

รายงานวิจัยฉบับสมบูรณ์

โครงการ การสนับสนุนการใช้งานโปรแกรมความจำร่วมแบบขนาน บนกลุ่มของคอมพิวเตอร์

<mark>ชช</mark>ลัช ត្តិគឺពាររត ពេល ១៧. ឃឺគេ០១៍ ទេ គេតេតេសេ០១៍

สัญญาเลขที่ PDF/01/2544

รายงานวิจัยฉบับสมบูรณ์

โครงการ การศึกษาการแสดงออกของยืน scavenger receptor, LOX-1, ใน endothelial cells ที่ได้รับเชื้อ Herpes Simplex Virus Type I

> โดย ดร. จินตนา จิรถาวร ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

Sam

Abstract (บทคัดย่อ)

Project Code: PDF/01/2544

(รหัสโครงการ)

Project Title : การศึกษาการแสดงออกของยืน scavenger receptor, LOX-1, ใน endothelial cells ที่

(ชื่อโครงการ) ได้รับเชื้อ Herpes Simplex Virus Type I

Investigator: Chintana Chirathaworn, Ph.D.

Department of Microbiology, Faculty of Medicine, Chulalongkorn University

ชื่อนักวิจัย : ดร. จินดนา จิรถาวร

ภาควิชาจุลชีววิทยา คณะแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

E-mail Address: fmedcch@md.chula.ac.th

Project Period : 1 year (ระยะเวลาโครงการ)

บทคัดย่อ : นอกจากการมีไขมันในเลือดสูง ความคันโลหิตสูง การสูบบุหรี่และเบาหวานแล้ว เชื่อว่า โรคติดเชื้อมีความสัมพันธ์กับการเกิดภาวะหลอดเลือดแดงแข็ง เชื้อที่พบว่ามีความสัมพันธ์กับภาวะ ตังกล่าวใค้แก่เชื้อ Chlamydophilia pneumoniae, Herpersvirus (ได้แก่ เชื้อ Cytomegalovirus และ Herpes simplex virus) และ Helicobacter pylori โดยหลักฐานที่สนับสนุนได้แก่การตรวจพบแอนดิบอดี ต่อเชื้อดังกล่าวในกลุ่มผู้ป่วยมากกว่ากลุ่มควบคุม การตรวจพบตัวเชื้อในหลอดเลือดบริเวณที่เป็นรอย โรคมากกว่าในบริเวณทั่วไป เนื่องจากมีรายงานว่าเชื้อเฮอร์ปีซ์ซิมเพล็กไวรัสไทป์ 1 สามารถเจริญใน เซลล์เอ็นโดซีเลียมที่บุหลอดเลือดได้ และเมื่อมีการกระคุ้นเซลล์ดังกล่าวดัวยอ๊อกซิไดซ์แอลดีแอล นอกจากจะทำให้เกิดการเพิ่มการแสดงออกของโมเลกุลที่เกี่ยวข้องกับการเกาะยึด และอ๊อกซิเจนแรดดิ เคิลแล้วยังทำให้เซลล์เอ็นโดซีเลียมเกิดอะพอพโทซิส ซึ่งเป็นกลไกหนึ่งที่นำไปสู่การเกิดพยาธิสภาพของ ภาวะหลอดเลือดแดงแข็ง คณะผู้วิจัยจึงมีความสนใจที่จะศึกษาผลต่อเอ็นโดซีเลียมจากการดิดเชื้อเฮอร์ ปีซ์ซิมเพล็กซ์ไทป์1 โดยเลือกดูการเพิ่มการแสดงออกของ LOX-1 ซึ่งเป็นตัวรับของอ๊อกซิไดซ์แอลดี แอล โดยเลือกศึกษาการเพิ่มขึ้นของ mRNA ของยืนของ LOX-1 โดยวิซี RT-PCR และดูการกระคุ้น โปรโมเตอร์ของยืน LOX-1 โดยวิซี luciferase assay ผลการศึกษาพบว่าเชื้อเฮอร์ปีซ์ซิมเพล็กไวรัส ไทป์ 1 กระคุ้นการแสดงออกของยืนของ LOX-1 โดยผลการศึกษาจากทั้งสองวิซีสอดคล้องกัน

Keywords: LOX-1, herpesvirus, herpes simplex virus, atherosclerosis

Abstract: Besides dyslipidaemias, smoking, hypertension and diabetes, infection has been proposed to be a risk factor for atherosclerosis. Microbes that have been shown to be involved in atherogenesis are Chlamydophilia pneumoniae, Herpersvirus (e.g. cytomegalovirus and herpes simplex virus) and Helicobacter pylori. The existences of antibodies to those microbes and microbes found in plaques have been demonstrated to be associated with atherosclerosis. Since it has been shown that herpes simplex virus I (HSV-1) could infect vascular endothelial cells, and when these cells were activated with oxidized LDL (oxLDL), adhesion molecule expression, oxygen radical production and apoptosis were increased which may lead to endothelial cell dysfunction and foam cell accumulation resulting in atherogenesis. We attempted to investigate whether HSV-1 infection resulted in increased expression of LOX-1 in endothelial cells. The data suggested that HSV infection increased LOX-1 gene expression in endothelial cells demonstrating by RT-PCR and luciferase assay.

Methodology: ECV304 cells (an endothelial cell line) used as representative of endothelial cells were infected with various amounts of HSV-1 at various time points. The expression of LOX-1 gene was demonstrated by detection of LOX-1 mRNA expression by RT-PCR. The expression was confirmed by luciferase assay. Cells were transfected with a plasmid containing LOX-1 promoter upstream of the luciferase gene. Transfected cells were infected with HSV-1 and luciferase activity was measured to demonstrate activation of LOX-1 promoter following HSV-1 infection.

Results and Discussion. Infection of ECV304 cells with HSV-1 increased expression of mRNA of LOX-1 gene and the expression was observed within 2 hours following infection. At 8 hours, the expression was still remained. The infection at 5 MOI gave the maximum induction and there was no difference when the dose was increased to 10 MOI. Luciferase assay showed the increase in luciferase activity by HSV-1 infection demonstrating the activation of LOX-1 promoter which confirmed the results obtained by RT-PCR. The data suggested that HSV-1 induced LOX-1 gene expression in endothelial cells and the induction was dose dependent. One of the mechanisms that HSV-1 involved in atherogenesis may be by enhancing the uptake of oxLDL via increasing LOX-1 gene expression.

Future direction: The comparison of LOX-1 expression induced by other microbes suggested to be involved in other atherosclerosis should be done in order to further elucidate the involvement of infectious diseases and atherogenesis.

Acknowledgements

I would like to thank the Thailand Research Fund for giving me an opportunity and funding to work on this project and Rachadapiseksompotch (Molecular Biology) Fund, Faculty of Medicine, Chulalongkorn University for additional support so this work can be completed. I would also like to sincerely thank my mentor, Professor Yong Poovorawan, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, for his understanding, advice and encouragement, Professor Yasuyuki Sasaguri and his staff at Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan, for previding the plasmid and cells and Associate Professor Parvapan Bhattarakosol for providing herpes simplex virus and suggestion for viral propagation.

Introduction

It is now well accepted that inflammatory process is involved in atherosclerosis and it is hypothesized that hypertension, smoking and elevated levels of LDL cholesterol are factors leading to injury of endothelial cells of artery and this injury results in activation of inflammatory process. However, atherosclerosis can develop in patients without those mentioned risk factors so other risk factors may be involved in atherogenesis. During the past decade, several recent studies have suggested that infections by microbes such as *Chlamydophilia pneumoniae*, *Helicobacter pylori*, Cytomegalovirus and Herpes simplex virus are novel potential pathogenic factors. Supporting evidences are the finding of microbes, their structure components or their nucleic acids in atherosclerotic lesions than in non-atherosclerotic lesion and higher antibodies titers against those microbes in patients than in control groups. In addition, antibiotic treatment prevented acceleration of atherosclerosis by infection in an animal model (1). The mechanisms that infection can promote atherosclerosis may be the increase of coagulation, induction of endothelial dysfunction, increase instability of plaques resulting in inflammatory process (2-9).

Herpes simplex viruses, members of viruses in family herpesviridae, are responsible for diseases ranging from common, relatively benign cutaneous lesions to fatal HSV encephalitis (10). In addition to those symptoms, HSV has been implicated as an etiologic factor in pathogenesis of human atherosclerosis. It has been shown that greater amount of saturated cholesterol esters and triacylglycerol accumulated in HSV-1 infected human and bovine arterial smooth muscle cells than uninfected cells (11). This suggested that HSV-1 induced lipid accumulation in smooth muscle cells which is a characteristic feature of atherosclerosis. Existence of HSV-1 nucleic acid and antigen in atherosclerotic lesions has been demonstrated to be related to atherosclerosis compared with non-atherosclerotic tissues 12-14). The ability of HSV to replicate in endothelial cells has been demonstrated and it has been suggested that vascular endothelium may be a site of latent HSV infection and re-activation of virus infection may enhance atherosclerosis (15).

It has been shown that HSV infection of endothelial cells contributed to deposition of thrombin on atherosclerotic plaques and to the coagulant-necrosis state that characterizes HSV-infected mucocutaneous lesions (16). The adhesion of leukocytes to endothelium may be an initial step in inflammation and one mechanism that promote cell adhesion is expression of

adhesion molecules. It has been shown that HSV-1 infection of endothelial cells increased adherence of leukocytes to endothelial cells and induced expression of adhesion molecule GMP140. The expression of adhesion molecule may be a pathogenic mechanism in HSV-1-induced cell injury and inflammation (17-18). In vascular cells, HSV-1 infection leads to lipid accumulation, attraction of leukocytes with subsequence inflammatory damage, activation of procoagulant on endothelium with increase thrombin generation and platelet adhesion. (Review in 19)

Oxidative modification of low density lipoprotein (LDL) is involved in formation of macrophage-derived foam cells which are typical feature of atherosclerotic lesions (20). Foam cells could be induced from macrophage after taking up oxidative modified LDL (oxLDL). OxLDL elevated in patients with acute myocardial infarction compared with healthy controls and it has been proposed to be a marker for the coronary artery disease (21-24). Besides induction of macrophage foam cell formation, oxLDL induced endothelial cell dysfunction, thus impaired nitric oxide production and induced proatherogenic genes, adhesion molecule expression, and smooth muscle cell growth factors. More than ten receptors for oxLDL referring as scavenger LOX-1 (lectin-like oxidized low-density lipoprotein receptors, have been cloned (25-27).receptor) has been identified as a receptor for oxLDL, a substance involved in pathogenesis of atherosclerosis. LOX-1 was initially identified from vascular endothelial cells by Sawamura T, et al 1997) (28). Regulation and function of this receptor in atherosclerosis have been widely studied (review in 29-32).

Besides oxLDL, expression of LOX-1 can also be upregulated by various stimuli such as angiotensin II, TNF-Q,PMA, lysophosphatidylcholine, interleukin-4, histamine, peroxisome proliferator-activated receptor (PRAP), norepunephrine, endothelin-1 and ischemia-reperfusion (33-44). Activation of LOX-1 induced activation of NF-kB, expression of adhesion molecules, chemokines, endothelin-1 and superoxide anion and decrease the release of superoxide anion and production of nitric oxide resulting in endothelial cell dysfunction (28,45-46). Genetic variation in LOX-1 has been shown to associate with coronary artery disease (47-48).

Although there are several evidences suggesting that HSV infection is related to atherosclerosis, the molecular mechanisms are not clearly understood. Since the uptake of oxLDL is involved in atherosclerosis promotion and there are evidence suggested that vascular endothelium may be the site of latent HSV infection, we attempted to investigate whether HSV-1 infection could lead to the induction of LOX-1 expression, resulting in increased uptake of

oxLDL in endothelial cells. ECV304, an endothelial cell line was used for HSV-1 infection. LOX-1 mRNA expression induced by HSV-1 infection was demonstrated. The result of mRNA expression was confirmed by the activation of promoter of LOX-1 following HSV-1 infection.

Materials and Methods

Viruses and Cells

HSV-1 (KOS strain) was kindly provided by Associate Professor Parvapan Bhattarakosol, Ph.D. Department of Microbiology Faculty of Medicine, Chulalongkorn University.

Vero cells, African green monkey kidney cell line, (for viral stock preparation), was kindly provided by Associate Professor Parvapan Bhattarakosol, Ph.D. Cells were grown in growth medium M199 (GIBCO BRL, USA) supplemented with 10% fetal bovine serum (GIBCO BRL), 100 units/ml penicillin G, 100 µg/ml streptomycin (GIBCO BRL) and 0.01M HEPES (N-2-hydroxyethyl-piperaine-N'-2-ethan sulfonic acid) (GIBCO, BRL).

The human endothelium-derived cell line, ECV304, kindly provided by Professor Yasuyuki Sasaguri, Department of Pathology and Cell Biology, School of Medicine. University of Occupational and Environmental Health, Kitakyushu, Japan, was grown in M199 supplemented with 10% fetal bovine serum, L-glutamine, penicillin G (100 units/ml) and streptomycin (100 µg/ml).

Viral stock preparation

Vero cells grown in monolayer were infected with HSV-1 at an approximate multiplicity of infection (MOI) of 0.01 plaque forming unit per cell (PFU/cell). After an hour of viral adsorption at 37°C, the unadsorbed viruses were removed; the culture was washed once with 0.01 M phosphate buffer saline (PBS), pH 7.4. Infected Vero cells were further incubated for 36 to 48 hours or until more than 75% of the cell population showed cytopathic effect (CPE). Then the cells were disrupted by repeating freezing (at -70°C) and thawing (at 37°C) for three times. Cell suspension was pelleted by centrifugation at 4°C, 2,000 rpm for 20 minutes. The supernatant was decanted, distributed into small aliquots and kept at -70°C until use. The amount of viruses was determined by plaque titration assay.

Plaque titration assay

The number of viruses was determined in a 96 well-plate (Nunclon, Denmark) and the titer was expressed as PFU/ml. Briefly, 50 μ l of each of the 10-fold dilution of viruses in M199 supplemented with 2%FBS was added in quadruplicate wells, followed by 50 μ l of suspended Vero cell (3 x 10⁴ cells) and incubated at 37°C for three hours. Then, 50 μ l of overlay medium (0.8% gum tragacanth in culture medium) was applied. The medium was discarded after four to five days (37°C incubation) and the infected cells were stained with 1% crystal violet in 10% formalin, for 20 minutes. The plate was washed in running water, air-dried and the number of plaque was counted. The viral titer is calculated from the number of plaques obtained from all wells using formula as followed.

$$PFU/m! = Dilution \times \underbrace{P1+P2+...Pn}_{n} \times \underbrace{1}_{v}$$

P = number of plaques counted in all wells at this dilution

n = number of wells

v = volume inoculated in the well (in milliliters)

RNA isolation

ECV304 cells (2.5 x 10⁵ /ml/well) were plated in a 24-well plate at 37°C overnight. Cells then were infected with HSV-1 as indicated. RNA from ECV304 cells was isolated using Purescript (Gentra,USA) according to the manufacturer's instruction. Briefly, culture medium was removed and 300 ul of cell lysis solution was added onto cells in each well. Cell lysates were transferred into 1.5 ml tubes, 100 ul of protein-DNA precipitation solution was added and cell suspension was incubated on ice for 5 minutes before centrifugation at 14,000 rpm for 3 minutes. Supernatant containing RNA was transferred into new tubes and RNA was precipitated using 300 ul isopropanol. RNA pellets obtained by centrifugation were washed with 70% ethanol and then resuspended into RNA hydration solution. RNA concentration was measured at 260 nm.

RT-PCR

RNA (1 ug) was reverse transcribed into cDNA using ImProm-II Reverse Transcription System (Promega, USA) with oligo(dT) as a primer according to the manufacturer's instruction. Then, cDNA was amplified using primers: 5' TGC CTG GGA TTA GTA GTG ACC and 5'CCA

GTT AAA TGA GCC CGA GG for LOX-1 mRNA (49) and 5 CTA CAA TGA GCT GCG TGT GG and 5 AAG GAA GGC TGG AAG AGT GC for β -actin mRNA (50). The thermal profiles used were 40 cycles at 94 °C for 40 seconds, 57 °C for 1 minute and 68 °C for 1 minutes for LOX-1 and 20 cycles at 94 °C for 40 seconds, at 60 °C for 1 minute and at 72 °C for 1 minute for β -actin.

PCR products were subjected to 1.5% agarose get electrophoresis and visualized by ethidium bromide staining. The expected product sizes were 360 and 528 bp for LOX-1 and β - actin, respectively.

PCR product sequeching

The purified PCR product was sequenced using primers specific for LOX-1 (the same primers used in PCR amplification), ABI Prism Bigdye Terminator Cycle Sequencing Ready Reaction kit version 3.1 and the Perkin Elmer 9600 automated nucleic acid sequencer as followed. PCR amplification was done in total 20 ul reaction containing purified PCR product, Big dye terminator, and primers in kit buffer. PCR was performed for 25 cycles in the following condition: rapid heat 96 °C, heat denaturation at 96 °C for 10 seconds, and primer annealing at 50 °C for 5 seconds, and DNA extension at 60 °C for 4 minutes. The product was centrifuged and DNA was precipitated with glycogen and 75% isopropanol 80 ul and left at room temperature for 15 minutes to precipitate the extension products. The mixtures were centrifuged at 12,000 x g for 5 minutes and the supernatants were aspirated. The pellets were washed with 250 ul 70% ethanol, and precipitated with 100% ethanol. Samples were dried in a vacuum centrifuge for 10-15 minutes. Samples were transferred to sequencing tubes and run on automated nucleic acid sequencer. The sequence obtained was alignment with Clustal X program and homology Blast search in Genbank database.

Construction of plasmid containing LOX-1 promoter

A plasmid containing LOX-1 promoter region upstream of luciferase gene (pLOX-1Luc) was constructed in laboratory of Professor Yasuyuki Sasaguri. Based on the reported sequence data of LOX-1 (GenBank AB021922), cloning of a 1063-bp fragment corresponding to nucleotides -1017 to +36 was done by PCR using genomic DNA of U937, a monocytic cell line,

with specific primers: forward 5'-Nhel+ACTTATGGGTCTCTCATGTAAGCG-3' and reverse 5'-Xhol+TGAAGCAGTCAC GAACTTCAA-3'(39). The fragment was ligated into pGL3 plasmid, a promoter-less luciferase reporter plasamid. The plasmid was transformed into E.coli DH5a. Transformants were selected and plasmids were purified and sequenced. The plasmid with correct sequence, named pLOX-1Luc, was further prepared and purified for further experiment.

Transfection and Luciferase assay

A plasmid containing LOX-1 promoter region upstream of luciferase gene (pLOX-1Luc) or a promoter-less luciferase reporter plasmid, pGL3 were transfected into ECV304 cells using liposome reagent, TransFast Reagent (Promega) according to the manufacturer's instruction. ECV cells were plated onto a 24-well plate as a concentration of 1 x 10⁵ cells /mi/well and incubated at 37°C for 24 hours. Cells were washed with PBS and plasmid/liposome mixture (the combination of plasmid and TransFast Reagent in M199 serum free medium) was added. Cells were incubated for 1 hour before one ml of M199 medium containing 10% FBS was added in each well. The incubation was continued for 48 hours before HSV-1 was added and further incubated at indicated times.

Luciferase assay (Promega) was done using Luciferase Assay System (Promega) according to the manufacturer's recommendation. Briefly, culture medium was removed from transfected-ECV304 cells infected with HSV-1. Cells were washed with PBS and lysed with 80 ull of luciferase lysis buffer. Lysed cells were transferred to microcentrifuge tubes and cell lysates were obtained by spining at 14,000 rpm for 15 seconds. The supernatant was transferred to a new tube and stored at -80°C or processed for luciferase activity measurement. The activity of luciferase was determined by mixing 20 ull of cell lysates with 100 ull of luciferase assay reagent and measured (Reader 50 Luminometer). Transfection and luciferase assay were done in triplicate. Luciferase activities were measured as relative light unit (RLU) and expressed as fold induction relative to the sham-treated cells transfected with pGL3.

Resuits

HSV-1 infection induced LOX-1 mRNA expression

ECV304 cells were infected with 5 MOI of HSV-1 for 2, 4 and 8 hours. Cells were then harvested and RT-PCR was performed from isolated RNA as mentioned in Materials and

Methods. As shown in Figure 1A, HSV-1 induced LOX-1 mRNA expression since 2 hours (Lane 2) and the expression could still be observed at 8 hours post infection (Lane 4). Amount of RT-PCT product using primers specific for β -actin was no difference in all Lanes (Figure 1, Lanes 5-8).

Induction of LOX-1 mRNA expression was dose dependent

ECV304 cells were infected with HSV-1 at 0.5, 5 and 10 MOI for 4 hours. RT-PCR for LOX-1 expression was performed. LOX-1 expression was observed when 0.5 MOI of HSV-1 was used (Figure 2A, Lane 2) and the expression was increased when the amount of viruses was increased to 5 MOI (Lane 3). There was no difference in LOX-1 expression when 10 MOI of viruses was used compared with 5 MOI (Lanes 3 and 4). Amount of RT-PCR product using primers specific for β -actin was no difference in all Lanes (Figure 2B, Lanes 1-4).

PCR product was purified and sequenced. The sequence was as followed: 5' TTG CCT GGG ATT AGT AGT GAC CAT TAT GGT GCT GGG CAT GCA ATT ATC CCA GGT GTC TGA CCT CCT AAC ACA AGA GCA AGC AAA CCT AAC TCA CCA GAA AAA GAA ACT GGA GGG ACA GAT CTC AGC CCG GCA ACA AGC AGA AGA AGC TTC ACA GGA GTC AGA AAA CGA ACT CAA GGA AAT GAT AGA AAC CCT TGC TCG GAA GCT GAA TGA GAA ATC CAA AGA GCA AAT GGA ACT TCA CCA CCA GAA TCT GAA TCT CCA AGA AAC ACT GAA GAG AGT AGC AAA TTG TTC AGC TCC TTG TCC GCA AGA CTG GAT CTG GCA TGG AGA AAA CTG TTA CCT ATT TTC CTC GGG CTC ATT TAA CTG 3'

The alignment of obtained sequence was done and the result indicated that it was DNA sequence of LOX-1 cDNA (GenBank AB010710).

HSV-1 induced activation of LOX-1 promoter activity

Variuos amounts of plasmid (0.25, 0.5, 0.75 and 1.0 ug) was tested for transfection of ECV304 cells according to the manufacturer's suggestion. The plasmid at 0.5 ug was selected for further used since

there was no difference in luciferase activity when 0.5 and 0.75 ug of plasmid was used and the activity was lower at 1.0 ug plasmid (Figure 3). Higher amount of plasmid gave lower reading possibly due to its toxicity to cells.

ECV304 cells transfected with pLOX-1Luc or pGL3 were infected with 5 MOI of HSV-1 for 4 and 8 hours. The experiment was done in triplicated. Cell lysates were collected and assay for luciferase activity. As shown in Figure 4, the significant induction of luciferase activity was observed at 8 hours following infection.

Activation of HSV-1 promoter activity by HSV-1 was dose dependent

Various amounts of HSV-1 (0.5, 5 and 10 MOI) were tested and the results showed that the induction of luciferease activity implying the activation of LOX-1 promoter was dose dependent. Corresponding to the result of RT-PCR, there was no significant difference in fold induction between infection with 5 and 10 MOI of HSV-1 (Figure 5).

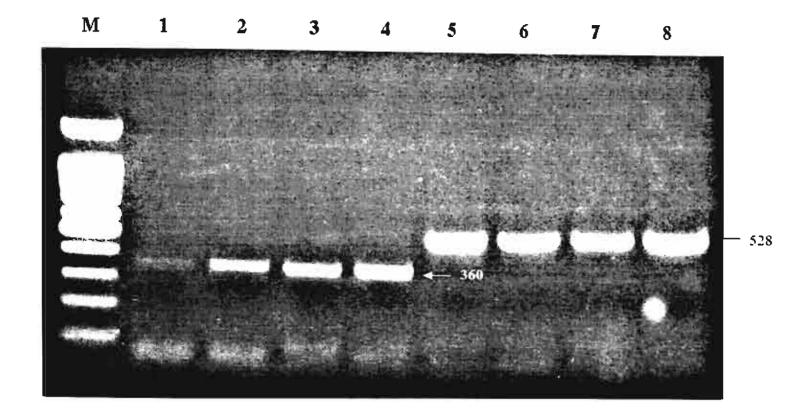


Figure 1. Induction of LOX-1 mRNA expression by HSV-1. ECV304 cells were infected with 5 MOI of HSV-1 for 2, 4 and 8 hours. RNA was isolated and reverse transcription was performed. cDNA was used for PCR with primers specific for LOX-1 (Lanes 1-4) or for β -actin (Lanes 5-8). Lanes 1 and 5 are from non-infected cells, Lanes 2 and 6 from 2-hour infection, Lanes 3 and 7 from 4-hour infection and Lanes 4 and 8 from 8-hour infection. Lane M is 100-bp markers. The arrows indicate the PCR products which are 360 and 528 bp for LOX-1 and β -actin, respectively. This experiment is the representative of 3 similar experiments

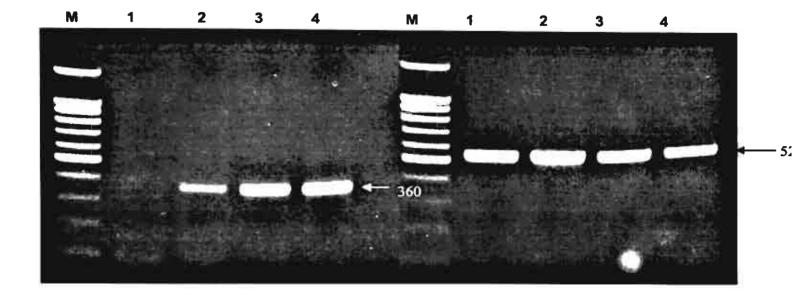
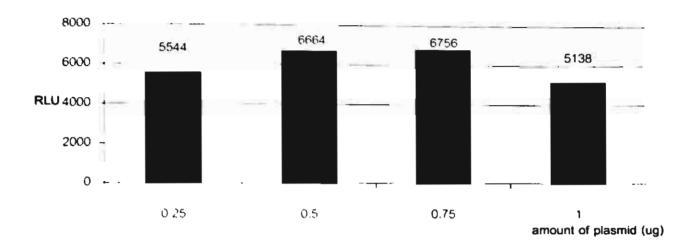



Figure 2. Various amounts of HSV-1 on LOX-1 mRNA expression. ECV304 cells were infected with 0.5, 5 and 10 MOI of HSV-1 for 4 hours. RNA was isolated and reverse transcription was performed. cDNA was used for PCR with primers specific for LOX-1 (Figure 2A) or for β -actin (Figure 2B). Lane 1 is from non-stimulated cells, Lanes 2-4 are from cells infected with HSV-1 at 0.5, 5 and 10 MOI, respectively. The arrows indicate the PCR products which 360 and 528 bp for LOX-1 and β - actin, respectively. This experiment is the representative of 3 similar experiments

Figure 3. Determination of an optimal amount of DNA for transfection. Various amounts of pLOX-1Luc (0.25, 0.5, 0.75 and 1.0 ug) were used for transfection of ECV304 cells. Luciferase activities were measured and expressed as relative light units (RLU).

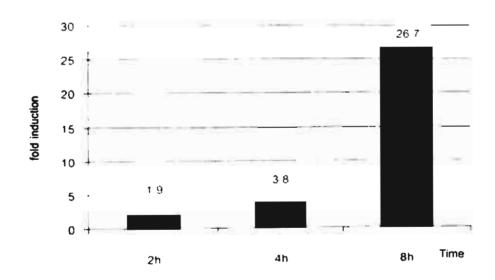


Figure 4. Activation of LOX-1 promoter activity by HSV-1. LOX-1Luc or pGL3 (0.5 ug) were transfected into ECV304 cells as mentioned in Materials and Methods. Transfected ECV304 cells were infected with 5 MOI of HSV-1 for 2, 4, and 8 hours. Cell lysates were harvested and luciferase activities were measured. The induction of luciferase activities was expressed in fold induction compared with non-stimulated cells. The experiment was done in triplicate

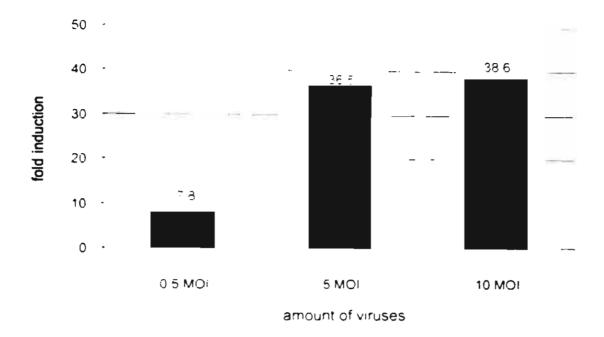


Figure 5. Various amounts of HSV-1 on activation of LOX-1 promoter activity. LOX-1Luc and pGL3 were transfected into ECV304 cells. Transfected cells were infected with 0.5, 5 and 10 MOI of HSV-1. Cell lysates were collected and luciferase activities were measured. The induction of luciferase activities was expressed in fold induction compared with non-stimulated cells. The experiment was done in triplicate.

Discussion and Conclusion

Members of herpervirues such as cytomegalovirus and herpes simplex viurses have been proposed to be etiologic agents of atherosclerosis. HSV was selected for our studies since we are interested in the mechanisms of HSV immune evasion. We have data supporting that HSV induced apoptosis in T lymphocytes and the induction was caspase-dependent (manuscript in preparation). Molecular mechanisms of HSV infection in T lymphocytes which are supposed to eradicate viral infected cells and molecular mechanisms in atherogenesis focusing on endothelial cells which are suggested to be a site of latent herpetic viral infection, should be compared and hopefully, can provide additional useful information. HSV-1 was used in this

study since there are more evidence on HSV-1 than HSV-2 in atherogenesis. However, other infectioous agents proposed in atherosclerosis are in our interest for future work.

Since HSV infections are very common, not only in atherosclerotic patients but also in general population, it is difficult to interpret results from epidemiological studies for explanation of atherogenesis by this infectious diseases. Further studies in molecular mechanisms of HSV infection in both atherosclerotic patients and in general population should delineate whether how infections by HSV involves in atherosclerosis.

Because LOX-1 has been shown to be induced in various stimuli as mentioned earlier, we attempted to investigate whether HSV-1 infection induced expression of this receptor. Since there is no antibody to LOX-1 commercially available at this time our project was proposed, we observed LOX-1 expression at mRNA and promoter activity levels. Our data demonstrated that HSV-1 increased expression of LOX-1 on ECV304, an endothelial cell line, suggesting that one of mechanisms that HSV-1 induces atherogenesis is the induction of LOX-1 expression. In order to confirm our observation, the uptake of oxLDL induced by HSV-1 infection and LOX-1 protein expression will be our interest for future experiments.

Since the uptake of lipoprotein and release of reactive oxygen species and immune mediators contribute to atherosclerosis, the inhibition of lipid accumulation and reduction of inflammatory response may be therapeutic value in prevention of coronary artery disease. Moreover, if infections have been strongly supported to be involved in atherogenesis, antiobiotic treatment and vaccination to infections may be of interest in management of patients with atherosclerosis and in new approaches of treatment. Since there is the increase in incidence of HIV infection, opportunistic infections by herpesviruses are also increased. Understanding the mechanisms of how herpesvirues cause infectious diseases or atherosclerosis will facilitating in not only the treatment of patients with persistent infections by herpesviruses but also of pateints with opportunistic infections in HIV infected cases.

In conclusion, we believe that further studies should delineate the involvement of HSV infection and atherosclerosis. Etingin et al (1991) demonstrated that HSV infection of endothelial cells increased expression of an adhesion molecule, GMP140, and this expression requires expression of HSV glycoprotein C. Expression of GM140 suggested to increase adhesion of circulating plood cells in endothelial cells may be a mechanism in virus-induced vascular injury and inflammation. Our proposed mechanism implies that HSV-1 infection

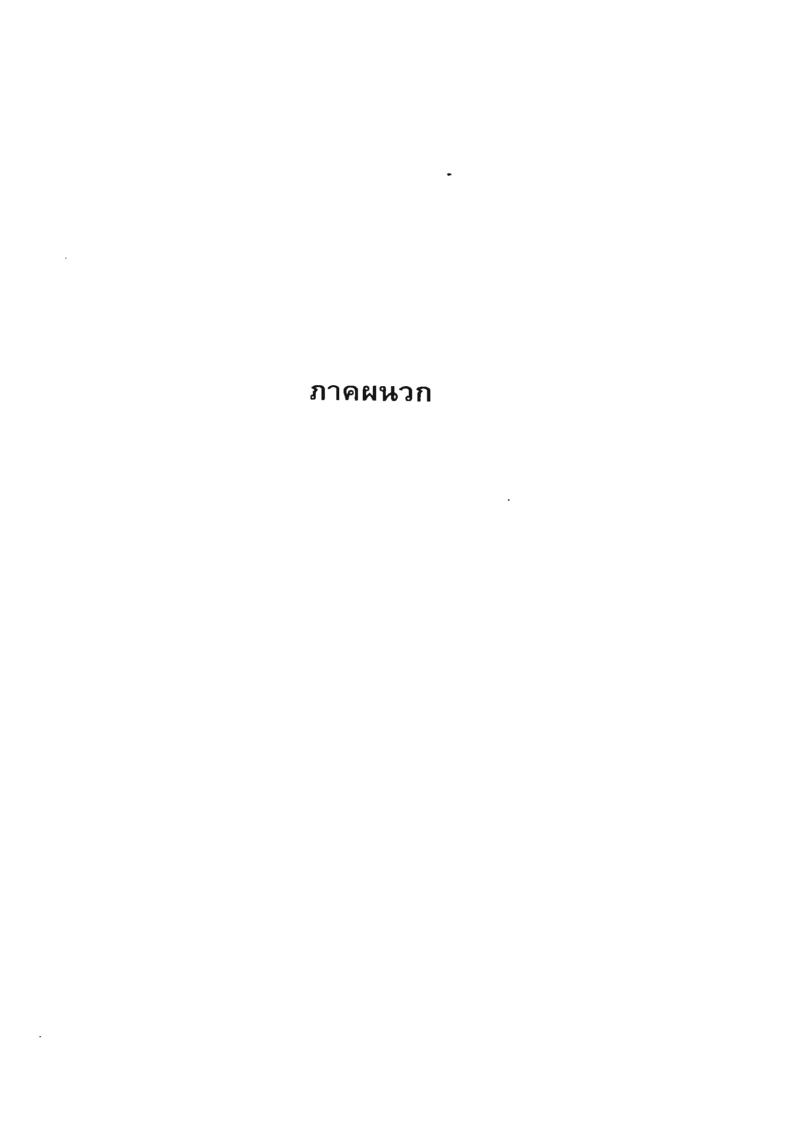
increased modified LDL uptake by increase expression of its receptor, LOX-1 and may finally induces endothelial dysfunction and inflammation. This study has drawn HSV-1 infection close to the mechanism of lipid accumulation in vascular endothelium which is the main factor for atherogenesis. Experiments in normal human endothelial cells will need to be done to confirm whether similar phenomenon as seen in ECV304 cells can be observed.

References

- Muhlestein JB, Anderson JL, Hammond EH, Zhao L, Trehan S, Schwobe EP, Carlquist JF. Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model. Circulation. 1998;97(7):633-6.
- Patel P, Carrington D, Strachan DP, Leatham E, Goggin P, Northfield TC, Mendall MA.
 Fibrinogen: a link between chronic infection and coronary heart disease. Lancet.
 1994;343(8913):1634-5.
- Fong IW. Emerging relations between infectious diseases and coronary artery disease and atherosclerosis. CMAJ. 2000;163(1):49-56
- 4. Vallance P, Collier J, Bhagat K. Infection, inflammation, and infarction: does acute endothelial dysfunction provide a link? *Lancet.* 1997;349(9062):1391-2.
- 5. Gurfinkel E, Bozovich G. Chlamydia pneumoniae: inflammation and instability of the atherosclerotic plaque. *Atherosclerosis*. 1998;140 Suppl 1:S31-5.
- 6. Chiu B. Multiple infections in carotid atherosclerotic plaques. *Am Heart J.* 1999;138(5 Pt 2):S534-6.
- 7. Leinonen M, Saikku P. Evidence for infectious agents in cardiovascular disease and atherosclerosis. Lancet Infect Dis. 2002;2(1):11-7.
- 8. Vercellotti GM. Overview of infections and cardiovascular diseases. *J Allergy Clin Immunol*, 2001; 108(4 Suppl):S117-20.
- 9. Ismail A, Khosravi H, Olson H. The role of infection in atherosclerosis and coronary artery disease: a new therapeutic target. *Heart Dis.* 1999; 1(4):233-40.
- Whiteley RJ, Roizman B. Herpes simplex virus. In: Richman DD, Whiteley RJ, Hayden
 F (eds), Clinical Virology. New York, Churchill Livingstone. 1997; p 375-41.
- Hajjar DP, Pomerantz KB, Falcone DJ, Weksler BB, Grant AJ. Herpes simplex virus infection in human arterial cells. Implications in arteriosclerosis. *J Clin Invest*. 1987 Nov:80(5):1317-21.
- 12. Yamashiroya HM, Ghosh L, Yang R, Robertson AL Jr. Herpesviridae in the coronary arteries and aorta of young trauma victims. *Am J Pathol.* 1988;130(1):71-9.
- 13. Watt S, Aesch B, Lanotte P, Tranquart F, Quentin R. Viral and bacterial DNA in carotid atherosclerotic lesions. Eur J Clin Microbiol Infect Dis. 2003;22(2):99-105.

- 14. Shi Y, Tokunaga O. Herpesvirus (HSV-1, EBV and CMV) infections in atherosclerotic compared with non-atherosclerotic aortic tissue. *Pathol Int.* 2002;52(1):31-9.
- Jacob HS, Visser M, Key NS, Goodman JL, Moldow CF, Vercellotti GM. Herpes virus infection of endothelium: new insights into atherosclerosis. Trans Am Clin Climatol Assoc. 1992;103:95-104.
- 16. Key NS. Vercellotti GM, Winkelmann JC, Moldow CF, Goodman JL, Esmon NL, Esmon CT, Jacob HS. Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression. *Proc Natl Acad Sci* U S A. 1990; 87(18):7095-9.
- Span AH, van Dam-Mieras MC, Mullers W, Endert J, Muller AD, Bruggeman CA. The effect of virus infection on the adherence of leukocytes or platelets to endothelial cells. Eur J Clin Invest. 1991; 21(3):331-8.
- Etingin OR, Silverstein RL, Hajjar DP. Identification of a monocyte receptor on herpesvirus-infected endothelial cells. Proc Natl Acad Sci U S A. 1991; 88(16):7200-3.
- Visser MR, Verceliotti GM. Herpes simplex virus and atherosclerosis. Eur Heart J. 1993;14 Suppl K:39-42.
- Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. *Proc Natl Acad Sci* U S A, 1984; 81(12):3883-7.
- 21. Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, Komatsu R, Matsuo T, Itabe H, Takano T, Tsukamoto Y, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. *Circulation*. 2001; 103(15):1955-60.
- 22. Holvoet P, Harris TB, Tracy RP, Verhamme P, Newman AB, Rubin SM, Simonsick EM, Colbert LH, Kritchevsky SB. Association of High Coronary Heart Disease Risk Status With Circulating Oxidized LDL in the Well-Functioning Elderly: Findings From the Health, Aging, and Body Composition Study. Arterioscler Thromb Vasc Biol. 2003; 23(8):1444-8.
- 23. Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, Collen D, Muls E, Van de Werf F. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. Arterioscler Thromb Vasc Biol. 2001; 21(5):844-8.

- 24. Tsutsui T, Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Ohnishi M, Kinoshita M. Plasma oxidized low-density lipoprotein as a prognostic predictor in patients with chronic congestive heart failure. J Am Coll Cardiol. 2002; 39(6):957-62.
- 25. Platt N, da Silva RP, Gordon S. Recognizing death: the phagocytosis of apoptotic cells.


 **Trends Cell Biol. 1998; 8(9):365-72.
- 26. Terpstra V, van Amersfoort ES, van Velzen AG, Kuiper J, van Berkel TJ. Hepatic and extrahepatic scavenger receptors: function in relation to disease. Arterioscler Thromb Vasc Biol. 2000; 20(8):1860-72.
- Steinbrecher UP. Receptors for oxidized low density lipoprotein. Biochim Biophys Acta.
 1999; 1436(3):279-98.
- 28. Sawamura T, Kume N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T, Masaki T. An endothelial receptor for oxidized low-density lipoprotein. *Nature*. 1997; 386(6620):73-7.
- Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. *Pharmacol Ther.* 2002; 95(1):89-100.
- 30. Kume N, Kita T. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in atherogenesis. *Trends Cardiovasc Med.* 2001; 11(1):22-5.
- 31. Mehta JL, Li D. Identification, regulation and function of a novel lectin-like oxidized low-density lipoprotein receptor. *J Am Coll Cardiol*. 2002; 39(9):1429-35.
- 32. Kita T, Kume N, Minami M, Hayashida K, Murayama T, Sano H, Moriwaki H, Kataoka H, Nishi E, Horiuchi H, Arai H, Yokode M. Role of oxidized LDL in atherosclerosis. *Ann N Y Acad Sci.* 2001; 947:199-205; discussion 205-6.
- 33. Li D, Mehta JL.. Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol. 2000; 20(4):1116-22.
- 34. Chen H, Li D, Sawamura T, Inoue K, Mehta JL. Upregulation of LOX-1 expression in aorta of hypercholesterolemic rabbits: modulation by losartan. *Biochem Biophys Res Commun.* 2000 ; 276(3):1100-4.

- 35. Aoyama T, Chen M, Fujiwara H, Masaki T, Sawamura T. LOX-1 mediates lysophosphatidylcholine-induced oxidized LDL üptake in smooth muscle cells. FEBS Lett. 2000; 467(2-3):217-20.
- 36. Draude G, Lorenz RL. TGF-beta1 downregulates CD36 and scavenger receptor A but upregulates LOX-1 in human macrophages. *Am J Physiol Heart Circ Physiol.* 2000; 278(4):H1042-8.
- 37. Kosaka H, Yoneyama H, Zhang L, Fujii S, Yamamoto A, Igarashi J. Induction of LOX-1 and iNOS expressions by ischemia-reperfusion of rat kidney and the opposing effect of L-arginine. FASEB J. 2003; 17(6):636-43.
- 38. Higuchi S, Tanimoto A, Arima N, Xu H, Murata Y, Hamada T, Makishima K, Sasaguri Y. Effects of histamine and interleukin-4 synthesized in arterial intima on phagocytosis by monocytes/macrophages in relation to atherosclerosis. *FEBS Lett.* 2001; 505(2):217-22.
- 39. Tanimoto A, Murata Y, Nomaguchi M, Kimura S, Arima N, Xu H, Hamada T, Sasaguri Y. Histamine increases the expression of LOX-1 via H2 receptor in human monocytic THP-1 cells. FEBS Lett. 2001; 508(3):345-9.
- 40. Morawietz H, Duerrschmidt N, Niemann B, Galle J, Sawamura T, Holtz J. Induction of the oxLDL receptor LOX-1 by endothelin-1 in human endothelial cells. *Biochem Biophys Res Commun.* 2001; 284(4):961-5.
- 41. Hayashida K, Kume N, Minami M, Kataoka H, Morimoto M, Kita . Peroxisome proliferator-activated receptor a ligands increase lectin-like oxidized low density lipoprotein receptor-1 expression in vascular endothelial cells. *Ann N Y Acad Sci.* 2001;947:370-2.
- 42. Iwai-Kanai E, Hasegawa K, Sawamura T, Fujita M, Yanazume T, Toyokuni S, Adachi S, Kihara Y, Sasayama S. Activation of lectin-like oxidized low-density lipoprotein receptor-1 induces apoptosis in cultured neonatal rat cardiac myocytes. Circulation. 2001;104(24):2948-54.
- 43. Minami M, Kume N, Kataoka H, Morimoto M, Hayashida K, Sawamura T, Masaki T, Kita T. Transforming growth factor-beta(1) increases the expression of lectin-like oxidized low-density lipoprotein receptor-1. Biochem Biophys Res Commun. 2000;272(2):357-61.
- 44. Moriwaki H, Kume N, Kataoka H, Murase T, Nishi E, Sawamura T, Masaki T, Kita T. Expression of lectin-like oxidized low density lipoprotein receptor-1 in human and murine macrophages: upregulated expression by TNF-QL. FEBS Lett 1998; 440:29-32.

- 45. Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, Rigoni A, Pastorino AM, Lo Cascio V, Sawamura T. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem. 2000;275(17):12633-8.
- 46. Cominacini L, Rigoni A, Pasini AF, Garbin U, Davoli A, Campagnola M, Pastorino AM, Lo Cascio V, Sawamura T. The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. *J Biol Chem.* 2001;276(17):13750-5.
- 47. Tatsuguchi M, Furutani M, Hinagata J, Tanaka T, Furutani Y, Imamura S, Kawana M, Masaki T, Kasanuki H, Sawamura T, Matsuoka R. Oxidized LDL receptor gene (OLR1) is associated with the risk of myocardial infarction. *Biochem Biophys Res Commun*. 2003 ;303(1):247-50.
- 48. Chen Q, Reis SE, Kammerer C, Craig WY, LaPierre SE, Zimmer EL, McNamara DM, Pauly DF, Sharaf B, Holubkov R, Bairey Merz CN, Sopko G, Bontempo F, Kamboh MI. Genetic variation in lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) gene and the risk of coronary artery disease. Circulation. 2003;107(25):3146-51.
- Chen M, Kakutani M, Naruko T, Makiko U, Naruyami S, Masaki T, Sawamura T.
 Activation-dependent surface expression of LOX-1 in human paltelets. *Biochim Biophys Res Commun* 2001; 282:153-8.
- 50. Molestina RE., Miller RD, Lentsch AB, Ramirez JA, Summersgill JT. Requirement for NF-KB in Transcriptional Activation of Monocyte Chemotactic Protein 1 by Chlamydia pneumoniae in Human Endothelial Cells. Infection and Immunity 2000; 68(7):4282-8.

Output จากโครงการวิจัย

- 1. manuscript เพื่อดีพิมพ์เผยแพร่
- 2. การนำผลงานวิจัยไปใช้ประโยชน์
 - 2.1 เชิงสาชารณะ นำไปสู่ความร่วมมือในการทำงานวิจัยระหว่างหน่วยงานและสาชาวิชา ได้แก่ ระหว่างสาขาที่เกี่ยวข้องกับโรคติดเชื้อ และโรคหลอดเลือดหัวใจ
 - 2.2 เชิงวิชาการ ข้อมูลที่ได้สามารถนำไปใช้เป็นส่วนหนึ่งของการสอน และเป็นข้อมูล เบื้องตันสำหรับการทำวิทยานิพนธ์เพื่อการศึกษาในเรื่องโรคดิดเชื้อและภาวะหลอด เลือดแดงแข็งต่อไป

Herpes Simplex Virus 1 Induced Expression of LOX-1 Expression in an Endothelial Cell Line, ECV 304

Chirathaworn C.¹, Pongpanich A.¹ and Poovorawan Y.²

¹Department of Microbiology and ²Department of Pediatrics,

Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand

* Corresponding author. Mailing address: Department of Microbiology, Faculty of Medicine, Chulalongkorn University,

Rama IV, Bangkok 10330, Thailand.

Phone: 66-2-256-4333 ext 3665. Fax 662-252-5952.

E-mail: fmedcch@md.chula.ac.th

Abstract

Besides dyslipidaemia, smoking, hypertension and diabetes, infection has been proposed to be a risk factor for atherosclerosis. Microbes that have been shown to be involved in atherogenesis are *Chlamydophilia pneumoniae*, cytomegalovirus, herpes simplex virus and *Helicobacter pylori*. The existences of antibodies to those microbes and microbes found in plaques have been demonstrated to be associated with atherosclerosis.

It has been shown that herpes simplex virus I (HSV-1) could infect vascular endothelial cells and when endothelial cells were activated with oxidized LDL (oxLDL), adhesion molecule expression, oxygen radical production and apoptosis were increased which may lead to endothelial cell dysfunction and foam cell accumulation resulting in atherogenesis. LOX-1 is a major receptor for oxLDL on endothelial cells and its expression was increased in atherosclerosis.

We attempted to investigate whether HSV-1 infection increases expression of LOX-1 in endothelial cells. LOX-1 mRNA expression determined by RT-PCR and LOX-1 promoter activity measured by luciferase assay were increased in endothelial cells following HSV-1 infection. This suggests that one of the mechanisms by which HSV-1 is involved in atherogenesis is the enhanced uptake of oxLDL via the increased expression of LOX-1 in endothelial cells.

Keywords: LOX-1, herpesvirus, herpes simplex virus, atherosclerosis

Introduction

It is now well accepted that the inflammatory process is involved in atherosclerosis and it hypothesized that hypertension, smoking and elevated levels of LDL cholesterol are factors leading to injury of vascular endothelial cells and this injury results in activation of the inflammatory process However, atherosclerosis can develop in patients without those mentioned risk factors so other risk factors may be involved in atherogenesis. During the past decade, several recent studies have suggested that infections by microbes such as Chlamydophilia pneumoniae, Helicobacter pylori, Cytomegalovirus and Herpes simplex virus are potential pathogenic factors. Supporting evidence includes the finding of microbes, their structural components or their nucleic acids in atherosclerotic lesions compared with in nonatherosclerotic tesion and higher antibody titers against those microbes in patients than in control groups. In addition, antibiotic treatment prevented acceleration of atherosclerosis by infection in an animal model (1). The mechanisms by which infection, can promote atherosclerosis may be the increase of coagulation, induction of endothelial dysfunction, and increased instability of plaques resulting in inflammatory process (2-9).

Herpes simplex viruses, members of the family herpesviridae, are responsible for diseases ranging from common, relatively benign cutaneous lesions to fatal HSV encephalitis (10). In addition to those symptoms, HSV has been implicated as an etiologic factor in pathogenesis of human atherosclerosis. It has been shown that greater amounts of saturated cholesterol esters and triacylglycerol accumulated in HSV-1 infected human and bovine arterial smooth muscle cells than in uninfected cells (11). This suggested that HSV-1 induced lipid accumulation in smooth muscle cells which is a characteristic feature of atherosclerosis. Existence of HSV-1 nucleic acid and antigen in atherosclerotic lesions has been demonstrated to be related to atherosclerosis compared with non-atherosclerotic tissues (12-14). The ability of HSV to replicate in endothelial cells has been demonstrated and it has been suggested that vascular endothelium may be a site of latent. HSV infection and re-activation of virus infection may enhance atherosclerosis (15).

It has been shown that HSV infection of endothelial cells contributes to deposition of thrombin on atherosclerotic plaques and to the coagulant-necrosis state that characterizes HSV-infected mucocutaneous lesions (16). The adhesion of leukocytes to endothelium may be an

initial step in inflammation and one mechanism that promotes cell adhesion is expression of adhesion molecules. It has been shown that HSV-1 infection of endothelial cells increased adherence of leukocytes to endothelial cells and induced expression of adhesion molecule GMP140. The expression of adhesion molecules may be a pathogenic mechanism in HSV-1-induced cell injury and inflammation (17-18). In vascular cells, HSV-1 infection leads to lipid accumulation, attraction of leukocytes with subsequent inflammatory damage, activation of procoagulant on endothelium with increased thrombin generation and platelet adhesion. (Reviewed in 19)

Oxidative modification of low density lipoprotein (LDL) is involved in formation of macrophage-derived foam cells which are a typical feature of atherosclerotic lesions (20). Foam cells could be induced from macrophages after taking up oxidatively modified LDL (oxLDL) OxLDL is elevated in patients with acute myocardial infarction compared with healthy controls and it has been proposed to be a marker for coronary artery disease (21-24). Besides induction of macrophage foam cell formation, oxLDL induces endothelial cell dysfunction, resulting in impaired nitric oxide production and induction of proatherogenic genes, adhesion molecule expression, and smooth muscle cell growth factors. More than ten receptors for oxLDL referred to as scavenger receptors, have been cloned (25-27). LOX-1 (lectin-like oxidized low-density lipoprotein receptor) has been identified as a receptor for oxLDL. LOX-1 was initially identified from vascular endothelial cells by Sawamura T, et al 1997) (28). Regulation and function of this receptor in atherosclerosis have been widely studied (review in 29-32).

Besides oxLDL, expression of LOX-1 can also be upregulated by various stimuli such as angiotensin II, TNF-Q,PMA, lysophosphatidylcholine, interleukin-4, histamine, peroxisome proliferator-activated receptor (PRAP), norepinephrine, endothelin-1 and ischemia-reperfusion (33-44). Activation of LOX-1 induced activation of NF-kB, expression of adhesion molecules, chemokines, endothelin-1 and superoxide anion and decrease the release of superoxide anion and production of nitric oxide resulting in endothelial cell dysfunction (28,45-46). Specific genetic variations in LOX-1 are associated with coronary artery disease (47-48).

Although considerable evidence suggests that HSV infection is related to atherosclerosis, the molecular mechanisms are not clearly understood. Uptake of oxLDL is involved in promotion of atherosclerosis, and there is evidence suggesting that vascular endothelium may be the site of latent HSV infection. For these reasons, we investigated whether HSV-1 infection could lead to the induction of LOX-1 expression, possibly resulting in increased uptake of oxLDL

in endothelial cells. ECV304, an endothelial cell line was used for HSV-1 infection. LOX-1 mRNA expression induced by HSV-1 infection was demonstrated. The result of mRNA expression was confirmed by the activation of promoter of LOX-1 following HSV-1 infection.

Materials and Methods

Viruses and Cells

HSV-1 (KOS strain) and Vero cells (African green monkey kidney cell line) were kindly provided by Associate Professor Parvapan Bhattarakosol, Ph.D. Department of Microbiology Faculty of Medicine, Chulalongkorn University. Vero Cells were grown in growth medium M199 (GIBCO BRL, USA) supplemented with 10% fetal bovine serum (GIBCO BRL), 100 units/ml penicillin G, 100 µg/ml streptomycin (GIBCO BRL) and 0.01M HEPES (N-2-hydroxyethyl-piperaine-N'-2-ethan sulfonic acid) (GIBCO, BRL).

The human endothelium-derived cell line, ECV304, kindly provided by Professor Yasuyuki Sasaguri, Department of Pathology and Cell Biology, School of Medicine. University of Occupational and Environmental Health, Kitakyushu, Japan, was grown in M199 supplemented with 10% fetal bovine serum, L-glutamine, penicillin G (100 units/ml) and streptomycin (100 µg/ml).

RNA isolation

ECV304 cells (2.5 x 10⁵ /ml/well) were plated in a 24-well plate at 37°C overnight. Cells then were infected with HSV-1 as indicated. RNA from ECV304 cells was isolated using Purescript (Gentra,USA) according to the manufacturer's instructions. Briefly, culture medium was removed and 300 ul of cell lysis solution were added onto cells in each well. Cell lysates were transferred into 1.5 ml tubes, 100 ul of protein-DNA precipitation solution was added and cell suspension was incubated on ice for 5 minutes before centrifugation at 14,000 rpm for 3 minutes. Supernatant containing RNA was transferred into new tubes and RNA was precipitated using 300 ul isopropanol. RNA pellets obtained by centrifugation were washed with 70% ethanol and then resuspended into RNA hydration solution. RNA concentration was measured at 260 nm.

RT-PCR

RNA (1 ug) was reverse transcribed into cDNA using ImProm-II Reverse Transcription System (Promega, USA) with oligo(dT) as a primer according to the manufacturer's instruction. Then, cDNA was amplified using primers : 5' TGC CTG GGA TTA GTA GTG ACC and 5'CCA GTT AAA TGA GCC CGA GG for LOX-1 mRNA (49) and 5'CTA CAA TGA GCT GCG TGT GG and 5' AAG GAA GGC TGG AAG AGT GC for β -actin mRNA (50). The thermal profiles used were 40 cycles at 94°C for 40 seconds, 57 °C for 1 minute and 68 °C for 1 minutes for LOX-1 and 20 cycles at 94°C for 40 seconds, at 60 °C for 1 minute and at 72 °C for 1 minute for β -actin.

PCR products were subjected to 1.5% agarose gel electrophoresis and visualized by ethidium bromide staining. The expected product sizes were 360 and 528 bp for LOX-1 and β - actin, respectively.

Sequecing of PCR product

The purified PCR product was sequenced using primers specific for LOX-1 (the same primers used in PCR amplification), ABI Prism Bigdye Terminator Cycle Sequencing Ready Reaction kit version 3.1 and the Perkin Elmer 9600 automated nucleic acid sequencer as followed. PCR amplification was done in total 20 ul reaction containing purified PCR product, Big dye terminator, and primers in kit buffer. PCR was performed for 25 cycles in the following condition: rapid heat 96 °C, heat denaturation at 96 °C for 10 seconds, and primer annealing at 50 °C for 5 seconds, and DNA extension at 60 °C for 4 minutes. The product was further processed for sequencing using automated nucleic acid sequencer. The sequence obtained was alignment with Clustal X program and homology Blast search in Genbank database.

Transfection and Luciferase assay

A plasmid containing the LOX-1 promoter region upstream of luciferase gene (pLOX-1Luc) and pGL3 plasmid, a promoter-less luciferase reporter plasmid were kindly provided by Professor Yasuyuki Sasaguri, Department of Pathology and Cell Biology, School of Medicine. University of Occupational and Environmental Health, Kitakyushu, Japan (39).

pLOX-1Luc or pGL3 were transfected into ECV304 cells using the liposome reagent, TransFast Reagent (Promega) according to the manufacturer's instruction. ECV cells were plated onto a 24-well plate at a concentration of 1 x 10⁵ cells /ml/well and incubated at 37°C for 24 hours. Cells were washed with PBS and the plasmid/liposome mixture (the combination of plasmid and TransFast Reagent in M199 serum free medium) was added. Cells were incubated for 1 hour before one ml of M199 medium containing 10% FBS was added in each well. The incubation was continued for 48 hours before HSV-1 was added and further incubated at the indicated times.

Luciferase assay (Promega) was done using Luciferase Assay System (Promega) according to the manufacturer's recommendation. Briefly, culture medium was removed from transfected-ECV304 cells infected with HSV-1. Cells were washed with PBS and lysed with 80 ul of luciferase lysis buffer. Lysed cells were transferred to microcentrifuge tubes and cell lysates were obtained by spinning at 14,000 rpm for 15 seconds. The supernatant was transferred to a new tube and stored at -80°C or processed for luciferase activity measurement. The activity of luciferase was determined by mixing 20 ul of cell lysates with 100 ul of luciferase assay reagent and measured (Reader 50 Luminometer). Transfection and luciferase assay were done in triplicate. Luciferase activities were measured as relative light unit (RLU) and expressed as fold induction relative to the sham-treated cells transfected with pGL3.

Results

HSV-1 infection induced LOX-1 mRNA expression

ECV304 cells were infected with 5 MOI of HSV-1 for 2, 4 and 8 hours. Cells were then harvested and RT-PCR was performed from isolated RNA as mentioned in Materials and Methods. As shown in Figure 1A, HSV-1 induced LOX-1 mRNA expression by 2 hours (Lane 2) and the expression could still be observed at 8 hours post infection (Lane 4). Amount of RT-PCR product using primers specific for β -actin was similar in all Lanes (Figure 1, Lanes 5-8).

Sequencing of PCR product was performed in order to confirm the amplification of LOX-1 cDNA. The DNA sequence alignment indicated that the product was LOX-1 cDNA (GenBank AB010710)(data not shown).

Induction of LOX-1 mRNA expression was dose dependent

ECV304 cells were infected with HSV-1 at 0.5, 5 and 10 MOI for 4 hours. RT-PCR for LOX-1 expression was performed. LOX-1 expression was observed when 0.5 MOI of HSV-1 was used (Figure 2A, Lane 2) and the expression was increased when the amount of viruses was increased to 5 MOI (Lane 3). There was no difference in LOX-1 expression when 10 MOI of viruses was used compared with 5 MOI (Lanes 3 and 4). Amount of RT-PCR product using primers specific for β -actin was similar in all Lanes (Figure 2B, Lanes 1-4).

HSV-1 induced activation of LOX-1 promoter activity

In addition to detection of LOX-1 mRNA expression, the activation of LOX-1 promoter following HSV-1 infection was also investigated. Various amounts of plasmid (0.25, 0.5, 0.75 and 1.0 ug) were tested for transfection of ECV304 cells according to the manufacturer's suggestion. The plasmid at 0.5 ug was selected for further use since there was no difference in luciferase activity when 0.5 and 0.75 ug of plasmid was used and the activity was lower at 1.0 ug plasmid (Figure 3). Higher amount of plasmid gave lower reading possibly due to its toxicity to cells.

ECV304 cells transfected with pLOX-1Luc or pGL3 were infected with 5 MOI of HSV-1 for 4 and 8 hours. The experiment was done in triplicate. Cell lysates were collected and assayed for luciferase activity. As shown in Figure 4, the significant induction of luciferase activity was observed at 8 hours following infection.

Activation of HSV-1 promoter activity by HSV-1 was dose dependent

Various amounts of HSV-1 (0.5, 5 and 10 MOI) were tested and the results showed that the induction of luciferease activity implying the activation of LOX-1 promoter was dose dependent. Corresponding to the result of RT-PCR, there was no significant difference in fold induction between infection with 5 and 10 MOI of HSV-1 (Figure 5).

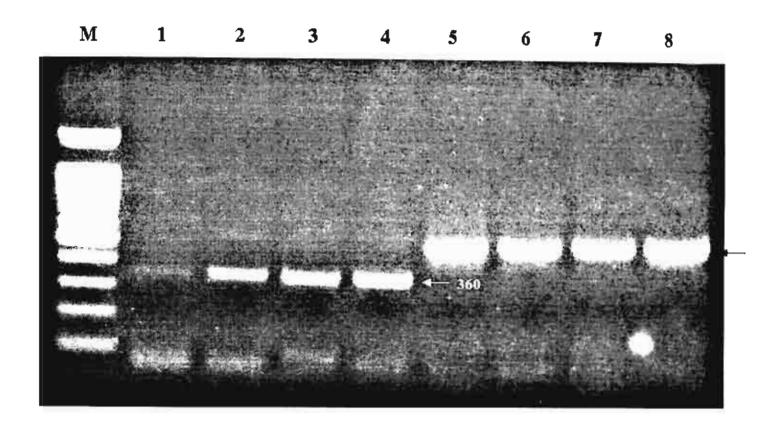


Figure 1. Induction of LOX-1 mRNA expression by HSV-1. ECV304 cells were infected with 5 MOI of HSV-1 for 2, 4 and 8 hours. RNA was isolated and reverse transcription was performed. cDNA was used for PCR with primers specific for LOX-1 (Lanes 1-4) or for β -actin (Lanes 5-8). Lanes 1 and 5 are from non-infected cells, Lanes 2 and 6 from 2-hour infection, Lanes 3 and 7 from 4-hour infection and Lanes 4 and 8 from 8-hour infection. Lane M is 100-bp markers. The arrows indicate the PCR products which are 360 and 528 bp for LOX-1 and β -actin, respectively. This experiment is the representative of 3 similar experiments

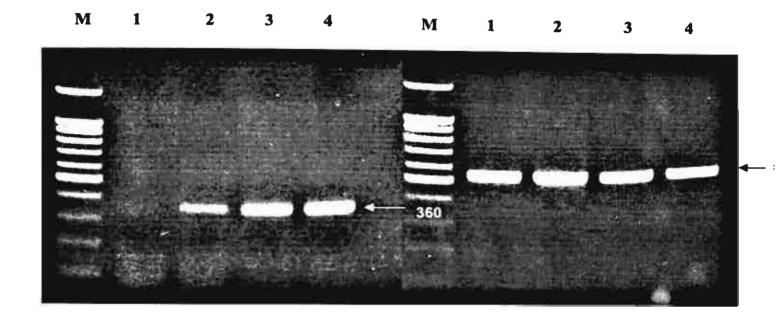


Figure 2. Various amounts of HSV-1 on LOX-1 mRNA expression. ECV304 cells were infected with 0.5, 5 and 10 MOI of HSV-1 for 4 hours. RNA was isolated and reverse transcription was performed. cDNA was used for PCR with primers specific for LOX-1 (Figure 2A) or for β -actin (Figure 2B). Lane 1 is from non-stimulated cells, Lanes 2-4 are from cells infected with HSV-1 at 0.5, 5 and 10 MOI, respectively. The arrows indicate the PCR products which 360 and 528 bp for LOX-1 and β - actin, respectively. This experiment is the representative of 3 similar experiments

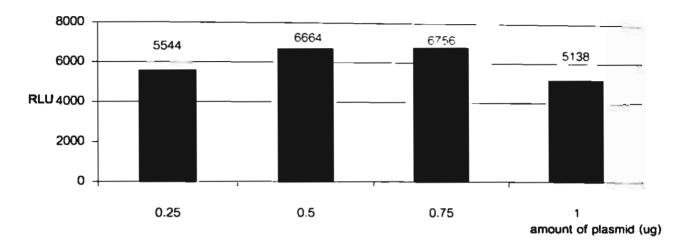


Figure 3. Determination of an optimal amount of DNA for transfection. Various amounts of pLOX-1Luc (0.25, 0.5, 0.75 and 1.0 ug) were used for transfection of ECV304 cells. Luciferase activities were measured and expressed as relative light units (RLU).

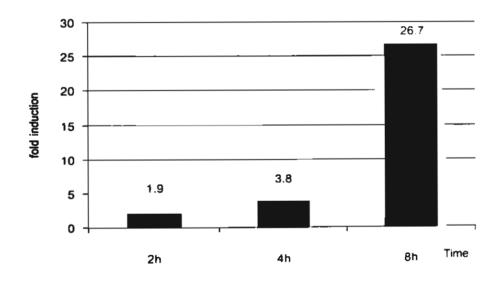


Figure 4. Activation of LOX-1 promoter activity by HSV-1. LOX-1Luc or pGL3 (0.5 ug) were transfected into ECV304 cells as mentioned in Materials and Methods. Transfected ECV304 cells were infected with 5 MOI of HSV-1 for 2, 4, and 8 hours. Cell lysates were harvested and luciferase activities were measured. The induction of luciferase activities was expressed in fold induction compared with non-stimulated cells. The experiment was done in triplicate

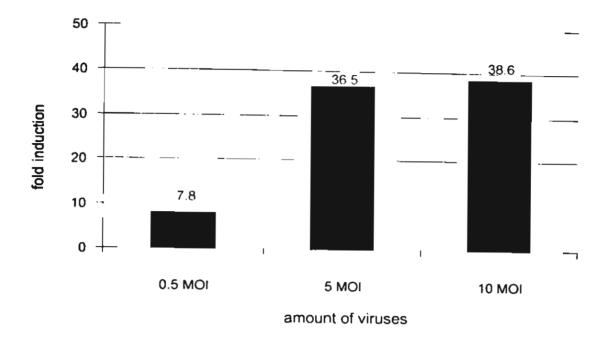


Figure 5. Effects of varying MOI of HSV-1 on activation of LOX-1 promoter activity. LOX-1Luc and pGL3 were transfected into ECV304 cells. Transfected cells were infected with 0.5, 5 and 10 MOI of HSV-1. Cell lysates were collected and luciferase activities were measured. The induction of luciferase activities was expressed in fold induction compared with non-stimulated cells. The experiment was done in triplicate.

Discussion and Conclusion

Members of herperviruses such as cytomegalovirus and herpes simplex viruses have been proposed to be etiologic agents of atherosclerosis. HSV was selected for our studies since we are interested in the mechanisms of HSV immune evasion. We have obtained data supporting the hypothesis that HSV induced apoptosis in T lymphocytes and the induction was caspase-dependent (manuscript in preparation). Molecular mechanisms of HSV infection in T lymphocytes and molecular mechanisms of HSV-1 involved in atherogenesis should be compared and hopefully, can provide additional useful information. HSV-1 was used in this study since there is more evidence on HSV-1 than HSV-2 in atherogenesis. However, other infectious agents proposed in atherosclerosis are in our plans for future work. Since HSV

infections are very common, not only in atherosclerotic patients but also in general population, it is difficult to interpret results from epidemiological studies for explanation of atherogenesis by this infectious disease. Further studies in molecular mechanisms of HSV infection in both atherosclerotic patients and in the general population should help to delineate how infections by HSV is involved in atherosclerosis.

Because LOX-1 has been shown to be induced in various stimuli as mentioned earlier, we attempted to investigate whether HSV-1 infection induced expression of this receptor. Since there is no antibody to LOX-1 commercially available at this time our project was proposed, we observed LOX-1 expression at mRNA and promoter activity levels. Our data demonstrate that HSV-1 increased expression of LOX-1 on ECV304, an endothelial cell line, suggesting that one of the mechanisms that HSV-1 induces atherogenesis is the induction of LOX-1 expression. In order to confirm our observation, the uptake of oxLDL induced by HSV-1 infection and LOX-1 protein expression will be our interest for future experiments.

Since the uptake of lipoprotein and release of reactive oxygen species and immune mediators contribute to atherosclerosis, the inhibition of lipid accumulation and reduction of inflammatory response may be of therapeutic value in prevention of coronary artery disease. Moreover, if infections have been strongly supported to be involved in atherogenesis, antiobiotic treatment and vaccination to infections may be of interest in management of patients with atherosclerosis and in new approaches of treatment. Since there is an increase in incidence of HIV infection, opportunistic infections by herpesviruses are also increased. Understanding the mechanisms of how herpesviruses cause infectious diseases or atherosclerosis will facilitate not only the treatment of patients with persistent infections by herpesviruses but also HIV patients with opportunistic infections.

In conclusion, we believe that further studies should delineate the involvement of HSV infection and atherosclerosis. Etingin et al (1991) demonstrated that HSV infection of endothelial cells increased expression of an adhesion molecule, GMP140, and this expression requires expression of HSV glycoprotein C. Expression of GM140 was suggested to increase adhesion of circulating blood cells in endothelial cells and may be a mechanism in virus-induced vascular injury and inflammation. Our proposed mechanism implies that HSV-1 infection increased uptake of modified LDL by increasing expression of its receptor, LOX-1 and this contributes to endothelial dysfunction and inflammation. This study has drawn HSV-1 infection close to the mechanism of lipid accumulation in vascular endothelium which is the main factor

for atherogenesis. Experiments in normal human endothelial cells will need to be done to confirm whether similar phenomenon as seen in ECV304 cells can be observed.

Acknowledgements

. This work was supported by The Thailand Research Fund and Rachadapiseksompotch (Molecular Biology) Fund, Faculty of Medicine, Chulalongkorn University.

We thank Professor Yasuyuki Sasaguri and his staff at Department of Pathology and Cell Biology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan, for providing the plasmid and cells and Associate Professor Parvapan Bhattarakosol for providing herpes simplex virus and suggestion for viral propagation.

References

- Muhlestein JB, Anderson JL, Hammond EH, Zhao L, Trehan S, Schwobe EP, Carlquist JF. Infection with Chlamydia pneumoniae accelerates the development of atherosclerosis and treatment with azithromycin prevents it in a rabbit model. Circulation. 1998;97(7):633-6.
- Patel P, Carrington D, Strachan DP, Leatham E, Goggin P, Northfield TC, Mendall MA.
 Fibrinogen: a link between chronic infection and coronary heart disease. Lancet.
 1994;343(8913):1634-5.
- Fong IW. Emerging relations between infectious diseases and coronary artery disease and atherosclerosis. CMAJ. 2000;163(1):49-56.
- Vallance P, Collier J, Bhagat K. Infection, inflammation, and infarction: does acute endothelial dysfunction provide a link? *Lancet*. 1997;349(9062):1391-2.
- Gurfinkel E, Bozovich G. Chlamydia pneumoniae: inflammation and instability of the atherosclerotic plaque. Atherosclerosis. 1998;140 Suppl 1:S31-5.
- Chiu B. Multiple infections in carotid atherosclerotic plaques. Am Heart J. 1999;138(5 Pt 2):S534-6.
- 7. Leinonen M, Saikku P. Evidence for infectious agents in cardiovascular disease and atherosclerosis. Lancet Infect Dis. 2002;2(1):11-7.
- 8. Vercellotti GM. Overview of infections and cardiovascular diseases. *J Allergy Clin Immunol*. 2001; 138(4 Suppl):S117-20.
- 9. Ismail A, Khosravi H, Olson H. The role of infection in atherosclerosis and coronary artery disease: a new therapeutic target. *Heart Dis.* 1999; 1(4):233-40.
- Whiteley RJ, Roizman B. Herpes simplex virus. In: Richman DD, Whiteley RJ, Hayden
 F (eds), Clinical Virology. New York, Churchill Livingstone. 1997; p 375-41.
- Hajjar DP, Pomerantz KB, Falcone DJ, Weksler BB, Grant AJ. Herpes simplex virus infection in human arterial cells. Implications in arteriosclerosis. *J Clin Invest.* 1987 Nov;80(5):1317-21.
- 12. Yamashiroya HM, Ghosh L, Yang R, Robertson AL Jr. Herpesviridae in the coronary arteries and aorta of young trauma victims. *Am J Pathol.* 1988;130(1):71-9.
- 13. Watt S, Aesch B, Lanotte P, Tranquart F, Quentin R. Viral and bacterial DNA in carotid atherosclerotic lesions. *Eur J Clin Microbiol Infect Dis.* 2003;22(2):99-105.

- 14. Shi Y, Tokunaga O. Herpesvirus (HSV-1, EBV and CMV) infections in atherosclerotic compared with non-atherosclerotic aortic tissue. *Pathol Int.* 2002;52(1):31-9.
- 15. Jacob HS, Visser M, Key NS, Goodman JL, Moldow CF, Vercellotti GM. Herpes virus infection of endothelium: new insights into atherosclerosis. *Trans Am Clin Climatol Assoc.* 1992;103:95-104.
- 16. Key NS, Vercellotti GM, Winkelmann JC, Moldow CF, Goodman JL, Esmon NL, Esmon CT, Jacob HS. Infection of vascular endothelial cells with herpes simplex virus enhances tissue factor activity and reduces thrombomodulin expression. *Proc Natl Acad Sci* U S A. 1990; 87(18):7095-9.
- 17. Span AH, van Dam-Mieras MC, Mullers W, Endert J, Muller AD, Bruggeman CA. The effect of virus infection on the adherence of leukocytes or platelets to endothelial cells. Eur J Clin Invest. 1991; 21(3):331-8.
- 18. Etingin OR, Silverstein RL, Hajjar DP. Identification of a monocyte receptor on herpesvirus-infected endothelial cells. *Proc Natl Acad Sci.* U S A. 1991; 88(16):7200-3.
- Visser MR, Vercellotti GM. Herpes simplex virus and atherosclerosis. Eur Heart J.
 1993;14 Suppl K:39-42.
- 20. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. *Proc Natl Acad Sci* U S A. 1984; 81(12):3883-7.
- 21. Ehara S, Ueda M, Naruko T, Haze K, Itoh A, Otsuka M, Komatsu R, Matsuo T, Itabe H, Takano T, Tsukamoto Y, Yoshiyama M, Takeuchi K, Yoshikawa J, Becker AE. Elevated levels of oxidized low density lipoprotein show a positive relationship with the severity of acute coronary syndromes. *Circulation*. 2001; 103(15):1955-60.
- 22. Holvoet P, Harris TB, Tracy RP, Verhamme P, Newman AB, Rubin SM, Simonsick EM, Colbert LH, Kritchevsky SB. Association of High Coronary Heart Disease Risk Status With Circulating Oxidized LDL in the Well-Functioning Elderly: Findings From the Health, Aging, and Body Composition Study. Arterioscler Thromb Vasc Biol. 2003; 23(8):1444-8.
- 23. Holvoet P, Mertens A, Verhamme P, Bogaerts K, Beyens G, Verhaeghe R, Collen D, Muls E, Van de Werf F. Circulating oxidized LDL is a useful marker for identifying patients with coronary artery disease. *Arterioscler Thromb Vasc Biol.* 2001; 21(5):844-8.

- 24. Tsutsui T, Tsutamoto T, Wada A, Maeda K, Mabuchi N, Hayashi M, Ohnishi M, Kinoshita M. Plasma oxidized low-density lipoprotein as a prognostic predictor in patients with chronic congestive heart failure. J Am Coll Cardiol. 2002; 39(6):957-62.
- 25. Platt N, da Silva RP, Gordon S. Recognizing death: the phagocytosis of apoptotic cells. Trends Cell Biol. 1998; 8(9):365-72.
- 26. Terpstra V, van Amersfoort ES, van Velzen AG, Kuiper J, van Berkel TJ. Hepatic and extrahepatic scavenger receptors: function in relation to disease. *Arterioscler Thromb* Vasc Biol. 2000; 20(8):1860-72.
- Steinbrecher UP. Receptors for oxidized low density lipoprotein. Biochim Biophys Acta.
 1999; 1436(3):279-98.
- 29. Sawarnura T, Kurne N, Aoyama T, Moriwaki H, Hoshikawa H, Aiba Y, Tanaka T, Miwa S, Katsura Y, Kita T, Masaki T. An endothelial receptor for oxidized low-density lipoprotein. Nature. 1997; 386(6620):73-7.
- 29. Chen M, Masaki T, Sawamura T. LOX-1, the receptor for oxidized low-density lipoprotein identified from endothelial cells: implications in endothelial dysfunction and atherosclerosis. *Pharmacol Ther.* 2002; 95(1):89-100.
- 30. Kume N, Kita T. Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in atherogenesis. *Trends Cardiovasc Med.* 2001; 11(1):22-5.
- 31. Mehta JL, Li D. Identification, regulation and function of a novel lectin-like oxidized low-density lipoprotein receptor. *J Am Coll Cardiol*. 2002; 39(9):1429-35.
- 32. Kita T, Kume N, Minami M, Hayashida K, Murayama T, Sano H, Moriwaki H, Kataoka H, Nishi E, Horiuchi H, Arai H, Yokode M. Role of oxidized LDL in atherosclerosis. *Ann N Y Acad Sci.* 2001; 947:199-205; discussion 205-6.
- 33. Li D, Mehta JL.. Upregulation of endothelial receptor for oxidized LDL (LOX-1) by oxidized LDL and implications in apoptosis of human coronary artery endothelial cells: evidence from use of antisense LOX-1 mRNA and chemical inhibitors. Arterioscler Thromb Vasc Biol. 2000; 20(4):1116-22.
- Chen H, Li D, Sawamura T, Inoue K, Mehta JL. Upregulation of LOX-1 expression in aorta of hypercholesterolemic rabbits: modulation by losartan. *Biochem Biophys Res* Commun. 2000; 276(3):1100-4.

- 35. Aoyama T, Chen M, Fujiwara H, Masaki T, Sawamura T. LOX-1 mediates lysophosphatidylcholine-induced oxidized LDL tiptake in smooth muscle cells. *FEBS Lett.* 2000; 467(2-3):217-20.
- Draude G, Lorenz RL. TGF-beta1 downregulates CD36 and scavenger receptor A but upregulates LOX-1 in human macrophages. Am J Physiol Heart Circ Physiol. 2000; 278(4):H1042-8.
- 37. Kosaka H, Yoneyama H, Zhang L, Fujii S, Yamamoto A, Igarashi J. Induction of LOX-1 and iNOS expressions by ischemia-reperfusion of rat kidney and the opposing effect of L-arginine. FASEB J. 2003; 17(6):636-43.
- 38. Higuchi S, Tanimoto A, Arima N, Xu H, Murata Y, Hamada T, Makishima K, Sasaguri Y. Effects of histamine and interleukin-4 synthesized in arterial intima on phagocytosis by monocytes/macrophages in relation to atherosclerosis. *FEBS Lett.* 2001; 505(2):217-22.
- 39. Tanimoto A, Murata Y, Nomaguchi M, Kimura S, Arima N, Xu H, Hamada T, Sasaguri Y. Histamine increases the expression of LOX-1 via H2 receptor in human monocytic THP-1 cells. FEBS Lett. 2001; 508(3):345-9.
- 40. Morawietz H, Duerrschmidt N, Niemann B, Galle J, Sawamura T, Holtz J. Induction of the oxLDL receptor LOX-1 by endothelin-1 in human endothelial cells. *Biochem Biophys* Res Commun. 2001; 284(4):961-5.
- 41. Hayashida K, Kume N, Minami M, Kataoka H, Morimoto M, Kita . Peroxisome proliferator-activated receptor a ligands increase lectin-like oxidized low density lipoprotein receptor-1 expression in vascular endothelial cells. *Ann N Y Acad Sci.* 2001:947:370-2.
- 42. Iwai-Kanai E, Hasegawa K, Sawamura T, Fujita M, Yanazume T, Toyokuni S, Adachi S, Kihara Y, Sasayama S. Activation of lectin-like oxidized low-density lipoprotein receptor-1 induces apoptosis in cultured neonatal rat cardiac myocytes. *Circulation*. 2001;104(24):2948-54.
- 43. Minami M, Kume N, Kataoka H, Morimoto M, Hayashida K, Sawamura T, Masaki T, Kita T. Transforming growth factor-beta(1) increases the expression of lectin-like oxidized low-density lipoprotein receptor-1. Biochem Biophys Res Commun. 2000;272(2):357-61.
- 44. Moriwaki H, Kume N, Kataoka H, Murase T, Nishi E, Sawamura T, Masaki T, Kita T. Expression of lectin-like oxidized low density lipoprotein receptor-1 in human and murine macrophages: upregulated expression by TNF-α. FEBS Lett 1998; 440:29-32.

- 45. Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, Rigoni A, Pastorino AM, Lo Cascio V, Sawamura T. Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. *J Biol Chem.* 2000;275(17):12633-8.
- 46. Cominacini L, Rigoni A, Pasini AF, Garbin U, Davoli A, Campagnola M, Pastorino AM, Lo Cascio V, Sawamura T. The binding of oxidized low density lipoprotein (ox-LDL) to ox-LDL receptor-1 reduces the intracellular concentration of nitric oxide in endothelial cells through an increased production of superoxide. *J Biol Chem.* 2001 ;276(17):13750-5.
- 47. Tatsuguchi M, Furutani M, Hinagata J, Tanaka T, Furutani Y, Imamura S, Kawana M, Masaki T, Kasanuki H, Sawamura T, Matsuoka R. Oxidized LDL receptor gene (OLR1) is associated with the risk of myocardial infarction. *Biochem Biophys Res Commun.* 2003;303(1):247-50.
- 48. Chen Q, Reis SE, Kammerer C, Craig WY, LaPierre SE, Zimmer EL, McNamara DM, Pauly DF, Sharaf B, Holubkov R, Bairey Merz CN, Sopko G, Bontempo F, Kamboh MI. Genetic variation in lectin-like oxidized low-density lipoprotein receptor 1 (LOX1) gene and the risk of coronary artery disease. Circulation. 2003;107(25):3146-51.
- 49. Chen M, Kakutani M, Naruko T, Makiko U, Naruyami S, Masaki T, Sawamura T. Activation-dependent surface expression of LOX-1 in human paltelets. *Biochim Biophys Res Commun* 2001; 282:153-8.
- 50. Molestina RE., Miller RD, Lentsch AB, Ramirez JA, Summersgill JT. Requirement for NF-KB in Transcriptional Activation of Monocyte Chemotactic Protein 1 by Chlamydia pneumoniae in Human Endothelial Cells. Infection and Immunity 2000; 68(7):4282-8.