เอกสารแนบหมายเลข 1

Epitope mapping of Monoclonal Antibodies specific to Leptospira interrogan and Leptospira biflexa using phage display technique

Pongrama Ramasoota ¹, Rongdej Tungtrakanpoung ¹, Patcharin Saengjaruk ², Gunnar Froman ³ and Wanpen Chaicumpa ⁴

¹ Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand

² Faculty of Medicine, Srinakarintarawirot University, Bangkok, Thailand

⁴ Faculty of Allied Health Sciences, Thammasart University, Pratumtanii, Thailand

Abstract

Random heptapeptide library displayed by bacteriophage T7 was used to characterize epitopes of the monoclonal antibodies clone LF9 and LD5 which specific to all members of the genus Leptospira, and specific only to the pathogenic species respectively. Bound phages were selected, followed by PCR and DNA-sequencing of inserted peptide sequences. Binding specificity of bound phages were confirmed by ELISA. Considering all the deduced amino acid sequences of phage reacting with the LD5 antibody, the consensus motif -LTPCDN- appeared. Interestingly, among fortytwo percent of selected phage reacting with the LD5 monoclonal antibody, the consensus sequence of the displayed peptides corresponded to a segment of hypothetical protein of Leptospira interrogans serovar lai strain 56601. Considering all the deduced amino acid sequences of phage reacting with the LF9 antibody, the consensus motif -VLKKNRP- and -CLP- appeared. In phage reacting with the LF9 monoclonal antibody the deduced amino acid sequence of the displayed peptides corresponded to putative multi-domain beta keto-acyl synthase of Streptomyces coelicolor A3. The results demonstrate that T7 phage display technique has potential for display of peptides and for rapid analysis of the interactions between these peptides with monoclonal antibodies. The finding -LTPCDN- peptide can be further tested to use as candidate leptospirosis vaccine.

Key Words: phage display; random peptide library; epitope mapping; monoclonal antibodies, Leptospirosis

³ Department of Medical Biochemistry, Uppsala University, Biomedical Centre, Uppsala, Sweden

^{*} Correspondence should be addressed to Assist. Prof. Dr. Pongrama Ramasoota at Department of Social and Environmental medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Rajjvithii Rd., Bangkok 10400, Thailand. Phone: 66-2-2469000, ext 1562, Fax: 66-2-2458341 E-mail: pongrama@yahoo.com

INTRODUCTION

Leptospirosis, the most widespread zoonotic disease, appears to be reemerged in both developed and developing region of the world (CDC, 1999). The epidemics of the disease occur predictably after a period of heavy rain and flooding. Despite the widespread vaccination, the disease remains prevalent in domestic cattle, pigs, and dogs (Birnbaunm et al., 1998, Ministry of public health, Thailand, 2000). Leptospirosis becomes a re-emerging public health problem in Thailand. Human leptospirosis cases have drastically increased since 1996. There were 358 cases in 1996, 2,334 cases in 1997, 2,230 cases in 1998, then increased to 5,933 cases in 1999 (Ministry of public health, Thailand, 2000). Moreover, the mortality in some group of patients was extremely high (15-20%), due to the delay in differential diagnosis and treatment.

Laboratory diagnosis of leptospirosis is based primarily on either isolation of the pathogen from the specimen or demonstration of a rise in serum antibodies (Van Eys et al, 1989). The former is laborious and expensive and may not be successful due to it low sensitivity. Leptospires require delicate and complex culture media. The organism has a relatively long doubling time (6 to 8h more). All of the aforementioned points make leptospire culture too slow for early diagnosis. The serological assays namely the microscopic agglutination test (MAT) is the reference method with which the other developing techniques have to be compared for evaluating their diagnostic sensitivity, specificity, and accuracy. However, the MAT encounters several drawbacks, which limit its wide use in that MAT require maintaining of broad range of Leptospira serovars for live antigen preparations, a panel of serotyping antisera, standard antiserum, microscope, and technical expertise. Moreover, false negative results were frequently reported when the causative leptospire serovar was not in the panel of typing organisms (Thiermann, 1984).

Recently, monoclonal antibodies (MAb) specific to all members of the genus *Leptospira*, and those that are specific only to the pathogenic species, have been developed (Saengjaruk et al, 2002). Knowing the epitope of these antibodies may help in rapid *Leptospira* antigen (specific to MAb) preparation and further vaccine development (If the MAb has protection activity).

Searching for ligands of macromolecules such as enzyme or antibody, with random amino acid sequence, has emerged as a promising tool. Linear peptides can apply to various conformations. Peptide libraries have been designed and have been successfully applied for mapping epitope of MAb of various pathogen such as, Dengue hemorrhagic fever (Kesakarn, 1999), Neisseria meningitidis (Charalambous and Feavers, 2000). The subject has been reviewed by Smith and Patrenko (1997), Lowman (1997), and Burrit (1996). Peptides fused to the N- or C- terminal of bacteriophages capsid proteins also have considerable structural flexibility. The structural freedom can be constrained by introducing flanking cysteine residues with a potential to form a disulfide bridge. Phage displayed peptide libraries with such flanking cysteine residues have been reported to yield clones with superior affinity for protein targets (Hoess et al., 1994; Luzzago et al., 1993). Phage peptide libraries have, in most cases, been generated from filamentous E. coli phages such as M13 and F1. Recently, vector based on the E. coli phage T7 have been developed for the display of peptide libraries. Phage T7 has icosahedral symmetry and the peptides are displayed at the C-terminus of the major coat proteins.

The objective of this study, was to find the epitopes or epitope mimetic peptides reacting with MAbs specific to all members of the genus Leptospira (clone

LF9), and those that are specific only to the pathogenic species (clone LD5), using the random heptapeptide T7 phage display library.

MATERIALS AND METHODS

Preparation and Purification of specific monoclonal antibodies to Leptospira

Monoclonal antibodies, i.e. clone LD5 and clone LF9, which were pathogenic Leptospira serovar specific and genus Leptospira specific respectively, were selected for use in panning experiments with both peptide phage display libraries, in order to determine the mimotopes. Both hybridomas (clones LD5 and LF9) were cultured in a serum free medium to late log phase. The spent culture media (with monoclonal antibodies) were dialyzed and checked for antibody titers by an indirect ELISA. The monoclonal antibodies were coated to the microtiter plate for further panning experiment.

Bacteriophage T7 Peptide Library and Panning Procedure

Random heptapeptide (flanked by cystiene residues) phage display library was constructed, using the T7 select-415 kit from Novagen (Wisconsin, USA). The T7 bacteriophage has icosahedral shape. The library construction was started by synthesizing the random heptapeptide inserted DNA. The inserted DNA was derived from degenerated oligonucleotides, which was synthesized chemically by adding mixtures of nucleotides to growing nucleotide chain. The synthetic oligonucleotides were designed to give a seven-residue long random amino acid sequence flanked by cysteine residues. To limit the occurrence of in-frame stop codons, the degenerated sequence of NNKNNKNNKNNKNNKNNKNNK was used; each N is an equal mixture of A, G, C and T, each K is an equal mixture of G and T. For each NNK, the mixture of 32 nucleotide triplets can be formed, include codons for all 20 natural amino acids and one stop codon (TAG). Each synthesized oligonucleotide, was ligated to T7 vector arm. Target peptides were expressed as fusion to the C-terminus of the 10B capsid protein and were displayed on the virion surface, where they were accessible for interaction with other proteins or ligands. The displayed peptide was situated between cysteine residues, and therefore, formation of a disulfide bridge would join the ends of the heptapeptide. The fusion polypeptide is present in 415 copies on each phage particle. It had an original size of 3.3 x 10⁷ pfu but before use it was amplified to a titer of 2.6×10^{10} pfu per milliliter. The library has been successfully used to map epitopes of antibodies against Mycobacterium tuberculosis (Getahun., 2000).

Bio-panning

The selected monoclonal antibodies (clone LD5 and LF9) were used in T7 phage display panning experiments to characterize their binding epitopes. Purified MAbs were diluted in PBS to 10 µg per milliliter and 100-µl portions were adsorbed to the wells of microtiter plate for 2 h at 25 °C. The coated wells were blocked by incubation for 18 h at 4 °C with 200 µl PBS containing 50mg BSA per milliliter. Adsorption of virus particles was done by incubating the amplified phage library, or sublibrary, for 15-40 min at 25 °C under agitation. Unbound phages were washed off, bound phages were released by incubation in 1% SDS and used to infect E. coli BL21

cells, to produce a sub-library for the next panning round. Three to four repetitive panning rounds were done depending on the efficiency of selection. Finally a number of plaques were picked. Peptide-displaying phage types were designated according to the selection procedure: T7/LD5 and T7/LF9. Then phage DNA extraction was performed for further PCR and sequencing experiments.

PCR and DNA sequencing

For analysis of peptide sequences of bound phage, a segment of the phage DNA was amplified by PCR, according to the manufacturer (Novagen 2000) using the T7 select up (5'-AGC TGT CGT ATT CCA GTC A-3') and down (5'-ACC CCT CAA GAC CCG TTT A-3') as primers. A total PCR reaction mixture (50 µl) was consisted of the following reagents:

5µl	T7 selected Up primer (5 pmol/μl)
5µl	T7 selected Down primer (5 pmol/µl)
5µl	10 x buffer
10µl	$MgCl_2$ (25 mM)
2µl	Taq DNA polymerase (1U/μl)
1μ1	dNTP (25 mM)
12μ1	H ₂ O
10μΙ	phage DNA

The reaction mixture was then placed in the thermal cycler, using the following program; one cycle at 94 °C for 2 min, 35 cycles of (94 °C for 20 sec, 50 °C for 20 sec and 72 °C for 45 sec) and final cycle complete extension at 72 °C for 4 min. PCR products were purified by commercial kit (QIA quick PCR purification kit). Then purified PCR products were sent together with T7 select up primers, for the automate DNA sequencing procedure.

Phage purification

After DNA sequencing result was obtained. The single plaque of T7 phage, known to have consensus sequence, was picked. The picked plaque was amplified in the *E. coli* BL21 until the host cells are lysed. For precipitation, 5 ml of 5 M NaCl was added to the 50 ml culture, centrifuged at 7,000 rpm, for 10 min at 4 °C. Then phage in the supernatant was extracted, by adding 1/6 volume of 50% polyethylene glycol (PEG) 8000, vortexed vigorously. To precipitate the phage, the PEG mixture was placed on ice for 30 min, then centrifuged at 7,000 rpm for 10 min, the supernatant was decanted, then the precipitate was resuspended with 1.2 ml of 1 M NaCl, 10 mM Tris-Cl, pH 8.0 and 1 mM EDTA. Then the purified phage can be further used in other experiment (ELISA or animal inoculation).

ELISA

ELISA was performed as a standard protocol, to check the specificity of the selected clones. Microtiter well of ELISA plates, were coated with purified phage (from previous method) in carbonate buffer pH 9.6. Then phage was allowed to attach to the solid surface of the plates, by incubating at 37 °C for one hour, in humid box and then

at 4 °C, overnight. The unbound phages were extensively washed away with the PBS-T. The unoccupied sites on the wells were blocked with 1% BSA at 37 °C, in a humidified chamber for 1 hour and washed again. After washing, MAb was added to appropriate wells. The plates were incubated, as done for the blocking step, then they were washed as mentioned above, and incubated with the rabbit anti-mouse immunoglobulin-horseradish peroxidase conjugate for 1 hour. The excess conjugate was washed away, then freshly prepared p-phenylene-diamine dihydrochloride (PPD) substrate solution, was added to each well, and the plates were kept in the dark at room temperature, for 30 min. The reaction was stopped, by adding 1N NaOH solution. The optical density (OD) of the content in each well, was determined compared with the blank at 492 nm, using an ELISA reader. Binding of phage to antibody was considered specific if the absorbance value at 492 nm was above 0.05.

Comparison of bound phage sequences with Gene bank sequences

After the bound phage sequences were obtained. Homology search of the identified 7-mer peptide was conducted using the Swiss protein sequence databank with the best local similarity algorithm. The search was conducted using the PSI Blast program (http://www.ncbi.nlm.nih.gov/BLAST/).

RESULTS AND DISCUSSION

T7 phage displaying a large variety of heptapeptides on the capsid protein surface was used. The displayed peptide was situated between cysteine residues, therefore, formation of a disulfide bridge would join the ends of the heptapeptide. For panning of phages, MAbs clone LD5 and LF9 were immobilized in microtiter plates wells. A high titer phage T7 lysate was added, after washing, bound phage was eluted and amplified. The binding and elution step was repeated four times. After the final selection panning round, phage was cloned by plaque isolation. Several phage clones from selections with each antibody were picked for further PCR and DNA sequencing, to analyze the insert heptapeptide sequences (Table 1).

The collection of T7/LD5 phages displayed a set of related peptides. Among all 12 selected T7/LD5 phages, five phages were found to have consensus sequence - CDNY-, four phages have -CQTKTTGDC-, two phage have -CHTKTTGDC- and one phage has -CDLMHPGNC- fused to the 10B capsid protein. By using PSI-BLAST to compare the finding consensus sequence with the gene-bank sequence, we found that the peptide sequence -CDNY- was matched with Beta -galactosidase large subunit (lactase) of Lactobacillus acidophilus (genebank accession number 007684). But when the fixed peptide outside the random-heptapeptide was also considered and combined with the peptide -CDNY-, then compared to gene bank sequence, interestingly, the peptide sequence -LTPCDN- was 100 % matched with the amino acid sequence corresponded to a segment of hypothetical protein of Leptospira interrogans serovar lai strain 56601 (genebank accession number NP 713263). The detail of the comparison between other consensus sequences of T7/LD5 phages and gene bank sequence can be seen in Table 2.

In the phages selected by MAb clone LF9 (T7/LF9). Among all 12 selected T7/LF9 phages, three phages were found to have consensus sequence -CVLKKNRPC-, other three phages have -CQTKTTGDC-, two phage have -CLP- and each one phage has -CLS-, -CQTKTTGNC-, -CHTKTTGDC-, and -CDPNGTCNC- peptide fused to the 10B capsid protein. When compare these finding consensus sequences with the gene

bank sequence. The consensus sequence -LKKNRPC- was matched with putative dipeptidase of *Bordetella parapertussis* (genebank accession number gi|33598023|ref|NP_885666.1| and gi|33574452|emb|CAE38790.1|). The consensus sequence -LTPCLP- (-LTP- is the fixed peptide of phage T7) was matched with putative multi-domain beta keto-acyl synthase of *Streptomyces coelicolor* A3 sequence The detail of the comparison between other consensus sequences of T7/LF9 phages and gene bank sequence can be seen in Table 2.

The binding specificity of peptides included in the capsid protein of the isolated T7 phage clones were tested by ELISA. The result of the analysis is shown in Table 1. In that all five phages T7/LD5 with peptide -CDNY- were positive binding specificity with MAb LD5. Among phage T7/LF9, three phages with peptide -CVLKKNRPC-, two phages with peptide - CLP- and one phage with peptide -CLS-, were positive binding specificity with MAb LF9. In the ELISA some phage clones did not give a significant signal, even though they displayed peptides related to those with a positive reaction. Thus the ELISA appeared to have low sensitivity. We are planning to test the binding specificity of these peptides with MAb clone LD5 and LF9, using the higher sensitivity and specificity ELISA of the newly develop dot blot ELISA system (Lepto-dot test kit 2000; SDM Thailand).

An ongoing study is underway to test the protection activity of MAb clone LD5, synthesize peptide from consensus sequence (-LTPCDN-) of T7/LD5 phage, mixed with adjuvant, then immunize animal to test for the possible used as the new candidate Leptospirosis vaccine.

ACKNOWLEDGEMENTS

We acknowledge with thanks for the financial support from the Thailand Research Fund (TRF).

REFERENCES

- Burrit JB, Clifford WB, Kimathi WD and Algirdas JJ. Anal Biochem. 1996: 238; 1-13
- 2. Charalambous MB and IM Feavers, Peptide mimics elicit antibody response against the outer-membrane lipooligosacchride of group B Neisseria meningitidis. FEMS Microbiology letters .2000;191:45-50
- 3. Getahun A, Epitope mapping of monoclonal antibody against *M. tuberculosis* using phage display technique, Ph.D. thesis 2000, Uppsala university, Uppsala, Sweden
- 4. Hoess RH, Mack AJ, Walton H, Reilly TM. Identification of a structural epitope by using a peptide library displayed on filamentous bacteriophage. J Immunol 1994 15;153(2):724-9
- Houshmand H, Froman G., and G. Magnusson, Use of Bacteriophage T7
 Displayed Peptides for Determination of Monoclonal Antibody Specificity and
 Biosensor Analysis of the Binding Reaction, Analytical Biochem, 1999;268, 363370
- Kasekarn W, Identification of disease specific epitopes by combinatorial peptide libraries. Master of Science Thesis, Faculty of Science, Mahidol University 1999. ISBN 974-662-503-9
- Leptodot antigen test kit leaflet. Science Development and Management (SDM) company 2002, Bangkok, Thailand.

- 8. Lowman HB. Bacteriophage display and discovery of peptide leads for drug development. Annu Rev Biophys Biomol Struct. 1997: 26; 401-424.
- 9. Luzzago A, Felici F, Tramontano A, Pessi A, Cortese R. Mimicking of discontinuous epitopes by phage-displayed peptides, I. Epitope mapping of human H ferritin using a phage library of constrained peptides. Gene. 1993;128(1):51-7
- 10. Saengjaruk P, Chaicumpa W, Watt G, Bunyaraksyotin G, Wuthiekanun V, Tapchaisri P, Sittinont C, Panaphut T, Tomanakan K, Sakolvaree Y, Chongsa-Nguan M, Mahakunkijcharoen Y, Kalambaheti T, Naigowit P, Wambangco MA, Kurazono H, and H Hayashi. Diagnosis of human leptospirosis by monoclonal antibody-based antigen detection in urine. J Clin Microbiol 2002;40(2):480-9
- 11. Smith, GP and Patrenko, VA. Phage display. Chem Rev 1997; 97,391-410.
- 12. Thiermann AB. Isolation of leptospires in diagnosis of leptospirosis. Mod Vet Pract 1984;65(10):758-9
- Van Eys GJ, Gravekamp C, Gerritsen MJ, Quint W, Cornelissen MT, Schegget JT, Terpstra WJ. Detection of leptospires in urine by polymerase chain reaction. J Clin Microbiol 1989;27(10):2258-62

Table 1 Amino Acid Sequence and of Selected T7 phage

Sequence of displayed peptides a, signal in ELISA b			
T7/LD5	T7/LF9		
CDNY (5); +	CVLKKNRPC (3); +		
CQTKTTGDC (4); -	CLP(2); +		
CHTKTTGDC (2); -	CLS (1); +		
CDLMHPGNC (1); -	CQTKTTGDC (3); -		
	CQTKTTGNC (1); -		
	CHTKTTGDC (1); -		
	CDPNGTCNC (1); -		

^a Deduced amino acid sequences of capsid fusion peptides of selected T7 phages. Numbers in parentheses indicate the numbers of clones identified

Table 2 Comparison of phages peptide sequences with Gene Bank sequences

Peptide sequences from five phage T7/LD5, that have consensus sequence -CDNY- \mathbf{C} D N Stop \mathbf{C} D N \mathbf{Y} O D Beta -galactosidase large subunit (lactase) of Lactobacillus acidophilus (genebank accession number O07684) Peptide sequences from five phage T7/LD5, that have consensus sequence -CDNY-ATG CTC GGG GAT CCG AAT TCT CTC ACT CCA TGC GAT AAT TAT TAG Met Leu Gly Asp Pro Asn Ser Leu Thr Pro Cys Asp Asn Tyr Stop M L G D P N S L T P \mathbf{C} N Y Stop

V G I P T T. T L T P \mathbf{C} D N O Part of amino acid sequences of hypothetical protein of Leptospira interrogans serovar lai strain 56601 from genebank database (genebank accession number NP 713263)

Peptide sequences from three phage T7/LF9, that have consensus sequence CVLKKNRPC

MLGDPNSLTPCVLKKNRPC

MGRTQPCGGSCISSTYTLKKNRPCGWSAPP

Part of amino acid sequences of putative dipeptidase of *Bordetella parapertussis* (genebank accession number gi|33598023|ref|NP_885666.1| and gi|33574452|emb|CAE38790.1|)

^b Phage clones reacting with the cognate antibody (LD5, LF9) to give an absorbance above 0.05 were considered to be positive (+)

Peptide sequence from four phages T7/LD5 and three phages T7/LF9, that have consensus sequence CQTKTTGDC

MLGDPNSLTPCOTKTTGDC

YKELSGNGLVCQTKTTKRF

Part of amino acid sequences of Hypothetical protein UU173 of *Ureaplasma parvum* (genebank accession number gi|14195361|sp|Q9PQX0|Y173_UREPA)

Peptide sequence from two phage T7/LF9 that have consensus sequence -CLP-MLGDPNSLTPCLP

AVTVAVPLTPCLPPLE

Part of amino acid sequences of putative multi-domain beta keto-acyl synthase of Streptomyces coelicolor A3(2)(genebank accession number gi21218687 ref NP_624466.1)

Peptide sequence from one phage T7/LF9 that have consensus sequence-CLS-MLGDPNSLTPCLS

MEAYLTTIIPGVTPCLS

Part of amino acid sequences of protein hesA (genebank accession number gi|20141342|sp|P18500|HESA_ANASP)

Peptide sequences from two phage T7/LD5 and one phage T7/LF9, that have consensus sequence CHTKTTGDC

MLGDPNSLTPCHTKTTGDC

CHI KTTGD

Part of amino acid sequences of 51 KD PROTEIN (ORF 6) of Beet western yellows virus (ISOLATE GB1) (genebank accession number gi|137320|sp|P09515|V51K BWYVG)

Bold letters show the amino acid matched between display peptide from phages and amino acid from gene bank

เอกสารแนบหมายเลข 2

หน้า 1/2

สัญญาเลขที่ RDG4630202 โครงการ การใช้เทคนิค T7 phage display .พื่อ map epitope ของแอนติบอดีที่จำเพาะต่อโรคเมลิตอยโดสีส รายชื่อผู้ทำงานในโครงการ

คณะผู้ดำเนินการวิจัย

ที่อยู่

1. หัวหน้าโครงการวิจัย ผศ.นริศร นางาม (Assist. Prof. Narisom Na-ngam)

สถานที่ทำงาน ภาควิชาสัตวแพทย์สาธารณสุข คณะสัตวแพทยศาสตร์

มหาวิทยาลัยขอนแก่น อ. เมือง จ. ขอนแก่น 40002. โทร/โทรสาร 043-364493, 01-6618432. E-mail: narnan@mail.kku.ac.th

รางน้ำอพาร์ทเมนท์ ห้อง 408 เลขที่ 521-3/4 ถ. ศรีอยุธยา ซอย 4

เขตราชเทวี กทม. 10400 โทร. 01-661-8432, โทรสาร 02-247-6300

หน้าที่หรือความรับผิดชอบในโครงการ

หัวหน้าโครงการวิจัย, Purification of MAbs, Bio-planning, PCR and DNA sequencing,

Protection test of MAbs, การจัดการสัตว์ทดลอง, Design Vector for immunization, Check titer

from immunized animals, สรุปผลการทดลองและรายงานผลการทดลอง

เวลาที่ใช้ในโครงการวิจัย 36 ชั่วโมง/สัปดาห์

2. ผู้ร่วมวิจัย ผศ.ดร.พงศ์ราม รามสูต (Assist. Prof. Dr. Pongrama Ramasoota)

สถานที่ทำงาน

คณะเวชศาสตร์เขตร้อน มหาวิทยาลัยมหิดล 420/6 ถ.ราชวิถี

พญาไท กรุงเทพช 10400 โทรศัพท์ 02-246 - 9000 - 13 ต่อ 1562-4, 02-6445557

โทรสาร 02-643 - 5583 E-mail pongrama@hotmail.com

หน้าที่หรือความรับผิดชอบในโครงการ

ผู้เชี่ยวชาญด้าน Phage display technique & phage libraries

เวลาที่ใช้ในโครงการวิจัย 20 ชม. ต่อ สัปดาห์

3. ผู้ร่วมวิจัย อ.ดร.ธารีรัตน์ กะลัมบาเหติ (Dr. Thareerat Kalambaheti)

สถานที่ทำงาน

ภาควิชาจุลชีววิทยาและภูมิคุ้มกันวิทยา คณะเวชศาสตร์เขตร้อน

มหาวิทยาลัยมหิดล 420/6 ถ.ราชวิถี พญาไท กรุงเทพฯ 10400

โทรศัพท์ 02-246-9000-13 ต่อ 1591, 1592

หน้าที่หรือความรับผิดชอบในโครงการ

Molecular biology & molecular epidemiology

เวลาที่ใช้ในโครงการวิจัย 10 ชม. ต่อ สัปดาห์

ชุดนี้ผู้รับทุนเก็บไว้

สัญญาฉบับผู้รับทุน

สัญญาเลขที่ RDG4630202

สำนักงานกองทุนสนับสนุนการวิจัย ฝ่ายสวัสดิภาพสาธารณะ

สัญญารับทุนอุดหนุนการวิจัย

โครงการ การใช้เทคนิค T7 phage display เพื่อ map epitope ของแอนติบอดีที่จำเพาะต่อโรคเมลิออยโดสีส

Mapping the epitopes of melioidosis antibodies using T7 phage display technique

สัญญานี้ทำขึ้น ณ สำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ตั้งอยู่ที่ชั้น 14 อาคาร เอส เอ็ม ทาวเวอร์ เลขที่ 1/79/17-21 ถนนพหลโยธิน แขวงสามเสนใน เขตพญาไท กรุงเทพมหานคร เมื่อวันที่ 1 เดือน กุมภาพันธ์ พ.ศ. 2546 โะหว่าง กองทุนสนับสนุนการวิจัย โดย นายปียะวัติ บุญ-หลง ตำแหน่ง ผู้อำนวยการสำนักงานกองทุนสนับสนุนการวิจัย โงต่อไปในสัญญานี้เรียกว่า "ผู้ให้ทุน" ฝ่ายที่หนึ่ง กับ มหาวิทยาลัยขอนแก่น โดย นายสุมนต์ สกลไขย บาแหน่ง อธิการบดีมหาวิทยาลัยขอนแก่น ซึ่งต่อไปในสัญญานี้เรียกว่า "ผู้รับทุน" ฝ่ายที่สอง และ นายนริศร นางาม โงกัด ภาควิชาสัตวแพทย์สาธารณสุข คณะสัตวแพทยศาสตร์ มหาวิทยาลัยขอนแก่น ซึ่งต่อไปในสัญญานี้เรียกว่า "หัว ผนาโครงการวิจัยผู้รับทุน" ฝ่ายที่สาม ทั้งสามฝ่ายได้ตกลงกันมีข้อความดังต่อไปนี้

ก. การให้และรับทุน

ข้อ 1. ผู้ให้ทุนตกลงให้ทุนอุดหนุนโครงการวิจัยแก่ผู้รับทุน และหัวหน้าโครงการวิจัยผู้รับทุนเพื่อการวิจัย เรื่อง สารใช้เทคนิค T7 phage display เพื่อ map epitope ของแอนติบอดีที่จำเพาะต่อโรคเมลิออยโคสิส ซึ่งต่อไปในสัญญานี้จะ เรียกว่า "โครงการวิจัย" หรือ "โครงการ" ตามเอกสารแนบหมายเลข 1 ในวงเงิน 515,800บาท (หัวแสนหนึ่งหมื่นหัวพัน แปดร้อยบาทถ้วน) โดยมีระยะเวลาดำเนินการของการวิจัยไม่เกิน 1 ปี 6 เดือน (หนึ่ง) ปี (หก) เดือน นับตั้งแต่วันที่ 1 กุมภาพันธ์ 2546 ถึงวันที่ 31 กรกฎาคม 2547

เพื่อให้การบริหารจัดการโครงการเป็นไปด้วยความสะดวก คล่องตัวและมีประสิทธิภาพ ผู้ให้ทุนมอบหมายให้ เครือข่ายวิจัยสุขภาพ สำนักงานกองทุนสนับสนุนการวิจัย โดยมี นายสมศักดิ์ ชุณหรัศมิ์ ตำแหน่ง ผู้จัดการเครือข่ายวิจัย รุงภาพ (เลขาธิการมูลนิธิสาธารณสุขแห่งชาติ) เป็นผู้ทำการแทนผู้ให้ทุน ในการติดตามและประเมินผลโครงการ รวมทั้ง เบิกข่ายเงินสนับสนุนโครงการ ตามนัยสัญญาเลขที่ RDG3/20/2544 ลงวันที่ 1 สิงหาคม 2544

ช้อ 2. ผู้ให้ทุนจะจ่ายเงินตามสัญญาให้กับหัวหน้าโครงการวิจัยผู้รับทุนเป็นงวด ๆ ตามกำหนดเวลา และเงื่อน **ใช่ใน<u>เอกสารแนบหมายเลข 2</u> และต**ามระเบียบต่าง ๆ ของผู้ให้ทุน

หัวหน้าโครงการวิจัยผู้รับทุนจะต้องใช้เงินทุนที่ได้รับตามสัญญาเพื่อดำเนินการให้เป็นไปตามวัตถุประสงค์ของ โครงการวิจัยตามสัญญานี้เท่านั้น และจะต้องใช้อย่างประหยัด และเหมาะสม ตามระเบียบการเงิน บัญชี และพัสดุของผู้ให้ ทุน ตลอดจนจัดเตรียมหลักฐานการรับและการจ่ายเงินให้ถูกต้องครบถ้วน เพื่อให้ผู้ให้ทุนตรวจสอบใต้ทุก 6 (หก) เดือน หรือตามที่ผู้ให้ทุนเห็นสมควร และในกรณีที่เกิดปัญหาซึ่งต้องพิจารณาว่าการใช้เงินเพื่อดำเนินการของหัวหน้าโครงการ วิจัยผู้รับทุนเป็นไปตามวัตถุประสงค์ของโครงการหรือไม่ ทั้งสามฝ่ายตกลงให้ผู้ให้ทุนเป็นผู้วินิจฉัยชี้ขาด

אילן דילוא

หนังสือพิมพ์มติขนรายวัน

นักวิจัยไทยวิเคราะห์'ดีเอ็นเอ'ไวรัส ต่อยอดผลิตวัคซีนป้องกันโรคฉี่หนู

เมื่อวันที่ 10 มิถุนายน นายพงศ์ราม รามสูต นักวิจัยจากคณะเวชศาสตร์เชตร้อน มหาวิทยาลัย มที่ตอ เปิดเผยผลงานวิจัย "วิเคราะท์ DNA ใวรัสฉี จุดเริ่มการพัฒนาวัดซีน" ซึ่งใต้รับการ สนับสนุนจากสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ว่า จากรายงานการระบาดของโรคเลปโดส ไปโรซีล พรือที่รู้จักกันในนามของ "โรคฉี่หนู" ที่ กลับมาเป็นปัญหาสาธารณสุขของใทยมากขึ้น อย่างผิดตั้งเกต ตั้งแต่ปี 2539 การระบาดจะเกิด ขึ้นในช่วงฤดูผ่นตั้งแต่เดือนกรกฎาคม ถึงเดือน ขุดาคมพิคต่อกันมาทุกปีจนถึงปัจจุบัน และอุบัติ การณ์ของโรคยังมีแนวโน้มเพิ่มสูงขึ้นอย่างต่อเนื่อง โดยเริ่มมีรายงานผู้ป่วยทั้งต้น 358 ราย จาก 38 รังหวัด ในปี 2539 จนเพิ่มขึ้นเป็น 6.080 ราย จาก 60 จังหวัด ในปี 2542 และ 13,461 ราย ใน 2543

นายพงศ์รามกล่าวว่า กองระบาดวิทยา กระ ทรวงสาธารณสุข รายงานว่า ผู้ป่วย 85-90% พบ ในภาคตะวันออกเฉียงเหนือ เช่น บุรีรัมย์ ของแก่น สำหาร์ ชัยภูมิ และในปี 2542 มีรายงานเพิ่มเติม ร่าพบผู้ป่วยในภาคเหนือ เช่น แพร่ เพพรบูรณ์ และ ต่อมากระจายในพื้นที่ภาคใด้ขณะที่การวินิจฉัยโรด ในช่วงแรกทำใด้ยาก เนื่องจากอาการเบื้องดัน ผล้ายกับอาการโรคติดเชื้อทั่วไป จึงจำเป็นด้องทึ่ง ผลในท้องปฏิบัติการ โดยการแบกเพาะเลี้ยงเชื้อ นายพงศ์รามกล่าวว่า ก่อนหน้านี้นักวิจัยไทยใต้
คิดกันชุดคราจแยกโรคฉี่หนู โดยใช้โมโนโดลนอล
แอนดิบอดี้ ที่มีความจำเพาะต่อเชื้อเลปโดลไปรา
สายพันธุ์ที่ก่อโรคฉี่หนูในประเทพไทย ดังนั้น จึงนำ
ชุดครวจนี้มาพัฒนาวัดจีนป้องกันโรคฉี่หนู สำหรับ
โมโนโคลนอลแอนดิบอดี้คือโปรดีนที่ร่างกายสร้าง
ขึ้น สามารถทำปฏิกิริยาจับกับโปรดีนแอนดิเจนของ
เชื้อฉี่หนูโดยเฉพาะ ขณะนี้ได้นำโมโนโคลนอล
แอนดิบอดี้ไปใต้ในกลุ่มของใวรัสที่สร้างโปรดีนเกาะ
ที่มิว เพื่อดูว่าโปรดีนบนมิวของใวรัสตัวใดที่จับกับ
โมโนโคลนอลแอนดิบอดี้ หรือทำหน้าที่เสมือนเป็น
แอนดิเจนที่จำเพาะต่อโมโนโคลนอลแอนดิบอดี้เก็บ

"เมื่อรู้ว่าใวรัสตัวไทนสร้างโปรดีนที่จำเพาะส่ย โมโนโคลนอลแอนดิบอดี้แล้ว ขั้นตอนต่อไปดีย การนำไวรัสตัวนี้ ไปสกัดดีเอ็นเอ เพื่อหาลำดับเบล จากนั้นหาวิธีตั้งเคราะที่เรียบร้อยแล้ว จากนี้ไป หากนำแอนดิเจนที่ตั้งเคราะห์ขึ้นมาไปทดลองฉีดเพ หนู และหนูสร้างแอนดิบอดี้ขึ้นมา แลดงว่าโปรดีนที่ สังเคราะท์สามารถกระสุ้นการสร้างภูมิคุ้มกันโรคนี้ หนูใต้ อย่างไรก็ตาม การทดตองนี้ต้องใช้เวลานับ 10 ปี และยังไม่ใต้ข้อสรุปที่สามารถอื่นยันผลใต้ ขัดเจน แต่จากผลการวิจัยนี้ก็ถือเป็นก้าวสำคัญที่ ช่วยให้เข้าใจโรคชนิดนี้ได้มากขึ้น" นายพงสุราม PAGE

HEALTH AND TOURISM

Search for virus to fight bacteria

Leptospirosis claims hundreds of lives

Ranjana Wangvipula

A Thai researcher is developing a virus Awhich he hopes will fend off a bacteria that causes leptospirosis.

Belonging to a viral group known as phage, the virus can build a substance that can be further developed into a vaccine.

The disease has killed hundreds of Thais in the past three years, said Pongrama Ramasoota, a veterinarian at the Social and Environmental Medicine Department of Mahidol University.

Leptospirosis often spreads in the rainy season when farmers work in paddy fields.

The disease is carried by rats, cows, and even dogs, whose urine contaminates water. It causes high fever, yellow colouring, and can lead to liver problems.

"The existing vaccine, made directly from weakened antigen, is still highly toxic," said Mr Pongrama.

"Some vacinated people even develop the disease's symptoms."

To reduce its side effects, Mr Pongrama has tried an indirect way to produce a new version of vaccine made by a substance called peptide, obtained from a certain phage virus.

The pentide, which would act as the

weakened antigen, is a group of chemicals that forms a protein.

He said his study, sponsored by Thailand Research Fund, develops work done by Mahidol's professor Wanpen Chaicumpa.

Prof Wanpen had developed a more rapid way to diagnose leptospirosis.

Mr Pongrama discovered a phage virus that builds the desired peptide.

He also knows its DNA, which gave him a code to make the peptide in a laboratory.

He is going to test the quality of the peptide in mice to find if it could stimulate them to build the immune system.

"We should know the results within three months," Mr Pongrams said

เอกสารแนบหมายเลข 5

PACE 11 Sept 1

ต่อยอดภูมิปัญญา แต่เคร พงศ์ราม รามสุด กำลังเสนอมสงานการวิจัย ซึ่งเป็นหนึ่งในตัวแทนคร ที่เข้าร่วมโครงการ ลอกเตอร์ทำวิจัย ต่อยอดปัญญาแก้ปัญหาชาติ ที่โรงแรมสยามซิตี

APPLICATION OF PHAGE DISPLAY AND POLYMERASE CHAIN REACTION (PCR) - BASED TECHNIQUE FOR MIMOTOPE SEARCHING AND STRAIN IDENTIFICATION OF ENTERIC BACTERIA

KANCHANA USUWANTHIM

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR
THE DEGREE OF MASTER OF SCIENCE (TROPICAL MEDICINE)
FACULTY OF TROPICAL MEDICINE
MAHIDOL UNIVERSITY
2003

ISBN 974-04-3098-8 COPYRIGHT OF MAHIDOL UNIVERSITY

Thesis entitled

APPLICATION OF PHAGE DISPLAY AND POLYMERASE CHAIN REACTION (PCR) - BASED TECHNIQUE FOR MIMOTOPE SEARCHING AND STRAIN IDENTIFICATION OF ENTERIC BACTERIA

Konchana Usuwanthim Miss Kanchana Usuwanthim Candidate

Assist. Prof. Pongrama Ramasoota, D. V. M., Ph. D Major-Advisor

Prof. Wanpen Chaicumpa, D. V. M. (Hons.), Ph. D. Co-Advisor

Assoc. Prof Manas Chongsa-nguan, Ph. D.

Miss Pongsri Tongtawe, Ph. D.

Co-Advisor

Soisangwar. Miss Roongrasamee Soisangwan, Ph. D. Co-Advisor

Assoc. Prof. Rassmidara Hoonsawat, Ph. D.

Dean Faculty of Graduate Studies

Assoc. Prof. Somjai Leemingsawat, Ph. D.

Chair

Master of Science Programme in Tropical Medicine Faculty of Tropical Medicine

Thesis entitled

APPLICATION OF PHAGE DISPLAY AND POLYMERASE CHAIN REACTION (PCR) - BASED TECHNIQUE FOR MIMOTOPE SEARCHING AND STRAIN IDENTIFICATION OF ENTERIC BACTERIA

was submitted to the Faculty of Graduate Studies, Mahidol University for the degree of Master of Science (Tropical Medicine)

on 31 March, 2003

Miss Kanchana Usuwanthim
Candidate

Pongrama Corrassoda

Assist. Prof. Pongrama Ramasoota, D. V. M., Ph. D.
Chair

Prof. Wanpen Chaicumpa, D. V. M. (Hons.), Ph. D.
Member

Assoc. Prof. Marias Chongsa-nguan, Ph. D.
Member

Miss Roongrasamee Soisangwan, Ph. D.
Member

Prof. Dr. Sornchai Looareesuwan, M. D., Ph. D.

Faculty of Tropical Medicine

Mahidol University

Parasii Torojoure
Miss Pongsri Tongtawe, Ph. D.
Member

(AMUAN Applia)

Assoc. Prof. Pramuan Tapchaisri, Ph. D.
Member

Assoc. Prof. Rassmidara Hoonsawat, Ph. D. Dean
Faculty of Graduate Studies
Mahidol University