

รายงานวิจัยฉบับสมบูรณ์

โครงการ บทบาทของสาร Opioid และ Opioid receptors ต่อการ เปลี่ยนแปลงระบบป้องกันของทางเดินอาหารที่ควบคุมโดยระบบประสาท

โดย ผศ.สพ.ญ.ดร. สุทธาสินี ปุญญโชติ การวิชาสรีรวิทยา คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

รายงานวิจัยฉบับสมบูรณ์

โครงการ บทบาทของสาร Opioid และ Opioid receptors ต่อการ เปลี่ยนแปลงระบบป้องกันของทางเดินอาหารที่ควบคุมโดยระบบประสาท

> โดย ผส.สพ.ญ.ดร. สุทธาสินี ปุญญโชติ ภาควิชาสรีรวิทยา คณะ สัตวแพทยสาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

> > ชื่อนักวิจัยที่ปรึกษา

Professor Dr David R Brown

Departments of Veterinary PathoBiology, University of Minnesota, USA

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

-04

Table of contents

Acknowledgement	1
Abstract (Thai)	2
Abstract (English)	3
Executive summary	4
Introduction	7
Material and Methods	8
Results	13
Discussion and conclusion	23
References	27
Appendices	31

กิตติกรรมประกาศ

ผู้วิจัยขอขอบคุณ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ที่ให้ทุนวิจัยหลังปริญญาเอก ประจำปี 2544 เพื่อสนับสนุนการทำวิจัย และเปิดโอกาสให้ผู้วิจัยได้ใช้ความรู้ความสามารถของ ดนเองในการทำวิจัยโดยเฉพาะอย่างยิ่งในสาขาวิชาที่มีความเชี่ยวชาญ ทั้งนี้เพื่อเป็นการเพิ่ม ประสบการณ์ทางด้านการทำวิจัย การพัฒนาทางด้านความคิดและวิชาการ ผู้วิจัยขอขอบคุณเป็น อย่างยิ่งสำหรับ Professor David R Brown นักวิจัยพี่เลี้ยงในการให้คำปรึกษาและคำแนะนำ ดลอดจนความช่วยเหลือในทุก ๆ ด้านเป็นอย่างดียิ่ง อีกทั้งยังทำให้เกิดความร่วมมือในด้านการวิจัย ต่อไปเพื่อผลิตผลงานวิจัยที่มีคุณภาพสามารถตีพิมพ์ในวารสารวิชาการระดับนานาชาติได้ และ ท้ายที่สุดขอขอบคุณภาควิชาสรีรวิทยา และคณะสัตวแพทยศาสตร์ ตลอดจนจุพาลงกรณ์ มหาวิทยาลัย และมหาวิทยาลัยศรีนครินทรวิโรฒ ที่ให้การสนับสนุนการทำวิจัย สนับสนุนด้านวัสดุ ครุภัณฑ์ และเครื่องมือเครื่องใช้ในการทดลองที่จำเป็น ทั้งหมดนี้นับว่ามีส่วนช่วยให้การวิจัยครั้งนี้ สำเร็จลุล่วงไปด้วยดี

Abstract

Project Code: PDF/29/2544

Project Title: Roles of opioid and their opioid receptors on the neuromodulation of intestinal

secretory host defense mechanism

Investigator: Assistant Professor Sutthasinee Poonyachoti, Department of Physiology,

Faculty of Veterinary Science, Chulalongkorn University

E-mail Address: sutthasinee.p@chula.ac.th

Project Period: 1 July 2001 – 30 June 2003

Abstract: Opioids have been shown to inhibit the neuronal release of prosecretory enteric neurotransmitters via the specific opioid receptors (ORs). The main objective of this project was to study the roles of opioid and their receptors on the neuromodulation of intestinal secretory host defense mechanism. The porcine ileal mucosa obtained as the model for human bowel were isolated from the growing pigs and characterized for the type of opioid receptors on the submucosal plexuses of enteric neurons using the immunohistochemistry techniques. Delta-opioid receptors (δ-OR) appear to be predominant OR in neurons and nerve fibers throughout the porcine enteric nervous system (ENS). In contrast, kappa-opioid receptors (κ-OR) mu-opioid receptors (μ-OR) were not expresses in either the nerve fibers or neurons of submucosal plexuses in porcine ileum. In the submucosal plexus, most populations of the neurons containing the vanilloid type I receptor (VR-1) or calcitonin gene related peptides (CGRP) but some substance P (SP) which are members of intrinsic primary afferent neurons (IPANs) coexpressed with δ -OR immunorectivities. Most of secretory motor neurons indicated by the immunoreactivities of choline acetyl transferase (ChAT) coimmunoreactived with δ-OR antibody. In contrast, only 2% of the motor neurons containing vasoactive intestinal peptides or nitric oxide synthase coexpressed with δ -OR immunorectivity. In addition, neurons expressed both ChAT and VR-1 were mostly coexpressed with immunoreactivity of δ -OR antibody suggesting the important in enteric neural reflex. Roles of δ -opioids on the active ion secretion evoked by enteric neural reflex were examined in the ileal mucosal using Ussing chamber apparatus. The stipped-ileal mucosa were mounted in Ussing chambers and the voltage-clamp amplifier was used to measure short circuit current (Isc) and transepithelial potential difference. Substance P (1 µM), CGRP (1 µM), carbachol (10 µM) or mast cell degranulator compond 48/80 (10 ng/ml) but capsaicin (10 μM) produced a rapid increase in Isc which sensitived to saxitoxin (1 μM) or furosemide (1 μM). DOR agonist, [D-Pen², D-Pen⁵]-enkephalin (DPDPE, 0.1 μM) inhibited CGRP-, SP-or compond 48/80-evoked anion secretion by 30%. 75% or 50%, respectively. DPDPE could not reveal an inhibitory effects on cch-stimulated ion secretion. The present study indicates that DOR expressed on IPANs plays an inhibitory functions on the active anion secretion-evoked by neurogenic stimulation or degranulated mast cells. The evidences may suggest the functional roles of neuronal DOR on the intestinal defense mechanism (i.e. motility, immune function) regulated by IPANs.

Keywords: Opioid receptor, ENS, active ion secretion, defense mechanism

บทคัดย่อ

รหัสโครงการ :

PDF/29/2544

ชื่อโครงการ :

บทบาทของสาร Opioid และ Opioid receptors ต่อการเปลี่ยนแปลงระบบ

ป้องกันของทางเดินอาหารที่ควบคุมโดยระบบประสาท

ชื่อนักวิจัย :

ผศ. สพ.ญ.ดร. สุทธาลินี ปุญญโชดิ ภาควิชาสรีรวิทยา คณะสัตวแพทยศาสตร์

จุพาลงกรณ์มหาวิทยาลัย

E-mail Address: sutthasinee.p@chula.ac.th

ระยะเวลาของโครงการ : 1 กรกฎาคม 2544 – 30 มิถุนายน 2546

บทคัดย่อ

การวิจัยในครั้งนี้มีวัตถุประสงค์ในการศึกษาการปรากฏและบทบาทของตัวรับโอปิออยด์บน เชลล์ประสาทชนิดตัวรับ (Intrinsic primary afferent neurons, IPANs) ซึ่งอาจเป็นเซลล์ประสาทที่ควบคุมการ หลั่งสารน้ำและอิเลคโตรไลท์จากเซลล์เยื่อบุทางเดินอาหารภายใต้สภาวะที่ Mast cells แตกตัวเพื่อใช้เป็นกลไก การป้องกันของระบบทางเดินอาหาร จากการศึกษาการปรากฏของตัวรับโอปิออยด์ (Opioid receptors) ด้วยวิธี Immunohistochemistry ของ Anti-opioid receptor antibody ช่วมกับ Antibody ของตัวรับ Vanilliod receptor type I (VR-I) หรือเอ็นไซม์ที่ใช้สังเคราะห์สารสื่อประสาทชนิด substance P (SP), calcitonin gene-related peptides (CGRP), vasoactive intestinal peptides (VIP), Nitric oxide (NO) หรือ cholinergic neurons ของเยื่อ บุทางเดินอาหารของสุกรส่วนอีเลี่ยมพบว่า เซลล์ประสาทของ Submucosal plexuses ส่วนนอก (Outer submucosal plexus; OSP) และส่วนใน (Inner submucosal plexus; ISP) มีการปรากฏของ opioid receptor ชนิต delta (DOR) เท่านั้นโดยไม่พบการปรากฏตัวรับโอปิออยด์ชนิดอื่น นอกจากนี้พบว่าเซลล์ประสาทที่มีตัวรับ DOR ส่วนใหญ่ใน ISP นั้นจะเป็นเซลล์ประสาทชนิดที่มี VR-I หรือ CGRP ซึ่งเป็นสารสื่อประสาทที่มักพบอยู่ใน เซตล์ประสาทชนิด IPANs และเซตล์ประสาทที่มีตัวรับ DOR ส่วนใหญ่ให้ปฏิกิริยาเป็นผลบวกกับแอนดิบอดีเซตล์ ประสาทต่อ Choline acetyltransferase (ChAT) ซึ่งเป็นตัวบ่งถึงการเป็นเซลล์ประสาทสั่งการชนิดCholinergic แต่อย่างไรก็ตามมีเซลล์ประสาทที่มีตัวรับ DOR จำนวนเล็กน้อยที่เป็นเซลล์ประสาท IPANs ซนิดที่มี SP หรือ เซตล์ประสาทสั่งการชนิดที่มี NO หรือ VIP จากการศึกษาบทบาทของ DOR ในการยับยั้งการหลั่งสารน้ำและอิเลต โตรไลท์จากเชลล์เยื่อบุทางเดินอาหารภายใต้การกระตุ้นผ่านกลไกของ IPANs หรือจาการที่ Mast cells แตกตัว ด้วยอุปกรณ์ Ussing chambers ที่เชื่อมต่อกับเครื่อง voltage clamp พบว่าการขับหลั่งอิออนของเยื่อบุส่วนอื่เลี่ยม ไม่สามารถถูกกระตุ้นได้ด้วย capsaicin (1-10 mM) ซึ่งเป็น VR-1 agonist แต่ถูกกระตุ้นได้ด้วยสาร CGRP, Substance P หรือสาร Compound 48/80 ซึ่งเป็นสารที่ทำให้ Mast cell แตกตัวและการกระตุ้นดังกล่าวสามารถ ยับยั้งประมาณ 30-70% ได้ด้วยสาร DOR-agonist, [p-Pen², p-Pen⁵]-enkephalin (DPDPE, 10 ЦМ) ผลจาก การวิจัยแสดงให้เห็นว่า DOR ที่ปรากฏบนเซลล์ประสาทชนิด IPANs โดยมีบทบาทในการยับยั้งระบบการขับหลั่ง ที่มีการควบคุมผ่านสารสื่อประสาทที่พบในระบบ IPANs และการแตกตัวของ Mast cells ดังนั้น DOR ที่พบใน เซลล์ประสาทของส่วนทางเดินอาหารอาจมีบทบาทในการควบคุมการทำงานระบบปกป้องชนิดอื่น ๆของเดิน อาหาร เช่น ระบบภูมิคุ้มกัน หรือระบบการเคลื่อนใหว ที่อยู่ภายใต้การกระตุ้นหรือควบคุมจากกลไกของเซลล์ ประชาทในระบบ IPANs

คำหลัก: ตัวรับโอปิออยด์, ระบบประสาทของทางเดินอาหาร, การขับหลั่งอื่ออน, กลใกป้องกันชนิดไม่เฉพาะเจาะจง

Executive Summary

ทุนวิจัยหลังปริญญาเอก

1. ชื่อโครงการ (ภาษาไทย) บทบาทของสาร Opioid และ Opioid receptors ต่อการ เปลี่ยนแปลงระบบป้องกันของทางเดินอาหารที่ควบคุมโดยระบบ ประสาท

(ภาษาอังกฤษ) Roles of opioid and their opioid receptors on the neuromodulation of intestinal secretory host defense mechanism

2. ชื่อหัวหน้าโกรงการ หน่วยงานที่สังกัด ที่อยู่ หมายเลขโทรศัพท์ โทรสาร และ e-mail

ชื่อ นางสาวสุทธาสินี ปุญญโชติ

Miss Sutthasinee Poonyachoti

คุณวุฒิ Ph.D. (Animal Physiology)

University of Minnesota, USA

ตำแหน่ง อาจารย์

สถานที่ทำงาน ภาควิชาสรีรวิทยา คณะ สัตวแพทยศาสตร์

จุพาลงกรณ์มหาวิทยาลัย ถนนอังรีดูนังต์ เขตปทุมวัน

กรุงเทพฯ 10330

โทรศัพท์ 02-218-9742 โทรสาร 02-252-0737

e-mail address Sutthasinee.P@Chuła.ac.th

3. สาขาวิชาที่ทำการวิจัย วิทยาศาสตร์การแพทย์ (Medical science)

nervous system) ด้วยสารที่หลั่งมา Mast cells หรือที่เรียกว่า Inflammatory mediators ในขณะที่มี การอักเสบ, การแพ้อาหาร โดย Inflammatory mediators กระตุ้นให้เกิดการเพิ่มการหลั่งไอออนและ สารน้ำโดยกระตุ้นผ่านทางระบบประสาทรับเบื้องต้นภายในผนังทางเดินอาหาร (Intrinsic primary afferent neurons, IPANs) และระบบ Secretory motor neurons (Hetch, 1999; Perdue and McKay, 1994; Holzer, 1998)

ถึงแม้ว่าจะมีการศึกษาเกี่ยวกับฤทธิ์ของ Opioid ต่อระบบทางเดินอาหาร แต่ข้อมูลเกี่ยวกับ กลไกของ Opioids Opioid receptors และชนิดของเซลล์ประสาทที่เป็นเป้าหมายในการออกฤทธิ์ของ Opioid ภายใต้ภาวะที่ถูกกระตุ้นด้วยสาร Inflammatory mediators ซึ่งเป็นกลไกลำคัญของระบบ ป้องกันเบื้องดันในการกำจัดสิ่งแปลกปลอมยังไม่มีการศึกษาหรือมีรายงานมาก่อน โดยผลการทดลอง ที่ได้จะสามารถนำไปเป็นข้อมูลต่อการรักษาและพัฒนายาใช้ต่อระบบทางเดินอาหารที่ไม่ก่อให้เกิด ผลข้างเดียงที่รุนแรงต่อผู้ใช้ยาในกลุ่ม Opioids ต่อไป

7. วัตถุประสงค์

เพื่อศึกษาชนิดของระบบประสาทที่เกี่ยวข้องกับการออกฤทธิ์ของสาร Opioids ในการยับยั้งระบบ ควบคุมการขนส่งสารน้ำและอิเลคโตรไลท์ของเซลล์เยื่อบุทางเดินอาหารภายใต้สภาวะที่ถูกกระตุ้นด้วยสาร inflammatory mediators ป้องกันของทางเดินอาหาร

8. ระเบียบวิธีวิจัย

การวิจัยครั้งนี้จะศึกษาการขนส่งสารน้ำและอิเลคโดรไลท์ของเยื่อบุที่ได้จากทางเดินอาหาร ส่วนลำไส้เล็ก (Intestinal mucosa) จากหมูเพศเมีย หรือ เพศผู้พันธุ์ทาง (cross-bred) อายุ ประมาณ 5-6 อาทิตย์ โดยอุปกรณ์ Ussing chamber ที่ต่อเข้ากับเครื่องควบคุมความต่างศักย์ไฟฟ้า (Voltage clamp) แล้ววัดค่ากระแสไฟฟ้าที่ค่าความต่างศักย์ไฟฟ้าเป็นศูนย์เรียกว่า Short circuit current (/ และ Transepithelial potential difference (P.D) อย่างต่อเนื่อง โดยการวิจัยจะแบ่ง ออกเป็น 3 ขั้นตอนคือ

ตอนที่ 1 การศึกษาชนิดของเซลล์ประสาทและบทบาทที่เกี่ยวข้องกับผลของ Opioids ต่อการ ขนส่งสารน้ำและอิเล็กโดรไลท์ของเซลล์เยื่อบุทางเดินอาหารที่ถูกกระตุ้นโดย Inflammatory mediators โดยการทดสอบการเปลี่ยนแปลง / และ P.D ภายใต้ภาวะที่ถูกกระตุ้นด้วย Inflammatory mediators ด้วยสาร ด้วยสารที่ยับยั้งการหลั่ง Neurochemical substances จาก ปลายระบบประสาทที่เคยมีรายงานในสุกร เช่น Substance P, Calcitonin gene relating peptides (CGRP) เป็นตัน ก่อนที่จะถูกกระตุ้นด้วย Inflammatory mediators แล้วนำผลจากตอนที่ 3 นำมา เปรียบเทียบกับตอนที่ 1 และมีการยืนยันชนิดของเซลล์ประสาทที่เป็นเป้าหมายในการออกฤทธิ์ ของสาร Opioids โดยการศึกษาการปรากฏของ Opioid receptor protein บนเซลล์ประสาทชนิด

- ต่าง ๆ ในระบบประสาทของทางเดินอาหารของสัตว์ชนิดนี้ด้วยวิธี Confocal coimmunohistochemistry technique ด้วย Opioid Antibody และ Neurochemical markers ต่อ Sensory และ Motor neurons
- ตอนที่ 2. การศึกษาผลของสาร Inflammatory mediators ที่หลั่งออกมาจาก Mast cells ในการ ขนส่งสารน้ำและอิเลคโตรไลท์ โดยการศึกษาเปรียบเทียบผลของ / และ P.D ต่อการกระตุ้นด้วย Inflammatory mediators ที่พบใน Mast cells เช่น Histamine ต่อการเปลี่ยนแปลง / และ P.D โดยการใช้สารเคมีดังต่อไปนี้ เช่น สาร compound 48/80 สาร Chloride channel blocker และ Sodium channel blocker และสารที่ยับยั้งการทำงานของระบบประสาท (Neurochemical blockers) เพื่อศึกษากลไกของ ต่อการเคลื่อนผ่านของไอออน ในภาวะที่ถูกกระตุ้นด้วยสารที่ทำให้ Mast cells แตกตัว ชนิดของไอออน และระบบประสาทที่ควบคุมการเปลี่ยนแปลงต่อการขนส่ง ไอออนภายใต้ภาวะที่ถูกกระตุ้นด้วย Inflammatory mediators ตามลำดับ
- ตอนที่ 3. การศึกษาฤทธิ์ของสาร Opioids ต่อการขนส่งสารน้ำและอิเลดโตรไลท์ของเซลล์เยื่อบุ ทางเดินอาหารที่ถูกกระตุ้นโดย Inflammatory mediators โดยการทดสอบการเปลี่ยนแปลง I และ P.D ภายใต้ภาวะที่ถูกกระตุ้นด้วย Inflammatory mediators ด้วยสาร Opioids ที่ Selective ต่อ ชนิดต่าง ๆ ของ Opioid receptors ก่อนที่จะถูกกระตุ้นด้วยInflammatory mediators โดยผลภายใต้ การถูกกระตุ้นด้วยของ Inflammatory mediatorsในภาวะที่มีสาร Opioids จากตอนที่ 3 นำมา เปรียบเทียบกับตอนที่ 2

8.1. ขั้นตอนและวิฐีการในการวิเคราะห์

การเสนอผลงานการทดลองตอนที่1-3โดยการเปรียบเทียบผลการทดลองซึ่งเป็นค่าเฉลี่ย ± SEM (standard error of mean) ระหว่างกลุ่มควบคุมและกลุ่มที่ให้สารทดลองในขนาดต่าง ๆ โดย ใช้ T Test หรือ Analysis of Variance (ANOVA) ตามความเหมาะสม และให้ค่า P < 0.05 ถือว่ามี นัยสำคัญทางสถิติ สำหรับการทดลองตอนที่ 1 ในส่วนของ Confocal coimmunohistochemistry technique จะใช้การนับจำนวนเซลล์ประสาทที่แสดง Immunoreactivity ต่อ Opioid antibody กับ Neurochemical substances ที่อยู่ในระบบประสาทของทางเดินอาหาร

Introduction

The intestinal epithelium comprises a vast surface area which is continuously exposed to the external environment and separates it from the internal milieu. The active, transepithelial secretion of ions accompanied by water acts to dilute luminal pathogens and facilitate the movement of protective substances, such as mucin (Miller et al.,1987) secretory immunoglobulin A, and antimicrobial defensin peptides to the luminal surface (Theodorou et al., 1996). Epithelial cells of the small intestinal mucosa are normally responsible not only to absorb electrolyte and water but also to constitute a cellular barrier to subepithelial invasion by luminal pathogens.

Immediate hypersensitivity reactions to foods, resulting in acute diarrhea and other gastrointestinal signs, are widespread, particularly among young children (Ahmed et al., 1997). Acute diarrhea and other gastrointestinal signs associated with antigen ingestion in sensitized individuals are thought to stem from the degranulation of mucosal mast cells (Perdue and McKay, 1994). Histamine, released from mucosal mast cells in the course of intestinal anaphylaxis, increases active anion secretion and short-circuit current (I_{sc}) across small intestinal and colonic mucosae through interactions with intrinsic primary afferent neurons (IPANs) of enteric submucosal neurons (Perdue and McKay, 1994). Capsaicin, a lipophilic vanilloid substance found in *Capsicum* peppers which produces the sensation of heat, has a prominent excitatory action on primary afferent neurons. Their receptors, vanilloid receptors type 1 (VR1) mediated capsaicin evokes sensations of abdominal pain (Hammer et al. 1998). In addition, it is associated with release of substance P or calcitonin gene-related peptides (CGRP) from IPANs causing the release of proinflammatory substances from mast cells (Szallasi and Blumberg 1999).

Natural and synthetic opioids such as morphine, codeine and loperamide valuable therapeutic mainstays in the alleviation of non-infectious diarrhea. As a side effect, the continued use of opioid analgesics is associated with severe constipation which can progress to intestinal pseudo-obstruction (Brownstein, 1993). The antisecretory effects of opioids are clearly mediated by the specific receptors, mu- (MOR). deltu-(DOR) or kappa- (KOR) opioid receptors within the intestine and at additional sites in the CNS and ANS. In isolated mucosal preparations, stable enkephalin analogs rapidly and transiently decrease transepithelial short circuit current (Isc) suggesting a reduction in the net secretory flux of Cl⁻ and enhancement of NaCl absorption. The opioid-induced change in Isc is in a naloxone reversible manner (Brown and Miller., 1991). These antisecretory effects were inhibited by tetrodotoxin, which blocked nerve conduction.

suggesting that opioids act directly on the submucosal enteric neurons to inhibit intestinal secretion (Cooke, 1989). Opioid receptor (OR) mediates an increase in the membrane K⁺ conductance and inhibit inward currents in the submucosal neurons.

Thus, opioids promote water absorption and decrease anion secretion in the porcine ileum, and these effects turn out to compromise the ability of intestine to dilute and purge bacterial enterotoxins and infectious luminal microbes. Although immunoreactivities to opioid peptides, such as the enkephalins or dynorphin, have been localized in enteric neurons, little is known about the distribution of their cognate receptors in the enteric nervous system.

Therefore, in this study we examined the chemical coding of enteric neurons expressing immunoreactivity to opioid receptors in the porcine ileum and the relationship of OR immunoreactivity to that of IPANs. ORs coexpression with IPANs were hypothesized to be a subpopulation of cholinergic neurons within all enteric ganglia of the porcine small intestine and implicate these receptors in the modulation of intestinal sensorymotor function. Therefore, the effects of opioids and their receptor in modulating the intestinal secretory function by the intrinsic primary afferent neurons were also examined in the present study. Mast cells located proximity to the IPANs may play the predominant role in the neuroimmune modulation of GI secretory function (Surprenant, 1994). Therefore, the principle aim of this study is to address types of opioid receptors mediated the inhibitory effects of opioid agonists in porcine ileum, a functional model of human small intestine using the biological assay. Secondly, we used the immunohistochemistry technique to study the possible of opioid receptors coexistence with intrinsic primary afferent neurons.

Material and Methods

Drugs: [D-Pen², D-Pen⁵]-enkephalin (DPDPE) and naloxone were obtained from Peninsula Laboratories, Inc. (Belmont, CA) and were dissolved in 0.01 M acetic acid with 0.1% bovine serum albumin. The solubilized peptides were aliquoted at stock concentrations of 1 to 10 mM and stored until use at -20°C. All other drugs were obtained from Sigma Chemical Co. (St. Louis, MO).

Tissue preparation: Pigs were sedated with Telazol* (10 mg/kg. i.m.) prior to sacrifice by barbiturate overdose. A segment of ileum 10 - 20 cm in length was removed and opened longitudinally along the antimesenteric border. Ileal segments were

placed in ice-cold oxygenated Ringer-bicarbonate solution modified to approximate the composition of porcine extracellular fluid (ionic composition in mM: Na⁺, 148.5; K⁺, 6.3; Cl⁻, 139.7; Mg²⁺, 0.7; Ca²⁺, 3.0; HCO₃⁻, 19.6; HPO₄⁻, 1.3; H₂PO₄⁻, 0.3; pH 7.4).

Immunohistochemistry: After a laparotomy incision, a portion of the ileum was removed and cut in blocks of 1 to 2 cm² and immersed in ice-cold 2%paraformaldehyde in phosphate-buffered saline (PBS) at pH 7.4 for 2 hrs. The tissues were then cryoprotected in graded (10 -30%) concentrations of sucrose in PBS, embedded in TissueTek O.C.T. compound (Baxter Healthcare Corp., McGaw Park, IL), and frozen. Longitudinal or transverse cryostat sections (14 µm thickness) were thaw-mounted onto Superfrost-plus™ slides (Fisher Scientific, Pittsburgh, PA) and stored at -20° C until use. Tissues were rehydrated in PBS for 15 min and preincubated in PBS containing 0.4% Triton X-100 (Sigma Chemical Co., St. Louis, MO) and 3% bovine serum albumin (Sigma Chemical Co., St. Louis, MO) in PBS for 30 min at room temperature to block non-specific binding.

DOR and KOR immunoreactivities were detected with a rabbit polyclonal antiserum against an extracellular sequence (PFQSAKYLMETWPFGELL) of the mouse DOR that is conserved in porcine DOR and generously provided by Dr. Robert P. Elde (Arvidsson et al. 1995; Brown et al. 1998), and a goat polyclonal antiserum raised against the N-terminus of the human KOR (MESPIQIFRGEPGPTCAPSA) purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA). VR1 immunoreactivity was detected using a polyclonal antiserum raised in guinea pig against the C-terminus of murine VR1 that was provided by Dr. Robert P. Elde (Guo et al. 1999). Anticholine acetyltransferase (ChAT) and antineuronal nitric oxide synthase (NOS) antisera were used to detect cholinergic and nitrinergic neural elements, respectively. Antisera to the vasoactive intestinal peptide (VIP), CGRP and SP were employed to investigate the peptidergic coding of enteric neurons. To confirm neuronal morphology, adjacent sections to each antisera-stained section were incubated with an antibody to the neuronal marker, protein gene product 9.5 (PGP 9.5). Details of the antibodies employed are given in Table 1.

Table 1. Description of antibodies used for immunohistochemistry in the present study (*ChAT* choline acetyltransferase, *CGRP* calcitonin gene-related peptide, *DOR* d-opioid receptor, *KOR* k-opioid receptor, *NOS* neuronal nitric oxide synthase, *PGP 9.5* protein gene product 9.5, *SP* substance P, *VIP* vasoactive intestinal peptide, *VRI* type I vanilloid receptor)

Antigen	Host	Dilution	Source
ChAT	Goat	1:20	Chemicon International Inc., Temecula, CA
	Rabbit	1:400	Chemicon International Inc.
CCDD	Goat	1:400	Santa Cruz Biotechnology, Santa Cruz, CA
CGRP	Rabbit	1:400	Chemicon International Inc.
DOR 461	Rabbit	1:400	Dr. Robert P. Elde, University of Minnesota
KOR-1	Goat	1:400	Santa Cruz Biotechnology
NOS	Rabbit	1:600	Santa Cruz Biotechnology
PGP 9.5	Rabbit	1:400	Chemicon International Inc.
SP	Rat	1:40	Incstar, Stillwater, MN
VIP	Rabbit	1:600	Incstar
VR1	Guinea pig	1:400	Dr. Robert P. Elde, University of Minnesota

To investigate colocalization of the various markers, coincubation of tissue sections with DOR or KOR antiserum alone and in combination with other primary antibodies were performed. In addition, some tissue sections were coincubated simultaneously with DOR, KOR and VR1 antisera. The neurochemical coding of OR-and VR1-immunoreactive neurons and fibers was examined with antibodies to ChAT, VIP, CGRP, SP and NOS. Because DOR, NOS and VIP antisera were raised in rabbits, neurons coexpressing immunoreactivities to DOR and ChAT were compared with those coimmunostained with ChAT antisera and NOS or VIP antisera in adjacent or nearby sections.

Tissue sections were rehydrated in phosphate-buffered saline (PBS, pH 7.4) for 15 min and incubated in PBS containing 0.4% Triton X-100 (Triton: Sigma Chemical Co., St. Louis, MO) and 3% bovine serum albumin (BSA: Sigma Chemical Co., St. Louis, MO) for 30 min at room temperature to block non-specific binding of the primary antibodies. Sections were further incubated overnight at 4°C with primary antisera diluted in Triton/BSA-containing PBS. Following rinses in PBS for 15 min,

sections were incubated in PBS for 1 h in the dark with one or more of the following secondary antibodies: donkey anti-rabbit, goat or rat indocarbocyanine 3 (Cy3)-conjugated IgG at 1:400 dilution; donkey anti-goat, anti-rat or anti-rabbit fluorescein isothiocyanate (FITC)-conjugated IgG at 1:40 dilution; or donkey anti-rabbit indocarbocyanine 5 (Cy5). Sections were subsequently washed in PBS for 15 min and coverslipped with Vectashield (Vector Laboratory, Burlingame, CA).

Control experiments to verify the specificity of primary antibodies were performed by preincubating primary antibodies with their corresponding blocking peptides in 10- to 30-fold excess by weight. Blocking peptides were preincubated overnight at 4°C with primary antiserum at the same dilutions used to detect immunoreactive structures in situ; after centrifugation, the supernatant obtained was substituted for the primary antibody in the staining protocol. Preincubation of DOR, KOR or VR1 antisera with their respective blocking peptides in 30-fold excess eliminated specific neuronal immunoreactivity, but not immunofluorescence in the crypts and muscularis mucosae. For all other primary antibodies, incubation of sections with blocking peptides in tenfold excess abolished specific immunoreactivity. Omission of primary antibodies resulted in an absence of specific immunoreactivity.

A minimum of three transverse or longitudinal ileal sections from each experiment were scanned using a BioRAD confocal laser scanning microscope (Model 1024) which was attached to a Nikon fluorescence microscope. Each field was scanned sequentially in three dimensions by optical sectioning with a step size of 0.5 µm. Images were obtained using Comos software (version 6.05.8; Comos BioRad, Hercules, CA) and further processed employing NIH Image (version 1.59) and Adobe Photoshop (version 4.0, Adobe Systems, San Jose, CA). The numbers of neurons that exhibited colocalization of opioid or vanilloid receptor immunoreactivities with that of other neurochemical markers were counted in inner and outer submucosal ganglia and myenteric ganglia in two different fields from each of three pigs. Data are expressed as the mean ± SD of the percentage of the total number of immunoreactive neurons counted for each pair of antigens examined.

Measurement of mucosal ion transport: The ileum was stripped of its serosa and underlying smooth muscle layers by blunt dissection and the remaining mucosa-submucosa preparation was mounted between two lucite Ussing-type half chambers (Jim's Instrument Manufacturing Co., Iowa City, IA) having a flux area of 2.0 cm². Both sides of each mucosal sheet were bathed in the modified Ringer-HCO3-solution which was maintained at pH 7.4 and 39.1° C (porcine core temperature) and oxygenated continuously with 5% CO₂ in O₂. In addition, 10 mM mannitol and D-

glucose were present in luminal and contraluminal bathing solutions, respectively. The short-circuit current (I_{sc}) across the tissues, a measure of net ion transport, was monitored continuously by an automatic voltage clamp (Model TR100, JWT Engineering, Overland Park, KS). After the baseline I_{sc} stabilized, the circuit was opened before and after drug administration to measure potential difference (mV): tissue conductance (G_t in mS/cm²) was calculated according to Ohm's law. Peak elevations in I_{sc} relative to the baseline I_{sc} were determined after the contraluminal addition of capsaicin (Cap;1, 3 or 10 μ M), carbachol (CCh;10 μ M), substance P (SP;10 μ M) or calcitonin gene-related peptides (CGRP;100 nM). In some experiments, tissues were pretreated with saxitoxin (STX; 0.1 μ M); atropine (0.1 μ M); furosemide (FS; 10 μ M) or DPDPE (0.1 μ M). Each substance was added to the contraluminal bathing medium five min before the contraluminal addition of Cap, Cch, SP or CGRP. In some experiments, an opioid antagonist naloxone (NX) was added at a concentration of 0.1 μ M to the contraluminal aspect of mucosal sheets five min prior to DPDPE addition.

Statistics: Peak changes in I_{sc} and G_t were determined as the mean \pm SE relative to their baseline values in n tissues from at least 3 pigs. Comparisons between a control and treatment mean were made by two-tailed paired or unpaired t tests. Comparisons between a control mean and multiple treatment means were made by one-way analysis of variance (ANOVA) followed by Dunnett's multiple comparison test. A P value of 0.05 or less was chosen as the limit for statistical significance

Results

I. Immunohistochemistry study of opioid receptor on the submucosal plexuses of porcine ileal mucosa

DOR- and VR1-immunoreactive neurons and fibers were observed in all enteric plexuses in porcine ileum. In comparison, immunoreactivity to KOR was expressed only in the myenteric plexus and nerve fibers innervating circular smooth muscle. All structures exhibiting specific immunoreactivity to receptors and neurochemicals expressed PGP 9.5 immunoreactivity in adjacent tissue sections. Immunoreactivity to CGRP, a neurochemical marker of putative Dogiel type 2 sensory neurons in the porcine small intestine (Scheuermann et al. 1987), was highly expressed in several DOR- and VR1-immunoreactive neurons in the inner and outer submucosal plexuses (Fig. 1A-D, Table 2). It was colocalized with DOR, KOR and VR1 immunoreactivities in myenteric neurons as well (Fig. 1E-G, Table 2).

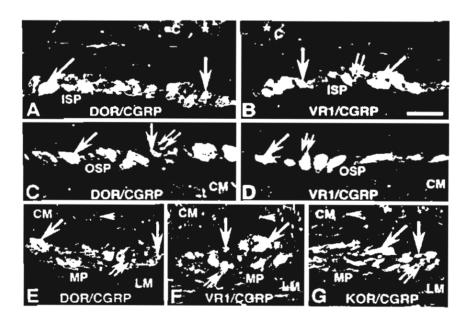


Figure 1A-G. Photomicrographs of representative longitudinal sections of porcine ileum showing colocalization of δ-opioid receptor (DOR), κ-opioid receptor (KOR) or type 1 vanilloid receptor (VRI) immunoreactivity in calcitonin gene-related peptide (CGRP)-immunoreactive neurons in the porcine enteric nervous system. A, B Colocalization (yellow) of DOR (green, A) or VR1 (green, B) immunoreactivity with CGRP (red) immunoreactivity was observed in neurons (slanted arrows) in the inner submucosal plexus (ISP). Some DOR- or VR1-immunoreactive neurons (vertical arrows) did not express CGRP immunoreactivity. C, D Colocalization (yellow) of DOR (green, C) or VR1 (green, D) immunoreactivity with CGRP (red) immunoreactivity was observed in neurons (slanted arrows) in the outer submucosal plexus (OSP). Some DOR- or VR1-immunoreactive neurons (vertical arrows) did not express CGRP immunoreactivity. E-G

Colocalization (yellow) of DOR (green, E), VR1 (green, F) or KOR (green, G) immunoreactivity with CGRP (red) immunoreactivity was observed in neurons (slanted arrows) in the myenteric plexus (MP). Asterisks denote non-specific staining seen on or under the epithelium in the section that persisted in omission and preabsorption control experiments (C crypt, CM circular muscle, LM longitudinal muscle). Scale har 60 µm (A-D), 100 µm (E-G)

Table 2. Occurrence of immunoreactive neurons in enteric ganglia. Data represent the mean ± SD of the percentage of total immunoreactive neurons counted for each pair of antigens examined; neurons in submucosal or myenteric ganglia were counted in a total of six different microscopic fields in tissue sections obtained from three pigs. Abbreviations are the same as in Table 1

Antigens	Total number of immunoreactive neurons		% Neurons immunoreactive for first antigen only	% Neurons immunoreactive for second antigen only					
Inner submucosal ganglia									
DOR/ChAT	119	81±5	5±4	14±5					
DOR/CGRP	117	80±7	10±5	10±3					
DOR/SP	113	22±8	77±8	1±2					
DOR/VR1	125	83±5	5±5	13±3					
VR1/ChAT	119	70±8	12±4	18±8					
VR1/CGRP	125	82±5	12±3	6±4					
VR1/SP	117	12±6	67±11	21±8					
Outer submucosal ganglia									
DOR/ChAT	70	64±15	3±4	33±13					
DOR/CGRP	77	77±13	9±8	15±6					
DOR/SP	71	0±0	70±8	30±8					
DOR/VR1	68	59±12	3±5	37±11					
VR1/ChAT	67	94±6	2±4	4±6					
VR1/CGRP	69	89±11	3±4	8±7					
VR1/SP	64	39±8	43±8	17±3					

Inner submucosai piexus

DOR immunoreactivity was highly colocalized with ChAT immunoreactivity in inner submucosal plexus (ISP) neurons at the base of crypts (Fig. 2A). Table 2 indicates the relative percentages of immunoreactive neurons counted that exhibited colocalization of receptor immunoreactivities with those of other neurochemical markers. Immunoreactivity to NOS (Fig. 2B) or VIP (Fig. 2C) was absent

in ChAT-positive neurons which were immunoreactive to DOR in adjacent sections. ChAT and DOR immunoreactivities were also colocalized with VR1 immunoreactivity in ISP neurons (Fig. 2D, E, Table 2). Subpopulations of DOR- and VR1-positive neurons also expressed immunoreactivity to SP (Fig. 2F, H, Table 2). VR1-immunoreactive ISP neurons did not express NOS immunoreactivity (Fig. 2G).

Outer submucosal plexus

DOR- and VR1-immunoreactive neurons were observed in the outer submucosal plexus (OSP); these neurons coexpressed ChAT immunoreactivity (Fig. 3A, D. Table 2). Some ChAT-positive neurons which were also DOR-positive, coexpressed NOS (Fig. 3B) or VIP immunoreactivity (Fig. 3C) in adjacent sections. There was substantial colocalization of DOR and VR1 immunoreactivities, although some neurons expressing VR1 immunoreactivity alone were observed (Fig. 3E, Table 2). There was sparse colocalization of DOR and SP immunoreactivities in neurons (Fig. 3F), but there was moderate colocalization of VR1 and SP immunoreactivities in OSP neurons VR1-immunoreactive neurons did (Fig. 3H, Table 2). not express NOS immunoreactivity; however, NOS-immunoreactive fibers were seen in close proximity to VR1-immunoreactive neurons (Fig. 3G).

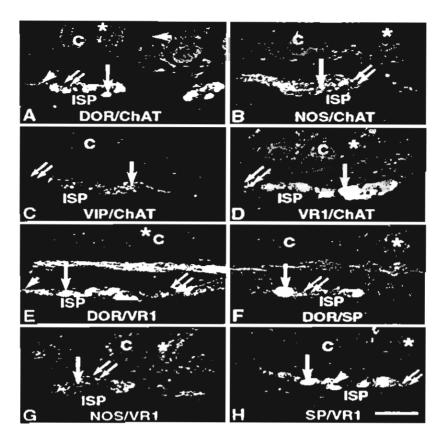


Figure 2. Photomicrographs of representative longitudinal sections of porcine ileum demonstrating the chemical coding of δ -opioid receptor (DOR)-immunoreactive neurons (A-C, F) and type 1 vanilloid receptor (VR1)-immunoreactive neurons (D, E, G, H) in the inner submucosal plexus (ISP) of porcine ileum. A Colocalization (yellow) of DOR (green) and choline acetyltransferase (ChAT, red) immunoreactivities was observed in neurons (vertical arrow). Some of the DOR-immunoreactive nerve fibers in ISP (arrowhead) did not express ChAT immunoreactivity, and some neurons positive for ChAT (double arrows) did not express DOR immunoreactivity. B-D Because antineuronal nitric oxide synthase (NOS) and antivasoactive intestinal peptide (VIP) antisera were made in the same host, ChAT/DOR-immunoreactive neurons were compared with adjacent or nearby sections incubated with antibodies to ChAT and NOS (B) or VIP (C). No colocalization of ChAT immunoreactivity (red) with that of NOS (green, B) or VIP (green, C) was observed in neurons. D Adjacent section coincubated with VR1 (green) and ChAT (red) antisera revealed colocalization in some neurons (vellow, vertical arrow), although some ChAT-positive neurons (double arrows, red) did not express VR1 immunoreactivity. E DOR-positive neurons (green) coexpressing VR1 immunoreactivity (red) were observed (yellow, vertical arrow). In addition, some DOR (arrowhead) and VR1 (double arrow)-immunoreactive neurons that did not exhibit colocalization were observed. F Section coincubated with anti-DOR (green) and antisubstance P (SP. red) antisera revealed that some DOR-immunoreactive neurons (double arrow) coexpressed SP immunoreactivity (vertical arrow, yellow). G, H Localization of VR1 (red, G, H) and NOS (green, G) or SP (green, H) immunoreactivities in ISP neurons. G NOS-positive neurons (vertical arrow, green) did not coexpress VR1 immunoreactivity (double arrows, red) and vice versa. H Substance P immunoreactivity occasionally colocalized (vertical arrow. vellow) immunoreactivity (double arrow, red) in some ISP neurons. Asterisks denote non-specific staining seen on or under the epithelium and muscularis mucosae in the section that persisted in omission and preabsorption control experiments (C crypt). Scale bar 200 µm

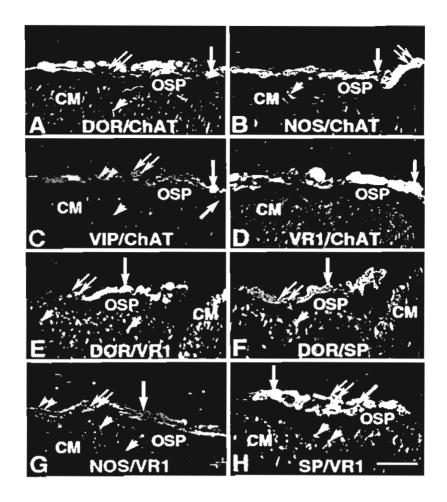


Figure 3. Photomicrographs of representative longitudinal sections of porcine ileum showing the chemical coding of δ -opioid receptor (DOR)-immunoreactive neurons (A-C) and VR1-immunoreactive neurons (D-H) in outer submucosal plexus (OSP) of the porcine ileum. A Colocalization (yellow) of DOR (green) and choline acetyltransferase (red) immunoreactivity was seen in OSP neurons (slanted arrow) and also seen in nerve fibers in deep circular smooth muscle (arrowhead, yellow). Some ChAT-positive neurons did not co-contain DOR immunoreactivity (double arrow, red). B, C As explained earlier in Fig. 2, we compared DOR-/ChAT-positive neurons in adjacent sections coincubated with anti-ChAT antiserum and anti-nitric oxide synthase (NOS. green. B) or antivasoactive intestinal peptide (VIP, green, C) antisera. B Colocalization of NOS (green) and ChAT (red) immunoreactivities was observed in a small number of neurons (double arrow, vellow) or nerve fibers (arrowhead), respectively. ChAT-immunoreactive neurons (red) as shown in A did not express NOS immunoreactivity (vertical arrow, red). C Most ChAT-immunoreactive neurons (double arrow, red) in the OSP are distinct from VIPimmunoreactive neurons (slanted arrow, green). A small population of ChAT-positive neurons coexpressed VIP immunoreactivity (vertical arrow, yellow). A few VIPimmunoreactive nerve fibers alone were seen (arrowhead, green). D Adjacent section costained with VR1 antiserum (green) and ChAT antiserum (red) revealed colocalization of VR1 and ChAT immunoreactivities (vertical arrow, yellow) in the same ChATpositive neurons seen in C and expressed both VR1 and VIP immunoreactivities. E, F Double-staining of adjacent sections with anti-DOR (green, E, F), anti-VR1 (red, E) or anti-SP antiserum (red, F). E Colocalization of DOR and VR1 immunoreactivities was observed in some OSP neurons (vertical arrow, yellow). A few VR1-immunoreactive neurons (double arrow, red) and nerve fibers in circular smooth muscle (arrowhead) did not colocalize with DOR immunoreactivity. F In most neurons, DOR immunoreactivity