

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การศึกษาการสังเคราะห์สารประกอบจำพวกวง 6,7 เหลี่ยมของอีเธอร์จากน้ำตาล
The Synthetic Studies of 6,7-Membered Ether Ring from Sugar

โดย นางสาวรุ่งนภา แช่เอ็ง และคณะ

31 มิถุนายน 2545

Sean I

รายงานวิจัยฉบับสมบูรณ์

โครงการ

การศึกษาการสังเคราะห์สารประกอบจำพวกวง 6,7 เหลี่ยมของอีเธอร์จากน้ำตาล
The Synthetic Studies of 6,7-Membered Ether Ring from Sugar

คณะผู้วิจัย

- 1. นางสาวรุ่งนภา แช่เอ็ง
- 2. ศ.ดร. วิชัย ริ้วตระกูล

สังกัด มหาวิทยาลัยบูรพา มหาวิทยาลัยมหิดล

วันที่ [9 ลี ย เลขทะเบียน	2546
เลขเรียกหนังสือ	PDF 44
	coll

สำนักงานกองทุบสนับสนุนการวิจัย (สกว.) ชั้น (4 อาการ เอส เดียวกาขาดวั เอยนี้ 979:17-21 กอบรายกไหลิน แขวงสามเสนริน - อกูปไก กรุงราช 16400

1.298-0455 Trian in 298-0476 frome page: http://www.trf.or.th E-mail: trf-info@trf.or.th

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

ห้องสา (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป . าเทคัดย่อ

วง 6,7 เหลี่ยมของอีเธอร์เป็นส่วนประกอบของผลิตภัณฑ์ธรรมชาติที่มีฤทธิ์ทางชีวภาพที่สำคัญหลายชนิด ใน

งานวิจัยนี้ได้ทำการศึกษาการสังเคราะห์วง 6,7 เหลี่ยมโดยการเตรียมผ่านปฏิกิริยาต่างๆ 6 ขั้นตอน ซึ่ง

ประกอบด้วยการป้องกันหมู่ alcohol ของ butynol ตามด้วยการเพิ่มหมู่ trimethylsilyl เข้าที่ส่วนปลายของหมู่

acetylene ทำการศึกษาปฏิกิริยา C-glycosidation ของ trimethylsilylacetylene ether ที่ได้กับ D-glucal เพื่อ

สังเคราะห์ให้ได้ร้อยละของผลิตภัณฑ์ glycoside สูงสุด ทำการเปลี่ยน side chain ของผลิตภัณฑ์ glycoside

ที่ได้ให้เป็น olefinic precursor สำหรับการปิดวง 7 เหลี่ยมโดยทำปฏิกิริยา 2 ขั้นตอนคือ desilylation และ

hydrogenation ขั้นสุดท้ายเป็นการศึกษาการปิดวง 6,7 เหลี่ยมโดยวิธี lodocyclization

Abstract

6.7-Membered cyclic ethers are part structures of several natural products of biological important.

In this research, the 6,7-membered rings have been studied to prepared through six steps

comprising the protection of alcohol moiety of butynol followed by the introduction of trimethylsilyl

group at the terminal acetylene. The C-glycosidation of the resulting trimethylsilylacetylene ethers

with D-glucal were studied to obtain the maximum yield of glycoside product. Transformation of the

side chain of the glycoside compound to the olefinic precursor for 7-membered cyclization was

achieved in 2 steps by using desilylation followed by hydrogenation. The 6,7-membered ring

cyclization reactions were studied in the final step by using lodocyclization method.

Key word: cyclic ether, C-Glycosidation, silylacetylene

Executive summary

The Synthetic Studies of 6,7-Membered Ether Rings from Sugar การศึกษาการสังเคราะห์สารประกอบจำพวกวง 6,7 เหลี่ยมของอีเธอร์จากน้ำตาล

สารจำพวก ether rings พบได้ในผลิตภัณฑ์ธรรมชาติหลายชนิด โดยเฉพาะสารธรรมชาติจากทะเลซึ่ง มีปริมาณน้อย ทำให้การศึกษาการสังเคราะห์สารเหล่านี้มีความจำเป็นเพื่อให้มีปริมาณเพียงพอต่อการทดสอบ ฤทธิ์ทางชีวภาพ

สำหรับงานวิจัยนี้เป็นการศึกษาการสังเคราะห์ 6,7-membered ether rings ซึ่งทำผ่านขั้นตอนต่างๆ 6 ขั้นตอน ดังแสดงใน Scheme 1

Scheme 1

การวิจัยเพื่อดังเคราะที่ให้ได้ดาร 6,7-membered ether ring แบ่งขอกเป็น 4 ต่วน คือ

1 ตังเคราะท์ Trimethylsilyl acetylene ether ที่จะใช้เป็น precursor ทำปฏิกิริยา C-Glycosidation

Trimethylsayi acetylene ether ที่ใช้ในการศึกษา จะเครียมทั้งหมด 3 ชนิด โดยทดลองใช้หมู่ป้องกัน (R group) ต่างกัน เพื่อศึกษาผลของ electronic effect ในชั้น C-Glycosidation (ชั้นที่ 2)

Angrisฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ Trimethylsityl acetylene ether ทั้ง
3 ขนิด ตรวจละบวาชนิดใดให้ %yield ของ product ลูงลุด พร้อมทั้งศึกษาผลของ electronic effect ต่อ
%yield

3 เครียม precursor จาก Glycoside product ที่ได้ในรัช 2 สำหรับศึกษาปฏิกิริยา Cyclization โดยทำการ เปลี่ยนแปลง acetylene group ให้เป็น olefinic group เพื่อทำการปิดวง 7 เหลี่ยม

คาราปฏิทิชา Cyclization

การวิจัยเพื่อสังเคราะห์ให้ได้สาร 6,7-membered ether ring แบ่งออกเป็น 4 ส่วน คือ

1. ตั้งเคราะห์ Trimethytsilyl acetylene ether ที่จะใช้เป็น precursor ทำปฏิกิริยา C-Glycosidation

frimethylsilyi acetylene ether ที่ใช้ในการศึกษา จะเตรียมทั้งหมด 3 ชนิด โดยทดลองใช้หมู่ป้องกัน (R group) ต่างกัน เพื่อศึกษาผลของ electronic effect ในขั้น C-Glycosidation (ขั้นที่ 2)

Aกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ Trimethylsityl acetylene ether ทั้ง 3 ขนิด ตรวจลอบว่าขนิดใดให้ %yield ของ product สูงลุด พร้อมทั้งศึกษาผลของ electronic effect ต่อ %yield

 เหรียม precursor จาก Glycoside product ที่ได้ในร้อ 2 สำหรับศึกษาปฏิกิริยา Cyclization โดยทำการ เปลี่ยนแปลง acetylene group ให้เป็น olefinic group เพื่อทำการปิดวง 7 เหลี่ยม

4 - ศึกษาปฏิกิริยา Cyclization

1. สังเคราะห์ Trimethylsilyl acetylene ether ที่จะใช้เป็น precursor ทำปฏิกิริยา C-Glycosidation

R	%overall yields	
TBDPS	82	
TBDMS	55	
Bn	83	

ในกรณีที่ R group หรือ protecting group เป็น TBDMS %yield ของ product จะต่ำกว่า TBDPS และ Bn เนื่องจาก TBDMS protecting group เป็น group ที่ไม่เสถียรมากนักในปฏิกิริยาภายใต้สภาวะที่มี EtMgBr เป็น reagent ดังนั้น product บางส่วนจะเกิดการ deprotect ไป

2. ศึกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ Trimethylsilyl acetylene ether

การศึกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal และ Trimethylsilyl acetylene ether ที่มีหมู่ป้องกันต่างๆ พบว่าปฏิกิริยาเป็นไปตาม Table 1

Table 1 C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal และ Trimethylsilyl acetylene ether

Entry	Protecting group (R)	Lewis acid	Time/min	%yield of product	%yield of 9	Total yield of product
1	TBDPS	SnCl ₄	20	93	0	93
2		BF ₃ .OEt ₂	20	75	0	75
3	TBDMS	SnCl ₄	20	0	24	24
4		BF ₃ .OEt ₂	70	31	20	51
5	Bn	SnCl ₄	20	43	0	43
6		BF ₃ .OEt ₂	35	36	17	53
7	Ac	SnCl ₄	70	22	0	22

จากการศึกษาใน Table 1 ปฏิกิริยา C-Glycosidation ของ Trimethylsilyl acetylene ether ที่มีหมู่ protecting group คือ tert-butyldiphenylsilyl (entry 1,2) ให้ C-glycoside product สูงสุดเมื่อเปรียบเทียบ กับ protecting group ขนิดอื่นเช่น หมู่ป้องกัน tert-Butyldimethylsilyl (entry 3,4) และ Benzyl (entry 5,6) จะให้ %yield ของ C-glycoside product ใกล้เคียงกัน เหตุที่เป็นเช่นนี้เนื่องจาก SiPh₂'Bu เป็นหมู่ใหญ่ สามารถป้องกันการเข้า coordinate จาก Lewis acid (steric effect) สำหรับ protecting group เช่น acetate (entry 7) จะให้ product น้อยที่สุด เนื่องจากเป็นหมู่ electron withdrawing

การมีหมู่ electron withdrawing ทำให้ได้ product น้อยสามารถอธิบายได้จากกลไกการเกิดปฏิกิริยา C-Glycosidation (Fig 1) โดยปฏิกิริยาจะเกิดผ่าน enonium ion ซึ่ง silylacetylene จะเข้าไป coordinate ทาง ด้าน alpha โดยหมู่ silyl จะช่วย stabilize cation intermediate ในตำแหน่ง beta ด้วยการ overlap ของ dorbital เมื่อ side chain มีหมู่ electron withdrawing ซึ่งเป็นหมู่ที่ destabilize intermediate ที่เกิดขึ้น ถึงแม้ จะไม่ได้เป็นหมู่ข้างเคียงที่ต่อตรงกับ cation intermediate แต่ก็ทำให้ปฏิกิริยาเกิดขึ้นได้ยากกว่า %yield ต่ำ กว่า ซึ่งถือเป็นผลของ electronic effect

Fig 1 กลไกการเกิดปฏิกิริยา C-Glycosidation ของ D-Glucal และ Trimethylsilyl acetylene ether

นอกจากนี้ยังพบว่าภายใต้สภาวะที่ทำการวิจัยใช้ lewis acid เช่น Tin tetrachloride (SnCl4) และ Boron trifluoride etherate (BF3 OEt2) เป็นตัวเร่งปฏิกิริยาจะให้ผลต่างกัน พบว่าในกรณีที่ protecting group เป็น TBDPS การใช้ SnCl4 จะให้ผลดีกว่า ในกรณีที่เป็น TBDMS หมู่ป้องกันชนิดนี้เกิด deprotection ได้ใน Lewis acid และกรณีหมู่ Bn เกิด deprotection เฉพาะสภาวะที่ใช้ BF3 OEt2 เป็น lewis acid

3. เตรียม precursor จาก Glycoside product ที่ได้ในข้อ 2 สำหรับศึกษาปฏิกิริยา Cyclization โดยทำการ เปลี่ยนแปลง acetylene group ให้เป็น olefinic group เพื่อทำการปิดวง 7 เหลี่ยม

ขั้นตอนการเตรียม precursor เพื่อการปิดวง 7 เหลี่ยม สามารถทำได้ใน 2 ขั้นตอน โดยปฏิกิริยา deprotection หมู่ TBDPS และตามด้วย hydrogenation reaction ของ triple bond ให้เป็น olefinic bond โดย Lindlar catalyst หรือ สลับขั้นตอน ซึ่ง overall yield ของปฏิกิริยาแรกมากกว่า

่ง คึกษาปฏิกิริยา Cyclization แผนการสิงเคราะห์ที่ตั้งไว้ คือ ใช้ I, เป็น reagent ในการปิดวง 7 เหลี่ยม

เมื่อหลดองใช้ ออกเด่นอก ตางๆตามตารางข้างบน พบว่าเกิดปฏิกิริยาการปิดวง 7 เหลี่ยมน้อยมาก ลารผลิต ภัณฑ์บางคัวยังอยู่ในขั้นตอนการพิลูจน์โครงสร้างและ product บางตัวไม่สามารถพิลูจน์โครงสร้างได้

I2. CH2CI2 1 day

เนื้อหางานวิจัย

งานวิจัย แบ่งเป็น 4 ส่วน

1. สังเคราะห์ Trimethylsilyl acetylene ether ที่จะใช้เป็น precursor ทำปฏิกิริยา C-Glycosidation

2. ศึกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ Trimethyl silyl acetylene ether

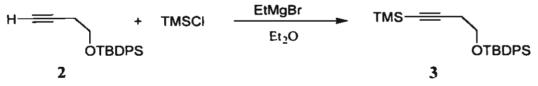
3. เตรียม precursor จาก Glycoside product ที่ได้ในข้อ 2 สำหรับศึกษาปฏิกิริยา Cyclization

4. ศึกษาปฏิกิริยา Cyclization

General:

Proton NMR spectra were recorded on a Varian Germini 2000 (200 MHz) or a Bruker ARX-400 (400 MHz). All spectra were measured in CDCl₃ solvent and chemical shifts are reported as δ values in parts per million (ppm) relative to tetramethylsilane (δ 0.00) or CDCl₃ (δ 7.26) as internal standard. Data are reported as follows; chemical shift (integrate intensity or assignment, multiplicity, coupling constants in Hz, assignment). Low-resolution EI mass spectra were obtained with a FINNIKAN GCQ IONTRAP. Infrared spectra were determined on a Perkin Elmer system 2000 FT-IR spectrophotometer and are reported in wave number (cm⁻¹).

Analytical thin-layer chromatrography (tlc) was conducted on precoated tlc plates; silica gel 60F-254 [E. Merck, Darmstadt, Germany]. Silica gel columns for open-column chromatrography utilized silica gel 60 PF254 [E. Merck, Darmstadt, Germany].


1. สังเคราะห์ Trimethylsilyl acetylene ether ที่จะใช้ทำปฏิกิริยา C-Glycosidation

1.1 การสังเคราะห์ Tert-butyldiphenylsilyl trimethylsilylbutynyl ether (3) (R = TBDPS)

To a solution of 3-Butyn-1-ol (1) (1.0537 g, 15 mmol) in DMF (30 mL) was added TBDPSCl (4.61 mL, 18 mmol). The reaction was stirred at 0°C under nitrogen atmosphere and immidazole (1.33 g, 19.5 mmol) was added. The mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was quenched with NH₄Cl and extracted with Et₂O (x3). The extracts were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (1-5% EtOAc/hexane) to afford (2) (3.95 g, 85%)

¹H-NMR (2) (200 MHz, CDCl₃): δ 1.09 (9H, s, C(*CH*₃)₃), 1.98 (1H, t, *J* = 2.5 Hz, H-4), 2.50 (2H, td, *J* = 7.0, 2.5 Hz, H-3), 3.80 (2H, t, *J* = 7.0 Hz, H-1), 7.48 (6H, m, PhH), 7.70 (4H, m, PhH)..

IR (KBr): 3307, 3071, 2931, 2159, 1589, 1472, 1112 cm⁻¹.

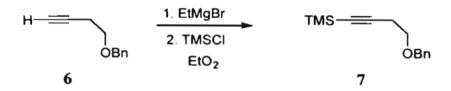
To a solution of *tert*-butyldiphenylsilyl-3-butynyl ether (2) (0.1 g, 0.3 mmol) in THF 5 mL. was dropwise added EtMgBr (0.3 mL., 3.0 M in Et₂O, 0.9 mmol) at 10°C. After stirring 10 min., TMSCl was added and the reaction mixture was allowed to room temperature and reflux at 70°C for 40 min. The reaction mixture was quenched with NH₄Cl and extracted with Et₂OAc (x3). The extracts were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (2% EtOAc/hexane) to afford (3) (0.12 g, 97%).

¹H-NMR (3) (200 MHz, CDCl₃): δ 0.20 (9H, s, Si(*CH*₃)₃), 1.09 (9H, s, C(*CH*₃)₃), 2.50 (2H, t, *J* = 7.0 Hz, H-2), 3.80 (2H, td, *J* = 7.0 Hz, H-1), 7.40 (6H, m, PhH), 7.70 (4H, m, PhH). IR (KBr): 2959, 2178, 1589, 1473, 1249, 1112 cm⁻¹

1.2 การสังเคราะห์ Tert-butyldimethylsilyl trimethylsilylbutynyl ether (5) (R = TBDMS)

To a solution of 3-Butyn-1-ol (1) (1.05 g, 12 mmol) in DMF (30 mL) was added TBDMSCl (3.39 g, 22.5 mmol). The reaction was stirred at 0°C under nitrogen atmosphere and immidazole (1.33 g, 19.5 mmol) was added. The mixture was allowed to warm to room temperature and stirred overnight. The reaction mixture was quenched with NH₄Cl and extracted with Et₂O (x3). The extracts were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The crude product (4) was used in the next step without purification.

To a solution of crude *tert*-butyldimethylsilyl-3-butynyl ether (4) (1.54 g, 8.37 mmol) in Et₂O 30 mL. was added EtMgBr (14 mL., 3.0 M in Et₂O) and excess amount of TMSCl (10.7 mL, 83.7 mmol) at 0°C. After stirring 30 min., the reaction mixture was allowed to room temperature and stirring was continued for overnight. The reaction mixture was quenched with NH₄Cl and extracted with Et₂O (x3). The extracts were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (10% EtOAc/hexane) to afford (5) (1.17 g, 55%) IR (NaCl) (5): 3313, 2952, 2177, 1469, 1380, 1248, 844 cm⁻¹


8

1.3 การสังเคราะห์ Benzyl trimethylsilylbutynyl ether (7) (R = Bn)

To a solution of 3-butyn-1-ol (1) (1.14 g, 15 mmol) in THF (20 mL) was added BnBr 5.4 mL (45 mmol). The reaction was stirred at 0°C under nitrogen atmosphere and NaH (2.16 g, 90 mmol) was added. The mixture was allowed to warm to room temperature and stirring was continued for overnight. The reaction mixture was quenched with NH₄Cl and extracted with Et₂O (x3). The extracts were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (0.5% EtOAc/hexane) to afford benzyl-3-butynyl ether (6) as a colourless oil (2.26 g, 94%)

¹H-NMR (6) (200 MHz, CDCl₃), δ 2.05 (1H, t, J = 3.0 Hz, H-4), 2.54 (2H, td, J = 7.0, 3.0 Hz, H-2), 3.63 (2H, t, J = 7.0 Hz, H-1), 4.58 (2H, s, CH_2Ph), 7.40 (5H, s, PhH).

IR (NaCl): 3464, 2985, 1447, 1373. 1240 cm⁻¹

To a solution of Benzyl-3-butynyl ether (6) (1.23 g, 7 mmol) in Et₂O 20 mL. was added EtMgBr (11.5 mL., 3.0 M in Et₂O) and excess amount of TMSCl (9 mL, 70.5 mmol) at 0°C. After stirring 30 min., the reaction mixture was allowed to room temperature and stirred overnight. The reaction mixture was quenched with NH₄Cl and extracted with Et₂O (x3). The extracts were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (10% EtOAc/hexane) to afford colourless oil (7) (1.42 g, 88%)

¹H-NMR (7) (200 MHz, CDCl₃), δ 0.11 (9H, s, Si*CH*₃), 2.39 (2H, t, J = 7.0 Hz, H-2), 3.43 (2H, t, J = 7.0 Hz, H-1), 4.39 (2H, s, C*H*₂Ph), 7.20 (5H, s, PhH).

IR (NaCl): 3064, 2959, 2177, 1496, 1454, 1362, 1249 cm⁻¹

2. ศึกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ Trimethylsilyl acetylene ether

2.1 ศึกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ *Tert*-butyldiphenylsilyl trimethylsilylbutynyl ether (3) โดยใช้ SnCl₄ เป็นตัวเร่งปฏิกิริยา

To a solution of Tri-O-acetoxy-D-glucal (0.31 g, 1.21 mmol) and *tert*-butyldiphenylsilyl trimethylsilyl-3-butynyl ether (3) (0.35 g, 0.99 mmol) in CH₂Cl₂ 10 mL. was added a solution of SnCl₄ (0.20 mL) at -20°C. The mixture was stirred for 20 min. at -20°C and then poured into cooled sat. NaHCO₃ aq. After stirring for 30 min. at 0°C, the organic layer was separated and the water layer was extracted with Et₂OAc (x3). The combined organic layer were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (5-10% EtOAc/hexane) to afford a pale yellow oil (8) (0.44 g, 93%)

¹H-NMR (**8**) (200 MHz, CDCl₃): δ 1.09 (9H, s, C(*CH*₃)₃), 2.04 (6H, s, *Ac*), 2.50 (2H, td, *J* = 7.0, 2.0 Hz, H-3'), 3.75 (2H, t. *J* = 7.0 Hz, H-4'), 4.10 (1H, ddd, *J* = 7.0, 5.0, 3.0 Hz, H-5), 4.20 (2H, dd, *J* = 7.0, 2.0 Hz, H-6), 4.95 (1H, m, H-1), 5.30 (1H, ddd, *J* = 10.0, 4.0, 2.0 Hz, H-4), 5.57 (1H, ddd, *J* = 10.0, 2.0, 2.0 Hz, H-2), 5.85 (1H, ddd, *J* = 10.0, 4.0, 2.0 Hz, H-3), 7.40 (6H, m, PhH), 7.70 (4H, m, PhH).

IR (KBr): 3071, 2931, 2239, 1744, 1589, 1472, 1370, 1230, 1111 cm⁻¹

2.2 ศึกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ *Tert*-butyldiphenylsilyl trimethylsilylbutynyl ether (3) โดยใช้ BF₃OEt₂ เป็นตัวเร่งปฏิกิริยา

butynyl ether (3) (0.30 g, 0.80 mmol) in CH₂Cl₂ 9 mL. was added a solution of BF₃OEt₂ (0.18 mL) at -20°C. The mixture was stirred for 20 min. at -20°C and then poured into cooled sat. NaHCO₃ aq. After stirring for 30 min. at 0°C, the organic layer was separated and the water layer was extracted with EtOAc (x3). The combined organic layer were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (5-15% EtOAc/hexane) to afford a pale yellow oil (8) (0.31 g, 75%)

2.3 ศึกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ *Tert*-butyldimethylsilyl trimethylsilylbutynyl ether (5) โดยใช้ SnCl เป็นตัวเร่งปฏิกิริยา

To a solution of D-glucal (0.49 g, 1.8 mmol) and *tert*-butyldimethylsilyl trimethylsily-3-butynyl ether (5) (0.49 g, 1.9 mmol) in CH₂Cl₂ 20 mL. was added a solution of SnCl₄ (0.53 mL) at -20°C. The mixture was stirred for 20 min. at -20°C and then poured into cooled sat. NAHCO₃ aq. After stirring for 30 min. at 0°C, the organic layer was separated and the water layer was extracted with Et₂O (x3). The combined organic layer were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (50% EtOAc/hexane) to afford a pale yellow oil (9) (0.12 g, 24%)

¹H-NMR (9) (200 MHz, CDCl₃): δ 2.03 (3H, s, Ac), 2.04 (3H, s, Ac), 2.45 (2H, td, J = 5.0, 2.0 Hz, H-3'), 3.68 (2H, t, J = 5.0 Hz, H-4'), 4.12 (1H, m, H-5), 4.20 (2H, m, H-6), 4.92 (1H, m, H-1), 5.22 (1H, ddd, J = 9.0, 4.0, 2.0 Hz, H-4), 5.69 (1H, ddd, J = 11.0, 2.0, 2.0 Hz, H-3), 5.83 (1H, ddd, J = 11.0, 4.0, 2.0 Hz, H-2)

IR (NaCl): 3461, 2944, 2228, 1727, 1435, 1365, 1236 cm⁻¹

2.4 ศึกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ *Tert*-butyldimethylsilyl trimethylsilylbutynyl ether (5) โดยใช้ BF₃OEt₂ เป็นตัวเร่งปฏิกิริยา

To a solution of D-glucal (0.54 g, 2.0 mmol) and *tert*-butyldimethylsilyl trimethylsilyl-3-butynyl ether (5) (0.54 g, 2.1 mmol) in CH₂Cl₂ 15 mL. was added a solution of BF₃·OEt₂ (0.35 mL) at -20°C. The mixture was stirred for 1 h 10 min. at -20°C and then poured into cooled sat. NAHCO₃ aq. After stirring for 30 min. at 0°C, the organic layer was separated and the water layer was extracted with Et₂O (x3). The combined organic layer were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (4-40% EtOAc/hexane) to afford butynol glycoside (9) as a colourless oil (0.11 g, 20%) and *tert*-butyldimethylsilyl trimethyl-3-butynyl ether-glycoside (10) (0.24 g, 31%).

¹H-NMR (**10**) (200 MHz, CDCl₃) : δ 0.04 (6H, s, 2xSi*CH*₃), 0.86 (9H, s, 3x*t-Bu*), 2.06 (3H, s, *Ac*), 2.07 (3H, s, *Ac*), 2.41 (2H, td, J = 7.0, 2.0 Hz, H-3'), 3.69 (2H, t, J = 7.0 Hz, H-4'), 4.08 (1H, m, H-5), 4.30 (2H, m, H-6), 4.93 (1H, m, H-1), 5.26 (1H, ddd, J = 9.0, 3.0, 2.0 Hz, H-4), 5.71 (1H, ddd, J = 10.0, 2.0, 2.0 Hz, H-3), 5.85 (1H, ddd, J = 10.0, 3.0, 2.0 Hz, H-2) IR (NaCl) : 2937, 2339, 1745, 1469, 1369, 1236 cm⁻¹

2.5 ศึกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ Benzyl trimethylsilyl butynyl ether (7) โดยใช้ SnCl, เป็นตัวเร่งปฏิกิริยา

To a solution of D-glucal (0.45 g, 1.65 mmol) and Benzyl trimethylsilyl-3-butynyl ether (7) (0.45 g, 1.65 mmol) in CH₂ Cl₂ 20 mL. was added a solution of SnCl₄ (0.45 mL) at -20°C. The mixture was stirred for 20 min. at -20°C and then poured into cooled sat. NAHCO₃ aq. After stirring for 30 min. at 0°C, the organic layer was separated and the water layer was extracted with Et₂O (x3). The combined organic layer were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (10-50% EtOAc/hexane) to afford a colourless oil (11) (0.26 g, 43%).

¹H-NMR (11) (400 MHz, CDCl₃): δ 2.09 (6H, s, 2xAc), 2.57 (2H, td, J = 7.0, 2.0 Hz, H-3'), 3.60 (2H, t, J = 7.0 Hz, H-4'), 4.12 (1H, ddd, J = 8.0, 4.5, 2.5 Hz, H-5), 4.21 (1H, dd, J = 12.0, 2.5 Hz, H-6a),), 4.25 (1H, dd, J = 12.0, 4.5 Hz, H-6b), 4.97 (1H, m, H-1), 5.31 (1H, ddd, J = 9.0, 3.0, 2.0 Hz, H-4), 5.77 (1H, ddd, J = 10.0, 2.0, 2.0 Hz, H-3), 5.89 (1H, ddd, J = 10.0, 3.0, 2.0 Hz, H-2), 7.35 (5H, s, PhH).

IR (NaCl): 3033, 2929, 2221, 1741, 1450, 1369, 1236 cm⁻¹

HRMS (E1): m/z 372.1567

2.6 ศึกษาปฏิกิริยา C-Glycosidation ของน้ำตาล Acetoxy-D-Glucal กับ Benzyl trimethylsilyl butynyl ether (7) โดยใช้ BF₃OEt₂ เป็นตัวเร่งปฏิกิริยา

$$AcO$$
 OAc
 OAc
 OBn
 AcO
 OBn
 AcO
 OBn
 AcO
 OBn
 AcO
 OBn
 AcO
 OBn
 AcO
 OBn
 OBn

To a solution of D-glucal (0.45 g, 1.65 mmol) and Benzyl trimethylsilyl-3-butynyl ether (7) (0.45 g, 1.9 mmol) in CH₂ Cl₂ 15 mL. was added a solution of BF₃·OEt₂ (0.31 mL) at -20°C. The mixture was stirred for 35 min. at -20°C and then poured into cooled sat. NAHCO₃ aq. After stirring for 30 min. at 0°C, the organic layer was separated and the water layer was extracted with Et₂O (x3). The combined organic layer were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (10-70% EtOAc/hexane) to afford butynol glycoside (9) as a colourless oil (0.08 g, 17%) and Benzyl-3-butynyl ether glycoside (11) (0.22 g, 36%).

3. เตรียม precursor จาก Glycoside product ที่ได้ในข้อ 2 สำหรับศึกษาปฏิกิริยา Cyclization

3.1 เตรียม butynol glycoside

To a solution of *tert*-butyldiphenylsilyl-3-butynyl ether glycoside (8) (0.51 g, 0.99 mmol) in THF (20 mL) was added TBAF (0.38 g, 1.18 mmol, 1.2 eq.). After stirring at room temperature for 90 min., the reaction mixture was quenched with NaHCO₃ and extracted with EtOAc (x3). The extracts were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (30-50% EtOAc/hexane) to afford (9) (0.24 g, 87%)

3.2 เตรียม butenol glycoside

To a solution butynol glycoside (9) (0.1095 g, 0.39 mmol) in CH₂Cl₂ (10 mL) was added pyridine 1 mL and Pd/BaSO₄ 0.0219 g (20%w/w of starting material). After stirring at room temperature for 1h., the reaction mixture was quenched with H₂O and extracted with EtOAc (x3). The extracts were washed with CuSO₄ (sat.), H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (30-50% EtOAc/hexane) to afford (12) (0.848 g, 81%)

1H-NMR (200 MHz, CDCl₃): δ 1.81 (1H, s, OH), 2.09 (3H, s, Ac), 2.10 (3H, s, Ac), 2.43 (2H, m, H-3'), 3.69 (2H, td, J = 6.5, 2.0 Hz, H-4'), 3.99 (1H, ddd, J = 6.5, 6.5, 3.0 Hz, H-5), 4.14 (1H, dd, J = 12.0, 3.0 Hz, H-6a), 4.27 (1H, dd, J = 12.0, 6.5 Hz, H-6b), 5.02 (1H, m, H-1), 5.14 (1H, ddd, J = 6.5, 2.5, 2.0 Hz, H-4), 5.67 (1H, dd, J = 10.0, 2.0 Hz, H-1'), 5.74 (1H, m, H-3), 5.81 (1H, ddd, J = 10.5, 2.0, 1.0 Hz, H-2), 5.89 (1H, dt, J = 10.0, 1.0 Hz, H-2')

IR (NaCl): 3421, 2932, 1649, 1736, 1433, 1233

3. เตรียม precursor จาก Glycoside product ที่ได้ในช้อ 2 สำหรับศึกษาปฏิกิริยา Cyclization

3.1 เตรียม butynol glycoside

To a solution of *tert*-butyldiphenylsilyl-3-butynyl ether glycoside (8) (0.51 g, 0.99 mmol) in THF (20 mL) was added TBAF (0.38 g, 1.18 mmol, 1.2 eq.). After stirring at room temperature for 90 min., the reaction mixture was quenched with NaHCO₃ and extracted with EtOAc (x3). The extracts were washed with H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (30-50% EtOAc/hexane) to afford (9) (0.24 g, 87%)

3.2 เตรียม butenol glycoside

To a solution butynol glycoside (9) (0.1095 g, 0.39 mmol) in CH₂Cl₂ (10 mL) was added pyridine 1 mL and Pd/BaSO₄ 0.0219 g (20%w/w of starting material). After stirring at room temperature for 1h., the reaction mixture was quenched with H₂O and extracted with EtOAc (x3). The extracts were washed with CuSO₄ (sat.), H₂O, brine, dried over anhydrous Na₂SO₄ and concentrate in vacuo. The residue was purified by silicagel column chromatrography (30-50% EtOAc/hexane) to afford (12) (0.848 g, 81%)

1H-NMR (200 MHz, CDCl₃): δ 1.81 (1H, s, OH), 2.09 (3H, s, Ac), 2.10 (3H, s, Ac), 2.43 (2H, m, H-3'), 3.69 (2H, td, J = 6.5, 2.0 Hz, H-4'), 3.99 (1H, ddd, J = 6.5, 6.5, 3.0 Hz, H-5), 4.14 (1H, dd, J = 12.0, 3.0 Hz, H-6a), 4.27 (1H, dd, J = 12.0, 6.5 Hz, H-6b), 5.02 (1H, m, H-1), 5.14 (1H, ddd, J = 6.5, 2.5, 2.0 Hz, H-4), 5.67 (1H, dd, J = 10.0, 2.0 Hz, H-1'), 5.74 (1H, m, H-3), 5.81 (1H, ddd, J = 10.5, 2.0, 1.0 Hz, H-2), 5.89 (1H, dt, J = 10.0, 1.0 Hz, H-2')

IR (NaCl): 3421, 2932, 1649, 1736, 1433, 1233

4. ศึกษาปฏิกิริยา Cyclization

To a solution butenol glycoside (12) (0.0726 g, 0.26 mmol) in CH₂Cl₂ (10 mL) was added KI (0.0640 g, 0.39 mmol) and NaHCO₃ (0.0324 g, 0.39 mmol). The reaction mixture was stirred and the solution of I₂ (0.0979 g, 0.39 mmol) in CH₂Cl₂ (10 mL) was dropwise added. After being stirred in the dark at room temperature for 1 day, the reaction mixture was diluted with EtOAc, washed with saturated Na₂S₂O₃ and worked up, and the crude product was purified by ehromatrography (20-40% EtOAc/hexane) to afford the unidentified product.

To a solution butenol glycoside (12) (0.0800 g, 0.27 mmol) in MeCN (15 mL) was added KI (0.22 g, 1.33 mmol) and I₂ (0.17 g, 1.33 mmol). After being stirred in the dark at room temperature for 1 day, the reaction mixture was diluted with EtOAc, washed with saturated Na₂S₂O₃ and worked up, and the crude product was purified by chromatrography (20-40% EtOAc/hexane) to afford the unidentified product.

To a solution butenol glycoside (12) (0.0575 g, 0.18 mmol) in CH₂Cl₂ (10 mL) was dropwise added the solution of I₂ (0.0463 g, 0.18 mmol) in CH₂Cl₂ (4 mL). After being stirred in the dark at room temperature for I day, the reaction mixture was diluted with EtOAc, washed with saturated Na₂S₂O₃ and worked up, and the crude product was purified by chromatrography (20-40% EtOAc hexane) to afford the unidentified product.