PDF/60/2544. Thiourea and new derivatives: Mode of action and effects on the expression of the Mycobacterium tuberculosis desA3 gene.

Benjawan Phetsuksiri, Department of Communicable Disease Control, Ministry of Public Health, Current Address: Thai National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand. benjapsk@health.moph.go.th
1 July, 2544 - 30 June, 2546

ABSTRACT

isoxyl, a thiourea (4, 4' diisoamyloxydiphenylthiourea) and new synthetic derivatives were investigated in vitro for their antimycobacterial activity against Mycobacterium tuberculosis. By employing the rapid microplate alamar blue assay, isoxyl was shown to be highly effective against Thai clinical isolate of Mycobacterium tuberculosis with MIC of 0.30-1.25 µg/ml. Four new derivatives also exhibited potent activity against M. tuberculosis with MIC in the range of 0.30-10.0 Lg/ml. The selective mode of action of thiourea was demonstrated by whole cell labeling of M. tuberculosis with [1, 2 -C 1] acetate. Analysis of labeled fatty acids by thin layer chromatography (TLC) demonstrated the inhibitory effects on the synthesis of oleic acid, indicating a unique mechanism of action. The specificity of the inhibition on oleic acid synthesis pointed to a $\Delta 9$ stearoyl-desaturase as a drug target. The transcripts of the M. tuberculosis desA3, which encodes Δ 9 stearoyl-desaturase, were detected by reverse transcription polymerase chain reaction (RT-PCR) demonstrating the expression and importance of enzymatic function. A new LightCycler real-time RT-PCR was developed for quantitative detection of mRNA of M. tuberculosis desA3. M. tuberculosis RNA could be extracted by the use of a modified commercially ready-to use guanidinephenol extraction method. The single tube reaction of real-time RT-PCR was performed in glass capillary containing the SYBR Green I due as a detection signal. The amplification of 341 nucleotide region of the desA3 gene specific for M. tuberculosis by real-time RT-PCR demonstrated that desA3 transcripts were diminished in cells exposed to thiourea. These results confirmed that thiourea is a novel antituberculosis agent, which had specific mechanism by inhibiting the synthesis of eleic acid and affected the expression of desA3 in M. tuberculosis. We propose here that thioureas serve as a promising compound for future antituberculosis drug development and DesA3 is a new therapeutic target worthy for further study.

Keyword: Thiourea, aleic acid, tuberculosis, desA3

PDF/60/2544. Thiourea and new derivatives: Mode of action and effects on the expression of the Mycobacterium tuberculosis desA3 gene.

Benjawan Phetsuksiri, Department of Communicable Disease Control, Ministry of Public Health, Current Address: Thai National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Thailand. benjapsk@health.moph.go.th
1 July, 2544 - 30 June, 2546

ABSTRACT

isoxyl, a thiourea (4, 4' diisoamyloxydiphenylthiourea) and new synthetic derivatives were investigated in vitro for their antimycobacterial activity against Mycobacterium tuberculosis. By employing the rapid microplate alamar blue assay, isoxyl was shown to be highly effective against Thai clinical isolate of Mycobacterium tuberculosis with MIC of 0.30-1.25 µg/ml. Four new derivatives also exhibited potent activity against M. tuberculosis with MIC in the range of 0.30-10.0 Lg/ml. The selective mode of action of thiourea was demonstrated by whole cell labeling of M. tuberculosis with [1, 2 -C 1] acetate. Analysis of labeled fatty acids by thin layer chromatography (TLC) demonstrated the inhibitory effects on the synthesis of oleic acid, indicating a unique mechanism of action. The specificity of the inhibition on oleic acid synthesis pointed to a $\Delta 9$ stearoyl-desaturase as a drug target. The transcripts of the M. tuberculosis desA3, which encodes Δ 9 stearoyl-desaturase, were detected by reverse transcription polymerase chain reaction (RT-PCR) demonstrating the expression and importance of enzymatic function. A new LightCycler real-time RT-PCR was developed for quantitative detection of mRNA of M. tuberculosis desA3. M. tuberculosis RNA could be extracted by the use of a modified commercially ready-to use guanidinephenol extraction method. The single tube reaction of real-time RT-PCR was performed in glass capillary containing the SYBR Green I due as a detection signal. The amplification of 341 nucleotide region of the desA3 gene specific for M. tuberculosis by real-time RT-PCR demonstrated that desA3 transcripts were diminished in cells exposed to thiourea. These results confirmed that thiourea is a novel antituberculosis agent, which had specific mechanism by inhibiting the synthesis of eleic acid and affected the expression of desA3 in M. tuberculosis. We propose here that thioureas serve as a promising compound for future antituberculosis drug development and DesA3 is a new therapeutic target worthy for further study.

Keyword: Thiourea, aleic acid, tuberculosis, desA3

Project Code PDF/ 60/ 2544

Project Title Thiourea and new derivatives: Mode of action and effects

on the expression of the Mycobacterium tuberculosis

desA3 gene

Investigation Dr. Benjawan Phetsuksiri

Department of Communicable Disease Control

Ministry of Public Health

Current Address

Thai National Institute of Health

Department of Medical Sciences

Ministry of Public Health, Thailand.

E-mall Address benjapsk@health.moph.go.th

Project Period 1 July, 2544 - 30 June, 2546

PDF/60/2544 กลไกการออกฤทธิ์ของสารด้านเชื้อวัณโรค thiourea และอนุพันธ์ใหม่ และผลต่อการแสดงอกของยืน desA3 ในเชื้อวัณโรค

เบญจวรรณ เพชรสุขคิริ กรมควบคุมโรคคิดค่อ กระทรวงสาธารณสุข สังกัดปัจจุบัน สถาบันวิจัยวิทยาศาสตร์สาธารณสุข กรมวิทยาศาสตร์การแพทย์ กระทรวงสาธารณสุข benjapsk@health.moph.go.th 1 กรกฎาคม 2544 - 30 มิถุนายน 2546

บทคัดย่อ

Isoxyl (4, 4 diisoamyloxydiphenylthiourea) และสารประกอบอนุพันธุ์ใหม่ของ thiourea ที่ได้ จากการสังเคราะห์ มีฤทธิ์ต้านเชื้อวัณโรคโดยการทดสอบที่ให้ผลเร็วตัวย microplate alamar blue assay พบว่า isoxyl สามารถทำลายเชื้อวัฒโรคที่แยกใต้จากผู้ป่วยตัวยความเข้มขันด่ำสุด 0.30-1.25 µg/ml และสารอนุพันธุ์ของ thiourea มีฤทชิ์ต้านเชื้อวัณโรคด้วยคำความเข้มขันด่ำสุด 0.30-10.0 μg/ml การศึกษากลไกการออกฤทธิ์ที่จำเพาะของสาร thiourea ทำโดยการติดฉลากสารเม ดาโบไลท์ในขบวนการสังเคราะห์กรดไขมันในเชื้อวัณโรคด้วย [1, 2 C¹⁴]acetate และวิเคราะห์กรด ไขมันที่ถูกติดฉลากตัวย thin layer chromatography สาร thiourea และอนุพันธ์ใหม่มีฤทธิ์ยับยั้ง การสังเคราะห์ oleic acid บังชี้ว่าเอนไซม์ ∆9 stearoyi-desaturase ซึ่งสังเคราะห์ oleic acid เป็น เป้าหมายที่สารออกฤทธิ์ การครวจพบ transcript ของยืน dos.43 ที่ถอดรหัสให้เอนใชม์ $\Delta 9$ stearcyl-desaturase แสดงความสำคัญของหน้าที่เอนใชม์โดยอื่นมีการแสดงออก ผดของสาร thiourea ต่อการแสดงออกของยืน desA3 ศึกษาโดยการสกัด RNA ด้วยน้ำยา Trizol วิเคราะห์หา ปริมาณของ dosA3 transcript ด้วย real-time reverse transcription PCR แบบปฏิกิริยาเดียวโดย ใช้ primer ที่จำเพาะต่อเชื้อวัณไรค ตรวจพบผลผลิตปฏิกิริยาที่ใช้สาร SYBR green เ ดิดฉลาก ขนาด 341 base pair ของยืน desA3 สาร thiourea มีผลทำให้ transcript ของยืน desA3 ในเชื้อ วัณโรคลดลง ผลการศึกษานี้ แสดงให้เห็นว่า ลาร thiourea มีฤทธิ์ต้านเชื้อวัณโรคโดยมีกลไกการ ออกฤทธิ์ยับยั้งการสังเคราะห์ oleic acid ที่เฉพาะ สารมีผลทำให้การแสดงออกของยีน desA3 ลดลง และเอนไซม์ DesA3 ในเชื้อวัณโรคมีคุณสมบัติเป็นเป้าหมายของยาต้านวัณโรค

คำหลัก : สาร thiourea, กรดใบมัน oleic, วันโรค, อื่น desA3

INTRODUCTION

Identifying and understanding the functions of specific genes is a fundamental and essential step to find and validate new targets for drug design and development. Elucidation of such genes can be approached by using molecular genetics, biochemical analysis and enzyme inhibitors that affect the function of gene products. Such compounds or drugs may selectively inhibit specific targeted enzymes and thereby cause an accumulation of precursor(s) and depletion of product(s) leading to an identification of the mode of action of drugs and the specific gene that encodes the targeted enzyme.

A thiourea, isoxyl (thiocarlide; 4, 4' diisoamyloxy diphenylthiourea), is known to be an effective anti-tuberculosis drug, active against a range of multidrug-resistant strains of Mycobacterium tuberculosis, and has been used clinically (Titscher, 1966; Urbancik, 1966; Urbancik, 1970). Little was known of its mode of action. Recently, it has been shown that exposure of M. tuberculosis to an inhibitory level of ISO caused an accumulation of stearic acid concomitant with the depletion of oleic acid. Synthesis of mycolic acid is also affected. The anti-bacterial effect of ISO was reversed by supplementing growth medium with oleic acid. The specificity of oleic acid. Inhibition pointed to a $\Delta 9$ stearoyl-desaturase, an enzyme that introduces one double bond at carbon 9 of stearic acid to form oleic acid as the drug target (Phetsuksiri, et al., 2003). Development of a cell-free assay for $\Delta 9$ desaturase activity allowed direct demonstration of the inhibition of oleic acid synthesis by ISO. The three putative fatty acid desaturases in the M. tuberculosis genome, desA1, desA2, and desA3, were cloned and expressed in Mycobacterium bovis BCG. Whole cell labeling demonstrated increased synthesis of oleic acid only in the desA3 overexpressing strain and an increase in the minimal inhibitory concentration for ISO (Phetsuksiri, et al., 2003). The results validated $\Delta 9$ desaturase, DesA3, as a target of thiourea. In this study, antimycobacterial activities of thiourea and new derivatives against clinical isolate of M. tuberculosis were evaluated and the effects of thioureas on the synthesis of oleic acid and on the expression of the desA3 gene, which is known to encode Δ 9 deseturase in M. tuberculosis were explored. This is the extent of published work conducted on the new drug target discovery and evaluation of efficiency of the thioureas as anti-tuberculosis drugs worthy of further development.