สัญญาเลขที่ PDF/40/2544

การพัฒนาเครื่องหมายโมเลกุลโดยอาศัยลำดับเบสสำหรับยืนและกลุ่มยืนที่เกี่ยวข้องกับกระบวนการสร้างกรด ไขมันในข้าว

The development of sequence-based genetic markers for genes and gene families involving the fatty acid synthesis in rice.

<u>Vipa Hongtrakul</u>¹ Vaiphot Kunjoo¹ Tanaporn Glingaysorn¹ and Somvong Tragoonrung²

¹Department of Genetics, Faculty of Science, Kasetsart University, Bangkhen, Bangkok 10900 ²Rice Gene Discovery Unit, National Center for Genetic Engineering and Biotechnology (BIOTEC), Kampangsan, Nakhon Pathom 73140

บทคัดย่อ

การวิเคราะห์ปริมาณน้ำมันและองค์ประกอบกรดไขมันจากเมล็ดข้าวกระเทาะเปลือก 38 ตัวอย่าง พบปริมาณ ้น้ำมัน 1.83%-3.45% เฉลี่ย 2.27% เป็นกรดไขมันอิ่มตัวทั้งหมด 26.62% และกรดไขมันไม่อิ่มตัวทั้งหมด 73.38% ได้ พัฒนา AS-PCR (Allele Specific-PCR), SSCP (Single Strand Conformational Polymorphism), Ref-SSCP (Restriction endonuclease fingerprinting-SSCP) และ MS (Microsatellite) markers 7 เครื่องหมายจำเพาะกับยืนที่ เกี่ยวข้องกับกระบวนการสังเคราะห์กรดไขมันจากข้อมูลลำดับเบสของยีนจากพืชต่างๆ ใน GenBank จำนวน 6 ยีนได้แก่ ยืน ACCase (Acetyl CoA Carboxylase), ACP (Acyl Carrier Protein), KASIII (Beta Ketoacyl-ACP Synthase III), SAD (Stearoyl-ACP Desaturase), FatB (Acyl-ACP Thioesterase) และ FAD3 (Microsome **W**-3 fatty acid desaturase) และใช้เครื่องหมายที่พัฒนานี้ศึกษาความหลากหลายทางพันธุกรรมในตัวอย่างข้าว 104 ตัวอย่าง MS marker จำเพาะกับยืน *FAD*3 ให้แถบดีเอ็นเอมากกว่า SSCP และ AS-PCR markers และมีค่า PIC (Polymorphic Information Content) เท่ากับ 0.40 ความเหมือนทางพันธกรรมวิเคราะห์ตาม Sneath and Sokal (1973) โดยใช้แถบดี เอ็นเอทั้งหมด 78 แถบ จากเทคนิค SSCP และ microsatellite มีค่า 0.43 - 1.00 การวิเคราะห์การจัดกลุ่มตัวอย่างข้าว ์ ทั้งหมดด้วยโปรแกรม NTSYSpc 2.02i สามารถแบ่งตัวอย่างข้าวได้เป็น 7 กลุ่มและแบ่งข้าวที่มีจีโนม A^mA^m , CC, CCDD และ HHJJ ออกจากจีโนม AA ได้อย่างชัดเจน ได้นำลำดับเบสบางส่วนของยืน ACCase, ACP, KASIII, SAD, FatB และ FAD3 ของข้าวขาวดอกมะลิ105 ที่ได้จากเครื่องหมายดีเอ็นเอ ไปเปรียบเทียบกับข้อมูลในจีโนมข้าวเพื่อยืนยัน ความจำเพาะและระบุตำแหน่ง intron ในแต่ละเครื่องหมายจำเพาะกับยืน จากผลของแถบดีเอ็นเอและลำดับเบสของยืน ที่ได้ สรุปได้ว่ามียืน ACCase 1 ยีนบนโครโมโซมที่ 10 มียืน KASIII และ SAD ยีนละ 1 ยีนบนโครโมโซมที่ 4 มียืน FatB 2 ยีน (FatB1 และFatB2) บนโครโมโซมที่ 6 มียืน FAD3 2 ยีน (FAD3A และ FAD3B) บนโครโมโซมที่ 12 และ มี ์ ยืน ACP 2 ยืน (*ACP*1 และ *ACP*2) บนโครโมโซมที่ 12 และ 8 ตามลำดับ

Abstract

Oil contents and fatty acid compositions were analyzed from 38 rice seed samples without hull. Oil contents were varied from 1.83%-3.45% with an average of 2.27%. The average total saturated fatty acid was 26.62%, whereas average total unsaturated fatty acid was 73.38%. Seven markers specific to ACCase (Acetyl CoA Carboxylase), ACP (Acyl Carrier Protein), KASIII (Beta Ketoacyl-ACP Synthase III), SAD (Stearoyl-ACP Desaturase), FatB (Acyl-ACP Thioesterase) and FAD3 (Microsome ω-3 fatty acid desaturase) genes involving in fatty acid synthesis pathway were developed using heterologous sequences available in GenBank. AS-PCR (Allele Specific-PCR), SSCP (Single Strand Conformational Polymorphism), Ref-SSCP (Restriction endonuclease fingerprinting-SSCP) and MS (Microsatellite) markers were used to study genetic variation among 104 different rice samples. The MS marker specific to FAD3 gene produced more DNA band patterns than SSCP and AS-PCR with highest PIC (Polymorphic Information Content) score of 0.40. Genetic similarity estimated by Sneath and Sokal (1973) based on 78 total bands produced from SSCP and microsatellite techniques ranged from 0.43 to 1.00. The NTSYSpc 2.02i analysis based on similarity coefficient could separated rice into 7 groups and could clearly distinguish the wild rice containing A^mA^m, CC, CCDD and HHJJ genomes from cultivated rice, AA genome. Partial sequences of ACCase, ACP, KASIII, SAD, FatB and FAD3 genes from Khao Dawk Mali 105 were compared to rice genome to confirm gene specificity and to indicate intron boundaries. The results of DNA pattern and sequence comparison could lead to the conclusion that there were 1 gene of ACCase on chromosome 10, 1 gene of KASIII and SAD on chromosome 4, 2 genes of FatB (FatB1 and FatB2) on chromosome 6, 2 genes of FAD3 (FAD3A and FAD3B) on chromosome 12 and 2 genes of ACP (ACP1 and ACP2) on chromosome 12 and 8 respectively.

Introduction

Rice is an economic important crop of Thailand. Rice bran is rich in oil, vitamins and other minerals. Many genes underlying the plant fatty acid synthesis (Ohlrogge and Browse,1995) have been cloned and sequenced. ACCase (Acetyl CoA Carboxylase) is an important enzyme for regulation of the carbon flux into fatty acid biosynthesis. ACP (Acyl Carrier Protein) is the carrier of the growing fatty acid chain. KASIII (Beta Ketoacyl-ACP Synthase III) initiates fatty acid biosynthesis by catalyzing a condensation between an acyl CoA and a malonyl ACP. SAD (Stearoyl-ACP Desaturase) produces oleic acid (18:1 Δ 9) by desaturating 18:0. FatB (Acyl-ACP Thioesterase) is required for the termination of chain elongation and FAD3 (Microsome ω-3 fatty acid desaturase) is responsible for the synthesis of 18:3 fatty acids from phospholipids. The gene sequence resources should promote the development and use of genetic markers for known genes, thereby increasing their utility for DNA fingerprinting, mapping and tracking candidate genes in other species. Methods for developing gene specific markers differ in technical complexity, cost, DNA sample requirements, polymorphism rates and phenotype resolution (Rafalski and Tingey, 1993). AS-PCR (Allele Specific-PCR) markers can be developed by using gene specific primers and electrophoresing PCR-amplified genomic DNA fragments in agarose gels. Sequence variants are produced when fragment lengths differ. When fragments are monomorphic, polymorphisms can sometimes be produced by using internal restriction sites differences, SSCP (Single Strand Conformational Polymorphism) analysis can be done by heat-denaturing the PCR products both cut and uncut by restriction enzymes prior to electrophoresis under non-denaturing conditions (Orita et al, 1989a,b). MS (Microsatellite) markers can be developed to span repetitive sequences in the gene and electrophoresis the PCR products in denaturing polyacrylamide gel. The objectives of this study are to 1) analyze oil contents and fatty acid compositions in rice 2) develop markers specific to some important genes in fatty acid synthesis pathway 3) estimate number of DNA band patterns and PIC scores for each marker and 4) assess genetic diversity among 104 rice samples containing different genome sets.