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Densification Behaviour of Barium Titanate Ceramics using

Barium Titanate Sol as a Binder

S.TANGWIWAT' AND S.J. MILNE®
"Metallurgy and Materials Science Research Institute, Chulalongkom University, Bangkok
10300, Thailand
’Department of Materials, University of Leeds, Leeds, LS2 8JT, UK

Abstract

A barium titanate (BT) precursor sol was prepared by a diol sol-gel route and used as a
binder for assisting the uniaxial die pressing of commercial BT powders. The densification
characteristics of powder compacts containing the BT sol- gel were compared to samples prepared
using Polyvinyl butyral, PVB as a conventional organic binder. A reduced shrinkage, but slightiy
higher final density were found in samples with the sol-gel binder. For example a sample with sol-ge!
binder pressed at 100 MPa gives alpha value of -391.8x1 0'(51and density of 95% theoretical density
after sintering at 1300°C for 2 h whereas a sample with PVEs binder gives alpha value of
-417.5)(10‘0.'and density of 93% theoretical density. The most noticeable difference was observed

al low sintering temperatures, with a 5 % higher density occurring in comparative samples sintered at
1150 Cfor 2 h.

Keywords ; Barium titanate, sol-gel, densification, therral expansion, binder

1. Introduction

Barium titanate, BaTiO,, is historically one of the most important ferroelectric ceramics
materials, its main use in modern applications is as a base composition for discrete and multilayer
capacitors due to its high dielectric constant [1). The quality of the barium titanate starting powders
used in ceramic fabrication is a key factor in determining the microstructure and properties of the
final ceramic. Although on cost grounds the conventional mixed oxide route is generally the preferred
commercial means of producing the starting powder {2-3), the drive to improve performance, and to
miniaturise mutilayer capacitors has stimulated demand for finer and purer powders. Consequently
alternative technigiues have been introduced, some of which are used commercially to prepare a
finer barium titanate powder of improved stoichiometry; these include oxalate coprecipitation [4].
hydrothermal synthesis [5-7] sol-gel. micro emulsion [8); chemical complexation [9]; recently another
approach using mechanical activation [10] has also been reported. Each of these techniques has

specific advantages and disadvantages; some techniques need specialist equipment such as



hydrothermal processing. Solgel starting materials are expensive, and have found more
widespread use in producing special glasses, thin films and fibres of barium titanate and related
compositions[11].

Another interesting application of titanate sol-gel technology is its use as a filler material in
the production of thick films by hybrid particle sol-gel processing [12]. The aim being to use the sol-
gel phase to produce an ultafine particie binder to produce layers, 10's of microns in thickness at low
temperatures ~ 600-700 °C [12]). In a related approach we have investigated the use of lead
zirconate titanate, PZT, sols as a binder for bulk PZT ceramic fabrication by uniaxial die pressing of
mixed oxide powders [13]. We found that PZT sol could act as an effective binder and sintering aid
[13-14]. in the present paper we assess the merits of this approach as applied to barium titanate
bulk ceramics.

Barium titanate sols may be prepared from several different types and combinations of
starting reagents. Generally a short chain titanium alkoxide is employed together with:. barium metal
[15). group 2 - barium alkoxide [2,16-19]. group 3 : barium acetate [20-22], group 4 : barium
hydroxide [23-24], group 5 : banum methoxyethanol [25], group 6 : barium chloride [26] and group 7
: barium nitrate [26).

In the present study with its aim of investigating the sintering and densification behaviour of
barium titanate ceramics using a barium titanate sol as a binder, another sol-gel system was
prepared using a diol solvent and gel forming agent, together with barium acetate and titanium
isopropoxide chemically modified with pentanedionate or acac groups; the latter promoted improved
stability toward moisture and simplified the processing route. It was known that for PZT, such a diol

route was capable of producing stable PZT sols over a range of viscosities making it potentially

suitable as a pressing aid and binder in ceramic fabrication.

2. Experimental

Barium titanate (BT) sot preparation was performed in two reflux systems and in air
atmosphere. Barium acetate {(Aldrich, purity > 99%) was first dissolved in acetic acid (J.T Baker,
purity > 99.9 %) and heated under reflux condition for 90 minutes. In the other reflux flask, titanium
diisopropoxide bisacetyl acetonate, abbreviated TIAA, 75 wt% in isopropanol (Aldrich) was mixed
with 1,3 propanediol (Aldrich, purity > 98%), in a 1:1 molar ratio of titanium to diot then maintained
under reflux for 60 minutes. Afterwards, distillation was carried out, with a temperature at the top of
the reflux condenser of about 80 °C, Finally the barium acetate solution was added to the TIAA
solution to give a 1:1 molar ratio of Ba to Ti. This mixture was maintained under reflux for 60 minutes.

To determine the concentration of the stock sol in terms of its yiek of BaTiO,, ~5 g of so!

was placed into an alumina crucible. The sol was dried in air on a hotplate around 70°C until the sol



becams a solld dried gel. The dried gel was ground into a powder, and kept in an oven at 120 °c
for 12 hours. After drying in lhe oven, it was weighed accurately, and heated in a box furnace at 800

°C for 1 hour. The barium titanate product was then mjbhed. and the concentration of the starting
sol was calculated in terms of BT, giving a value of 22.5 wt%.

Thermal decomposition characteristics of barium titanate gel and poly{vinyl butyral-co-vinyl
alcohol-co-vinyl acetate 80 wid% vinyl butyral or PVB (Aldrich) were observed by using a
thermogravimetric analysis (TGA) technique. The BT dried gel was prepared as above at 120 °c
prior to the analysis. Thermal decomposition of the gel powders from 0 °C o 900 °C was followed
using a Netzsch STA 409C instrument; the heating rate was 5 OCimin with a gas flow rate of £2
mVmin of an air / nitrogen (50/50) atmosphere.

in the ceramic forming step. employing the sol-gel component as a binder the barium
titanate sol was dissolved in a mixed solvent of acetic acid and ethanol ( volume acetic acid : ethanc!
= 1:4) before mixing with a commercial BT powder (Aldrich, purity > 99%, < 3 Jlm). The sols were
added in varying amounts to give a gel binder content after drying at 120 °C. equivalent to 5 wt%. &
wi%. 7 wi% and 8 wi% of dried gel. The mixtures were then dried on a hotplate-stirrer at 100 °C.
The dried mixtures were ground in an alumina mortar and pestle and sieved through a 300 micrcn
polyester sieve. The dried and ground mixtures were compacted by uniaxial die pressing at 1C2
MPa.150 MPa and 200 MPa in a 13 x32.5 mm rectangular s:eel die; the compacted bodies were 3
mm in thickness.

For ceramic forming using a conventional binder, polyvinyl butyral, PVB was first dissolve 3
in warm ethano! to give a solution with a PVB concentration of 3 wt3%. Then PBV solution was mixed
with a sample of the BT powder and the mixtures were dried on a hotplate and then in an oven at 120
°C following the same method as above.

' For both systems, binder burmout from the compacted samples was carried out with a
heating ramp rate of 3 °C/min , and samples were held at 700°C for 2 hours. The samples wera
then fired in a fumace at 1100°C, 1150°C, 1200°C, 1250°C, 1275°C and 1300 °C for 2 hours and
1150°C for 2,10 and 15 hours with heating ramp rate of 5°C/min.

FTIR spectra were recorded in 4000-400 cm™ against a pure KBr disc, using an instrument
model Perkin Eimer 1765X.

Phase analysis of barium titanate powders from caicined gels, and sintered samples was

performed using a Philips PW3710 (CuKe 0.02° 20 sec™). The bulk density of green bodies sintered
samples was measured using a geometric method.



BT powder from dried gel heated at 1100°C were characterised by scanning electron
microscopy (SEM)using a Philips XL 30C P. Microstructural features in polished and chemically
etched sintered samples were also examined using scanning electron microscopy.

Densification was monitered in separate experiments using sintering dilatometry (SETARAM
DHT2400K ) up to 1400°C with a heating rate of 10°C/min. The sample size for dilatometer
measurement must not larger than 5x6x10 mm. Therefore the samples to measure shrinkage after
sintering is prepared by cutting from the samples which were compacted at various pressures i.e.

100, 150 and 200 MPa in 13x32.5 mm rectanguiar steel die and the compacted bodies were 6 mm in
thickness.

3. Result and discussion

From the TGA analysis for PVB, shown in Fig 1. decomposition commenced at~ 200 C with
100% wt loss at 550 °C. In the case of TGA analysis for the dried gel, shown in Fig 2, organic
compounds present in the gel started to decompose from 80 °C. Several distinct decomposition
steps followed which were completed at 700 ©C, giving a total weight loss of 40 %. For both PVB and
BT gel the major weight losses occurred at similar temperatures, around 300 °C. Based on the TGA
data, the same binder bumout programme was used for both types of samples, with a maximum
bumout temperature of 700 °C, held for 2 h.

Other workers, (20.21) used barium acetate and titanium isopropoxide as starting materials
to prepare barium titanate sols, for powder and thick film applications. Their TGA curves showed that
the final temperature to decompose organic matter in dried gel was around 700°C. and their total
weight loss was about 38%, i.e. similar to the values for the gels used in this work. Reported TGA
data for barium titanate sols prepared from Ba(NO,}, and butyl titanate also showed that final
decomposition was completed at about 700°C (27).

From XRD powder diffraction, after calcining the dried BT gel at 800°C for 1 hour, a small
amount of barium orthotitanate (Ba,TiO,) was present together with the principal, and desired
perovskite BaTiO, phase. There was no evidence from XRD of any carbonate phases. At the higher

caicination temperature of 900°C. the corresponding X-ray diffraction pattern showed that single-
phase (to XRD) BT powders was obtained.

Although no crystalline carbonate phases were detected by XRD the possibility of small
quantities of a possibly poory crystallised barium carbonate phase were investigated by means of
FTIR on powders of dried gel formed by calcination at 800 ©. 900 ©, 1000 °C. or 1100 °C. Spectra
from the 800°C-1000 °C products clearly indicated the presence of CO,” . with a characteristic
absorption at 1433 cm”, Fig 4. The intensity of the CO,” peak decreased in the 900 °C and 1000 °C



samples. with little or no evidence of carbonate in the 1100 °c spectrum, Fig 4. The prescence of a
carbonate absorption up to 1000 °C Is consistent with a trace of a residual carbonate or oxy
carbonate phase.

From the combined XRD and IR results besides BaTiO, there are other two phases i.e.
BaCO, and Ba,TiO, present at intermediate temperatures. Therefore it could be indicated that
Ba,TiO, phase which was found after BT dried gel was calcined at 800°C could be from the reaction
of TiO, and BaCO,. Finally the Ba,TiO, could react with TiO, to form BaTiO, [3).

The dilatotmetric curves and their derivatives are shown in Fig 5 for sampies with different
types of binders i.e. 3 wt % PVB (BT-PVB) and 5 wt% gel (BT-Gel} when the sampies were pressed
at various pressures in Fig 5. Preliminary studies showed that 3wt% was the minimum amount of PVB
binder required, if less than 3 wt% was used the samples were not strong enough and compacted
pellets often broke. In the case of the sol binder, the minimum amount required to impart mechanical
integrity to the compacts was 5 wt® of sol. Therefore the minimum amount of PVB . as fixed at 3 wi%
and sol at 5 wt % for all experiments.

The curve shows that the temperature of maximum sintering rate (denvative peak) of all
samples are at the ranges of 1300-1350°C. The alpha (linear expansion coefficient increased when
BT-PVB samples and BT-Gel samples were pressed at higher pressure. Both types of samples
pressed at 200 MPa showed the smallest alpha as in Table 1. The higher pressure could give higher
compaction in green samples. Consequently the shrinkage of samples pressed at 200 MPa became
smallest. The alpha of all BT-Gel samples is less than the BT-PVB samples when each type of
samples were pressed at the same pressure. For example at 200 MPa, the alpha of BT-PVB sample
is ~369.1x10" C when the alpha of BT-Gel sample is —357.8x10°C. The possible reason is that 60
wt% of the dried gel in the samples is retained as an inorganic phase, since TGA results showed only
a 40 % weight loss from a ‘pure’ dried gel. Therefore the BT particles derived from the gel would
support the sample bodies. From TEM study in our previous work, we found that PZT gel could be in
between particles [14]). Comparing to sampies with PVB when PVB was decomposed the
precccupied PVB area would turn into holes. So the space for particles to move closer during
sintering would be bigger and the higher shrinkage would be noticed.

The densification behaviour of powders was further investigated by firing pellets under
varying process conditions. The first comparison of the effects of binders on sample densification
during sintering were obtained for sintering temperatures of 1100 °C,1150 °C.1200 °C. 1250 °c,

1275 °C, 1300 °C and 1350 °C at a dwell time of 2 h. Figure 6 illustrates the trend in sintered
density , calculated by geometric measurements, as a function of temperature for 3 wt % PVB and 5
wt % sol In the range 1100°C -1150°C, density of gel binder samples had a density of ~ 5% higher

than samples with PVB binder. For exampte after firing at 1150°C for 2 h. the BT samples



incorporating the PVB binder reached 69 % theoretical density whereas when the sol binder was

used this increase to 74% theoretical density. When both types of samples were sintered at 1200 °c
or higher, the samples with sol binder gave 1-2 % theoretical density higher than the density of
samples with PVB binder.,

The differential increase in  density at lower sintering temperatures for the sol binder is
further illustrated in Fig 7 which shows density data for a fixed sintering temperature, 1150 °C and
varying dwell times when samples were pressed at 100 MPa. In this case the density at 1150 °c
increased to 84 % theoretical density after 10 hours for the BT-sol sample, whilst BT-PVB sampies
were only 75% dense at this stage. When the samples were sintered for longer periods e.g. 15 hours
at 1150 °C, BT-PVB and BT-Sol showed slightly higher density than samples sintered for 10 hours.

The above results indicate that the BT-sol powders show better low temperature sintering
behaviour. It is probable that BT powder derived from gel sintered firstly at this step because the
powder from gel is smaller or higher reactive. The gel gave powders with primary particle size of <1
HLm as show in Fig 8.

To investigate the effect of pressing pressure, the samples were pressed at 100, 150 and
200 MPa. Fig 9 shows that at 200 MPa the samples gave the highesl si~:ered density indicating that
both binders were performing well and avoiding capping or other pressing defects at the higher
pressing pressure. The sintering dilatometry results also show the minimum linear contraction
coefficient, as anticipated, for compaction at 200 MPa. On the other hand the smallest shrinkage of
samples after firing is obtained when the powders were pressed at 200 MPa.,

To study the effect of varying the amount of sol on BT density , varying the amount of sol up
to 8 wt% gel equivalent was added to the BT starting powders. The experimental data for green
density is shown in Fig 10{a) ; sintered density values is presented in Fig 10{b) when the samples
were pressed at 200 MPa. it was found that as the weight fraction of BT gel increased, green density
decreased which is ~ 63% theoretical density for the 5 wt% gel to 60% density for a 8wt% gel, Fig

10(a) as shown in Fig 10a. There was, as expected. a corresponding trend in sintered density, from
96% for the 5 wi% sol to 93% for the 8 wi% sol. Fig 10(b). The decrease in green density for the BT
powder-sol compacts indicates that the increased amounts of gel are not simply occupying what
would ctherwise be voids between the starting BT particles, but instead the extra gel is forcing BT
particles apart and increasing the total volume of the compact. The decrease in sintered density for
higher gel contents is consistent with the trends in green density, but there may also be a
contribution to porosity from the difficulty in eliminating ge! organic decomposition vapours from the
inner portions of the compact leading to 'bloating’ and an increase in pore size after burmout. The

weight loss from green samples could be calculation from TGA results that it was 40 %wt loss from



gel as shown in Table 2. This information could support our statement that the higher amount of sol
the higher the organic content of the green compacts.

Figure 11 shows the microstructure of the BT sample containing 5 wt.% gel after sintering at
1300°C for 2 h and for a compact pressed at 200 MPa. The microstructure of the sample with 3 wt%
PVB which was prepared under the same condition as BT with gel is shown in Fig 12. Both of BT
with gel and BT with PVB showed a similar grain size. Therefore it could say that gel binder did not
affact on microstructure in terms of grain size where the big grain is around 5 Jim.

4.Conciusions

In the first step of this experiment, the characteristics of dried gel and powder from gel were
investigated. Organic matter of dried barium titanate gel was completely decomposed at 700°C. The
BT powder from gel formed single phase to XRD at 900°C, but IR spectrum showed that the CO,”
peak would disappear at 1100°C. Aipha values from dilatometric results showed that the shrinkage
of the BT ceramic with gel binder is less than the BT ceramics with PVB binder when those samples
were prepared the same pressure. The higher progressive density of BT ceramics with gel binder
was found at low sintering temperature, 1100°C -1150°C. The difference of density between both
types of samples were bigger when the samples were sintered for longer period of time. The

samples with 5 wit% gel could reach 95% theoretical density or higher when the samples were
sintered at 1300°C for 2 h.
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Figure 1. TGA curve for PVB.
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Figure 3. XRD pattern for BT powder from BT gel calcining at 800 °C and 900 °C
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Figure 4. FTIR spectrum of BT powder from BT gel after calcining at 800°C, 900°C,
1000°C and 1100°C.
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Table 1 Thermal expansion data of barium titanate ceramics

Sample Binder Pressure Alpha
(MPa)
1 3 wt% PVB 100 -417.5x10°C"
2 3 wt% PVB 150 -399.9x10°°C "
3 3 wi% PVB 200 -369.1x10°C""
4 5 wt% gel 100 -391.8x10°°C"* |
5 5 wt% gel 150 -389.3x10°C" |
6 5 wi% gel 200 -357.8x10°C"

Table 2 Weight loss of organic component from dried gel in green bodies

Sample Binder wt. loss from gel
(%)
1 5 wt% gel 2
2 6 wt%o gel 2.4
3 7 wi% gel 2.8
i 8 wt%o gel 3.2




