
ตารางที่ 3.10 แสดงผลความเข้มข้นของโปรตีนที่ถูกคูดซับและ %protein recovery เมื่อเปลี่ยนแปลง ความเข้มข้นเริ่มต้นของโปรตีน

Q ₀ (ml/s)	C ₀ (mg/L)	C _e (mg/L)	C (mg/L)	%R _p (-)
2.37	663 (diluted 8 เท่า)	415	248	37.41
2.37	1,331 (diluted 4 เท่า)	817	514	38.62
2.37	2,644 (diluted 2 เท่า)	2,109	535	20.23
2.37	5,375 (undiluted)	4,846	529	9.84

พบว่าความเข้มข้นของโปรตีนที่ถูกคูดซับในตัวอย่างน้ำนึ่งปลาจะเริ่มคงที่ (ประมาณ 526 mg/L) เมื่อ ความเข้มข้นเริ่มต้นของโปรตีนเพิ่มจนถึงประมาณ 1,331 mg/L (diluted 4 เท่า) เนื่องจากแอฟรอนไม่ เหลือพื้นที่ผิวที่จะสามารถคูดซับโปรตีนได้ต่อไปแล้ว จากผลการทคลองเราอาจจะสามารถทำการ สรุปได้ว่าการคูดซับที่ได้ไม่เป็นไปตาม Langmuir equation ในช่วงความเข้มข้นที่ทำการศึกษา โดยดู จากค่า R² ของกราฟแสดงการคูดซับ (รูปที่ 3.24) และกราฟแสดงการคูดซับแบบปรับเส้นโค้ง (รูปที่ 3.25) เมื่อทำการ fit curve

รูปที่ 3.25 กราฟแสดงการคูดซับแบบปรับเส้นโค้ง (ตัวอย่างน้ำนึ่งปลา) เมื่อพิจารณาถึง %protein recovery (%R_p) พบว่าช่วงแรก %R_p จะคงที่และจะเริ่มลดลงเมื่อความเข้ม ขันเริ่มต้นของโปรตีนประมาณ 1,331 mg/L (diluted 4 เท่า) (รูปที่ 3.26) เนื่องจากพื้นที่ผิวในการคูด ซับเด็มแล้ว

รูปที่ 3.26 แสดงผลความเข้มข้นเริ่มด้นของโปรตืนที่มีต่อ %protein recovery (%R_p) ที่อัตราการ ใหลของโปรตีนเท่ากับ 2.37 ml/s (ตัวอย่างน้ำนึ่งปลา)

3.4 การศึกษาการถ่ายเทมวลสารระหว่างฟองแก๊สแอฟรอนกับโปรตีน

3.4.1 โปรตีนบริสุทธิ์ (Lysozyme)

จากสมการ steady state mass transfer (พิจารณาใน phase ของเหลว)

$$U\frac{dC}{dZ} = k_L a (C - C^*)$$
 (8)

ข้อสมมติฐาน

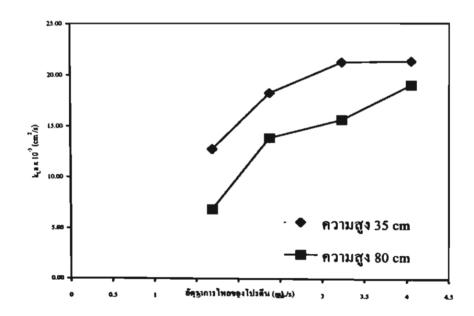
- ระบบเป็น steady state ไม่ขึ้นกับเวลา
- สัมประสิทธิ์การแพร่แนวแกนท่อน้อยมากเมื่อเทียบกับเทอมของ bulk flow [13]
- ความเข้มข้นของโปรตีน (C_A) เปลี่ยนแปลงตามทิศทาง Z เพียงอย่างเคียว (ความสูงของ คอลัมน์)

เราสามารถ solve equation ได้ดังต่อไปนี้

$$\int_{C_{A}}^{C_{A}} \frac{dC}{(C - C^{*})} = \frac{-k_{\perp} a}{U} \int_{0}^{z} dZ$$
(9)

$$\ln\frac{(C_A - C^*)}{(C_{A0} - C^*)} = \frac{-k_L aZ}{U}$$
(10)

สำหรับ diluted concentration protein

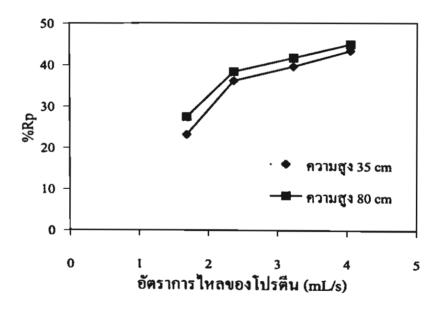

$$\ln \frac{C_{A}}{C_{A0}} = \frac{-k_{L}aZ}{U} \tag{11}$$

โดยที่ $C_{_{\Lambda}}$ และ $C_{_{\Lambda0}}$ คือความเข้มข้นของโปรตีนหลังผ่านและเริ่มต้นตามลำดับ (g/L)

U คือ อัตราการใหลของโปรตีน (ml/s)

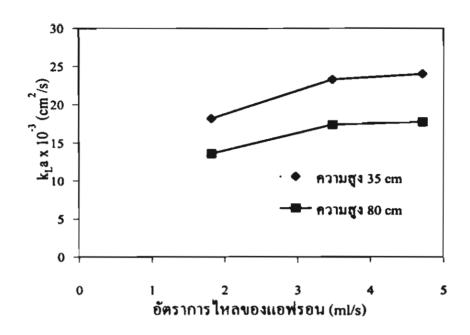
Z คือ ความสูงของคอลัมน์ (cm) และ

k_ta คือ สัมประสิทธิ์การถ่ายเทมวลทั้งหมด (ใน phase ของเหลว) (cm²/s) จากการทดลองพบว่าเมื่อเพิ่มอัตราการไหลของโปรตีนจะทำให้ค่า k_ta เพิ่มขึ้นตาม (รูปที่ 3.27) เนื่องจากความต้านทานของฟลูอิคฟิล์มด้านของเหลวมีค่าน้อยลง ผลการทดลองจะสรุปอยู่ในตารางที่ 3.11



รูปที่ 3.27 แสดงผลของอัตราการ ใหลของโปรตีนและความสูงของคอลัมน์ที่มีต่อค่า k_la ใน สารละลายโปรตีนบริสุทธิ์ (Lysozyme)

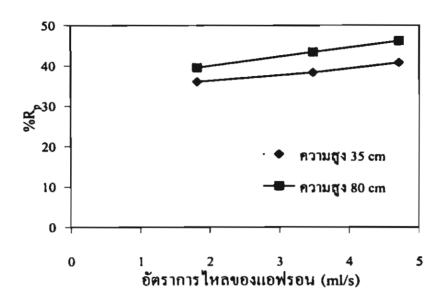
ตารางที่ 4.11 ผลของอัตราการ ใหลของโปรตีนและความสูงของคอลัมน์ที่มีต่อค่า $\mathbf{k}_{\mathsf{L}^2}$ และ % \mathbf{R}_{p} ใน สารละลายโปรตีนบริสุทธิ์ (Lysozyme)


Q ₀	C _{A0}	C _A (g/L)	K _L a (c	cm ² /s)	%	R_p
(ml/s)	(g/L)	35 cm	80 cm	35 cm	80 cm	35 cm	80 cm
1.69	0.2286	0.1757	0.1659	12.7×10^{-3}	6.78×10^{-3}	23.14	27.43
2.37	0.2286	0.1748	0.1434	18.2×10^{-3}	13.8×10^{-3}	36.09	38.27
3.23	0.2286	0.1817	0.1553	21.2 × 10 ⁻³	15.6 × 10 ⁻³	39.53	41.59
4.05	0.2286	0.1903	0.1572	21.3 × 10 ⁻³	19.0 × 10 ⁻³	43.27	44.85

เมื่อเพิ่มความสูงของคอลัมน์จะทำให้ค่า k_{La} ลดลงเนื่องจากฟองที่ลอยตัวสูงขึ้นเกิดการบวมและรวม ตัวกันเป็นฟองที่มีขนาดใหญ่ขึ้นและแตกในที่สุดทำให้พื้นที่ผิวต่อปริมาตรมีค่าลดลง (a ลดลง) จึงเป็น สาเหตุให้ค่า k_{La} ลดลง [15] ในส่วนของ %protein recovery (% R_p) พบว่าเมื่อเพิ่มอัตราการไหลของ โปรตีนจะทำให้ % R_p เพิ่มขึ้นเพราะว่าการไหลจะเป็น turbulent มากขึ้นทำให้การดูดซับที่เกิดขึ้นมี ลักษณะเป็น multilayer [23] ในขณะที่เมื่อเพิ่มความสูงของคอลัมน์จะทำให้ % R_p เพิ่มขึ้นเนื่องจาก retention time มากขึ้น [15] (รูปที่ 3.28)

รูปที่ 3.28 แสดงผลของอัตราการ ใหลของโปรตีนและความสูงของคอลัมน์ที่มีต่อ %R ใน สารละลายโปรตีนบริสุทธิ์ (Lysozyme)

เมื่อเพิ่มอัตราการใหลของแอฟรอนจะทำให้ค่า k_La เพิ่มขึ้น (รูปที่ 3.29) เนื่องจากความต้านทานของฟ สูอิคฟิล์มด้านของเหลวฝั่งของแอฟรอนมีค่าน้อยลง [13] และเมื่อเพิ่มความสูงของคอลัมน์จะทำให้ค่า k_La ลดลงเนื่องจากพื้นที่ผิวต่อปริมาตรมีค่าลดลง ผลการทดลองจะสรุปในดารางที่ 3.12

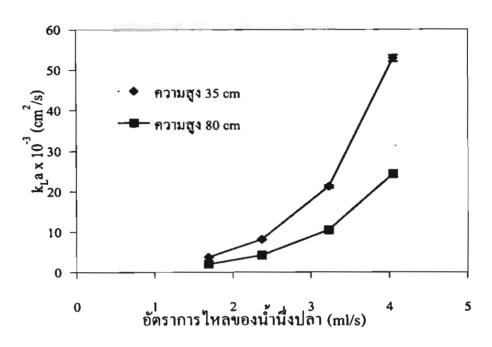


รูปที่ 3.29 แสดงผลของอัตราการใหลของแอฟรอนและความสูงของคอลัมน์ที่มีต่อค่า k_la ใน สารละลายโปรตีนบริสุทธิ์ (Lysozyme)

ตารางที่ 3.12 ผลของอัตราการไหลของแอฟรอนและความสูงของคอลัมน์ที่มีต่อค่า $k_{L}a$ และ % R_{p} ใน สารละลายโปรตีนบริสุทธิ์ (Lysozyme)

Q,	C _{A0}	C _A (g/L)	K _L a (cm ² /s)	%	R _p
(ml/s)	(g/L)	35 cm	80 cm	35 cm	80 cm	35 cm	80 cm
1.82	0.2286	0.1748	0.1447	18.2×10^{-3}	13.6 × 10 ⁻³	36.09	39.56
3.48	0.2286	0.1621	0.1273	23.3×10^{-3}	17.4 × 10 ⁻³	38.33	43.42
4.71	0.2286	0.1604	0.1259	24.0 × 10 ⁻³	17.7 × 10 ⁻³	40.78	46.17

ในส่วน %R พบว่าเมื่อเพิ่มอัตราการไหลของแอฟรอนทำให้ %R เพิ่มขึ้นเนื่องจากอัตราการไหลที่สูง ขึ้นทำให้ปริมาณแอฟรอนที่ผ่านในคอลัมน์มากขึ้น โปรตีนถูกดูคซับในแอฟรอนเพิ่มขึ้น %R จึงเพิ่ม ขึ้น และเมื่อเพิ่มความสูงของคอลัมน์จะทำให้ %R เพิ่มขึ้นเนื่องจากแอฟรอนมีเวลาดูคซับโปรตีนมาก ขึ้น (รูปที่ 3.30)

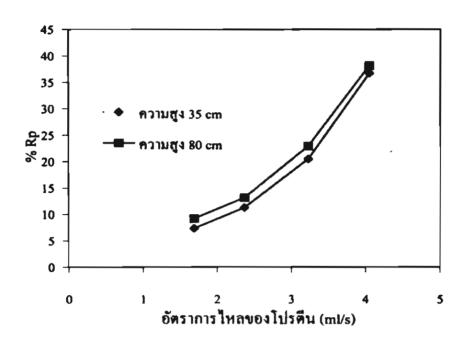

รูปที่ 3.30 แสดงผลของอัตราการ ใหลของแอฟรอนและความสูงของคอลัมน์ที่มีต่อ %R ใน สารละลายโปรตีนบริสุทธิ์ (Lysozyme)

จากผลการทดลองเราจึงสรุปได้ว่าค่าสัมประสิทธิ์การถ่ายเทมวล (k_La) สูงสุดที่อัตราการไหลของ โปรตีนเท่ากับ 4.05 ml/s อัตราการไหลของแอฟรอนเท่ากับ 4.71 ml/s และที่ความสูง 35 cm ในขณะที่ค่า %R_p สูงสุดที่อัตราการไหลของโปรตีนเท่ากับ 4.05 ml/s อัตราการไหลของแอฟรอน เท่ากับ 4.71 ml/s และที่ความสูง 80 cm ดังนั้นในการทดลองถ้าเราต้องการค่าสัมประสิทธิ์การถ่ายเท มวล (k_La) ที่สูงเราต้องเพิ่มอัตราการไหลของโปรตีนและแอฟรอนให้สูง และที่ความสูงระดับหนึ่งที่ เหมาะสมที่ไม่ทำให้แอฟรอนเกิดการบวมและรวมตัวกัน ในขณะที่ถ้าเราต้องการ %R_p ที่สูงเราต้อง เพิ่มอัตราการไหลของโปรตีนและแอฟรอนให้สูง และที่ความสูงระดับหนึ่งที่เหมาะสมที่แอฟรอนไม่ แตกตัวลงมามากเกินไป

3.4.2 ตัวอย่างน้ำนึ่งปลา (Pre-cooked waste)

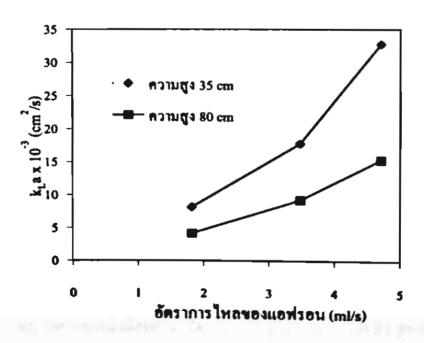
จากการศึกษาคุณสมบัติทางเคมีของตัวอย่างน้ำนึ่งปลาพบว่ามีค่า TKN ประมาณ 5,100 ถึง 5,400 mg/L (ตารางที่ 3.9) ในการทคลองนี้ทำการทคลองในคอลัมน์แล้วเปลี่ยนแปลงอัตราการไหลของน้ำ นึ่งปลาโคยกำหนดอัตราการไหลของแอฟรอนให้คงที่ เก็บตัวอย่างแอฟรอนและน้ำนึ่งปลาหลังผ่าน ไปวิเคราะห์หาความเข้มข้นของโปรตีนโดยวิธี TKN แล้วคำนวณหาค่าสัมประสิทธิ์การถ่ายเทมวลทั้ง หมด (K_La)

จากการทคลองพบว่าเมื่อเพิ่มอัตราการใหลของโปรตีนจะทำให้ค่า k_ta เพิ่มขึ้นตาม (รูปที่ 3.31) เนื่อง จากความต้านทานของฟลูอิคฟิล์มด้านของเหลวมีค่าน้อยลง ผลการทคลองจะสรุปอยู่ในตารางที่ 3.13



รูปที่ 3.31 แสดงผลของอัตราการ ใหลของโปรตีนและความสูงของคอลัมน์ที่มีต่อค่า k_La ใน ตัวอย่างน้ำนึ่งปลา

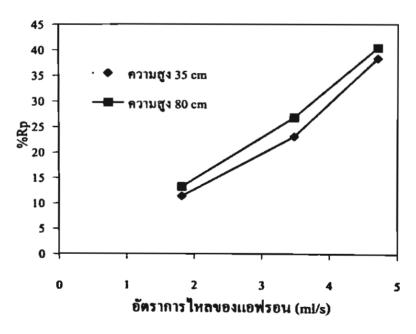
ตารางที่ 3.13 ผลของอัตราการใหลของโปรตีนและความสูงของคอลัมน์ที่มีต่อค่า k_ta และ %R_p ใน ตัวอย่างน้ำนึ่งปลา


Q_0	C _{A0}	C _A (n	ng/L)	K _L a (c	cm ² /s)	%	R _p
(ml/s)	(mg/L)	35 cm	80 cm	35 cm	80 cm	35 cm	80 cm
1.69	5,438	5,039	4,937	3.7×10^{-3}	2.0×10^{-3}	7.34	9.21
2.37	5,438	4,825	4,723	8.1 × 10 ⁻³	4.2 × 10 ⁻³	11.27	13.15
3.23	5,438	4,324	4,191	21.2×10^{-3}	10.5×10^{-3}	20.48	22.94
4.05	5,438	3,444	3,364	52.9 × 10 ⁻³	24.3 × 10 ⁻³	36.67	38.13

เมื่อเพิ่มความสูงของคอลัมน์จะทำให้ค่า k_{La} ลดลงเนื่องจากฟองที่ลอยตัวสูงขึ้นเกิดการบวมและรวม ตัวกันเป็นพ่องที่มีขนาดใหญ่ขึ้นและแตกในที่สุดทำให้พื้นที่ผิวต่อปริมาตรมีค่าลดลง (a ลดลง) จึงเป็น สาเหตุให้ค่า k_{La} ลดลง ในส่วนของ %protein recovery (% R_{p}) พบว่าเมื่อเพิ่มอัตราการไหลของ โปรตีนจะทำให้ % R_{p} เพิ่มขึ้นเพราะว่าการไหลจะเป็น turbulent มากขึ้นทำให้การดูดซับที่เกิดขึ้นมี ลักษณะเป็น multilayer ในขณะที่เมื่อเพิ่มความสูงของคอลัมน์จะทำให้ % R_{p} เพิ่มขึ้นเนื่องจาก retention time มากขึ้น (รูปที่ 3.32)

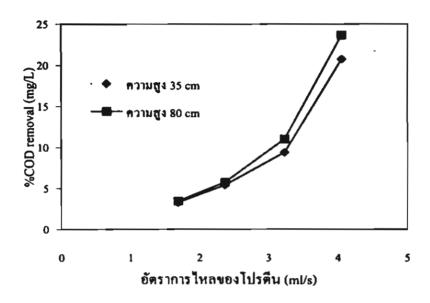
วูปที่ 3.32 แสดงผลของอัตราการไหลของโปรตืนและความสูงของคอลัมน์ที่มีต่อ %R, ใน ตัวอย่างน้ำนึ่งปลา

เมื่อเพิ่มอัตราการไหลของแอฟรอนจะทำให้ค่า k_La เพิ่มขึ้น (รูปที่ 3.33) เนื่องจากความด้านทานของ ฟลูอิดฟิล์มด้านของเหลวฝั่งของแอฟรอนมีค่าน้อยลง และเมื่อเพิ่มความสูงของคอลัมน์จะทำให้ค่า k_La ลดลงเนื่องจากพื้นที่ผิวต่อปริมาตรมีค่าลดลง ผลการทดลองจะสรุปในตารางที่ 3.14



รูปที่ 3.33 แสดงผลของอัตราการ ใหลของแอฟรอนและความสูงของคอลัมน์ที่มีต่อค่า k.a ในตัว อย่างน้ำนึงปลา

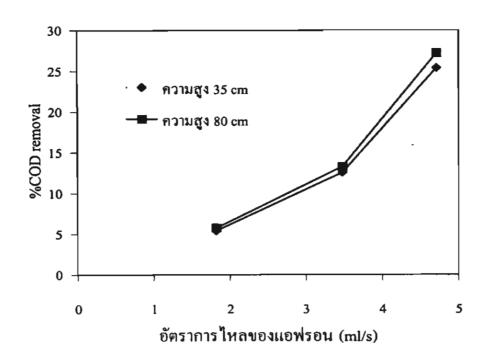
ตารางที่ 3.14 ผลของอัตราการ ใหลของแอฟรอนและความสูงของคอลัมน์ที่มีต่อค่า k_La และ %R_p ในตัวอย่างน้ำนึ่งปลา


Q,	C _{A0}	C _A (g/L)	K _L a (e	cm ² /s)	%	R _p
(ml/s)	(g/L)	35 cm	80 cm	35 cm	80 cm	35 cm	80 cm
1.82	5,438	4,825	4,723	8.1 × 10 ⁻³	4.2 × 10 ⁻³	11.27	13.15
3.48	5,438	4,186	3,984	17.7×10^{-3}	9.2×10^{-3}	23.02	26.74
4.71	5,438	3,356	3,242	32.7×10^{-3}	15.3×10^{-3}	38.29	40.38

ในส่วน %R พบว่าเมื่อเพิ่มอัตราการไหลของแอฟรอนทำให้ %R เพิ่มขึ้นเนื่องจากอัตราการไหลที่สูง ขึ้นทำให้ปริมาณแอฟรอนที่ผ่านในคอลัมน์มากขึ้น โปรตีนถูกคูดซับในแอฟรอนเพิ่มขึ้น %R จึงเพิ่ม ขึ้น และเมื่อเพิ่มความสูงของคอลัมน์จะทำให้ %R เพิ่มขึ้นเนื่องจากแอฟรอนมีเวลาคูคซับโปรตีนมาก ขึ้น (รูปที่ 3.34)

รูปที่ 3.34 แสดงผลของอัตราการใหลของแอฟรอนและความสูงของคอลัมน์ที่มีต่อ %R ใน ตัวอย่างน้ำนึ่งปลา

จากตารางที่ 3.7 พบว่าตัวอย่างน้ำนึ่งปลาจะมีค่า COD อยู่ในช่วง 48,000 ถึง 52,000 mg/L เมื่อทำการ ทดลองโดยเปลี่ยนแปลงอัตราการไหลของโปรตีนและความสูง (รูปที่ 3.35) พบว่าเมื่ออัตราการไหล ของโปรตีนเพิ่มขึ้นจะทำให้ %COD removal เพิ่มขึ้นตามเนื่องจากปริมาณโปรตีนและสารอินทรีย์ที่ อยู่ในตัวอย่างน้ำนึ่งปลาถูกแยกมากขึ้นจึงทำให้ความสกปรกของน้ำลดลงเช่นเดียวกับการเพิ่มความ สูงของคอลัมน์แต่ผลที่ได้ในช่วงอัตราการไหลต่ำไม่แตกต่างกันมากนัก ผลการทดลองทั้งหมดจะสรุป ในตารางที่ 3.15



รูปที่ 3.35 แสดงผลของอัตราการไหลของโปรตืนและความสูงของคอลัมน์ที่มีต่อ %COD removalใน ตัวอย่างน้ำนึ่งปลา

พารางที่ 3.15 ผลของอัตราการ ใหลของโปรตีนและความสูงของคอลัมน์ที่มีต่อค่า %COD removal ใน ตัวอย่างน้ำนึ่งปลา

อัตราการไหลของ	ค่า COD เริ่มคัน	%COD	removal
โปรตีน	(mg/L)	ความสูง 35 cm	ความสูง 80 cm
(ml/s)			
1.69	50,796	3.29	3.44
2.37	50,796	5.41	5.75
3.23	50,796	9.38	11.02
4.05	50,796	20.73	23.66

เมื่อเพิ่มอัตราการไหลของแอฟรอนพบว่า %COD removal เพิ่มขึ้น (รูปที่ 3.36) เพราะว่าปริมาณ โปรดีนและสารอินทรีย์ที่อยู่ในตัวอย่างน้ำนึ่งปลาถูกแยกไปมากขึ้นทำให้ความสกปรกของน้ำลดลง คำ %COD removal จึงเพิ่มขึ้นเช่นเดียวกับการเพิ่มความสูงของคอลัมน์แต่ผลที่ได้ในช่วงอัตราการ ไหลดำไม่แตกต่างกันมากนัก ผลการทดลองทั้งหมดจะสรุปในดารางที่ 3.16

รูปที่ 3.36 แสดงผลของอัตราการ ใหลของแอฟรอนและความสูงของคอลัมน์ที่มีต่อ %COD removal ในตัวอย่างน้ำนึ่งปลา

ตารางที่ 3.16 ผลของอัตราการ ใหลของแอฟรอนและความสูงของคอลัมน์ที่มีต่อค่า %COD removal ในตัวอย่างน้ำนึ่งปลา

อัตราการใหลของแอฟรอน	ค่า COD เริ่มต้น	%COD	removal
(ml/s)	(mg/L)	ความสูง 35 cm	ความสูง 80 cm
1.82	50,796	5.41	5.75
3.48	50,796	12.53	13.27
4.71	50,796	25.37	27.18

4 สรุปผลการทดลองและข้อเสนอแนะ

4.1 การศึกษาหาสภาวะที่เหมาะสมต่อการเตรียมฟองแก๊สแอฟรอนที่จะนำมาใช้งาน

4.1.1 การคัดเลือกสารลดแรงตึงผิวที่ใช้

- ที่ความเข้มข้นของไข่ขาวในช่วงที่ทำการศึกษาไม่สามารถปั่นให้เกิดฟองแอฟรอนได้
- เมื่อเพิ่มความยาวของสาย hydrophobic ในโมเลกุลของ Tween จะทำให้ %protein recovery ลดลงแต่ความเสถียรเพิ่มขึ้น
- จากการทดลองพบว่า Tween20 เหมาะที่จะเป็นสารลดแรงตึงผิวที่ใช้ผลิตแอฟรอนใน การทดลองต่อไป

4.1.1 ปัจจัยที่มีผลต่อความเสถียร

- เมื่อเพิ่มความเข้มข้นของสารลคแรงตึงผิวจะทำให้ความเสถียรเพิ่มขึ้น
- ความเร็วรอบที่ใช้ในการปั่นให้เกิดฟองแอฟรอนในช่วงที่ทำการศึกษาไม่มีผลต่อค่า ความเสถียรของฟอง
- เวลาที่ใช้ในการปั่นให้เกิดฟองแอฟรอนหลังจาก 5 นาทีไปแล้วไม่มีผลต่อค่าความเสถีย
- เมื่อเพิ่มความเข้มข้นของ NaCl จะทำให้ความเสถียรลคลง
- ค่า pH ไม่มีผลต่อความเสถียรของฟอง

4.2 การศึกษาหาสภาวะที่เหมาะสมในการดูดซับโปรตีนด้วยฟองแก๊สแอฟรอน

4.2.1 โปรตีนบริสุทธิ์ (pure protein)

4.2.1.1 Lysozyme

- เมื่อเพิ่มความเข้มข้นของสารลดแรงตึงผิวจะทำให้ %protein recovery ลดลง
- กวามเร็วรอบที่ใช้ในการปั่นให้เกิดฟองแอฟรอนในช่วงที่ทำการศึกษาไม่มีผลต่อค่า %protein recovery
- เวลาที่ใช้ในการปั่นให้เกิดฟองแอฟรอนหลังจาก 5 นาทีไปแล้วไม่มีผลต่อ %protein recovery
- ความเข้มข้นของ NaCl ไม่มีผลต่อค่า %protein recovery
- เมื่อเพิ่มเวลาในการกวนผสมแอฟรอนกับสารละลายโปรตีน (Lysozyme) ไปเรื่อยๆจนถึง
 120 วินาที ค่า %protein recovery จะเพิ่มขึ้นสูงสุดที่เวลา 120 วินาทีเท่ากับ หลังจากก็จะ
 ลดลง
- เมื่อเพิ่มปริมาตรแอฟรอนที่ใช้ในการกวนจะทำให้ค่า %protein recovery เพิ่มขึ้น

- ความเข้มข้นเริ่มค้นของโปรตีนไม่มีผลต่อค่า %protein recovery
- เมื่อลดค่า pH ลงจะทำให้ %protein recovery เพิ่มขึ้นจนถึงที่ pH = 4 จะได้ %protein recovery สูงสุด หลังจากนั้นถ้าลดค่า pH ลงอีกจะทำให้ค่า %protein recovery ลดลง

4.2.1.2 β-casein

- เมื่อเพิ่มเวลาในการกวนผสมแอฟรอนกับสารละลายโปรตีน (β-casein) ไปเรื่อยๆจนถึง
 90 วินาที ค่า %protein recovery จะเพิ่มขึ้นตามสูงสุดที่เวลา 90 วินาที หลังจากนั้นก็จะลดลง
 - เมื่อเพิ่มปริมาตรแอฟรอนที่ใช้ในการกวนจะทำให้ค่า %protein recovery เพิ่มขึ้น
 - เมื่อเพิ่มความเข้มข้นเริ่มต้นของโปรตีนจะทำให้ %protein recovery เพิ่มขึ้น
 - เมื่อเพิ่มความเข้มข้นของสารลดแรงตึงผิวจะทำให้ %protein recovery ลดลง
- เมื่อลดค่า pH ลงจะทำให้ %protein recovery เพิ่มขึ้นจนถึงที่ pH = 4 จะได้ %protein recovery สูงสุด หลังจากนั้นถ้าลดค่า pH ลงอีกจะทำให้ค่า %protein recovery ลดลง

4.2.2 น้ำนึ่งปลา (pre-cooked wastewater)

- ถ้ายิ่งเจือจางตัวอย่างมากขึ้นจะทำให้ทั้ง %protein recovery, %oil and grease recovery และ %COD removal ลดลง
- ที่ pH < pI จะให้ %protein recovery ที่สูงกว่าที่ pH > pI และที่ pH = pI พบว่าค่า %protein recovery ต่ำสุด
 - ที่ pH 2 ให้ค่า %oil and grease recovery สูงสุด
 - ที่ pH ยิ่งต่ำค่า %COD removal ก็จะสูงขึ้นตาม

4.3 การศึกษาแบบจำลองการดูดซับโปรตีน

4.3.1 โปรตีนบริสุทธิ์ (Lysozyme)

- ullet ที่อัตราการใหลของโปรตีนเท่ากับ 2.37 ml/s จะได้ค่า $C_{\scriptscriptstyle 0}$ ใกล้เคียงกับทฤษฎีที่สุด
- เมื่อเพิ่มความเข้มข้นเริ่มต้นของโปรตีนพบว่าความเข้มข้นของโปรตีนที่ถูกคูดซับเพิ่มขึ้น
 ค้วยจนถึงค่าหนึ่ง ความเข้มข้นของโปรตีนที่ถูกคูดซับจะเริ่มคงที่
 - แบบจำลองการคูคซับที่ได้เป็นแบบ Langmuir
- จากการวิเคราะห์กราฟเชิง non-linear regresstion ได้ค่า C, (ความเข้มข้นสูงสุดของ โปรตืนที่ถูกคูดซับบนผิวแอฟรอน, g/L) เท่ากับ 0.2067 g/L และ K, (ค่าคงที่สมคุลการดูดซับ) เท่ากับ 6.0081 L/g
 - เมื่อเพิ่มความเข้มข้นเริ่มค้นของโปรตีน %R_p จะคงที่จนถึงที่ความเข้มข้นประมาณ

0.4105 g/L ก็จะเริ่มลคลง

4.3.2 ตัวอย่างน้ำนึ่งปลา (Pre-cooked waste)

- ความเข้มข้นของโปรตีนที่ถูกคูคซับในตัวอย่างน้ำนึ่งปลาจะเริ่มคงที่ เมื่อความเข้มข้นเริ่ม ต้นของโปรตีนเพิ่มจนถึงประมาณ 1,331 mg/L (diluted 4 เท่า)
 - การคูคซับที่ได้ไม่เป็นไปตาม Langmuir equation ในช่วงความเข้มข้นที่ทำการศึกษา
- เมื่อเพิ่มความเข้มข้นเริ่มต้นของโปรตีนช่วงแรก %R จะคงที่และจะเริ่มลดลงเมื่อความ เข้มข้นเริ่มต้นของโปรตีนประมาณ 1,331 mg/L (diluted 4 เท่า)

4.4 การศึกษาการถ่ายเทมวลสารระหว่างฟองแก๊สแอฟรอนกับโปรตีน

- เมื่อเพิ่มอัตราการใหลของโปรตีน ค่า kla, %R และ %COD removal จะเพิ่มขึ้นตาม
- เมื่อเพิ่มความสูงของคอลัมน์จะทำให้ค่า k_la ลดลงแต่ %R_p และ %COD removal จะเพิ่ม ขึ้น
- เมื่อเพิ่มอัตราการใหลของแอฟรอนจะทำให้ค่า k,a, %R, และ %COD removal เพิ่มขึ้น

4.5 ข้อเสนอแนะ

- ควรมีการศึกษาความเป็นไปได้ทั้งในทางปฏิบัติและทางเศรษฐศาสตร์ถึงการนำระบบ การแยกโปรตีนด้วยฟองแก๊สแอฟรอนไปใช้ในการบำบัคน้ำทิ้งในโรงงานอุตสาหกรรมปลาทูน่า กระป้องจริง
- ควรมีการศึกษาถึงการนำโปรตีนที่แยกได้ไปใช้ประโยชน์ ยกตัวอย่างเช่น นำไปเป็นสาร ตั้งต้นในการผลิตอาหารสัตว์

เอกสารอ้างอิง

- 1. Sebba, F., 1987, Foam and Biliquid foams-Aphrons, John Wiley&Sons, pp. 124-139.
- Jauregi, P. and Varley, J., 1996, "Lysozyme separation by colloidal gas aphrons", Progress
 Colloid Polymer Science., Vol. 100, pp. 362-367.
- 3. Noble, M.J., Brown, A., Jauregi, P., Kaul, A. and Varley, J., 1998, "Protein recovery using gas-liquid dispersions", Journal of Chromatography B, Vol. 711, pp. 31-43.
- 4. Jauregi, P. and Varley, J., 1999, "Colloidal gas Aphrons: potential applications in biotechnology", TIBTECH., Vol. 17, pp. 389-395.
- Noble, M.J. and Varley, J., 1999, "Colloidal gas aphrons generated from the anionic surfactant AOT for the separation of proteins from aqueous solution", Journal of Chemical Technology and Biotechnology., Vol. 74, pp. 231-237.
- Save, S.V. and Pangarkar, V.G., 1994, "A Model for Harvesting of Microorganisms Using Colloidal Gas Aphrons", Journal of Chemical Technology and Biotechnology, Vol. 61, pp. 367-373.
- 7. Save, S. V. and Pangarkar, V.G., 1995, "Harvesting of Saccharomyces cerevisiae Using Colloidal Gas Aphrons", Journal of Chemical Technology and Biotechnology, Vol. 62, pp. 192-199.
- 8. บุญชัย วิจิตรเสถียร, 2537, การใช้กระบวนการตะกอนลอยในการบำบัดน้ำเสียของโรงงานอุต สาหกรรมปลาทูน่ากระป้อง, วิทยานิพนธ์ปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชา วิศวกรรมเคมื คณะวิศวกรรมศาสตร์ สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี, หน้า 11-15.
- 9. มนตรี จุฬาวัฒนทล, ชิษณุสรร สวัสดิวัตน์, ยงยุทธ ยุทธวงศ์ และคณะ, 2542, **ชีวเคมี**, ภาค วิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล, หน้า 100-135.

- Amiri, M.C. and Woodburn E.T., 1990, "A Method for The Characterization of Colloidal Gas Aphron Dispersions", Trans IchemE., Vol. 68A, pp. 154-160.
- Save, S. V. and Pangarkar, V.G., 1994, "Characterization of Colloidal Gas Aphrons", The
 Chemical Engineering Journal, Vol. 127, pp 35-54.
- Save, S. V. and Pangarkar, V.G., 1993, "Intensification of Mass Transfer in Aqueous Two-Phase Systems", Biotechnology and Bioengineering, Vol. 41, pp. 72-78.
- Bredwell, M. D., and Worden, R.M., 1998, "Mass-Transfer Properties of Microbubbles. 1.
 Experimental Studies", Biotechnology Progress., Vol. 14, pp. 31-38.
- Bredwell, M. D., and Worden, R.M., 1998, "Mass-Transfer Properties of Microbubbles. 2.
 Analysis Using a Dynamic Model", Biotechnology Progress, Vol. 14, pp. 39-46.
- Hashim, M.A., A. Dey, S. Hasan and B. Sen Gupta, 1999, "Mass transfer correlation in flotation of palm oil by colloidal gas aphrons", Bioprocess Engineering, Vol. 21, pp. 401-404.
- Dipak, R., Raghava R.K., Kalliat T.V. and David C.W., 1995, "Soil Flushing of Residual Transmission Fluid: Application of Colloidal Gas Aphron Suspensions and Conventional Surfactant Solutions", Water Research, Vol. 29, No. 2, pp. 589-595.
- 17. Kommalapati, R.R., Valsaraj, K.T., Constant, W.D. and Roy, D., 1998, "Soil flushing using colloidal gas aphron suspensions generated from a plant-based surfactant", Journal of Hazardous Materials, Vol. 60, pp. 73-87.
- 18. Hashim, M.A., Gupta, B.S., Kumar, S.V., Lim, R., Song E. and Lim&Chin C. Tan, 1998, "Effect of Air to Solid Ratio in the Clarification of Yeast by Colloidal Gas Aphrons", Journal of Chemical Technology and Biotechnology, Vol. 71, pp. 335-339.

- Hashim, M.A. and Gupta, B.S., 1998, "The Application of Colloidal Gas Aphrons in the Recovery of Fine Cellulose Fibres from Paper Mill Wastewater", Bioresource Technology, Vol. 64, pp. 199-204.
- 20. Jauregi, P., Mitchell, G.R. and Varley, J., 2000, "Colloidal Gas Aphrons (CGA): Dispersion and Structural Features", AIChE Journal, Vol. 46, pp. 24-36.
- 21. O'Connell, P. J. and Varley, J., 2001, "Immobilization of Candida regosa Lipase on Colloidal Gas Aphrons", Biotechnology and Bioengineering, Vol. 74, No. 3, pp. 264-269.
- Vasudevan, M. and Wiencek, J.M., 1996, "Mechanism of the Extraction of Protein into Tween85 Nonionic Microemulsions", Industrial Engineering Chemical Research, Vol. 35, pp. 1085-1089.
- 23. Hashim, M.A., Kumar S.V. and Gupta, B.S., 2000, "Particle-bubble attachment in yeast flotation by colloidal gas aphrons", **Bioprocess Engineering**, Vol. 22, pp. 333-336.
- 24. รศ.คร.วิโรจน์ บุญอำนวยวิทยา, 2544, จลนพลศาสตร์และการออกแบบเครื่องปฏิกรณ์เคมี, ภาควิศวกรรมเคมี คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี, หน้า 261-289.

Output ที่ได้จากโครงการ

Jarudilokkul S., Rungphetcharat K. and Boonamnuayvitaya V., 2003, Protein separation by colloidal gas aphrons using nonionic surfactant, *Separation and Purification Technology* (in press).

ภาคผนวก

Available online at www.sciencedirect.com

Separation Purification Technology

Separation and Purification Technology 00 (2003) 1-8

www.elsevier.com/locate/seppur

Protein separation by colloidal gas aphrons using nonionic surfactant

Somnuk Jarudilokkul, Kumchai Rungphetcharat, Virote Boonamnuayvitaya*

Department of Chemical Engineering, King Mongkut's University of Technology Thonburi, 91 Pracha-utit Road, Bangmad, Bangkak 10140, Thailand

Received 9 September 2002; received in revised form 26 February 2003; accepted 26 February 2003;

Abstract

5 6

7

8

9

0

1

3

5

5

íO

12

Wastewater discharged from food processing plants still contains recoverable nutrition material such as protein and fat. Separation of these materials in wastewater not only contributes to product recovery but also reduces organic loading in wastewater treatment. Colloidal gas aphrons (CGA) is one promising technique for organic material removal. CGA are micro bubbles (10–100 μm) created by intense stirring of surfactant solution. In this work, selection of suitable nonionic edible surfactant was conducted by evaluating the stability and percentage of protein recovery. It was found that Tween 20 was a suitable surfactant. The stability of CGA was investigated by varying surfactant concentration, motor stirring speed, stirring time and concentration of NaCl as additive. The optimal condition for CGA preparation was 10 mM Tween 20 in distilled water, stirring speed of 5500 rpm and stirring time of 5 min. To simplify, lysozyme and β-casein of different pl values were employed as substitutes of protein in wastewater. Factors affecting protein separation such as initial protein concentration, CGA volume ratio and pH were examined. It was demonstrated that hydrophobicity of Tween affected CGA stability and the electrostatic interaction between CGA and proteins played an important role in the separation.

© 2003 Published by Elsevier Science B.V.

Keywords: Protein separation; Colloidal gas aphrona; Nonionic surfactant; Edible surfactant; pl

1. Introduction

Wastewater from food processing such as dairy food, pre-cooking wastewater of tuna canning manufacturers mostly contain nutrients, for example protein and fat. These compounds cause high

organic loading in the effluent. Therefore, removal of organic substances before disposing to wastewater treatment can reduce the organic loading. Moreover, the recovery product should be value added if it can be used for further application such as animal feed. Traditionally, separation of organic materials from water is carried out using filtration, sedimentation, and air floatation. Colloidal gas aphrons (CGA) is another high potential and low cost technique for organic materials removal.

34

354

36

37

38

39

40

41

42

43

1383-5866/03/\$ - see front matter © 2003 Published by Elsevier Science B.V. doi:10.1016/S1383-5866(03)00111-4

Corresponding nuthor. Tel.: +66-2-42-70242; fax: +66-2-42-83534.

E-mail address: virote.boo@kmutt.sc.th (V. Boonsmausyvitsys).

S. Jarudilokkul et al. | Separation and Purification Technology 00 (2003) 1-8

CGA are micro-bubbles (10-100 µm) encapsulated in a soapy film. They are created by intense stirring at 5000-10000 rpm. The attractive features of CGA are firstly their small sizes, resulting in a large surface area to volume ratio and secondly the existence of a soluble film of surfactant encapsulating the gas, retarding the bubbles from coalescing. CGA has been applied in many areas of separation such as removal of heavy metal from aqueous solution [1], removal of organic dyes from wastewater [2], removal of hazardous oily waste from a soil matrix [3,4] and lysozyme separation [5].

2

45

16

‡7

18

19

50

51

i2

i3

4

5

٠6

7

8

9

0

٠,

.2

.3

4

5

6

8

9

0

1

3

4

'5

6

٠7

18

19

:0

61

1:2

113

§7

So far, CGA reported in literatures for protein separation has been created by anionic and nonedible surfactant [5]. If we intend to utilize the recovered product as animal feed, another purification process for surfactant removal is necessary. Instead, if edible surfactant is applied for separation of protein and other nutrient substances such as fat, the recovered product can be used as animal feed without further treatment.

In this study, Tween, a nonionic sorbitan ester surfactant, was applied as an edible surfactant since it is widely used in food industry and inexpensive in cost [6]. In bioreactor, Tween 20 was applied to CGA preparation for enhancing mass transfer [7]. However, based on our knowledge, it has not been studied on nonionic CGA characterization, protein and organic material separation. The selection of suitable surfactant was firstly investigated. Then, system parameters influencing on stability of CGA was examined. In protein separation experiment, actually pre-cooking wastewater from tuna canning plant is our target of protein recovery, therefore, we do not emphasize on the selectivity. However, to simplify, we selected two enzymes of different pI, lysozyme and β-casein as substitutes of protein in wastewater. Factors affecting protein separation such as initial protein concentration, CGA volume ratio and pH were studied.

2. Materials and methods

Series of polyoxyethylene derivatives of sorbitan esters: Tween 20, 40, 60, and 80 containing alkyl

chains of 20, 40, 60 and 80 carbons, respectively, were purchased from Carlo Erba. Lysozyme from hen egg white (pI 10.2; 14.5 kDa), β-casein (pI 5.3; 24 kDa) and BCA (Bicinchoninic acid) were obtained from Sigma. Sodium chloride and sodium phosphate (dibasic and monobasic) were analytical grade from Merck. All other chemicals were analytical grade purchased from Sigma.

2.1. Surfactant selection

We used series of Tween, differing on alkyl chain length to examine their effects of hydrophobicity on the formation of CGA. Tween was dissolved in 1000 ml distilled water to obtain 10.0 mM for all Tween's and 17 mM for Tween 60 and Tween 80. Then the solution was subjected to stir in a CGA generator (as shown in Fig. 1) consisted of a Perspex cylindrical beaker (150 × 250 mm) with two baffles after Sebba [8]. Stirring was carried out using a spinning disc of 5-cm diameter at very high speed (5000 rpm except specified) for 5 min except specified. The stability and protein recovery using the same initial lysozyme concentration of 0.5 mg/ml were used as criteria of selection.

2.2. Stability of CGA

The stability of CGA was investigated by 11 varying system parameters of surfactant concen-

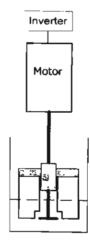


Fig. 1. Schematic of CGA generator.

90

95 96 97

98

99

100

101

110 111 112

S. Jarudilokkul et al. | Separation and Parification Technology 00 (2003) 1-8

3

150

151

152

153

154

155

156

157

158

159

160

161

162

tration (number 1), stirring speed (number 2), stirring time (number 3) and NaCl concentration (number 4) as shown in Table 1. The stability was measured in term of half-life, which was defined as the time required for half the amount of original liquid to drain. CGA was poured into a measuring cylinder. Then, the height of the clear liquid interface below the dispersion was measured with time. All data from these experiments are based on duplicated samples; the coefficient of variation was +1%.

2.3. Factors affecting protein separation

In stead of using protein in wastewater as above mentioned, we used Lysozyme and β -casein of different pI values as substitutes to eliminate the protein analysis procedures in wastewater. Both enzymes were selected because of their well known properties. Moreover, pI of β -casein is similar to that of wastewater from tuna canning which will be used in further study. Factors affecting protein separation of stirring time (number 1), protein concentration (number 2) volume ratio of protein to CGA solution (number 3), and pH (number 4) were varied as tabulated in Table 2.

2.4. Separation procedures

The studied protein was dissolved in 0.05 M buffer solution to obtain protein concentration of 0.5 mg/ml except specified. The buffer solutions were acetate buffer (pH 2.0-5.0) and phosphate buffer (pH 6.0-8.0). A specified volume of CGA (10 ml except specified) was added to 10 ml of protein solution. Then, the mixture was stirred with a magnetic stirrer at 900 rpm for 90 s. After

stirring, the mixture was put still to let the foam separate from liquid phase. Protein content was determined by BCA method [9]. In the experiments on surfactant selection, we analyzed protein contents in both samples of liquid and foam phases with the same method. The difference of protein recovery was within 3.0%. Thereafter we used only the protein concentration in liquid phase to determine the protein recovery. Then, protein recovery was determined by Eq. (1). All data from these experiments are based on duplicated samples; the coefficient of variation was \$\pm2\%.

Protein recovery

$$= \left[1 - \frac{\text{mass of protein in solution after separation}}{\text{mass of protein in initial solution}}\right] \times 100 \tag{1}$$

2.5. CGA zeta potential measurements

The zeta potential of CGA could not be measured directly because the structure of CGA consists of air inside the surfactant layer that was not stable enough during measurement period. Therefore, we had to determine the value from oil in water emulsion instead. Here the coarse toluenein-water emulsion was examined with the method described by Vasudevan and Wiencek [10]. It was measured at pH 2, 4, 5.5, 7 and 8. The surfactant concentration of 10 mM was first dissolved in toluene, and a 1% (w/v) solution of toluene-inwater was used to form the coarse emulsion. The emulsion was made by vigorous shaking for 10 min. Then, the zeta potential of the solution was measured by Zeta Potential (Model zeta-meter 3.0).

Table 1
Experimental sets for investigating the stability of CGA

- 0				
J 5-15	5	5000	5	0
2 10		5000-6000	5	0
3 10		5000	2-10	0
4 10		5000	5	0.05-0.20

163

164

167 168 169

170

171

172

166

173 174 175

S. Jarudilokkul et al. | Separation and Purification Technology 00 (2003) 1-8

Table 2 Experimental sets for investigating factors affecting protein recovery

Experimental set num- ber	Stirring time (s)	Protein concentration (mg/ml)	Volume of protein solution to CGA solution ratio	pН
1	30 · 150 (Lys, Cas)	0.5	1:3	7.0
2	120 (Lys), 90 (Cas)	0.1-0.5	1:3	7.0
3	120 (Lys), 90 (Cas)	0.5	1:1, 1:2, 1:3	7.6
4	120 (Lys), 90 (Cas)	0.5	1:3	2.0 – 8.0

Lys, Lysozyme; Cas, B-casein.

3. Results and discussion

3.1. Surfactant selection

31

;2

13

. 14

15

16 17

118

119

10

11

12

1.13

14

15

16

177

18

199

Series of Tween differing on alkyl chain length were used to examine their effects of hydrophobicity on the formation of CGA. As shown in Table 3, CGA could not be formed in cases of Tween 80 and Tween 60 at 10 mM except at 17 mM. The stability of CGA in term of half-life attained 180 s in cases of 10 mM Tween 20 and Tween 40 whereas the values were 120 and 197 s for 17 mM Tween 60 and Tween 80, respectively. The protein recovery obtained from initial 0.5 mg/ml lysozyme based on liquid and foam phase differed to each other within 3%. The highest protein recovery was 48.4% with 10 mM Tween 20. When Tween concentrations were the same at 10 mM the stability of CGA decreased with increasing hydrocarbon chains. The longer hydrophobic chains might cause more interactions to each others and suppress the formation of CGA, which

contains double layer of surfactants. Therefore, from the stability point of view 10 mM Tween 20 or Tween 40 was preferable. However, from the protein recovery point of view, 10 mM Tween 20 was superior to the others. It was considered that the mutual effects of hydrophobic alkyl chains and the surface charges or electrostatic interaction [10] surrounding double layers of CGA enhanced the protein recovery.

3.2. Stability of CGA

The stability of CGA was further investigated by varying parameters of surfactant concentration, stirring speed, stirring time and NaCl concentration. Table 4 shows the effect of surfactant concentration on stability and lysozyme recovery. The higher the concentrations of surfactant, the better stability was obtained. This may be ascribed to the increasing of elasticity at higher concentration of nonionic surfactant [11]. Consequently, it will delay the coalescence of aphrons. Moreover,

Table 3 Effect of the hydrophobicity of the surfactant on the protein recovery at the initial lysozyme of 5 mg

Surfactant and concentration	CGA formation	Stability (s)	Protein conten	t (mg)	Protein recove	гу (%)
	$R_{i} = 0$		Liquid phase	CGA phase	Liquid phase	CGA phase
10 mM Tween 20	Yes	180	2.58	2.49	48.4	49.8
10 mM Tween 40	Yes	180	2.59	2.35	48.2	47.0
10 mM Tween 60	No		-	_	_	_
17 mM Tween 60	Yes	120	2.95	2.10	41.0	42.0
10 mM Tween 80	No	_	_	-	_	_
17 mM Tween 80	Yes	197	3.00	1.96	40.0	39.2

200

201

202

203

204

209 210

S. Jarudilokkul et al. | Separation and Purification Technology 00 (2003) 1-8

Table 4
Effect of Tween 20 concentration on the stability of CGA and protein recovery

Tween 20 concentration (mM)	Stability (s)	Protein recovery (%)
5	135	48.4
10	185	47.3
15	194	42.2
20	205	37.8

1.23

larger amount of aphrons should be formed at higher surfactant concentration. From the protein recovery point of view, on the contrary, high surfactant concentration lowered the recovery and protein concentration in CGA. The formation of surfactant and protein aggregates could reduce the yield. The same trend was also reported in the separation of lysozyme with anionic CGA [12]. Hence 10 mM Tween 20 was chosen as an optimal condition because it gave relatively high stability although protein recovery was slightly decreased.

The effect of stirring speed on stability and protein recovery was found, and the stability slightly increased from 186 to 189 s with increasing stirring speed from 5000 to 5500 rpm. However, it slightly decreased to 184 s at stirring speed of 6000 rpm. The percentage of protein recovery was constant at 47.3% in the range of stirring speed of 5000-6000 rpm. Theoretically, increasing stirring speed should increase the stability due to more surface area created. However, there is no effect of stirring speed on stability and protein recovery in the range of study. The same trend was also reported by Jauregi et al. [12] for anionic surfactant. Hence, the stirring speed of 5000 rpm was chosen as an optimal condition.

The effect of stirring time is shown in Table 5. At short stirring time (2 min), CGA was unstable and could not be used for protein recovery. When increasing stirring time to 5 min, the stability increased dramatically and constant at 10 min. However, there was no effect of stirring time on protein recovery in the range of study. Save and Pangarkar [13] reported that at lower surfactant concentration, with increasing time of stirring, the rate of dispersion was probably higher than the rate of coalescence thus resulting in higher stabi-

Table 5
Effect of stirring time on the stability of CGA and protein recovery

Stirring time (min)	Stability (s)	Protein recovery (%)
2	82	
5	185	47.3
10	187	47.2

lity. Therefore, stirring time of 5 min should be the optimal time and minimum requirement. Matsushita et al. [14] also reported that increasing of stirring time did not have a significant effect on CGA stability.

NaCl addition had adverse effect on stability and had almost no effect on protein recovery. We observed that the stability decreased from 180 to 170 s with increasing NaCl concentration from 0.05 to 0.20 M. However, the protein recovery was nearly constant. Normally, repulsive electrostatic interaction between the same charges of surfactant should stabilize the CGA. An addition of salt may suppress the electrostatic interaction between the charges by counter-ions. Thus this lowered the stability of CGA. These results were in line with the work of anionic surfactant [5], and cationic surfactant [13]. Hence, we could infer that ionic charges were present on the hydrophilic part of Tween, as reported by Vasudevan and Wiencek [10]. We concluded that no additive of NaCl in the system was favorable.

3.3. Factors affecting protein separation

3.3.1. Stirring time

Table 6 shows the protein recovery increases with stirring time in range of 30-90 s. This may be ascribed to the longer contacting time that enhanced the interaction between protein and surfactant. However, the stirring time longer than 90 s lowered protein recovery. This may be due to the collision of CGA resulting in releasing of protein flowed back into the solution. These results were consistent with Jaurugi and Julia [5]. The optimal stirring time for lysozyme and β-casein were 120 and 90 s, respectively.

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

12

23

:4

75

.6

:7

:8 :9

30

31

.:2

33

-34

ARTICLE IN PRESS

S. Jarudilokkul et al. | Separation and Purification Technology 00 (2003) 1-8

Table 6
Effect of stirring time on protein recovery

Stirring time (s)	Protein recovery (%) (lysozyme)	Protein recovery (%) (β-casein)		
30	23 9	37.6		
60	39.5	45.7		
90	48.2	51.2		
120	49.4	28.5		
150	44.9	26.7		

3.3.2. Initial protein concentration

For lysozyme, initial protein concentration ranging from 0.10 to 0.50 mg/ml almost had no effect on protein recovery as shown in Table 7. However, for β -casein, at low protein concentration of 0.10 mg/ml, less protein was adsorbed. When the protein concentration increased to 0.50 mg/ml, there was a dramatic increase of protein recovery. These phenomena also occurred in the separation of lysozyme with anionic surfactant at high ionic strengths at which electrostatic interactions between the protein and aphrons were diminished [15]. Hence the optimal initial protein concentration for lysozyme and β -casein was 0.10 and 0.50 mg/ml, respectively.

3.3.3. CGA volume ratio

Table 8 shows the effect of the volume ratio of protein solution to CGA on the protein recovery. For both enzymes, protein recovery increased with increasing of CGA volume. This may be attributed to the larger CGA volume provided more sites for protein adsorption. However, the values began to decline at the ratio of 1:4. This may be owing to dilution effect caused by high volume of aphrons added. Some aphrons drained to a greater amount of liquid (observed from increasing level of liquid

Table 7
Effect of initial protein concentration on protein recovery

Initial protein concen- tration (mg/ml)	Protein recovery (%) (lysozyme)	Protein recovery (%) (β-casein)	
0.10	50.2	32.2	
0.25	49.8	32.6	
0.50	49.6	50.7	

Table 8
Effect of CGA volume on protein recovery

Volume ratio of protein solution:CGA	Protein recovery (%) (lysozyme)	Protein recovery (%) (β-casein)		
1:1	38.3	29.3		
1:2	45.9	30.9		
1:3	49.6	50.7		
1:4	40.4	36.7		

phase) resulting in diluting protein concentration and reduction of protein recovery. Jauregi and Varley [15] reported the same trend on the separation of lysozyme with anionic surfactant. Therefore, the optimal volume ratio of protein solution to CGA of both proteins was 1:3.

3.3.4. pH

Effect of pH on the protein recovery is shown in Table 9. For lysozyme, the experiments were conducted at pH < pI only since pH > pI (pI =10.2) was severe condition for protein. Theoretically, pH of aqueous solution determines the net charge of proteins. In order to enhance the separation, pH of solution should be adjusted to the point where electrostatic interaction between the protein and charge of surfactant favor the separation. At pH < pI, lysozyme in pH range 2-10 and β-casein in pH range 2-4 have a net positive charge. Hence, it should be attracted with negative charged surfactant. We measured zeta potential of CGA and found that CGA was negative charged in pH range 2-5.5. Consequently, at pH 4, positive charged lysozyme and negative charged CGA yielded high protein recovcry (53.2%) than other conditions. Though at pH 2 high recovery was expected but failed (35,3%) which may be due to the deformation of lysozyme. The same trend also reported by Jauregi et al. [5] that the separation of lysozyme was, 69% (pH 8), 75% (pH 6) and 54% (pH 4) with anionic CGA mainly caused by electrostatic interaction.

The same scenario can be explained with β-casein. At pH 2-4 β-casein was positive charged while CGA was negative charged. Hence this electrostatic interaction enhanced the adsorption (49.1-49.6%). Also at pH 7-8 β-casein was

S. Jarudilokkul et al. / Separation and Purification Technology 00 (2003) 1-8

7

Table 9

Effect of pH on protein recovery and Zeta potential of CGA

РĦ	Protein recovery (%) (lysozyme; pI = 10.2)	Protein recovery (%) (β-casein; pI = 5.3)	Zeta potential (mV)
8.0	49.1	46.5	25.5
7.0	49.6	49.8	19.7
5.5	50.5	30.5	-12.7
4.0	53.2	57.7	-19.0
2.0	35.3	5 7. I	-17.i

negatively charged while CGA was positively charged. This range of pH enhanced the protein recovery (46.5–49.8%). As pH 5.5 approached pI (=5.3), charges on β -casein are neutralized and precipitated resulting in the decrease of protein recovery (30.5%). Consequently, we concluded that the electrostatic interaction between positively charged protein and negative charge of surfactants play an important role in protein recovery. In this work, though protein separation not purification was our objective, pH adjustment of the solution and the proper selection of surfactant as described above can lead to protein purification process by CGA.

From the above studies, the suitable condition for lysozyme separation was initial protein concentration of 0.1 mg/ml, volume ratio of protein solution to CGA of 1:3, pH 4.0 and stirring time of 120 s, whereas initial protein concentration of 0.5 mg/ml, volume ratio of protein solution to CGA of 1:3, pH 4.0 and stirring time of 90 s was an optimal condition for β-casein separation.

4. Conclusions

14

35

36

37

38

39

30

31

32

33

94

35

66

37 88

89

'80 '81

32

113

7

8

Ю

H

12

13

14

15

16

- Nonionic surfactant can be applied for protein separation. The suitable surfactant in this study was 10 mM Tween 20 in distilled water.
- The optimal condition for CGA preparation which yielded the maximum stability and protein recovery yield was 10 mM Tween 20 in distilled water, stirring speed of 5000 rpm and stirring time of 5 min.
- The hydrophobic interaction plays an important role for protein separation by using nonionic CGA. The optimal condition for lysozyme

separation were initial protein concentration of 0.1 mg/ml, volume ratio of protein solution to CGA of 1:3, pH 4.0 and stirring time of 120 s. For β-casein separation, initial protein concentration of 0.5 mg/ml, volume ratio of protein solution to CGA of 1:3, pH 4.0 and stirring time of 90 s were the optimal condition.

Acknowledgements

The authors would like to thank the Thailand Research Fund (TRF) for the financial support.

References

- [1] M.C. Amiri, E.T. Woodburn, Trans. Inst. Chem. Eng. 68A (1990) 154-160.
- [2] D. Roy, K.T. Valsaraj, S.A. Kottai, Sep. Sci. Technol. 27 (1992) 573-588.
- [3] D. Roy, R.R. Kommalapati, K.T. Valsaraj, W.D. Constant, Water Res. 31 (1997) 2161-2170.
- [4] R.R. Kommalapati, K.T. Valsaraj, W.D. Constant, D. Roy, J. Hazard. Mater. 60 (1998) 73-87.
- [5] P. Jauregi, J. Varley, Prog. Colloidal Polym. Sci. 100 (1996) 362-367.
- [6] S.R. Dungan, in: C. Solans, H. Kunieda (Eds.), Industrial Applications of Microemulsions, Marcel Dekker, 1997, pp. 148-170.
- [7] M.D. Bredwell, R.M. Worden, Biotechnol. Prog. 14 (1998) 31-38.
- [8] F. Sebba, Chem. Ind. 3 (1985) 91-92.
- [9] P.K. Smith, R.I. Krohn, G.T. Hermanson, A.K. Mallia, F.H Gartner, M.D. Provenzano, E.K. Fujimoto, N.M. Goeke, B.J. Olson, D.C. Klenk, Anal. Biochem. 150 (1985) 76-85.
- [10] M. Vasudevan, J.M. Wiencek, Ind. Eng. Chem. Res. 35 (1996) 1085-1089.
- [11] M.J. Rosen, Surfactants and Interfacial Phenomena, Wiley, 1978, pp. 123-141, 200-220.

,

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

ARTICLE IN PRESS

S. Jarudilokkul et al. / Separation and Purification Technology 00 (2003) 1-8

[12]	P.	Jauregi,	S.	Gilmour,	J.	Varley,	Chem.	Eng.	J.	65	(1997)
	1-	-11.									

[13]	S.V.	Save,	V.G.	Pangarkar,	Chem.	Eng.	Commun.	127
	(1994	4) 35-	54.					

[14]	K.	Matsush	ita,	A.H.	Mollah,	D.C.	Stuckey,	C.	del Cerro,	
	A.	I. Bailev.	Col	loids	Surf. 69	(1992)	65-72.			

[15]	P. Jauregi, J.	Varley,	Biotechnol.	Bioeng. 5	9 (1998) 471–	42
-	481		-			43

PROTEIN SEPARATION BY COLLOIDAL GAS APHRONS USING NONIONIC

SURFACTANT: ADSORPTION ISOTHERM AND MASS TRANSFER STUDY

Somnuk Jarudilokkul, Kumchai Rungphetcharat and Virote Boonamnuayvitaya*

Department of Chemical Engineering, King Mongkut's University of Technology

Thonburi, Pracha-utit Road, Bangmod, Bangkok, 10140, Thailand

*Corresponding author phone: +66 2 4270242, fax: +66 2 4283534

e-mail: virote.boo@kmutt.ac.th

ABSTRACT

Separation of protein with colloidal gas aphrons (CGA) is a promising method for organic material removal from aqueous solution. In this work, the mechanism and mass transfer of the separation was investigated. It was found that at protein flow rate of 2.37 ml/s, the adsorption of protein on CGA followed Langmuir adsorption isotherm. For the mass transfer study, the overall mass transfer coefficient increased with the increasing of feed flow rate and aphrons flow rate whereas it decreased when increasing column height. The percentage of protein recovery increased with increasing of feed flow rate, aphrons flow rate and column height.

Keywords: Protein separation, Colloidal Gas Aphrons, Mass transfer, Overall mass transfer coefficent,

INTRODUCTION

In food processing, a lot of water was consumed for manufacturing and cleaning which also produced a lot of wastewater. Wastewater from some food processing such as dairy food, pre-cooking wastewater of tuna canning manufacturers mostly contain nutrients for example protein and fat. Removal of organic substances before disposing to wastewater treatment can reduce the organic loading. Moreover, the recovery product should be value added if it can be used for further application such as animal feed. Traditionally, separation of organic materials from water is carried out using filtration, sedimentation, and air floatation. Separation with colloidal gas aplnous (CGA) has several advantages over these methods such as easy scale up, continuous operation, high separation efficiency for diffute feeds and low cost technique.

CGA are micro-bubbles (10-100 μm) encapsulated in a soapy film. They are created by intense stirring at 5,000-10,000 rpm. The attractive features of CGA are firstly their small sizes, resulting in a large surface area to volume ratio and secondly the existence of a soluble film of surfactant encapsulating the gas, retarding the bubbles from coalescing. CGA has been applied in many areas of separation such as removal of heavy metal from aqueous solution [1], removal of organic dyes from wastewater [2], removal of hazardous oily waste from a soil matrix [3,4] and lysozyme separation [5].

So far, CGA reported in literatures for protein separation has been created by anionic and non-edible surfactant [5]. As our work in previous study, the nonionic surfactant, Tween 20 was used to prepare CGA that can separate protein at satisfactory level. In order to apply to more practical, the continuous operation should be performed.

From previous study of the separation, it was found that hydrophobic interaction plays an important role for protein separation by using nonionic CGA [6]. The mechanism

of particle-bubble attachment in terms of adsorption isotherm of lysozyme on CGA was further investigated in this study. Then, the effect of protein flow rate, aphrons flow rate and column height on overall mass transfer coefficient and protein recovery were examined.

MATERIALS AND METHODS

A polyoxyethylene derivative of sobitan esters (Tween 20) was purchased from Carlo Erba. Lysozyme from hen egg white (pl 10.2; 14.5 kDa) and BCA (Bicinchoninic acid) was obtained from Sigma. Sodium chloride and sodium phosphate (dibasic and monobasic) were analytical grade from Merck. All other chemicals were analytical grade purchased from Sigma.

Adsorption isotherm

Figure 1 describes the experimental set up for adsorption isotherm and mass transfer study. A flotation column made of 50 mm diameter perspex tube and 1000 mm in height was used in all experiments. The feed inlets were at a height of 350 mm and 800 mm from the base of the column whereas an outlet was at the base for drainage.

A peristaltic pump was used to supply protein solution downward into the column at specified flow rate. Then, the second peristaltic pump delivered CGA upward from the CGA generator to the column at specified flow rate. The system was operated as counter current mode. Samples of protein solution at outlet of the column were taken every minute for 8 min after the system reached steady state (7 min). At the same time, the foamate was also collected. The protein concentration in drainage and foamate were determined by BCA method.

The adsorption isotherm of protein on CGA was performed as continuous mode because CGA is small bubbles, which may not be stable enough if operating as batch mode. The flow rate of protein at which monolayer adsorption occurred was firstly determined from the plot of $1/C_e$ vs ($Q_a/C_oQ_oC_e$) as explained in equation (2). The investigated protein flow rate were 1.69, 2.37, 3.23, and 4.05 ml/s with aphrons flow rate of 1.80 ml/s and protein concentration of 0.2286 g/l. At the optimal protein flow rate, the adsorption mechanism was examined with protein concentration of 0.2286, 0.3043, 0.3718, 0.4105, 0.4634, 0.5134, and 0.6094 g/l. Then, the data was fit to the Langmuir model of equation (6).

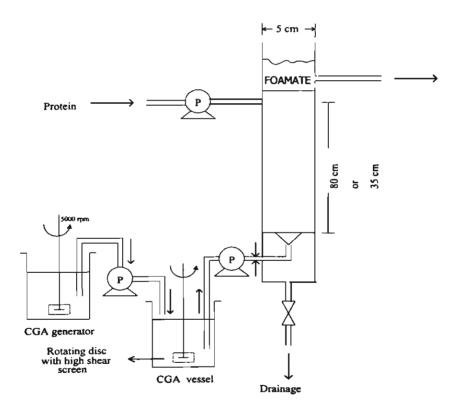


Figure 1 Schematic diagram of the experimental set-up.

Mass transfer

The experiment of this study was set up and operated the same as previous experiment. The protein concentration in this experiment was 0.2286 g/l. The effect of

protein flow rate on overall mass transfer coefficient was performed at 1.69, 2.37, 3.23 and 4.05 ml/s whereas the flow rate of aphrons was kept constant at 1.82 ml/s. The influence of aphrons flow rate the coefficient was examined at 1.82, 3.48, and 4.71 ml/s while the protein flow rate was fixed at 2.37 ml/s. Moreover, the effect of column height was investigated at 350 mm and 800 mm, respectively. After system reached steady state, sample of protein solution at drainage was taken every minute for 5 minutes. The overall mass transfer coefficient and percentage of protein recovery were then calculated from equation (6) and (7), respectively.

Theory

Adsorption isotherm

For a continuous system, if the bubbles are saturated with protein, the steady state mass balance for monolayer adsorption can be written as:

$$C_{o}Q_{o} = C_{e}Q_{e} + CQ_{a} \tag{1}$$

Assuming $Q_o = Q_e$ and rearranging the equation (1)

$$\frac{1}{C_e} = \frac{CQ_a}{C_oQ_oC_e} + \frac{1}{C_o}$$
 (2)

where Q_o , Q_e and Q_a are flow rates and C_o , C_e and C are the concentration of protein in feed, tailings and in the formate, respectively. The plot of $1/C_e$ vs $(Q_a/C_oQ_oC_e)$ gave the value of C from slope and the value of C_o from intercept.

Mass transfer

Mass balance on protein in liquid phase at steady state assuming plug flow is shown below.

$$U\frac{dC}{dZ} = k_L a(C - C^*)$$
 (3)

The solution of equation (3) was obtained by integration.

$$\int_{C_{AD}}^{C_{A}} \frac{dC}{(C - C^*)} = \frac{-k_L a}{U} \int_{0}^{z} dZ$$
 (4)

$$\ln \frac{(C_A - C^*)}{(C_{AO} - C^*)} = \frac{-k_L aZ}{U}$$
 (5)

For diluted concentration of protein

$$\ln \frac{C_A}{C_{AO}} = \frac{-k_L aZ}{U}$$
(6)

where C_{AO} is initial protein concentration and C_A is protein concentration after separation (g/l). U is feed flow rate (cm/s). Z is column height (cm). K_{La} is overall mass transfer coefficient (1/s).

Protein recovery

The protein recovery was determined by equation (7).

Pr otein re cov ery =
$$\left[1 - \frac{\text{mass of protein in solution after separation}}{\text{mass of protein in initial solution}} \right] \times 100$$
 (7)

RESULTS AND DISCUSSION

Adsorption isotherm

In this experiment, the flow rate of protein at which monolayer adsorption occurred was firstly determined. According to equation (1), the value of 1/C_e was plotted against the value of Q_a at various flow rates as shown in Figure 2. The straight lines were obtained with all cases. The protein concentration in foamate and in feed increased with increasing of feed flow rate. Table 1 shows the calculated C_o determined from y-intercept. It was found that C_o (experimental) was close to C_o (theoretical) at flow rate of 2.37 ml/s. Hashim et. al. [7] explained that at the condition a monolayer should be obtained. Therefore, this flow was fixed for the next experiment.

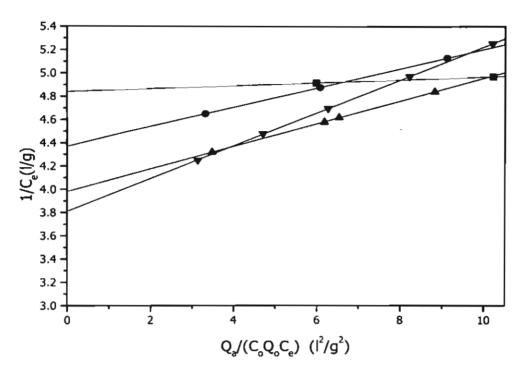


Figure 2 1/Ce vs (Qo/CoQoCe) at different protein flow rate; 1.69 ml/s (■), 2.37 ml/s (●), 3.23 ml/s(▲), 4.05 ml/s (▼) with aphrons flow rate of 1.80 ml/s and protein concentration of 0.2286 g/l.

Table 1 Comparison of theoretical and experimental feed concentration at different feed flow rate

Q _o , ml/s	C, g/l	C _o , g/l	C _o , g/l
		(Experimental)	(Theoretical)
1.69	0.0121	0.2286	0.2064
2.37	0.0823	0.2286	0.2284
3.23	0.0971	0.2286	0.2511
4.05	0.1414	0.2286	0.2624

In order to examine the type of adsorption, various protein concentrations were conducted at the same flow rate (2.37 ml/s). The protein concentrations remaining in bulk solution were plotted against protein concentration adsorbed on aphrons, as shown in Figure 3. The figure shows a typical Langmuir adsorption isotherm model. If all assumption hold well in this case, the rate of protein attachment r_a to the CGA bubble is given by the following expression:

$$r_a = kC_e(C_t - C) \tag{8}$$

where C_t is the concentration of adsorbed yeast at any time. Similarly, the expression for detachment r_d can be written as:

$$r_{d} = k'C \tag{9}$$

where k and k' represent the rate constants for attachment and detachment, respectively. At equilibrium, the concentration on CGA bubbles is given as:

$$C = \frac{K_A C_e C_t}{1 + K_A C_e} \tag{10}$$

where the equilibrium constant K_A is equal to k/k'. Rearranging (10), we obtain:

$$\frac{1}{C} = \frac{1}{K_A C_t C_e} + \frac{1}{C_t} \tag{11}$$

The plot of 1/C vs $1/C_e$ was straight line as shown in Figure 4. According to equation (11), the value of C_t and K_A are found to be 0.2645 g/l and 3.85 l/g, respectively.

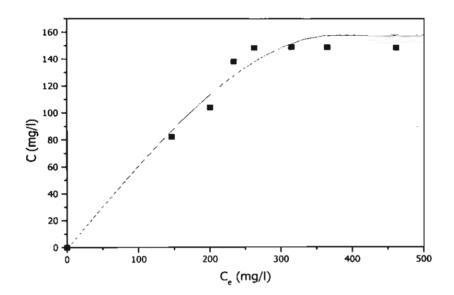


Figure 3 Adsorption isotherm for protein flotation using CGA at protein flow rate of 2.37 ml/s and aphrons flow rate of 1.80 ml/s.

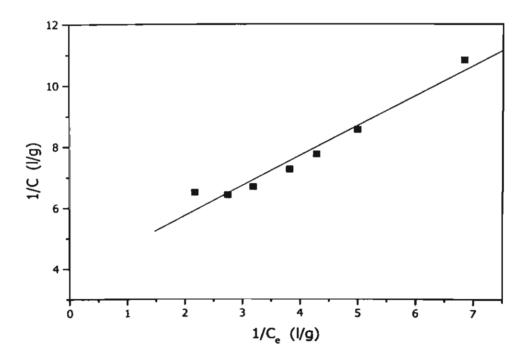


Figure 4 Verification of Langmuir equation for protein adsorption.

- Mass transfer

Effect of feed flow rate

Figure 5 illustrates the influence of feed flow rate on overall mass transfer coefficient. It was found that the $k_{L}a$ value increased with increasing feed flow rate. At high flow rate, the resistance of liquid film should be decreased resulting in protein easily to attach at CGA. The $k_{L}a$ values of the effect were in the range $3.5-9.7 \times 10^{-4}$ (1/s) compared with $2.0-25 \times 10^{-4}$ (1/s) in the egg albumin separation with foam [8]. The effect of feed flow rate on percentage of protein recovery (%Rp) presents in Figure 6. The %Rp increased with increasing feed flow rate. This may be caused by multilayer of protein adsorption on CGA at high flow rate [9].

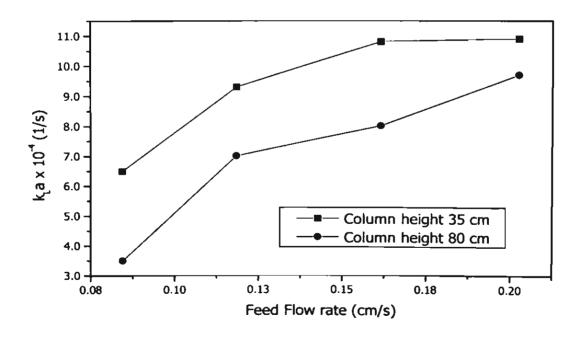


Figure 5 Effect of feed flow rate on the overall mass transfer coefficient

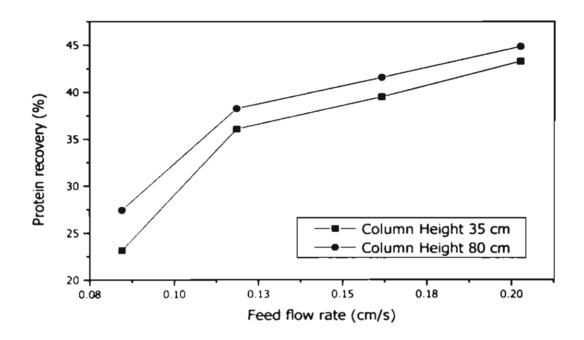


Figure 6 Effect of feed flow rate on protein recovery

Effect of aphrons flow rate

The effect of aphrons flow rate on the k_La values is shown in Figure 7. The k_La value increased with increasing aphrons flow rate. This should be explained by decreasing of resistance on liquid film. Moreover, the values from the effect (6.9 x $10^{-4} - 1.2 \times 10^{-3}$ (1/s)) were slightly higher than the effect of feed flow rate. For the %Rp, the values were also increased by increasing aphrons flow rate. The higher amount of aphrons should increased the chance of protein to be separated.

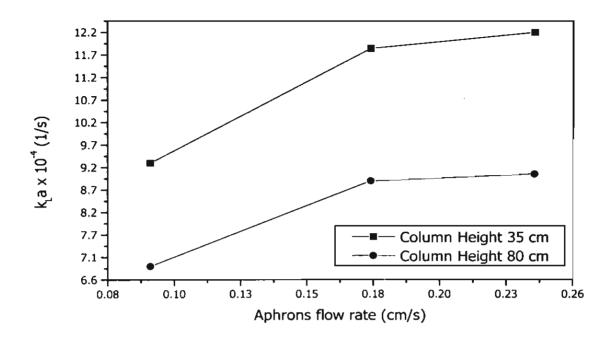


Figure 7 Effect of aphrons flow rate on overall mass transfer coefficient

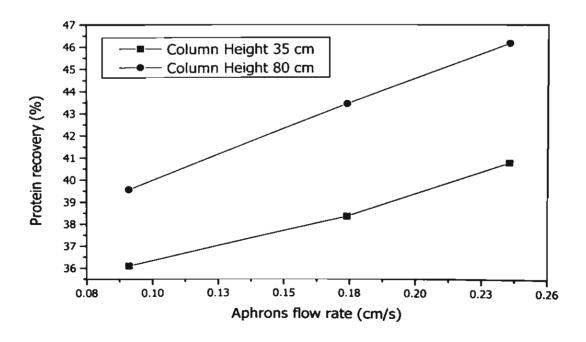


Figure 8 Effect of aphrons flow rate on protein recovery

Effect of column height

Figure 5-8 presents the effect of column height on k_La and %R_p at various feed flow rates and aphrons flow rate. The k_La values at column height of 35 cm were higher than the values of column height of 80 cm. The decreasing of k_La values should be caused by reducing of specific surface area. However, the %Rp decreased with decreasing of column height. This may be explained by the longer residence time for protein to contact with CGA.

CONCLUSIONS

- At protein flow rate of 2.37 ml/s, the adsorption of protein on CGA was Langmuir adsorption isotherm.
- The overall mass transfer coefficient increased with the increasing of feed flow rate and aphrons flow rate whereas it decreased when increasing column height.
- The percentage of protein recovery increased with increasing of feed flow rate, aphrons flow rate and column height.

ACKNOWLEDGEMENT

The authors would like to thank the Thailand Research Fund (TRF) for the financial support.

REFERENCES:

- [1] M.C. Amiri, E.T. Woodburn, Trans. Inst. Chem. Eng. 68A (1990) 154-160.
- [2] D. Roy, K.T. Valsaraj, S.A. Kottai, Sep. Sci. Technol. 27 (1992) 573-588.
- [3] D. Roy, R.R. Kommalapati, K.T. Valsaraj, W.D. Constant, Water Res. 31 (1997) 2161-2170.
- [4] R.R. Kommalapati, K.T. Valsaraj, W.D. Constant, D. Roy, J. Haz. Mat. 60 (1998) 73-87.
- [5] P. Jauregi, J. Varley, Progr. Colloidal Polym Sci. 100 (1996) 362-367.
- [6] S. Jarudilokkul, K. Rungphetcharat V. Boonamnuayvitaya, Separation and Purification technology, in press.
- [7] M.A. Hashim, S.V. Kumar, B.S. Gupta, Bioprocess Engineering, 12(2000) 333-336.
- [8] V. Loha, Protein separation in a foam fractionation process, Ph.D. Thesis, Vanderbilt University, Nashville, Tennessee, U.S.A., May, 1999.