In conclusion, this study aimed to investigate the quality of epididymal sperm collected by various methods and the effect of prostatic fluid on its quality.

The importance of the study may be able to provide a standard method to collect and preserve epididymal sperm, this information will be useful for genetic preservation in dog and exotic animals.

Materials and Methods

Experiment I; assessment of fresh epididymal sperm characteristics collected by different methods

I. Animals

Thirty male dogs of various breeds aged from 1.2-7 years with the normal fertile history were selected.

II. Prostatic fluid collection and preservation

Samples of prostatic fluid were collection by digital manipulation from another 12 fertile dogs by digital manipulation. All samples (pH= 6.3-6.7) were separately collected following sperm collection and then processed for centrifugation at $600 \times g$ for 20 minutes. Subsequently, removed the supernatant, then, repeated the centrifugation and the supernatant of the samples were collected. Samples of prostatic fluid were put in small tubes (2 ml in each tube) and frozen at -20° C. Before using of prostatic fluid, the sample was inserted into 37° C waterbath for 5 minutes.

III. Sperm collection and dilution

Cauda epididymides were obtained from those 30 dogs following castration. The epididymides were randomly divided into 6 groups for sperm collection and dilution.

In group 1, fine needle was inserted through proximal vas deferens to flush 1 ml of Phosphate Buffered Saline (PBS).

In group 2, 1 ml of TCM199 (tissue culture medium; M199 powder No.0887 Gibco BRL U.S.A., Hepes No.H3375 Sigma U.S.A., NaHCO₃, Penicillin and Streptomycin) was used to replace the PBS in group 1.

In group 3, 1 ml of Egg yolk Tris (EYT) extender (Sirivaidyapong et al., 2000) was used to replace the PBS as in group 1.

In each group, let the fluid with sperm cells drop into a petri dish (Figure 1).

Figure 1. Sperm is flushed through proximal vas deferens using various media

Sperm from group 4, 5, or 6 was collected by repeated dicing or mincing of the epididymides in petri dishes contained 1 ml of PBS, TCM199 or EYT, respectively.

IV. Sperm assessment

Sperm sample from each group was taken for the assessment.

Motility of sperm was subjectively assessed at 37° C under a phase-contras microscope at sudden after collection.

Sperm viability (number of dead and lived sperm cell) was examined using Nigrosin-Eosin stain.

Sperm plasma membrane integrity was assessed using hypo-osmotic swelling (HOS) test by incubation of 0.1 ml of sperm dilution in 1.0 ml of 60 mOsmol fructose solution at 37 °C for 45 minutes. Subsequently, a drop of solution was placed on a slide, covered with a coverslip and examined under a phase-contras microscope (x 400). The percentage of swollen or curled spermatozoa was determined as sperm cells with intact plasma membrane (Jeyendran et al., 1984; Kumi-Diaka, 1993).

Experiment II; assessment of frozen-thawed epididymal sperm characteristics and the effect of prostatic fluid

The samples from groups 3 and 6 were further diluted with EYT with 7% glycerol, then, processed for freezing (Govette *et al.*, 1996) and stored for 7 days before assessing of sperm characteristics.

After thawing, each sperm sample was divided into 2 aliquots;

First aliquot was directed assessed for motility, viability and plasma membrane integrity as mentioned.

The second aliquot was added with prostatic fluid (1:1) before the assessments.

Statistic Analysis

Data are expressed as mean \pm SD. Data were subjected to one way ANOVA and Paired T-test. Differences in motility, viability and % of membrane integrity were considered significant when P < 0.05.

Results

The epididymal sperm from groups 2 and 3 showed significantly higher motility than that from groups 1, 4, 5 and 6 (means \pm SD: 81 \pm 8 and 83 \pm 6 versus 44 \pm 12, 39 \pm 8, 72 \pm 8 and 74 \pm 16 %, respectively). However, the sperm viability from only groups 1 and 4 were significantly lower than that from groups 2, 3, 5 and 6 (45 \pm 10 and 44 \pm 8 versus 84 \pm 7, 81 \pm 12, 82 \pm 11 and 79 \pm 9 %, respectively, figure 2).

Sperm samples from groups 3 and 6 showed significantly declined in motility $(20\pm13$ and $20\pm8\%)$ and viability $(27\pm16$ and $24\pm12\%)$ after freezing and thawing than those before the cryopreservation but no difference between groups.

Interestingly, the frozen-thawed sperm aliquot that had been added with prostatic fluid (1:1) demonstrated significantly improved sperm motility to 27±9 and 23±12% (groups 3 and 6). However, when the viability was assessed from those sperm groups, no difference (26±8 and 24±5%) could be found (Figure 3).

The freshly epididymal spermatozoa from all groups showed high percentage of plasma membrane integrity and the figures decreased dramatically in the frozen-thawed spermatozoa, especially, in the aliquot added with prostatic fluid. (Table 1)

Interestingly, an additional observation of the post-thawed epididymal sperm samples incubation with prostatic fluid for 45 minutes found a remarkable decline in sperm motility to 12±3 and 7±5 %.

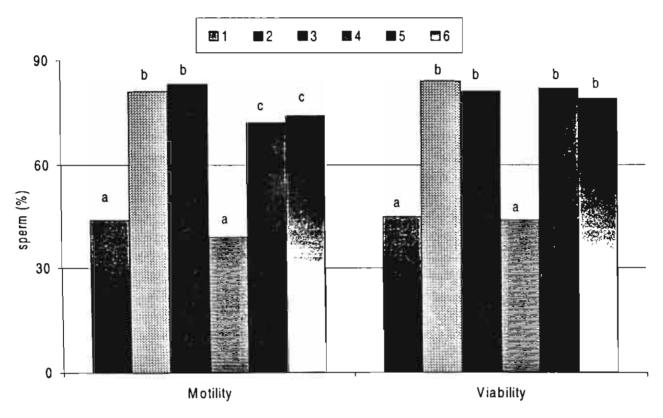


Figure 2. The motility and viability of canine epididymal spermatozoa collected using 6 different techniques are demonstrated, a, b and c indicate significant differences (P < 0.05). Mean of epididymal sperm from 30 fertile dogs are shown.

Table 1. Percentages of swollen spermatozoa after incubation with hypo-osmotic solution for 45 minutes are shown. Means \pm SD of 30 dogs are demonstrated; a, b, c and d indicate significant differences when P < 0.05.

Group	Percentage of intact plasma membrane spermatozoa		
	Pre-freeze	Post-thaw	Post-thaw (with prostatic fluid)
1	56±4ª	_	
2	56±4 ^a 92±3 ^b	-	-
3	95±12 ^b	32±5°	12±7 d
4	58±8 a	_	-
5	87±10 ^b		-
6	88±7 b	30±5°	9±5 ^d

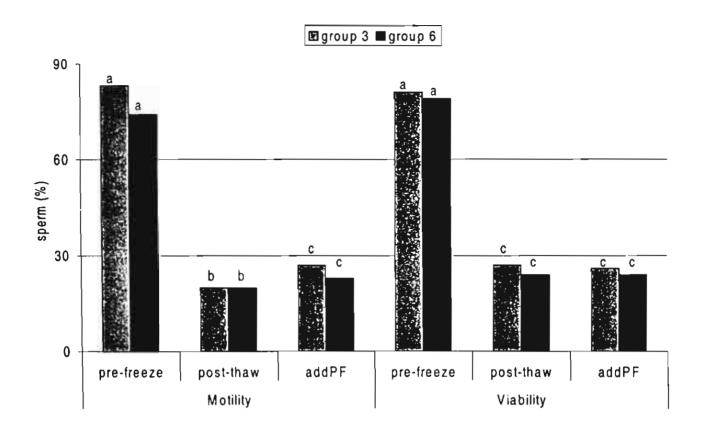


Figure 3. The percentage of motility and viability of spermatozoa from pre-freeze, frozen-thawed and frozen-thawed added with prostatic fluid are shown. Mean percentage derived from 12 dogs and differences are indicated with a, b and c (P < 0.05).

Discussion

The results of the study demonstrate that the motility of canine epididymal sperm affects by the sperm collection methods. Canine epididymal spermatozoa collection using technique of flushing through the proximal vas deferens (figure 1) results in higher sperm motility than that using dicing technique, although, the techniques have no effect on sperm viability. The dicing of cauda epididymis resulted in a high number of particles from the minced epididymis and may affect the motility pattern of spermatozoa.

Sperm diluent used during the cumulative process of sperm affects sperm motility. Phosphate Buffer Saline or PBS does not support sperm motility as do by TCM199 and semen extender. Phosphate Buffer Saline appealed to impair the motility and viability of epididymal sperm as shown from the results. Within a short period of time a, TCM199 and Egg Yolk Tris Extender did not show the different effects on the sperm motility and viability. Sperm diluent used during the cumulative process of sperm affects sperm motility. Because the epididymal sperm does not contact with prostatic fluid, the diluent used to extend the sperm may mainly affect the motility of either fresh or cryopreserved sperm, not by prostatic fluid (Sirivaidyapong et al., 2001). However, the effect on those sperm characteristics after a prolonged period after collection needed to be investigated.

Epididymal sperm from group 3 and 6 had been diluted with egg yolk Tris extender which was a proper diluent for further freezing procedure. Although, the epididymal spermatozoa diluted in TCM199 (group 2 and 4) also illustrated high motility and viability as shown in previous report on canine ejaculates (Risopatrón et al., 2002), they could not be directly process for freezing because of the improper property of TCM199 for cryopreservation. Therefore, this medium may be suitable for dilution of canine epididymal sperm and storing at short period, then processing for further biotechnological purposes.

The epididymal spermatozoa in this experiment exhibited relatively much higher total motility than that showed in previous report (Hewitt et al., 2001), although that study reported a progressive motility. Dicing the epididymides resulted in a large number of fine particles and this observation found that spermatozoa always attached their head to those small particles which may be the reason of this difference in motility.

Nevertheless, the frozen-thawed sperm also demonstrated the significantly decline in either motility or viability. The motility and viability of sperm collected by fine needle flushing did not different from those collected by dicing technique after freezing and thawing may due to the extremely decrease in those characters.

Canine spermatozoa appear to exhibit much shorter post-thaw survival than spermatozoa of other species and the progressive motility generally drops below 11% within 1-4 hours of thawing (Concannon and Battista, 1989).

High figures of standard deviation revealed wide range of differences in the rate of motility and viability reduction in post-thawed spermatozoa of different samples. In this respect, the individual differences of epididymal spermatozoa among dogs in response to cooling (Yu et al., 2002) could be a reason.

The investigation of freshly collected epididymal sperm plasma membrane integrity demonstrated high percentages of spermatozoa with intact plasma membrane as also shown in a previous report (Yu and Liebo, 2002) using fluorescene staining assessment.

The plasma membrane integrity of epididymal sperm decreased significantly after freezing and thawing process exhibited a higher number of membrane damage and sperm dead from the procedure as showed in spermatozoa from ejaculates. Acrosome integrity has been shown to be critical for the fertilizing ability of a spermatozoon and, in this respect, the integrity of the acrosome of canine ejaculated spermatozoon has been shown to decrease dramatically after freezing and thawing (Oettlé, 1986; Rodriguez-Martinez et al., 1993). In contrast with a study reported that addition of autologous prostatic fluid to frozen-thawed dog semen improved litter size, conception rate and pregnancy rate in bitches (Nöthling and Volkmann, 1993).

When the prostatic fluid was present, post thawed epididymal sperm motility increased which was similar to other previous reports, in other species such as rabbit (Castellini et al., 2000), and goat (Azerêdo et al., 2001), on the effect of seminal plasma on ejaculated sperm motility.

Conversely, a long incubation period of post-thawed epididymal spermatozoa with prostatic fluid during the hypo-osmotic swelling test resulted in the tremendous decline of spermatozoa with intact plasma membrane. From this observation, motility of the sperm also greatly decreased after 45 minutes of the incubation. This may due to the direct effect of extended duration after the sperm had been thawed or the effect of prostatic fluid on post-thawed epididymal sperm plasma membrane which could not be found in the ejaculates (Sirivaidyapong et al., 2001). The effect of prostatic fluid on membrane damage

seems to be doubtful since previous studies reported that some substances in seminal plasma e.g. glutathione, may play a role in protecting human spermatozoa against oxidative membrane damage (Lewis et al., 1997; Raijmakers et al., 2003).

However, spermatozoa and seminal plasma from different species may express diverse characters. Incubation of spermatozoa from canine ejaculates with prostatic fluid and cooled to 4° C resulted in the obviously decline of motility and detriment the sperm plasma membrane (Rota et al., 1995). Study in bovine epididymal spermatozoa showed that exposure of the spermatozoa to accessory sex gland fluid accelerated the death of sperm cells (Way et al., 2000). In addition, the motility and capacity to fertilize oocytes in vitro of mouse epididymal spermatozoa decreased with the presence of seminal plasma (Tecirlioglu et al., 2002).

The current study suggested that proper diluent and technique for sperm obtaining can yield significant higher motility and viability of canine epididymal sperm. Prostatic fluid has a favorable effect on canine epididymal sperm motility in a short period of time but then has adversely effect on the sperm characteristics after an extended period. Species and individual differences are among major factors affected gamete cryobiology and have to be cautiously concerned. The development of epididymal sperm cryopreservation techniques and information of factors influenced in sperm quality could be applied to use in genetic resource preservation either in canine or other exotic species.

Acknowledgement

The authors thank The Thailand Research Fund for the financial support on this study.

References

Azerêdo GA, Esper CR and Resende KT. 2001. Evaluation of plasma membrane integrity of frozen-thawed goat spermatozoa with or without seminal plasma. Sm Ruminant Res. 41: 257-263.

Castellini C, Lattaioli P, Moroni M and Minelli A. 2000. Effect of seminal plasma on the characteristics and fertility of rabbit spermatozoa. Anim. Reprod. Sci. 63: 275-282.

Concannon PW and Battista M. 1989. Canine semen freezing and artificial inseminations. In: Kirk RW (ed). Current Veterinary Therapy 10th: Small animal practice. Philadelphia, PA, Saunders: 1247-1259.

Gill HP, Kaufman CF, Foot RH and Kirk RW. 1970. Artificial insemination of beagle bitches with freshly collected, liquid-stored, and frozen-stored semen. Am J Vet Res 31:1807-1813.

Govette, G, Linde-Forsberg, C and Strom, B. 1996. A successful concept for freezing of dog semen. 13th Int Congr Anim Reprod (ICAR). 2: 5-8.

Hewitt DA, Leahy R, Sheldon IM and England GCW. 2001. Cryopreservation of epididymal dog sperm. Anim Reprod Sci. 67: 101-111.

Jeyendran RS, van der Ven HH, Perez-Pelaez M, Crabo BG and Zeneveld LJD. 1984. Development of an assay to assess the functional integrity of human sperm membrane and its relationship to other semen characteristics. J Reprod Fertil. 70:219-225.

Kumi-Diaka J.1993 Subjecting canine semen to hypo-osmotic test. Theriogenology. 39: 1279-7289.

Lewis SEM, Sterling ESL, Young IS and Thompson W. 1997. Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil Steril. 67: 142-147.

Linde-Forsberg C.1995.Artificial insemination with fresh, chilled extended, and frozenthawed semen in the dog. Seminars in Veterinary Medicine and Surgery (Small Animal); 10(1): 18-58.

Nöthling JO and Volkmann DH. 1993. Effect of addition of autologous prostatic fluid on the fertility of frozen thawed dog semen after intravaginal insemination.

Oettlé EE. 1986. Changes in acrosome morphology during cooling and freezing of dog semen. Anim Reprod Sci. 12: 145-150.

Raijmakers MTM, Steegers EAP, Steegers-Theunissen RPM, Mulder TPJ, Knapen MFCM, Wong WY and Peters WHM. 2003. Glutathione and glutathaione S-transferases A1-1 and P1-1 in seminal plasma may play a role in protecting against oxidative damage to spermatozoa. Fertil Steril. 79:169-172.

Risopatrón J, Catalán S, Miska W, Schill WB and Sánchez R. 2002. Effect of albumin and polyvinyl alcohol on the vitality, motility and acrosomal integrity of canine spermatozoa incubated in vitro. Reprod Domest Anim. 37:347-51.

Rodriguez-Martinez H. Ekwall H. and Linde-Forsberg C.1993. Fine structure and elemental composition of fresh and frozen dog spermatozoa. J Reprod Fertil Suppl. 47: 279-285.

Rota A, Strom B and Linde-Forsberg C. 1995. Effect of seminal plasma and three extenders on canine semen stored at 4°C Theriogenology. 44: 885-900.

Sirivaidyapong S, Cheng FP, Marks A, Voorhout WF, Bevers MM and Colenbrander B. 2000. Effect of sperm diluents on the acrosome reaction in canine sperm. Theriogenology. 53(3): 789-802.

Sirivaidyapong S, Ursem P., Bevers MM. and Colenbrander B. 2001. The effect of protatic fluid on motility, viability and acrosome integrity of chilled and frozen-thawed dog sperm. J Reprod Fertil (suppl). 57: 383-386.

Tecirlioglu RT, Lacham-Kaplan O and Trounson AO.2002. Effects of electrical stimulation and seminal plasma on the motility of mouse soerm. Reprod Fertile Dev. 14: 471-478

Way AL, Griel LC and Killian GJ. 2000. Effect of accessory sex gland fluid on viability, capacitation and the acrosome reaction of cauda epididymal bull spermatozoa. J Andro. 21: 213-219.

Yu I, Songsasen N,Godke RA and Leibo SP.2002 Differences among dogs in response of their spermatozoa to cryopreservation using various cooling and warming rates. Cryobiol. 44: 62-78.

Yu I and Leibo SP. 2002. Recovery of motile, membrane-intact spermatozoa from canine epolididymides stored for 8 days at 4°C. Theriogenology. 57: 1179-1190.

การเก็บและรักษาน้ำเชื้ออสุจิจากอิพิดิไดมิส และผลของน้ำจากต่อมลูกหมาก ต่อคุณภาพของอสุจิจากอิพิดิไดมิสในสุนัข

สุดสรร ศิริใวทยพงศ์ และ ชัยณรงค์ โลหชิต

ภาควิชาสูติศาสตร์ เธนุเวชวิทยา และวิทยาการสืบพันธุ์ คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ถ.อังรีคูนังต์ กรุงเทพ ๑๐๓๑๐

บทกัดย่อ

ปัจจุบันมีการนำอสุจิที่ผ่านการเก็บรักษาโดยการแช่เย็น หรือแช่แข็งมาใช้ในการผสมเทียมสุนัขเป็นจำนวน มาก นอกจากอสุจิที่ได้จากการรีคเก็บแล้ว อสุจิจากท่ออิพิคิไคมิสยังถูกนำมาใช้เป็นแหล่งอนุรักษ์พันธุกรรม อสุจิจากท่อ อิพิคิไคมิสที่ผ่านการแช่แข็งแล้ว จะมีการเคลื่อนที่ และการรอคชีวิตที่ต่ำลงอย่างมาก การจัดการกับอสจิก่อนการแช่แข็ง โดยเฉพาะวิธีการเก็บอสุจิ อาจมีผลต่อคุณภาพอสุจิทั้งก่อน และภายหลังการแช่แข็ง ตามปกติแล้วน้ำจากต่อมลูกหมากจะ เป็นตัวช่วยการเคลื่อนผ่านของอสุจิ แต่มีรายงานว่าอาจมีผลต่อการเคลื่อนที่ของอสุจิที่ผ่านการแช่แข็งด้วย การศึกษานี้มุ่ง หมายที่จะสำรวจคุณภาพของอสุจิจากท่ออิพิคิไคมิสจากวิธีการเก็บหลายๆอย่าง และผลของน้ำจากต่อมลูกหมากต่อคุณ ภาพอสุจิจากท่ออิพิคิไคมิส อสุจิจากท่ออิพิคิไคมิสถูกเก็บจากอัณฑะสุนัข 30 ตัวที่ผ่านการทำหมัน โดยสุนัขทุกตัวมี ประวัติกวามสมบรณ์พันธ์ปกติ แบ่งอิพิคิไคมิสเป็น 6 กลุ่ม กลุ่มที่ 1 2 และ 3 อสุจิถูกเก็บโดยการชะล้างท่อนำน้ำเชื้อด้วย เข็มชะถ้างโดยใช้สารละลาย พีบีเอส หรือ ที่ซีเอ็ม199 หรือน้ำยาละลายน้ำเชื้อ (ทริสและไข่แดง) ตามลำดับ กลุ่มที่ 4.5 และ 6 จะใช้วิธีตัดอิพิคิไคมิสเป็นชิ้นเล็กๆในภาชนะที่มีสารละลายข้างต้น ทำการตรวจอสุจิโดยดูการเคลื่อนที่ การมีชีวิต และความสมบูรณ์ของผนังหุ้มอสุจิค้วยวิธีดูการบวมตัวเมื่ออยู่ในสารไฮโปออสโมติก กลุ่มที่ 3 และ 6 จะถูกนำไปแช่ง แข็งต่อ และนำมาละลายเมื่อวันที่ 7 เพื่อครวจคุณภาพ โคยแบ่งเป็นสองส่วน ส่วนแรกตรวจทันที ส่วนที่สองนำมาใส่น้ำ จากต่อมลูกหมาก (1:1) แล้วจึงตรวจ ผลการทคลองพบว่า กลุ่ม 2 และ3 มีการเคลื่อนที่คีกว่า กลุ่มที่ 1 4 5 และ 6 (81±8 และ 83±6 ต่อ 44±12, 39±8, 72±8 และ 74±16 %, ตามลำดับ) แต่กลุ่มที่ 1 และ 4 เท่านั้นที่มีการรอดชีวิตต่ำกว่ากลุ่ม อื่นๆ ภายหลังการแช่แข็งและละลายในกลุ่มที่ 3 และ 6 พบเปอร์เซ็นต์การเคลื่อนที่ (20±13 และ 20±8%) และตัวรอด ชีวิต(27±16 and 24±12%) ต่ำลงมาก แต่ไม่ต่างกันในระหว่างกลุ่ม เมื่อเติมน้ำจากต่อมลูกหมากลงไป การเคลื่อนที่จะ ้เพิ่มขึ้นเล็กน้อย (27±9 และ 23±12% ในกลุ่ม 3 และ 6 ตามลำดับ) อย่างมีนัยสำคัญ แต่จำนวนตัวอสุจิมีชีวิตไม่แตกต่าง ส่วนความสมบูรณ์ของผนังหุ้มอสุจิจะลดลงอย่างมาก สรุปได้ว่าวิธีการเก็บอสุจิจากอิพิดิไดมิสมีผลต่อการเคลื่อนมี่ของ อสุจิ การเกลือนที่ การรอคชีวิต และความสมบูรณ์ของผนังหุ้มอสุจิลคลงอย่างมากภายหลังการแช่แข็ง น้ำจากต่อมลูก หมากช่วยเพิ่มการเคลื่อนที่ในระยะค้น แต่มีผลเสียค่อคุณภาพอสุจิเมื่อเคิมลงไปในระยะเวลาหนึ่ง

คำสำคัญ: สุนัช อสุจิ อิพิดิไดมิส การเก็บ การแช่แข็ง น้ำจากค่อมลูกหมาก

ประโยชน์ที่ได้จากการวิจัย (Out Put)

- เป็นข้อมูลพื้นฐานในการเก็บอสุจิจากอิพิคิไคมิส โดยวิธีการชะล้างคัวยการใช้เข็มสอดผ่านท่อ นำน้ำเชื้อ ซึ่งทำให้ได้อสุจิที่มีการเคลื่อนที่ไปข้างหน้าก่อนข้างสูง
- 2. ได้รับความสนใจจากนักวิจัยต่างชาติในการนำเสนอผลงาน เนื่องจากเป็นวิธีการเก็บอสุจิจากอิ พิดิไคมิสที่ต่างออกไปจากวิธีคั้งเดิม (การตัดส่วนของอิพิดิไคมิสออกเป็นชิ้นเล็กๆ)
- 3. ผลของการแช่แข็งอสุจินั้น แตกต่างออกไปจากอสุจิจากอิพิคิไดมิสในสัตว์บางชนิด และใกล้ เคียงกับสัตว์บางชนิด และมีผลสอดคล้อง และต่างจากรายงานอื่นในสุนัข เนื่องจากวิธีการเก็บ ที่แตกต่าง รวมทั้งวิธีการแช่แข็ง ซึ่งสามารถนำวิธีการเหล่านี้ไปประยุกต์ใช้ได้
- 4. น้ำจากต่อมลูกหมากซึ่งมีผลดีต่อการขนส่งอสุจิ ในสัตว์ทุกชนิด และ มีผลดีในการช่วยให้อสุจิ มีการเคลื่อนที่ที่ดี มีชีวิตที่ยืนยาว และรักษาความสมบูรณ์ของผนังหุ้มอสุจินั้น จากการศึกษานี้ จึงพบว่าให้ผลที่มีความแตกต่างเมื่อนำมาใช้กับอสุจิจากอิพิดิไคมิสในสุนัข ซึ่งเป็นทั้งผลที่ขัด แย้ง และสอดคล้องกับรายงานอื่นๆในต่างประเทศ
- 5. เทคนิกต่างๆ ในการวิจัย สามารถนำไปประยุกต์ใช้ในสัตว์ชนิดอื่น โดยเฉพาะสัตว์ป่าหายากที่ อาจตายลงอย่างไม่กาดกิด การนำอสุจิในอิพิคิไคมิสมาทำการเก็บรักษา จึงเป็นการอนุรักษ์พันธุ กรรมของสัตว์เหล่านั้นได้

ภาคผนวก

ประกอบค้วย:

ผลงานตีพิมพ์ใน Proceeding สำหรับการเสนอผลงานประชุมนานาชาติ

ณ ประเทศเบลเยี่ยม

The 3rd EVSSAR Congress. Liege, Belgium,

ระหว่างวันที่

10-12 พฤษภาคม 2545.

หัวข้อเรื่อง

Motility and Viability of Canine Epididymal Sperm

Collected by Different Methods

Université de liège faculté de médecine vétérinaire In association with European Veterinary society for Small Animal Reproduction

THIRD EVSSAR EUROPEAN CONGRESS

ON REPRODUCTION IN

COMPANION, EXOTIC AND LABORATORY ANIMALS

EDITORS: J. VERSTEGEN, K. ONCLIN & C. LINDE-FORSBERG

MOTILITY AND VIABILITY OF CANINE EPIDIDYMAL SPERM COLLECTED BY DIFFERENT METHODS

S.Sirivaidyapong

Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.

Tel.662-2189752, fax.662-2520738, E-mail sudson@chula.com

Introduction

Cryopreservation of canine epididymal sperm resulted in a significant reduction of the sperm motility and viability (1). Prior to the freezing process, technique for sperm collection may influence quality of the sperm and then affects the frozen-thawed sperm characteristic (2). This study aimed to investigate the quality of epididymal sperm collected by various methods.

Materials and Methods

Cauda epididymides were obtained from 18 dogs of various breeds aged from 1 2-6 years following castration. The epididymides were randomly divided into 6 groups for sperm collection. In group 1, 2 or 3, fine needle—as inserted through proximal vas deferens to flush 1 ml of PBS, TCM 199* or Egg yolk Tris extender (EYT), respectively and let the fluid with sperm cells drop into a peth dish. Sperm from group 4, 5 or 6 was collected by repeated dicing of the epididymides in peth dishes contained 1 ml of PBS, TCM 199 or EYT, respectively. Motility of sperm was subjectively assessed at 37°C. Sperm viability was examined using Nigrosin-Eosin stain. The samples from groups 3 and 6 were further diluted with EYT with 7% glycerol, then, processed for freezing and stored for 7 days before assessing of sperm characteristics.

Results

The sperm from groups 2 and 3 showed significantly higher motility than that from groups 1, 4, 5 and 6 (means \pm SD-81 \pm 8 and 83 \pm 6 versus 44 \pm 12, 39 \pm 8, 72 \pm 8 and 74 \pm 16%, respectively). However, the sperm viability from only groups 1 and 4 were significantly lower than that from groups 2, 3, 5 and 6 (45 \pm 10 and 44 \pm 8 versus 84 \pm 7, 81 \pm 12, 82 \pm 11 and 79 \pm 9%, respectively). Sperm samples from groups 3 and 6 showed significantly declined in motility (20 \pm 13 and 20 \pm 8%) and viability (27 \pm 16 and 24 \pm 12%) after freezing and thawing than those before the cryopreservation but no difference between groups

Summary and discussion

Flushing through the proximal vas deferens for canine epididymal sperm collection results in higher sperm motility than that using dicing technique, although, the techniques have no effect on sperm viability. Sperm diluent used during the cumulative process of sperm affeots sperm motility. It can be suggested that proper diluent and technique for sperm obtaining can yield significant higher motility and viability of canine epididymal sperm.

References

- 1. Hewitt DA, Leahy R, Sheldon IM and England GCW 2001. Cryopreservation of epididymal dog sperm. Anim Reprod Sci 67: 101-111.
- 2. Concannon PW & Battista M 1989 In: Current Veterinary Therapy X, p 1247-1259
- * M199 powder No.0887 Gibco BRL U.S A.+ Hepes No.H3375 Sigma U.S A.+ NaHCO₃ + Penicillin + Streptomycin