

# รายงานวิจัยฉบับสมบูรณ์

โครงการ: การศึกษาการเปลี่ยนแปลงทางจุลพยาธิวิทยาของตับ ในโคนมระยะหลังคลอด

โดย นายธีระ รักความสุข

๒๐ สิงหาคม ๒๕๔๕

# รายงานวิจัยฉบับสมบูรณ์

# โครงการ: การศึกษาการเปลี่ยนแปลงทางจุลพยาธิวิทยาของตับ ในโคนมระยะหลังคลอด

คณะผู้จัดทำ

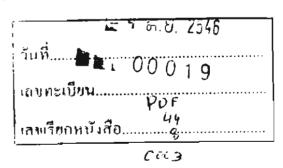
สังกัด

1. นายธีระ รักความสุข

ภาควิชาอายุรศาสตร์ คณะสัตวแพทยศาสตร์

มหาวิทยาลัยเกษตรศาสตร์วิทยาเขตกำแพงแสน

อ.กำแพงแสน จ.นครปฐม 73140


2. Dr. Theo Wensing

Faculty of Veterinary Medicine

**Utrecht University** 

Yalelaan 7, 3584 CL Utrecht

The Netherlands



# สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

(ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

ក្រ ( គេការ ហេការគឺព អារាធិប្ត កោល ១៦០ 17-21 ការបានគេតិ មិធី របស់បារការគេការ ៤ - បញ្ជា នៃ កិច្ចប្រធាន។ របៈលេ

(298-0455 ADTRIX 298-0476) come page antipo www.trl.or.th E-mail : trf-info/a/trf.or.th



# โครงการ: การศึกษาการเปลี่ยนแปลงทางจุลพยาธิวิทยาของตับในโคนมระยะหลังคลอด

### บทคัดย่อ

ศึกษาปัญหาการสะสมของไขมันในตับ (fatty liver) ของโคนมในฟาร์มโคนมแห่งหนึ่งของ ประเทศไทย โดยการวัดความเข้มข้นของไตรเอชิลกลี่เชอรอลในเนื้อเยื่อตับและศึกษาการเปลี่ยนแปลง ทางจุลพยาธิวิทยาของเนื้อเยื่อตับ คัดเลือกโคนมในระยะแห้งนมจำนวน 20 ตัว เก็บตัวอย่างเนื้อเยื่อ ตับในสัปดาห์ที่ 2 ก่อนถึงวันกำหนดคลอด และในสัปดาห์ที่ 1, 2, 3 และ 4 หลังคลอด จากผลการ ทดลอง ในสัปดาห์ที่ 2 ก่อนถึงกำหนดคลอด ความเข้มข้นของไตรเอซิลกลีเซอรอลเฉลี่ยในตับของโค ทั้งหมดคือ 24.3 ± 1.0 มิลลิกรัม/กรัม ของตับ ภายหลังคลอด สามารถแบ่งโคออกเป็น 3 กลุ่มตาม ระดับความเข้มข้นของไตรเอชิลกลีเซอรอลที่ตรวจวัดได้จากตัวอย่างเนื้อเยื่อตับ คือ กลุ่มที่มีการสะสม ของไขมันในตับระดับต่ำมีโคจำนวน 6 ตัว กลุ่มที่มีการสะสมของไขมันระดับปานกลางมีโคจำนวน 8 ตัว และ กลุ่มที่มีการสะสมของไขมันในตับในระดับสูงมีโคจำนวน 6 ตัว จากผลการศึกษานี้แสดงให้ เห็นว่าโคนมหลังคลอดจำนวน 70% มีภาวะขาดสมดุลของพลังงาน โดยตรวจพบโคที่มีความเข้มข้น ของไตรเอชิลกลีเซอรอลในตับสูงกว่า 50 มิลลิกรัม/กรัม ของตับ จำนวน 14 ตัว การศึกษาทางจุล แสดงให้เห็นว่าโคที่มีปัญหาการสะสมของไขมันในระดับปานกลางและ พยาธิวิทยาของตับในโคนม ระดับสูงมีเซลล์ตับจำนวนมากที่มี fat vacuole อยู่ภายในเซลล์ ปริมาณน้ำนมเฉลี่ยในโคนมแต่ละ กลุ่ม คือ 29 ± 6, 31 ± 5 และ 34 ± 7 กิโลกรัมต่อวันสำหรับโคกลุ่มที่มีการสะสมของไขมันระดับต่ำ และระดับสูงตามลำดับ โดยที่พบว่าโคในกลุ่มที่มีการสะสมของไขมันระดับสูงมี แนวโน้มที่จะผลิตน้ำนมปริมาณที่มากกว่า แสดงให้เห็นว่าโคนมในกลุ่มนี้อาจมีภาวะพลังงานขาดสมดุล ที่รุนแรงกว่า จึงทำให้มีการสะสมของไขมันในตับที่ระดับที่รุนแรงกว่าด้วย การเปลี่ยนแปลงทางพยาธิ วิทยาสอดคล้องกับการตรวจวัดความเข้มข้นของไตรเอซิลกลีเซอรอลในตับ ซึ่ง fat vacuole ที่เกิดขึ้น ในเซลล์ตับอาจมีผลกระทบต่อการทำหน้าที่ของตับ ซึ่งยังคงต้องทำการศึกษาต่อไป กล่าวโดยสรุป การศึกษาครั้งนี้เป็นการรายงานครั้งแรกถึงปัญหาการสะสมไขมันในตับโคนมในประเทศไทย ซึ่งอาจมี ความเป็นไปไต้ที่ปัญหาดังกล่าวจะสัมพันธ์หรือมีส่วนเกี่ยวข้องกับปัญหาหลังคลอดอื่นๆ เช่น ปัญหา ผสมไม่ติด ปัญหาระบบเมตาโบลิซึม ฯลฯ ที่พบในโคนมที่เลี้ยงในประเทศไทย

### **ABSTRACT**

We investigated fatty liver problem in dairy cows raised in a commercial dairy herd in Thailand by determination of triacylglycerol concentrations and histological changes of the liver. Twenty Holstein-Friesian dry cows were randomly selected. Liver samples were collected at -2, 1, 2, 3, and 4 wk from parturition. At -2 wk, mean liver triacylglycerol concentration was  $24.3 \pm 1.0$ mg/g of liver. After parturition, we arbitrarily divided cows into three groups according to their liver triacylglycerol concentrations; 6 cows in mild fatty liver group, 8 cows in moderate fatty liver group, and 6 cows in severe fatty liver group. Our results showed that 70% of dairy cows in this herd suffered from negative energy balance after parturition. Histology revealed that livers of cows in moderate to severe fatty liver groups had a considerable number of hepatocytes with fat vacuole. Average milk production during the first 30 d postpartum was 28  $\pm$  6, 31  $\pm$  5, and 34  $\pm$  7 kg/d for mild, moderate, and severe fatty liver groups, respectively; and the milk production in severe fatty liver group tended to be higher than the milk production in mild or moderate fatty liver cows, indicating that cows with higher milk yield tended to enter deeper negative energy balance postpartum, leading to accumulate greater amount of triacylglycerols in their livers. In conclusion, we reported the first evidence of fatty liver problem in high producing dairy cows in Thailand, and it is very likely that postparturient problems founded Thai dairy herd could related to negative energy balance and fatty liver. However, further research is required before this assumption could be made.

# หน้าสรุปโครงการ (Executive summary)

- 1. ชื่อโครงการ การศึกษาการเปลี่ยนแปลงทางจุลพยาธิวิทยาของตับในโคนมระยะหลังคลอด
- 2. ความสำคัญและที่มาของปัญหาที่ทำการวิจัย

การขาดสมดุลของพลังงาน (negative energy balance) เป็นภาวะที่เกิดขึ้นได้ในโคนม ระยะหลังคลอดโดยเฉพาะในช่วง 1-4 สัปดาห์แรก ทั้งนี้เนื่องจากพลังงานที่ได้รับจากอาหารไม่ เพียงพอกับพลังงานที่โคนมต้องการเพื่อการดำรงชีพและการสร้างน้ำนม ดังนั้นโคนมจะมีการ ตอบสนองต่อภาวะการขาดสมดุลของพลังงานนี้โดยการสลายพลังงานที่สะสมไว้ในร่างกายได้แก่ ไขมัน และ โปรตีน การสลายตัวของไขมัน (lipolysis) ที่เกิดขึ้นจะส่งผลให้มีการปล่อยกรดไขมันอิสระ (non-esterified fatty acids) เข้าสู่กระแสโลหิตในปริมาณมาก ซึ่งจะส่งผลให้มีการสะสมของไขมัน ในรูปไตรเอซิลกลีเซอรอล (triacylglycerols) ที่ตับในปริมาณสูง การสะสมของไตรเอซิลกลีเซอรอล ในตับทำให้การทำหน้าที่ของตับถูกรบกวน โดยเฉพาะหน้าที่ในการสร้างกลูโคส (gluconeogenesis) และหน้าที่ในการกำจัดสารพิษ (detoxification) ซึ่งจะสัมพันธ์กับปัญหาสุขภาพ ผลผลิต และ ระบบ สืบพันธุ์ในโคนม การศึกษาถึงการเปลี่ยนแปลงของตับทางจุลพยาธิวิทยาและทางชีวเคมี จะทำให้ทราบ ถึงการเปลี่ยนแปลงต่าง ๆ ที่เกิดขึ้นในตับ ทั้งนี้เพื่อใช้เป็นแนวทางในการป้องกันการสะสมของไตร-เอ ชิลกลีเซอรอลที่มากเกินไปในตับได้อย่างมีประสิทธิภาพเป็นการช่วยลดปัญหาต่าง ๆที่จะเกิดขึ้นตามมา

3. วัตถุประสงค์ของโครงการ

เพื่อศึกษาการเปลี่ยนแปลงทางจุลพยาธิวิทยาของตับในโคนมระยะหลังคลอด

### 4. ระเบียบวิธีวิจัย

### การเก็บตัวอย่าง

- คัดเลือกโคนมระยะแท้งนม (dry period) จำนวน 20 ตัว จากฟาร์มโคนมแห่งหนึ่ง โดย ใช้โคใน lactation number ระหว่าง 2-3 และ มีน้ำนมเฉลี่ยต่อ lactation ประมาณ 5,000 กิโลกรัม
- เก็บตัวอย่างตับเป็นระยะ ๆ จำนวน 5 ครั้ง คือ 2 สัปดาห์ก่อนคลอด, 1, 2, 3 และ 4 สัปดาห์หลังคลอด ตัวอย่างที่ได้แยกเก็บเป็น 2 ส่วนคือ ส่วนที่หนึ่งเก็บใน normal saline solution เพื่อวิเคราะห์ความเข้มข้นของไตรเอชิลกลีเซอรอล ส่วนที่สองเก็บใน 10% formalin เพื่อตรวจทางจุลพยาธิวิทยา

### การตรวจตัวอย่าง

- ตรวจความเข้มข้นของไตรเอซิลกลีเซอรอลในเนื้อเยื่อตับด้วย commercial kit
- ศึกษา histopathology ของเนื้อเยื่อตับผ่านทางกล้องจุลทรรศน์

# การวิเคราะห์ข้อมูล

- วิเคราะห์ข้อมูลความเข้มข้นของไตรเอซิลกลีเซอรอลในเชิงเปรียบเทียบระหว่างความเช้ มชั้นก่อนคลอดและความเข้มข้นหลังคลอดด้วยวิธี Paired t test และสถิติเชิงพรรณา
- ข้อมูลทาง histopathology ใช้วิธีสถิติเชิงพรรณา

# เนื้อหางานวิจัย (Research details)

### สัตว์ทดลอง:

งานวิจัยนี้ทำในฟาร์มโคนมในอำเภอปักธงชัย จังหวัดนครราชสีมา โคนมในฟาร์มนี้ ประกอบด้วย แม่โครีดนม 532 ตัว โคแห้งนม 112 ตัว ลูกโคและโคสาวทดแทน 550 ตัว ปริมาณ น้ำนมเฉลี่ยเท่ากับ 11,920 กิโลกรัมต่อวัน ทำการคัดเลือกโคนมในระยะแห้งนม (dry period) จำนวน 20 ตัว โดยมีรายละเอียดดังแสดงใน Table 1

Table 1. General information of the cows.

|        |           |            | Dry    |      |            |           | Milk  |         |
|--------|-----------|------------|--------|------|------------|-----------|-------|---------|
| Cow    | Calving   | Date at    | period |      |            | Lactation | yield | Age     |
| number | date      | drying off | (day)  | BCS  | Birth date | number    | (kg)  | (month) |
| 95     | 12 Nov 01 | 6 Jul 01   | 129    | 3.25 | 8 Aug 91   | 6         | 7119  | 9.92    |
| 268    | 13 Nov 01 | 20 Sep 01  | 54     | 3.25 | 19 Sep 92  | 5         | 8765  | 9.01    |
| 346    | 7 Dec 01  | 2 Mar 01   | 280    | 4.5  | 2 Mar 94   | 4         | 8666  | 7.01    |
| 398    | 25 Nov 01 | 20 Sep 01  | 66     | 3.5  | 5 Apr 94   | 5         | 9621  | 7.47    |
| 3020   | 28 Dec 01 | 27 Apr 01  | 245    | 4    | 5 Feb 94   | 3         | 9688  | 7.23    |
| 6010   | 16 Dec 01 | 11 Oct 01  | 66     | 3.5  | 14 Apr 96  | 3         | 6627  | 5.50    |
| 6090   | 10 Dec 01 | 11 Oct 01  | 60     | 3.5  | 30 Jul 96  | 2         | 8269  | 5.20    |
| 6096   | 23 Dec 01 | 21 Sep 01  | 93     | 3.75 | 20 Jul 96  | 3         | 8324  | 5.18    |
| 6147   | 20 Dec 01 | 12 Oct 01  | 69     | 3.5  | 11 Sep 96  | 2         | 5998  | 5.09    |
| 7058   | 10 Nov 01 | 22 Aug 01  | 80     | 3.5  | 29 Mar 97  | 2         | 8896  | 4.40    |
| 7121   | 4 Dec 01  | 2 Mar 01   | 277    | 3.5  | 22 Jul 97  | 1         | 7486  | 3.61    |
| 7142   | 15 Nov 01 | 27 Sep 01  | 49     | 3.75 | 20 Aug 97  | 2         | 8822  | 4.11    |
| 7152   | 14 Dec 01 | 17 Oct 01  | 58     | 3.75 | 4 Sep 97   | 2         | 5277  | 4.12    |
| 8025   | 12 Dec 01 | 3 Oct 01   | 70     | 3.5  | 24 Feb 98  | 1         | 6776  | 3.61    |
| 8066   | 19 Dec 01 | 30 Mar 01  | 264    | 3.5  | 4 Jun 98   | 1         | 4450  | 2.82    |
| 8123   | 25 Nov 01 | 9 Oct 01   | 47     | 3.75 | 13 Oct 98  | 1         | 8505  | 2.99    |
| 8135   | 9 Dec 01  | 7 Oct 01   | 63     | 3.5  | 21 Oct 98  | 1         | 6387  | 2.96    |
| 8171   | 25 Nov 01 | 7 Oct 01   | 49     | 3.75 | 7 Dec 98   | 1         | 7212  | 2.84    |
| 8175   | 10 Dec 01 | 12 Oct 01  | 59     | 3.25 | 11 Dec 98  | 1         | 9020  | 2.84    |
| 8178   | 5 Dec 01  | 17 Oct 01  | 49     | 3.5  | 13 Dec 98  | 1         | 6687  | 2.85    |

### อาหารและการให้อาหาร:

โคนมได้รับอาหารตามความต้องการโดยในระยะแท้งนมโคและระยะใกล้คลอด จะได้รับ อาหาร 2 ครั้งต่อวัน โคในระยะหลังคลอดจะได้รับอาหาร 4 ครั้งต่อวัน โดยสูตรอาหารที่ใช้ในโคนมทั้ง ในระยะแท้งนมและหลังคลอดแสดงใน Table 2

Table 2. Composition of total mixed rations (TMR) as fed.

| Ingredient         | Dry period | Transition period                       | Lactating period |
|--------------------|------------|-----------------------------------------|------------------|
|                    |            | kg as fed                               |                  |
| PCL-3 <sup>1</sup> | 0.8        | • • • • • • • • • • • • • • • • • • • • |                  |
| PCL-P <sup>2</sup> |            | 2.0                                     | •••              |
| PCL-F <sup>3</sup> |            | •••                                     | 3.8              |
| Wet brewer grain   | 8.0        | 7.0                                     | 10.0             |
| Corn silage        | 8.0        | 12.5                                    | 12.5             |
| Peanut hay         | 3.5        | 6.0                                     | 6.0              |
| Rice straw         | 2.0        | •••                                     |                  |
| Cassava chips      |            | 1.0                                     | 1.3              |
| Whole cotton seed  | •••        | 0.6                                     | 2.0              |
| Ground corn        |            |                                         | 1.0              |
| Molasses           | 1.0        | 0.5                                     | 0.5              |
| Premixes           | 0.5        | 0.5                                     | 1.0              |

<sup>&</sup>lt;sup>1</sup>Consisting of 33.0% soybean meal, 27% canola meal, 22.5% wheat bran, 11% dried brewer grain, 4.1% limestone, and 2.4% salts.

# การเก็บตัวอย่าง:

เก็บตัวอย่างเนื้อเยื่อตับในโคนมทั้ง 20 ตัวจำนวน 5 ครั้งดังนี้

| ครั้งที่ 1 | 2 สัปดาห์ก่อนคลอด (12 ± 7 วัน) |
|------------|--------------------------------|
| ครั้งที่ 2 | 1 สัปดาห์หลังคลอด (7 ± 2 วัน)  |
| ครั้งที่ 3 | 2 สัปดาห์หลังคลอด (14 ± 2 วัน) |
| ครั้งที่ 4 | 3 สัปดาห์หลังคลอด (21 ± 2 วัน) |
| ครั้งที่ 3 | 4 สัปดาห์หลังคลอด (28 + 2 วัน) |

โดยด้วยวิธีการเก็บตัวอย่างเนื้อตับผ่านทางผิวหนัง (percutaneous liver biopsy technique) ซึ่งมีรายละเอียดดังนี้

## อุปกรณ์

- 1. ยาซาเฉพาะที่ Lidocaine HCL 2%
- 2. biopsy needle

<sup>\*</sup>Consisting of 54.5% soybean meal, 15.0% canola meal, 13.0% dried brewer grain, 11.0% corn gluten meal, 4.7% salts, and 1.8% biophos.

<sup>&</sup>lt;sup>3</sup>Consisting of 44.0% soybean meal, 27.0% corn gluten meal, 14.0% canola meal, 5.5% dried brewer grain, 1.9% salts, and 1.6% limestone.

- 3. ใบมีตผ่าตัด No. 22
- 4. อุปกรณ์โกนขนและทำความสะอาด
- 5. สำลึ แอลกอฮอล์ ยาฆ่าเชื้อ ยาต้านจุลชีพชนิดสเปรย์

### วิธีการทำ biopsy

- 1. เตรียมตัวสัตว์โดยจับบังคับให้ยืนในชองหรือที่คอกพัก
- 2. ทำความสะอาด และโกนขนบริเวณระหว่างกระตูกซี่โครงที่10 ถึง 13 ที่ตำแหน่งในแนว เดียวกับกึ่งกลางของสวาปด้านขวา โดยโกนขนเป็นบริเวณกว้างและยาวประมาณ 10 ชม. × 10 ชม.
- 3. ทำความสะอาดและฆ่าเชื้อด้วยแอลกอฮอล์และสเปรย์ด้วย providone iodine
- 4. ทำการวางยาชาเฉพาะที่ด้วย 2% Lidocaine HCL ปริมาณ 5 มล. ที่ตำแหน่งระหว่าง ซีโครงที่ 11และ 12 (11th intercostal space)
- 5. ตัดผิวหนังบริเวณดังกล่าวด้วยใบมืด No. 22 โดยมีความยาวเท่ากับความกว้างของใบมืด (ประมาณ 1 ซม.)
- 6. ใช้ biopsy needle ที่เอาแกนด้านในออกแล้ว แทงเข้าบริเวณที่ดัดโดยมีทิศทางของเช็ม ขนานกับแกนของแนวสันหลังของโค เก็บตัวอย่างประมาณ 300-400 มก.
- 7. ทำความสะอาดบาดแผลด้วย providone iodine และสเปรย์อีกครั้งด้วยยาต้านจุลชีพ

## วิธีการเก็บเนื้อเยื่อตับ

- 1. เนื้อเยื่อตับที่ได้นำมาวางลงบนกระดาษกรองเพื่อแยกส่วนของเนื้อเยื่ออื่น ๆ และ ลิ่ม เลือดออก
- 2. แบ่งเนื้อเยื่อตับที่ได้ออกเป็น 2 ส่วน โดยส่วนแรกเก็บลงในหลอดที่มี physiological saline (ประมาณ 500 มิลลิกรัม) ส่วนที่ 2 เก็บลงในหลอดที่มี 10% formaline (ประมาณ 200 มิลลิกรัม)

## การวิเคราะห์ตัวอย่าง :

### 1. การวิเคราะห์ไตรเอซิลกลีเซอรอล

ตัวอย่างเนื้อเยื่อตับส่วนที่เก็บใน physiological saline นำมาตรวจหาความเข้มข้นของ ไตรเอชิลกลีเซอรอลซึ่งมีรายละเอียดดังนี้

#### สารเคมี

- 1. 20% KOH: 20 g KOH in 100 ml of distilled water
- 2.  $0.15 \text{ M MgSO}_4*7H_2O \text{ (MW = 246.48)} : 3.7 \text{ g MgSO}_4*7H_2O \text{ in 100 ml of distilled water}$
- 3. 1.8 M HclO<sub>4</sub>: 15.2 ml HclO<sub>4</sub> (70-72%) in 100ml of distilled water
- 4. 1% neutral red: 0.01 g neutral red in 10 ml of 70% alcohol
- 5. 99.7-100% ethanol

### วิธีการ

- 1. ชั่งตัวอย่างเนื้อเยื่อดับ 50-100 mg ใส่ลงใน centrifuge tube ขนาด 20 ml จำนวน 3 หลอด นำไปเก็บไว้ที่อุณหภูมิ-20°C จนกว่าจะนำมาวิเคราะห์
- 2. เติม 20% KOH ปริมาณ 0.25 ml ลงในหลอดที่มีตัวอย่างดับ ทิ้งไว้ที่อุณหภูมิห้อง เป็น เวลา 1 คืน (cell destraction step)
- 3. เดิม 99.7-100% ethanol ปริมาณ 0.5 ml ผสมให้เข้ากัน นำไปจุ่มใน water bath อุณหภูมิ 70°C เป็นเวลา 1 ชั่วโมง (saponification step)
- 4. ทิ้งไว้ให้เย็น เติม 0.15 M MgSO4\*H2O ปริมาณ 0.5 ml ผสมให้เข้ากัน
- 5. เติม 1% neutral red จำนวน 1 หยด ผสมให้เข้ากัน
- 6. Neutralize สารละลายตัวอย่างด้วย 1.8 M HClO4 (หรือ NaOH) จนได้ pH ประมาณ 7 (บันทึกปริมาณ HClO4 และ % NaOH ที่ใช้ทั้งหมด) ใช้ pH-paper
- 7. นำหลอดตัวอย่างไปปั่นที่ 2000 rpm เป็นเวลา 10 นาที
- 8. น้ำ supernatant ไปตรวจหาความเข้มข้นของ triacylglycerol (TAG)

### การคำนวณ

TAG =  $\frac{\text{TAG concentration [mg/dL]/100} \times \text{total sample volume [ml]}}{\text{mg/g of liver}}$  mg of liver sample/1000

# 2. การตรวจทางจุลพยาธิวิทยา

ตัวอย่างเนื้อเยื่อตับที่เก็บใน 10% formalin นำมาเตรียมเนื้อเยื่อด้วยวิธี paraffin tissue-processing method และทำ routine staining ด้วยสี hematoxylin และ eosin และศึกษาการเปลี่ยนแปลงของเนื้อเยื่อตับด้วยกล้องจุลทรรศน์

### ผลการศึกษา :

ความเข้มข้นของไตรเอชิลกลีเซอรอลในตับโคนมแสดงใน Table 3 ซึ่งจากความเข้มข้นที่ ตรวจวัดได้ สามารถแบ่งโคออกเป็น 3 กลุ่มตามการเปลี่ยนแปลงความเข้มข้นของไตรเอซิลกลีเซอรอล ในตับ ได้แก่

- Group 1 : โคที่มีความเข้มข้นของไตรเอซิลกลีเชอรอลในตับหลังคลอด ต่ำกว่า 50 มิลลิกรัม ต่อกรัมของตับ (mild fatty liver group)
- Group 2 : โคที่มีความเข้มข้นของไตรเอซิลกลีเซอรอลในตับหลังคลอด ระหว่าง 50-100 มิลลิกรัมต่อกรัมของตับ (moderate fatty liver group)
- Group 3 : โคที่มีความเข้มข้นของไตรเอชิลกลีเซอรอลในตับหลังคลอด มากกว่า 100 มิลลิกรัมต่อกรัมของตับ (severe fatty liver group)

Table 3. Triacylglycerol (TAG) concentrations in the liver of cows arbitrarily divided into three groups according to their liver TAG concentrations postpartum.

|            |      | Weeks from parturition                                   |       |              |       |        |  |
|------------|------|----------------------------------------------------------|-------|--------------|-------|--------|--|
| Cow number |      | -2                                                       | 1     | 2            | 3     | 4      |  |
| Group 1    |      | Triacylglycerol concentration (mg/g of liver wet weight) |       |              |       |        |  |
| _          | 95   | 25.8                                                     | 31.2  | 48.5         | 44.2  | 35.6   |  |
|            | 268  | 19.4                                                     | 18.9  | 27.5         | 23.3  | 20.9   |  |
|            | 7142 | 24.3                                                     | 28.1  | 24.9         | 18.8  | 19.9   |  |
|            | 8175 | 20.1                                                     | 48.8  | 41           | 34.9  | 41.7   |  |
|            | 7152 | 22.8                                                     | 34    | 27.7         | 23.8  | $ND^1$ |  |
|            | 8123 | 28.8                                                     | 22    | 25.2         | 26.3  | 18.6   |  |
| mean       |      | 23.5                                                     | 30.5  | 32.5         | 28.6  | 27.3   |  |
| SD         |      | 3.5                                                      | 10.6  | 9.9          | 9.3   | 10.6   |  |
| Group      | 2    |                                                          |       |              |       |        |  |
|            | 6090 | 22.9                                                     | 55.4  | 69.1         | 58.3  | 36.6   |  |
|            | 7058 | 18.4                                                     | 53.7  | 61.8         | 69.6  | 63     |  |
|            | 8025 | 29.9                                                     | 44.7  | 39.8         | 36.1  | 52.4   |  |
|            | 8171 | 33.3                                                     | 54.6  | 58.2         | 74.8  | 66.9   |  |
|            | 3020 | 22.1                                                     | 74    | 58.9         | 48.9  | 43.5   |  |
|            | 8066 | 25.1                                                     | 76.8  | 79.3         | 47.5  | 38.9   |  |
|            | 8135 | 21.8                                                     | 94.7  | 79.4         | 69.9  | 63     |  |
|            | 8178 | 29                                                       | 74    | 49.1         | 52.5  | 22.8   |  |
| mean       |      | 25.3                                                     | 66.0  | 62.0         | 57.2  | 48.4   |  |
| SD         |      | 5.0                                                      | 16.5  | 13.8         | 13.4  | 15.6   |  |
| Group 3    |      |                                                          |       |              |       |        |  |
|            | 346  | 21.8                                                     | 114.6 | 130.6        | 98.1  | 97.3   |  |
|            | 398  | 20.5                                                     | 86.5  | 106.2        | 105.1 | 126.8  |  |
|            | 6010 | 28.4                                                     | 94.9  | 89.6         | 83.7  | 104.4  |  |
|            | 6096 | 24.7                                                     | 77.9  | <b>79</b> .1 | 78.7  | 107.5  |  |
|            | 6147 | 18.2                                                     | 81.3  | 68.6         | 110.6 | 88.8   |  |
|            | 7121 | 26.2                                                     | 114.7 | 126.2        | 81.8  | 88.7   |  |
| mean       |      | 23.3                                                     | 95.0  | 100.1        | 93.0  | 102.3  |  |
| SD         | 1    | 3.8                                                      | 16.3  | 25.3         | 13.4  | 14.3   |  |

<sup>&</sup>lt;sup>1</sup> Not determined.

# ผลผลิตน้ำนมของโคนมในแต่ละกลุ่มแสดงใน Table 4

Table 4. Average milk production (kg/d) during the first month of lactation in cows arbitrarily divided into 3 groups according to their liver triacylglycerol concentrations.

|         | Average milk production   |      |
|---------|---------------------------|------|
|         | during the first month of |      |
|         | lactation (kg/day)        | SD   |
| Group 1 |                           |      |
| 95      | 25.1                      | 6.2  |
| 268     | 25.2                      | 6.6  |
| 7142    | 29.5                      | 8.6  |
| 8175    | 27.6                      | 6.0  |
| 7152    | 24.7                      | 4.8  |
| 8123    | 33.3                      | 9.0  |
| Group 2 |                           |      |
| 6090    | 31.1                      | 7.4  |
| 7058    | 30.7                      | 10.1 |
| 8025    | 30.5                      | 7.8  |
| 8171    | 31.2                      | 7.4  |
| 3020    | 29.9                      | 7.2  |
| 8066    | 28.0                      | 8.6  |
| 8135    | 27.2                      | 5.9  |
| 8178_   | 29.9                      | 9.6  |
| Group 3 |                           |      |
| 346     | 13.1                      | 3.3  |
| 398     | 35.9                      | 8.9  |
| 6010    | 27.2                      | 6.0  |
| 6096    | 39.5                      | 9.1  |
| 6147    | 25.2                      | 6.9  |
| 7121    | 35.9                      | 8.4  |

# การเปลี่ยนแปลงทางจุลพยาธิวิทยาของตับในโคนมในช่วงก่อนและหลังคลอดในแต่ละกลุ่ม ของโคนมที่มีการสะสมของไตรเอชิลกลีเซอรอลในตับที่แตกต่างกัน 3 กลุ่ม

Group 1: mild fatty liver group (Figure 1)

Group 2: moderate fatty liver group (Figure 2)

Group 3: severe fatty liver group (Figure 3)

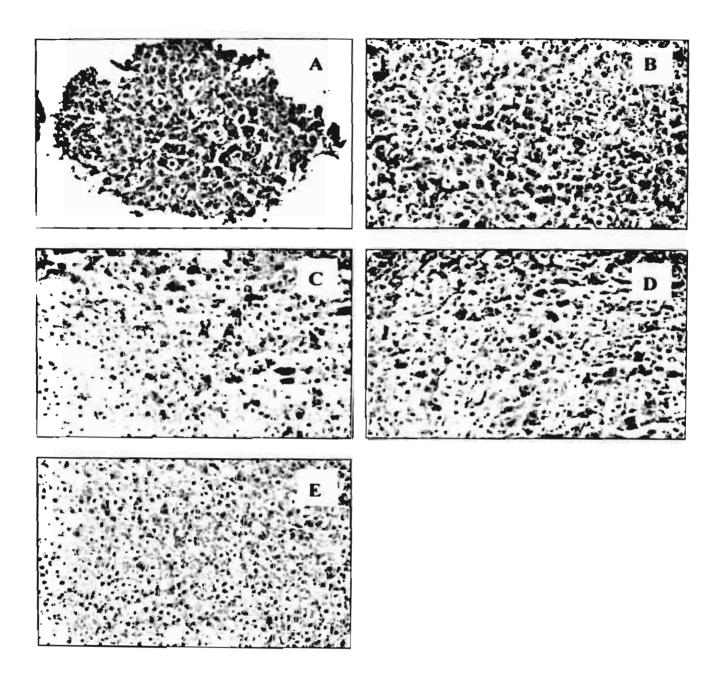



Figure 1. Liver section from a cow in group 1, mild fatty liver group (A: 2 weeks prepartum; B: 1 week postpartum; C: 2 weeks postpartum; D: 3 weeks postpartum; E: 4 weeks postpartum).

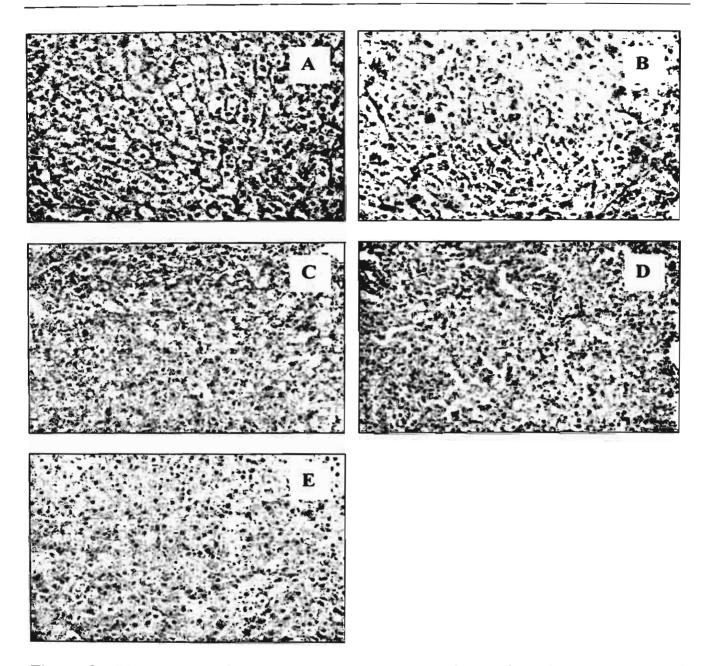



Figure 2. Liver section from a cow in group 2, moderate fatty liver group (A: 2 weeks prepartum; B: 1 week postpartum; C: 2 weeks postpartum; D: 3 weeks postpartum; E: 4 weeks postpartum).

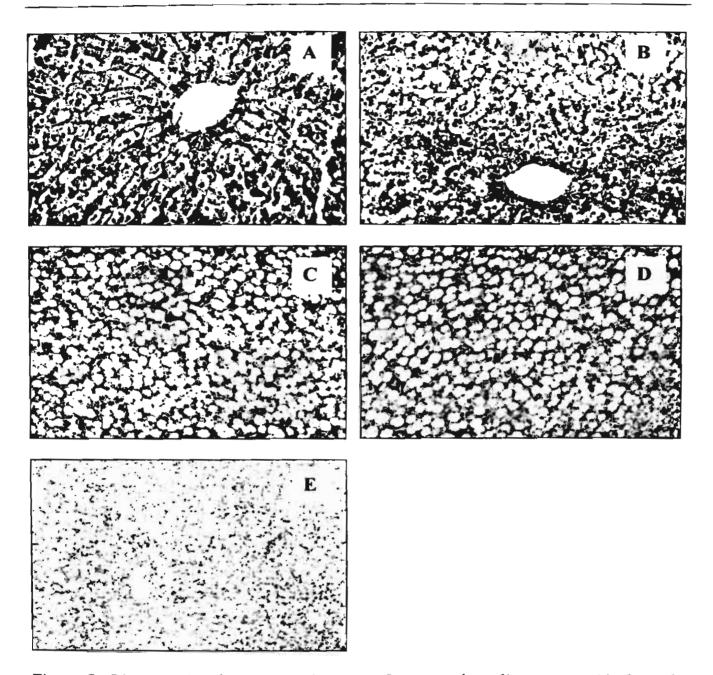



Figure 3. Liver section from a cow in group 3, severe fatty liver group (A: 2 weeks prepartum; B: 1 week postpartum; C: 2 weeks postpartum; D: 3 weeks postpartum; E: 4 weeks postpartum).

# ประโยชน์ได้จากโครงการ (Output of the research project)

- งานวิจัยครั้งนี้เป็นการศึกษาครั้งแรกเกี่ยวกับการเปลี่ยนแปลงทางจุลพยาธิวิทยา และการ 1. เปลี่ยนแปลงทางชีวเคมีของไขมันในตับโคนมที่เลี้ยงในประเทศไทย โดยจากผลการศึกษา ที่เลี้ยงในฟาร์มขนาดใหญ่เชิงพาณิชย์ ครั้งนี้พบว่าโคนมพันธ์แท้โฮลสตีน ฟรีเชี่ยน (commercial dairy farm) ในประเทศไทย มีปัญหาภาวะการชาดสมดุลของพลังงาน (negative energy balance) ในช่วงก่อนและหลังคลอด ทั้งนี้โดยอาศัยค่าพารามิเตอร์ คือ ความเข้มข้นของไตรเอชิลกลีเซอรอลในตับ เป็นตัวบ่งชี้ระดับความรุนแรงของปัญหา ภาวะขาดสมดูลของพลังงาน จากการศึกษาโดยการสู่มโคนมในระยะแห้งนมในฟาร์มโค นมแห่งนี้จำนวน 20 ตัว ทำการศึกษาการเปลี่ยนแปลงทางจุลพยาธิวิทยาและตรวจวัด ความเข้มข้นของไตรเอชิลกลีเซอรอลในโคนมทั้งหมดในช่วงก่อนและหลังคลอดพบว่า โด นม 30% (6/20) มีความเข้มข้นของไตรเอชิลกลีเซอรอลในตับช่วงหลังคลอดต่ำกว่า 50 มิลลิกรัมต่อกรัมของตับ ซึ่งจัดอยู่ในกลุ่มที่เป็น mild fatty liver โคนม 40% (8/20) มี ความเข้มข้นของไตรเอชิลกลีเซอรอลในตับช่วงหลังคลอดระหว่าง 50 ถึง 100 มิลลิกรัม ต่อกรัมของตับ ซึ่งจัดอยู่ในกลุ่มที่เป็น moderate fatty liver โคนม 30% (6/20) มี ความเข้มข้นของไตรเอชิลกลีเซอรอลในตับช่วงหลังคลอดสูงกว่า 100 มิลลิกรัมต่อกรัม ของตับ ซึ่งจัดอยู่ในกลุ่มที่เป็น severe fatty liver แสดงว่าโคนมหลังคลอดในฟาร์ม แห่งนี้ส่วนใหญ่มีปัญหาการขาดสมดุลของพลังงาน ส่งผลให้โคนมเหล่านี้สลายพลังงานที่ สะสมในรูปของไขมันไปใช้ การสลายของไขมันที่มากเกินไปจะส่งผลทำให้มีการสะสมของ นอกจากนี้การสะสมของไขมันในตับยังส่งผลให้มีการ ไขมันในตับที่มากเกินไป เปลี่ยนแปลงทางจุลพยาธิวิทยาของเนื้อเยื่อตับ กล่าวคือโคนมที่มีการสะสมของไตรเอซิลก ลีเซอรอลปริมาณมากจะพบเชลล์ของตับมี fat vacuole ปริมาณมากเช่นกัน ซึ่ง fat เหล่านี้จะส่งผลให้เซลล์ตับมีขนาดใหญ่ขึ้นและมีนิวเคลียสอยู่ที่ขอบของเซลล์ ในภาวะเช่นนี้อาจสัมพันธ์กับหน้าที่การทำงานของเซลล์ตับที่ลดลง กลูโคส หรือหน้าที่ในการกำจัดสารพิษ เป็นต้น สังเคราะห์สารชีวเคมีต่างๆ เช่น นอกจากนี้ความผิดปกติที่เกิดขึ้น เนื่องจากการสะสมของไตรเอชิลกลีเซอรอลในตับที่มาก เกินไปอาจสัมพันธ์กับปัญหาสุขภาพ ปัญหาระบบสืบพันธ์ ตลอดจนปัญหาเกี่ยวกับโรค ความผิดปกติทางระบบเมตาโบลิซึมอื่น ๆของร่างกาย ซึ่งสุดท้ายจะส่งผลกระทบต่อ ประสิทธิภาพการผลิตน้ำนมของโคนมในฟาร์ม
- 2. งานวิจัยครั้งนี้สามารถชี้ของการขาดสมดุลของพลังงานในโคนมหลังคลอดและชี้ปัญหาของ การเกิด fatty liver ซึ่งมีรายงานว่ามีความสัมพันธ์อย่างมากกับปัญหาสุขภาพ ปัญหาการ ผลิตน้ำนม และปัญหาระบบสืบพันธุ์ในโคนมหลังคลอด ซึ่งสามารถวางแนวทางใน การป้องกันปัญหาดังกล่าวต่อไป เช่น การเสริม niacin ลงในอาหารโคนมช่วงใกล้คลอด และช่วงหลังคลอด การเสริม choline ในอาหารโคนมหลังคลอด หรือการใช้

- propylene glycol เสริมในอาหารหรือป้อนให้แก่โคนมในระยะก่อนและหลังคลอด เป็นต้น
- 3. งานวิจัยนี้นำเสนอข้อมูลเบื้องต้นปัญหาของการสะสมของไขมันในตับโคนมในประเทศไทย เป็นครั้งแรก โดยที่ตัวอย่างโคนมมาจากฟาร์มขนาดใหญ่ เพื่อให้ได้ข้อมูลปัญหาดังกล่าว เป็นภาพรวมของโคนมในประเทศไทยซึ่งส่วนใหญ่เลี้ยงในฟาร์มรายย่อย ควรทำการศึกษา ปัญหาการสะสมของไขมันในตับโคนมในฟาร์มรายย่อย โดยใช้เทคนิคและวิธีการเดียวกัน กับงานวิจัยครั้งนี้ ทั้งนี้เพื่อประโยชน์ในการพัฒนาการเลี้ยงโคนม และการผลิตน้ำนมของ ประเทศไทยต่อไป

#### ภาคผนวก

# ส่วนที่ 1.

บทความสำหรับการเผยแพร่กิจกรรมที่เกี่ยวข้องกับการนำผลจากโครงการไปใช้ประโยชน์

### ส่วนที่ 2

Manuscript title: Triacylglycerol Accumulation and Histological Changes in the Liver of Periparturient Dairy Cows in a Commercial Dairy Herd in Thailand

(In preparation to submit to The Journal of Dairy Science)

# ส่วนที่ 1

บทความสำหรับการเผยแพร่กิจกรรม ที่เกี่ยวข้องกับการนำผลจากโครงการไปใช้ประโยชน์

# บทความสำหรับเผยแพร่กิจกรรมที่เกี่ยวข้องกับการนำผลจากโครงการไปใช้ประโยชน์ ปัญหาการสะสมของไขมันในตับโคนม

โคนมในระยะใกล้คลอดและระยะหลังคลอดมักประสบปัญหาการขาดสมดุลของพลังงาน ทั้งนี้ เนื่องจากในระยะใกล้คลอดมีการเปลี่ยนแปลงทางสรีรวิทยาภายในร่างกายที่เหนี่ยวนำทำให้โคนมมีการ กินอาหารลดลง ในขณะที่ร่างกายโคนมต้องการพลังงานเพิ่มมากขึ้นเพื่อการสร้างน้ำนม ทำให้ในช่วง ระยะเวลาดังกล่าวพลังงานที่ร่างกายโคนมได้รับจากการกินอาหาร ไม่เพียงพอต่อพลังงานที่โคต้องการ ผลของการขาดสมดุลของพลังงานนี้เองที่ทำให้โคนมมีการใช้พลังงานที่สะสมอยู่ในร่างกายทดแทนส่วน ที่ขาดไป ซึ่งพลังงานส่วนใหญ่ได้มาจากการสลายของไขมัน ผลของการสลายไขมันทำให้มีการเพิ่มขึ้น ของกรดไขมันอิสระในกระแสเลือด โดยกรดไขมันอิสระเหล่านี้จะไปทำให้มีการสะสมของไขมันในรูป โตรเอชิลกลีเซอรอลมากขึ้นในตับ ปัจจุบันเป็นที่ทราบกันดีว่าการสะสมของไขมันในตับจะส่งผลกระทบ ในเชิงลบต่อทั้งสุขภาพ ผลผลิต และ ระบบสืบพันธุ์ของโคนมในระยะหลังคลอด กล่าวคือ โคที่มีการ สะสมของไขมันในตับที่รุนแรงจะมีแนวโน้มที่จะมีปัญหาโรคติดเชื้อหลังคลอดเช่น เต้านมอักเสบ หรือ มีผลผลิตและคุณภาพของน้ำนมลดลง นอกจากนี้โคยังมีปัญหาเกี่ยวข้องกับความสมบูรณ์พันธ์หลัง คลอด เช่น การกลับสัดหลังคลอดช้า เป็นต้น ทั้งนี้ปัญหาดังกล่าวอาจจะสัมพันธ์กับผลของการสะสม ของไขมันในตับต่อหน้าที่การทำงานของตับ หรืออาจจะสัมพันธ์กับการเปลี่ยนแปลงทางชีวเคมีภายใน ร่างกายโคนมในช่วงที่ร่างกายอยู่ในสภาวะขาดสมดุลของพลังงาน

ประเทศไทยมีการนำเข้าโคนมพันธุ์แท้จากต่างประเทศมาเลี้ยง โคนมเหล่านี้ต้องปรับตัวให้เข้า กับสภาพการเลี้ยงในประเทศไทย โดยเฉพาะเกี่ยวกับภูมิอากาศที่ร้อนและชื้น ทั้งนี้ฟาร์มชนาดใหญ่ได้ พัฒนาระบบการเลี้ยงในโรงเรือนที่มีการปรับอุณหภูมิโดย evaporative cooling system มาใช้ใน การเลี้ยงโคนมพันธุ์แท้เหล่านี้ ภาวะชาดสมดุลของพลังงานในช่วงระยะก่อนและหลังคลอด และผลที่ ตามมาจากภาวะดังกล่าวต่อปัญหาการสะสมของไขมันในตับโคนมเหล่านี้ยังขาดการศึกษาในประเทศ ไทย ซึ่งข้อมูลดังกล่าวจะมีส่วนช่วยอย่างมากในการพัฒนาการผลิตน้ำนมจากโคนมพันธุ์แท้ที่นำมาเลี้ยง ในประเทศ

จากการศึกษาในครั้งนี้พบว่าโคนมพันธุ์แท้โฮสตีน-ฟรีเซียน ที่นำมาเลี้ยงในระบบที่มีการปรับ อุณหภูมิของโรงเรือนแล้ว ยังคงมีปัญหาเกี่ยวกับภาวะการขาดสมดุลของพลังงานและส่งผลให้มีการ สะสมของไขมันในตับโคนมในระยะหลังคลอดได้ โดยพบว่าประมาณ 70% ของแม่โคนมหลังคลอดมี การสะสมของไขมันในตับในระดับปานกลางถึงระดับรุนแรง โดยการสะสมนี้สัมพันธ์กันกับการเปลี่ยน แปลงลักษณะทางจุลพยาธิวิทยาของเชลล์ตับ จากข้อมูลดังกล่าวนี้แสดงให้เห็นว่าปัญหาการสะสมของ ไขมันในตับเกิดขึ้นกับโคนมพันธุ์แท้ที่ให้น้ำนมมากที่เลี้ยงในประเทศไทย ซึ่งควรได้รับการศึกษา เพิ่มเติมเพื่อหาแนวทางการแก้ไขปัญหาดังกล่าวที่เหมาะสมต่อการเลี้ยงโคนมในประเทศ ทั้งนี้เพื่อลด ผลกระทบที่อาจจะเกิดขึ้นจากปัญหาการสะสมของไขมันในตับ และเป็นการเพิ่มประสิทธิภาพการผลิต ของโคนมเหล่านี้ต่อไปในอนาคต

# ส่วนที่ 2

# Manuscript title:

Triacylglycerol Accumulation and Histological Changes in the Liver of Periparturient Dairy Cows in a Commercial Dairy Herd in Thailand

(In preparation to submit to The Journal of Dairy Science)

# กุ่าบักงานกลงกุนสนับสนุยการวิจัย (สก เ.)

(1) seconds and community

(1) seconds and community

(2) second and community

(3) second and community

(4) second and community

(5) more and community

(5) more and community

(5) more and community

(6) more and community

(7) more and community

(7) more and community

(8) more and community

(9) more and community

(1) more and community

(2) more and community

(3) more and community

(4) more and community

(5) more and community

(6) more and community

(7) more and community

(8) more and community

(9) more and community

(1) more and community

(2) more and community

(3) more and community

(4) more and community

(5) more and community

(6) more and community

(7) more and community

(7) more and community

(8) more and community

(8) more and community

(8) more and community

(9) more and community

(1) more and community

(2) more and community

(3) more and community

(4) more and community

(4) more and community

(5) more and community

(6) more and community

(6) more and community

(7) more and community

(7) more and community

(8) more and commu



# Triacylglycerol Accumulation and Histological Changes in the Liver of Periparturient Dairy Cows in a Commercial Dairy Herd in Thailand

Theera Rukkwamsuk,\* Soonthorn Rungruang,† and Theo Wensing‡
\*Faculty of Veterinary Medicine, Kasetsart Universtiy, Kampangsaen,
Nakhon-Pathom 73140, Thailand
†Pakthongchai Dairy Farm, Nakhonrachasrima, Thailand
‡Utrecht University, Utrecht, The Netherlands

### **ABSTRACT**

We investigated fatty liver problem in dairy cows raised in a commercial dairy herd in Thailand by determination of triacylglycerol concentrations and histological changes of the liver. Twenty Holstein-Friesian dry cows were randomly selected. Liver samples were collected at -2, 1, 2, 3, and 4 wk from parturition. At -2 wk, mean liver triacylglycerol concentration was 24.3 ± 1.0 mg/g of liver. After parturition, we arbitrarily divided cows into three groups according to their liver triacylglycerol concentrations; 6 cows in mild fatty liver group, 8 cows in moderate fatty liver group, and 6 cows in severe fatty liver group. Our results showed that 70% of dairy cows in this herd suffered from negative energy balance after parturition. Histology revealed that livers of cows in moderate to severe fatty liver groups had a considerable number of hepatocytes with fat vacuole. Average milk production during the first 30 d postpartum was  $28 \pm 6$ ,  $31 \pm 5$ , and  $34 \pm 7$  kg/d for mild, moderate, and severe fatty liver groups, respectively; and the milk production in severe fatty liver group tended to be higher than the milk production in mild or moderate fatty liver cows, indicating that cows with higher milk yield tended to enter deeper negative energy balance postpartum, leading to accumulate greater amount of triacylglycerols in their livers. In conclusion, we reported the first evidence of fatty liver problem in high producing dairy cows in Thailand, and it is very likely that postparturient problems founded Thai dairy herd could related to negative energy balance and fatty liver. However, further research is required before this assumption could be made.

(Key words: dairy cow, triacylglycerol, histopathology, liver)

**Abbreviation key:** BCS = body condition score, NEB = negative energy balance, TAG = triacylglycerol(s),

#### INTRODUCTION

Dairy cows usually go into a period of energy shortage or negative energy balance (NEB) during periparturient period because feed intake of the cows during that period cannot always provide sufficient energy to meet their requirements (Rukkwamsuk et al., 1999a). Thus, the energy supply must be derived from lipolysis and proteolysis. Lipolysis in adipose tissue raises the

concentration of non-esterified fatty acids (NEFA) in the blood (Rukkwamsuk et al., 1998). The mobilized NEFA are absorbed by the liver, which are metabolized to yield CO<sub>2</sub> and water or are re-esterified to triacylglycerols (Bruss, 1993). The TAG are secreted from the liver in the form of very low density lipoproteins. Evidence exist that more intensive lipolysis as occurring in cows with severe NEB, plasma NEFA concentrations increase more substantially, resulting in hepatic lipidosis or fatty liver (Van den Top et al., 1995; Rukkwamsuk et al., 1998; Rukkwamsuk et al., 1999c). It is well documented that negative energy balance or fatty liver has adverse effects on health, production, and reproduction in dairy cows, partly due to some consequences of intensive lipolysis causing fatty liver or hepatic lipidosis (Gerloff et al., 1986; West, 1990; Rukkwamsuk et al., 1999d).

Heat stress is a major contributing factor in infertility in lactating dairy cows in hot climate (Wolfenson et al., 2000). In Thailand, some commercial dairy farms have adopted a cooling system for the cows in order to alleviate any adverse effects of severe heat stress. It is documented that cows raised in a barn with evaporative cooling system have lower rectal temperature and respiration rates than those that are raised in a barn without cooling system (Armstrong et al., 1985; Armstrong et al., 1993). The cooling system is suggested to improve cow comfort, and eventually could result in an improvement of production in high producting dairy cows. To dates, there is no report concerning any metabolic changes, particularly during periparturient period, in cows raised in evaporative cooling system in Thailand.

It is interesting to study into the biochemical and histological changes of liver in periparturient dairy cows that are raised in a farm with an evaporative cooling system. Therefore, the objectives of this study were to determine liver triacylglycerol concentrations as an indicator of negative energy balance during periparturient period in randomly selected cows from a commercial dairy farm. Histological changes of the liver samples were also investigated.

#### MATERIALS AND METHODS

### Farm, Animals and Diets

The study was conducted in a commercial dairy farm at Pakthongchai District, Nakornrachasrima Province, Thailand. The farm consisted of 532 lactating cows, 112 dry cows, and 550 replacement calves and heifers. The average milk production of the farm was 11920 kg/d. The close-up and lactating cows were kept in a free-stall housing with an evaporative cooling system, which controls the inside temperature between 25-28 °C. All cows in the evaporating barn were fed ad libitum with total mixed rations as shown in Table 1.

Twenty healthy, pregnant multiparous Holstein Friesian cows were randomly selected; mean age was 4.9 yr (SD = 2.2), mean 305-d cumulative milk yield was 7629 kg (SD = 1453), and mean body condition score (BCS) was 3.6 (SD = 0.3) at the start of the experiment.

Table 1. Composition of total mixed rations (TMR) as fed basis.

| Ingredient         | Dry period | Transition period | Lactating period |
|--------------------|------------|-------------------|------------------|
|                    |            | kg as fed -       |                  |
| PCL-31             | 0.8        |                   | •••              |
| PCL-P <sup>2</sup> |            | 2.0               | •••              |
| PCL-F <sup>3</sup> |            | •••               | 3.8              |
| Wet brewer grain   | 8.0        | 7.0               | 10.0             |
| Corn silage        | 8.0        | 12.5              | 12.5             |
| Peanut hay         | 3.5        | 6.0               | 6.0              |
| Rice straw         | 2.0        |                   | •••              |
| Cassava chips      | •••        | 1.0               | 1.3              |
| Whole cotton seed  | •••        | 0.6               | 2.0              |
| Ground corn        |            | •••               | 1.0              |
| Molasses           | 1.0        | 0.5               | 0.5              |
| Premixes           | 0.5        | 0.5               | 1.0              |

<sup>&</sup>lt;sup>1</sup>Consisting of 33.0% soybean meal, 27% canola meal, 22.5% wheat bran, 11% dried brewer grain, 4.1% limestone, and 2.4% salts.

### Sampling and Assay Procedures

Liver biopsy was obtained using the percutaneous biopsy method as described by Van den Top (1995). The liver samples were collected about 2 wk (12  $\pm$  7 d (mean  $\pm$  SD) before the anticipated calving date and at 1 (7  $\pm$  2 d), 2 (14  $\pm$  2 d), 3 (21  $\pm$  2 d), and 4 (28  $\pm$  2 d) wk after parturition. During collection, the liver samples were placed on filter paper, were removed from any connective tissue and blood clots, and were divided into two parts. The first part was placed in a tube with 1 ml of 10% formalin for histological study. The second part was placed in a tube with physiological saline and was kept on ice for determination of TAG; thereafter in the laboratory, these samples were dried on the filter paper and any remaining connective tissue or blood clots were removed. The samples were weighed in separated tubes for each TAG determination, and were kept at -20°C until analysis. Triplicate analyses were performed in all liver samples.

Liver TAG concentrations were assayed by spectrophotometry with the use of a commercial kit (Triglyceride GPO-PAP; CLASS-1 Laboratories Co., Ltd., Bangkok, Thailand). Liver tissue sections were processed using routine methology, and stained with hematoxylin and eosin (Preece, 1972).

### Statistical Analyses

Data were statistically analyzed using an SPSS computer program (SPSS Advance Statistic™, 1994). Data were tested for normal distribution using the

<sup>&</sup>lt;sup>2</sup>Consisting of 54.5% soybean meal, 15.0% canola meal, 13.0% dried brewer grain, 11.0% corn gluten meal, 4.7% salts, and 1.8% biophos.

<sup>&</sup>lt;sup>3</sup>Consisting of 44.0% soybean meal, 27.0% corn gluten meal, 14.0% canola meal, 5.5% dried brewer grain, 1.9% salts, and 1.6% limestone.

Kolmogorov-Smirnov test, and the homogeneity of variances was verified using the Levene's test. Normally distributed data were subject to ANOVA using groups as a fixed main effect and sampling day as a repeated measure. Comparison of data between sampling day was performed using the paired Student t test. Data of cows in different groups were compared using one-way ANOVA. The two-sided level of statistical significance was preset at  $P \le 0.05$ .

### RESULTS AND DISCUSSION

All cows calved normally. One cow was clinically abnormal after parturition, and this cow had an enormously increase of TAG in her liver. Therefore, data of milk production and TAG of this cow was excluded from the analysis.

### Liver Triacylglycerols

Mean concentrations of TAG in the liver of 19 cows is presented in Figure 1. At 2 wk before parturition, mean liver TAG concentration was  $24.3 \pm 1.0$  (mean  $\pm$  SEM) mg/g of liver wet weight, which was in the same range as reported by Van den Top et al., 1995. At 1, 2, 3, and 4 wk after parturition, mean TAG concentrations were  $61.4 \pm 6.3$ ,  $61.1 \pm 6.4$ ,  $57.3 \pm 6.3$ , and  $57.8 \pm 7.8$  mg/g of liver wet weight, respectively, and were significantly higher than the mean concentration before parturition. It was obvious that all cows increased their liver TAG concentrations immediately 1 wk after parturition and the concentration remained at high value throughout 4 wk after parturition. This result confirmed that periparturient dairy cows increased their fat mobilization which may be inferred that the cows suffered some degree of NEB during periparturient period.

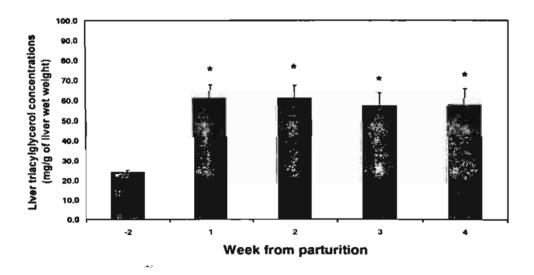



Figure 1. Liver triacylglycerol (TAG) concentrations at -2, 1, 2, 3, and 4 wk from parturition of 20 cows. Data represent mean  $\pm$  SEM. Asterisks indicate that mean concentrations of liver TAG at 1, 2, 3, and 4 wk after parturition significantly differed from the mean at -2 wk ( $P \le 0.05$ ).

According to liver TAG concentrations during postpartum, cows were arbitrarily divided into three groups: mild fatty liver group was the cows that had liver TAG concentration lower than 50 mg/g of liver wet weight, moderate fatty liver group was the cows that had liver TAG concentrations between 50 and 100 mg/g of liver wet weight, and severe fatty liver group was the cows that had liver TAG concentrations greater than 100 mg/g of liver wet weight. In sum, 6 cows were in mild, 8 cows were moderate, and 5 cows were severe fatty liver group. Mean liver TAG concentrations in the three groups are demonstrated in Figure 2

At 2 wk before parturition, mean liver TAG concentrations between the 3 groups of cows did not significantly differ. The concentrations increased sharply in moderate and severe fatty liver groups. At 1, 2, 3, and 4 wk after parturition, mean liver TAG concentrations of severe fatty liver cows were higher than the concentrations of the other two groups, and mean concentrations of mild fatty liver groups did not change too much during the postparturient period. These results indicated that cows with severe fatty liver might enter deeper negative energy balance, which could induce a more intensive lipolysis of adipose tissue than the other two groups. Severe fatty liver cows seemed to have a prolonged fatty liver as indicated that, during 4 wk after parturition, the mean TAG concentrations remained high in the liver. This result might relate to the observation of Rukkwamsuk et al. (1999b) that gluconeogenesis capacity of liver with high TAG levels is impaired, resulting in a prolonged period of NEB which is associated with continuing lipolysis of adipose tissue.

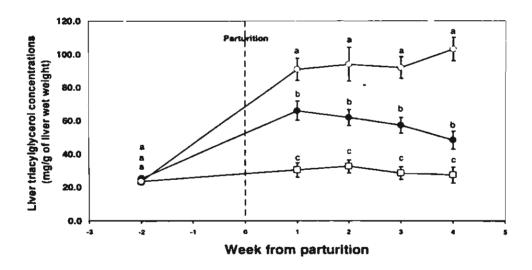



Figure 2. Liver triacylglycerol (TAG) concentrations at -2, 1, 2, 3, and 4 wk from parturition of 20 cows which were arbitrarily divided into 3 groups according to the concentrations of liver TAG; mild fatty liver group ( $\square$ ; n = 6), moderate fatty liver group( $\blacksquare$ ; n = 8), and severe fatty liver group ( $\square$ ; n = 5). Data represent means  $\pm$ SEM. Different letters indicate that the mean concentrations of liver TAG at the same interval were significantly different between groups ( $P \le 0.05$ ).

#### Milk Production

Mean milk yield during the first 30 d of lactation of the cows is demonstrated in Figure 3. The milk yield inclined very sharply during the first few days of lactation (Figure 3A). All 19 cows produced an average of  $31 \pm 4$  kg/d during first 4 wk of lactation. Mean milk yield of cows with mild, moderate, and severe fatty liver were  $29 \pm 6$  (mean  $\pm$  SD),  $31 \pm 5$ , and  $34 \pm 7$  kg/d, respectively. The mean milk production of cows with severe fatty liver tended to be higher (P = 0.1) than the mean milk production of cows with mild fatty liver (Figure 3B). This result indicated that high milk yield was associated with NEB and, thus, was a predisposing factor to the fatty liver development.

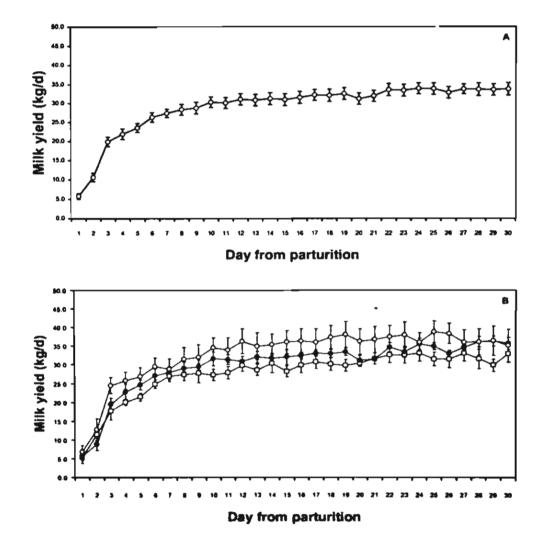



Figure 3. Milk production during the first 30 days after parturition of 20 cows (A), which were arbitrarily divided into 3 groups according to the concentrations of liver TAG (B); mild fatty liver group (□; n = 6), moderate fatty liver group(•; n = 8), and severe fatty liver group (O; n = 6). Data represent means (±SEM).

### Histological Changes of the Liver

the second second

Histological changes of the liver of cows with mild, moderate, and severe fatty liver are shown in Figure 4 and 5. At 2 wk before parturition, most hepatocytes from liver sections of mild, moderate, and severe fatty liver cows had the same microscopic appearance (Figure 4) because liver TAG concentrations at 2 wk before parturition were at the lowest concentration and did not differ between groups (Figure 2). At 2 wk after parturition, a large number of hepatocytes from liver sections of severe fatty liver cows contained fat macrovacuoles (Figure 5). These vacuoles pushed the nucleus of hepatocyte to the periphery, enlarged hepatocytes, and replaced the normal-staining cytoplasm as also reported by Cebra et al. (1997). In moderate fatty liver cows, a small number of hepatocytes contained fat macrovaculoes; however, most hepatocytes contained fat microvacuole. In mild fatty liver cows, most hepatocytes seemed to be normal and some hepatocytes contained only fat microvacuole. These findings agreed with the results of TAG concentrations (Figure 2). In a study of Gaal et al. (1983), severity of fatty liver was classified into mild (< 50 mg of TAG/g of liver), moderate (51-100 mg of TAG/g of liver), and severe fatty liver (> 100 mg of TAG/g of liver). In their study, mild fatty liver cows contained liver fat between 0 to 20 µm<sup>3</sup>/100µm<sup>3</sup> of liver tissue, moderated fatty liver cows contained liver fat between 20 to 40 μm<sup>3</sup>/100μm<sup>3</sup>, and severe fatty liver cows contained liver fat over 40 μm<sup>3</sup>/100μm<sup>3</sup>. Rukkwamsuk and Wensing (2002) reported that cows with greater hepatic TAG accumulation delayed hepatic clearance of bromsulphthalein, indicating lower clearance capacity of the liver. West (1990) also found that the clearance of bromsulphthalein is markedly slower in cows with fatty liver than in healthy cows. We suggested that accumulation of TAG in the liver would result in temporarily interfering normal functions of hepatocytes, and, thus, fatty liver cows are prone to other postparturient problems as always observed in practice.

#### CONCLUSIONS

Our results show that Holstein Friesian cows raised in Thailand could also develop fatty liver, which is the first evidence in Thailand. It is clear that high producing cows are prone to the NEB closed to calving and immediately after calving; however heat stress causing low feed intake of the cow may play an important role in development of fatty liver. However, in our study, we did not determine the feed intake of the cows; therefore, the effect of heat stress on the development of fatty liver in this farm could not be ruled out. Because the farm in this study applies an evaporative cooling system, some cows may adapt well to the hot climate, and the feed intake is not influenced by heat stress. Therefore, these cows only developed a mild fatty liver. The relationship between heat stress, low feed intake, and the development of fatty liver in cows raised in an evaporative cooling system still requires further investigations. Moreover,

nutritional management to the cows in the hot climate to prevent NEB or fatty liver is awaiting more research.

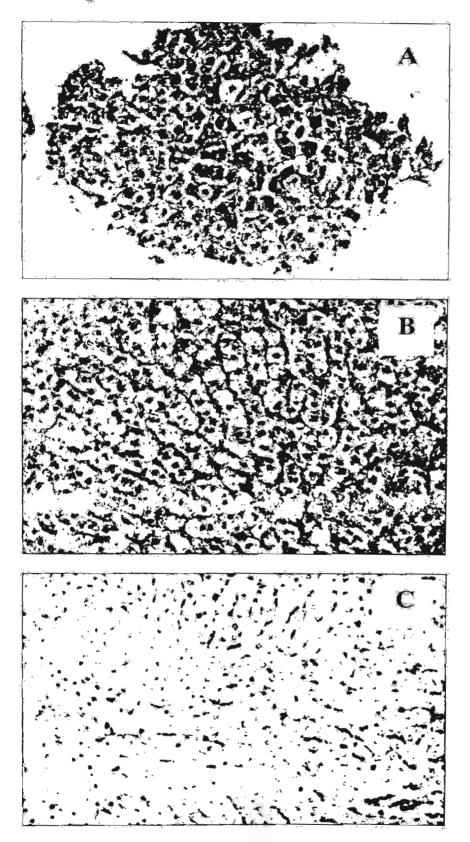



Figure 4. Liver section from cows with mild (A), moderate (B), and severe (C) tany liver at 2 n/k before parturition.

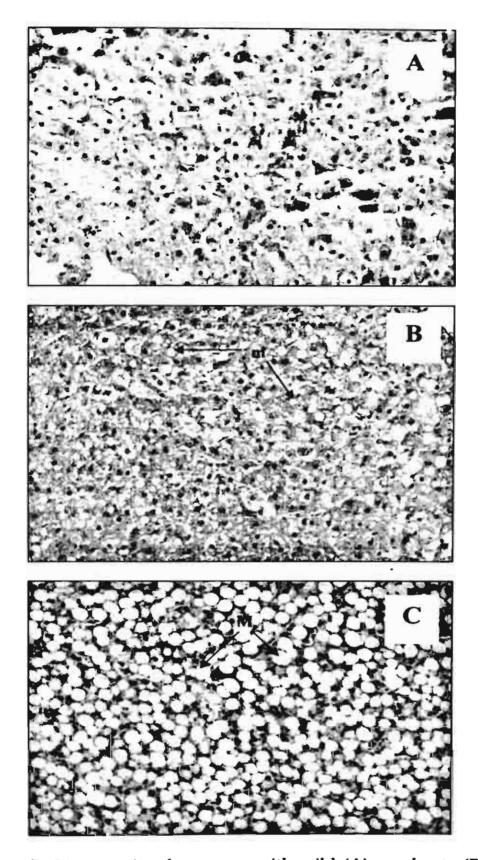



Figure 5. Liver section from cows with mild (A), moderate (B), and severe (C) fatty liver at 2 wk after parturition. Fat macrovacuoles (M) are prominent in severe fatty liver cow and fat microvacuoles (m) are prominent in moderate fatty liver cow.

#### **ACKNOWLEDGMENTS**

The authors thank the Thai Research Fund for the financial support in this research. Mr. Manoch Nanuam, Dr. Anurojana Panyawan, Dr. V-ris Wuttironnarit, and Dr. Korrawich Anukoolwuttipong are also thanked for their supports of sampling at the farm. They also thank the animal caretakers at Pakthongchai Dairy Farm, CP-group.

#### REFERENCES

- Armstrong, D. V., S. K. Denise, F. J. Delfino, E. J. Hayes, P. J. Crundy, S. Montgomery and A. Correa. 1993. Comparing three lactational performances of Holstein cows in hot weather. J. Dairy Sci. 64:844-849.
- Armstrong, D. V., F. Wiersma, T. J. Fuhrmann, J. M. Tappan, and S. M. Cramer. 1985. Effect of evaporating cooling under a corral shade on reproduction and milk production in a hot arid climate. J. Dairy Sci. 68(Suppl. 1):167. (Abstr.)
- Bruss, M. L. 1993. Metabolic fatty liver of ruminants. Pages 421-422 in Advances in Veterinary Science and Comparative Medicine. C. E. Cornelius, ed. Academic Press Inc., San Diego.
- Cebra, C. K., F. B. Garry, D. M. Getzy, and M. J. Fettman. 1997. Hepatic lipidosis in anorectic, lactating Holstein cattle: A retrospective study of serum biochemical abnormalities. J. Vet. Int. Med. 11:231-237.
- Gaal, T., I. M. Reid, R. A. Collins, C. J. Roberts, and B. V. Pike. 1983. Comparison of biochemical and histological methods of estimating fat content of liver of dairy cows. Res. Vet. Sci. 34:245-248.
- Gerloff, B. J., T. H. Herdt, and R. S. Emery. 1986. Relationship of hepatic lipidosis to health and performance in dairy cattle. J. Am. Vet. Med. Assoc. 188:845-850.
- Preece, A.H.T. 1972. A manual for histologic technicians. 3rd ed. Churchill Livingstone, London, United Kingdom.
- Rukkwamsuk, T., T. Wensing, and M.J.H. Geelen. 1998. Effect of overfeeding during the dry period on regulation of adipose tissue metabolism in dairy cows during the periparturient period. J. Dairy Sci. 81:2904-2911.
- Rukkwamsuk, T., T.A.M. Kruip, G. A. Meijer, and T. Wensing. 1999a. Hepatic fatty acid composition in periparturient dairy cows with fatty liver induced by intake of a high energy diet in the dry period. J. Dairy Sci. 82:280-287.
- Rukkwamsuk, T., T. Wensing, and M.J.H. Geelen. 1999b. Effect of fatty liver on hepatic gluconeogenesis in periparturient dairy cows. J. Dairy Sci. 82:500-505.
- Rukkwamsuk, T., T. Wensing, and M.J.H. Geelen. 1999c. Effect of overfeeding during the dry period on the rate of esterification in adipose tissue of dairy cows during the periparturient period. J. Dairy Sci. 82:1164-1169.

- Rukkwamsuk, T., T. Wensing, and H. J. Breukink. 1999d. Clinical-biochemical observations in dairy cows experimentally induced with fatty liver. Pages 339-343 in Proc. 25th Ann. Conf. Thai Vet. Med. Assoc., Bangkok, Thailand.
- Rukkwamsuk, T. and T. Wensing. 2002. Delayed hepatic bromsulphthalein clearance in postparturient dairy cows with increased triacylglycerol accumulation in the liver. Page 353-359. in Proc. 40th Kasetsart Univ. Ann. Conf., Bangkok, Thailand.
- SPSS Advance Statistic \*\* Version 6.1. 1994. SPSS Inc., Chicago. IL.
- Van den Top, A. M., T. Wensing, M.J.H. Geelen, G. H. Wentink, A. T. van't Klooster, and A. C. Beynen. 1995. Time trends of plasma lipids and hepatic triacylglycerol synthesizing enzymes during postpartum fatty liver development in dairy cows with unlimited access to feed during the dry period. J. Dairy Sci. 78:2208-2220.
- West, H. J. 1990. Effect on liver function of acetonemia and the fat cow syndrome in cattle. Res. Vet. Sci. 48:221-227.
- Wolfenson, D., Z. Roth, and R. Meidan. 2000. Impaired reproduction in heat-stressed cattle: basic and applied aspects. Anim. Reprod. Sci. 60-61:535-547.