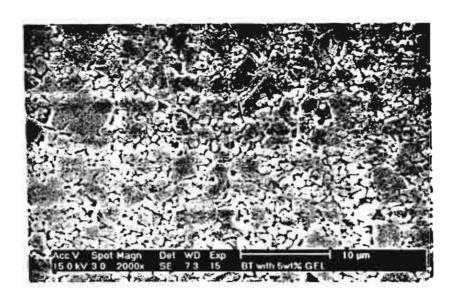


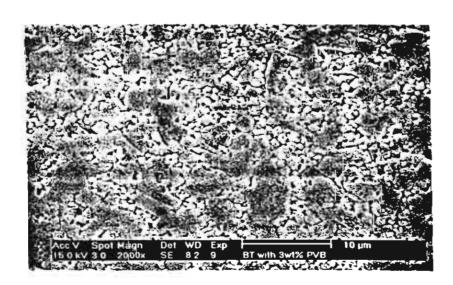

(a)



(b)


รูปที่ 3.16 กราฟแลดงผลของปริมาณโขลที่ใช้ต่อความหนาแน่นของขึ้นงาน : (a) ตัวอย่างก่อนเผาหลังการอัดที่ 200 MPa ; (b) หลังการเผาที่ 1300°C เป็นเวลา 2 ชั่วโมง

ตารางที่ 3.2 แสดงปริมาณสารประกอบอินทรีย์ในเจลแห้งที่สูญเสียไปจากขึ้นงานหลังการเผา


|   | ตัวอย่าง | ตัวเชื่อม | ร้อยละของน้ำหนักของสาร<br>อินทรีย์ที่สูญเสียจากเจล |
|---|----------|-----------|----------------------------------------------------|
| Ī | 1        | 5 wt% gel | 2                                                  |
|   | 2        | 6 wt% gel | 2.4                                                |
|   | 3        | 7 wt% gel | 2.8                                                |
| 1 | 4        | 8 wt% gel | 3.2                                                |

## 3.6 การศึกษาลักษณะโครงสร้างจุลภาคของขึ้นงานหลังการเผา

รูปที่ 3.17 แสดงโครงสร้างจุลภาคของตัวอย่างที่ใช้เจลร้อยละ 5 อัดที่ 200 MPa และเผาที่ 1300°C เป็นเวลา 2 ชั่วโมง และรูปที่ 3.18 แลดงโครงสร้างจุลภาคของตัวอย่างที่ใช้ PVB ร้อยละ 3 โดยตัวอย่างเตรียมที่ สภาวะเดียวกับตัวอย่างที่ใช้เจล โครงสร้างจุลภาคของตัวอย่างทั้งสองขนิดมีลักษณะคล้ายคลึงกัน ดังนั้นจึง กล่าวได้ว่าโชลไม่มีผลกระทบต่อโครงสร้างจุลภาคในแง่ของขนาดเกรน ซึ่งจากโครงสร้างจุลภาคพบว่าเกรนที่มี ขนาดใหญ่มีขนาดประมาณ 5 ไมครอน



รูปที่ 3.17 โครงสร้างจุลภาคของตัวอย่างแบเรียมไททาเนตซึ่งใช้โซลเป็นตัวเชื่อม (ร้อยละ 5 โดยน้ำหนักของ แบเรียมไททาเนตเจล) เมื่อตัวอย่างอัดที่ 200 MPa และเผาที่ 1300°C เป็นเวลา 2 ชั่วโมง ความหนาแน่นของขึ้น งานเท่ากับ 96 %



รูปที่ 3.18 โครงสร้างจุลภาคของตัวอย่างแบเรียมไททาเนตซึ่งใช้ PVB เป็นตัวเชื่อม (ร้อยละ 3 โดยน้ำหนัก) เมื่อ ตัวอย่างอัดที่ 200 MPa และเผาที่ 1300 C เป็นเวลา 2 ซึ่งโมง ความหนาแน้นของขึ้นงานเท่ากับ 9รุ่หัก 3 การครั้ง 14 อาการ เคลื่าถึง ทางเวลา 2 ซึ่ง 14 อาการ เคลื่าถึง ทางเวลา 2 ซึ่ง เลือนการ เคลื่าถึง ทางเวลา แน้นของขึ้นงานเท่ากับ 9รุ่หัก 3 การคลื่าถึง เพราะสาเคสนใน

Hugh the inquiries 10400 i 29840455 the area 29840476 inme page: http://www.arfarish Remail: gati-infederalanish

# บทที่ 4 บทวิจารณ์

ในขั้นต้นที่มีการผสมตัวเชื่อมกับผงแบเรียมไททาเนตพบว่าแบเรียมไททาเนตโซลละลายในตัวทำ ละลายได้ง่ายที่อุณหภูมิห้องเนื่องจากโซลเป็นของเหลว ในขณะที่ PVB ซึ่งเป็นของแข็งต้องให้ความร้อนเพื่อการ ละลายในตัวทำละลายอย่างสมบูรณ์

จากผลการทดลองในแง่บทบาทของแบเรียมไททาเนตโซลที่ทำหน้าที่เป็นตัวเชื่อมพบว่าแบเรียมไททา เนตโซลทำให้ผงแบเรียมไททาเนตยึดจับกันได้เช่นเดียวกับ PVB โดยสังเกตจากชิ้นงานที่ได้หลังการอัดชิ้นรูปว่า ขึ้นงานนั้นอยู่ตัว ไม่แตกหักและมีความแข็งแรงพอที่จะนำไปทำการทดลองในขั้นต่อไปคือ การวัดขนาดของขึ้น งานเพื่อหาความหนาแน่นก่อนการเผาและการนำไปเผาต่อ นอกจากนี้ขึ้นงานหลังการเผาแลดงให้เห็นว่า ตัว อย่างซึ่งใช้โซลเป็นตัวเชื่อมมีค่าความหนาแน่นสูงกว่า และมีการหดตัวของขึ้นงานน้อยกว่า สิ่งที่สังเกตได้อีก ประการหนึ่งคือตัวอย่างที่ใช้โซลจะแสดงความไวในการซินเตอร์ริงที่อุณหภูมิต่ำได้ดีกว่าตัวอย่างที่ใช้ PVB

เมื่อเปรียบเทียบงานวิจัยในครั้งนี้กับการวิจัยที่ผู้วิจัยได้เคยทำมาในอดีตพบว่าแม้วัสดุที่ใช้จะเปลี่ยนไป แต่การใช้โซลเป็นเป็นตัวเชื่อมยังคงให้ผลดีในแง่ความหนาแน่นของขึ้นงานซึ่งสูงกว่าการใช้พอลิเมอร์เป็นตัวเชื่อม โดยเฉพาะอย่างยิ่งกับอุณหภูมิการเผาที่ต่ำ ซึ่งถือว่าเป็นสิ่งที่ต้องการของทั้งเลดเซอร์โคเนตไททาเนต (PZT) และ แบเรียมไททาเนต (BT) เนื่องจากสารตะกั่วใน PZT สามารถระเหิดได้ที่อุณหภูมิสูง ทำให้องค์ประกอบของตะกั่ว ในโครงสร้างลดลง ส่วน BT มักเกิดการโตของเกรนเมื่อใช้อุณหภูมิในการเผาสูง ซึ่งทั้งการสูญเสียตะกั่วและการ โตของเกรนมีผลต่อค่าไฟฟ้า ดังการพยายามลดอุณหภูมิในการเผาจึงเป็นเป้าหมายของสารประกอบทั้งสองขนิด และเมื่อพิจารณาถึงสารประกอบขนิดอื่นสำหรับการเตรียมเขรามิก การเผาผลิตภัณฑ์ได้ที่อุณหภูมิต่ำย่อมเป็น ผลดีในแง่ของการลดการใช้พลังงาน

ดังที่กล่าวมาแล้วในบทนำว่าการเตรียมผงด้วยวิธีการทางเคมีให้ผลที่ดีกว่าการเตรียมผงด้วยวิธีการ แบบดั้งเดิม ทั้งในแง่ของความบริสุทธิ์และขนาดอนุภาค แต่ข้อเสียเปรียบของวิธีการทางเคมีคือสารตั้งต้นมีราคา แพง ถ้าต้องการเตรียมผงในให้มีความบริสุทธิ์ลูงและมีขนาดเล็กจะต้องเสียค่าใช้จ่ายมาก ดังนั้นการใช้โชลใน การทดลองนี้จึงให้ประโยชน์หลักในแง่ของการใช้เป็นตัวเชื่อม และผงพลอยได้คือการเพิ่มความหนาแน่นของขึ้น งานโดยไม่ต้องใช้ผงที่เตรียมจากวิธีการทางเคมีทั้งหมดซึ่งเป็นการประหยัดค่าใช้จ่าย เนื่องจากงานวิจัยใน ลักษณะนี้ยังอยู่ในขั้นเริ่มต้น และไม่มีการวิจัยกว้างขวางนัก ดังนั้นการศึกษาในแง่มุมต่างๆตามปัจจัยที่เกี่ยวข้อง ยังเป็นเรื่องที่น่าสนใจในการทดลองต่อไป ในอนาคตผู้วิจัยจะดำเนินการทดลองเรื่องความสัมพันธ์ระหว่างการ ผลมผงและโชลในแง่มุมอื่นเพื่อให้เร้าใจธรรมชาติของสารผสมทั้งสองชนิดดังนี้

- 1. การทดลองใช้โซลจากสารตั้งต้นต่างชนิดกัน ดังจะเห็นได้จากบทนำว่าสารตั้งต้นที่ใช้ในการเตรียม แบเรียมไททาเนตโซลมีได้ถึง 7 ชนิด ซึ่งคาดว่าจะให้ผลต่างกันเนื่องจากระบบของตัวทำละลายต่างกัน ซึ่งจะมี ผลต่อการระเหยตัวทำละลายออกจากของผสม
- 2. ศึกษาถึงผลของขนาดอนุภาคผงที่ใช้ต่อการใช้โซลเป็นตัวเชื่อม ตั้งแต่ผงที่มีขนาดละเอียดจนถึงผงที่ มีขนาดใหญ่
- 3. ทำการทดลองลักษณะนี้กับการขึ้นรูปแบบอื่นๆ เช่น cold isostatic press หรือ hot press เนื่องจาก วิธีการดังกล่าวมีระบบการอัดที่ดีกว่าการขึ้นรูปแบบทิศทางเดียวดังนั้นจะทำให้ขึ้นงานเผาได้ที่อุณหภูมิต่ำลง

- 4. การใช้หลักการทางเทอร์โมไดนามิกมาอธิบายการซินเตอร์ริงของของผลมระหว่างผงกับโซล ผลที่ คาดว่าจะได้รับคือทราบถึงสัดส่วนที่เหมาะในการใช้ผงกับโซล ซึ่งผลดังกล่าวจะนำไปสู่การเตรียมขึ้นงานเซรามิก ได้ทั้งแบบที่เป็น bulk ceramic และ thick film
- 5. ทดลองใช้เทคนิคนี้กับผงชนิดอื่นรวมถึงผงโลหะ แต่ศึกษาเปรียบเทียบข้อดีในแง่มุมอื่น เช่น เมื่อ ทดลองกับผงเหล็กต้องศึกษาถึงการสึกกร่อนของแบบที่ใช้ในการอัดผงโลหะเนื่องจากปัจจุบันอุตสาหกรรมโลหะ ผงจำเป็นต้องใช้สารหล่อลื่นเพื่อยึดอายุของแบบระหว่างการอัดขึ้นงาน ดังนั้นการใช้โชลอาจให้ผลในการยึดอายุ แบบได้นานกว่า

ท้ายที่สุดการเตรียมขึ้นงานเซรามิกหรือโลหะจากผงในยุคต่อไปอาจไม่ต้องใช้พอลิเมอร์เป็นตัวเชื่อมแต่ จะใช้โซลแทนทั้งหมดเพื่อให้ได้ขึ้นงานที่ดีด้วยวิธีการที่มีราคาที่ไม่แพง

### เอกสารอ้างอิง

- G.H.Haertling, Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc. 82 (4) 797-818 (1999).
- H. Shimooka and M. Kuwabara, Preparation of dense BaTiO<sub>3</sub> ceramics from sol-gel-derived monolithic gels, J. Am. Ceram. Soc. 78 (10) 2849-52 (1995).
- D.F.K. Hennings, B.S. Schreinemacher, and H. Schreinemacher, Solid-state preparation of BaTiO<sub>3</sub>-based dielectrics using ultrafine raw materials, J. Am. Ceram. Soc. 84 (12) 2777-82 (2001).
- R. Ueyama, M. Harada, T. Ueyama, T. Yamamoto, T. Shiosaki, K. Kuribayashi, K. Koumoto and W. Son Seo, Preparation of BaTiO<sub>3</sub> ultrafine paricles by micro-emulsion charring method, J. Mat. Sci.: Mat. In Elec. 11 139-143 (2000).
- P. Pinceloup, C. Courtois, A. Leriche and B. Thierry, Hydrothermal sythesis of nanometer-sized barium titanate powders: control of barium-titanate ratio, sintering, and dielectric properties, J. Am. Ceram. Soc. 82 (11) 3049-56 (1999).
- A.T. Chien, J.S. Speck, F.F. Lange, A.C. Daykin and C. G. Levi, Low temperature/ low pressure hydrothermal synthesis of barium titanate: Powder and heteroepitaxial thin films, J. Mater. Res. 10 (7) 1784-1789 (1995).
- E.B. Slamovich and I. A. Aksay, Structure evolution in hydrothermally processed (<100°C)</li>
   BaTiO<sub>3</sub> films, J. Am. Ceram. Soc. 79 (11) 239-47 (1996).
- 8. J. Xue, J. Wang and D. Wan, Nanosized barium titanate powder by mechanical activation, J. Am. Ceram. Soc. 83 (1) 232-34 (2000).
- R.P.S.M. Lobo, N.D.S. Mohallem, and R.L. Moreira, Grain size effects on diffuse phase transition of sol-gel prepared barium titanate ceramics, J. Am. Ceram. Soc. 78 (5) 1343-49 (1995).
- B. Kindl, D.J. Carlsson, Y. Deslandes and J. M. A. Hoddenbagh, Alumina hydroxide sols as processing aids for alumina ceramics. J. Can. Ceram. Soc. 60 [2]. 53 – 58 (1991).
- C.S. Kumar, U.S. Hareesh, A.D. Damodaran and K.G. K. Warrier, Monohydroxy aluminium oxide (Boehmite, AlOOH) as a reactive binder for extrusion of alumina ceramics. J. Euro. Ceram. Soc. 17 1167 – 1172 (1997).
- T. E. Petroff, S. A. M. Hesp and M. Sayer, Zirconia hydrogel casting of PZT ceramics. Ceram.
   Tran.: Grain Boundaries and Interfacial Phenomena in Electronic Ceramics, USA: The American Ceramic Society, 41 337 344 (1994).
- A. P. Bromley, Microstructural Studies in the Alumina Zirconia System, PhD thesis, Department of Materials, University of Leeds (1992).
- Ch. Wang, Processing of Coated Silicon Nitride Powders, PhD thesis, Department of Materials, University of Leeds, (1993).

- S. Tangwiwat and S.J. Milne, A sol-gel precursor as a powder binder for PZT fabrication, J. Sol-Gel Sci. Tec. 16, 151-157 (1999).
- K.A. Vorotilov, E.V. Orlova and V.I. Petrovsky, BaTiO<sub>3</sub> films on silicon wafers from metal alkoxides, Ferroelectrics 123 261-271 (1991).
- H. Matsuda, N. Kobayashi, T. Kobayashi, K. Miyazawa and M. Kuwabara, Room-temperature synthesis of crystalline barium titanate thin films by high-concentration sol-gel method, J. Non-Cryst. Solids 271 162-166 (2000).
- H. Shimooka, K-I. Yamada, S. Takahashi and M. Kuwabara, Preparation of Transparent, Partially-Crystallized BaTiO<sub>3</sub> monolithic xerogels by sol-gel processing, J. Sol-Gel Sci. Tec. 13 873-876 (1998).
- Y.Yamashita, N. Kurata and M. Kuwabara, TEM observation of barium titanate thin films consisting of nano-sized single crystals prepared by sol-gel processing, Solid State Pheno, 78-79 387-394 (2001).
- T. Kobayashi, H. Matsuda and M. Kuwabara, Shift of optical absorption edge in sol-gel derived transparent BaTiO<sub>3</sub> gels during aging, J. Sol-Gel Sci. Tec. 16 165-171 (1999).
- M.C. Cheung, H.L.W. Chan, Q.F. Zhou and C.L. Choy, Characterization of barium titanate ceramic / ceramic nanocomposite films prepared by a sol-gel process, Nano-Struc. Mat. 11 (7) 837-844 (1999).
- K.M.S. Khalil, Low temperature evolution of crystalline BaTiO<sub>3</sub> from alkali-metal free precursor using sol-gel process, Mat. Res. Innovat. 2 256-262 (1999).
- J-D. Tsay and T-T. Fang, Effects of temperature and atmosphere on the formation mechanism of barium titanate using the citrate process, J. Am. Ceram. Soc. 79 (6) 1693-96 (1996).
- N.V. Golubko, M.I.Yanovskaya, L.A. Golubko, E.P. Kovsman, M.B. Listoshina and B.A. Rotenberg, Preparation of barium titanate and related materials by the alkoxide-hydroxide route, J. Sol-Gel Sci. Tec. 20 135-143 (2001).
- 25 M.N. Kamalasanan, N. D. Kumar and S. Chandra, Structural and microstructural evolution of barium titanate thin films deposited by the sol-gel process, J. Appl. Phys. 76 (8) 4603-09 (1994).
- 26. M. Kuwabara, S. Takahashi and T. Kuroda, Preparation of ferroelectric BaTiO<sub>3</sub> thin films on polycrystalline BaPbO<sub>3</sub> substrates by sol-gel processing and their electrical properties, Appl. Phys. Lett. 62 (25) 3372-74 (1993).
- M. Chatterjee, M.K. Naskar and D. Ganguli, Sol-emulsion-gel synthesis of shapes powders in the system BaO-TiO<sub>2</sub>, J. Sol-Gel. Sci. Tec. 16 143-149 (1999).
- P.D. Godbole, S.E. Deshpande, and S.K. Date, Sol-gel synthesis of ultrafine barium titanate using butyl titanate monomer and barium nitrate and its characterization, Ferroelectrics. 102 91-97 (1990).

29. S. Tangwiwat, PhD Thesis. University of Leeds, UK, unpublished (2000).

## **Output**

- 1. บทความทางวิชาการสำหรับการเผยแพร่ 2 บทความ คือ
- 1.1 ชื่อเรื่อง Densification Behavior of Barium Titanate Ceramics using Barium Titanate Sol as a Binder วารสารที่จะตีพิมพ์คือ Journal of the European Ceramic Society (ร่างของบทความ แสดงในภาคผนวกซึ่งขณะนี้อยู่ระหว่างการแก้ไขครั้งที่ 1)
- 1.2 ชื่อเรื่อง Synthesis and Characterization of Barium Titanate Powder made from a Diol-Based Sol-Gel Route วารสารที่จะดีพิมพ์คือ Journal of Materials Science (อยู่ระหว่างการ เขียนบทความ)
- 2. การเผยแพร่ผลงานในที่ประชุมวิชาการ

ผู้วิจัยจะนำเสนอผลงานในที่ประชุมนานาชาติด้านโชลเจลในงาน XII International Workshop on Sol-Gel Science and Technology ซึ่งจะจัดขึ้นที่เมืองชิดนีย์ ประเทศขอส เตรเลีย ระหว่างวันที่ 24-29 สิงหาคม 2546 โดยผู้จัดกำหนดให้ส่งผลงานภายในเดือน พฤศจิกายน 2545 และจะแจ้งผลการตอบรับให้เข้าร่วมเสนอผลงานภายในวันที่ 30 เมษายน 2546 ผู้วิจัยจะชอการสนับสนุนค่าใช้จ่ายในการเสนอผลงานนี้จากจุฬาลงกรณ์มหาวิทยาลัย

ภาคผนวก

# Densification Behaviour of Barium Titanate Ceramics using Barium Titanate Sol as a Binder

S.TANGWIWAT1 AND S.J. MILNE2

<sup>1</sup>Metallurgy and Materials Science Research Institute, Chulalongkorn University, Bangkok 10300, Thailand

<sup>2</sup>Department of Materials, University of Leeds, Leeds, LS2 9JT, UK

#### **Abstract**

A barium titanate (BT) precursor sol was prepared by a diol sol-gel route and used as a binder for assisting the uniaxial die pressing of commercial BT powders. The densification characteristics of powder compacts containing the BT sol- gel were compared to samples prepared using Polyvinyl butyral, PVB as a conventional organic binder. A reduced shrinkage, but slightly higher final density were found in samples with the sol-gel binder. For example a sample with sol-gel binder pressed at 100 MPa gives alpha value of -391.8x10 <sup>6</sup>C and density of 95% theoretical density after sintering at 1300 °C for 2 h whereas a sample with PVb binder gives alpha value of -417.5X10 <sup>6</sup>C and density of 93% theoretical density. The most noticeable difference was observed at low sintering temperatures, with a 5 % higher density occurring in comparative samples sintered at 1150 C for 2 h.

Keywords: Barium titanate, sol-gel, densification, thermal expansion, binder

#### 1. Introduction

Barium titanate, BaTiO<sub>3</sub>, is historically one of the most important ferroelectric ceramics materials, its main use in modern applications is as a base composition for discrete and multilayer capacitors due to its high dielectric constant [1]. The quality of the barium titanate starting powders used in ceramic fabrication is a key factor in determining the microstructure and properties of the final ceramic. Although on cost grounds the conventional mixed oxide route is generally the preferred commercial means of producing the starting powder [2-3], the drive to improve performance, and to miniaturise mutilayer capacitors has stimulated demand for finer and purer powders. Consequently alternative techniques have been introduced, some of which are used commercially to prepare a finer barium titanate powder of improved stoichiometry; these include oxalate coprecipitation [4]. hydrothermal synthesis [5-7] sol-gel, micro emulsion [8]; chemical complexation [9]; recently another approach using mechanical activation [10] has also been reported. Each of these techniques has specific advantages and disadvantages; some techniques need specialist equipment such as

hydrothermal processing. Sol-gel starting materials are expensive, and have found more widespread use in producing special glasses, thin films and fibres of barium titanate and related compositions[11].

Another interesting application of titanate sol-gel technology is its use as a filler material in the production of thick films by hybrid particle sol-gel processing [12]. The aim being to use the sol-gel phase to produce an ultafine particle binder to produce layers, 10's of microns in thickness at low temperatures ~ 600-700 °C [12]. In a related approach we have investigated the use of lead zirconate titanate, PZT, sols as a binder for bulk PZT ceramic fabrication by uniaxial die pressing of mixed oxide powders [13]. We found that PZT sol could act as an effective binder and sintering aid [13-14]. In the present paper we assess the merits of this approach as applied to barium titanate bulk ceramics.

Barium titanate sols may be prepared from several different types and combinations of starting reagents. Generally a short chain titanium alkoxide is employed together with: barium metal [15], group 2: barium alkoxide [2,16-19], group 3: barium acetate [20-22], group 4: barium hydroxide [23-24], group 5: barium methoxyethanol [25], group 6: barium chloride [26] and group 7: barium nitrate [26].

In the present study with its aim of investigating the sintering and densification behaviour of barium titanate ceramics using a barium titanate sol as a binder, another sol-gel system was prepared using a diol solvent and gel forming agent, together with barium acetate and titanium isopropoxide chemically modified with pentanedionate or acac groups; the latter promoted improved stability toward moisture and simplified the processing route. It was known that for PZT, such a diol route was capable of producing stable PZT sols over a range of viscosities making it potentially suitable as a pressing aid and binder in ceramic fabrication.

#### 2. Experimental

Barium titanate (BT) sol preparation was performed in two reflux systems and in air atmosphere. Barium acetate (Aldrich, purity > 99%) was first dissolved in acetic acid (J.T Baker, purity > 99.9 %) and heated under reflux condition for 90 minutes. In the other reflux flask, titanium diisopropoxide bisacetyl acetonate, abbreviated TIAA, 75 wt% in isopropanol (Aldrich) was mixed with 1,3 propanediol (Aldrich, purity > 98%), in a 1:1 molar ratio of titanium to diol then maintained under reflux for 60 minutes. Afterwards, distillation was carried out, with a temperature at the top of the reflux condenser of about 80 °C. Finally the barium acetate solution was added to the TIAA solution to give a 1:1 molar ratio of Ba to Ti. This mixture was maintained under reflux for 60 minutes.

To determine the concentration of the stock sol in terms of its yield of BaTiO<sub>3</sub>, ~5 g of sol was placed into an alumina crucible. The sol was dried in air on a hotplate around 70°C until the sol

became a solld dried gel. The dried gel was ground into a powder, and kept in an oven at 120 °C for 12 hours. After drying in the oven, it was weighed accurately, and heated in a box furnace at 800 °C for 1 hour. The barium titanate product was then weighed, and the concentration of the starting sol was calculated in terms of BT, giving a value of 22.5 wt%.

Thermal decomposition characteristics of barium titanate gel and poly(vinyl butyral-co-vinyl alcohol-co-vinyl acetate 80 wt% vinyl butyral or PVB (Aldrich) were observed by using a thermogravimetric analysis (TGA) technique. The BT dried gel was prepared as above at 120 °C prior to the analysis. Thermal decomposition of the gel powders from 0 °C to 900 °C was followed using a Netzsch STA 409C instrument; the heating rate was 5 °C/min with a gas flow rate of 50 ml/min of an air / nitrogen (50/50) atmosphere.

In the ceramic forming step, employing the sol-gel component as a binder the barium titanate sol was dissolved in a mixed solvent of acetic acid and ethanol ( volume acetic acid : ethanol = 1:4) before mixing with a commercial BT powder (Aldrich, purity > 99%, < 3 μm). The sols were added in varying amounts to give a gel binder content after drying at 120 °C, equivalent to 5 wt%, 6 wt%, 7 wt% and 8 wt% of dried gel. The mixtures were then dried on a hotplate-stirrer at 100 °C. The dried mixtures were ground in an alumina mortar and pestle and sieved through a 300 micron polyester sieve. The dried and ground mixtures were compacted by uniaxial die pressing at 100 MPa,150 MPa and 200 MPa in a 13 x32.5 mm rectangular steel die; the compacted bodies were 5 mm in thickness.

For ceramic forming using a conventional binder, polyvinyl butyral, PVB was first dissolved in warm ethanol to give a solution with a PVB concentration of 3 wt%. Then PBV solution was mixed with a sample of the BT powder and the mixtures were dried on a hotplate and then in an oven at 120 °C following the same method as above.

For both systems, binder burnout from the compacted samples was carried out with a heating ramp rate of 3 °C/min, and samples were held at 700°C for 2 hours. The samples were then fired in a furnace at 1100°C, 1150°C, 1200°C, 1250°C. 1275°C and 1300 °C for 2 hours and 1150°C for 2,10 and 15 hours with heating ramp rate of 5°C/min.

FTIR spectra were recorded in 4000-400 cm<sup>-1</sup> against a pure KBr disc, using an instrument model Perkin Elmer 1765X.

Phase analysis of barium titanate powders from calcined gels, and sintered samples was performed using a Philips PW3710 ( $CuK_{cc}$  0.02°  $2\theta$  sec<sup>-1</sup>). The bulk density of green bodies sintered samples was measured using a geometric method.

BT powder from dried gel heated at 1100°C were characterised by scanning electron microscopy (SEM)using a Philips XL 30C P. Microstructural features in polished and chemically etched sintered samples were also examined using scanning electron microscopy.

Densification was monitered in separate experiments using sintering dilatometry (SETARAM DHT2400K) up to 1400°C with a heating rate of 10°C/min. The sample size for dilatometer measurement must not larger than 5x6x10 mm. Therefore the samples to measure shrinkage after sintering is prepared by cutting from the samples which were compacted at various pressures i.e. 100, 150 and 200 MPa in 13x32.5 mm rectangular steel die and the compacted bodies were 6 mm in thickness.

#### 3. Result and discussion

From the TGA analysis for PVB, shown in Fig 1, decomposition commenced at~ 200 C with 100% wt loss at 550 °C. In the case of TGA analysis for the dried gel, shown in Fig 2, organic compounds present in the gel started to decompose from 80 °C. Several distinct decomposition steps followed which were completed at 700 °C, giving a total weight loss of 40 %. For both PVB and BT gel the major weight losses occurred at similar temperatures, around 300 °C. Based on the TGA data, the same binder burnout programme was used for both types of samples, with a maximum burnout temperature of 700 °C, held for 2 h.

Other workers, (20,21) used barium acetate and titanium isopropoxide as starting materials to prepare barium titanate sols, for powder and thick film applications. Their TGA curves showed that the final temperature to decompose organic matter in dried get was around 700°C, and their total weight loss was about 38%, i.e. similar to the values for the gets used in this work. Reported TGA data for barium titanate sols prepared from Ba(NO<sub>3</sub>)<sub>2</sub> and butyl titanate also showed that final decomposition was completed at about 700°C (27).

From XRD powder diffraction, after calcining the dried BT gel at 800°C for 1 hour, a small amount of barium orthotitanate (Ba<sub>2</sub>TiO<sub>4</sub>) was present together with the principal, and desired perovskite BaTiO<sub>3</sub> phase. There was no evidence from XRD of any carbonate phases. At the higher calcination temperature of 900°C, the corresponding X-ray diffraction pattern showed that single-phase (to XRD) BT powders was obtained.

Although no crystalline carbonate phases were detected by XRD the possibility of small quantities of a possibly poory crystallised barium carbonate phase were investigated by means of FTIR on powders of dried gel formed by calcination at 800 °, 900 °, 1000 °C, or 1100 °C. Spectra from the 800 °C-1000 °C products clearly indicated the presence of CO<sub>3</sub><sup>2-</sup>, with a characteristic absorption at 1433 cm<sup>-1</sup>, Fig 4. The intensity of the CO<sub>3</sub><sup>2-</sup> peak decreased in the 900 °C and 1000 °C

samples, with little or no evidence of carbonate in the 1100 °C spectrum. Fig 4. The prescence of a carbonate absorption up to 1000 °C is consistent with a trace of a residual carbonate or oxy carbonate phase.

From the combined XRD and IR results besides BaTiO<sub>3</sub> there are other two phases i.e. BaCO<sub>3</sub> and Ba<sub>2</sub>TiO<sub>4</sub> present at intermediate temperatures. Therefore it could be indicated that Ba<sub>2</sub>TiO<sub>4</sub> phase which was found after BT dried gel was calcined at 800°C could be from the reaction of TiO<sub>2</sub> and BaCO<sub>3</sub>. Finally the Ba<sub>2</sub>TiO<sub>4</sub> could react with TiO<sub>2</sub> to form BaTiO<sub>3</sub> [3].

The dilatotmetric curves and their derivatives are shown in Fig 5 for samples with different types of binders i.e. 3 wt % PVB (BT-PVB) and 5 wt% gel (BT-Gel) when the samples were pressed at various pressures in Fig 5. Preliminary studies showed that 3wt% was the minimum amount of PVB binder required, if less than 3 wt% was used the samples were not strong enough and compacted pellets often broke. In the case of the sol binder, the minimum amount required to impart mechanical integrity to the compacts was 5 wt% of sol. Therefore the minimum amount of PVB was fixed at 3 wt% and sol at 5 wt % for all experiments.

The curve shows that the temperature of maximum sintering rate (derivative peak) of all samples are at the ranges of 1300-1350°C. The alpha (linear expansion coefficient increased when BT-PVB samples and BT-Gel samples were pressed at higher pressure. Both types of samples pressed at 200 MPa showed the smallest alpha as in Table 1. The higher pressure could give higher compaction in green samples. Consequently the shrinkage of samples pressed at 200 MPa became smallest. The alpha of all BT-Gel samples is less than the BT-PVB samples when each type of samples were pressed at the same pressure. For example at 200 MPa, the alpha of BT-PVB sample is -369.1x10° C<sup>4</sup> when the alpha of BT-Gel sample is -357.8x10° C<sup>4</sup>. The possible reason is that 60 wt% of the dried gel in the samples is retained as an inorganic phase, since TGA results showed only a 40 % weight loss from a 'pure' dried gel. Therefore the BT particles derived from the gel would support the sample bodies. From TEM study in our previous work, we found that PZT gel could be in between particles [14]. Comparing to samples with PVB when PVB was decomposed the preoccupied PVB area would turn into holes. So the space for particles to move closer during sintering would be bigger and the higher shrinkage would be noticed.

The densification behaviour of powders was further investigated by firing pellets under varying process conditions. The first comparison of the effects of binders on sample densification during sintering were obtained for sintering temperatures of 1100 °C,1150 °C,1200 °C, 1250 °C, 1275 °C, 1300 °C and 1350 °C at a dwell time of 2 h. Figure 6 illustrates the trend in sintered density, calculated by geometric measurements, as a function of temperature for 3 wt % PVB and 5 wt % sol. In the range 1100 °C -1150 °C, density of gel binder samples had a density of ~ 5% higher than samples with PVB binder. For example after firing at 1150 °C for 2 h, the BT samples

incorporating the PVB binder reached 69 % theoretical density whereas when the sol binder was used this increase to 74% theoretical density. When both types of samples were sintered at 1200 °C or higher, the samples with sol binder gave 1-2 % theoretical density higher than the density of samples with PVB binder.

The differential increase in density at lower sintering temperatures for the sol binder is further illustrated in Fig 7 which shows density data for a fixed sintering temperature, 1150 °C and varying dwell times when samples were pressed at 100 MPa. In this case the density at 1150 °C increased to 84 % theoretical density after 10 hours for the BT-sol sample, whilst BT-PVB samples were only 75% dense at this stage. When the samples were sintered for longer periods e.g. 15 hours at 1150 °C. BT-PVB and BT-Sol showed slightly higher density than samples sintered for 10 hours.

The above results indicate that the BT-sol powders show better low temperature sintering behaviour. It is probable that BT powder derived from gel sintered firstly at this step because the powder from gel is smaller or higher reactive. The gel gave powders with primary particle size of <1 µm as show in Fig 8.

To investigate the effect of pressing pressure, the samples were pressed at 100, 150 and 200 MPa. Fig 9 shows that at 200 MPa the samples gave the highest sintered density indicating that both binders were performing well and avoiding capping or other pressing defects at the higher pressing pressure. The sintering dilatometry results also show the minimum linear contraction coefficient, as anticipated, for compaction at 200 MPa. On the other hand the smallest shrinkage of samples after firing is obtained when the powders were pressed at 200 MPa.

To study the effect of varying the amount of sol on BT density , varying the amount of sol up to 8 wt% gel equivalent was added to the BT starting powders. The experimental data for green density is shown in Fig 10(a); sintered density values is presented in Fig 10(b) when the samples were pressed at 200 MPa. It was found that as the weight fraction of BT gel increased, green density decreased which is ~ 63% theoretical density for the 5 wt% gel to 60% density for a 8wt% gel, Fig 10(a) as shown in Fig 10a. There was, as expected, a corresponding trend in sintered density, from 96% for the 5 wt% sol to 93% for the 8 wt% sol. Fig 10(b). The decrease in green density for the BT powder-sol compacts indicates that the increased amounts of gel are not simply occupying what would otherwise be voids between the starting BT particles, but instead the extra gel is forcing BT particles apart and increasing the total volume of the compact. The decrease in sintered density for higher gel contents is consistent with the trends in green density, but there may also be a contribution to porosity from the difficulty in eliminating gel organic decomposition vapours from the inner portions of the compact leading to 'bloating' and an increase in pore size after burnout. The weight loss from green samples could be calculation from TGA results that it was 40 %wt loss from

get as shown in Table 2. This information could support our statement that the higher amount of sol the higher the organic content of the green compacts.

Figure 11 shows the microstructure of the BT sample containing 5 wt.% gel after sintering at 1300°C for 2 h and for a compact pressed at 200 MPa. The microstructure of the sample with 3 wt% PVB which was prepared under the same condition as BT with gel is shown in Fig 12. Both of BT with gel and BT with PVB showed a similar grain size. Therefore it could say that gel binder did not affect on microstructure in terms of grain size where the big grain is around 5 µm.

#### 4.Conclusions

In the first step of this experiment, the characteristics of dried gel and powder from gel were investigated. Organic matter of dried barium titanate gel was completely decomposed at 700°C. The BT powder from gel formed single phase to XRD at 900°C, but IR spectrum showed that the CO<sub>3</sub><sup>2-</sup> peak would disappear at 1100°C. Alpha values from dilatometric results showed that the shrinkage of the BT ceramic with gel binder is less than the BT ceramics with PVB binder when those samples were prepared the same pressure. The higher progressive density of BT ceramics with gel binder was found at low sintering temperature, 1100°C -1150°C. The difference of density between both types of samples were bigger when the samples were sintered for longer period of time. The samples with 5 wt% gel could reach 95% theoretical density or higher when the samples were sintered at 1300°C for 2 h.

#### Acknowledgments

Supin Tangwiwat is grateful to The Thailand Research Fund and Thai Government for financial support. Technical discussion with Miss Siripan Nilpirach is gratefully acknowledged.

#### References

- G.H.Haertling, Ferroelectric Ceramics: History and Technology, J. Am. Ceram. Soc. 82 (4) 797-818 (1999).
- H. Shimooka and M. Kuwabara, Preparation of dense BaTiO<sub>3</sub> ceramics from sol-gel-derived monolithic gels, J. Am. Ceram. Soc. 78 (10) 2849-52 (1995).
- D.F.K. Hennings, B.S. Schreinemacher, and H. Schreinemacher, Solid-state preparation of BaTiO<sub>3</sub>-based dielectrics using ultrafine raw materials, J. Am. Ceram. Soc. 84 (12) 2777-82 (2001).
- J. Wang, J. Fang, S-Ch. Ng, L-M. Gan, Ch-H. Chew, X. Wang and Z. Shen, Ultrafine Barium Titanate Powders via Microemulsion Processing Routes, J. Am Ceram. Soc. 82 (4) 873-81 (1999).

- P. Pinceloup, C. Courtois, A. Leriche and B. Thierry, Hydrothermal sythesis of nanometer-sized barium titanate powders: control of barium-titanate ratio, sintering, and dielectric properties, J. Am. Ceram. Soc. 82 (11) 3049-56 (1999).
- A.T. Chien, J.S. Speck, F.F. Lange, A.C. Daykin and C. G. Levi, Low temperature/ low pressure hydrothermal synthesis of barium titanate: Powder and heteroepitaxial thin films, J. Mater. Res. 10 (7) 1784-1789 (1995).
- 7. E.B. Slamovich and I. A. Aksay, Structure evolution in hydrothermally processed (<100°C) BaTiO, films, J. Am. Ceram. Soc. 79 (11) 239-47 (1996).
- R. Ueyama, M. Harada, T. Ueyama, T. Yamamoto, T. Shiosaki, K. Kuribayashi, K. Koumoto and W. Son Seo, Preparation of BaTiO<sub>3</sub> ultrafine paricles by micro-emulsion charring method, J. Mat. Sci.: Mat. In Elec. 11 139-143 (2000).
- N.J. Ali and S.J. Milne. Synthesis and properties of barium titanate powder derived from a catechol complex, Br. Ceram. Trans. J. 86, 113-117 (1987).
- 10. J. Xue, J. Wang and D. Wan, Nanosized barium titanate powder by mechanical activation, J. Am. Ceram. Soc. 83 (1) 232-34 (2000).
- R.P.S.M. Lobo, N.D.S. Mohallem, and R.L. Moreira, Grain size effects on diffuse phase transition of sol-gel prepared barium titanate ceramics, J. Am. Ceram. Soc. 78 (5) 1343-49 (1995).
- T. E. Petroff, S. A. M.Hesp and M. Sayer, Zirconia hydrogel casting of PZT ceramics. Ceram.
   Tran.: Grain Boundaries and Interfacial Phenomena in Electronic Ceramics, USA: The American Ceramic Society, 41 337 344 (1994).
- S. Tangwiwat and S.J. Milne, A sol-gel precursor as a powder binder for PZT fabrication, J. Sol-Gel Sci. Tec. 16, 151-157 (1999).
- 14. S. Tangwiwat, PhD Thesis. University of Leeds, UK, unpublished (2000).
- 15. K.A. Vorotílov, E.V. Orlova and V.I. Petrovsky, BaTiO<sub>3</sub> films on silicon wafers from metal alkoxides, Ferroelectrics 123 261-271 (1991).
- H. Matsuda, N. Kobayashi, T. Kobayashi, K. Miyazawa and M. Kuwabara, Room-temperature synthesis of crystalline barium titanate thin films by high-concentration sol-gel method. J. Non-Cryst. Solids 271 162-166 (2000).
- H. Shimooka, K-I. Yamada, S. Takahashi and M. Kuwabara, Preparation of Transparent, Partially-Crystallized BaTiO<sub>3</sub> monolithic xerogels by sol-gel processing, J. Sol-Gel Sci. Tec. 13 873-876 (1998).
- Y.Yamashita, N. Kurata and M. Kuwabara, TEM observation of barium titanate thin films consisting of nano-sized single crystals prepared by sol-gel processing, Solid State Pheno. 78-79 387-394 (2001).

- T. Kobayashi, H. Matsuda and M. Kuwabara, Shift of optical absorption edge in sol-gel derived transparent BaTiO, gels during aging, J. Sol-Gel Sci. Tec. 16 165-171 (1999).
- M.C. Cheung, H.L.W. Chan, Q.F. Zhou and C.L. Choy, Characterization of barium titanate ceramic / ceramic nanocomposite films prepared by a sol-gel process, Nano-Struc. Mat. 11 (7) 837-844 (1999).
- 21. K.M.S. Khalil, Low temperature evolution of crystalline BaTiO<sub>3</sub> from alkali-metal free precursor using sol-gel process, Mat. Res. Innovat. 2 256-262 (1999).
- 22. J-D. Tsay and T-T. Fang, Effects of temperature and atmosphere on the formation mechanism of barium titanate using the citrate process, J. Am. Ceram. Soc. 79 (6) 1693-96 (1996).
- N.V. Golubko, M.I.Yanovskaya, L.A. Golubko, E.P. Kovsman, M.B. Listoshina and B.A. Rotenberg, Preparation of barium titanate and related materials by the alkoxide-hydroxide route, J. Sol-Gel Sci. Tec. 20 135-143 (2001).
- 24. M.N. Kamalasanan, N. D. Kumar and S. Chandra, Structural and microstructural evolution of barium titanate thin films deposited by the sol-gel process, J. Appl. Phys. 76 (8) 4603-09 (1994).
- 25. M. Kuwabara, S. Takahashi and T. Kuroda, Preparation of ferroelectric BaTiO<sub>3</sub> thin films on polycrystalline BaPbO<sub>3</sub> substrates by sol-gel processing and their electrical properties, Appl. Phys. Lett. 62 (25) 3372-74 (1993).
- 26. M. Chatterjee, M.K. Naskar and D. Ganguli, Sol-emulsion-gel synthesis of shapes powders in the system BaO-TiO<sub>2</sub>, J. Sol-Gel. Sci. Tec. 16 143-149 (1999).
- P.D. Godbole, S.E. Deshpande, and S.K. Date, Sol-gel synthesis of ultrafine barium titanate using butyl titanate monomer and barium nitrate and its characterization, Ferroelectrics. 102 91-97 (1990).

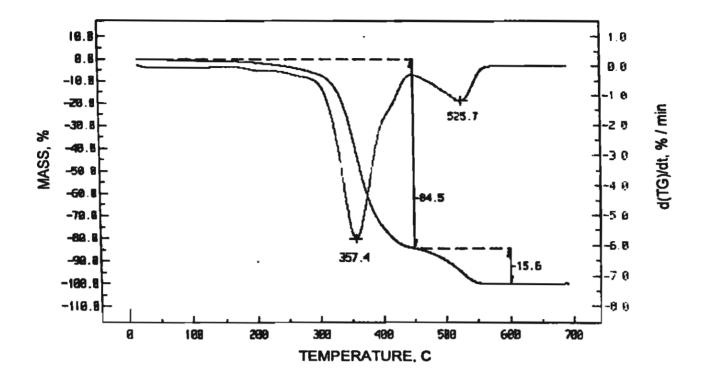



Figure 1. TGA curve for PVB.

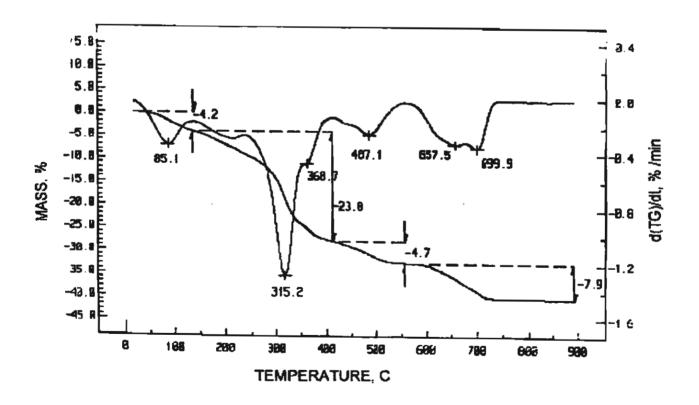



Figure 2. TGA for dried barium titanate gel.

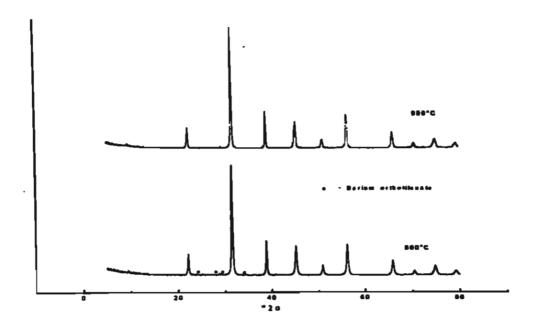



Figure 3. XRD pattern for BT powder from BT gel calcining at 800 °C and 900 °C

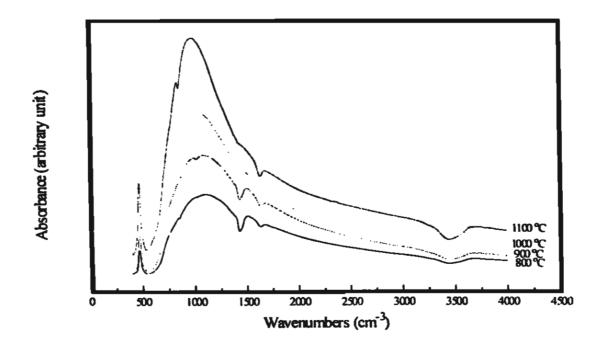
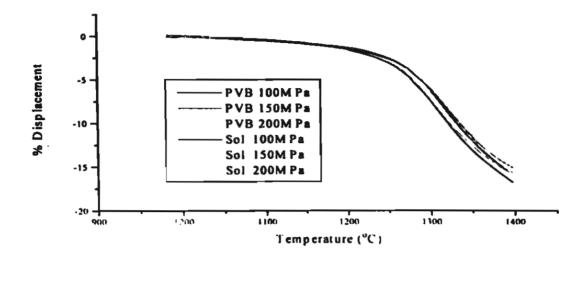




Figure 4. FTIR spectrum of BT powder from BT gel after calcining at 800°C, 900°C, 1000°C and 1100°C.



(a)

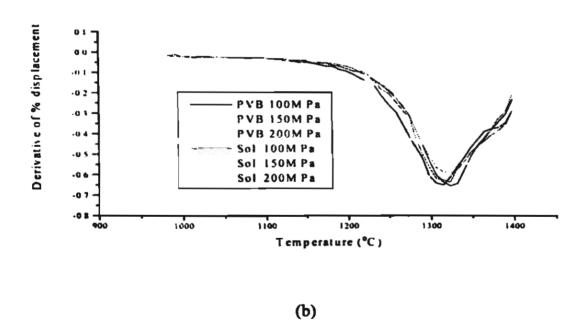



Figure 5. Dilatometric curve of samples with pressure varying between 100 and 200 MPa: (a) % displacement curve and (b) derivative of % displacement

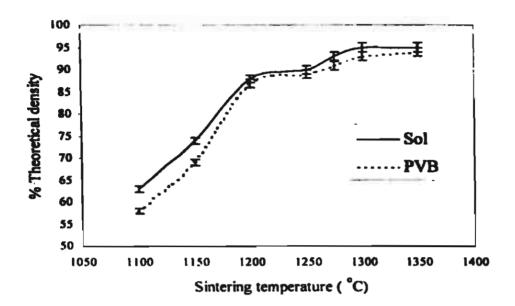



Figure 6. Effect of different types of binders on bulk density as a function of sintering temperature (the green samples were fired for 2 h at each temperature).

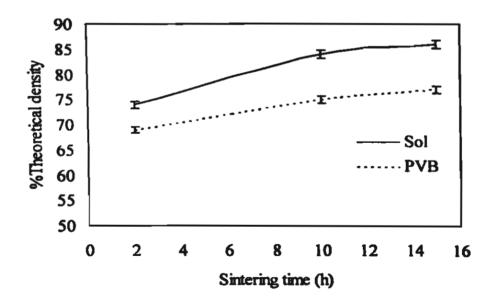



Figure 7. Effect of different types of binders on bulk density as a function of sintering time at 1150°C.

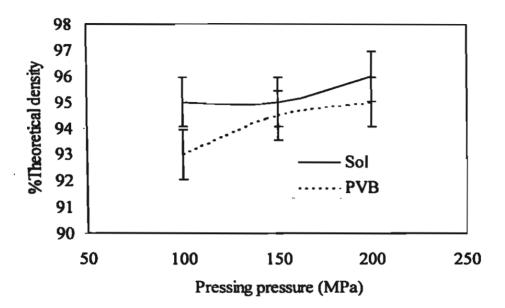
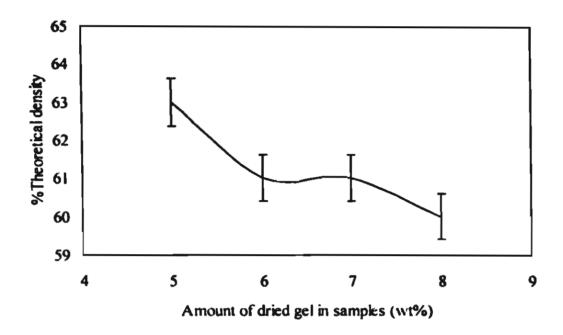




Figure 9. Effect of pressing pressure on bulk density



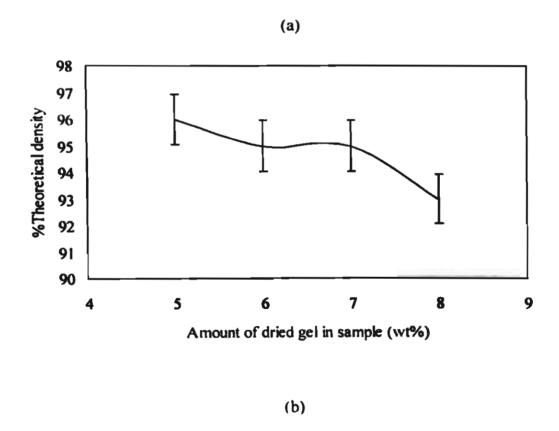



Figure 10. Effect of amount of gel binder on samples density: (a) green samples before binder burnout pressed at 200 MPa; (b) after sintering at 1300°C for 2 h.

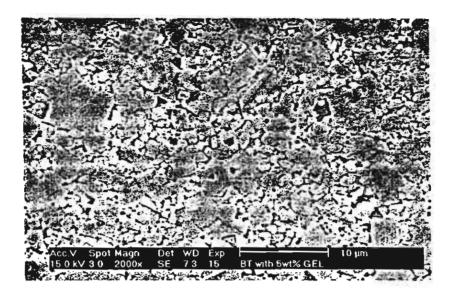



Figure 11. Microstructure of a BT sample using sol as a binder (5 wt% BT gel equivalent) pressed at 200 MPa and sintered at 1300°C for 2 h to 96% theoretical density.

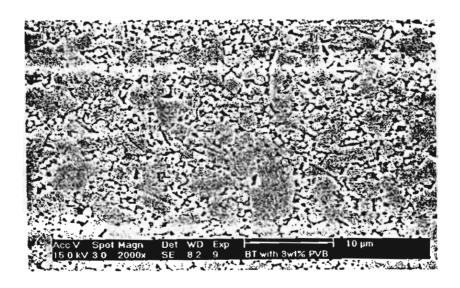



Figure 12. Microstructure of a BT sample using 3 wt% PVB binder pressed at 200 MPa and sintered at 1300°C for 2 h to 95% theoretical density.

Table 1 Thermal expansion data of barium titanate ceramics

| Sample | Binder    | Pressure<br>(MPa) | Alpha                                    |
|--------|-----------|-------------------|------------------------------------------|
| 1      | 3 wt% PVB | 100               | -417.5x10 <sup>-6</sup> °C <sup>-1</sup> |
| 2      | 3 wt% PVB | 150               | -399.9x10 <sup>-6</sup> °C <sup>-1</sup> |
| 3      | 3 wt% PVB | 200               | -369.1x10 <sup>-6</sup> ℃ <sup>-1</sup>  |
| 4      | 5 wt% gel | 100               | -391.8x10 <sup>-6</sup> °C <sup>-1</sup> |
| 5      | 5 wt% gel | 150               | -389.3x10 <sup>-6</sup> ℃ ·1             |
| 6      | 5 wt% gel | 200               | -357.8x10 <sup>-6</sup> ℃ <sup>-1</sup>  |

Table 2 Weight loss of organic component from dried gel in green bodies

| Sample | Binder    | wt. loss from gel |
|--------|-----------|-------------------|
|        |           | (%)               |
| 1      | 5 wt% gel | 2                 |
| 2      | 6 wt% gel | 2.4               |
| 3      | 7 wt% gel | 2.8               |
| 4      | 8 wt% gel | 3.2               |