Several antioxidant vitamins have shown protective role against doxorubicin cardiotoxicity. Vitamin E decreased cardiac lipid peroxidation and delayed the lethality of a single dose of doxorubicin at 24 hr (Mimnaugh et al., 1979). Daily vitamin E administration 4 days prior to a single i.v. dose of doxorubicin injection prevented cardiac damage and improved survival of rabbits, which was related to cardiac glutathione oxidation (Wang et al., 1980). However, other studies suggest that co-administration of vitamin E during chronic DOX treatment improved survival of animals, but failed to protect animals from cardiotoxicity (Breed et al., 1980; Shinozawa et al., 1988). Although vitamin C also prevented cardiac lipid peroxidation and structural damage in mice and guinea pigs treated with one or multiple doses of DOX, its effect on the prolongation of survival time of the animals is controversial. (Fujita et al., 1982; Shimpo K et al., 1991). Another standard antioxidant trolox, a water soluble analogue of α-tocopherol, has also shown cytoprotective role in various settings such as cisplatin-induced ototoxicity (Teranishi and Nakashima, 2003) and oxidative damage from ischemia/reperfusion (Molyneux et al., 2002; Sagach et al., 2002). In this study, the greatest benefits form vitamin C and NAC were observed at 100 µM while trolox provided insignificant cytoprotective effect. The conflicting results may occur because of the differences in models of study, oxidative insults, and time course of measurements. Additionally, target specificity of the oxidative damage may different among individual radicals generated. Therefore, there are opportunities for therapeutic implication of new antioxidants for the prevention of DOX cardiotoxicity.

All plant extracts increased IC50 except CL-EtOH since the extract produced highest toxicity compared to others. PE showed the most protective effect on DOX cardiotoxicity at the concentration of 100 μM (~12-fold IC50 increase). The potential antioxidant constituents of PE include ascorbic acid, polyphenols, flovonoids, and tannoids (Bhattacharya et al., 2000a). Recent studies demonstrate antioxidantive effects of PE in several model of oxidative stress including lipid peroxidation (Kumar et al., 1999) cyclophophamide toxicity (Haque et al., 2001), diabetes (Sabu and Kuttan, 2002), hepatotoxicity (Bhattacharya et al., 2000b). Despite the high vitamin C content in PE, it does not completely account for the cytoprotective effects since standard vitamin C at non-toxic concentrations showed far less effectiveness.

Although antioxidant capacity may predict the cytoprotective effectiveness against DOX cardiotoxicity, the correlation analysis of antioxidant capacity and effectiveness in cardioprotection (fold increases in DOX IC50) is insignificant. This is probably due to the small

number of tested compounds. In addition to the cytoprotective effect investigated in this study, further tests for selectivity (tumor cells remain vulnerable while normal cells are protected), broad-spectrum activity (protect various tissues from toxicity), and a favorable side effect profile should be addressed according to the concept of ideal cytoprotective agent (Griggs, 1998).

In summary, a large body of evidence suggests that ROS play a major role in DOX-induced cardiotoxicity. Despite standard antioxidant vitamins show some benefits in animal model of DOX cardiotoxicity their cardioprotective effect still controversial. Our study provides a basic pharmacological screening for alternative antioxidants from Thai medicinal plants. Further study should suggest the molecular mechanisms by which the extracts exert their cardioprotective role since recent studies have identified several oxidative pathways involved in the cellular oxidative damage at the molecular levels. In addition, other mechanisms of DOX cardiotoxicity have been proposed, including intracellular Ca²⁺ overload, the toxicity of DOX metabolites, and the direct interaction with the actin-myosin contractile system (De Beer et al. 2001). Therefore, a better understanding of causes of DOX-induced cardiotoxicity and protective-adaptive responses could lead to new target interventions to protect cardiomyocyte toxicity.

REFERENCES

- Abd-Allah, A., A. Al-Majed, et al. (2002). "Protective effect of arabic gum against cardiotoxicity induced by doxorubicin in mice: a possible mechanism of protection." J Biochem Mol Toxicol 16(5): 254-9.
- Arola, O. J., A. Saraste, et al. (2000). "Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis." Cancer Res 60(7): 1789-92.
- Bagchi, D., C. K. Sen, et al. (2003). "Molecular mechanisms of cardioprotection by a novel grape seed proanthocyanidin extract." Mutat Res 523-524: 87-97.
- Bhattacharya A, Ghosal S, Bhattacharya SK (2000a). Antioxidant activity of tannoid principles of Emblica officinalis (amla) in chronic stress induced changes in rat brain.

 Indian J Exp Biol. 38(9):877-80.
- Bhattacharya A, Kumar M, Ghosal S, Bhattacharya SK. (2000b) Effect of bioactive tannoid principles of Emblica officinalis on iron-induced hepatic toxicity in rats. Phytomedicine. 7 (2):173-5.
- Benzie, I. and J. Strain (1999). "Ferric Reducing/Antioxidant Power Assay: Direct Measure of Total Antioxidant Activity of Biological Fluids and Modified Version for Simultaneous Measurement of Total Antioxidant Power and Ascorbic Acid Concentration." Methods Enzymol 299: 15-27.
- Breitbart, E., L. Lomnitski, et al. (2001). "Effects of water-soluble antioxidant from spinach, NAO, on doxorubicin-induced heart injury." Hum Exp Toxicol 20(7): 337-45.
- Chopra, S., K. K. Pillai, et al. (1995). "Propolis protects against doxorubicin-induced myocardiopathy in rats." Exp Mol Pathol 62(3): 190-8.
- De Beer, E., A. Bottone, et al. (2001). "Doxorubicin and mechanical performance of cardiac trabeculae after acute and chronic treatment: a review." Eur J Pharmacol 451(1): 1-11.
- DeAtley, S. M., M. Y. Aksenov, et al. (1999). "Antioxidants protect against reactive oxygen species associated with adriamycin-treated cardiomyocytes." Cancer Lett 136(1): 41-6.
- Dorr, R. T. (1996). "Cytoprotective agents for anthracyclines." Semin Oncol 23(4 Suppl 8): 23-34.
- Felker, G. M., R. E. Thompson, et al. (2000). "Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy." N Engl J Med 342(15): 1077-84.
- Green, P. S. and C. Leeuwenburgh (2002). "Mitochondrial dysfunction is an early indicator of doxorubicin-induced apoptosis." Biochim Biophys Acta 1588(1): 94-101.

- Griggs JJ. (1998). Reducing the toxicity of anticancer therapy: new strategies. Leukemia Res 1001:S27-S33.
- Haque R, Bin-Hafeez B, Ahmad I, Parvez S, Pandey S, Raisuddin S. Protective effects of Emblica officinalis Gaertn. in cyclophosphamide-treated mice. Hum Exp Toxicol. 2001;20(12):643-50.
- Jensen, B. V., T. Skovsgaard, et al. (2002). "Functional monitoring of anthracycline cardiotoxicity: a prospective, blinded, long-term observational study of outcome in 120 patients." Ann Oncol 13(5): 699-709.
- Kozluca, O., E. Olcay, et al. (1996). "Prevention of doxorubicin induced cardiotoxicity by catechin." Cancer Lett 99(1): 1-6.
- Kumar KC S, Muller K (1999). Medicinal plants from Nepal; II. Evaluation as inhibitors of lipid peroxidation in biological membranes. J Ethnopharmacol. 64(2):135-9.
- Kumar, D., H. Lou, et al. (2002). "Oxidative stress and apoptosis in heart dysfunction." Herz 27 (7): 662-8.
- Legha, S. S., Y. M. Wang, et al. (1982). "Clinical and pharmacologic investigation of the effects of alpha-tocopherol on adriamycin cardiotoxicity." Ann N Y Acad Sci 393: 411-8.
- Molyneux CA, Glyn MC, Ward BJ. Oxidative stress and cardiac microvascular structure in ischemia and reperfusion: the protective effect of antioxidant vitamins. Microvasc Res. 2002 Sep;64(2):265-77.
- Quiles, J. L., J. R. Huertas, et al. (2002). "Antioxidant nutrients and adriamycin toxicity." Toxicology 180(1): 79-95.
- Sabu MC, Kuttan R. Anti-diabetic activity of medicinal plants and its relationship with their antioxidant property. J Ethnopharmacol. 2002 Jul;81(2):155-60.
- Sagach VF, Scrosati M, Fielding J, Rossoni G, Galli C, Visioli F. The water-soluble vitamin E analogue Trolox protects against ischaemia/reperfusion damage in vitro and ex vivo. A comparison with vitamin E. Pharmacol Res. 2002 Jun;45(6):435-9.
- Shimpo, K., T. Nagatsu, et al. (1991). " Ascorbic acid and adriamycin toxicity." Am J Clin Nutr 54: 1298S-1301S.
- Takahashi, G., R. Montgomery, et al. (1994). "Pentoxifylline inhibits tumor necrosis factor-alphamediated cytotoxicity and cytostasis in L929 murine fibrosarcoma cells." Int J Immunopharmacol 16: 723-736.

Teranishi M, Nakashima T.Effects of trolox, locally applied on round windows, on cisplatin-induced ototoxicity in guinea pigs. Int J Pediatr Otorhinolaryngol. 2003 Feb;67(2):133-9 Yamaoka, M., S. Yamaguchi, et al. (2000). "Apoptosis in rat cardiac myocytes induced by Fas ligand: priming for Fas-mediated apoptosis with doxorubicin." J Mol Cell Cardiol 32(6): 881-9.

TABLES

Table 1. Total antioxidant capacity of the plant extracts evaluated by ferric reducing/antioxidant power (FRAP) assay

Plant Extracts	Total Antioxidant Capacity		
(1 mg/mL)	(μM vitamin C equivalence)*		
Curcuma longa L.(CL-EtOH)	712.54 <u>+</u> 45.00		
Curcuma longa L.(CL- H₂O)	1541.32 <u>+</u> 41.26		
Morus alba L. (MA)	2273.99 <u>+</u> 120.22		
Phyllanthus emblica L.(PE)	1923.70 <u>+</u> 112.03		
Piper rostratum Roxb. (PR).	281.93 <u>+</u> 2.92		

^{*}Data is presented as Mean+SEM

Table 2. Cardioprotective effect of standard antioxidants (vitamin C, Trolox, and N-acetylcysteine)

ANTIOXIDANT	IC50 (μM) of DOX (in the present of antioxidant at different concentrations)				
CONTROL IC50 =					
0.177 <u>+</u> 0.014 μM					
VITAMIN C	0.127 <u>+</u> 0.022	0.569 <u>+</u> 0.034**	0.214 <u>+</u> 0.027		
TROLOX	0.204 <u>+</u> 0.006	0.187 <u>+</u> 0.010	0.134 <u>+</u> 0.005		
N-acetylcysteine	0.309 <u>+</u> 0.029	0.711 <u>+</u> 0.027**	0.281 <u>+</u> 0.008**		

^{*}Data is presented as Mean+SEM. ** Statistically significant difference from CONTROL (p< 0.05)

Table 3. Cardioprotective effect of plant extracts.

PLANT EXTRACT	IC50 (μM) of DOX (in the presence of plant extract at different concentrations)*			
	Extract 1 μg/mL	Extract 10 μg/mL	Extract 100 μg/mL	
CONTROL IC50 =			-	
0.177 <u>+</u> 0.014 μM				
Curcuma longa L. (CL-EtOH)	0.160 <u>+</u> 0.013	0.259 <u>+</u> 0.010	-	
Curcuma longa L. (CL- H ₂ O)	-	0.352 <u>+</u> 0.003**	1.360 <u>+</u> 0.455**	
Morus alba L. (MA)	-	0.368 <u>+</u> 0.044**	1.08 <u>+</u> 0.354**	
Phyllanthus emblica L. (PE)	0.331 <u>+</u> 0.002**	0.635 <u>+</u> 0.112**	2.190 <u>+</u> 0.323**	
Piper rostratum Roxb. (PR).	0.281 <u>+</u> 0.007**	0.420 <u>+</u> 0.054**	0.494 <u>+</u> 0.037**	

^{*}Data is presented as Mean+SEM. ** Statistically significant difference from CONTROL (p< 0.05)

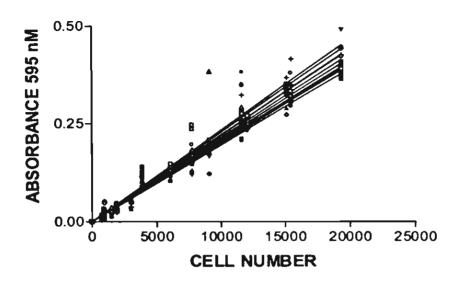


Figure 2. H9c2 cell standard curve using crystal violet method. The graph represents 12 set of data points.

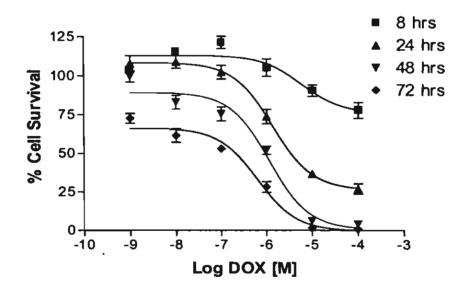


Figure 3. Time-dependent DOX-induced H9c2 cytotoxicity.

FIGURES

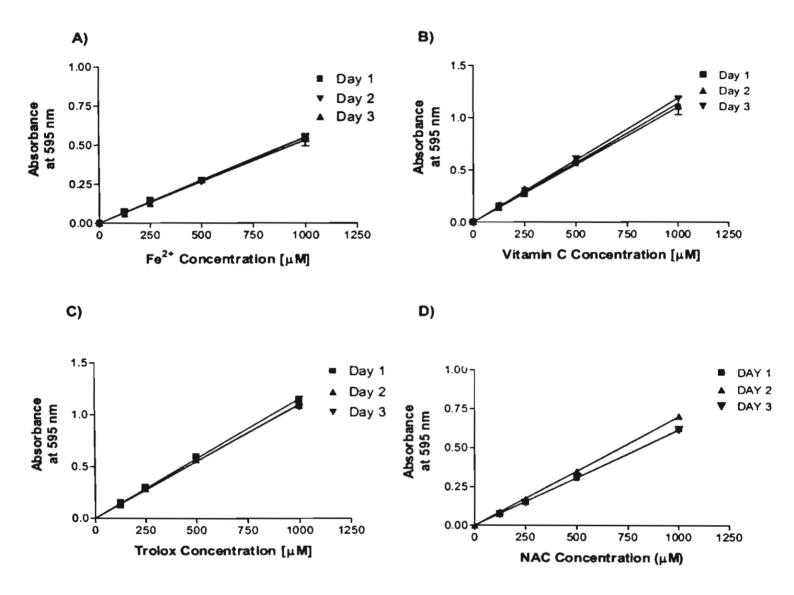
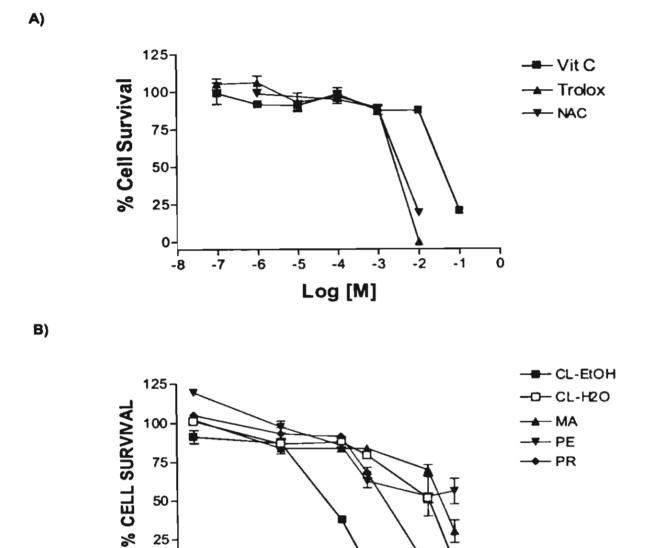



Figure 1. Inter-day variability of FRAP assay. A) Fe²⁺ standard curves; B) Vitamin C standard curves; C) Trolox standard curves; and D) NAC standard curves.

25

-3.0

Figure 4. Effects of standard antioxidants and plants extracts on the viability of H9c2. The toxicity of each compound was tested with A) standard antioxidants vitamin C (VIT C), Trolox, and N-acytlycysteine (NAC) or B) the ethanolic plant extracts Curcuma longa L.(CL-EtOH), Phyllanthus emblica L.(PE), Piper rostratum Roxb. (PR), and the water extracts of Curcuma longa L. (CL-H₂O) and Morus alba L. (MA).

-1.5

LOG CONCENTRATION [mg/mL]

-2.0

-2.5

-1.0

-0.5

0.5

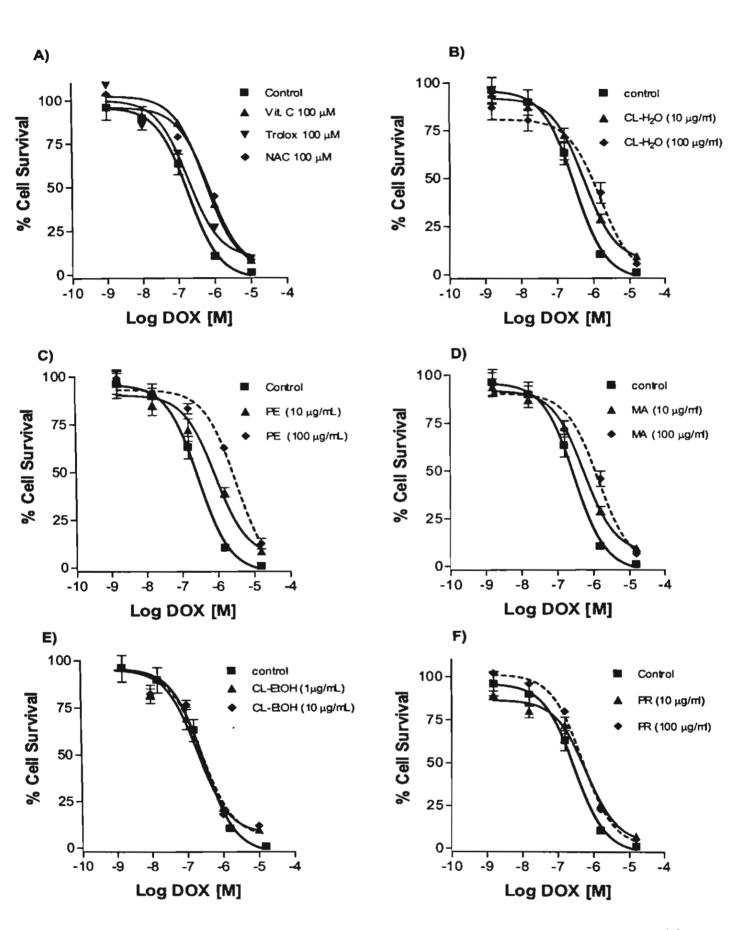
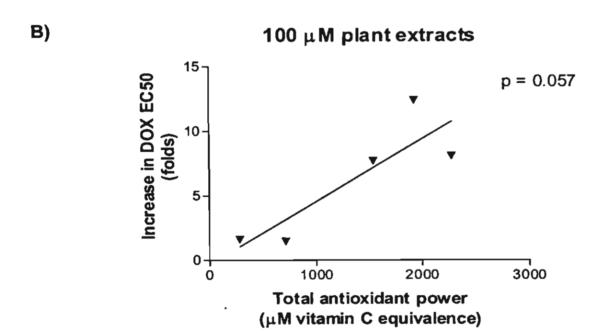



Figure 5. Cytoprotective effects of standard antioxidants and plants extracts on DOX-induced cardiotoxicity (H9c2). H9c2 cells were co-incubated with; standard antioxidants (A) including vitamin C (VIT C), Trolox, and N-acytlycysteine (NAC); or the ethanolic plant extracts from Curcuma longa L.(CL-EtOH) (B), Phyllanthus emblica L.(PE) (C), Piper rostratum Roxb. (PR) (D), and the water extracts of Curcuma longa L. (CL-H₂O) (E) and Morus alba L. (MA) (F).

10 μM plant extracts NS NS Total antioxidant power

(µM vitamin C equivalence)

Figure 6. Correlation analysis of total antioxidant power and fold increases in DOX IC50. Tow concentrations of plants extracts were compared; **A)** 10 μ g/mL, and **B)** 100 μ g/mL. The solid line shown is fitted to the presented data using linear regression. NS means the slope of the regression line is not significantly different from zero.

Output จากโครงการวิจัยที่ได้รับทุนจาก สกว.

1. ผลงานตีพิมพ์ในวารสารวิชาการนานาชาติ

ขณะนี้กำลังทำการทดลองเพื่อเก็บข้อมูลเพิ่มเดิม เพื่อให้มีศักยภาพในการได้รับการตอบรับการ ดีพิมพ์ในวารสารวิชาการนานาชาติที่มี impact factor สูง คาดว่าจะสามารถส่ง manuscript ได้ภายใน เดือนชั้นวาคม 2546 ถ้าได้รับการตอบรับแล้วจะส่งสำเนาให้กับทาง สกว. ด่อไป

2. การนำผลงานวิจัยไปใช้ประโยชน์

- เชิงพาณิชย์ : สมุนไพรตัวที่น่าสนใจที่สุดจากการศึกษานี้คือ มะขามป้อม ซึ่งต้องมีการ ศึกษาทางคลินิกต่อไปเพื่อเป็นหลักฐานสนับสนุนการใช้เป็นยาต่อไปในอนาคต
- เชิงวิชาการ: มีความพร้อมของห้องปฏิบัติการสำหรับการตรวจฤทธิ์แอนติออกซิแดนซ์ของ สารสกัดสมุนไพรที่ได้ผลสัมฤทธิ์สูง และใช้สำหรับการเรียนการสอนในระดับบัณฑิตศึกษา สามารถขยายขอบเขดการศึกษาไปสู่การทำปริญญานิพนธ์ได้