

รายงานวิจัยฉบับสมบูรณ์

การศึกษาผลของการใช้ calcium ionophore A23187, 7% ethanol และ antibiotic reagents (puromycin/sulphadiazine) ในการกระตุ้นการเกิด cortical granule exocytosis ในไข่หมู

ดร.เสมอ ถาน้อย

รายงานวิจัยฉบับสมบูรณ์

การศึกษาผลของการใช้ calcium ionophore A23187, 7% ethanol และ antibiotic reagents (puromycin/sulphadiazine) ในการกระตุ้นการเกิด cortical granule exocytosis ในไข่หมู

ดร.เสมอ ถาน้อย ภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์การแพทย์ มหาวิทยาลัยนเรศวร

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย (ความเห็นในรายงานนี้เป็นของผู้วิจัย สกว. ไม่จำเป็นต้องเห็นด้วยเสมอไป)

กิตติกรรมประกาศ

กระผม ดร.เสมอ ถาน้อย หัวหน้าโครงการวิจัย "การศึกษาผลของการใช้ calcium ionophore A23187, 7% ethanol และ antibiotic reagents (puromycin/sulphadiazine) ในการกระตุ้นการเกิด cortical granule exocytosis ในไข่หมู" ขอแสดงความขอบคุณต่อ ศาสดราจารย์ ดร.ประเสริฐ โศภน ภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ในฐานะนักวิจัยพี่เลี้ยง ที่เสียสละ เวลาในการให้คำปรึกษา และข้อเสนอแนะที่เป็นประโยชน์ต่อการดำเนินโครงการวิจัย จนสามารถ ดำเนินโครงการวิจัยได้สำเร็จ ขอขอบคุณ ผศ.ชัยณรงค์ โตจรัส ภาควิชากายวิภาคศาสตร์ คณะวิทยา ศาสตร์การแพทย์ มหาวิทยาลัยนเรศวร ที่ให้คำปรึกษาด้านเทคนิควิธีการวิจัยมาโดยตลอด

ขอขอบคุณภาควิชาสัตวศาสตร์ สถาบันเทคโนโลยีราขมงคล วิทยาเขตพิษณุโลก ที่เอื้อเฟื้อให้ ผู้วิจัยเก็บตัวอย่างน้ำเชื้อสุกรเพื่อการทำวิจัยในครั้งนี้ ขอขอบคุณเจ้าหน้าที่ศูนย์เครื่องมือวิทยาศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ ที่ให้ความช่วยเหลือในการศึกษาตัวอย่างด้วยกล้อง จุลทรรศน์อิเลคตรอน ขอขอบคุณเทศบาลนครพิษณุโลก ที่ให้ความอนุเคราะห์ในการเข้าเก็บตัวอย่าง จากโรงฆ่าสัตว์ที่อยู่ในความดูแลของเทศบาล ขอขอบคุณคณะแพทยศาสตร์ และคณะวิทยาศาสตร์ การแพทย์ มหาวิทยาลัยนเรศวร ที่เอื้อเฟื้อสถานที่ และเครื่องมือวิจัยสำหรับการดำเนินโครงการวิจัยนี้

ขอขอบคุณ ดร.สุทิสา ถาน้อย ที่ให้กำลังใจและความช่วยเหลือในทุกๆ ด้านตลอดมา

ท้ายที่สุดขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) ที่มอบโอกาส และทุน สนับสนุนแก่ผู้วิจัยจนสามารถดำเนินโครงการวิจัยได้สำเร็จ และจุดประกายให้ผู้วิจัยมีความมุ่งมั่นที่จะ ผลิตผลงานวิจัยอย่างต่อเนื่องต่อไป

> ดร.เสมอ ถาน้อย หัวหน้าโครงการวิจัย

บทคัดย่อ

รหัสโครงการ : PDF 4480053

ชื่อโครงการ : การศึกษาผลของการใช้ calcium ionophore A23187, 7% ethanol และ

antibiotic reagents (puromycin/sulphadiazine) ในการกระตุ้นการเกิด

cortical granule exocytosis ในไข่หมู

ชื่อนักวิจัย : ดร.เสมอ ถาน้อย ภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์การแพทย์

มหาวิทยาลัยนเรศวร จ.พิษณุโลก 65000

E-mail Address : samurt@nu.ac.th

ระยะเวลาโครงการ : 2 ปี (1 กรกฎาคม 2544 ถึง 30 มิถุนายน 2546)

โดยทั่วไป Cortical granule (CG) exocytosis จะเกิดขึ้นเมื่อมีการปฏิสนธิกันระหว่าง เซลล์อสุจิและเซลล์ไข่ เพื่อป้องกันการเกิดการปฏิสนธิซ้ำซ้อน (polyspermy) นอกจากนี้ยังพบว่าการ เกิด CG exocytosis ยังสามารถเกิดขึ้นได้จากการใช้ตัวกระตุ้นชนิดต่าง ๆ ในเซลล์ไข่ของสัตว์เลี้ยงลูก ด้วยนม รวมทั้งในไข่หมู อย่างไรก็ตามภาวะการเกิด CG exocytosis ด้วยตัวกระตุ้นชนิดต่าง ๆ ยังไม่มี การจำแนกถึงระดับของการหลั่งของ cortical granules การศึกษานี้จึงมีวัตถุประสงค์ที่จะศึกษาระดับ ของการเกิด CG exocytosis ภายหลังจากการกระตุ้นด้วยตัวกระตุ้นชนิดต่าง ๆ เปรียบเทียบกับการ กระตุ้นด้วยเซลล์อสุจิซึ่งเป็นกลุ่มควบคุม รวมทั้งศึกษาบทบาทของ cortical granule ที่หลั่งออกมา ต่อ การป้องกันการเกิด polyspermy เซลล์ไข่จะถูกนำมาเพาะเลี้ยงจนเจริญเต็มที่เป็นเวลา 48 ชั่วโมง หลังจากนั้นก็จะนำเซลล์ไข่ที่โตเต็มที่แล้วทั้งชนิด zona intact และ zona free oocytes มากระตุ้นด้วย ตัวกระตุ้นที่ศึกษาชนิดต่าง ๆ ระดับของการเกิด CG exocytosis และอัตราการเกิด polyspermy ใน เชลล์ไข่ทั้งสองประเภทจะศึกษาในช่วงเวลา 0, 6, 12 และ 24 ชั่วโมง ภายหลังการกระตุ้น ผลการ ศึกษาภาวะการเกิด CG exocytosis ใน zona intact oocyte พบว่า calcium ionophore และ ethanol จะให้ผลการกระตุ้นที่ดีใกล้เคียงกับกลุ่มควบคุม ในขณะที่ sulphadiazine และ puromycin มีฤทธิ์การ กระตุ้นเพียงเล็กน้อยเท่านั้น เช่นเดียวกันกับการศึกษาใน zona free oocytes พบว่า calcium ionophore จะออกฤทธิ์สูงสุดในการกระดุ้นการเกิด CG exocytosis ภาวะการเกิด polyspermy จะมี อัตราลดลงในเชลล์ไข่ทั้งสองประเภท ภายหลังจากการกระดุ้นด้วยตัวกระดุ้นชนิดต่าง ๆ เปรียบเทียบ กับกลุ่มควบคุม โดยเฉพาะอย่างยิ่งในเซลล์ไข่ที่ได้รับการกระดุ้นด้วย ethanol และ calcium ionophore อย่างไรก็ตาม กลไกการเกิด CG exocytosis จากตัวกระตุ้นชนิดต่าง ๆ และการป้องกันการเกิด polyspermy ยังต้องได้รับการศึกษาอีกต่อไป

คำสำคัญ: ไข่หมู, ภาวะการเกิด cortical granule exocytosis, การปฏิสนชิซ้ำซ้อน

Abstract

Project Code: PDF 4480053

Project Title: Effects of calcium ionophore A23187, 7% ethanol and antibiotics reagents

(puromycin/sulphadiazine) on cortical granule exocytosis in porcine oocytes matured in vitro

Investigator: Dr Samur Thanoi, Department of Anatomy, Faculty of Medical Science,

Naresuan University, Phitsanulok, 65000

E-mail Address: samurt@nu.ac.th

Project period: 2 years (1 July 2001-30 June 2003)

Cortical granule exocytosis occurs when the first sperm fertilizes oocyte to prevent polyspermy. Apart from sperm penetration, many artificial stimulators have been reported to induce cortical granule exocytosis in mammalian oocytes, including pigs. However, little detailed classifications of the degree of exocytosis after the stimulation have been done. This study is, therefore, aimed to investigate the degree of exocytosis in porcine oocytes matured in vitro after the stimulation with artificial stimulators and its role in preventing polyspermy. Oocytes were matured in vitro for 48 h. Denuded matured oocytes and zona-free oocytes were then stimulated with each stimulator, including sperm penetration as a control group. Degrees of exocytosis were monitored at 0, 6, 12 and 24 h after stimulations as well as the number of sperm penetration. The results showed that calcium ionophore A23187 and 7% ethanol can induce cortical granule exocytosis in a similar manner with sperm penetration in zona intact oocytes while the stimulations with sulphadiazine and puromycin showed very little effect on the release of cortical granules. Similarly, calcium ionophore seemed to be the most effective stimulator to induce complete CG exocytosis in zona-free oocytes. Polyspermic fertilization in zona intact and zona free oocytes after the stimulation with artificial stimulators was reduced significantly when compared to the control group, especially when oocytes were treated with ethanol and calcium ionophore. However, further studies are needed to investigate effects of each stimulator in the modifications of cortical granules to prevent polyspermy in porcine occytes fertilized in vitro.

Keywords: porcine oocyte, cortical granule, polyspermy

เนื้อหางานวิจัย

ทุนวิจัยหลังปริญญาเอก

1. ชื่อโครงการ (ภาษาไทย) การศึกษาผลของการใช้ calcium ionophore A23187, 7% ethanol และ antibiotic reagents (puromycin/ sulphadiazine) ในการกระตุ้นการเกิด cortical granule exocytosis ในไข่หมู

ชื่อโครงการ (ภาษาอังกฤษ) Effects of calcium ionophore A23187, 7% ethanol and antibiotic reagents (puromycin/ sulphadiazine) on cortical granule exocytosis in porcine oocytes matured in vitro.

2. รหัสโครงการ: PDF 4480053

คณะผู้ดำเนินการวิจัย

หัวหน้าโครงการวิจัย

ชื่อไทย นายเสมอ ถาน้อย

ชื่ออังกฤษ Mr. Samur Thanoi

คุณวุฒิ Ph. D. (Anatomy & Cell Biology)

ตำแหน่ง อาจารย์

สถานที่ทำงาน สาขาวิชากายวิภาคศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยนเรศวร

อ.เมือง จ.พิษณุโลก 65000

โทรศัพท์ 055-261200 ต่อ 4515

โทรสาร 055-261198

e-mail samurt@nu.ac.th

นักวิจัยพี่เลี้ยง

ชื่อไทย ศาสตราจารย์ประเสริฐ โศภณ

ชื่ออังกฤษ Prof. Prasert Sobhon

คุณวุฒิ Ph.D.

ตำแหน่ง ศาสตราจารย์ 11

สถานที่ทำงาน ภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล

ถนนพระราม 6 เขตราชเทวี กรุงเทพมหานคร 10400

โทรศัพท์ 02-2461358-60 ต่อ 4114, 02-2455198

โทรสาร 02-2479880

e-mail scpso@mahidol.ac.th

นักวิจัยที่ปรึกษา

ชื่อไทย ผู้ช่วยศาสตราจารย์ชัยณรงค์ โตจรัส

ชื่ออังกฤษ Assist. Prof. Chainarong Tocharus

คุณวุฒิ MSc (Anatomy)

ตำแหน่ง ผู้ช่วยศาสตราจารย์

สถานที่ทำงาน สาขาวิชากายวิภาคศาสตร์ คณะแพทยศาสตร์ มหาวิทยาลัยนเรศวร

อ.เมือง จ.พิษณุโลก 65000

โทรศัพท์ 055-261200 ต่อ 4516

โทรสาร 055-261198

e-mail chainarong@hotmail.com

4. สาขาวิชาที่ทำการวิจัย

Reproductive biology เน้นศึกษาการเจริญและการปฏิสนธิของไข่หมู (porcine oocyte) ทั้งภาย นอก (in vitro) และภายใน (in vivo) ทางเดินระบบสืบพันธุ์ (female reproductive tract) reported to induce the cortical granule exocytosis in the matured porcine oocytes. However, most of these studies observed only the release of cortical granules without the classification of the degree of exocytosis. Therefore, three artificial stimulators; calcium ionophore A23187, 7% ethanol and antibiotic reagents (puromycin/sulphadiazine) will be used in the present study to investigate their influence on cortical granule exocytosis in porcine oocytes in comparison with the positive (sperm penetration) and negative (oocyte alone) controls. Three categories of exocytosis; complete cortical granule exocytosis with even distribution of exudate in the entire perivitelline space (type I), complete exocytosis with partial distribution of exudate (type II), and incomplete cortical exocytosis (type III), will be monitored after the oocytes are treated with each stimulator.

In addition, the effects of artificial stimulators on cortical exocytosis will also be investigated in the zona-free oocytes in order to better understanding the role of cortical reaction in preventing polyspermy without the influence from zona hardening. The degree of exocytosis and the cortical granule indices, such as the number of sperm penetration, will be monitored after sperm insemination. The overall results from this present study would, therefore, enable us to further understand the mechanisms of cortical granule exocytosis and its role in preventing polyspermy, which will provide us the information to improve techniques in both human and veterinary reproductive medicine.

8. วัตถุประสงค์ของโครงการ

- 8.1 To determine the effects of artificial stimulators in cortical granule exocytosis in in vitromatured porcine oocytes.
- 8.2 To compare the degree of exocytosis induced by artificial stimulators with the positive (sperm penetration) and negative (oocyte alone) controls.
- 8.3 To determine the effects of artificial stimulators in cortical granule exocytosis in zonafree oocytes.
- 8.4 To investigate whether or not the cortical reaction alone (without zona reaction) can prevent polyspermy in porcine occytes.

9. ผลงานวิจัยที่เกี่ยวข้อง (Literature review) และ เอกสารอ้างอิง

Blocks to polyspermic fertilization are necessary to prevent the incorporation of two or more sperm nuclei into a zygote's genome, which would result in abnormal development. In most mammals, the primary block to polyspermy occurs at the zona pellucida. mammalian eggs utilise both an extracellular zona pellucida block and a plasma membrane block to polyspermy(Ducibella, 1996). Although little is known about plasma membrane block in mammals, fertilization results in zona glycoprotein modifications caused by enzymes released by the egg and its cortical granules. The ability of oocyte to cause cortical granules release and block to polyspermy develops near the time of ovulation (Ducibella et al., 1988). Development of normal activation competence is likely to involve preovulatory changes in the oocyte's ability to signal the release of intracellular calcium as well as to respond to this calcium increase, resulting in cortical granule exocytosis (Ducibella, 1996). The ZP2-specific glycoprotein may be released during the cortical granule exocytosis which occurs during meiotic maturation following sperm-egg fusion (Bauskin et al., 1999). In hamsters, for example, fertilization triggers a wave of cortical granule exocytosis in the egg that is the consequence of an increase in intracellular free calcium concentration. Cortical granules (CGs) contain a high concentration of total calcium. They represent a major cortical storage site of calcium in the egg, and exchange part of their accumulated calcium by an ATP dependent mechanism (Gillot et al., 1991). The activated hamster eggs underwent cortical granule decondensation just prior to and at the time of exocytosis. Activated eggs exhibited dramatic decreases in the number of hamster sperm penetrating the cytoplasm, suggesting that a plasma membrane block to polyspermy is temporally related to cortical granule exocytosis (Cherr et al., 1988). Cortical reaction in hamster eggs was completed 9 minutes after sperm fusion in vitro, and 3 minute after the formation of zona and cell surface block to polyspermy (Stewart-Savage and Bavister, 1991)

In porcines, polyspermy is one of the unresolved problems that exist regarding porcine oocytes matured and inseminated in vitro (Wang et al., 1997a). The study of CG distribution in porcine oocytes during IVM and IVF indicated that CGs are distributed in the cortex cytoplasm of oocytes at the germinal vesicle stage (GV). As nuclear maturation proceeded to metaphase I and metaphase II, CGs migrated centrifugally to the cortex and formed a continuous monolayer under the oolemma. No distinct CG-free domain was observed in the oocytes

during maturation. The migration of CGs to the cortex continued during maturation, with an increased CG density after the GV stage. All oocytes penetrated by spermatozoa were activated and released CGs from ooplasm at 18 h after insemination. Complete CG exocytosis was observed in 45% of oocytes, and none was observed in nuclear-inactivated oocytes (Wang et al., 1997b). Additionally, the morphological differences in porcine oocytes matured in vivo (ovulated oocyte) and in vitro, with particular reference to the potential relationship between oocyte morphology and the occurrence of polyspermy after in vitro fertilization (IVF) have been investigated. Ovulated oocytes have clear areas in the cytoplasm cortex, while in vitro-matured oocytes have very dense cortex. The diameter of ovulated oocytes with zona pellucida was significantly (P<0.001) greater than that of in vitro-matured oocutes. However, no difference was observed in the diameter of the oocyte proper. Significantly (P<0.001) thicker zona pellucida and wider perivitelline space were observed in the ovulated oocytes. Polyspermy rate was significantly (P<0.01) higher in in vitro-matured oocytes (65%) than those in ovulated oocytes (28%). CGs of ovulated oocytes appeared more aggregated than those of in vitro-matured oocytes. However, most of CGs were released from both groups of oocytes 6 h after IVF regardless of whether they were polyspermic or monospermic oocytes indicating that in vitro-matured and in vivo-matured porcine oocytes posses equal ability to release CGs on sperm penetration (Wang et al., 1998a).

Cortical granule (CG) exocytosis of matured porcine oocytes has been classified into three categories after in vitro fertilization: complete CG exocytosis and even distribution of exudate in the entire perivitelline space (type I); complete exocytosis and partial distribution of exudate (type II) and incomplete CG exocytosis (type III) (Kim et al., 1996). The incidence of oocytes with type I exocytosis was higher in oocytes matured in vivo than in those matured in vitro (Kim et al., 1996). These categories will, therefore, be used in the present study to evaluate the effect of different stimulators in CG exocytosis in porcine oocytes.

Apart from fertilization, many stimulators have been reported to induce CG exocytosis in mammalian eggs. Porcine oocytes injected with a crude extract isolated from boar sperm showed cortical granule exocytosis, they resumed meiosis and entered first interphase: pronuclei were formed in 89.2% of the cases. Pronuclear formation was accompanied by the appearance of a new 22 kDa protein as normally seen at fertilization. Of the successfully injected oocytes 51.7% cleaved and 2.0% developed to the blastocyst stage after being

cultured for 7 days in NCSU 23 medium (Machaty et al., 2000). Preculture of oocytes in medium containing 30% oviductal fluid increased type I cortical granule reaction and increased resistance of the zona pellucida to dissolution by 0.1% (w/v) pronase at the time of sperm penetration (Kim et al., 1996). Thimerosal is one of the most effective artificial activators to mimic sperm-induced increases in the intracellular free calcium concentration and other activation events in porcine occytes. When porcine occytes matured in vitro were exposed to 200 microM thimerosal, the first inctracellular calcium transient was observed 509.64 +/-122.03 s after the addition of thimerosal. The density of CGs felt significantly from 63.3 +/ -11.7 CGs/100 micron² cortex to 25.7 +/ - 19.2 CGs/100 micron² (59.4% release) at 2 min after the first intracellular calcium transient. The CG density reduced to 10.7 +/ - 10.4 CGs/100 micron² (83.1% release) at 5 min after the first intracellular calcium transient, and no further decrease was observed at 10 min. This degree of exocytosis was the same as that in oocytes penetrated by sperm (9.5 +/ - 5.1 CGs/100 micron²). In addition, in vitro fertilization of thimerosal-treated oocytes with pre-incubated (capacitated) spermatozoa showed that the zona block to sperm penetration within 35 min after CG exocytosis and 40 min after the first calcium transient. These results indicate that the polyspermic penetration of porcine oocytes inseminated in vitro is not due to delayed or incomplete CG exocytosis but more likely to a delayed zona reaction and/or simultaneous sperm penetration (Wang et al., 1999a).

Calcium ionophore A23187 can also parthenogenetically activate oocytes in many animals (Ducibella et al., 1988, Wang, et al., 1997b, Ruddock et al., 2000). The effects of the concentration of A23187 on intracellular calcium transients, cortical granule exocytosis, nuclear activation, and zona reaction, which was determined by zona hardening and sperm penetrability, have been examined in in vitro-matured porcine oocytes. It was found that the amplitude of the intracellular calcium transients, percentage of CG exocytosis, and percentage of pronuclear formation were increased in a concentration-dependent manner. The time for dissolution of zona pellucida (ZP) was increased in the oocytes treated with 25-100 microM A23187. Penetration of the ZP-intact oocytes by spermatozoa was decreased and only 3-4% of oocytes were penetrated by spermatozoa after 50-100 microM treatment. Only 2% of oocytes with ZP-intact were penetrated by spermatozoa, whereas that of the oocytes without ZP were 92%. These results indicate that activation of porcine oocytes by A23187 is the result of A23187-induced intracellular calcium increase and A23187-induced cortical reaction can

prevent sperm penetration of the ZP-intact oocytes, but not ZP-free oocytes (Wang et al., 1998b). Complete CG exocytosis induced by A23187 was 10% of the entire oocytes (Wang et al., 1997b). When porcine oocytes were exposed to 50 microM A23187 for 5 min in a medium with or without calcium, a significant increase in the [Ca²+]i was observed in medium with calcium but not in medium without calcium. However, cortical granule exocytosis and pronuclear formation were observed in oocytes treated with calcium ionophore A23187 irrespective of the presence or absence of calcium in the medium indicating that A23187 can induce porcine oocyte activation in calcium-free medium without a typical increase in the [Ca²+]i and that A23187-induced porcine oocyte activation is accompanied by an increase in [pH]i (Wang et al., 1999b).

Exposure of eggs to a voltage pulse of 1 kV/cm for 100 microseconds resulted in localised exocytosis of the contents of cortical granules and development of partial fertilization envelop (Rossignol et al., 1984). Adequate electrostimulation induces changes in both cortical granule exocytosis and protein synthesis similar to those induced by sperm penetration in porcine oocytes. The Ca2+ transient increase is triggered by an influx of extracellular Ca2+ immediately after electrostimulation. A single electrical pulse can only induce a single Ca2+ transient which usually lasts three to five minutes, and no further Ca2+ transient are observed unless additional electrical stimuli are applied. By contrast, sperm-induced activation is characterised by a series of Ca2+ spikes which continue for at least 3 h after sperm-egg fusion. The overall results demonstrate that although electrostimulation induces both CG exocytosis and protein reprogramming in porcine oocytes, it does not reproduce the pattern of Ca2+ changes as induced by sperm entry at fertilization (Sun et al., 1992). An electrical pulse induced 89% of nuclear activation in matured porcine oocytes, and CG exocytosis was observed only in nuclear-activated oocytes with an average residual number of 6.4 +/- 9.4 CGs/100 microm² of cortex. Complete CG exocytosis induced by an electrical pulse was 25% of the entire oocytes (Wang et al., 1997). Moreover, it has been reported that calcium ionophore A23187 and electrical pulse induced 75.7% and 76.9% of cortical granules to be released from the porcine oocytes respectively, while sperm penetration induced 86.3% of CGs to be released. Oocyte activation induced by A23187 and sperm penetration resulted in a zona reaction, which prevented sperm penetration after insemination or re-insemination respectively, whereas, activation induced by electrical pulse did not cause a zona block (Wang

et al., 1998c).

Ethanol has also been reported to elicit the cortical exocytosis in the oocytes of some species, similarly to that occurs during fertilization (Tatone et al., 1999). Bovine oocytes treated with 7% ethanol (v/v) for 5 min showed that 71.7% of the entire oocytes were activated as shown by the resumption of meiosis and the formation of female pronuclei (Li et al., 1999). It has been suggested that ethanol induces a single transient rise in [Ca²⁺]i in oocytes, and the duration of the rise in [Ca²⁺]i was significantly longer than that by spermatozoa at fertilization (Nakada and Mizuno, 1998). In porcines, treatment of matured oocytes with 7% ethanol induced an increase in intracellular pH accompanied parthenogenetic activation of the oocytes (Ruddock et al., 2000).

The use of antibiotic reagents on oocyte activation has also been reported experimentally in some species. Cycloheximide treatment of metaphase II-arrested mouse oocytes resulted in resumption of meiosis (Moos et al., 1996). Brief exposure of mouse oocytes to calcium ionophore A23187 followed by 6 h in 10 µg/ml cycloheximide resulted in 93.8% oocyte activation (Hagemann et al., 1995). In addition, combined ethanol and cycloheximide treatment of bovine oocytes matured in vitro (IVM) resulted in 98% and 100% of activation rates in young (20 h IVM) and aging (40 h IVM) oocytes, respectively (Presicce and Similarly, it has been reported that in vitro maturation of young bovine oocytes sequentially activated with calcium ionophore and cycloheximide have cytoplasmic chromatin material adjacent to the second polar body, leading to a high enucleation rate (Nour and Takahashi, 1999). In porcines, treatment with cycloheximide after ethanol and calcium ionophore treatment increased the incidence of oocyte activation (Cha et al., 1997). Puromycin is widely used for IVM of human oocytes. Human oocytes exposed to puromycin resulted in oocyte activation (Balakier and Casper, 1993, Yamano et al., 2000). Treatment of aged human oocytes with 10 µg/ml puromycin for 6-8 h and further cultured for 12-15 h induced 90.5% of oocyte activation (De Sutter et al., 1994). It has been suggested that puromycin induces haploid as well as diploid parthenogenesis in aged human oocytes. Treatment of human oocytes with 10 μ g/ml puromycin for 5-10 h yields the highest percentage of activation, and almost all parthenogenetically activated oocytes enter or develop beyond the first cleavage mitosis (De Sutter et al., 1992). However, it appeared to be no report on the effects of antibiotics on cortical granule exocytosis from the oocytes. Therefore, the present study will be

the first to report the effects of antibiotic reagent, puromycin, on cortical granule exocytosis in porcine oocytes. With the consultant of the veterinarians from the local veterinary center and the pig farm in the Technology Rajamonkol Collage in Phitsanulok, Sulphadiazine is generally used for the treatment of infection in reproductive organs of pigs, such as metritis. One bolus, which contains 1.0 g sulphadiazine, will be administered as a whole at the fornix of the vagina for 40 kg pig daily until the symptoms have resolved or up to a maximum of five consecutive days. Therefore, sulphadiazine will be another reagent used in the present study to study its effects on CG exocytosis in porcine oocytes in comparison with that of puromycin.

From the published literature, there is still controversial about the effects of artificial stimulators on CG exocytosis in porcine oocytes. The present study is, therefore, designed to examine the ability of different artificial stimulators: calcium ionophore A23187, 7% ethanol and antibiotic reagents (puromycin/sulphadiazine), in inducing the release of cortical granules in invitro matured porcine oocytes. Three categories of cortical granule (CG) exocytosis classified by Kim et al. (1996) will be monitored and used for the comparison. The results from this part of the study will provide us a better understanding in the mechanisms of CG exocytosis in porcine oocytes, and the information on artificial stimulators in inducing CG exocytosis could be useful in developing the techniques to prevent polyspermy in in vitro fertilization in porcines. The use of antibiotics to induce cortical granule exocytosis could also provide us new informations whether or not the consumptions of the antibiotics have a side effect in the difficulties in fertilization in both mammals and humans. On the other hand, if the use of antibiotics do prevent fertilization, the use of antibiotics could lead to further investigations and could possibly be developed as a contraceptive reagent. In addition, the study in the effects of artificial stimulators on CG exocytosis and the percentage of polyspermic fertilization will also be performed in the zona-free porcine oocytes. This part of the study is designed to investigate the degree of exocytosis in zona-free oocytes, as well as, to examine the role of cortical reaction to polyspermy without the influence from zona hardening. Again, the results from this apart of the study will provide us a clearer view of the mechanisms to prevent polyspermic fertilization in porcine oocytes.

12

เอกสารอ้างอิง

- Balakier, H., and Casper, R.F. (1993) Experimentally induced parthenogenetic activation of human oocytes. *Human Reproduction* 8, 740-743.
- Bauskin, A.R., Franken, D.R., Eberspaecher, U., and Donner, P. (1999) Characterization of human zona pellucida glycoproteins. *Molecular Human Reproduction* 5, 524-540.
- Cha, S.K., Kim, N.H., Lee, S.M., Baik, C.S., Lee, H.T., and Chung, K.S. (1997) Effect of cytochalasin B and cycloheximide on the activation rate, chromosome constituent and in vitro development of porcine oocytes following parthenogenetic stimulation.

 Reproduction Fertility and Development 9, 441-446.
- Cherr, G.N., Drobnis, E.Z., and Katz, D.F. (1988) Localization of cortical granule constituents before and after exocytosis in the hamster egg. *Journal of Experimental Zoology* 246, 81-93.
- De Sutter, P., Dozortsev, D., Cieslak, J., Wolf, G., Verlinsky, Y., and Dyban, A. (1992)

 Parthenogenetic activation of human oocytes by puromycin. *J Assist Reprod Genet* 9, 328-337.
- De Sutter, P., Dozortsev, D., Vrijens, P., Desmet, R., and Dhont, M. (1994) Cytogenetic analysis of
 - human oocytes parthenogenetically activated by puromycin. *J Assist Reprod Genet* 11, 382-388.
- Ducibella, T. (1996) The cortical reaction and development of activation competence in mammalian oocytes. *Human Reproduction Update* 1, 29-42.
- Ducibella, T., Anderson, E., Albertini, D.F., Aalberg, J., and Rangarajan, S. (1988) Quantitative studies of changes in cortica; granule number and distribution in the mouse oocyte during
 - meiotic maturation. Development Biology 130, 184-197.
- Gillot, I., Ciapa, B., Payan, P., and Sardet, C. (1991) The calcium content of cortical granules and
 - the loss of calcium from sea urchin eggs at fertilization. *Development Biology* 146, 396-405.
- Hagemann, L.J., Hillery-Weinhold, F.L., Leibfried Rutledge, M.L., and First, N.L. (1995) Activation

- of murine oocytes with Ca²⁺ ionophore and cycloheximide. *Journal of Experimental Zoology* 271, 57-61.
- Kim, N. H., Funahashi H., Abeydeera, L.R., Moon, S.J., Parther, R. S., and Day, B.N. (1996) Effects
 - of oviductal fluid on sperm penetration and cortical granule exocytosis during fertilization of pig oocytes in vitro. *Journal of Reproduction and Fertility* 107, 79-86.
- Li, X., Hamano, K., Qian, X.Q., Funauchi, K., Furudate, M., and Minato, Y. (1999) Oocyte activation
 - and pathenogenetic development of bovine oocytes following intracytoplasmic sperm injection. *Zygote* 7, 233-237.
- Machaty, Z., Bonk, A.J., Kuhholzer, B., and Prather, R.S. (2000) Porcine oocyte activation induced
 - by a cytosolic sperm factor. Molecular Reproduction and Development 57, 290-295.
- Moos, J., Kopf, G.S., and Schultz, R.M. (1996) Cycloheximide-induced activation of mouse eggs:
- effects on cdc2/cyclin B and MAP kinase activities. *Journal of Cell Science* 109, 739-748.
- Nakada, K., and Mizuno, J. (1998) Intracellular calcium responses in bovine oocytes induced by
 - spermatozoa and by reagents. Theriogenology 50, 269-282.
- Nour, M.S., and Takahashi, Y. (1999) Preparation of young preactivated oocytes with high enucleation efficiency for bovine nuclear transfer. *Theriogenology* 51, 661-666.
- Presicce, G.A., and Yang, X. (1994) Parthenogenetic development of bovine oocytes matured in
 - vitro for 24 hr and activated by ethanol and cycloheximide. *Molecular Reproduction* and *Development* 38, 380-385.
- Rossignol, D.P., Decker, G.L., Lennarz, W.J., Tsong, T.Y., and Teissie, J. (1983) Induction of calcium-dependent, localized cortical granule breakdown in sea-urchin eggs by voltage
 - pulsation. Biochim Biophys Acta 763, 346-355.

- Ruddock, N.T., Machaty, Z., Milanick, M., and Parther, R.S. (2000) Mechanism of intracellular pH
- increase during parthenogenetic activation of in vitro matured porcine oocytes. Biology of
 - Reproduction 63, 488-492.
- Stewart-Savage, J., and Bavister, B.D. (1991) Time course and pattern of cortical granule breakdown in hamster eggs after sperm fusion. *Molecular Reproduction and Development* 30, 390-395.
- Sun, F.Z., Hoyland, J., Huang, X., Mason, W., and Moor, R.M. (1992) A comparison of intracellular
 - changes in porcine eggs after fertilization and electroactivation. *Development* 115, 947-956.
- Tatone, C., Iorio, R., Francione, A., Gioia, L., and Colonna, R. (1999) Biochemical and biological
 - effects of KN-93, an inhibitor of calmodulin-dependent protein kinase II, on the initial events of mouse egg activation induced by ethanol. *Journal of Reproduction and Fertility* 115, 151-157.
- Wang, W.H., Sun, Q.Y., Hosoe, M., Shioya, Y., and Day, B.N. (1997a) Quantified analysis of cortical granule distribution and exocytosis of porcine oocytes during meiotic maturation and activation. *Biology of Reproduction* 56, 1376-1382.
- Wang, W.H., Hosoe, M., and Shioya Y. (1997b) Induction of cortical granule exocytosis of pig oocytes by spermatozoa during meiotic maturation. *Journal of Reproduction and Fertility* 109, 247-255.
- Wang, W.H., Abeydeera, L.R., Prather, R.S., and Day B.N. (1998a) Morphologic comparison of ovulated and in vitro-matured porcine oocytes, with particular reference to polyspermy after in vitro fertilization. *Molecular Reproduction and Development* 49, 308-316.
- Wang, W.H., Machaty, Z., Abeydeera, L.R., Prather, R.S., and Day, B.N. (1998b) Parthenogenetic
- activation of pig oocytes with calcium ionophore and the block to sperm penetration after
 - activation. Biology of Reproduction 58, 1357-1366.

- Wang, W.H., Abeydeera, L.R., Parther, R.S., and Day B.N. (1998c) Functional analysis of activation of porcine oocytes by spermatozoa, calcium ionophore, and electrical pulse.

 *Molecular Reproduction and Development 51, 346-353.
- Wang, W.H., Machaty, Z., Abeydeera, L.R., and Day, B.N. (1999a) Time course of cortical and zona reactions of pig oocytes upon intracellular calcium increase induced by thimerosal. *Zygote* 7, 79-86.
- Wang, W.H., Machaty, Z., Ruddock, N., Abeydeera, L.R., Boquest, A.C., Prather, R.S., and Day,
- B.N. (1999b) Activation of porcine oocytes with calcium ionophore: effects of extracellular
 - calcium. Molecular Reproduction and Development 53, 99-107.
- Yamano, S., Nakagawa, K., Nakasaka, H., and Aono, T. (2000) Fertilization failure and oocyte activation. Journal of Medical Investigation 47, 1-8.
- Yoshida, M., Cran, D.G., and Pursel, V.G. (1993) Confocal and fluorescence microscopic study using lectins of the distribution of cortical granules during the maturation and fertilization of pig oocytes. *Molecular Reproduction and Development* 36, 462-468.

10. ระเบียบวิจัย

10.1 Oocyte collection and maturation

Porcine ovaries will be removed from the animals at a slaughterhouse. The ovaries will immediately be transferred to the laboratory in normal saline (0.9% NaCl) at 18-24°C. The oocytes will be aspirated from 2-8 mm ovarian follicles using 10 cc sterile syringes and 18-G sterile, disposable needles. The oocytes with a compact cumulus mass (more than 3 layers of tight cumulus cells) and evenly granulated cytoplasm will be selected for use.

The oocyte maturation will be performed in oocyte maturation medium containing Hepes-buffered TCM-199 (Sigma Chemical CO, St Louis, MO) supplemented with 10% (v/v) heat-treated fetal calf serum (56°C for 30 min.) and 10 iu/ml PMSG, 10 iu/ml hCG and 1 μ g/ml 17- β estradiol. pH will be adjusted to 7.3-7.4 using 1M NaOH. Selected oocytes will then be washed 3 times in maturation medium and placed into 50 μ l maturation medium droplets (10-15 oocytes per droplet) in 60 mm plastic Petri dish under 10 ml sterile paraffin oil. The oocytes will be left for maturation for 18-20 h in a high humidity CO₂ incubator (5% CO₃ in air at 39°C).

After maturation period, cumulus cells will be removed from the oocytes by vortexing in 0.3 M mannitol solution containing 0.3 mg/ml hyaluronidase. The denuded, matured oocytes will finally be washed 3 times in maturation medium and ready for use in experimental designs.

10.2 Sperm collection

Semen will be collected twice weekly from 3 large white boars. The average age of the boars is 2 years. A sperm-rich fraction (100-250 ml) will be collected from each animal by the gloved-hand method. Then, the sperm-rich fraction will be filtered through 2 layers of gauze fixed to pre-warmed (37°C) thermos flasks. It will be kept at 20°C for 16 h after adding antibiotic-antimycotic solution (Gibco, Grand Island, NY).

10.3 Experimental designs

10.3.1 Determining the effects of artificial stimulators on cortical granule (CG) exocytosis in in vitro-matured porcine oocytes, in comparison with the positive (sperm penetration) and negative (oocyte alone) controls

Control groups

- Positive control (Fertilization in vitro)

The semen will be washed three times by centrifugation (1000 g for 3 min.) with 0.9 (w/v) NaCl supplemented with 1 mg/ml BSA (Fraction V; Sigma Chemical CO, St Louis, MO). At the end of washing, the pellets containing spermatozoa will be resuspended at a concentration of 2 x 10^8 cells/ml in modified Medium 199 at pH 7.8. Then, the sperm suspension will be incubated for 90 min. at 39° C in an atmosphere of 5% CO₂ in air.

Ten matured oocytes will be washed three times with modified Medium 199 supplemented with 10 mmol/l caffeine sodium benzoate and 4 mg/ml BSA (Sigma Chemical CO, St Louis, MO) at pH 7.4. After being washed, ten oocytes will be placed into a 50 μ l droplet of the modified Medium 199 under paraffin oil. Fifty millilitres of diluted preincubated spermatozoa will be added to 50 μ l of medium containing the oocytes giving a final concentration of 1 x 10⁶ cells/ml. The co-cultured will be kept at 39°C in an atmosphere of 5% CO₂ in air for 6 hours.

After 6 h. of incubation, the oocytes will be washed 3 times with the modified

medium and transferred to 500 μ I of fresh medium containing 100 μ g/mI peanut agglutinin labelled with fluorescein isothiocyanate (FITC-PNA). The degree of CG exocytosis will be observed under the inverted fluorecent microscope using the classifications described by Kim et al. 1999 at 6, 12 and 24 h. post-insemination. The oocytes will then be fixed 2% Glutaraldehyde and processed for the investigation under transmission electron microscope (TEM).

- Negative control (Oocyte alone)

Ten matured oocytes will be will be washed three times with modified Medium 199

supplemented with 10 mmol/l caffeine sodium benzoate and 4 mg/ml BSA at pH 7.4, and stained with peanut agglutinin labelled with FITC-PNA at 0, 6, 12 and 24 h. after incubating in the cultured medium. The degree of CG exocytosis will be monitored following the protocol described above.

Study groups

Calcium ionophore A23187

Ten matured oocytes will be exposed to 100 μ M Calcium ionophore A23187 (Sigma Chemical CO, St Louis, MO) for 5 min. Then, they will be stained with FITC-PNA and monitored the degree of exocytosis under the fluorescent microscope at 5 min, 2, 6, 12 and 24 h of incubation. The samples, then, will be processed for electron microscopy.

- 7% Ethanoi

Ten matured oocytes will be exposed to 7% ethanol for 5 min (Ruddock et al., 2000). Then, they will be performed for the investigation of CG exocytosis microscope at 5 min, 2, 6, 12 and 24 h of incubation as the protocol mentioned earlier.

Antibiotic reagents (puromycin and sulphadiazine)

Ten matured oocytes will be exposed to 10 μ g/ml puromycin (Sigma Chemical CO, St Louis, MO) for 5 h. Then, they will be stained with FITC-PNA and monitored the degree of exocytosis under the fluorescent microscope at 5 min, 2, 6, 12 and 24 h of incubation. The samples, then, will be processed for electron microscopy

Another ten matured oocytes will be exposed to 10 μ g/ml sulphadiazine (Sigma

Chemical CO, St Louis, MO) for 5 h. Then, they will be observed the degree of CG exocytosis as the protocol described above.

10.3.2 Investigating the effects of artificial stimulators in cortical granule (CG) exocytosis in zona-free porcine oocytes

Preparation of zona-free oocytes

The matured oocytes will be treated with 0.1% hyaluronidase Type VIII (Sigma Chemical

CO, St Louis, MO) in modified Medium 199 for 3 min. and the cumulus cells surrounding the oocyte will be stripped off by pipetting. The oocytes with zona intact will be washed three times with the medium. Then, zona pellucida will be removed using 0.25% pronase (Pronase E, Sigma Chemical CO, St Louis, MO) in modified Medium 199 several times before use.

Control groups

Positive control

Ten zona-free oocytes will be washed three times with modified Medium 199 supplemented with 10 mmol/l caffeine sodium benzoate and 4 mg/ml BSA at pH 7.4. At the end of the washing, the oocytes will be placed into a 50 μ l droplet of the modified Medium 199 under paraffin oil. 50 ml of diluted preincubated spermatozoa will be added to 50 μ l of medium containing the oocytes giving a final concentration of 1 x 10⁶ cells/ml. The co-cultured will be kept at 39°C in an atmosphere of 5% CO₂ in air for 6 hours.

After 6 h. of incubation, the oocytes will be washed 3 times with the modified medium and transferred to 500 μ I of fresh medium containing 100 μ g/mI peanut agglutinin labelled with fluorescein isothiocyanate (FITC-PNA). The degree of CG exocytosis will be observed under the fluorecent microscope at 6, 12, 24 h. of incubation. The oocytes will then be fixed and processed for the investigation under transmission electron microscope (TEM).

Negative control (Oocyte alone)

Ten zona-free oocytes will be will be washed three times with modified Medium199

supplemented with 10 mmol/l caffeine sodium benzoate and 4 mg/ml BSA at pH 7.4 and stained with peanut agglutinin labelled with FITC-PNA at 0, 6, 12 and 24 h. after incubating in

the cultured medium. The degree of CG exocytosis will be monitored following the protocol described in 9.3.1.

Study groups

- Calcium ionophore A23187

Ten zona-free oocytes will be exposed to 100 μ M Calcium ionophore A23187 for 5 min. Then, they will be stained with FITC-PNA and monitored the degree of exocytosis under the fluorescent microscope at 5 min, 2, 6, 12 and 24 h of incubation. The samples, then, will be processed for electron microscopy.

- 7% Ethanol

they

Ten zona-free oocytes will be exposed to 7% ethanol for 5 min. Then, they will be

performed for the investigation of CG exocytosis microscope at 5 min, 2, 4, 12 and 24 h of incubation as the protocol mentioned earlier.

- Antibiotic reagents (puromycin and sulphadiazine)

Ten zona-free oocytes will be exposed to 10 μ g/ml puromycin for 5 h. Then,

will be stained with FITC-PNA and monitored the degree of exocytosis under the fluorescent microscope at 5 min, 2, 6, 12 and 24 h of incubation. The samples, then, will be processed for electron microscopy

Another ten zona-free oocytes will be exposed to 10 μ g/ml sulphadiazine for 5 h.

Then, they will be observed the degree of CG exocytosis as the protocol described above.

10.3.3 Investigating polyspermic fertilization in zona-free porcine oocytes induced by artificial stimulators.

After 24 h of incubation, ten zona-free oocytes induced by each artificial stimulator will be inseminated with 50 ml of diluted preincubated spermatozoa adding with 50 μ l of medium to give a final concentration of 1 x 10⁶ cells/ml. The co-cultured will be kept at 39°C in an atmosphere of 5% CO₂ in air for 6 hours. Six hours post-insemination, the oocytes in each

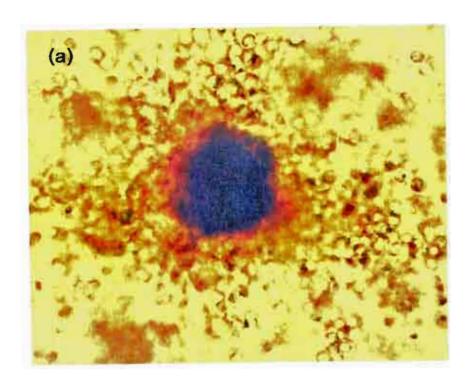
group will be observed for fertilization (monospermic or polyspermic) using phase contrast microscopy.

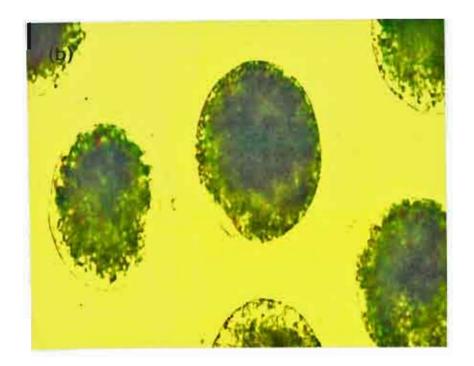
10.4 Classifications of cortical granule (CG) exocytosis

Cortical granule (CG) exocytosis of matured porcine oocytes has been classified into three categories after *in vitro* fertilization: complete CG exocytosis and even distribution of exudate in the entire perivitelline space (type I); complete exocytosis and partial distribution of exudate (type II) and incomplete CG exocytosis (type III) (Kim *et al.*, 1996). The classifications of CG exocytosis used in the present study were therefore modified from the classifications described by Kim *et al.* (1996). In zona-intact oocytes, degree of CG exocytosis were classified into four categories as followed; complete CG exocytosis and even distribution of exudate in the entire perivitelline space (type I); complete exocytosis and partial distribution of exudate (type II), incomplete CG exocytosis (type III) and no CG exocytosis (type IV). In zona-free oocytes, since zona pellucida of oocyte was removed, the release of cortical granules into the perivitelline space was not be possible to monitor. Therefore, the classification of CG exocytosis in the present study was classified into three categories: complete CG exocytosis around the oolemma (type I); incomplete CG exocytosis (type III) and no CG exocytosis (type III).

11 ผลงานวิจัยที่ได้รับ

11.1 ผลการศึกษาภาวะการเกิด cortical granule (CG) exocytosis ใน matured porcine oocyte ภายหลังการกระตุ้นการเกิด CG exocytesis ด้วย ethanol, sulphadiazine, calcium ionophore and puromycin เปรียบเทียบกับกลุ่มควบคุม (sperm penetration)


Table 1. Percentage of matured oocytes presenting Type I cortical granule exocytosis after stimulated by each stimulator


		Percentage of oocytes presenting Type I cortical granule exocytosis							
Culture time	Sperm penetration	Ethanol	Sulphadiazine	Calcium Ionophore	Puromycin	Level of significance			
0	1.39±2.41	11.30±2.68	4.45±3.86	13.49±12.22	0.00±0.00	P = 0.070			
6	11.23±4.71	20.55±1.26	0.00±0.00	15.88±15.08	0.00±0.00	P < 0.05			
12	15.00±0.00	34.93±0.73	2.57±2.23	27.50±24.11	2.04±1.79	P < 0.05			
24	31.09±6.26	25.18±1.87	0.00±0.00	25.25 ± 36.15	4.85±5.83	Ns			

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 1 (Table 1) แสดงให้เห็นว่า เปอร์เซนต์การเกิด Type I CG-exocytosis ใน matured oocyte จะมีค่าสูงอย่างมีนัยสำคัญ จากการกระตุ้นด้วย 7% ethanol และ calcium ionophore เมื่อเทียบกับตัว กระตุ้นประเภทอื่น ๆ ในช่วงเวลา 0, 6 และ 12 ชั่วโมง ภายหลังจากกระตุ้น โดยเฉพาะอย่างยิ่งในช่วง เวลา 12 ชั่วโมง ภายหลังการกระตุ้น ตัวกระตุ้นทั้ง 2 ประเภท ให้ค่าเปอร์เซนต์การเกิด Type I CG-exocytosis เป็น 34.93% สำหรับการกระตุ้นด้วย 7% ethanol และ 27.50% สำหรับการกระตุ้นด้วย calcium ionophore (P<0.05) ในส่วนของกลุ่ม control (sperm penetration) พบว่า จะมีอัตราการเพิ่ม ขึ้นของการเกิด Type I CG-exocytosis ตามลำดับ และจะให้ค่าสูงสุดในช่วงเวลา 24 ชั่วโมง ภายหลัง การกระตุ้น (31.09%)

รูปที่1 แสดง matured oocytes ภายหลังการทำ IVM เป็นเวลา 48 ชั่วโมง พบว่ามีการ กระจายตัวของ cumulus cells รอบเซลล์ไข่ (a); zona intact matured oocytes ที่ถูก ย่อยสลาย cumulus cells ออก (b)

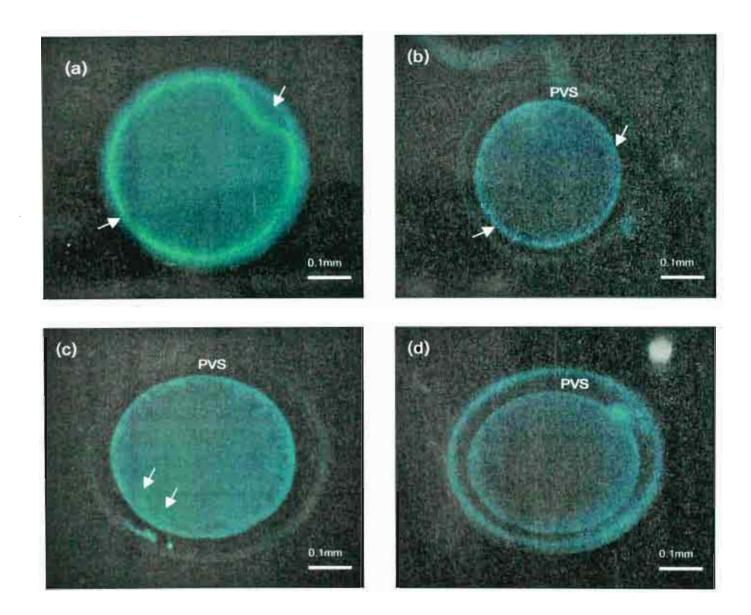
Table 2. Percentage of matured oocytes presenting Type II cortical granule exocytosis after stimulated by each stimulator

_	Percentage of oocytes presenting Type II cortical granule exocytosis						
Culture time (hr)	Sperm penetration	Ethanol	Sulphadiazine	Calcium Ionophore	Puromycin	Level of significance	
0	31.27±3.24	51.60±3.58	34.23±7.82	64.41±10.33	50.44±13.32	P < 0.01	
6	43.66±6.25	43.67±2.39	20.70±3.25	55.20±13.56	48.83±12.21	P < 0.01	
12	41.67±2.89	48.30±4.24	43.09±2.68	51.89±15.43	55.00±18.03	Ns	
24	47.22±4.81	51.61±2.79	38.32±3.99	63.78±26.52	57.84±13.98	Ns	

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 2 (Table 2) แสดงถึงผลการเกิด Type II CG-exocytosis จากการกระตุ้นด้วยตัวกระตุ้น ประเภทต่าง ๆ พบว่า ในช่วงเวลา 0 และ 6 ชั่วโมง จะให้ค่าความแตกต่างอย่างมีนัยสำคัญ (P<0.01) โดยในช่วงเวลา 0 ชั่วโมง ภายหลังการกระตุ้น พบว่าการกระตุ้นด้วย calcium ionophore จะทำให้เกิด Type II CG-exocytosis ในอัตราสูงสุดเท่ากับ 64.41% และในช่วงเวลา 6 ชั่วโมง ภายหลังการกระตุ้น เป็น 55.20% ตามลำดับ โดยการกระตุ้นด้วย sulphadiazine ให้ได้อัตราการเกิด Type II CG-exocytosis ค่อนข้างต่ำกว่าตัวกระตุ้นประเภทอื่น ๆ


Table 3. Percentage of matured oocytes presenting Type III cortical granule exocytosis after stimulated by each stimulator

	Percentage of oocytes presenting Type III cortical granule exocytosis							
Culture time (hr)	Sperm penetration	Ethanol	Sulphadiazine	Calcium Ionophore	Puromycin	Level of significance		
0	42.04±2.25	24.28±1.84	31.77±2.99	21.18±5.98	28.67±5.60	P = 0.001		
6	21.14±0.52	28.15±2.39	43.96±3.46	28.92±3.70	32.37±2.56	P < 0.001		
12	21.67±2.89	9.09±2.17	34.61±1.34	20.61±13.94	27.41±5.59	P < 0.01		
24	14.61±2.71	16.27±3.18	32.66±1.33	10.97±12.02	25.69±10.61	P < 0.05		

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 3 (Table 3) พบว่าการเกิด Type III CG-exocytosis ให้ค่าความแตกต่างอย่างมีนัยสำคัญใน ทุกช่วงเวลาของการทำการศึกษา โดยพบว่าในช่วงเวลา 0 ชั่วโมง ภายหลังการกระตุ้น sperm

รูปที่ 2 ภาพแสดงระดับของการเกิด cortical granule (CG) exocytosis ใน matured porcine oocyte (a) type I complete CG exocytosis พบว่ามี cortical granule ล้อมรอบ oolemma (ลูก ศรซี้) และกระจายตัวอยู่โดยรอบ perivitelline space (PVS); (b) type II complete CG exocytosis พบว่ามี cortical granule ล้อมรอบ oolemma (ลูกศรซี้) แต่ไม่มีการกระจายตัวออกไป สู่ PVS; (c) type III incomplete CG exocytosis พบว่ามี cortical granule ล้อมรอบเพียงบางส่วน ของ oolemma (ลูกศรซี้); (d) type IV no CG exocytosis พบว่าไม่มีการหลั่งของ cortical granule Scale bar มีค่าเท่ากับ 0.1 mm

penetration จะให้ค่าการเกิด Type III CG-exocytosis สูงสุด (42.04%) และการกระตุ้นด้วย calcium ionophore ให้ค่าต่ำสุด (21.18%) ในช่วงเวลา 6 ชั่วโมง ภายหลังการกระตุ้น sulphadiazine จะให้ค่าสูง สุด (43.96%) เช่นเดียวกับช่วงเวลา 12 และ 24 ชั่วโมง โดยมีค่าเท่ากับ 34.61% และ 32.66% ตามลำดับ

Table 4. Percentage of matured oocytes presenting Type IV cortical granule exocytosis after stimulated by each stimulator

	F	Percentage of oocytes presenting Type IV cortical granule exocytosis							
Culture time (hr)	Sperm penetration	Ethanol	Sulphadiazine	Calcium Ionophore	Puromycin	Level of significance			
0	25.31±0.53	12.82±2.01	29.55±1.31	0.93±1.61	20.89±15.98	P = 0.005			
6	23.97±2.77	7.63±3.38	35.34±4.86	0.00±0.00	18.80±14.46	P = 0.001			
12	21.67±2.89	7.68±5.11	19.74±1.11	0.00±0.00	15.56±13.88	P < 0.05			
24	7.08±2.66	6.94±0.66	29.02±2.70	0.00±0.00	11.63±10.15	P < 0.001			

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในดารางที่ 4 (Table 4) แสดงถึงเปอร์เซนต์การเกิด Type IV CG-exocytosis พบว่าการกระตุ้นด้วย sulphadiazine จะมีจำนวนไข่ที่ไม่มีการเกิด CG-exocytosis สูงกว่าการกระตุ้นกลุ่มอื่น ๆ อย่างมีนัย สำคัญ เกือบทุกช่วงเวลาที่ศึกษา โดยเฉพาะอย่างยิ่งในช่วงเวลา 6 ชั่วโมง ภายหลังการกระตุ้น จะมีเปอร์ เซนต์การไม่เกิด CG-exocytosis สูงถึง 35.34% (P=0.001) ในทางกลับกันการกระตุ้นด้วย Calcium ionophore จะกระตุ้นให้เกิด exocytosis ค่อนข้างดี โดยพบว่าในช่วงเวลา 6, 12 และ 24 ชั่วโมง ไข่ทุกใน ที่ทำการศึกษามีการเกิด CG-exocytosis ทั้งหมด

11.2 ผลการศึกษาการเกิด polyspermic fertilization ใน matured porcine oocytes ภาย หลังการกระตุ้นการเกิด CG exocytesis ด้วย ethanol และ sulphadiazine เปรียบเทียบกับกลุ่ม ควบคุม (sperm penetration)

Table 1. Percentage of fertilization, polyspermy, monospermy and average number of sperm per egg in zona intact matured porcine oocytes examined at o h of incubation after stimulated by each stimulator

Features · examined	Sperm penetration	Ethanol	Sulphadiazine	Level of significance
Percent of Fertilization	88.87±5.09	86.41±3.98	58.66±5.49	P < 0.001
Percent of polyspermy	63.46±7.73	6.67±7.64	18.79±9.15	P < 0.001
Percent of monospermy	36.54 ± 7.73	93.33±7.64	81.21 ± 9.15	P < 0.001
number of sperm per egg	1.60±0.17	1.07±0.08	1.22±0.05	P < 0.001

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 1 พบว่าอัตราการเกิด fertilization ของกลุ่มควบคุม (sperm penetration) และกลุ่ม ที่กระตุ้นด้วย ethanol จะมีค่าใกล้เคียงกัน โดยมีอัตราการเกิด fertilization อยู่ที่ $88.87 \pm 5.09\%$ และ $86.41 \pm 3.98\%$ ตามลำดับ ซึ่งค่าที่ใช้มีความแตกต่างอย่างมีนัยสำคัญ (P<0.001) กับกลุ่มที่ถูกกระตุ้น ด้วย sulphadiazine (58.66 ± 9.15)

อัตราการเกิด polyspermic fertilization จะมีค่าสูงสุดในกลุ่มควบคุม (63.46 \pm 7.73) ซึ่งมี ความแตกต่าง (P<0.001) กับกลุ่มที่กระตุ้นด้วย ethanol (6.67 \pm 7.64) และ sulphadiazine (18.79 \pm 9.15)

Table 2. Percentage of fertilization, polyspermy, monospermy and average number of sperm per egg in zona intact matured porcine oocytes examined at 6 h of incubation after stimulated by each stimulator

Features examined	Sperm penetration	Ethanol	Sulphadiazine	Level of significance
Percent of fertilization	88.87±5.09	65.75±4.93	53.21±11.75	P < 0.01
Percent of polyspermy	63.46±7.73	6.67±6.67	9.44±10.05	P < 0.001
Percent of monospermy	36.54±7.73	93.33±6.67	90.56±10.05	P < 0.001
number of sperm per egg	1.60±0.17	1.07±0.07	1.13±0.15	P < 0.01

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 2 พบว่าอัตราการเกิด fertilization ภายหลังการกระตุ้นด้วย ethanol และ sulphadiazine เป็นเวลา 6 ชั่วโมง จะมีค่าต่ำกว่ากลุ่มควบคุมอย่างมีนัยสำคัญ (P<0.01) เช่นเดียวกับ อัตราการเกิดภาวะ polyspermy ก็จะลดลงอย่างมีนัยสำคัญ (P<0.001)

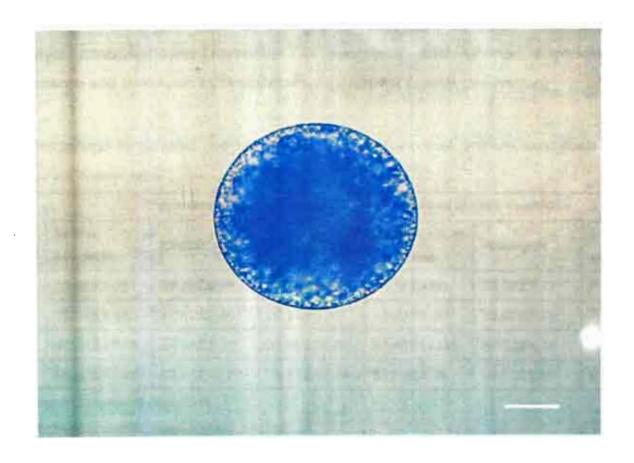
Table 3. Percentage of fertilization, polyspermy, monospermy and average number of sperm per egg in zona intact matured porcine oocytes examined at 12 h of incubation after stimulated by each stimulator

Features examined	Sperm penetration	Ethanol	Sulphadiazine	Level of significance
Percent of Fertilization	88.87±5.09	53.18±12.22	57.90±24.41	P = 0.067
Percent of polyspermy	63.46±7.73	11.24±2.98	14.35±7.13	P < 0.001
Percent of monospermy	36.54±7.73	88.76±2.98	85.65 ± 7.13	P < 0.001
number of sperm per egg	1.60±0.17	1.14±0.03	1.20±0.11	P < 0.01

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 3 พบว่าจัดราการเกิด fertilization ภายหลังการกระตุ้นด้วย ethanol และ sulphadizaine เป็นเวลา 12 ชั่วโมง ไม่มีความแตกต่างทางสถิติ (P=0.067) แต่จัดราการเกิด fertilization จะมีค่าต่ำสุดในกลุ่มที่กระตุ้นด้วย ethanol (53.18 ± 12.22%) ในขณะที่จัดราการเกิด polyspermy ของกลุ่มที่กระตุ้นด้วย ethanol และ sulphasizaine จะมีค่าน้อยกว่ากลุ่มควบคุมอย่างมีนัย สำคัญ (P<0.001)


Table 4. Percentage of fertilization, polyspermy, monospermy and average number of sperm per egg in zona intact matured porcine oocytes examined at 24 h of incubation after stimulated by each stimulator

Features examined	Sperm penetration	Ethanol	Sulphadiazine	Level of significance
Percent of Fertilization	88.87±5.09	46.83±10.14	66.26±25.71	P = 0.05
Percent of polyspermy	63.46±7.73	3.03±5.25	1.75±3.04	P < 0.001
Percent of monospermy	36.54±7.73	96.97±5.25	98.25±3.04	P < 0.001
number of sperm per egg	1.60±0.17	1.03±0.05	1.02±0.03	P = 0.001

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 4 พบว่าจัตราการเกิด fertilization ของกลุ่มควบคุม และกลุ่มที่กระตุ้นด้วย ethanol และ sulphadiazine เป็นระยะเวลา 24 ชั่วโมง มีความแตกต่างกัน (P<0.05) โดยจัตราการเกิด fertilization ในกลุ่มที่ถูกกระตุ้นด้วย ethanol จะมีค่าต่ำสุด (46.83 \pm 10.14%) เมื่อเปรียบเทียบกับกลุ่ม ควบคุม (88.87 \pm 5.09%) ในขณะที่จัตราการเกิด polyspermy ในกลุ่มที่กระตุ้นด้วย ethanol และ sulphadiazine จะลดลงอย่างมีนัยสำคัญ (P<0.001) เมื่อเปรียบเทียบกับกลุ่มควบคุม

รูปที่ 3 ภาพแสดง zona free oocyte ภายหลังจากการทำ IVM เป็นเวลา 48 ชั่วโมง Scale bar มีค่าเท่ากับ 0.02 มม.

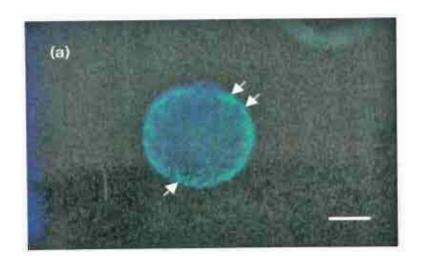
11.3 ผลการศึกษาภาวะการเกิด cortical granule exocytosis ใน zona – free matured porcine oocyte ภายหลังการกระตุ้นการเกิด CG exocytesis ด้วย ethanol, sulphadiazine, calcium ionophore and puromycin เปรียบเทียบกับกลุ่มควบคุม (sperm penetration)

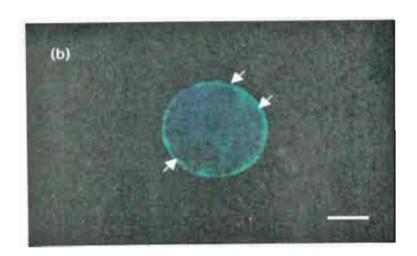
Table 1. Percentage of matured oocytes exhibiting Type II cortical granule exocytosis after stimulated by each stimulator

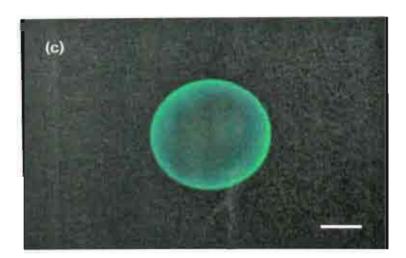
	Percentage of oocytes presenting Type II cortical granule exocytosis							
Culture time (hr)	Sperm penetration	Ethanol	Sulphadiazine	Calcium Ionophore	Puromycin	Level of significance		
0	26.65±5.25	52.36±6.26	24.66±7.75	31.17±4.50	23.92±7.77	P = 0.001		
6	35.11±7.63	47.87±9.48	20.23±6.85	63.32±8.20	29.92±7.78	P = 0.001		
12	47.87±13.18	54.86±7.79	21.05±11.44	62.46±13.00	30.92±4.18	P < 0 01		
24	58.87±11.85	62.11±13.27	29.73±12.24	67.78±8.39	40.12±2.80	P < 0.01		

Data are means and standard deviations

Level of significance is tested using one way ANOVA


ในตารางที่ 1 แสดงภาวะการเกิด Type II CG – exocytosis ใน zona free oocyte พบว่าในช่วง ระยะเวลา 0 ชั่วโมง ภายหลังการกระตุ้น ภาวะการเกิด Type II CG – exocytosis จะมีค่าสูงสุดใน oocyte ที่ถูกกระตุ้นด้วย ethanol (52.36 ± 6.26) และจะมีค่าต่ำสุดในกลุ่มที่ถูกกระตุ้นด้วย puromycin (23.92 ± 7.7) ในขณะที่ช่วงระยะเวลา 6, 12 และ 24 ชั่วโมง ภายหลังการกระตุ้นจะให้ผลที่คล้ายคลึงกัน คือ Type II CG – exocytosis จะพบมากในกลุ่มที่กระตุ้นด้วย Calcium Ionophore และต่ำสุดในกลุ่มที่ กระตุ้นด้วย Sulphadiazine


Table 2. Percentage of matured oocytes exhibiting Type III cortical granule exocytosis after stimulated by each stimulator

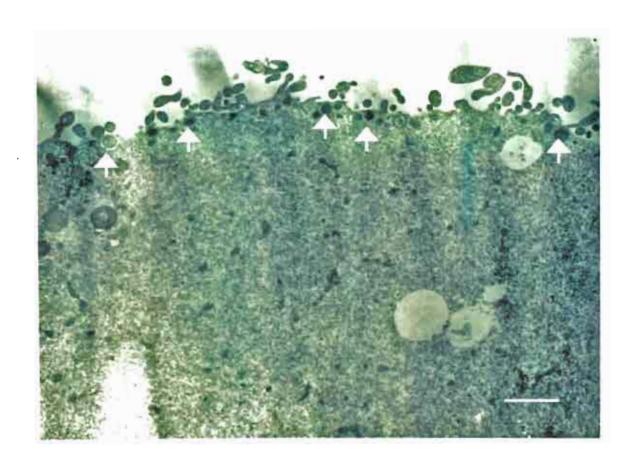

-	Percentage of oocytes presenting Type III cortical granule exocytosis							
Culture time (hr)	Sperm penetration	Ethanol	Sulphadiazine	Calcium Ionophore	Puromycin	Level of significance		
0	61.87±2.94	39.35±2.39	47.45±2.63	55.27±10.06	49.89±1.45	P < 0.001		
6	56.72±5.58	49.75±11.05	51.32±3.39	32.94±11.16	38.87±5.30	P < 0.05		
12	46.46±9.18	39.03±10.28	56.65±6.64	28.74±7.01	38.94±5.16	P < 0.05		
24	38.75±7.75	37.03±12.27	51.48±18.60	32.22±8.39	30.56±3.37	ns		

Data are means and standard deviations

Level of significance is tested using one way ANOVA

รูปที่ 4 ภาพแสดงระดับของการเกิด cortical granule (CG) exocytosis ใน zona free oocyte (a) type I complete CG exocytosis พบว่ามี granule ล้อมรอบ oolemma (ลูกศร ซี้) (b) type II partial CG exocytosis พบว่ามี granule เพียงบางแห่ง ล้อมรอบ oolemma (ลูกศรขึ้) (c) type III no CG exocytosis
Scale bar มีค่าเท่ากับ 0.2 มม.

ในตารางที่ 2 แสดงภาวะการเกิด Type III CG – exocytosis พบว่าในช่วงระยะเวลา 0 ชั่วโมง ภายหลังการกระตุ้น อัตราการเกิด Type III CG – exocytosis จะมีค่าสูงสุดในกลุ่มควบคุม (sperm penetration) โดยมีค่าเท่ากับ (61.87 ± 2.94%) และมีค่าต่ำสุดในกลุ่มที่กระตุ้นด้วย ethanol (39.35 ± 2.39%) แต่ในช่วงระยะเวลา 6, 12 และ 24 ชั่วโมง ภายหลังการกระตุ้น ภาวะการเกิด Type III CG – exocytosis ในกลุ่มควบคุมจะลดลงตามลำดับ ในทางตรงกันข้ามอัตราการเกิด Type III CG – exocytosis จะเพิ่มขึ้นในกลุ่มที่ถูกกระตุ้นด้วย sulphadiazine ส่วนการกระตุ้นด้วย puromycin จะให้ อัตราการเกิด Type III CG – exocytosis ค่อนข้างต่ำเมื่อเปรียบเทียบกับตัวกระตุ้นชนิดอื่น ๆ โดยจะมีค่า ต่ำสุดในช่วงระยะเวลา 24 ชั่วโมง ภายหลังการกระตุ้น (30.56 ± 3.37%)


Table 3. Percentage of matured oocytes exhibiting Type IV cortical granule exocytosis after stimulated by each stimulator

	Percentage of oocytes presenting Type IV cortical granule exocytosis							
Culture time (hr)	Sperm penetration	Ethanol	Sulphadiazine	Calcium Ionophore	Puromycin	Level of significance		
0	11.48±2.31	8.29±5.81	27.89±8.90	13.56±9.61	26.19 ± 6.95	P < 0.05		
6	8.17±2.07	2.38±4.12	28.46±7.26	3.74±3.96	31.21±2.61	P < 0.001		
12	5.67±4.99	6.11±2.60	22.30±7.97	9.16±5.96	30.14±3.34	P = 0.001		
24	2.38±4.12	0.83±1.48	18.79±7.00	0.00±0.00	29.33±0.72	P < 0.001		

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 3 แสดงถึงอัตราของเซลล์ไข่ที่ไม่แสดงภาวะการเกิด CG – exocytosis และในทุกช่วง เวลาของการศึกษา โดยพบว่าในช่วงระยะเวลา 0 ชั่วโมง ภายหลังการกระตุ้น เซลล์ไข่ที่ถูกกระตุ้นด้วย sulphadiazine จะมีอัตราการไม่พบการเกิด CG – exocytosis สูงสุด (27.89 ± 8.90%) ส่วนในช่วง ระยะเวลา 6, 12 และ 24 ชั่วโมง ภายหลังการกระตุ้น จะพบว่าอัตราภาวะการไม่เกิด CG exocytosis สูง ในกลุ่มที่กระตุ้นด้วย puromycin ในทางตรงกันข้ามการกระตุ้นด้วย sperm penetration sulphadiazine และ Calcium ionophore จะพบอัตราการไม่พบ CG – exocytosis ค่อนข้างต่ำ โดยเฉพาะอย่างยิ่งใน ช่วงระยะเวลา 24 ชั่วโมง ภายหลังการกระตุ้นด้วย Calcium ionophore พบว่าเซลล์ไข่ทุกเซลล์ที่ทำการ ศึกษาจะมีภาวะการเกิด CG – exocytosis ครบทุกใบ

รูปที่ 5 ภาพถ่ายจากกล้องจุลทรรศน์อิเลคตรอน (TEM) แสดงการเกิด cortical granule exocytosis ใน zona free oocyte โดยพบว่ามี granule ถูกปล่อยออกมาอยู่ภายใต้ oolemma (ลูกศรชี้)

Scale bar มีค่าเท่ากับ 0.5 μ m

11.4 ผลการศึกษา ภาวะการเกิด polyspermic fertilization ใน zona free porcine oocyte ภายหลัง การกระตุ้นด้วยตัวกระตุ้นชนิดต่าง ๆ

Table 1. Percentage of fertilization, polyspermy, monospermy and average number of sperm per egg in zona-free matured porcine oocytes examined at o hr of incubation after stimulated by each stimulator

Features examined	Sperm penetration	Ethanol	Sulphadiazine	Calcium Ionophore	Puromycin	Level of significance
Percent of Fertilization	89.39±4.06	60.12±5.85	82.43±3.32	61.26±5.19	77.15±2.47	P < 0.001
Percent of polyspermy	71.63±0.70	18.91±3.50	26.19±5.41	18.91±3.50	23.33±4.59	P < 0.001
Percent of monospermy	28.37±0.70	81.09±3.50	73.81±5.41	81.09±3.50	76.67±4.59	P < 0.001
number of sperm per egg	1.74±0.05	1.20±0.06	1.31±0.08	1.20±0.06	1.25±0.04	P < 0.001

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 1 แสดงอัตราการเกิด fertilization และภาวะการเกิด polyspermy ในช่วงเวลา 0 ชั่ว โมง ภายหลังการกระตุ้น เบรียบเทียบกับกลุ่มควบคุม (sperm penetration) พบว่าอัตราการเกิด fertilization จะสูงสุดในกลุ่มควบคุม (89.39 \pm 4.06%) และมีอัตราต่ำสุดในกลุ่มที่กระตุ้นด้วย ethanol (60.12 \pm 5.85%) เช่นเดียวกับอัตราการเกิด polyspermy จะมีค่าสูงสุดในกลุ่มควบคุม (71.63 \pm 0.70%) และต่ำสุดในกลุ่มที่กระตุ้นด้วย ethanol (18.91 \pm 3.50%) ของกลุ่มที่กระตุ้นด้วย calcium ionophore (18.91 \pm 3.50%)

Table 2. Percentage of fertilization, polyspermy, monospermy and average number of sperm per egg in zona-free matured porcine oocytes examined at 6 hr of incubation after stimulated by each stimulator

Features examined	Sperm penetration	Ethanol	Sulphadiazine	Calcium lonophore	Puromycin	Level of significance
Percent of Fertilization	89.39±4.06	82.28±3.46	84.97±2.83	66.04±8.43	73.37±6.67	P < 0.01
Percent of polyspermy	71.63±0.70	15.36±3.36	57.78±6.94	18.94±9.49	44.06±7.03	P < 0.001
Percent of monospermy	28.37±0.70	84.64±3.36	42.22±6.94	81.06±9.49	55.94±7.03	P < 0.001
number of sperm per egg	1.74±0.05	1.20±0.03	1.64±0.04	1.21±0.11	1.47±0.09	P < 0.001

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 2 แสดงอัตราการเกิด fertilization และภาวะการเกิด polyspermy ในช่วงเวลา 6 ชั่ว โมง ภายหลังการกระตุ้น เปรียบเทียบกับกลุ่มควบคุม (sperm penetration) พบว่าอัตราการเกิด fertilization ในกลุ่มที่กระตุ้นด้วย ethanol และ sulphadiazine จะมีค่าใกล้เคียงกับกลุ่มควบคุม ในขณะ ที่กลุ่มที่กระตุ้น calcium ionophore และ puromycine จะให้อัตราการเกิด fertilization ที่ค่อนข้างต่ำกว่า กลุ่มควบคุม (P<0.001)

ส่วนจัตราการเกิด polyspermy จะมีค่าสูงสุดในกลุ่มควบคุม (sperm penetration) และต่ำสุด ในกลุ่มที่กระตุ้นด้วย ethanol (15.36 ± 3.36%)

Table 3. Percentage of fertilization, polyspermy, monospermy and average number of sperm per egg in zona-free matured porcine oocytes examined at 12 h of incubation after stimulated by each stimulator

Features examined	Sperm penetration	Ethanol	Sulphadiazine	Calcium lonophore	Puromycin	Level of significance
Percent of Fertilization	89.39±4.06	88.16±3.38	82.22±5.09	63.12±5.73	68.58±7.01	P < 0.001
Percent of polyspermy	71.63±0.70	19.81±3.95	41.43±2.01	10.87±3.07	52.97±8.80	P < 0.001
Percent of monospermy	28.37±0.70	80.19±3.95	58.57±2.01	89.13±3.07	47.03±8.80	P < 0.001
number of sperm per egg	1.74±0.05	1.25±0.07	1.50±0.07	1.12±0.02	1.54±0.07	P < 0.001

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 3 แสดงอัตราการเกิด fertilization และภาวะการเกิด polyspermy ในช่วงเวลา 12 ชั่วโมง ภายหลังการกระตุ้น เปรียบเทียบกับกลุ่มควบคุม (sperm penetration) พบว่าอัตราการเกิด fertilization ในกลุ่มที่กระตุ้นด้วย ethanol และ sulphadiazine จะมีค่าใกล้เคียงกับกลุ่มควบคุม ในขณะ ที่กลุ่มที่กระตุ้น calcium ionophore และ puromycine จะให้อัตราการเกิด fertilization ที่ค่อนข้างต่ำกว่า กลุ่มควบคุม (P<0.001)

ส่วนอัตราการเกิด polyspermy จะมีค่าสูงสุดในกลุ่มควบคุม (71.63 ± 0.70%) และต่ำสุดใน กลุ่มที่กระตุ้นด้วย calcium ionophore (10.87 ± 3.07%)

Table 4. Percentage of fertilization, polyspermy, monospermy and average number of sperm per egg in zona-free matured porcine oocytes examined at 24 h of incubation after stimulated by each stimulator

Features examined	Sperm penetration	Ethanol	Sulphadiazine	Calcium Ionophore	Puromycin	Level of significance
Percent of Fertilization	89.39±4.06	91.16±5.66	90.96±7.83	63.00±0.58	65.41±7.71	P < 0.001
Percent of polyspermy	71.63±0.70	29.33±3.14	27.07±1.80	6.13±6.92	49.37±10.96	P < 0.001
Percent of monospermy	28.37±0.70	70.67±3.14	72.93±1.80	93.87±6.92	53.81±16.06	P < 0.001
number of sperm per egg	1.74±0.05	1.43±0.04	1.30±0.02	1.02±0.03	1.59±0.06	P < 0.001

Data are means and standard deviations

Level of significance is tested using one way ANOVA

ในตารางที่ 4 แสดงอัตราการเกิด fertilization และภาวะการเกิด polyspermy ในช่วงเวลา 24 ชั่วโมง ภายหลังการกระตุ้น เปรียบเทียบกับกลุ่มควบคุม (sperm penetration) พบว่าอัตราการเกิด fertilization ในกลุ่มที่กระตุ้นด้วย ethanol และ sulphadiazine จะมีค่าสูงกว่ากลุ่มควบคุม โดยมีค่าเท่า กับ 91.61 \pm 5.66% - 90.96 \pm 7.83%) ตามลำดับ ในขณะที่อัตราการเกิด polysperm จะลดลงอย่าง มากในกลุ่มที่กระตุ้นด้วย calcium ionophore (6.13 \pm 6.92%) เมื่อเปรียบเทียบกับกลุ่มควบคุม (71.63 \pm 0.70%)

Output จากโครงการวิจัย

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

ชื่อผู้แต่ง: S. Thanoi, C. Tocharus and P. Sobhon

ชื่อเรื่อง: The comparision of degree of cortical granule exocytosis in invitro-matured porcine oocytes induced by different artificial stimulators

ชื่อวารสาร: Journal of Reproduction

วัน เดือน ปี ที่เสนอตีพิมพ์: 16th June 2003

2. ผลงานวิจัยที่คาดว่าจะตีพิมพ์ในวารสารนานาชาติ

2.1 ชื่อผู้แต่ง: S. Thanoi, C. Tocharus and P. Sobhon

ชื่อเรื่อง: A comparision of degree of cortical granule exocytosis in zona-free porcine oocytes induced by different artificial stimulators

ชื่อวารสาร: Journal of Reproduction

วัน เดือน ปี ที่จะเสนอตีพิมพ์: September 2003

2.2 ชื่อผู้แต่ง: S. Thanoi, C. Tocharus and P. Sobhon

ชื่อเรื่อง: Polyspermic fertilization in zona-intact and zona-free matured porcine oocyte after cortical granule exocytosis stimulation with artificial stimulators

ชื่อวารสาร: Journal of Reproduction

วัน เดือน ปี ที่จะเสนอตีพิมพ์: December 2003

3. การนำผลงานวิจัยไปใช้ประโยชน์

3.1 เชิงพาณิชย์

ผลจากการวิจัยในครั้งนี้สามารถนำไปศึกษาวิจัยเพิ่มเติมเพื่อหาวิธีการที่เหมาะสม เพื่อ นำตัวกระตุ้นที่ออกฤทธิ์ในการป้องกันการปฏิสนธิซ้ำซ้อน (polysperm) ไปใช้ในการผสมผสาน กับการทำ IVF เพื่อให้ได้ผลผลิตในปริมาณที่เพิ่มขึ้นในสัตว์เศรษฐกิจประเภทต่างๆ เช่นในสุกร เป็นต้น นอกจากนี้ ผลการศึกษาในครั้งนี้อาจจะนำไปประยุกต์ใช้กับการศึกษาวิจัยในมนุษย์เพื่อ เพิ่มอัตราการเกิดการปฏิสนธินอกมดลูก (IVF) ให้สูงขึ้นได้

3.2 เชิงสาธารณะ

การดำเนินการวิจัยในโครงการนี้ได้รับความร่วมมือจากหลายหน่วยงาน ซึ่งจะนำไปสู่ความร่วม มือด้านงานวิจัยที่จะดำเนินการต่อไปในอนาคต

3.3 เชิงวิชาการ

เทคนิควิธีการวิจัยที่ได้รับจากการวิจัยในครั้งนี้สามารถนำไปใช้ในการพัฒนาการเรียนการสอนทั้ง ในระดับปริญญาตรี และระดับบัณฑิตศึกษาได้เป็นอย่างดี ผลงานวิจัยที่ได้สามารถนำไปถ่าย ทอดในชั้นเรียน เพื่อให้นิสิตทราบถึงความก้าวหน้าในด้านเทคโนโลยีการเจริญพันธุ์ต่อไป

4. ผลงานวิจัยอื่นๆ

4.1 ชื่อผู้แต่ง: เสมอ ถาน้อย ชัยณรงค์ โตจรัส และประเสริฐ โศภน

ชื่อเรื่อง: การเกิด exocytosis ของ cortical granule ในไข่หมูจากการกระตุ้นด้วย 7% ethanol และ sulphadiazine

รูปแบบการเสนอผลงาน: oral presentation

สถานที่: การประชุมวิชาการ กายวิภาคศาสตร์แห่งประเทศไทย ครั้งที่ 25 24-26 เมษายน 2545 ณ ทรัพย์ไพวัลย์รีสอร์ท จังหวัดพิษณุโลก

4.2 ชื่อผู้แต่ง: เสมอ ถาน้อย ซัยณรงค์ โตจรัส และประเสริฐ โศภน

ชื่อเรื่อง: การกระตุ้นด้วย ethanol และ sulphadiazine สามารถลดอัตราการเกิด polyspermic fertilization ในไข่หมู

รูปแบบการเสนอผลงาน: oral presentation

สถานที่: การประชุมวิชาการ กายวิภาคศาสตร์แห่งประเทศไทย ครั้งที่ 26 23-25 เมษายน 2546 ณ บรุคไซด์วัลเลย์รีสอร์ท จังหวัดระยอง

4.3 รางวัลผลงานวิจัยดีเด่นสาขา จุลกายวิภาคศาสตร์/ชีววิทยาของเซลล์ จากชมรมกายวิภาค ศาสตร์แห่ง ประเทศไทย จากโครงการวิจัย เรื่อง "การเกิด Exocytosis ของ Cortical granule ในไข่ หมูจากการ กระตุ้นด้วย 7% Ethanol และ Sulphadiazine" โดย เสมอ ถาน้อย ชัยณรงค์ โตจรัส และประเสริฐ โศภน การประชุมวิชาการ กายวิภาคศาสตร์แห่งประเทศไทย ครั้งที่ 25 24-26 เมษายน 2545 ณ ทรัพย์ไพวัลย์รีสอร์ท จังหวัดพิษณุโลก

Department of Anatomy

Samur Thanoi PhD

Faculty of Medical Science

Naresuan University

Phitsanulok 65000, THAILAND

Tel: +66 55 261000 ext. 4648

Fax: +66 55 261000 ext. 4758

Email: samurt@nu.ac.th

16th June 2003

Dear The Managing Editor

This letter is to inform that I would like to submit the research work in the title of "The comparison of degree of cortical granule exocytosis in *in vitro*-matured porcine oocytes induced by different artificial stimulators" for the consideration of the Journal of Reproduction. I strongly confirm that this work has not been published in other journals and will not be

submitted for publication elsewhere until it has been decided by the Research Editorial Board

of the Journal of Reproduction whether to publish this title or not.

I do hope the Research Editorial Board will find the interesting points of this work for

publication in the Journal of Reproduction. However, I am willing to improve the paper if the

referees find some points that the paper should be adjusted suitable for publication.

With this letter, I am very pleased to give 3 names of scientists who are working in the field of

reproduction biology for confederation of this work.

Finally, please do not hesitate to contact me should further information about this paper is

required, I do hope to hearing from you soon.

Yours sincerely,

Dr. Samur Thanoi

36

A list of 3 scientists who are working in the field of reproduction biology for confederation of this work

1. MA Warren

Contact address: Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.

2. GCW England

Contact address: Department of Farm Animal and Equine Medicine and Surgery, Royal Veterinary College, University of London, Hatfield, Herts, UK.

3. H Funahashi

Contact address: Department of Animal Science, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan.

Email address: hirofun@cc.okayama-u.ac.jp

17 June 2003

The comparison of degree of cortical granule exocytosis in in vitro-matured porcine oocytes induced by different artificial stimulators

I acknowledge receipt of your paper which has been numbered REP-417 to be considered for publication in REPRODUCTION. The manuscript will be sent out to referees and I hope to advise you of a decision within 6 weeks. You can track the progress of your manuscript by visiting http://www.srf-reproduction.org/journal/authors/tracking.asp

Christine Doberska
Managing Editor
Society for Reproduction and Fertility (SRF)
22 Newmarket Road, Cambridge CB5 8DT, UK
Tel: 01223 351 809; Fax: 01223 359 754
Email: reproduction@srf-reproduction-journal.org

Our email has changed to reproduction@srf-reproduction-journal.org

Our website has moved to http://www.srf-reproduction.org/journal

'Reproduction' ... the Journal of the Society for Reproduction and Fertility ... a world-class journal from a leading society

The information contained in this e-mail is confidential. It may contain legally privileged information. It is intended only for the stated addressee(s) and access to it by any other person is unauthorised. If you are not an addressee, you must not disclose, copy, circulate or in any other way use or rely on the information contained in this e-mail. Such unauthorised use may be unlawful. Any opinion or advice contained in this e-mail shall not form any part of a legally binding contract. If you have received this e-mail in error please inform us immediately at "reproduction@srf-reproduction-journal.org" or by faxing 01223 359754 and delete it and all copies from your system. SRF, 22 Newmarket Road, Cambridge CB5 8DT, UK. Tel: 01223 351809. Fax: 01223 359754. E-mail: cosec@srfadmin.demon.co.uk. Registration No 647816, London. Registered Charity No 261433 Although we have taken steps to ensure that this e-mail and attachments are free from any virus, we would advise you to ensure they are indeed virus free. We do not, to the extent permitted by law, accept any liability (whether in contract, negligence or otherwise) for any virus infection and/or external compromise of security and/or breach of confidentiality in relation to transmissions sent by e-mail.

-----Original Message-----

From: samur thanoi [mailto:samurt@nu.ac.th]

Sent: 17 June 2003 05:51

To: Reproduction

Subject: FW: Paper submission Dear The Managing Editor

This letter is to confirm whether or not you have received the manuscript I sent for publication last

sunday (15 May 03).

Yours sincerely, Samur Thanoi

ษ๔-ษอ เมษายน ษ๔๔๕ ทรัพย์ไพรวัลย์ รีสอร์ท จังทวัดพิษณุโลก

25th Annual Meeting of the Society of Anatomy of Thailand

April 24-26, 2002
Sappraiwan Grand Resort, Phitsanulok Province

ชมรมกายวิภาคศาสตร์แห่งประเทศไทย ขอมอบเกียรติบัตรนี้แต่

เสมอ ถาน้อย, ชัยณรงค์ โดจรัส และ ประเสริฐ โศภน

ที่ได้ทำคุณประโยชน์ในฐานะผู้เสนอผลงานวิจัย การประชุมวิชาการกายวิภาคศาสตร์แห่งประเทศไทย ครั้งที่ ๒๕ ณ หรัพย์ไพรวัลย์รีสอร์ท จังหวัดพิษณุโลก วันที่ ๒๔-๒๖ เมษายน พ.ศ. ๒๕๔๕ YEARSH SUCERIAL J.

ศ เสตราชาร์ย์ นายแพทย์ ผร. บุญเสริม โทยซ้านกญกุล นายกพมรมกายวิภาศศาสตร์แห่งประบศไทย

ประธานกรรมการจัดการประทุม

นี้ช่วยศาสตราจารย์ ทั้นดแพทย์หญิง ดอลลี เมธาธราก๊ป

Mana lauren 82

ชมรมกายวิภาคศาสตร์แห่งประเทศไทย

มอบเกียรติบัตรฉบับนี้เพื่อประกาศเกียรติคุณของ

เสมอ ถาน้อย

ชัยณรงค์ โตจรัส ประเสริฐ โศภาม

ในฐานะได้รับรางวัลผลงานวิจัยดีเด่นสาขา จุลกายวิภาคศาสตร์/ชีววิทยาของเชลล์ การประชุมกายวิภาคศาสตร์แห่งประเทศไทย ครั้งที่ ๒๕ ณ ทรัพย์ไพรวัลย์รีสอร์ท จังหวัดพิษณุโลก วันที่ ๒๔-๒๖ เมษายน พุทธศักราช ๒๕๔๕

Tree holder poor 10

ผู้ส่วยศาสตาจารย์ ทันตนพทยหญ่ม ดคลล่ ยมการาหิป

ประกามกรรมการจัดการประกา

1/215821 SACO 117/2 GAD

บระการการกระบารพราสตร์แห่งการเกรากร

การเกิด Exocytosis ของ Cortical Granule ในไข่หมู จากการกระตุ้นด้วย 7% Ethanol และ Sulphadiazine

เสมอ ถาน้อย¹* ชัยณรงค์ โตจรัส! ประเสริฐ โศภน²
โภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์การแพทย์ มหาวิทยาลัยนเรศวร พิษณุโลก 65000

²ภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล กรุงเทพมหานศร 10400

การเกิด cortical granule (CG) exocytosis จะเกิดขึ้นหลังจากที่ sperm ตัวแรกเข้า ไปปฏิสนธิกับเขลล์ไข่ cortical granule ที่ถูกปล่อยออกมาจะปรับสภาพเขลล์ไข่ เพื่อป้องกัน ไม่ให้เกิดการปฏิสนธิ์ซ้ำซ้อน อย่างไรก็ตาม พบว่าไม่เฉพาะแต่การปฏิสนธิ์ด้วย sperm เท่านั้น ที่สามารถกระตุ้นให้เกิด CG exocytosis ตัวกระตุ้นอื่น อาทิเช่น calcium ionophore A 23187 และ electrical pulse ก็สามารถกระตุ้นให้เกิด CG exocytosis ได้ ด้วยเหตุนี้ การศึกษาครั้งนี้ จึงมีวัตถุประสงค์ที่จะศึกษาถึงผลของการใช้ตัวกระตุ้นอื่น ๆ โดยจะใช้ 7% ethadol และยาปฏิชีวนะ (sulphadiazine) เป็นตัวกระตุ้น เพื่อเปรียบเทียบกับกลุ่ม control คือ sperm penetration (IVF) เซลล์ไข่ (gocyte) จะถูกเจาะออกมาจากรั้งไข่ แล้วน้ำเข้าสู่ ขบวนการ์ oocyte maturation เป็นเวลิวัประมาณ 48 ซั่วโมง จากนั้น cumulus cells จะถูก แยกออกจาก oocyte Oocyte ที่ได้ก็จะนำไปกระตุ้นด้วยตัวกระตุ้นแต่ละประเภท เพื่อศึกษา การเกิด CG exocytosis เทียบกับกลุ่ม control (sperm penetration) Degree การเกิด CG exocytosis จะแบ่งออกเป็น 3 กลุ่ม คือ กลุ่มที่ 1 (Type I) เป็นกลุ่มที่มีการเกิด CG exocytosis แบบสมบูรณ์ คือ มีการกระจายตัวอย่างสม่ำเสมอใน perivitelline space กลุ่มที่ 2 (Type II) เป็นกลุ่มที่มีการเกิด CG exocytosis แบบสมบูรณ์ แต่การศระจายตัวไม่สม่ำเสมอ และกลุ่มที่ 3 (Type III) เป็นกลุ่มที่มีการเกิด CG exocytosis แบบไม่สมบูรณ์ จากการศึกษา พบว่าร้อยละของ oocyte ที่แสดง Type I CG exocytosis มีค่าเป็น 11.30 ± 2.68 ภายหลัง จากการกระตุ้นด้วย 7% ethanol (0 hr) ซึ่งมีค่าทางสถิติสูงกว่า (P ≤ 0.01) ค่าที่พบจากการ กระตุ้นด้วย sperm penetration (1.39 <u>+</u> 2.41) ภายหลังจากการกระตุ้น 6 ชั้วโมง ค่าที่ได้ก็ ลูงกว่า (P < 0.01) กลุ่ม control เช่นกัน ในทางกลับกัน 24 ชั่วโมง ภายหลังการกระตุ้นร้อย ละของ pocyte ที่แสดง Type | มีค่าสูงขึ้นในกลุ่ม control (42.04 ± 2.25) และจะสูงกว่า (P < 0.001) กลุ่มที่กระตุ้นด้วย 7% ethanol (24.28 ± 1.8) การกระตุ้นด้วย sulphadiazine จะมี ผสต่อการเกิด CG exocytosis ค่อนข้างต่ำ โดยร้อยละของการเกิด Type I และ Type II จะมี ค่าต่ำกว่ากลุ่ม control เกือบทุกช่วงระยะเวลาการศึกษา โดยสรุปพบว่า 7% ethanol ลามารถกระตุ้นให้เกิด CG exocytosis ได้ใกล้เคียงกับกลุ่ม control sulphadiazine มีผลการเกิด CG exocytosis ค่อนข้างน้อย ผลที่ได้จากการศึกษาในครั้งนี้ สามารถละท้อนให้เห็นถึงผลของการใช้ตัวกระดุ้นอื่น ๆ นอกเหนือจาก sperm penetration ใน การเกิด CG exocytosis ตัวกระตุ้นอาทิเช่น 7% ethanol ซึ่งสามารถกระตุ้นให้เกิด CG exocytosis ได้ค่อนร้างดี อาจจะนำไปสู่การศึกษา เพื่อพัฒนาเทคนิคในการป้องกันภาวะการ ปฏิลนธิ์ซ้ำซ้อน (polyspermy) ได้

คำสำคัญ: การปฏิสนธิจ้ำข้อน การปฏิสนธินอกมุคลูก (IVF)

Cortical granule exocytosis in *in vitro*-matured porcine oocytes induced by 7% ethanol and sulphadiazine

Thanoi S¹*, Tocharus C¹, Sobhon P²

¹ Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000

Cortical granule (CG) exocytosis normally occurs when the first sperm penetrate an egg. The release of cortical granules modifies the extracellular environment and blocks additional sperm from reaching the fertilized egg. However, not only the penetration of sperm can induce the release of cortical granules, but artificial stimulators, e.g., calcium ionophore A23187 and electrical pulse, can also produce CG exocytosis. Therefore, the present study is aimed to determine the effects of artificial stimulators, 7% ethanol and antibiotic reagent (sulphadiazine), on CG exocytosis in in vitro-matured porcine oocytes. Oocytes were removed from the ovaries and matured in vitro for 48 hours. After maturation period, the cumulus cells were removed from the oocyte. The oocytes were then induced for CG exocytosis by each stimulator in comparison with sperm penetration (control group). Degrees of CG exocytosis were classified into 3 categories; complete CG exocytosis with even distribution of exudate in the perivitelline space (type I), complete CG exocytosis with partial distribution of exudate (type II) and incomplete CG exocytosis (type III). The percentage of oocytes releasing type I CG exocytosis after inducing with 7% ethanol at 0 hr was 11.30±2.68. This was significantly higher (P<0.01) than that of sperm penetration (1.39±2.41). Similarly at 6 hr after inducing with 7% ethanol, the percentage of type I was also significantly higher (P<0.01). Conversely, the percentage of type I was higher (<0.001) in the control group (42.04±2.25) when compared with those stimulated by 7% ethanol (24.28±1.8) at 24 hr after stimulation. On the other hand, the percentages of type I and type II after inducing with sulphadiazine were significantly lower than those in the control group in almost every interval examined. In conclusion, 7% ethanol can induce CG exocytosis in in vitro-matured occytes with similar respect to sperm On the other hand, sulphadiazine has very little effect on CG exocytosis. This study could reflect that the use of artificial stimulator, such as 7% ethanol, can also produce CG exocytosis and this artificial stimulator could lead to further study for an application to prevent polyspermy in in vitro fertilization.

Key words: cortical granule, polyspermy, in vitro fertilization (IVF)

²Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, 10400.

Cortical Granule exceptosis in in Vitro-matured Porcine occytics induced by 7% Elfranot and Suphidiazane

By

Assist Prof. Chainmong Technolog

Prof. Or Present Sobhen

Department of Anatomy, Faculty of Medical Science, Naresuan University

Department of Anatomy, Faculty of Science, Mahidol, University

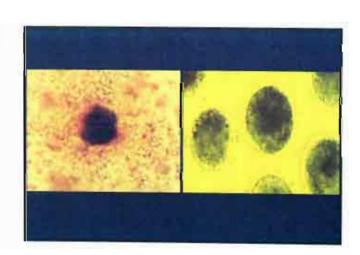
INTRODUCTION

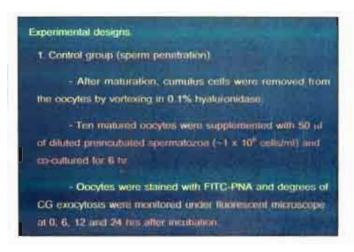
Cortical granule exocytesis normally occurs when the first sperm penetrates an egg.

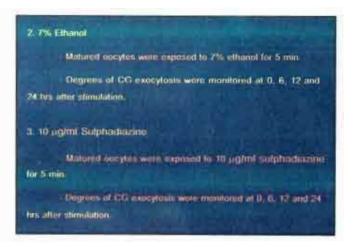
The release of cortical granules modifies the extracellular environment and blocks additional sperm from reaching the fertilised egg. II. therefore, helps to prevent "Polyspermy"

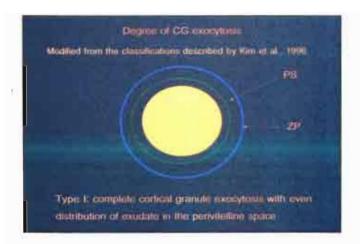
In pordines, polyspermy is one of the unresolved problems that exist regarding pordine pocytes matured and inseminated in vitro:

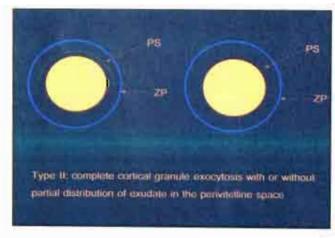
Artificial stimulators, such as electrical impulse and calcium lonophors A23187, have been reported to induce CG execytosis in pomine occytes.

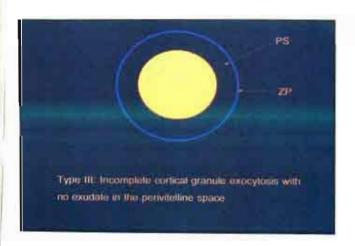

In the present study, 7% Ethanol and Sulphadiazine is used as artificial stimulators to study their offects on CG exceptosis.

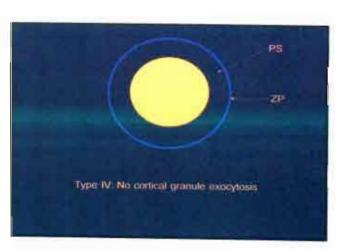

AIMS

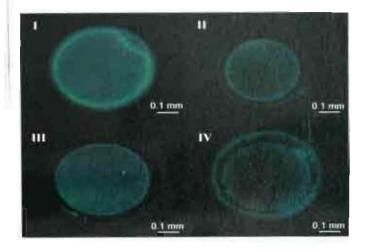

- To determine the affects of 7% Ethanol and Sulphadiazine on CG exocytosis in in vitro-matured porcine occytes
- To compare the degree of CG exocytosis induced by
 Ethanol and Sulphadiazine with the control group (sperm ponetration).


MATERIALS AND METHODS


- 1 Gocyte collection
- Percine ovaries were numered from the animals at a staughterhouse.
- 2 Cocyte muturation
- Occyles with a compact cumulus mass were matured in maturation medium (TCM-199) for 48 hrs.







Hours of	Percentage of cocytes regresseding type I CG exocytosis				
culture	Sparm penetration	7% Ethnot	Level of significan		
0 hr	1391241	11.30.12.68	P-0.01		
6 hr	1123±4.71	20.55±1.26	P~0.01		
12 hr	15:00±0:00	34 93 10 73	P<0.001		
24 hr	42.04 12.25	24.2811.80	P=0.001		

Hours of	Percentage of occytes representing type II CG exocytose				
coltura	Spenti penetralion	7% Ettunol	Level of significance		
D hir	31,271,3.24	51 60±3.58	P-001		
6 hr	43.68±6.25	43 67 12 39	ns		
12 111	41671289	48 30 14 24	m		
24 hr	47.22+4.81	51.61±2.79	n¥:		

Hours of	Percentage of occyles representing type III CG exocytosis				
culture	Sperm penetration	7% Ethanol	Level of significance		
0 tu	42.04±2.24	24.28±1.84	P<0.001		
6 hr	21 13 10 52	28 15 12 39	P<0.01		
12 hr	21.873.2.89	34.61±1.34	P<0.01		
24 hr	14.61-12.71	32.66±1.33	P<0.001		

Hours of	Percentage of cocytes representing type IV CG exocytosis				
culturis	Sparm penetration	7% Ethanol	Level of significance		
0 hr	25.31±0.53	12.82.12.01	P<0.001		
6 hr	23.97 12.77	7.63.1.3.38	P<0.01		
12 W	21.67.12.89	7.68±5.11	P<0.05		
24 hr	7.08.12.68	6.9410.66	ins		

Table 5: The comparison of the precentage of degree of CG invocytosis induced by Sulphadiazone and control group (sperin penetration) Percentage of pocytes representing type I CG exocytosis culture Sports perceivation Sulphadiazine Level of significance 0 hr 1391241 4.452 3.86 6 hr P = 0.01 11:23±4.71 0.00:10.00 P = 0.001 12 hr. 2.57±2.23 15.00 ± 0.00 24 hr P = 0.00142.0412.25 0.00±0.00 Values are means and standard deviances Lavel of significance tosted using an un-paired statleries t-test.

Hours of	Princentage of accyles representing type II CG exocytosis				
cintum	Sperm principation	Sulphodiazine	Lovel of significance		
O No.	5127±3.24	34:23±7:82	118		
6 hr	43 66 1 8.25	20.70:±3.25	P<0.01		
12 hr	41.67±2.89	43.0912.68	100		
24 hr	47.22±4.81	38.32 1.99	mi		

Table 7 The comparison of the percentage of degree of CG execytosis induced by Sulphadiazine and control group (sperm penetration) Hours of Percentage of occytes representing type III GG exocytosis cultura Sperm penetration Sulphadiazine Level of significance P=0.001 O for 42 04 12 24 24-28-11-84 P~0.01 6 far 28 (5±2.39 21 13 10 52 P<0.01 12 hr 21.67 12.89 9.00 12.17 24 hr 16:27:13.18 14.6112.71 Value, are means and standard destations will of significance turned using on un-painted establish i heat

Table 8. The companson of the percentage of degree of CG exocytosis induced by Sulphadiazine and control group (spent) penetration) Percentage of occytes representing type IV CG exocytosis culture Sperm penalization Sulphadiazine Level of significance D le P-0.01 25 31 11 53 79.55±1 31 6 te P<0.05 35 34±4 88 23.97 2.77 12 hr 21.67 12.89 19.74土1-11 24 hr P = 0 001 7.0812.66 29.0212.70 Values are means and standard developer vet of significance (maked using an on-paired blodere's I test

CONCLUSIONS 7% ethanol can induce CG exocytosis in in vitro-motured parcine ocytos with senitar respect to sporm permitation. On the other hand, Sulphisdistane has very little effect on CG exocytosis in in who makes a porcine ocytes. However, further study is needed to investigate whether or not the release of control granules induced by 7% ethanol and Sulphishazane could granules polyspermy in IVI.

ACKNOWLEDGEMENTS Sponsorship: This work is aponsored by the Thailand Resnarch Fund (TRF) to Dr. Samur Thanoi Special thanks to: Prof. Dr. Prasert Sobhon and Assist. Prof. Chainarong Tochanus for their advice throughout the project.

กาธประชุมวิชาการ กายวิภาคศาสตร์แห่งประเทศไทย ครั้งที่ ๒๖

๒๓-๒๕ เมษายน ๒๕๘๖ ณ บรุคไชด์ วัลเลย์ ธีสอร์ท จังหวัดระยอง

26th Annual Meeting of the Society
of Anatomy of Thailand
by

Department of Anatomy, Faculty of Medicine
Siriraj Hospital
and
The Society of Anatomy of Thailand

April 23–25, 2003 Brookside Valley Resort

ชมรมกายวิภาคศาสตร์แห่งประเทศไทย

ขอมอบเกียรติบัตรนี้แด่

เสมอ ถาน้อย

กัยถนาที่ โดงวัส นละ ประเยิจุ โกกน

ี่ ที่ได้ทำคุณประโยชน์ในฐานะผู้เสนอผลงานวิจัย (()⊡)

ในการประชุมวิชาการกายวิภาคศาสตร์แห่งประเทศไทยครั้งที่ ๒๖ ณ บรุคไซต์ วัลเลย์ รัสอร์ต จังหวัดระยอง วันที่ ๒๑-๒๕ เบษายน พ.ศ. ๒๕๔๖

I'mu distal

ผู้ห้ายสาสหวาจากย์ภายร สร้าปราย: ประจายกรรมการจัดการประชุก

าอาศาสารายายังกำลักงกับที่ สร้ยาบัชกุลทัย ประกายยากายากาศกาสารับกำประกาศไทย

การกระตุ้นด้วย ethanol และ sulphadiazine สามารถลดอัตราการเกิดภาวะ polyspermic fertilization ในใช่หมู

เสมอ ถาน้อย" ชัยณรงค์ โดจรัส ประเสริฐ โคภณ์

่าภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์การแพทย์ มหาวิทยาลัยนเรศวร พิษณุโลก 65000 วิภาควิชากายวิภาคศาสตร์ คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล กรุงเทพฯ

บทนำ ภาวะ polyspermy เป็นภาวะการณ์หนึ่งที่ยังไม่มีการแก้ไข ในการทำการปฏิสนธินอกมดลูกใน ใช่หมู (IVF) มีรายงานว่าตัวกระตุ้นหลายชนิคสามารถกระตุ้นให้เกิด cortical granule exocytosis ซึ่งเป็นปรากฏ การณ์ที่เกิดขึ้นภายหลังการปฏิสนธิ และช่วยป้องกันการเกิดภาวะ polyspermic fertilization อย่างไรก็ตาม การ ศึกษาดังกล่าวเป็นเพียงการศึกษาเฉพาะผลของตัวกระตุ้นต่อการเกิด cortical granule exocytosis เท่านั้น ไม่ได้มี สารศึกษาถึงระดับของการหลั่งของ cortical granule และบทบาทต่อการป้องกันภาวะ polyspermy

วัตถุประสงค์ เพื่อศึกษาการเกิดภาวะ polyspermic fertilization ในไข่หมู (in vitro) ภายหลังการกระตุ้นให้ เกิด cortical granule exocytosis ด้วย ethanol และ sulphadiazing และเปรียบเทียบกับกลุ่มควบคุม (untreated oocytes)

วิธีการ ใช่หมูที่เจริญเต็มที่แล้ว และได้รับการย่อยสลาย cumulus cell ออก จะได้รับการกระคุ้นด้วย 7% ethanol และ 10 µl/ml sulphadiazine จากนั้นไข่ที่ได้รับการกระคุ้นก็จะถูกผสมด้วยเซลล์อสุจิ (IVF) ในช่วง เวลา 0, 6 และ 24 ชั่วโมงภายหลังการกระคุ้น และตรวจสอบภาวะการเกิด polyspermy ภายใต้กล้องจุลทรรศน์ แบบ phase contrast microscope หากเซลล์ไข่ได้บรรจุ sperm nucleus หรือ male pronucleus มากกว่า 1 nucleus จะถือว่าเกิดภาวะ polyspermy

ผลการศึกษา การกระตุ้นด้วย ethanol และ sulphadiazine สามารถลดอัตราการเกิด polyspermic fertilization ในใช่หมู โดยพบว่าการทำการปฏิสนธิ (IVF) ในช่วงเวลา 0, 6 และ 24 ชั่วโมง ภายหลังการกระตุ้นด้วย ethanol และ sulphadiazine สามารถลดอัตราการเกิด polyspermic fertilization เมื่อเปรียบเทียบกับกลุ่มควบคุม จากการ ศึกษานี้พบว่า ภาวะ polyspermic fertilization จะมีอัตราต่ำสุดในช่วงเวลา 24 ชั่วโมงภายหลังการกระตุ้นด้วยตัว กระตุ้น โดยพบว่าอัตราการเกิด polyspermic fertilization เป็น 3.03±5.25% และ 1.75±3.04% ในใช่หมูที่กระตุ้น ด้วย ethanol และ sulphadiazine ตามลำดับ ซึ่งอัตราดังกล่าวนี้มีความแตกต่าง (p<0.001) กับกลุ่มควบคุม (63.46±7.73%)

บทสรุป ภาวะ polyspermic fertilization ในไข่หมูที่ทำการปฏิสนธินอกมคลูก (in vitro) มีอัตราที่ลดลง ภายหลังการกระคุ้นเซลล์ไข่ด้วย ethanol และ sulphadiazine ซึ่งอาจเป็นผลมาจากการที่ตัวกระคุ้นดังกล่าวทำให้ เกิดภาวะ cortical granule exocytosis และอาจส่งผลถึงการป้องกันภาวะ polyspermy ได้

គាំដាំគ័ល្ល polyspermic fertilization, cortical granule exocytosis, porcine oocyte

Ethanol and Sulphadiazine Stimulations Reduce Percentage of Polyspermic Fertilization in *In Vitro* Matured Porcine Oocytes

Thanoi S', Tocharus C', Sobhon P2

Background Polyspermy is one of unresolved problems that exist regarding porcine oocytes matured and inseminated *in vitro*. Many artificial stimulators have been previously reported to induce the cortical granule exocytosis, which normally involves in the prevention of polyspermic fertilization. However, most studies observed only the release of cortical granules without the classification of the degree of exocytosis and their role in preventing polyspermy. Therefore, two artificial stimulators; 7% ethanol and sulphadiazine, will be used in the present study.

Objectives To investigate polyspermic fertilization in porcine oocytes matured *in vitro* after inducing cortical granule exocytosis with ethanol and sulphadiazine in comparison with untreated oocytes (control group).

Materials & Methods Denuded matured porcine oocytes will be stimulated with 7%ethanol and 10 µg/ml sulphadiazine. Oocytes will then be inseminated with sperm suspension at 0, 6 and 24 hrs after stimulation. The assessment of sperm penetration will be examined under a phase contrast microscope. Those oocytes with more than 1 sperm nucleus or male pronucleus were considered to be polyspermic.

Results The stimulations with ethanol and sulphadiazine can reduce the percentage of polyspermic fertilization in porcine oocytes matured *in vitro*. Sperm insemination at 0, 6 and 24 hrs after stimulation showed significant decreases in the percentage of polyspermic oocytes in the oocytes treated with ethanol and sulphadiazine when compared with untreated oocytes. The lowest percentages of polyspermic oocytes were seen when treated oocytes were inseminated with sperm at 24 hrs after stimulation. The percentages were 3.03±5.25, 1.75±3.04 and 63.46±7.73 (P<0.001) in oocytes treated with ethanol, sulphadiazine and untreated oocytes, respectively.

Conclusion Polyspermic fertilization in porcine oocytes matured *in vitro* can be reduced after stimulated with ethanol and sulphadiazine. These may be due to their effects in inducing the release of cortical granules from the oocytes after stimulations.

Keywords polyspermic fertilization, cortical granule exocytosis, porcine oocyte

Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok 65000.

²Department of Anatomy, Faculty of Science, Mahidol University, Bangkok 10400, Thailand