonas sobria* AER14M in *Escherichia coli*: requirement for an *E. coli* chromosomal mutation for efficient expression of the class D enzyme. *Antimicrobial Agents and Chemotherapy* 38, 2078–85.
- 20. Walsh, T. R., Hall, L., MacGowan, A. P. & Bennett, P. M. (1995). Sequence analysis of two chromosomally mediated inducible β-lactamases, strain 163a, one a class D penicillinase, the other an AmpC cephalosporinase from *Aeromonas sobria. Journal of Antimicrobial Chemotherapy* 36, 41–52.
- 21. Philippon, L. N., Naas, T., Bouthors, A.-T., Barakett, V. & Nordmann, P. (1997). OXA-18, a class D clavulanic acid-inhibited extended spectrum β-lactamase from *Pseudomonas aeruginosa*. *Antimicrobial Agents and Chemotherapy* 41, 2188–95.
- 22. Tomalsky, M. E. (1990). Sequencing and expression of *aadA*, *bla* and *tnpR* from the multiresistance transposon Tn *1331*. *Plasmid* 24, 218–26.
- 23. Naas, T., Livermore, D. M. & Nordmann, P. (1995). Characterisation of a LysR family protein, SmeR from Serratia marcescens S6, its effect on expression of the carbapenem hydrolysing β-lactamase Sme-1, and comparison of this regulator with other β-lactamase regulators. Antimicrobial Agents and Chemotherapy 39, 629–37.
- **24.** Danel, F., Hall, L. M. C., Gur, D. & Livermore, D. M. (1997). OXA-15, an extended spectrum variant of OXA-2 β-lactamase isolated from *Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy* **41**, 785–90.
- **25.** Poirel, L., Girlich, D., Naas, T. & Nordmann, P. (2001). OXA-28, an extended spectrum variant of OXA-10 β-lactamase from *Pseudomonas aeruginosa* and its plasmid- and integron-located gene. *Antimicrobial Agents and Chemotherapy* **45**, 447–53.
- **26.** Donald, H. M., Scaife, W., Aymes, S. G. B. & Young, H. K. (2000). Sequence analysis of ARI-1, a novel OXA β-lactamase, responsible for imipenem resistance in *Acinetobacter baumannii* 6B92. *Antimicrobial Agents and Chemotherapy* **44**, 196–9.
- 27. Danel, F., Hall, L. M. C., Gur, D. & Livermore, D. M. (1998). OXA-16, a further extended spectrum variant of OXA-10 β-lactamase, from two *Pseudomonas aeruginosa* isolates. *Antimicrobial Agents and Chemotherapy* 42, 3117–22.
- 28. Danel, F., Hall, L. M. C., Duke, B., Gur, D. & Livermore, D. M. (1999). OXA-17, a further extended spectrum variant of OXA-10 β-tactamase isolated from *Pseudomonas aeruginosa*. *Antimicrobial Agents and Chemotherapy* 43, 1362–6.
- 29. Gniadkowski, M., Schneider, I., Jungwirth, R., Hryniewicz, W. & Bauernfeind, A. (1998). Ceftazidime-resistant Enterobacteriaceae isolates from three Polish hospitals: identification of three novel TEM- and SHV-5-type extended spectrum β-lactamases. *Antimicrobial Agents and Chemotherapy* 42, 514–20.
- 30. Franceschini, N., Perilli, M., Segatore, B., Setacci, D., Amicosante, G., Mazzariol, A. et al. (1998). Ceftazidime and aztreonam

Burkholderia pseudomallei class D β-lactamase gene

- resistance in *Providencia stuartii*: characterisation of a natural TEMderived extended spectrum β-lactamase, TEM-60. *Antimicrobial Agents and Chemotherapy* 42, 1459–62.
- **31.** Raimondi, A., Sisto, F. & Nikaido, H. (2001). Mutation in AmpC β-lactamase producing high-level resistance to ceftazidime and cefpirome. *Antimicrobial Agents and Chemotherapy* **45**, 2331–9.
- 32. Terence, K. M., Cheung, T. K. M., Ho, P. L., Woo, P. C. Y., Yuen, K. Y. & Chau, P. Y. (2002). Cloning and expression of class
- A β-lactamase gene blaA_{BPS} in Burkholderia pseudomallei. Antimicrobial Agents and Chemotherapy 46, 1132–5.
- 33. Hartman, G. C., Keith, K., Crossett, B., Titball, R. W., Brown, K. A. & Walsh, T. R. (2001). Identification and characterisation of a class A and class C β-lactamase and their AmpR regulators in Burkholderia pseudomallei. In Program and Abstracts of the Forty-first Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, USA, 2001. Abstract C1-1496, p. 93. American Society for Microbiology, Washington, DC, USA.