บทคัดย่อ

วัตถุประสงค์ของงานวิจัยนี้เพื่อศึกษาถึงความสัมพันธ์ระหว่างการอัดแน่นของดิน และการเจริญเติบโตและผล ผลิตของอ้อย และศึกษาสมบัติทางกายภาพและเชิงกลของดินที่เกิดขึ้นในแปลงเพาะปลูกอ้อย

ในการศึกษาถึงความสัมพันธ์ระหว่างระดับการอัดแน่นของดินและการเจริญเติบโตและผลผลิตของอ้อยนั้น ศึกษาโดยทำการทดลองเพาะปลูกอ้อยในแปลงทดลอง โดยออกแบบการทดลองเป็นแบบ RCBD 4 ระดับการอัดแน่น ดินในแปลง 4 ซ้ำหรือบล็อกเพื่อกำจัดอิทธิพลของการให้น้ำแบบร่องดู ได้ทำการปลูกอ้อยในแปลงที่มีระดับการอัดแน่น ดินต่างกัน 4 ระดับ ที่ได้จากการเตรียมดินบดอัดด้วยรถแทรกเตอร์ที่ 0 5 15 และ 20 เที่ยววิ่ง เพื่อให้ได้สภาพของแปลง ใกล้เคียงกับแปลงที่ทำการเพาะปลูกอยู่จริง ผลจากการทดลองพบว่าระดับการอัดแน่นของดินมีอิทธิพลทางลบต่อทั้งการ เจริญเติบโตและผลผลิตของอ้อย แต่ไม่ส่งผลกระทบต่อค่าความหวานของอ้อย โดยผลผลิตในแปลงที่มีการบดอัด 15 เที่ยววิ่งมีผลผลิตต่ำสุดมีค่าลดลงถึง 22.90% เมื่อเปรียบเทียบกับผลผลิตของแปลงที่ไม่ได้บดอัด แต่ในแปลงที่มีการบดอัด 20 เที่ยววิ่ง ชั้นอัดแน่นสูงสุดของดินค่อนข้างอยู่ใกล้ผิวดินทำให้ดินมีความชื้นสูงหลังการให้น้ำส่งผลให้ค่าความต้าน ทานการแทงทะลุของดินบริเวณดังกล่าวลดลง รากอ้อยจึงสามารถแทงทะลุได้ง่าย ทำให้การเจริญเติบโตหลังจากเดือนที่ 2 มีค่าใกล้เคียงกับแปลงที่ไม่ได้ทำการบดอัด แต่อย่างไรก็ตามผลผลิตของอ้อยในแปลงที่มีการบดอัดที่ 20 เที่ยววิ่งมีค่า ต่ำกว่าแปลงที่ไม่ได้บดอัดมากโดยมีค่าไม่แตกต่างอย่างมีนัยสำคัญกับแปลงที่มีการบดอัดที่ 15 เที่ยววิ่ง ทั้งนี้คงเนื่องมา จากแปลงดังกล่าวมีอัตราการงอกต่ำ ส่วนอิทธิพลของบล็อกหรือการให้น้ำส่งผลอย่างมีนัยสำคัญยิ่งต่อทั้งการเจริญเติบโตและผลผลิตของอ้อย และมีแนวโน้มในการช่วยลดอิทธิพลของกรอัดแน่นของดินลงด้วย

ในการศึกษาถึงสมบัติทางกายภาพและเชิงกลของดินในแปลงเพาะปลูกอ้อยนั้น ได้ทำการสำรวจเก็บข้อมูล ความต้านทานการแทงทะลุของดิน ความหนาแน่นดิน และความชื้นในแปลงปลูกอ้อยทั้งหมด 16 แปลง แบ่งเป็นแปลง ที่ทำการเพาะปลูกที่ใช้เครื่องจักรกลการเกษตรเป็นหลัก 10 แปลง และแปลงที่ใช้แรงงานคนเป็นหลัก 6 แปลง จากการ สำรวจพบว่าความหนาแน่นของดินในแปลงที่ใช้เครื่องจักรกลการเกษตรมีค่าสูงกว่าแปลงที่ใช้แรงงานคนอย่างมีนัย สำคัญ โดยมีค่าเฉลี่ยมากกว่าแปลงที่ใช้แรงงานคนถึง 12.6% นอกจากนี้แปลงที่มีจำนวนปีเพาะปลูกของอ้อยสูงกว่ามี แนวโน้มของค่าความหนาแน่นของดินสูงกว่าด้วย ผลการวิเคราะห์เส้นระดับค่าความต้านทานการแทงทะลุของดินใน แปลงทำให้ทราบว่า ทุกแปลงที่ทำการสำรวจพบการอัดแน่นของดินมีค่ามากที่ความลึกตั้งแต่ 50 cm ลงไปซึ่งเป็นระดับ ความลึกใต้ชั้นไถพรวน สะท้อนถึงปัญหาการเกิด Subsoil compaction ส่วนในชั้นไถพรวนนั้นแปลงที่ใช้เครื่องจักรกล การเกษตรมีการอัดแน่นของดินมากกว่าและมีการกระจายตัวไม่สม่ำเสมอ โดยบางบริเวณมีค่าความต้านทานการแทง ทะลุของดินมากกว่า 2 MPa โดยเฉพาะอย่างยิ่งแปลงที่มีจำนวนปีการเพาะปลูกของอ้อยสูง ส่วนแปลงที่ใช้แรงงานคน เป็นหลักพบว่ามีกระจายตัวของการอัดแน่นของดินค่อนข้างสม่ำเสมอและทุกแปลงมีค่าความต้านทานการแทงทะลุของ ดินต่ำกว่า 2 MPa นอกจากนี้จากการศึกษาค่าสหสัมพันธ์ยังพบว่าแปลงที่ใช้แรงงานคนเป็นหลักมีรูปแบบการอัดแน่น ของดินที่คล้ายคลึงกันมากกว่าแปลงที่ใช้เครื่องจักรกลการเกษตร และลักษณะการอัดแน่นที่คล้ายคลึงกันนี้มีมากที่ระดับ ความลึกในช่วง 40 cm และจากการวิเคราะห์ค่าความแตกต่างของการแทงทะลุของดินในรูปแบบค่ามาตรฐานสามารถบ่ง บอกได้ว่า การใช้เครื่องจักรกลการเกษตรทำให้มีค่าความแตกต่างของความหนาแน่นของดินระหว่างแปลงที่มีจำนวนปี การเพาะปลูกอ้อยต่างกันมีค่าสูงกว่าค่าของความแตกต่างระหว่างแปลงที่ใช้แรงงานคน และค่าความแตกต่างสูง ๆพบ มากที่บริเวณแถวอ้อยคือที่ระยะระหว่าง 80 – 120 cm

Abstract

This research aimed to clarify relationship between soil compaction and growth as well as yields of sugar cane. Additional objective was to investigate physical and mechanical properties of soil in sugar can planting field.

For the study on relationship between soil compaction and growth and yield of sugar cane, the field experiments were conducted under experimental design of RCBD with four treatments of different levels of soil compaction and four replicates in order to reduce influence of surface irrigation. Sugar cane was planted in the fields which were compacted by tractor wheels to four levels of soil compaction with 0, 5, 15 and 20 numbers of passages, which met soil condition in current sugar cane growing field. The results showed that soil compaction had negative effects on both growth and yield of sugar cane but had no significant effect on percent brix. The yield of 15 passes compacted field showed the lowest value reducing by 22.90% when compared to no compacted field. However, in the field of 20 passes compacted field, since compaction zone was near soil surface, it was high moisture content after watering. Therefore, penetration resistance was rectified and sugar root could easily penetrate and, consequently, resulted in no significant difference of growth after 2 months between sugar canes in 20 passes compacted field and no compacted field. However, the yield of sugar can in 20 passes compacted field was much lower than that of no compacted field. It was no significant difference with yield of 15 passes compacted field. This may be because the germination rate of sugar cane in the 20 passes compacted field was the lowest. For influence of block or surface irrigation, positive effect of high watering was recognized and it seemed to reduce the effects of soil compaction.

For the study of physical and mechanical properties of soil compaction in sugar cane planting fields, investigations of cone penetration resistance, bulk density and moisture content were conducted in 16 sugar cane planting fields including 10 fields with mainly using agricultural machine and 6 fields with using man power. From investigation, it was found that average value of bulk densities of soil in machine-using fields were 12.6% significantly higher than one in man power-using fields. Moreover, field with higher number of cane ratoon seemed to show higher bulk density. The contour of cone penetration resistance told that every fields had high compaction zone beginning at depth from 50 cm, where was no tillage layer, reflecting subsoil compaction problem. When focusing in tillage layer, higher soil compaction appeared in machine-using fields and cone penetration resistance exceeded 2 MPa especially for higher number of ratoon. Besides, its distribution pattern was more scattering. On the other hand, in case of man power-using fields, soil cone penetration resistances in all fields were lower than 2 MPa and showed less scattering distribution pattern. Correlation analysis of cone penetration resistances manifested that more similar variation in cone penetration resistance was found among man power-using fields and at depth less than 40 cm. From analysis of different value between soil cone penetration resistances in standard normal form of different fields, it could state that using machine brought about more soil compaction at following ratoon, especially at position 80-120 cm.