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ABSTRACT

Project Code : PDF 67/2544

Project Title : A STUDY OF DYNAMIC BEHAVIOUR OF SWOLLEN RUBBER
UNDER STRAIN

Investigator : Dr. Chudej Deeprasertkul
Institute of Science and Technology for Research and Development,
Mahidol University

Dr. Krisda Suchiva (Mentor)
Faculty of Science, Mahidol University

E-mail Address: stcds@mahidol.ac.th

Project Period: 2 years

The dynamic behaviour of swollen elastomer under strain was investigated in order to generalize
equation that can be used to predict the dynamic behaviour in the designing computer
programme. The oscillating beam was employed to study the dynamic behaviour. This apparatus
gave accurate information at a very low value of dynamic loss modulus and can be used to
determine the effect of the strain. The rubber specimen was swollen in the processing oil after
the vulcanization process in order to keep the crosslink density constant throughout the
experiment. The dynamic loss modulus of swollen rubbers could be predicted using the equation
based on free volume theory except natural rubber. This was due to the presence of non-rubber in
the natural rubber. The dynamic loss modulus of swollen carbon black filled elastomer was also
studied. The reduction in dynamic behaviour was only due to the swollen in the elastomer matrix
and the reduction in carbon black fraction. The prediction equation based on free volume theory

was modified and could be used nicely with the carbon black filled elastomer.

KEYWORDS : Dynamic behaviour, Rubber, Prediction



1

813U

AanIINlIENe

IT um@ﬂén%%’u@'ﬁ%mi {Executive Summary)

1 unARtan1s ng

IV UG HaNT8189NE % (Abstract)

vV a3y

.

L |

HNU
ad g

IEVININaRDY

MIANENNATBINT LT WA A WLRERRINITHNRUGBATUAL I
gg4laTaainaanaing

i
A

MIANBIFVL AN NNAMEa 103N TinTw i uasidsznaumela
= A

gnMaznNIasta

uwa‘gﬂ

oA A P

Nudaiasnviauladnua

AUIRDANID

N&J1% (OUTPUT)

DANWKIN

19
36

44

66
68
69

70

9.1 tanmIARLEUB I UUER ISE 2003 (International Symposium of Elastomer)

9.2 T1AZL B ALNA MY NFIRIAANNW IUINTFITSALWIMA



ynA 1
N

o =2

L] 3/ 3 = 3 o o ey 8t & o =5 1 =
Tumstih W foumesdwidmnssuvesnain. mssuusimawemeadiiluauiadeniisiifosdilededista
= as 4w A = ] a 4 @ & =
unsinmauiididesduiioduas ssilumsdonyiiavesnuazszuulumsnauiigndes  Fsnsfnun
e s et < : ¥ a1 @ ]
auianawamanivesodlaiinisAnyedianinunslussezaar 20-30 Yaknan Jegiuusnvileainns
Anwautiaudimsdnnenanisfousmuwamaad lasowondnmsilleguasnaiamvea T sunsum
< 4 - e a ' o ¥
e umes Judsidndumumlusansivmssaggammnisuens  ednlsiandunmsfnymedums

w y a0 A d‘d:wﬂ ¢ Ty o Y Ill
THUTIVHANATITATUDIUINHIUIN Iﬂﬂlﬂw1zﬂﬂ1\133n1i1ﬂnu1nul uﬂQﬂﬂigﬂauﬂgﬂQU"ﬂu gavola

LY
]

i ei 3 & o 3 ] ey 3 o o
doawefioz ¥ lumsiinernavesesfilsznevdaqaemutianawamansida  nisAnuRavesiniulue
o o ar et gt 5 [ a e VoA = w %
dunszd lunsSuusmanasmanite ldlins#nmediesad TamnwizedwsansAnuifugtanala
& a & a ¥ a & ) , o Y a
anzdsda  dissninmsien W Foueiaiu  sszgadsda luinsdnwduilunannndouuzvenia
£ ¥
fudt  msAnsuezmsdssaiuefoauliafiuguemgu] Free Volume wWenanmsAnyIiUeg
o o Y as ad = o =] ] o : =y
Fuanzdudnsanniuesssurai dvaduimimeluzdumiuwansinnonmiud@ailam Taons
WiswamIgaiendanveinsduvesnsssundinwiiniinialdeds  weldnisiuneauidn iy
¢ ia Y o s 2 a o "o
urammamanvooeiiiwhuiuesddrzaeumunsoth ihlszgna1918vda  infuediitanzdasdnm
DINaUBIRMTOUTY  HAVBIR AATUNSIADLARZTUATDIY  HavEIn e lumsAsta  uazkaves
Ao 1 o o o &4 g Al ¥ ' E ) = o “
guvgindaeauliamssunssnnwarnaas  dsdayah ldezawisoreli lddeyanmuysoiifoanenoz
o d{ P o @ 4 A ¥ oo b
annsadiulsrunmsiuguimnsndinenanssuus i namansveansdi 19 U ludmam
MINTIN
naihiiagiinssailszaey lud e Tuagaiiinnweuazninassadudana i ldoneiiaudaii
1 v »
anudangugaduiiuamiimmeunna’ Tnemduudrosiiiminluanasgluy 10°- 10° gimol ms
s T IFmniudmienadu 115 aslimuessinunslen  Tuanavesarssznaouismuiu lade 1a
ar o ) o rey & 1 | e o
Sunssnnnouen  ldidieuessinmeusnszmiven ilinsasgld himmzauedsgunisionsil
¥ .
Woumadmnsy  dnfulumsbhe W idszantom  Seinfudesrimnszuiumsmaioulo
1} q 1 3 1 Q‘J’ 3 A
Twanadiulasiadmane Tauile TuanaegluanmiidiulnssrdameiuTuanaswisoiszindeu
i ar yw A 1 £y a < oo o Qs - ' '
arudiu ldieFaz dawaldosausofhwenuudusilusngidnd nuanuauidanudanguey
ar 1 = ' a a o a 5 1 ' ar ' - ¥ a
aszoumsanaGonn Tamueay  Tesasftoulddwmlvglunszusumsdinaruweiina Tase

=Y =4

3 ' § o @ so |
adnaeiguugigene duedu (Suphur) uez nlessenlud (Peroxide)
oaluilogiudalhiseamilu 3 wiiafe vwildnalilluawiamnssy (General Purpose

c{ 2 t:isJ LYY ] = 1 a o= q'g,l ey, Y
Rubber), sNAIF IUIIUAADIMIAVTANINUADBNISANATON tazeasilaRireAdpInsaRlaAmMsITLusd

A a ¥ - ' o = '
qﬂFﬂuﬁﬂ1Wﬁ\ill—JﬂaﬂnﬂﬂaQﬂuﬂﬂﬂq']“i aulaENMITNNITOY



1. el e 18uA  e9ss5uA  (Natural Rubber) uas @19 SBR ( Styrene
Butadiene-Rubber)

2. il lunuiidesmsautiAnudonisdnnseu 1ud EPDM ( Ethylene-Propylene Diene
Rubber), CR ( Chloropene Rubber), NBR { Acryionitrile-Butadiene Rubber)

3. sayilafiaw 18un Silicone Rubber uag Fluoro Rubber

Hoyfuenssssunauazons SBR Whusien il lumgasmnssufaihulszuim 60% veq
sananuaiid Taoe1955ua@ ( Cis -1.4-Polyisoprene) TanTasead 1an1a Tuanaue g 1953 sunALaa

1$Tugd 1.1
Cl—||3
——{CH,~CH= C—CH)—

Natural Rubber and Isoprene Rubber

g1l 1.1 Tnssadhalaagaveasnasssumnd ( Cis-1,4- Polyisoprene)’

v v )
nessTunALrulan linuaediuuazOzone  rifesningesssumaiinuszgeyluTaseasandnyes
&£ 1 1 = =] o o o
Tuanaddiwsemsinlgnssibianuenluanaveswnssssundanasirlvens EPDM, CR Laz NBR
Y w 4 o a 3/ a w o ' 'L ¢ &
Tagniannadu dwiumsidomensssumnaluilegiuiy aawdiulngfe gaamnssuowsooud ¥
¥ = o o as A; o 3/ o o o L V)
mslanuensssumnadsgivdunlstuninfduashlien sBR Tdwddglumnmisdiuivensssy

¥17 lagen SBR vz iiauialnddssasssudmilodmaaSuusatusamlszney

= a_u as < ' .oy ’ = a o s w a
WuFialszdriuilagiusziuieisdidmiwluitalszdiu - Taems1Foundndasioadud

ar 1 = as y L} ar ﬂ‘}’ r ¥ é ~— -4 i
mavaweiives i lumassuiiru  nsdaneduuiupuenuimanguiFmguiiuguiid

=1

v moa - o _ o
NG IUVBIMIHMUNTIAINTTUVBIe 9 RTA WA RYAD Theory of rubber-like elasticity” arilsynau il

fw thermodynamic theory of rubber elasticity a2 statistical theory of rubber defermation

1.1 Theory of rubber like elasticity

£ . ]
noufjiidunguiildetionmduiniszn s apsmsnfonazlsveses  Taonguidndn

14 3
]

dlunsAeduuazWannves TRELOAR®, GEE® uay RIVLIN® Tasngufifldugveguudoauydgmiions



&4 w A A - o ' a & @ o
wwPnAINal (aua7) luﬂ\ﬂﬂ']ﬂ!l'iW‘Ilﬂﬂﬂ1ﬂﬂ31ﬂ1ﬂ!ﬂu5a‘imUﬂﬂlﬂﬁiumf}ﬂmuﬂuﬂa‘ﬂ"lﬂﬂ’]ﬂﬂﬁﬂullﬂﬁ@‘ﬂﬁlﬂ

Tassairvealavsadwaislussrhamanavuanmdia s nusweaasa

Thermodynamic of rubber elasticity

o

o ar - @ oL a oA
ﬁfJQlli']ﬂgﬂ1iEN“fIW'lJiuﬂ']'ﬁ‘ULL'NiIENﬂNTI AU Uﬂi]‘klg] Thermodynamlc e

1. e liusdlunisda sazdeuiu

1Y
a

2. e Wussaailumsnlaeugilons sneziinsnad wiloguun g

L]

a

Taongdausnmama$ Iulaudindduiusiulsingmsaidananie

dUu

I}

dO+dW
TUNITH 1

[l ¥
=

n 1 ¥
e dU Aemsuldouasavuaveswdsnumely, dQ fe anufouluszuu uay dw Aenuipauy

iiosmnwdinumeuen GuAunnngdeusndsnanuazauydgunatolsemeihldanuduiuisznin

td
=y

-] o =] 9 ar
L3 ﬂ'li@NﬂﬂllﬁxqmﬂQNGIJ‘ENEJNﬁ"IlIWﬂL‘UUH1ﬂﬂ~1

F:ﬂ _Tai
ol ). al ).

AUMIN 2
A a o o M oS H ¥ &
e F aAsuTInasznInnNmeuen, | L‘ﬂuﬂ?']iJfJ'l'J‘l.l?NU'N, T ADYUHUUVDIVITEUVYUSHU LA S Ao

Entropy ¥38 anw hitfusadivuve luanaveson

Py = e ur A &
Tﬂtﬂumauus AUDITUNTITUIZUTAID Qﬂ?ﬂﬂﬁﬂullﬂﬁﬂﬂﬂﬂ‘waﬂﬁuﬂTUﬂl‘Hlu HIIMNNTUAVDINNY  LUAZINDY

o ) & A o & o a o '
T|ﬂEQQSLIﬁﬂQQQﬂ_ﬁIﬂﬂUuu'ﬂﬂq entropy ILBITINMTUAVDILN gﬂﬂﬂ]ﬂlﬂﬂiiﬂulﬂu']“ﬂﬁwu'n

s _ (oF
al ). al ),
aumsi 3
FaozmIaums® 2 annsodving 188
oF
F = (éLU +7T
Lar ) T ar ),
Aun1sh 4

@ o : o 4 d A
Tas TRELOAR' wummududusszringungiuazuss¥wanmsfnewaadlugldfl 1.2 Taowuduile

guvgiivessuugann T vessnarnuduiusamdruiiuamuduiuiiduas wazmunsammussdai



o o g o= P - | ' =t A = E
L‘ﬂuﬂuﬂﬂamﬂguﬁnu‘imﬂﬁuEu.‘lf'uﬂu ‘lf\‘ll‘ﬂuﬂ?illﬁﬂﬁ?1ﬂ1ilﬂaﬂuuﬂﬂ\i Entropy lua»’lﬂTﬂﬂ’]iﬂﬁ’lﬂﬂluﬂ'ﬂ

wngll  Fawamsnaassiandeniinnuaniamdeudntiounainmiveodvesnauie unnanw

e}

=he

)%

1.4

1-2 1 .

0.8 T e

0-6 I’/

Stress /MPa

0.2 e g

0 , ; : — —
0 40 80 120 160 200 240 280 320 360

Temperature /K

" w  er & a
31l 1.2 Armdnius sz s IAmas g

3

- a 'L a  oAYY 1 Yy ¥ Iy adq Te A a oA
wsnmiloainnguiniames Iulawmndd lananndndundvmguiildarugfumenminime sy
L= ’ . . e o A
g lunmsAnuiniedmnssuunasrs1dun Statistical theory of rubber deformation #alaenal1luduie
anvdwuazazaIndon1ud1l9szvend 118 Guassian statistical theory waduvy Tae nguijdindin

4 L) A
rannsalFldfdinnagnia lifunislummvenrwenvos Tuana
Statistical theory of rubber deformation

nuf] Statistical theory of rubber deformation lagnWannuuiugiunguimanes Tulauiing Tagtu
;; 9 u as ; d' =y = = ¢:{d d’ = ; 3
esdn TdgnWanduies futowganssuvedluanamedeiiiinnuey  TaoRugwasanguiiuld
dnvaz TnsaerdaTuanamsiaiiuiuy Random coil Tauwui entropy YessE1LIYaRANNaININMS

2
]

I | e = ' <5 o W
IRBUUUBINTAILAUDILT G]Nﬂ']ﬂﬂf}yf’]ﬂQﬂﬁ'na']“'ﬁﬂl‘Uﬂuﬂ'nuﬁﬁwuﬁ JU

45 = —;—Nkb()\;" +N N -3)

aun1sk 5

10



F1 N fie Swauvssaoluanalu 1 miiwSuies, k, A sinedl Botzeman uag A Al A1 Extension ratio

aumsdl 5 eunsomeuInuaglugl

1 ’
W= —ZNE,T(N N +N - 3)
2 b ! 2 3
aumsh 6
Taw
W = -TAS
aunsh 7
FalunsaifimsAnyniuin uni-axial tension aunsamliaumseglugUiideiuléag
¥
F = G )\ - ‘—sz"“
ANNITN 8

4 ' 4 o 3 a_ oA b i
iile G flam Shear Modulus&aaunisasnarlanudiiyedndalumimanuedmsswesenaiognisba
1.2 Swelling of Elastomer

. » ¥
vnfinduudrhautiRuessauenemeziuivgas lunmsweotauddiuduane luns 1aude

a o & @ o b : at 9 ' o duy ar I
Tundadusinaviiasuiludeamaminfuaalugn Compound Aatlaswuilurnzfondihiniuezdana
Aparutialy autiamssuse anwdwesnaiieaninnsduee autdanshidihlanewizsdiduiiod
U AV L x 7
Winahiuiinndu Taonszuiumsuaminiuvesnaiullenmauijves FICK uas FOURIER” Taeng
L ) ] ¥ Ed 1
Hung 1 wamslumuadeufidmufuivdiudusnuuandsvesnnududusznitg 2 galumsindou

Aupamsazay

oc

ox
o
qunNIn o9

Tay R, fie Sasinistaeuiivoauiaaisni 1 wiheveadud, D fie sidulszdntveenisuns, ¢ fenim

WduveEIsazalr uag x Ao lumsunIuaImITaza

11



AUNTH 10

Tavngia 2 el lfefuiemaunsvesasasmelunaiegunalgendi T  vesone Tanden I aunadw

¥

3 9o ' oo o Y H - Yo o
Julagldareinvesenawuingog luasazatelasluaomzSuduvesmstravuiuaunyodon Taal

!
M, _ 2(DiY)

M*lz'ﬂ'

e

AuMsA 11

Taw M, fielSuimuaemsazatonim t, Mg Asifinavesaisazaoigngadufiaugaveanisuiuyes

<h ; v
uagl, e ﬂ'JTJ.I‘H‘lHﬂiQﬂﬁxﬁlﬁ]\‘iElNl!.NuﬁTI'lﬂﬁ‘ﬂﬂﬁiN

PV o a = & {
ninnguidnarnundulizdnimsansiuiuanududusesmsazaedinnududuvosmsazah
= ] a ¥ & o at ] ] : s =5 : ar
1%111ﬁ1]ﬂ'157| 11 Lﬂummawmmmmuw HFINTHTU good solvent BUTRFUUILU NMIARFUUINUYDY
° < a0 9 & v o o ' o Y a A = ar
fJ"Ni]xﬂ'lllmllﬂ‘ill"lill‘I"Iﬂﬂ‘l«l‘l.l’NﬁWﬂ"’INﬂ'JTJJ?fll'wu'5‘5314'31#11]51]1&!‘118\3u'\‘ilu‘\’lﬂﬂ"]ﬁ.lcluUNﬂ'Ul'Jﬁ']ﬁ'llﬂiﬂ

uanlalugui 1.3

12



w’ Free Si:lét;l -
@ Constrained sheet :

Mass uptake /g
MW Rk Ly 8 OO

0 50 100 150 200 250 300

. 12
Time /s

4 wooar 5w oo [
31 1.3 anduiussznhaSinenhiffigadauiunar’

L
Qr

vinmsiihiuluesiylsznanveanainhingui] Statistical of rubber jike elasticity 1/asuuilashliios
- o Ao S o J s 8 % 14 : A
yinmrinsfuuswzfiiniviuduesdilsznoy  rwezgailfldowniasgdhuilesninussmouen

uazthiufd lduon Tmanavessalieenvindu  dldamdsounldlumsn/aounlasglsalaeull

Fail
] £l
W= SNk TN N N -3
2
aun1sh 12
v, fin rubber volume fraction Tao s Tugdavesasafivaniniy (G )ezdisuilu
!
RT  ©
G, = P v/}
MC
AU 13

=)

[ ¥
grnihiwuesdlseneutulSiauaweauaisie 10 - 30 phr { Oil-extended rubber) Mz ML

]
L) =

mal i ldauiguugiimeniusu  vusooudlulszmanfioneamuramnzeziguauialumstamz

] a

=

o o P 3 s ar 1 ast o voA t as I'd ' g A‘l r:’ s ]
ounfidlon1df  Feaudddanarvesnssssumdtindanihlusndunsed R oguduiieldiniuszgo
a A - Z o 9 a st () o 3w e
minlsgAnEmminndunazdenoaadunulumssdadloudedia lsfamwms lataiuesldmTums
alavulanlSunm Crossliking Density 103evdazii I¥nsasnasumfsnaninnududoulums

as1eaan lasitumIgiu

13



1.3 Dynamic Mechanical Properties
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B | n t r 0 d u e t i 0 n
tn various industrial appiications liquids, mainly oils are incorporated into elatomer to modify
processing dehaviour and mechanical properties. In tyrcs applications in particular the
resulting temperature dependence of the dvnamic loss {(tand) is used as a predictor 1o aspects
of tyre performance'?. The viscoelastic behaviour of polymer-liquid system have of course
been siudied by many investigators™ with the effect of liquid on the behaviour being a
veduction in the dynamic storage moduius, a depression in T, and an accompanying
broadening of the tand peack’. For swollen rubber, many studied have been r=ported on the
static mechanica! behaviour but until recently few studied have bezn reported on the dynamic
mechanical properties®”. The prediction of the dynamic behaviour of swollen unfilled and
carbon black filled natural elastomer under pre-strain have been investigated®'®. This
prediction based on free volume theory which is tllustrated in Equation 1.

E.” = Eg'v{((1+kv,(1-v Y fov L (1-v )tk (1-v))-(1/15)) Equation 1

This theorv could well predict the dynamic loss modulus of swollen and non-swollen
synthetic rubber. However, it was not the case for natural rubber. The prediction of the
dynamic loss modulus was lower than obtained from the experiment. The deviation from the
theory may be accounted for by the presence of non-rubber such as protein. Therefore. ihe
effect of non-rubber (protein) on the dvnamic behaviour of swollen natural rubber under pre-
strain was investigated.

Oscillating beam

In this study, the dynamic storage modulus (E’) and dynamic loss modulus (E77) of swollen
natural rubber could be determined by using oscillating beam as shown in Figure 1 This
apparatus is capahble of measuring the dynamic behaviour of sott materials.

Figure 1. The oscillating beam apparatus



The dycamic storage and loss modulus of deproteinised natural rubber decreased with
mereasing the wmount of liquid. FHlowever, the dynamic behaviour depended on the pre-strain
applicd 1o the rubber, The protein was very important to the dynamic behaviour of elastomer.
Protein might act like a network to controt the movement of the rubber molecule. Therefore
when incorporated liquid to the deproteinised natural rubber, the rubber molecule could move
freely to the fiee space oceurring from the present of liquid. The effect of non-rubber on the
prediction of dynamic loss modulus using free volumce theory was investigated. The
relationship between dynamic loss modulus and rubber volume fraction of these three
materiale compared to the prediction was iliustrated In Fioure 20 It confirmed that protein
played an dportant role on the dynamic behaviour. Therefore, in order to improve the
general equation for predicting the dynamic behaviour, the fivx volume of non-rubber had to
be taken into aceounted.
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Figure 2. The dynamic loss modulus of natural rubber, deproteinised natual rubber compared
to the prediction using free volume theory at difierent rubber volume fraction

Conclusion

The results obtained from oscillating beam indicated that protetn in the natural rubber plaved
an important role on the dynamic mechanical properties. The presence of protein in the
natural rubber increased the dynamic storage modulus and the dynamic loss modulus. Protein
might behave like a linkage between the rubber molecules which increased the strength and
the elasticity of the rubber. The dynamic loss modulus of swollen deproteinised natural rubber
predicted from the free volume theory corresponded to the dynamic foss modufus abtained
from this investigation. Therefore, the prediction equation should be further modified in order
to forecast the dynamic behaviour correctly.
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ABSTRACT

The oscillating beam which could accurately determine a low value of the dynamic
loss modulus was employed to study the swollen unfilled DPNR and swollen carbon
black filled DPNR in this study. Processing oil was introduced into the elastomer
after the vulcanization in order to maintain the crosslinking density. At a very low
pre-strain, the dynamic loss modulus of both unfilled and carbon black filled DPNR
decreased with increasing amount of incorporated liquid. The dynamic loss modulus
of the swollen unfilled DPNR showed a good agreement with the data predicted using
the equation based on fractional free volume theory. The oils in the carbon black
filled DPNR could be considered to dilute the effective quantities the carbon black
filler and also reduce the internal viscosity of the elastomer matrix. The prediction
equation was modified in this study to predict the dynamic loss modulus of swollen

carbon black filled DPNR,



1. Introduction

The dynamic properties are often used to characterise commercial elastomers for
specific applications. By varying the compounding, elastomers can be made with
large variations of elastic modulus and tan 8. The presence of oil is a factor that
governs the dynamic behaviour. Despite a great deal of empirical knowledge'” on the
general practical role of liquids in elastomer components, it appears that only a few
scientific studies have been undertaken into the influence of liquids on dynamic visco-
elastic behaviour of swollen elastomers.The effect of oil on the dynamic behaviour of
elastomer had been worked by Davies et.al’. The dynamic behaviour of swollen-
unfilled elastomers was studied for small oscillations superposed on a range of tensile
pre-strains. The dynamic loss modulus decreased on increasing the extent of swelling
and with increasing viscosity of swelling liquid. The dynamic loss modulus was found
to be independent of pre-strain at small pre-strains. This decrease could be predicted

using the equation 1 which based on the fractional free volume theory.

Equation |

E' = EY e 1+kV (1=V,) 1
: O S R wy S BT S

Where £ is the dynamic loss modulus of swollen rubber, E”is the dynamic loss

modulus of the rubber before swelling., v, is the rubber volume fraction in the swollen
rubber, fp is the fractional free volume of the rubber before swelling, f; is the
fractional free volume of the liquid before incorporation into the rubber % represents

the non additivity of free volume terms.



For this present work, the deproteinised natural rubber was chosen to be the main
material. Although natural rubber product is much more performed under the dynamic
force, the non-rubber such as protein or lipid may introduce the difficulty to the
analysis of the results. Therefore, the loss modulus of swollen DPNR was studied in
order to predict based on the fractional free volume theory especially for the DPNR

which had carbon black as a composition.

2. Experimental

2.1 Deproteinised Natural Rubber (DPNR)*

The high ammonia concentrate latex which had 60 % Dry Rubber Content (DRC) was
diluted to 30% DRC with distilled water and stabilised with 0.5% w/v sodium
dodecylsulphate (SDS). The 0.04% w/v photolytic enzyme was added. The mixture
was allowed to stand at 37°C for 24 hours followed by centrifugation for 30 minutes
at speed of 13,000 rpm. The cream fraction was separated from the liquid residue and
redispersed in 0.5% w/v SDS. The redispersed was further centrifuged. The recovered
DPNR was dried in the oven at 50 °C. The basic physical properties of DPNR was

determined and showed in Table 1.

2.2 Sample preparation

The rubber samples were mixed following the formulation in Table 2. The
rubber compounded was vulcanized at 160 °C into 1 mm. thick sheet. The
vulcanization time was measured using Monsanto Oscillating Disc Rheometer(1008).

Then, test piece of dimensions 100x5x]1 mm? and dumbbell shape were prepared.



2.3 Swelling process

Swelling experiment was carried out by first weighing the rubber samples and then
immersed them in an processing oil (viscosity = Pa.s) . A range of swelling was
obtained by immersing the samples for various times. The samples were allowed
enough time for a uniform distribution to be reached after removing from the oil. This
uniform distribution time was assumed equivalent to that required for equilibrium
swelling in the oil to be reached. The volume fraction of rubber vr in the swollen

sample could be calculated using the following equations

y
v, o= — Equation 2
Vrrrer + Vvsm’v
M, | M .
Y et r[ s J(ﬂ} Equation 3
Pru ) M i

where V. 1s the volume fraction of the rubber network, A, is the mass of the rubber
specimen, M, is the mass of the rubber hydrocarbon, M, is the total weight of mix
formulation and pgy is the density of rubber hydrocarbon
2.3 De-swelling Process

The soxhlet extraction process was employed. The rubber was extracted with
acetone for 72 hours under nitrogen atmosphere and dry under reduced pressure until
a constant weight was reached.
2.3 Mechanical Testing

The tensile stress-strain was conducted on an Universal Extensometer
(INSTRON) at crosshead speed of | mm/min. The dynamic behaviour of elastomer

under strain could be measured using the oscillating beam apparatus shown in



Figurel. This apparatus can study the loss angle accurately for a soft material>*®. The
details of apparatus were already published. Therefore, only brief detail of this
apparatus is described here. A beam with end weights was supported by a knife-edge
and clamped at centre of rubber specimen. As the beam oscillates, the period of
oscillation and the decay in the oscillation amplitude were measured using
capacitance transducer and record on X-t recorder. The dynamic storage behaviour
could be determined using the following equations.

E" = Ag‘ilﬂ_hf

Equation 4
7 2rt A4, g

A—I(X"J Equation 5
=In| — quation

where [ is the moment of inertia of the beam which was 2.622x10-3 kg.m2,® is the
angular displacement of the beam, A is the pre-strain extension ratio for the test piece,
r 1s the distance between the centre of the beam and the elastomer specimen which is
56 mm, A4 is the unstrained cross-section area, /,; is the unstrained half length of the
specimen, A is the logarithmic decrement, X, is the amplitude of the nth cycle and

Xu+1 1s the amplitude of the following successive cycle.

3. Results and discussion

3.1 The effect of oil on the crosslink density
The measured stress-strain relationship of DPNR was carried out. The results were
analysed using Mooney equation as given in Equation 7 to study the effect of oil on

the crosslink density of the swollen elastomer.

F c,

D= = C += Equation 6
2A0M— A72) A



where @ i1s known as the reduced stress term and F is the force per cross-sectional
area of the undeformed specimen. The two coefficients C; and C; are known as the
Mooney constants. The value of C| decrease as the amount of liquid incorporated into
the elastomer was increased. From the Gaussian network theory for swollen

elastomer, the value of C; is given by

C.=C p 12 Equation 7

where C; dry is the network parameter for the dry state. The double log plots between
C; and v, of swollen DPNR are shown in Figure 2. The slope for the swollen material
relation was approximately 1/3. This suggested that the behaviour of the swollen
network could be described by a simple statistical theory. The presence of oil did not

affect the crosslink density of the elastomer.

3.2 The prediction of swollen DPNR based on fractional free volume theory

The dynamic loss modulus of swollen unfilled DPNR was studied at low strain
(Extension ratio = 1.2) in order to compare the result which predicted from the
fractional free volume theory stated in Equationl. The constants which used in
Equation I is listed in Table 3. The dynamic loss modulus decreased with increasing
amount of incorporated liquid. The predicted behaviour was compared with the
experimentally derived data in Figure 3. It is apparent that the agreement between the

experimental data and the theory is as good as reported by Davies et.al



The dynamic loss modulus of swollen carbon black filled DPNR at low strain was
also studied. The formulation of the elastomer was also listed in Table 2. The
reduction of the dynamic loss modulus by swelling is also observed in the carbon
black filled natural rubber shown in Figure 4. The dependence of the dynamic loss
modulus on swelling is much stronger, particularly for the more highly filled
materials. This is perhaps to be expected, because when the material is swollen not
only is the modulus of the matrix decreased but also the effective volume fraction of
the carbon black filler is reduced. It is possible to check whether a combination of
these two effects is sufficient to account for the observed changes. The ratio of the
dynamic loss modulus of the swollen carbon black DPNR, (10-60 carbon black
content) and the swollen unfilled DPNR, at equivalent amount of swelling in just the
elastomer phase was calculated for a low applied pre-strains (Extension = 1.2). This
dynamic ratio was plotted as a function of the carbon black, allowing for the decrease

in the filler loading due to the swelling process. The carbon black reduction could be

calculated using the Equation 8

phr,

1 :
1‘{[“—“1}‘&[‘} Equation 8
vr pr

Where phr, is the part per hundred rubber unit of carbon black after swelling process,

phr, =

phry is the part per hundred rubber unit of carbon black before swelling process , v, is

the rubber volume fraction after swelling , p,, is density of the oil and p is density of

the rubber.



The result shown in Figure 5 indicated that the data for the various degrees of
swelling and filler loading were consistent with a single curve. It could be concluded
that the combination of the effects of swelling suggested above are correct.
Furthermore, the extraction process of swollen DPNR was performed. The result in
Figure 6 indicated that the dynamic loss modulus of the extracted DPNR was not far
from the dynamic loss modulus of unswollen NR after extraction process. Therefore,
the oils in the elastomer could be considered to dilute the effective quantities the
carbon black filler and also reduce the internal viscosity of the elastomer matrix. This

result was also found in natural rubber.

The prediction equation of the dynamic loss modulus based on the fractional free
volume then, can be modified to use with the DPNR-carbon black system. The

calculation has been shown in Equation 9

Eﬂ . El’rv exp ( 1+kvr(1_vr) __LJ_}_ a phrﬂ
fs o f()vr+f}'_(1_vr)+kvr(l_vr) fO 1+ i__l _g?_,'j_
v, o,
Equation 9

a is the constant determined from the curve fitting and the value of a is 0.08 for
DPNR. The prediction behaviour using Equation 9 compared with the experimental

data is shown in Figure 7

Although at this stage, the value of a is calculated from the fitting curve. This value

may be related with the type of elastomer or the size and structure of the carbon black



Conclusions

The dynamic behaviour of swollen DPNR was studied. The swelling process was
conducted after the vulcanization in order to maintain the crosslinking density. At a
very low strain the dynamic loss modulus of the swollen unfilled DPNR could be
predicted using the equation based on fractional free volume theory. For the swollen
carbon black filled DPNR, the oils in the elastomer could be considered to dilute the
effective quantities the carbon black filler and also reduce the internal viscosity of the
elastomer matrix. The prediction equation was modified to predict the dynamic loss

modulus of swollen carbon black filled DPNR.
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Figure 1 : The oscillating beam




Figure 2 The relationship between log ¢; uaz log v, of swollen DPNR
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Figure 3 The comparison between the dynamic loss modulus
determined from the prediction and experiment.

0.035

% & Predict

003 | |y kyp

0.025 - ]
0.02 - (]
0.015 1

0.01

Dynamic loss modulus/MPa

0.005 -

0 r T —_ : ‘
0 0.2 0.4 0.6 0.8 1 1.2

Extension Ratio



Figure 4 The dynamic loss modulus of DPNR at different amount of
carbon black

5
| ‘®0phr  ®10phr
451 ' a20phr  x30phr |
X 40 phr 50 phr .
8 41 460phr ? +
§ 3.5 +
_E +
g 3 +
= 4 +
g 25
a2
[=} L
"; 2
1 L ]
5 1.5 1 ¢
= ® L
> *
Q 1 T X x
X
X X
] x
0.5 X X X X X
od " W S
1 1.2 14 1.6 1.8 2 2.2

Extension Ratio



Figure 5. The relationship between E;" / E"(Matrix swollen) and the
amount of carbon black after swelling
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Figure 6 : The dynamic loss modulus of swollen DPNR after
extraction compared to unswollen DPNR after extraction
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Figure 7 The dynamic loss modulus of swollen carbon blacke filled
DPNR predicted from the modified equation based on fractional free
volume theory
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Table 1 The physical properties of DPNR

Physical properties DPNR
Molecular Weight 7.1x10°
N; content /% 0.025
Mooney Viscosity/(ML1+4) 54
Curing time at 160°c/min 60




Table 2 DPNR mixing formulation

Rubber and Chemicals Phr
DPNR 100
Di-cumyl peroxide 1
Antioxidant 3
Carbon black N330 0-60




Table 3 Parameters used in the prediction equation based on
fractional free volume theory’

| DPNR
Rubber Free Volume 0.08655
il Free Volume 0.1100
additional free volume -0.0169




