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In various industrial applications liquids, mainly oils are incorporated into elatomer to meodify 1)

resulting temperature dependence of the dvnamic loss (tanb) is used as & predictor ;o aspects

af tyre performance'”. The viscoelustic befiaviour of polymer-liquid system have of course

been siudied by many investigators™ with the effect of liquid on the behaviour being a
igduction in the dynamic storage moduius, a depression in Ty and an accompanying =
broadening of the tand pesck®. For swollen rubber, many studied have been reported on the ]
static mechanica! behaviour but until recently few studied have besn reported on the dynamic
mechanical properties®’. The prediction of the dynamic behaviour of swollen unfilled and

carbon black filled natural elastomer under pre-strain have been investigared™™. This
prediction based on free volume theory which is illustrated in Equation I.

E" = Eg"v{({ 1wl 1w Wlave Bl 1 v kv (1w, DC 16D Equation 1

T|:js theorv could well predict th="dynamic loss modulus of swollen and non-swallen
synthetic rubber. However, it was not the case for natural rubber, The prediction of the
dynamic loss modulus was Jower than obtained from the experiment. The deviation from the
theory may be accounted for by the presence of non-rubber such as protein. Therefore: the
effect of non-rubber (protein) on the dynamic behaviour of swollen aatural rubber under pre-
strain was investigated. '

Oscillating beam

In! this study, the dynamic stormge modilies (E*) and dynamic loss modulus _{E"-'f-ir!' Mhn
m{tuu! rubber could be determined by using oscillating beam as shown i Figure | j‘hu
apparatus is capable of measuring the dynamic behaviour of soft materials.

Fligure 1. The oscillating beam apparastus

| =53—
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ABSTRACT

The oscillating beam which could accurately determine a low value of the dynamic
losq modulus was employed to study the swollen unfilled DPNR and swollen carbon
bladk filled DPNR in this study. Processing oil was introduced into the elastomer
after the vulcanization in order to maintain the crosslinking density. At & very low
pre-sirain, the dynamic loss modulus of both unfilled and carbon black filled DPNE
decreased with increasing amount of incorporated liquid. The dynamic loss modulus
of the swollen unfilled DPNR showed & good agreement with the data predicted using
the equation based on fractional free volume theory. The oils in the carbon black
filled DPNR could be considered to dilute the effective quantities the carbon black
filler and also reduce the internal viscosity of the elastomer matrix. The prediction
equation was modified in this study to predict the dynamic loss modulus of swallen
carbon black filled DPNE.




L. Introduction

The dynamic properties are often used to characterise commercial elastomers for
specific applications. By varying the compounding, elastomers can be made with
large vanations of elastic modulus and tan & The presence of oil is & factor that
govemns the dynamic behaviour. Despite & great deal of empirical knowledge'? on the
general practical role of liquids in elastomer components, it appears that only a few
scieptific studies have been undertaken into the influence of liquids on dynamic visco-
elastic behaviour of swollen elastomers The effect of oil on the dynamic behaviour of
elastomer had been worked by Davies etal’. The dynamic behaviour of swollen-
unfilled elastomers was studied for small oscillations superposed on a range of tensile
pre-strains. The dynamic loss modulus decreased on increasing the extent of swelling
and with increasing viscosity of swelling liquid. The dynamic loss modulus was found
to be independent of pre-sirain at small pre-strains. This decrease could be predicted
using the equation 1 which based on the fractional free volume theory.

|E." = E}, exp i1 Ul Y, '} Equation |

—_—
F

ﬂvr +f1.{1_'“r}+hr{] ""r}__lr
Whete £/ is the dynamic loss modulus of swollen rubber, £ is the dynamic loss
modulus of the rubber before swelling., v is the rubber volume fraction in the swollen
rubber, /5 is the fractional free volume of the rubber before swelling, f; is the

ﬂ-ambml free volume of the liquid before incorporation into the rubber k represemis

the non additivity of free volume terms.




For| this present work, the deproteimised natural rubber was chosen to be the main
material. Although natural rubber product is much more performed under the dynamic
force, the non-rubber such as protein or lipid may introduce the difficulty to the
analysis of the results. Therefore, the loss modulus of swollen DPNR. was studied in
order to predict based on the fractional free volume theory especially for the DENR
which had carbon black as a composition.

2. Experimental

2.1 Deproteinised Natural Rubber (DPNR)"

The high ammonia concentrate latex which had 60 % Dry Rubber Content (DRC) was
diluted to 30% DRC with distilled water and stabilised with 0.5% wiy sodium
dodecylsulphate (SDS). The 0.04% wiv photolytic enzyme was added. The mixture
was allowed to stand at 37°C for 24 hours followed by centrifugation for 30 minutes
at speed of 13,000 rpm. The cream fraction was separated from the liquid residue and
redispersed in 0.5% w/y SDS. The redispersed was further centrifuged. The recovered
DPNR was dried in the oven at 50 °C. The basic physical properties of DPNR was

determined and showed in Table 1.

1.2 Sample preparation
The rubber samples were mixed following the formulation in Table 2. The

rubber compounded was vulcanized at 160 °C into | mm. thick sheet. The
vulcanization time was measured using Monsanto Oscillating Disc Rheometer(1008),
Then, test piece of dimensions 100x5x! mm® and dumbbell shape were prepared,




2.3 Swelling process

Smllimnmﬁnm“mhdmhy&nwﬁghhgthnnd:humqﬂﬂ-ﬂdﬂm
inumadlhcminmp:mmingnﬂ{ﬁﬂmﬁty- Pa.s) - A range of swelling was
ummwmm;mmrmmmmmmm
enuughumrnramﬁfmm‘buﬁmtnbcmﬂudmﬂmﬁmmnﬂ.m
unifhnndisnihuﬁunﬁmnwummwdnquiw]uum:hmmqlﬁmdﬂrﬁpiﬁhim
swelling in the oil to be reached. The volume fraction of rubber vr in the swollen
sample could be calculated using the following equations

Vo

& =[F’_ +F_] COERS

V. n[&I.ﬂh] Equation 3
Pun ) M,

where V. is the volume fraction nfﬂ:embbcrmtwnrk.ﬂl"piuh:mpﬂhmhhr
mim.ﬂmismtmmufthnmhhﬁhmmilﬂtmﬂﬂﬁﬂﬂnfnm
formulation and oy is the density of rubber hydrocarbon
2.3 De-swelling Process

The soxhlet extraction process was employed. The rubber was extracted with
acetone for 72 hours under nitrogen atmosphere and dry under reduced pressure until
& constant weight was reached.
2.3 Mechanical Testing

The tensile stress-strain was conducted on an Universal Extensometer
(INSTRON) at crosshead speed of | mm/min. The dynamic behaviour of elastomer
under strain could be measured using the oscillating beam apparstus shown in




Figurel, This apparatus can study the loss angle accurately for & soft material™=® The
detdils of apparatus were already published. Therefore, only brief detail of this
apparatus is described here. A beam with end weights was supported by a knife-edge
md-chumedatmhrufmhhcrspuimm.ﬂstb:hmmumﬂhm.ﬂupmnduf
oscillation and the decay in the oscillation amplitude were messured using
capacitance transducer and record on X-t recorder. The dynamic storage behaviour
could be determined using the tollowing equations,

. At
h:h{%—] Equation 5
a+l

where [ is the moment of inertia of the beam which was 2.622x10-3 kgm2 @ is the
angular displacement of the beam, 1 is the pre-strain extension ratio for the test piece,
rislhtdiﬂnc:hﬂwnmthncmmufth:bmmmdﬂmﬂmmwhkhh
56 mm, A is the unstrained cross-section area, [; isﬂlemmtmiuﬂdhlﬂmgﬂtufﬂu
specimen, A is the logarithmic decrement, X, is the amplitude of the nth cyele and

Ay+r 18 the amplitude of the following successive cycle.

3. Results and discussion

3.1 The effect of oll on the crosslink density
The measured stress-sirain relationship of DPNR was carried out. The results were
analysed using Mooney equation as given in Equation 7 to study the effect of oil on

the crusslink density of the swollen elastomer.
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whamﬁlishm“manﬂmmchnadmmMdeFismﬁJmpummﬁnml
muflhumdcfwmedspminm.mtwumcfﬁ:ianuﬂ.mdt‘:;arnlmnwnanthn
Mooney constants, The value of ¢ dmmmmﬂamnuntafﬁquidinﬂmpﬂmhdm
the | elastomer was increased. From the Gaussian network theory for swollen

elastomer, the value of C, is given by

Ci=C,,, v ' Equation 7

where C; dry is the network parameter for the dry state. The double log plots between
C'y and v, of swollen DPNR are shown in Figure 2. The slope for the swollen material
relation was approximately 1/3. This suggested that the behaviour of the swollen
network could be described by a simple statistical theory. The presence of oil did not

affect the crosslink density of the elastomer.

3.2 The prediction of swollen DPNR based on fractional free volume theory

The dynamic loss modulus of swollen unfilled DPNR was studied at low strain
(Extension ratio = 1.2) in order to compare the result which predicted from the
ﬁa:ﬁnmlﬁ'uanum:thmmsmtndinEqumiunl.ﬁ:mmanmwm:hmndin
Equation | is listed in Table 3. The dynamic loss modulus decreased with increasing
amount of incorporated liquid. The predicted behaviour was compared with the
experimentally derived data in Figure 3, It is apparent that the agreement between the
c:::rhnmmldamandthclhmqrismgundumpmedhyﬂmimﬂ.:l
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The dynamic loss modulus of swollen carbon black filled DPNR at low strain was
alsa studied. The formulation of the elastomer was also listed in Table 2. The
reduction of the dynamic loss modulus by swelling is also observed in the carbon
black filled natural rubber shown in Figure 4. The dependence of the dynamie loss
modulus on swelling is much Stronger, particularly for the more highly filled
materials. This is perhaps to be expected, because when the material is swollen not
only is the modulus of the matrix decreased but also the effective volume fraction of
the carbon black filler is reduced. It is possible to check whether a combination of
these two effects is sufficient to account for the observed changes. The ratio of the
dynamic loss modulus of the swollen carbon black DPNR, (10-60 carbon black
content) and the swollen unfilled DPNR, at equivalent amount of swelling in just the
elastomer phase was calculated for a low applied pre-strains (Extension = 1.2). This
dynamic ratio was plotted as a function of the carbon black, allowing for the decrease
in the filler loading due to the swelling process. The carbon biack reduction could be

calculated using the Equation 8

(T e

Where phr, is the part per hundred rubber unit of carban black after swelling process,
phry is the part per hundred rubber unit of carbon black before swelling process , v is

the rubber volume fraction after swelling . P 18 density of the oil and p, is density of

the ruHher




The result shown inFigureSinﬂicatndthaiﬂ:te-hht‘urth: various degrees of
swelling and filler loading were consistent with a single curve. It could be concluded
that the combination of the effects of swelling suggested sbove are corect.
Furthermore, the extraction process of swollen DPNR. was performed. The result in
Figmuﬁiml:'camdHlaith:d}mmiclmumuduluuufthtnmmdnﬂlﬂmuh
from the dynamic loss modulus of unswoilen NR after extraction process. Therefore,
the oils in the elastomer could be considered to dilute the effective quantities the
carbon black filler and also reduce the internal viscosity of the elastomer matrix. This
result was also found in natural rubber,

ﬂmpmdicﬁunnqmﬁunufﬂmdrnnnﬂclmsnmduhmbundmdmﬁmﬁuﬂﬁw
volume then, can be modified to use with the DPNR-carbon black system. The

calculation has been shown in Equation 9
A5
_ L+ kv, (1-v,) l Dy
B _.Elr r L4 -— kT
5 i [_,r;u,+_ﬂfl-v.}+h,{l-l',} ﬁ]+ l_,_[[l-l]ﬂ_lt}
'l"r FF" o
Equation 9

8 18 the constant determined from the curve fitting and the value of a is 0.08 for
DPNR. The prediction behaviour using Equation 9 compared with the experimental
data is shown in Figure 7

ﬂlmuughmﬂ:jsm;e.ﬂmvulucufnismkulntadﬁmﬂmEtﬁmgm.‘nﬂsnhn

may be related with the type of elastomer or the size and structure of the carbon black




Conclusions

The dynamic behaviour of swollen DPNR was smdied. The swelling process was
conducted after the vulcanization in order to maintain the crosslinking density. At a
very low strain the dynamic loss modulus of the swollen unfilled DPNR could be
predicted using the equation based on fractional free volume theory. For the swollen
carbon black filled DPNR, the oils in the clastomer could be considered to dilute the
effective quantities the carbon black filler and also reduce the intermal viscosity of the
clastomer matrix. The prediction mﬁunmmﬁﬁmwmmmm

modulus of swollen carbon black filled DPNR.
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Figure 1 : The oscillating beam




Figure 2 The relationship between log ¢; usz log v, of swollen DPNR
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Figure 3 The comparison between the dynamic Joss modulus
determined from the prediction and experiment.
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Figure 4 The dynamic loss modulus of DPNR at different amount of

carbon black
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Figure 5 . The relationship between E/” / E"(Matrix swollen) and the
amount of carbon black after swelling
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Figure 7 The dynamic loss modulus of swollen carbon blacke filled

DPNR predicted from the modified equation based on fractional free
volume theory
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Table 1 The physical properties of DPNR

. Physical properties DPNR
' Moelecular Weight Taxllr
N; content /% 0.025
Mouoney Viscosity/(MLI1-+4) 54
Curing time at 160"c/min 6
U
I
|
r
]




"

-
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Table 2 DPNR mixing formulation
Rubber and Chemicals Phr
DPFNR 100
Di-cumyl peroxide 1
Antloxidant 3
Carbon black N330 0-60




. Table 3 Parameters used in the prediction equation based on
fractional free volume theory’
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The dynamic behaviour of swollen elastomer under strain was investigated in order to generalize
equation that can be used to predict the dynamic behaviour in the designing computer
programme. The oscillating beam was employed to study the dynamic behaviour. This apparatus
gave accurate information at a very low value of dynamic loss modulus and can be used to
determine the effect of the strain. The rubber specimen was swollen in the processing oil after
th:vﬂmnimﬁmpmmahmﬂermkmphmlinkdmuimamﬁlﬂuum&
experiment. The dynamic loss modulus of swollen rubbers could be predicted using the equation
based on free volume theory except natural rubber. This was due to the presence of non-rubber in
the natural rubber. The dynamic loss modulus of swollen carbon black filled elastomer was also
studied. The reduction in dynamic behaviour was only due to the swollen in the elastomer matrix
and the reduction in carbon black fraction. The prediction equation based on free volume theory
was modified and could be used nicely with the carbon black filled elastomer.

KEYWORDS : Dynamic behaviour, Rubber, Prediction
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