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In this paper, we consider embedded system design optimization, considering uncertainty in the
component reliability estimate, by maximizing an estimate of system reliability and also
minimizing the variance of the reliability estimate. The two most common fault-tolerant embedded
system architectures: N-Version Programming (NVP) and Recovery Block {(RB) can be applied to
pravide system redundancy. We present four distinct models to demonstrate our optimization
techniques with or without redundancy for NVP/0/1, NVP/1/1 or RB/1./1. All models are designed
under system cost constraints. Embedded systems consist of both software and hardware
components. Failures of software components/versions arc 2 major cause of system failures. For
many experimental studies, multiple software versions, which are functionality equivalent, do have
failure correlation even if they have been independently developed. The failure comrelation may
come from faults in the software specification, faults from the voting algorithm, and/or related
faults from any two software versions. Our approach considers this correlation of failures in
formulating practical optimization models. Unlike most research papers, we provide a technique to
optimize system reliability considering software versions with different reliabilities and correlated
failures. Genetic algorithms with a dynamic penalty function is applied in solving this optimization
problem, and reasonable and interesting results are captured and discussed.
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1. Introduction

In the determination of system designs to maximize system reliability under constraints
such as system cost, weight, size and others, component reliability is not known exactly
but must be estimated with some uncertainty. The selected components with high
reliability estimation uncertainty would result to a system design which also has very
high reliability uncertainty. This is undesirable because system designers and users
seck an optimal design with high predicted reliability, but also one with low estimation
uncertainty.



Our goal is to develop optimization models for fault-tolerant embedded system
considering reliability estimate with some uncertainty. This is an cxtension of work
from "Wartanapongsakom & Levitan where component reliability is kncwn.

An embedded sysiem consists of bnth hardware and software components. To make
it fault-tolerated, some redundant techniques can be applied with extra copics of
components, resulting in fault-tolerant architectures. In this paper, N-Version
Programming architectures and Recovery Block architectures are considered. The
detailed description of these architectures is discussed in section 2. The fault-tolerant
systemns are capable of tolerating software faults and/or hardware faults. For many
systems, it is known that most of the system failures are related to software faults." **
Therefore, optimal design software fault-tolerance is often more critical than hardware
fault-tolerance in the embedded system designs. The fault-tolerated embedded system
architectures result from different strategies of integrating software and hardware
redundancy, together with some decision algorithms such as voting, acceptance test and
comparison " **

Similar to Wattanapongsakom et al.’, we consider a system where each subsystem
is connected in series. Each subsystem consists of both software and hardware
components. The software components are application software modules, and the
hardware components are processing units (with operating system, disk, etc.) or
network elements.

Unlike other optimization papers which consider only software or hardware
individually, or software and hardware without any dependent failures, this paper
considers systems consisting of both software components, hardware components, and
related faults from multiple software versions and/or hardware components. The
software failure bchavior, which is different from the hardware failure behavior, is
considered toward the system design.

Rubinstein et al consider a redundancy allocation problem with uncertain
component reliability, by maximizing the expected values of the random system
reliability using genetic algorithms (GA).' Their approach, considering only the
expected values of reliability, is not sufficient for many decision makers and design
problems. In practice, system designers and users desire a designed system with a high
reliability estimate, in associated with low estimated variability. Coit et al solve the
problem by considering variance of system reliability estimates in addition to the
expected system reliability value. ® They focus on series-parallel hardware system
with arbitrarily repeated components.

Our paper combines the approach of considering both the system reliability
estimate and variance with the embedded system optimization approach. This results
in a very practical reliability optimization models for the design of fault-tolerant
embedded systems.

The systems that we model are series-parallel fault-tolerant systems. The
redundancy allocation problem for series-parallel systems is known to be difficult (NP-
hard). Many researchers have proposed a variety of approaches to solve this problem



using, for example, integer programming, branch-and-bound, dynamic programming,
mixed integer and nonlinear programming. Recent optimization approaches are based
on hewistics such as ithe Genetic Algorithm {(GA), and the Tabu Search (TS). All of
thesz approaches were developed for either optimizing reliability for software or
hardware systems. Here we consider systems consisting of both software and hardware
components. The software failure behavior, which is different from the hardware
failure behavior, is considered.

Optimization modeis have been developed to select both software and hardware
components and the degree of redundancy to optimize the overall system reliability,
with a total cost constraint. In the system, there are a specified number of subsystems in
series. For each subsystem, there are several hardware and software choices to be
made. The system is designed using componems, each with estimated reliability, but
with known cost.

Genetic Algorithms (GA) are used as the optimization approach. The term ‘genetic’
derives from the roughly analogous natural re-producing new-borm population by
crossover and mutation. There are competitions among the population; the stronger
ones will survive to the next generation and the weak ones will soon die out. GA is a
heuristic optimization mode! that has been applied effectively to solve many difficult
problems in different fields such as scheduling, facility layout, and graph coloring/
graph partitioning problems. It is a stochastic algorithm with performance depending
on the solution encoding, crossover breeding operator, elitist selection and mutation
operator.

In section 2, the description of the fault-tolerant system architectures that we model,
shown in Fig. 1, is discussed. Section 3 presents the concept of reliability estimation
variability for each of the system architecture models, including the higher-order
information of component reliability estimates. Section 4 presents four optimization
models to maximize reliability considering uncertainty. The first mode! does not
consider component redundancy, while the other models each does consider a distinct
fault-tolerant architecture type. Section 5 explains the GA and its parameter settings.
Next, in section 6, the effectiveness of our optimization models is demonstrated using a
numerical example with the GA optimization approach. Lastly, in section 7, we end the
paper with a summary and conclusion.

ASSUMPTIONS
1. Each software component, hardware component or the system has 2 states:
functional or fail
Reliability of each software or hardware component is unknown, but estimable
There is no failure repair for each component or system
Hardware redundancy is in active mode (i.c., hot spares)
Failure of individual hardware components are s-independent
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NOTATION

X/ij System architecture X, with i hardware faults tolerated and j software

aﬂ

% %D

faults tolerated

Number of subsystems within the distributed systern

Number of hardware component choices available for subsystem i
Number of software versions available for subsystem i

Estimated reliability of the distributed system

Estimated reliability of the subsystem i

Rhw; Reliability of hardware component j at subsystem /
Rsw; Reliability of software component k at subsystem i
Chw;; Cost of using hardware component j at subsystem §
Cswj, Cost of developing software version k at subsystem §
Cost maximum allowable cost (constraint)

Pd
Ph;

Probability that event X occurs
Probability that event X does not occur; Qx =1 - Px
Probability of failure of software version {

; Probability of failure from related fault between two software versions, i

and j

Probability of failure from related fault among all soRtware versions, due
to faults in specification

Probability of failure of decider or voter

Probability of failure of hardware component i. If only one hardware is
applied, Ph; = Ph for all j

(N L
= (o () it

2

V3
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Fig. 1. Fault-tolerant architectures: NVP/O/1, NVP/1/1 and RB/1/1. 7



2. Fault Tolerant System Architectures to Maximize Reliability
2.1. N-version Programming (NVP) architecture

N-version Programming consists of an adjudication module called a voter, and N
independently developed software versions, which are functionally equivalent. 2 N is
usually an odd number. This NVP model is based on the same concepis as N-Modular
Redundancy (NMR), which is a hardware fault-tolerant architecture.® In the NVP
model, all N software versions are executed for the same task at the same time (i.e., in
parallel}, and their outputs arc collected and evaluated by the voter. The majority of the
outputs determine the voter decision. Two subclasses of NVP architecture are
discussed in detail next.

2.1.1 NVP/O/I architecture

This model has zero hardware faults tolerated and a single software fault tolerated, as
shown in Fig. 1. The system architecture consists of three independent software
versions {components) running in parallel on a single hardware component. This
system fails if one of the following conditions are true: a single hardware fault, two out
of three software version faults, a related fault between software versions, faults from
software specification, and faults from the voting algonthm The probability that an
unacceptable result occurs duning a single task iteration, 1-R(t), or P unreliability is
given by:

The NVP/1/1 model consists of three independent software versions running on a
hardware component. All conceivable system states where the system have failed have
been considered and enumerated. The following equation provides the probability that
an unacceptable result occurs during a single task cycle.’ a,, ky and hy values are

presented in Table 1.
s (o) o

=l JjeC,
where
s = number of additive terms when all failure probabilities have been
enumerated; s = 20 for NVP/1/1 architecture
a; = integer coefficient
C,= component type set for i additive term
k,~ power coefficient for 7 component reliability in set C;
h,~ power coefficient for ™ component unreliability in set C;
p; = unreliability of /* type of component
q, = reliability of /™ type of component, p+q,=1forallj
p; and g; definitions and comparisons with notation frorm Wattanaponsakorn et al
are as follows,
p=Prv §i=Qrv
p=Pd 7:-Qd



Pr=Pun 9:=Qu

Pa=Pv, q=Qv\
pPs=Pva qs=Qv:
Ps=Pv; 9=Qv»
prPh g=CQh

Table 1. a;, ky and A, cxpressed in & matrix form for NVP/O/1 architecture.

"g Ay L]
J=1 2 3 4 5 &6 7 j=1 2 3 4 8 6 17

i=1 r 0 0 0 0 0 O i=1 o0 0 0 0 0 O O 1
2 i1 0 0 0 0 0 O 2 1 0 0 0 0 0 O 1
3 1 0 0 0 0 0 O 3 2 0 0 0 O 0 O 1
4 o 1 0 0 0 0 O 4 3000 0 0 O |
5 o 01 0 0 0 O 5 31 0 ¢ 0 0 O 1
6 o 0 0 0 0 0 1 6 31 1 0 0 O O 1
7 o 0 0 1V 1 0 O 7 it ! © 0 O 1 1
8 o 0 0 0 1 1 0O 8 31 1 0 O 1 1
9 9 0 01 0 1t o 9 311 01 0 1 1

Eq. (1) is a general expression that can be adapted to other fault tolerant

architectures by using the appropriate a;, k; and h; values determined from enumerated
the failure probabilities.

2.1.2. NVP/I/1 architecture

This model consists of three independent software versions, each running on a
separate hardware component. Any hardware failure cay cause the software running on
it to produce unacceptable results. The system is nal if 2 out of 3 software
versions {on working hardware) are functioning. Failures of a software version and an
unrelated hardware component lead to system failures.

The probability that an unacceptable result occurs during a single task iteration, 1-
R(t), or P unreliability is presented by Eq. (1) where a;, k; and h; for NVP/1/1
architecture are listed in Table 2.



Table 2. a,, k; and 4, expressed in 2 matrix form for NVP/1/1 aichitecture.

ky hy a;
j=1 2 3 4 5 &5 7 =1 2 3 4 5 6 7

=1 1 0 ¢ ¢ 0 0 © i=1 0 ¢ 0 0 0 0 O H
2 1 0 0 0 0 0 O 2 1 0 0 0 0 O O 1
3 1 ¢ 0 60 0 0 O 3 2 0 0 0 0 0 O 1
4 O I 0o ¢ 0 0 O 4 3 00 0 0 0 O 1
5 o 61 0 0 0 O 5 31 0 00 0 O 1
6 0 0 0 1 1 0 O 6 31 1 0 0 0 O 1
7 0O 0 0 1 0 1 0O 7 31 1. 01 0 O 1
3 ¢ 0 0 0 1 1 O 8 31 1L 1 0 0 O 1
9 6 ¢ 0 1 0 O 2 9 3L 1 01 11 1
10 0 0 0 0 0 O 2 10 311 0 0 1 1 I
11 o 0 0 1 1 0 2 11 31 1 0 0 1 1 -1
12 0O 0 0 0 0 1 2 12 311 1 1 0 1t 1
13 ¢ o 0 0 0 0 2 13 3 11 0 1 0 1 1
14 0 0 0 1 0 1 2 14 311 0 1 0 1 -1
15 o 0o 06 0 1 0 2 15 31T 11 0 1 1 1
16 0O ¢ o 0 0 0 2 113 3 1 1 1 &6 0 1 1
17 o 0 0o 0o 1 1 2 17 31 11 0 0 1 -1
18 o 0 ¢ 1t 0 0 1 18 31 1 0 1t 1 2 2
19 0o 0 ¢ 0 1 0 1 19 AT 1T o0 1 2 2
20 0 0 0 0 0 1 1 20 3 11 1 1 0 2 2

2.2. Recovery Block (RB): RB/1/1 Architecture

The RB model consists of an adjudication module called an acceprance test, and at
least two software components, called alternates." ? At the beginning, the output of the
first or primary alternate is tested for acceptance. If it fails, the process will roil back to
the beginning of the process, and then let the second alternate execute and test its
output for acceptance again. This process continues until the output from an altemate is
accepted or all outputs of the alternates have been tested and fail.

The system consists of two hardware components, each running two independent
software versions; primary and secondary. The primary version is active until it fails,
and the secondary version is the backup spare. The system failures occur when both
versions fail, or both hardware components fail. The probability that an unacceptable
result occurs during a single task iteration, P is presented by Eq. (1) where k; and 4, for
RB/1/1 architecture are listed in Table 3.

Table 3. a,, k, and h, expressed in a matrix form for RB/1/1 architecture.

k, h, a,
i f=1 2 3 4 § &6 7 i =1 2 3 4 5 & 7
1 1 0 0 0 0 0 O 1 0 00 0 0 O © 1
2 01 6 0 0 O O 2 1 0 0 0 0 0 0O 1
3 o 0601 0 0 O O 3 1 0 0 0 0 O ]
4 0 0 0 0 0 O 2 4 1 1 1 0 0 0 o 1
s a 0 0 1 1 0 O 5 1 1 1 0 0 0 o i
6 o 0 ¢ 1 1 0 2 6 1 1 1 0 0 0 0o -1




With these fault-tolerant architectures, we develop four optimization models for
fault-tolerant embedded system considering reliability estimate with some uncertsainty.
The components, which are available for the system design, each has relizbility
uncertainty with reliability estimate and its variance.

In the next section, we formulate equations for system reliability estimate and
variance for reliability estimate for the three system fault-tolerant architectures. These
equations will be used in our four optimization models, discussed later in this paper in
section 4.

3. Reliability Estimation Variability

Usually the exact component unreliability, p;, or reliability, g;, are not known. They are
estimated from life test data or field failure records. The estimated p; or g ;are used
to replace the true but unknown in Eq. (1),

p-$(al151a7 @
i=1 jeC,

Direct calculation of E[P] andVar(P) are difficult due to the coupling of
P jand g ;- Therefore, Eq. (2) has been rearranged, as follows

ﬁ=2':[a,-1‘[(1-é,)"é,‘-'] ()
i=1 jeC,

Eq. (3) can be rearranged by expanding (1—g; )" terms, resulting in equation Eq. (4)
b 114} } 4

where ¢ = number of subsysterns after expansion, > s
b; = integer coefficient

t is the pumber of terms after the expansion. b, and n,; are determined by grouping
similar terms. This expansion procedure is conducted automatically using Matlab code
based on the parameters in Tables 1, 2 or 3. Due to the length of the expansion, detailed
computational procedure is omitted. Tables 4, 5 and 6 list al! the expansion results.
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Table 6. n, and b, Expressed in a2 matrix form
for RB/1/1 architecture

"y, by
i J=1 2 3 4 5 5 7
1 0 0 0 0 0 0 O 1
2 i o 0 0 0 0 O 1
3 1 1 0 0 0 0 O 1
4 1 1 1. 0 0 ¢ 0 1
s 1 !t 1 0 0 0 O 1
6 1 1 »+ 0 ¢ 0 O] -1
7 1 o 0o 0 0 0 0] -
8 1 1 0 0 0 0 C| -1
9 1 1 1 0 0o ¢ ¢Cc| -1
10 1 I 1. 06 0 0 1 -2
11 1 1 t 0 ¢ 0 2 1
12 | 1 1 1 ¢ 0 0 -1
13 1 1 1 0 1 0 O -
14 1 1 1 1 ¢ 0 o 1
15 1 1 1 0 1 0 0 1
16 1 1 1 0 0 o0 2
17 1 1 1. 0 © 0 2 -1
18 1 1 £ t+ 1 0 0 1
19 1 1 1 1 1 0 Oof -1
20 1 1 1 v 0 o 1 -2
21 1 1 1 1 0 0 2 |
22 1 1 1t 0o i o0 1 -2
23 i 1 1 0 1 0 2 1
24 1 1 1. 1 1 0 t 2
25 1 | N R O S -1

From the tables, NVP/AQ/1, NVP/1/! and RB/1/1 have ¢t = 24, 97 and 25,
respectively. Based on the coefficients n,, b, and component reliability information, Eq.
(4) can be used to obtain the mean and the variance of unreliability P . Together with
the higher-order moment information of component reliability estimates, the mean and
the variance of unreliability P, can be obtained as follows.*

Eu"1=2'j[b,nste;- 1} ®)

i=l J&C,
Var(P) = i{bﬁ[l"{ﬁtéi" 1- [Tl ]}+ z'z{b,b.[ (126 1-[{a6) 88 ]}
i=t j=C. =€, i<m i J=C
where Cm=C,L Cj (6)

3.1 Numerical example

To show the relationship of reliability estimate and variance of reliability estimate for

cach component, we provide several numerical examples. Table 7 lists component
reliability estimates or unreliability estimate values. These data are selected directly



from Wattanapongsakorn et al.* Eq. (5) and Eq. (6) are also valid, as long as high
moments of component reliability estimates are known. Without loss of generality, it is

assumed Dernoulli test and appiizd bincmial distribution theory was used to estimate
high moments.*

Table 7. Parameters and definition of component’s variance of reliability estimate.

Unreliability Estimate Reliability Estimate Variance of Reliability Estimate
Prv=0.004 Qrv=0.996 Var(Prv¥= Var{Qrv)= (Prvx Qrv) n,
Pd=0.02 Qd=0.98 Var(Pd)= Var(Qd)= (Pdx Qd) nz

P =0.005 Qu=0.995 Var(Pa= Var(Qu)= (Pan ¥ Qui) N3
Pv,=0.035 Qv,=0.965 Var(Pvi)= Var{Qvi)= (Pvix Qvi)n.
Pv,=0.046 Qv,=0.954 Var(Pvy)= Var(Qva)= (Pvax Qva)ns
Pvy=0.09 Qvy=0.910 Var(Pv)= Var{Qvy)= (Pvix Qvy) 1e
Ph=0.03 Qh=0.970 Var(Ph)= Var{Qh)= (Phx Qh)n,

where 7 =[n,, N2, N3, N+, Ns, Nes. M1} is variance-factor vector, and 1= integer. For
example, when 1= [6, 4, 2, 2, 4, 3, 6], the corresponding component variances are
given in Table 8.

Table 8. Component reliability estimate variance.

Unreliability Estimate Reliability Estimate Variance of Reliabitity Estimate
Prv=0.004 Qrv=0.996 Var(Prv)= Var(Qrv)=0.000664
Pd=0.02 Qd=0.98 Var(Pd)= Var(Qd)=0.0049
Pa=0.005 Qui=0.995 Var(P. = Var(Qu)=0.0024875
Pv,;=0.035 Qv,=0.965 Var(Pv,)= Var(Qv,)=0.016
Pvy=0.046 Qv:=0.954 Var(Pv;)= Var{Qv;)=0.012
Pv:=0.09 Qv=0.910 Var(Pvy= Var{Qv,)=0.03

Ph=0.03 Qh=0.970 Var(Ph)y= Var(Qh=0.004

Table 9 lists six results with respect to different component variance. It is shown
that system unreliability is unchanged even if component valiances vary as 77 changes.
It can be observed that as component variances become small, the overall variance of
the system unreliability estimate P also decreases.

12



Table 9. Parameters of components and system unreliability P, system unreliability estimate E[I-’]. and
system variance of unrcliability ¢stimate Var(f’) .

n p £P) Var(P)
[1.1.1,1,1,1.1) 0.0557T 0.03716 0.03578
[2,2,2,2,2,2.2] 0.05571 0.06317 0.02801
[6.4.2,2,4,13,6] 0.05571 0.06188 0.01441
[12,8.4.4,8,6,12] 0.05571 0.05925 0.00714
[8.8.8,8,8,8. 8] 0.05571 0.06068 0.00777
[12,12,12,12,12,12,12] 0.05571 0.05925 0.00521

4.0 Optimization Models to Maximize Reliability Considering Uncertainty

In this secticn, we present our four-optimization models for reliability of distributed
systems. A distributed system, shown on Fig. 2, consist: of subsystems where software
components/versions are mapped (or distributed) on to various hardware components.
We consider the system having all subsystems connected in series. Each subsystem has
both software and hardware components. Each of our optimization models allows
different fault-tolerant architectures or component redundancy choices suitable for
different situations. The models are formulated as follows.

Audio Filter Decode Text
AD Speech
CPU DSP SGl CcPU

Fig. 2. A distributed system.

Moedel 1: Find the optimal set of software and hardware allocations for all subsystems
{without redundancy). The problem formulation is to maximize the system reliability
estimate, subjected to a specified cost constraint, Cost. The system has all subsystems
connected in series. Each subsystem reliability estimate is the product of a chosen
software version and a hardware component available for selection.

Formulation: Maximize system reliability estimate with its variance of reliability
estimate by choosing the optimal set of hardware and software components for each
subsystem by: . .

max R(x)— penalty x Var(R(x))

%t 3,

ﬁ}gqﬁ ii:v.q < Cost

X=01 Y=0l1 i=l2..;n j=l2,.m k=12,..p

Subject to

13



where x = solution vector (X, Yj)
i) TT6 =T {ZZ,\' o ﬁkwvﬁ.nv,,] )
var(i(x))= ﬂ(m(ﬁ, () &, (< ) 1'[ (2, ) (8)
var{R, (x))= [Var(ithw, }o R w,? ](Var(itsw, Yo fisw,? )~ {itnw, Rsw, } ®

~ L n n P, -
Rhw, = X Rhw,, Rsw, =Y, Rsw,

J=1 k=]
Var(ﬁhw,): i X, Var(ﬁhwy), Var(ﬁsw,) = i Y, Var(ﬁsw,)
J= k=1

The design objective is to identify solutions with very high reliability, but also with
a low reliability estimate variance. This is accomplished by penalizing the objective
function, system reliability estimate. The ‘penalty’ is a tunable parameter based on a
system designers tolerance for risk, i.e., actual reliability deviation from the estimate,
By penalizing the variance, the final solution represents a compromise between high
reliability and low variance.

Model 2: Find the optimal set of software and hardware allocations for all subsystems
(with or without NVP/0/1 redundancy). This and the following models are suited for
systems that handle more critical tasks. The problem formulation for this model is the
same as in the previous model, except that each subsystem uses NVP/0/1 redundancy
allocation as its reliability estimate and variance of reliability estimate, calculated
according to the NVP/0/1 redundancy configuration. The parameters considered for the
reliability of the NVP architecture are available as component reliability estimate and
variance of reliability estimate. Each allocated software version is allowed to have a
different reliability estimated value, unlike several proposed models where all of the
software versions have the same reliability value.’

Formulation: Maximize system reliability estimate with its variance of reliability

estimate by choosing an optimal set of hardware and software components for each
subsystem by:

max ﬁ(x)— penalty x Var(f(’(x))

- L | .
Subject to Z&;L 2.=| ord
Jel )
x M n A
53 K6+ 33746 < Con
= kel
where A=01 ¥=0l i=\2..p j=12.m i=l2..p



Rx)=TT ()

Var (ﬁ(x)'}-; Eq.(8)
LIOTD AN $x,21 3r=1
Var (&,(x))= Eg.(9) " o
ﬁ,(x)=1—(£q.(5))} ¥ 3x,-1 3, =3

Var (}i, (x))= Eg. (6) i k=1

Model 3: Find the optimal set of software and hardware allocations for all subsystems
{with or without NVP/1/1 redundancy). This model extends model 2, but instead of
zero hardware faults tolerated, it has a single hardware fault tolerated.

max ]'é(x) — penalty xVar (I'é(x))
Subject to [ "

Z}\g:l and :. ,.,=1]o-[§:)q,=3 and Z):,=3]

4
i"Z}(’q +§:42’,,Q s Cost

it j=

X,=013 ¥=Q1 i=l2..n j=12..m &=12..p
where i(z) - ﬁ (l-!, (x))

i=t

Va'(i(x))= Eq.(®)
&(x)=iixufaﬁ*"v"'”*] VAN A

J=1 kmy

var(k (x))= Eq.(9)

R(x)=1-(Ee.®)] ., &, _ i
Var(li(x))=£q-<o)} v pa=3 S

= ]

Model 4: Find the optimal set of software and hardware allocations for all subsystems
(with or without RB/1/1 redundancy). This model is also based on model 2, but
captures optimization analysis for the Recovery Block architecture.

Maxli(x) - penalty (ar (i)}
{z'x“ 1 and;Z!:.= l}o{i}\(,: 2 and :Eﬁ= 2]
ii?(.q + gxﬁ. < Cost

ind jul
X=012 %=01 i=l2..n j=\d.m k=12..3

Subject to
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where Rx)=T TR

Var(ﬁ(x)‘); £q.(8)
Rix)= JZ'::‘ZX”};,EIM,EM i i X, =1, iya =1
Var(ﬁ,(x)}= Egq.(9) J=l [

R(x)=1-Eq.(5) 8 ¢
’ ¥y 23 x, =2 Sr=2
var(R,(x))= Es. (6)} d ,z=:‘ =2 2

5. Genetic Algorithm Implementation

GA requires that the system design (phenotype) be encoded as a solution vector
(genotype). Then, genetic operators (crossover, mutation) are applied over successive
generations until the GA converges to a solution or a pre-determined maximum number
of generations is reached.

5.1. Encoding

For an embedded (hardware and software) system with n subsystems connected in
series, the string encoding can be represented as :

H1S1|H2S2|H3S3| ... |Hn Sn

where Hi, with 0< i £ r is the selected hardware component for subsystem i, and Si is
the selected software component/version for the specified subsystem.

Suppose we have m choices of hardware components and p choices of software
components/versions for each subsystem.

Model 1: Hicanbe !,...,mand Sicanbe 1, ..., p.

|
Model 2: Hicanbe |, ..., mand Sicanbe 1, ..., | p+—2"—|. If NVP/O/I
3Y(p - 3)!

redundancy is selected for the subsystern, three different software versions and one
hardware component are chosen.

Another example: Assuming we have four different software versions available for a
subsystermn.
Let 1/2/3/4 = choose software version 1,2,3,4 respectively

5 = choose software version 2,3,4 (software version 1 is not chosen)

6 = choose software version 1,3,4 (software version 2 is not chosen)

7 = choose software version 1,2, 4 (software version 3 is not chosen)

8 = choose software version 1,2,3 (software version 4 is not chosen)
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Model 3 is similar to model 2 in the sense that the number of component choices

]
are thc same. Hicanbe I, ...,mand Sfcanbe 1, ..., p+ — P | However, with
(p-3I)!
NVP/1/1 redundancy selected for the subsystem, three different sofiware versions and
three identical hardware components rmust are chosen.

Model 4: Hi can be 1, ..., m and Si can be 1, ..., [‘”LJ' If RB/1/1

24(p-2)!
redundancy is selected for the subsystem, two different software versions and two
identical hardware components must be chosen.

5.2, Initial population

We set the initial population by randomly generating a set of chromosomes consisting
of genes, and calculate their fitness value according to the fitness function.

5.3. Selection

The chromosomes or population are sorted by their fitness values. The top 85% of the
population with high fitness values are selected for the crossover process.

5.4. Crossover

We randomly select two systems or chromosomes from the current population for
crossover, to produce two new chromosomes. Also we randomly select a subsystem for
crossover. The positions P} and P2 are labeled with bold font for crossover.
Example: 12|13|11|34
11|23]|35|44
Random subsystem=3,Pl1 =1,P2=2
Results: 1211335134
11)23]11]24
We select the highest 15% of the population with the maximum fitness values from
the cumrent population generation and combine with the best 85% from the crossover
to be the next population generation.

5.5. Mutation

Firstly, the current population generation is sorted by fitness values. Then, each
chromosome in the generation except the best 5 % is mutated with a mutation rate
which is usually less than 10%. The chromosomes resulted from mutation are
combined and considered as the chromosomes in the current population generation.
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5.6. Penally function

A dynamic penalty function (Ref. 10) is an etfective approach to deal with problems
with cost constraint.'® It is applied to the selected chromosomes that violate the
constraint (i.c., infeasible solution). For example, if the system cost is not grezter than
the “Cost™ constraint, no cost penalty is applied, else the cost penalty would be applied
to the objective function. Doing this, the selected infeasible solution search space is
explored and considered as local or temporarily solutions which may lead in finding
feasible global solutions.

6. Numerical Example

Table 5. Available components and their reliability estimates, variances, and costs.

Inputs
Gi.j) | HW HW HW G.%) SW SW SW
Costy l'é Variance-Factor Cosly, ﬁ Variance- Factor

¥ ha it i
11 30.0 | 0.995 4 11 300 0.950 3
12 10.0 0.980 5 12 10.0 0.908 2
13 | 10.0 | 0980 4 13 20.0 0.908 4
14 30.0 0.950 2
21 300 | 0.995 2 21 30.0 0.965 1
22 20.0 0.995 3 22 20.0 0.908 3
23 100 | 0970 1 23 10.0 0.887 3
24 20.0 0.908 2
31 20.0 0.954 4 31 20.0 0.978 4
2 30.0 0.995 1 32 30.0 0.954 |
33 100.0 { 0.992 2 33 20.0 0.860 2
34 30.0 0.954 3
41 30.0 0.990 2 41 20.0 0.950 1
42 10.0 ; 0.980 4 42 10.0 0.908 2
43 100 | 0985 1 43 20.0 0.910 3
44 20.0 0.950 7
51 300 | 0995 3 51 30.0 0.905 2
52 | 200 | 0.980 10 52 20.0 0.967 8
53 | 30.0 | 0995 1 53 10.0 0.967 1
54 30.0 0.905 5
61 300 | 0998 3 61 10.0 0.908 1
62 | 20.0 | 0.995 4 62 300 0.968 p
63 | 200 | 0.994 2 63 20.0 0.968 3
64 20.0 0.955 2

We select the problem originally solved by Wattanapongsakom et al * to provide an
example problem considering the reliability estimate and variance of reliability
estimate as multiple objectives. This example reliability optimization problem is a
series system with six subsystems, having n = 6, m; = 3, and p,; = 4. As an extension of




the previous work, the known component reliabilities used in the previous paper are
now considered as reliability estimates with an associated variance. The cormponent
costs are unchanged and considered in this optimization problem. Table 5 shows the
reliability estimate and its variance as well as cost of all the available components.

We apply this input data to our four-optimization models with various system
design cost constraints at 180, 320, 460 and also with unilimited cost constraint. The
penalty value (Variance Penalty), which is the weight of the variance of reliability
estimate, is set to 1.0 for various cost constraints, and is set arbitrarily to 0.1, 1, 2, 3, 4,
5, and 10 for the systern design cost constraint at 460. Other design conditions are Prv
= 0.004, Pall = 0.005 and Pd = 0.002. Their corresponding variance-factors (7) are all
equal to 20. The system design constraint is the maximum cost of 460. We apply a
genetic algorithm as our pptimization approach. The simulation results from our four
optimization models are presented in Tables 6-10.

From the GA results presented in Table 6 at various system cost constraints, we can
se¢ that with no cost constraint, each model can offer the highest system reliability
estimatc and the lowest variance of the reliability estimate compared to all the solutions
with low or high cost constraints. With a very tight cost constraint, where cost = 180,
the best possible obtained solutions are not as good as when the cost constraint is
relaxed to 320 or 460. Models 2, 3 and 4 cannot find solutions with component
redundancy, thus resulting to the same solution as obtained by model 1. The selected
component allocations are depicted in Table 7. Better solution means the solution with
higher reliability estimate and lower variance of the reliability estimate.

Model 1 {with no redundancy) offers system reliability estimate equal to 0.771324
and its variance equal to 0.057973 at cost constraints 320, 460 or unlimited. With
available component redundancy, models 2-4 can find better solutions than those
offered by model 1, resulting in higher system reliability estimates and lower variances.
At a certain cost constraint, model 4 (with RB redundancy) offers the best results
compared to those offered by the other models.

The corresponding cost for each component allocation result is displayed at Table
8. Each solution cannot have cost exceed the constraints. Compared to all the models
with no cost constraint, model 3 with NVP/1/1 redundancy offers its solution (with cost
= 810) which is much more expensive than from any other models, because more
resources are required.
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‘Table 6. Results from GA with variance penality = 1.0.

Model Est Cost = Cost= Cost= Cost=
mate 180 320 460 | Unlimited
1: No ETR(x)} 0.634367 | 0771324 | 0.771324 | 0.771324
Redundancy Var(ﬁ(x)) 0085324 | 0.057973 | 0.057973 | 0.057973
2: NVP/AV1 E[ﬁ(.t)] 0.634367 | 0.768547 | 0.815997 | 0.822285
) Var( ﬁ(.\:)) 0.085324 0.032869 0.027585 0.024927
R 0.634367 | 0.796081 0.810220 | 0.845683
3: NVP/I1 E[R(x)]
Var{R(x)) 0.085324 | 0.056880 | 0.025897 | 0.018535
4 RB/ E[R(x)] | 0634367 | 0.864831 | 0.509946 | 0.914409
) Var(l-t(x)) 0.085324 | 0.019187 | 0.005175 | 0.005879
Table 7. Component allocations for the results shown in Table 6.
Subsystern 1 | Subsystem 2 | Subsystem 3 | Subsystem 4 | Subsystem 5 | Subsystem 6
HW | SW |HW | SW |HW | SW | HW | SW | HW | SW | HW | SW
Cost = 180
Models 1-4 2 2 3 3 1 1 2 4 2 3 2 3
Cost = 320:
Model | 1 1 2 1 1 1 1 4 1 2 2 3
Model 2 2 1,24 2 1,23 1 1 2 4 1 2 2 3
Model 3 1 1 2 1 1 1 3 1,2,4 1 2 2 3
Model 4 2 2,3 2 2,3 ] 1 2 2.4 2 2,3 2 3
Cost = 460:
Model 1 1 1 2 1 1 1 1 4 1 2 2 3
Model 2 1 1,2,4 2 1,2,4 1 1 1 1,3,4 1 2 2 2.3.4
Model 3 2 11,23 3 |1.23 1 1 3 |1,24 1 2 2 1,34
Model 4 2 1.4 2 1,3 1 1.4 2 1,4 2 2,3 2 3.4
Cost = .
Unlimited:
Model 1 1 1 2 1 1 1 2 4 1 2 2 3
Mode] 2 1 1,34 2 [124] 1 1,2,4 1 1,34] 1 234 2 |234
Model 3 1 1,34 3 1,24 2 1,2,4 3 1,3.4 3 2,34 2 234
Model 4 1 1,4 2 1,2 1 1.4 2 1,4 1 2,3 2 2,3
Table 8. Costs of the solutions at various cost constraints.
Model Cost Constraint
180 320 460 Unlimited
1. No Redundancy 180 290 290 290
2. NVP/D/1 180 320 460 570
3. NVPI/ 180 320 460 810
4. RB/1/1 180 320 460 540
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To see the effect and relationship of system reliability estimate and its variance, we
apply another parameter calied variance penalty to the objective function that we intend
to maximize. The unchanging goal is io find the best solution with the Lighest
reliability estimate and the lowest variance of the reliability estimate. This is a multi-
objective function forrmlated in each of the models 1-4 that we aim to maximize.
When one objective is more important that the other objective, a certain solution would

be obtained correspondingly.

’ The value of the variance penalty was varied; 0.1, 1, 2, 3, 4, 5 and 10. Greater
variance penalty indicates higher effect to the obtained solutions, since a large value
will be subtracted from the objective function to be maximized. Table 9 presents the
GA results obtained for all the models with cost constraint 460 at each variance
penalty. From the table, each model offers its highest system reliability estimate when
variance penalty is the lowest at 0.1. However, the comresponding variances of the
reliability estimates are relatively high. With higher variance penalty, each model tends
to seek solutions with smaller variances of the reliability estimates; however at the
same time unavoidably causing the lower value of the obtainable reliability estimates.
This dependent relationship of reliability estimate and its variance is very significant
and attractive. Different solution or system design is preferred when the variance
penalty is varied. We can afford system design with high variance of reliability
estimate if the reliability estimation uncertainty (or variance) is not a critical issue.
Otherwise, for some systems that we cannot afford the uncertainty, we have the pay the
price with lower reliability estimate in order to minimize the variance.

Tablc 9. Results from GA with various variance penalty at cost = 460.

Variance Estimate Model } Model 2 Model 3 Model 4
Penalty No Redundancy NVP/ON NVP/1/] RB/1/1

E[R(x)] 0.772099 0.820891 0.818733 0.909946

0! Var(R(x)) 0.060387 0.050840 0.028837 0.006175

E[R(x)] 0.771324 0.815997 0.810220 0.909946

: Var(R(x)) 0.057973 0.027585 0.025897 0.006175

E[R(x)] 0.771324 0.815997 0.810220 0.909946

2 Var(R(x)) 0.057973 0.027585 0.025897 0.006175

E[R(x)) 0.771324 0.813501 0.810220 0.909946

} Var(R(x)} 0.057973 0.026650 0.025897 0.006175

E[R(x)] 0.771324 0.813901 0.810220 0.908700

¢ Var{R(x)) 0.057973 0.026650 0.025897 0.005863

E[R(x)] 0.771324 0.813901 0.810220 0.908700

3 Var(R(x)) 0.057973 0.026650 0.025897 0.005863

E[R(x)] 0.707602 0.813501 0.805867 0.908700

10 Var(R(x)) 0.047696 0.026650 0.025097 0.005863
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7. Summary and Conclusion

This paper analyzes and identifies system design cheices when component reliability
information is available in the forms of reliability estimate and variance of the
reliability estimate. The system design objectives are to maximize the system reliability
estimate and at the same time minimize its variance. These multiple objectives are in
contrast of one another. When one objective is more importance than another one, a
certain design choice is suggested. Therefore the system design decision depends on
the degree of importance of the objective function.

This is probably the first time that a technique to optimize reliability of system
using multiple software versions with different reliabilities and correlated failures is
proposed, as indicated the non-existence by Gutjahr et al.® We believe that our
reliability optimization of redundant systems consist of realistic assumption of failure
correlation between/among software versions.

We provide four practical optimization models for embedded system design
considering no redundancy (model 1) and with redundancy using NVP architectures
{models 2-3) and RB architectures (model 4). In our approach, we consider redundant
software with failure correlation. We apply a genetic algorithm with dynamic penalty
function to solve our case-study optimization problem, providing satisfying results.
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ABSTRACT: In this paper, we consider software system optimization design with Recovery Blocks consider-
ing uncertainty in component reliability estimate. The design objective is to maximize an estimate of system
reliability and also minimize the variance of the reliability estimate. Recovery Block is one of the most com-
mon fault-tolerant system architectures, and it is applied for system redundancy, if needed, in this system op-
limization research effort. We present an optimization model where the system has a senial configuration, and
sach of the subsystems has choices of with or without RB/1/1 redundancy; a single software fault and a single
hardware fault are tolerated. The model is designed under cost constraints. Qur model can be casily applied
for other types of fault-tolerant system architecture. This is the first time that a technique to optimize reliabil-
ity of a system using multiple software versions with different reliabilities and correlated failures is proposed.
We believe that our reliability optimization of redundant systems consists of realistic assumptions of failure

correlation between/among software versions.

I INTRODUCTION

In software system design, very often the informa-
tion of available components, such as component re-
liahility, is not known but can be approximated with
a degree of uncertainty. This is the case, particularly
when the system consists of new components with
few failure data recorded. Therefore the sys-
tem/component reliability is uncertain and can only
be approximated. Mean and variance of the sys-
tem/component reliability estimate are considered as
reasonable parameters to represent the reliability es-
timate and its confidence interval (Coit & Jin 2001).
Selecting components with high reliability uncer-
tainty would result in a designed system with high
reliability uncertainty. This is undesirable because
system designers and users seek an optimal system
design choice with high reliability estimate, while
the reliability uncertainty is low.

This paper describes an optimization model for
software system design with recovery blocks con-
sidering reliability estimation uncertainty. Recovery
Block (RB) (Laprie et al 1990) is one of the most
common fault-tolerant software system architec-
tures, where component redundancy is applied. This
meodel is an extended work from Wattanapongsakorn
and Levitan (2001) where component reliability is
exact and known.

We consider software systems that consist of both
software and hardware components. Failures of

software components/versions are the major causes
of system failures. To provide fault-tolerance to a
system, component redundancy is one of the most
common approaches. Thus, multiple software ver-
sions and hardware components are considered in
our optimization model.

Unlike most research papers, we provide a tech-
nique to optimize system reliability considering
software versions with different reliabilities and cor-
related failures. For many experimental studies, mul-
tiple software versions, which are functionally
equivalent, do have failure correlation even if they
have been independently developed (Dugan 1994,
Eckhardt et al. 1985 & Eckhardt et al. 1991). The
failure correlation may come from faults in the soft-
ware specification, faults from the voting algorithm,
and or related faults from any two software versions.
Our approach considers this correlation of failures in
formulating our optimization model.

The systems that we model are series-parallel
fault-tolerant systems. The redundancy allocation
problem for series-parallel systems is known to be
difficult (NP-hard). Many researchers have proposed
a variety of approaches to solve this problem using,
for example, integer programming, branch-and-
bound, dynamic programming, mixed integer and
nonlinear programming. Recent optimization ap-
proaches are based on heuristics such as Genetic Al-
gorithms (GA), and Tabu Search (TS). All of these
approaches were developed for either optimizing re-



liability for software systems or hardware systems.
In this paper, we consider systems consisting of both
software and hardware components. The software
failure behavior, which is different from the hard-
ware failure behavior, is considered.

GA 1s used as the optimization approach. The
term ‘genetic’ derives from the roughly analogous
natural re-producing new-born population by cross-
over and mutation. There are competitions among
the population; the stronger ones will survive to the
next generation and the weak ones will soon die out.
GA is a heuristic optimization model that has been
applied effectively to solve many difficult problems
in different fields such as scheduling, facility layout,
and graph coloring/ graph partitioning problems. It
is a stochastic algorithm with performance depend-
ing on the solution encoding, crossover breeding op-
erator, elitist selection and mutation operator.

Our optimization model is developed to select
both software and hardware components and the de-
gree of redundancy to optimize the overall system
reliability, with a total cost constraint. In the system,
there are a specified number of subsystems in series.
For each subsystem, there are several hardware and
software choices to be made. The system is designed
using components, each with estimated reliability,
but with known cost.

This paper is organized as follows. The assump-
tion and notation used in this paper are listed next. In
section 2, the software system design with recovery
block architecture is discussed. Section 3 provides
the concept of reliability estimation uncertainty. Sec-
tion 4 presents our optimization model to maximize
reliability considering uncertainty. Section 5 dis-
cusses the GA as our optimization approach. In sec-
tion 6, we demonstrate our model with an example
system, where reasonable and interesting results are
obtaincd and discussed.

ASSUMPTIONS

1) Each software component, hardware component
or the system has two states: functional or failed

2) Reliability of each software or hardware compo-
nent is unknown, but estimable

3) There is no failure repair for each component or
system

4) Hardware redundancy is in active mode (i.e. hot
spares)

5) Failure of individual hardware components are
statistically independent

NOTATION
RB/i/j system architecture RB with i hardware faults
tolerated and j software faults tolerated

n Number of subsystems in the series system

m; Number of hardware component types avail-
able for subsystem [/

pi Number of software versions available for

subsystem J

R Estimated reliability of the distributed system

R; Estimated reliability of the subsystem 7

Rhwj; Reliability of hardware component j at sub-
system

Rswix Reliability of software component & at sub-
system i

Chw;; Cost of using hardware component ;j at sub-
system

Cswic Cost of developing software version k at sub-
system §

Cost Maximum allowable cost {constraint)

Px Probability that event X occurs

Qx  Probability that event X does not occur; Qx =
I -Px

Pv;  Probability of failure of software version 7

Prv;j Probability of failure from related fault be
tween two software versions, i and j

P.n  Probability of failure from related fauli
among all software versions, due to faults in
specification

Pd  Probability of failure of decider or voter

Ph;  Probability of failure of hardware componen
1. If only one hardware is applied, Ph; = Ph
for all i

2 SOFTWARE SYSTEM DESIGN WITH
RECOVERY BLOCKS

2.1 Recovery Block (RB): RB/1/1 Architecture

The RB model consists of an adjudication module cal
an acceptance test, and at least two software compon
called alternates (Laprie et al. 1990, Lyu 1996), as i
cated in Figure 1. At the beginning, the output of the
or primary alternate is tested for acceptance. If it fails,
prucess will roll back to the beginning of the process,
then let the second alternate execute and test its ou
for acceptance again. This process continues until
output from an alternate is accepted or all outputs of
alternates have been tested and fail.

C_)

Hardware error conflinement ares

Software error confinement area

1dle version

Figure 1. RB/1/1 fauit-tolerant architecture.

RB/1/1 has a single hardware fault tolerated and a si
gle software fault tolerated. The system consists of twy
hardware components, each running two independes
sofiware versions; primary and secondary. The priman
version is active until it tails, and the secondary versioni
the backup spare. System failures occur when both vet



ions fail. or both hardware components fail. The prob-
bility that an unacceptable result occurs during a single
ask iteration, P is presented by Equation 1 where a;, k;;
nd h; values for RB/1/1 architecture are listed in Table 1.

p= Z[" [174, ] (1)

€l

vhere,

«= number of additive terms when all failure
probabilities have been enumerated; s = 6 for
this RB1/1 architecture

1 = integer coefficient
= component type set for ™ additive term

y= power coefficient for /" component reliability

~ mset C;

hy= power coefficient for 7™ component unreliability
in set C;

v; = unreliability of /" f)j” type of component

g; = reliability of /™ type of component, pitag=1
for allj

p; and g; definitions and comparisons with nota-
tion from Wattanapongsakom and Levitan (2001)
are as follows,

p=Prv ¢1=Qrv
p=Pd q:=Qd
Py=Pay q3=Qan
p+=Pv, qa=Qv|
ps=Pvz qs=Qv3
ps=Ph gs=Qh

Table 1. a,, &, and h; expressed in a matrix form for RB/1/1 ar-
chitecture.
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With RB/1/1 architecture. we develop an optimi-
zation model for a fault-tolerant embedded system
considering reliability estimates with uncertainty.
The components, which are available for the system
design, each has reliability estimation uncertainty
measured by the variance of the reliability estimate.

In the next section, we formulate equations for
system reliability estimate and variance for the reli-
ability estimate for the RB/1/1 fault-tolerant archi-
tecture. These equations will be used in our optimi-
zation model, discussed later in section 4.

3 RELIABILITY ESTIMATION UNCERTAINTY

Usually the exact component unreliability, p;, or re-
liability, g;, is not known. They are estimated from

life test data or field failure records. The estimatqd
p,or g, are used to replace the true but unknown in
Equation 1.

2[ TIvat ] @)

)€€,

Direct calculation of E[P] andVar(P) are diffi-
cult due to the coupling of p;and §,. Therefore,
Equation 2 has been rearranged, as follows.

p= Z[a,]’[(n -G g ] 3)

Equatlon 3 can be rearranged by expanding
(1-g; )™ terms, resulting in Equation 4.

p= E[b 4 ] 0

s\ AC,

where

t = number of additive terms after expansion, 7> s

b; = integer cocfficient

t is the number of terms after the expans<ion. b; and
n; are determined by grouping similar tenins. This
expansion procedure is conducted automatically us-
ing Matlab code based on the parameters in Table 1.
Due to the length of the expansion, detailed compu-
tational procedure is omitted. Table 2 lists all the
expansion results.

Table 2. n, and b; Expressed in a matrix form for RB/1/1 archi-
lecture.
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From the table, 1 = 25. Based on the coefficients
n;, b; and component reliability information, Equa-
tion 4 can be used to obtain the mean and the vari-



ance of unreliability . Together with the higher-
order moment information of component reliability
estimates, the mean and the variance of unreliability
P, can be obtained as follows (Jin & Coit 2001).

stﬁ1=i[b,1‘[m;- 1] (5)

i=1 J&C,

Vot = (g{qz[’];[‘ﬂéf" - Tl 1)‘]} .

©
zi{f,,b_[ a1~ T1adr e

i<w =Cn
where C.'m = C.' U C.'i

To show the relationship of reliability estimate
and variance of reliability estimate for each compo-
nent, we provide a few numencal examples. Table 3
lists component reliability estimates or unreliability
estimate values. These data are selected directly
from Wattanapongsakorn and Levitan (2001). Equa-
tions. 5 & 6 are also valid, as long as high moments
of component reliability estimates are known. With-
out loss of generality, it is assumed Bemoulli test
and applied binomial distribution theory was used to
estimate high moments (Jin & Coit 2001). n =[m,
12, N3, Na, Ns, Neé, 7N7] 1S a vaniance-factor vector, and
ni = integer. For example, when n = [6, 4, 2, 2, 4, 3,
6], the corresponding component variances are given
in Table 3.

Table 3. Parameters and definition of component’s variance of
reliability estimate.

Uanchability| Reliability | Varance of Reliabiliry Estimate
Estimate | Estimate

Prv=0.004 [Qrv=0.996 |Var(Prv)= (Prvx Qrv)/n, = 0.000664
d=0.02 Qd=0.98  |Var(Pd) = (Pdx Qd)/m; =0.0049

£="=0'005 1Q.=0.995 [Var(P,,) =0.0024875

Pv,=0.03> |Qv,=0.965 |Var(Pv,)= (Pv,x Qv,)/n, =0.016

Pvy=0.046 [Qv,=0.954 [Var(Pv;)= (Pvyx Qvayns = 0.012

Pvy=0.09  [Qvy=0.910 [Var{Pvi)= (Pvyx Qvi)/1js= 0.03

Ph=0.03 bh=0.970 |Var(Ph)= (Phx Qh)/n,=0.004

Table 4 lists four results with respect to different
component variance. It is shown that system unreli-
ability is unchanged even if component variances
vary as 7| changes. It can be observed that as com-
ponent variances become small, the overall vanance
of the system unreliability estimate 2 also decreases.

Table 4. Parameters of components and system unreliability P,
system unreliability estimate £]£], and system variance of unre-
liability estirnate Var(P).

n P E[aa] Var(P)
f,1,1,1,1,1,1] 0.05571 | 0.03716 | 0.03578
[2,2,2,2,2,2, 2] 0.05571 | 0.06317 | 0.02801
[8,8, 8,8, 8,8, 8] 0.05571 | 0.06068 | 0.00777

12,12, 12,12,12,12,12] | 0.0557} | 0.05925 | 0.00521

4 OPTIMIZATION MODEL

In this section, we present our optimization modej
for reliability of software systems. The objective is
to find the optimal set of software and hardware al..
locations for all subsysterns (with or without RB/ /Y
reflundancy). The problem formulation is to maxi.
mize the system reliability estimate, subjected to &
specified cost constraint, Cost. The system has alf
subsystems connected in series. This model is suiteg
for systems that handle relatively critical tasks. The
problem formulation for this mode! allow each sub
system to have RB/1/1 redundancy allocation as it
reliability estimate and variance of the reliability es
timate, calculated according to the RB/1/1 redun
dancy configuration. The parameters considered fo
the reliability of the RB/1/1 architecture are avail
able as component reliability estimate and varianc
of reliability estimate. Each allocated software vey
sion is allowed to have a different reliability esti
mated value, unlike several proposed models wher
all of the software versions have the same reliabilit
value (Lyu, 1996).

The problem formulation is to maximize systen
reliability estimate with its variance of reliability e
timate by choosing the optimal set of hardware an
software components for each subsystem by:

Max{ﬁ(x) - penalty (Var (fi(x))) } )
Subject to [i}gz 1 mrf_):ﬁ 1]0{?@: 2 andi\:ﬁ 2
2+ [ o] = J

5306+ 33%G < com

b et a4 irmd

X=02 Y=l i=l2..n j=li.p
ite)= [ 1)
Var(ﬁ(x)).-—- Eq.(8)
Rix)= 'zlzx,,r,m,km,
Var(ia,(;))= Eq.(9)
R(x)=1-Eq.(5) }

k=12

where

P,
ZY. =,
kal

if ix,=|.

if zix,=2 irﬁz

Var(ﬁ,(.t))= Eq.(6) 1=t |
The design objective is to identify solutions wi
very high reliability, but also with a low vanance
the reliability estimate. If the decision maker is ris
neutral, then the design objective is to maximize
reliability estimate. If the person is risk-avers
where the worst case with high variance of the re
ability estimate is unacceptable (i.e., highly critie
& life-dependent systems), then minimizing the va
ance i1s also an important design objective. O
approach is to consider the problem as a mul
criteria optimization: to maximize the system re
ability estimate and at the same time minimize t
variance. This approach was proposed by Coit &



Jin (2001). Another approach. which is our ap-
proach, is to penalize the estimation uncertainty by
penalizing the system reliability estimate with its es-
timation variance. The *penalty’ is a tunable parame-
ter based on a system dcsigner’s tolerance for risk,
i.e. actual reliability deviation from the estimate. By
penalizing the variance, the final solution represents
a compromise between high reliability and low vari-
ce.

5 GENETIC ALGORITHM OPTIMIZATION
APPROACH

GA requires that the system design (phenotype) be
encoded as a soiution vector (genotype). Then, ge-
netic operators (crossover, mutation) are applied
'over successive generations until the GA converges
to a solution or a pre-determined maximum number
of generations is reached.

3.1 Encoding

For an embedded (hardware and software) system
with n subsystems connected in series, the string en-
coding can be represented as :
H1 81 |H2S2|H383]| ... |HnSn

where Hi, with 0< i € n is the selected hardware
component for subsystem i, and Si is the selected
software component/version for the specified sub-
system.

5.2 Initial population

We sei Lise initial population by randomly generating a
set of chromosomes consisting of genes, and calculate
their fitness value according to the fitness function.

5.3 Selection

The chromosomes or population are sorted by their fit-
ness values. The top 85% of the population with high
fitness values are selected for the crossover process.

5.4 Crossover

We randomly select two systems or chromosomes
from the current population for crossover, to pro-
duce two new chromosomes. Also we randomly se-
lect a subsystem for crossover. The positions P1 and
P2 are labeled with bold font for crossover.
Example: 12|13]11|34
11|123135|44
Random subsystem=3,P1 =1,P2=2
Results: 12)1335|34
11|123]11)24
We select the highest 15% of the population with
the maximum fitness values from the current popula-
tion generation and combine with the best 85% from
the crossover to be the next population generation.

5.5 Mutation

The current population generation is initially sorted
by fitness values. Then, each chromosome in the
generation, except the best 5%, is mutated with a
mutation rate which is usually less than 10%. The
chromosomes resulted from mutation are combined
and considered as the chromosomes in the current
population generation.

5.6 Penalty function

A dynamic penalty function is an effective approach
to deal with problerns with cost constraint (Coit et
al. 1996). It is applied to the selected chromosomes
that violate the constraint (i.e. infeasible solution).
For example, if the system cost is not greater than
the “Cost” constraint, no cost penalty is applied, else
the cost penalty would be applied to the objective
function. Doing this, the selected infeasible solution
search space is explored and considered as local or
temporary solutions which may lead in finding fea-
sible global solutions.

6 AN EXAMPLE SYSTEM: DESIGN AND
SIMULATION RESULT

We select the problem originally solved in Wattan-
apongsakom and Levitan (2001) to provide an ex-
ample problem considering the reliability estimate
and variance of reliability estimate as multiple
objectives. This example reliability optimization
problem is a series system with six subsystems,
having n = 6, m; = 3, and p; = 4. As an extension of
the previous work, the known component
reliabilities used in the previous paper are now
considered as reliability estimates with an associated
vanaince. The component costs are unchanged and
considered in this optimization problem. Table 5
shows the reliability estimate and its variance as
well as cost of all the available components.

We apply this input data to our optimization
model with various system design cost constraints at
180, 320, 460 and also with unlimited cost con-
straint. The penalty value (variance penalty), which
is the weight of the variance of reliability estimate is
set arbitrarily to 0.01, 0.1, 1, 2, 3, 4, 5, 10 and 100
for various system design cost constraint i.e. 180,
320, 460 and unlimited. Other design conditions are
Prv = 0.004, Pall = 0.005 and Pd = 0.002, with the
corresponding variance-factors (#) each is equal to
20. We apply a genetic algorithm as our optimiza-
tion approach. The simulation results, each is based
on 10 runs, are presented in Tables 6-11.



Table 5. Available components and their reliability estimates,
vanances, and costs.

Inputs
L)[HW [HW [ HW [GW| SW | SW | SW
Cost; R, Variance- Costy | p | Varimce-
Factor n, 4 | Factor

i1 | 30.0 [ 0.995 4 11 [ 30.0 |0.950 3
12 | 16.0 | 0.980 3 12 | 10.0 10.908 2
13 | 10.0 | 0.980 4 13 | 20.0 |1 0.908 4
14 | 30.0 10.950 2

21 | 30.0 | 0.995 2 21 | 30.0 [0.965 1
22 | 20.0 ] 0.995 3 22 | 20.0 10.908 3
23 | 10.0 1 0.970 1 23 | 100 [0.887 2
24 [ 200 [0.908] 2

31 | 20.0 | 0.994 4 31 | 20.0 [0.978 4
32 | 30.0 | 0.995 1 32 | 30.0 10.954 1
33 [100.0] 0.992 2 33 | 20.0 |0.860 2
34 | 30.0 |0.954 3

41 | 30.0 | 0.990 2 41 | 20.0 [0.950 1
42 | 10.0 | 0.980 4 42 | 10.0 10.908 2
43 | 10.0 | 0.985 1 43 | 20.0 [0.910 3
44 | 20.0 10.950 7

51 | 30.0 | 0.995 3 51 | 30.0 |0.905 2
52 | 20.0 | 0.980 10 52 | 20.0 10.967 8
53 | 30.0 : 0.995 1 53 1 10.0 [0.967 1
. 54 | 30.0 (0.905 5

61 | 30.0 | 0.998 3 61 | 10.0 {0.908 1
62 20070995 4 62 | 30.0 [0.963 2
63 | 20.0 | 0.994 2 63 | 20.0 |0.968 3
64 | 20.0 [0.955 2

From the GA results presented in Table 6 at van-
ous system cost constraints, we can see that with no
cost constraint, each model can offer the highest sys-
tem reliability estimate and the lowest variance of
the reliability estimate compared to all the solutions
with low or high cost constraints. With a very tight
cost constraint, where cost = 180, the best possible
obtained solutions are not as good as when the cost

constraint is relaxed to 320 or 460. With a2 more re
laxed cost constraint, better solutions can be ob
tained. The selected component allocations for th,
corresponding cost constraints are depicted in Tab},
7. Better solution means the solution with higher re
liability estimate and lower variance of the reliabilit
estimate.

From Table 7, at cost 180, no component redun
dancy can be obtained, indicated by a software ve;
sion and a hardware component selected for eac
subsystem. At highsr cost constraints, the resull
show replicated software and hardware component
allocated, for examples, at subsystems 1, 2, 4, and §

Table 6. Optimization results from GA with variance penalty = 1.0,

Estimate | Cost = 180 | Cost = 320 | Cost = 460 UC‘?S'_‘
E[R(x)] | 0.632460 | 0.862231 | 0.909249 | 0.914257
Var(R(x)) | 0.090987 | 0.019648 | 0.006210 | 0.005914

The GA optimization results with arbitrary value
of variance penalty at system cost constraints equs
to 180, 320, 460 and uniimited are depicted in T;:
bles 8, 9, 10, and 11, respectively. From the resulty
at a certain cost constraint, the GA seeks for solv
tions with less vanance of the reliability estimai
when the vanance penalty is set higher. Howeve
these solutions also have lower reliability estimate :
well. In other words, system design choice with hig
reliability estimate also has high variance. The di
sign choice with high reliability estimate can be ol
tained when the uncertainty or variance of the rel
ability estimate is affordable i.e. when the variang
penalty is not significant.

Table 7. Component allocations for the results shown in Table 6.

1| Subsystern2 | Subsystem 3 | Subsystem4 | SubsysternS | Subsystemn 6
Cost i=1 i=2 =3 i=4 i=5 i=6

HW| SW |HW | SW | HW [ SW | HW | SW | HW | SW | HW | SW

i=l k=] = k=] 3=l k=] j= | k= j= | k=] j= | k=

180 2 2 3 3 1 2 4 2 3 2 3

320 2123 2 23 1 2 4 2 23 2 3
460 2| 14 2 13 1 14 2 14 | 2 23 2 34
unlimited| 1 | 14 2 1,2 1 14 2 14 1 23 2 23

Table 8. Optimization results from GA with various variance

Table 9. Optimization results from GA with various varian
enalties at cost = 320,

nalties at cost = 180.

Variance 5 -
Penalty E[R(x)] Var(R(x))
0.01-0.1 0.635687 0.090987
1-3 0.632460 0.085178
4 0.632460 0.085178
5 0.632460 0.085178
i0 0.632460 0.085178
100 0.604499 0.083446

Variance

E[R(x)} Var(R(x))
Penalty

0.01 0.862231 0.019648
0.1 0.862231 0.019648
1-3 0.862231 0.019648
4 0.862231 0.019648

5 0.847706 0.015310
10 0.847706 0.015310
100 0.847706 0.015310




Table 10. Optimization results from GA with vanous variance
penalties at cost = 460.

Vanance EJR(x)) Var( i;'l £ 3] I
Penalty
0.01-0.1 0.909249 0.006210
1-3 0.909249 0.006210
E 4 0.90392-_1 0 005898 -

5 0.908004 0.005898
10 0.903004 C.005893
100 0.906183 0.005796

able 11. Optimization results from GA with various variance
Ities 2t cost = unlimited

Variance 8 g By
Penalty ELR(x)] Var(R(x))

0.01 0.914486 0.006675

0.1 0.914257 0.005914
1-3 U.914257 0.005914

4 0.914257 0.005914

S 0.914257 0.005914

\ 10 0.913637 0.005779
| 100 0.909938 0.005572

7 CONCLUSION

This paper analyses and identifies system design
choices when component reliability information is
available in the forms of reliability estimate and
vanance of the reliability estimate. The system de-
sign objectives are to maximize the system reliabil-
ity estimate, and at the same time, minimize its vari-
ance. These multiple objectives are in contrast with
one another. When one objective is more importance
than another one, a certain design choice is sug-
gested. Thercfore the system design decision de-

p=nds on the degree of importance of the objective
function.
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Abstract

This article presents Genetic Algontim (GA)
techniques with dynamic penalty function for solving the
reliability optimization problem for embedded (hardware
and software) systems, considering redundancy
techniques with N-Version Programming and Recovery
Blocks, and various system cost constraints. This is the
first time that GA is applied to optimize to this type of
systems, where related faults or dependency in software
components/versions are considered. It is our extended
work from [6] where Simulated Annealing was applied
to the problem with nc guarantee for optimal solutions.

GA is a suitable approach since it provides
robustness and efficiency in solving combinatonial
optimization problems with large, and complex search
spaces. The solutions are compared with a non-linear
programming technique, where optimal solutions can be
obtained and identified.

Keywords: Genetic  Algorithm,  Optimization
Techniques, Embedded System, and Reliability Analysis

1. Introduction

Critical systems such as spaceships, airplanes, and
nuclear power plants require high system reliability.
Redundancy techniques are typical approaches to
enhance systemn reliability. For embedded system
redundancy can be achieved by applying extra copies of
hardware and software components in parallel fashion to
share the system workload or prevent some system
faults. This technique does not only raise the reliability
higher, but also increase the system cost. The problem
occurred when there is restricted cost and very high
system reliability is required. Hence several researchers
attempted to propose the techniques on how to select
appropriate components and how to connect/configure
them in the system.

Existing optimization approaches, for examples,
are integer programming, dynamic programming, mixed
integer and non-linear programming and heuristics (such
as Genetic Algorithm (GA), and Simulated Annealing
(SA)).

In the next section, we give an overview of related
works in reliability optimization, Section 3 discusses
the embedded system architectures N-Version
Programming (NVP) and Recovery Blocks (RB).
Section 4 presents the Genetic Algorithm with penalty
function concept. Then in section 5, we explain our
research methodology in details. Section 6 presents our
optimization results with the GA, compared to Lingo [4]

results (a non-lincar programming software). Lastly,
section 7 concludes and summarizes our research.

2. Related Works

An early research group, Fyffe et al [1], applied a
computational algorithm called dynamic programming,
to solve reliability problem in 1968. In 1977, Tillma et al
[2] proposed a mixed-integer and nonlinear
programming to solve 2 redundancy allocation problem.
Then in 1987, Kuo et al [3] represented a branch-and-
bound technique to optimize reliability with Lagrange
multiplier technique. All of these woiks obtained the
optimal solutions for the problems. For the problems
with large search space, very long computation time was
required to get the solution. Thus, many researchers
prefer to use heuristic algorithms to solve this kind of
problems instead.

Recently, heuristic approaches have received a
great attention. For examples, in 1996, Coit and Smith
[5] presented Genetic Algorithm to optimize the
reliability of series-parallel systems. In 2001,
Wattanapongsakom et al [6] used Simulated Annealing
(SA) to optimize software and hardware reliability for
fault-tolerant distributed systems considering related
faults or system dependency. However, the optimal
solutions are not guaranteed by the approach.

One significant advantage of the beuristic
algorithms is the efficiency or speed to find feasible
solutions. Even though optimal solutions are not
guaranteed, the algorithms usually provide good
solutions, and often they are optimal solutions.

In this paper, we use GA with dynamic penalty
function to find the optimal component allocation for
embedded systems with software and hardware
components considering redundancy and cost
constraints. Comparing the results with the result from
Lingo [4], commercial non-linear programming
software, we verify that our GA approach can provide
optimal solutions. The notations and acronyms u.sed
throughout this paper are as follows:

P,  Probability that event x occurs

O, Probability that event x does not occur; Q, = 1-P,

Pv, Prob. of failure of software version i, Qv, = /- Py,

Prv; Prob. of failure from related fault between 2
software versions i and j, Orv, = I- Prv,

P.; Prob. of failure from related fault among all
software versions, due to faults in specification,

Qo = 1- Pay
P, Prob. of failure of decider or voter, @; = I- Py
Ph; Prob. of failure of hardware component i, Oh; = /-

Ph;



R Estim: ' ~d reliability of system

R Estim:: :d reliability of subsystem ¢

REw; Reliab. ity of hardware component j at subsystem i

Rsw; Reliabiiity of software component j at subsystem i

C Cost of system

Cost Affordable Cost

n Number of subsystems within system

m;  Numbecr of hardware component choices available
for subsystem i

P Numl:er of software component choices available
for subsystem i

Xy  If hardware component j at subsystem i is selected
Xy= 1 else X,} =0

Y;  If software component j at subsystem 7 is selected
Y,-j= 1 else Yu =0

3. Embedded System Architectures

N-Version Programming and Recovery Blocks are
the fundamental fault-tolerant embedded system
architectures.

Hargware error

con arca

Software error
confinerment area
EEERERER

Idle version

Figure 1: Embedded System Architectures [7-8]

3.1 N-version Programming (NVP) Architecture[7-8]

The system consists of parallel execution of N
independently developed functionally equivalent
software versions with adjudication, called a voter, of
their output modules. ¥ is usually an odd numter. In this
model, all N software versions are executed (on
hardware resources) for the same task generally at the
same time, and produce their outputs to the voter. Then
the voter uses the majority of the outputs to determine
the correct or the final output of the system.

3.1.1 NVP/0/1 Architecture

This model consists of three independent software
components (or three different software versions)
running in parallel on one-hardware component, as
shown in Figure 1. It provides zero hardware fault
tolerated (since no redundancy in hardware) and one-
software fault tolerated (since 2 out of 3 software

versions are required to be functional. The failure of 1
software version would be lead the system to failure).

(6] The model wareliability (Pft) or 1-R{1)) is given by

Prviz + (Qrvyz Prvig} + (Orvis Orvys Prvyy)
+ (Qrvy2 Orvyy Orvas Py + (Qrvy Qrv; Orvay Qg Py
+ (Orviz Orvis Orvas Qs Qun Py
+ [(Qrvi2 Orvis Orvas Oy Oun Q) X [(Pv; Pyvy)
+ (OQv; Pv: Pvy + (Qv, Pv; Pvy)]] (1)

3.1.2 NVP/1/1 Architecture

This model consists of three independent software
components (or three different software versions), each
running on an independent hardware component (could
be the same type), as shown in Figure 1. The model
provides one-hardware fault tolerated and one-software
fault tolerated. The model unreliability (P(t) or I-R(®)) is
given by (6]:

(Prv + Orv Prv + Or’ Prvsy) + (Orv' Py
+ Qs Pay) + (Pv, Py, Os Qan
+ Pv) Pvy Qv: Orv’ Q4 Ouy
+ Pv; Pv; Qv, Qa Our)

+ Qv2 Ovy Pv; Orv' Q4 Qun Py Oy
+ Orv’ Q4 Qun Py’ Oy (1-Pvy) (1-Pv, Pv,)
+ Ov) Qv: Py Orv' Qu Qut Py’ On
+ Orv’ Q4 Qun Py’ Qu(1-Pv3) (1 -Pv; Pvy
+ QOv, Ov; PV:jQ"V" O Qan Py On
+ Q4 Oun P Ou(1-Pvy) (1-Pv; Pvy
+ 2(Pv; OQv: Qvy Orv’ Quy O Py OF

+ 2(Qv1 Pv; Qv; Orv’ Qui Qa Py On
+ 2(Qv; Qv: Pvs OV’ Qun Qa P O)) 2)

where Prv,> = Prv,;;=Prv.;=Prv, and Ph,=Ph,=Ph;=P,

3.2 Recovery Block (RB) Architecture[7-8]

This model is different from the NVP models. The
RB model uses an adjudication module called an
acceptance test. It begins when the output of the first or
primary module is tested for acceptability. If it is not
acceptable, it rolls back to the state at the beginning of
the process and the second module will execute and
evaluate its output for the acceptance. If the outputs from
all modules cannot pass the acceptance test, the system
fails.

3.2.1 RB/1/1 Architecture

This model consists of two hardware components
(could be the same type) each running two independent
software components (must be two different software
versions called the primary and the secondary). The
model provides one-hardware faults tolerated and one-
software fault tolerated. The model unreliability (P{1) or
I-R(1)) is given by[6]:

Prv + Orv Py + Orv Q4 Pay + Orv Q4 Qoy Phy Ph:
+ Orv Q4 Quy (1-Phy Phy) Pv; Pvs 3)



4. Genetic Algorithm with Penalty Function [9-11]

Genetic  Algonthm  (GA) is  a  stochastic
optimization technique that uses the biological paradigm
of evolution. GA was developed by John Holland [10]. It
has a concept where good chromosome has a better
potential of being carried 1o the next generation than the
bad chromosome. It uses mathematical principle to
indicate which chromosome is better or worse than the
vthers are.

Firstly, to use GA we must encode the solution of
problem into stning called “chromosome™ and ecach string
has its unique characteristic inherited by “zene”. Each
chromosome is evaluated by a fitness function to
indicate its potentiality toward the final solutions. The
desirable fitness function value is depended on the
problem (maximization/minimization).

After that we must generate an initial population
(a set of chromosomes), and use the three main operators
to find the best solution, as described next.

Step |: Selection operator: The process of
selecting potentially good chromoesomes from the current
population generation to the next generation.

Step 2: Crossover operator: The process of
shuffling any two randomly selected chromosomes to
generate the new offspring (like breeding).

Step 3: Mutation operator: The process that
randomly selects one chromosome to change one or
more genes into random value for generating the new
offspring.

Step 4: Repeat step 1-3 until the goal is reached.

Traditional GA is not quite suitable for
optimization problems with constrainls. A major
effective approach to deal with constraints is to apply a
penalty to the chromosome when it falls outside a
constrained search space (i.c., the solution that violates
the constraint). The penalty is applied to reduce the
fimess value of the chromosome.

There are many possible strategies for penalty
function. The effective approach is used a distance
metric of infeasible solution from the feasible region to
calculate the penalty value.

In 1996, Coit and Smith proposed the adaptive
penalty function for combinatorial reliability design [11).
This penalty function is dynamic. Their adaptive penalty
function from [11] is:

V= Vi— ((Aw/NFT) + (Ac/NFT)) (Var- View) (4)

where ¥, is the penalized objective function value of the
solution £, ¥, is the unpenalized objective function value
for solution i, ¥, denotes the unpenalized value of the
best solution yet found, and V,,, denotes the value of the
best feasible solution yet found. The k is a pre-set
severity parameter. NFT. and NFT, are the “Near-
Feasible Thresholds™ for the cost and weight constraints
respectively. And Aw, and Ac, represent the magnitude of

any constraint weight and cost violations for the
solution vector.

The dynamic NFT is defined as follow [11],
NFT = NFT/(i+Ag) (5

where NFT, is an upper bound or starting point for NFT,
g is the geperation number, and 4 is a constant, which
assures that the entire region between NFTO, and zero is
searched.

5. Methoilology

In this research, we select the Genetic Algorithm
with adaptive penalty function to optimize the reliability
of embedded systems. We consider four different models
from [6].

Model 1: Find all the optimal set of software and
hardware without redundancy. Maximize the system
reliability with a specified cost constraint.

Model 2: Find all the optimal set of software and
hardware with or without NPV/0/1 redundancy.
Maximize the system reliability with a specified cost
constraint.

Model 3: Find all the optimal set of softwarc .ad
hardware with or without NPV/1/1 redundancy.
Maximize the systemn reliability with a specified cost
constraint.

Model 4: Find all the optimal set of software and
hardware with or without RB/1/1 redundancy. Maximize
the system reliability with a specified cost constraint.

We apply the GA to these four models by
following these five steps:

5.1 Encoding

For example, an embedded (hardware and
software) system with three subsystems comnected in
series can be represented with a string:

H1 S1|H2 S2|H3 S3

where Hi is the selected hardware component for
subsystem i, and Si is the selected software
component/version for subsystem i.
Suppose you have n choices of hardware components
and m choices of software components/versions for each
subsystem.

Model 1: Hicanbe 1..n and Si can be 1..m.

Model 2: Hi can be 1.n and Si can be 1I..
[,,H_'"—’_]. If NVP/O/1 structure is selected for

3ta-3)!

the subsystem, three different software versions are
chosen.

Another example: If we have four versions of
software.
1/2/3/4 = choose software version 1,2,3 4 respectively
5 = choose software version 2,3,4 (software version | is
not chosen)
6 = choose software version 1,3,4 (software version 2 is
not chosen)
7 = choose software version 1,2,4 (software version 2 is
not chosen)



8 = choose software version 1,23 (software version 4 is
not chosen)

Model 3: it is similar (0 model 2. Hican be /.n

and §i can be 1. _m! i
[... . _3)_'] But if NVP/1/1

structure is selected for the subsystem, three different
software versions and 3 identical hardware components
are chosen.

Model 4: Hi can be /.n and St can be 1.

0 |.1 / i

[m + Titm _2)!] f RB/1/1 structure is selected for the
subsystemn, two different software versions and two
identical hardware components are chosen.

5.2 Initial Population
We set the initial population by randomly
generating a set of chromosomes consisting of genes,

and calculate their fitness value according to the fitness
function.

5.3 Selection

The chromosomes or population are sorted by their
fitness values. The higher 85% of the population with
high fitness values are selected for the crossover process.

5.4 Crossover
We randomly select two systems or chromosomes
from the current population for crossover, to produce
two new chromosomes. Also we randomly select a
subsystem for crossover. The positions P1 and P2 are
labeled for crossover
Example: 12|13|11}34
1112335144
Random subsystem= 3, Pl =1,P2=2
Results: 12|13|35(34
11(23]11]24
We select the highest 15% of the population with
the maximum fitness values from current population
gencration and compose with the best 85% from the
crossover to be the next population generation.

5.5 Mutation

Firstly, the current population generation is sorted
by fimess values. Then, each chromosome in the
generation except the best 5 % is mutated with Mutation
rate usually less than 10%. The chromosomes resulted
from mutation are combined and considered as the
chromosomes in the current population generation,

5.6 Objective Function
Our objective Function is defined as follows:

Max R = ﬁ R; (6)
i=1
C= i nZl'X._,CU + i E_L ¥;4C;x s Cost N
ialj=1 i=lk=1

where R = 3 E XoYaRhwy Ry, if  withowt
ralthk=1
recundancy

R, =(1) ,ifuse NVP/ON (8)
R, =(2) . ifuse NVP/1 e
R,=(3) . ifuse RB/IN (10)

where X; = 0,1 Y, =01 i=12,...n j=12,...m and
k=12, .p

If C > Cost, we use dynamic penalty function
which is an effective approach to deal with constrains. It
is applied when some chromosomes are infeasible. If
Cost 2 C, penaity(x) = 0, else the penalty function would
be applied to the objective function according to
equation (4), where k =1 instead. We do not have Aw; ,
therefore the equation (4) is changed o

Vip= Vi = (Ac/NFT) (Vi Vyeud (1

We simplify the equation (5) to be as follows:

NFT,.) = ANFT, (12)

where NFT, is NFT for generation g, and 4 is a constant.

6. Example Systems and Computational Results

As an example, we select a series system with 6
subsystems, where m; =3 and p, =4 fori=1, 2, ...,6, to
test our four optimization models with the GA approach.
We assume that P, = 0.002, Prv, = 0.004, and Py =
0.005. We define the population numbers to be 350,
mutation rate of 1 percent, NFT, = 1000 and 1 = 0.8,

We get the information of hardware and software
components from [6]. The cost and reliability of each
software and hardware component are shown in Table 1.

With our four models, we optimize solutions for 3
different cost constraints; 180, 320, 460 and without cost
constraints. We also apply the problem with Lingo,
commercial non-linear programming software. It
identifies if its obtained solution is “Global Solution™ or
“Local Solution™. At costs = 320, 460 and unlimited,
Lingo gives global solutions or optimal solutions. Our
results with GA and the result differences compared to
Lingo are shown tn Table 2.

From Table 2 we can see that the results from GA
are very close to the results from Lingo. At cost
constraint equals to 180, the differences between GA and
Lingo are, however, undeniable. From our calculation,
Lingo generates the wrong results, since the cost of the
results equals to 200. The reason might be that Lingo
couldn't reach to the global solution when the constraints
are very tight.

Next step, we run ten GA simulation runs for each
model and each cost constraint. We find that the results
are not exactly the same in each run. The variations of
the results, which are very small, are shown in Table 3.



(ij) | HW HW (ik) | SW SW
Cost | Reiiability Cost | Reliability
1.1 30 0.995 L1 30 0.950
1,2 10 0.980 1,2 10 0.908
1,3 10 0.980 1.3 20 0.90%
1,4 30 0.950
2,1 30 0.995 2,1 30 0.965
2,2 20 0.995 2,2 20 0.90R
2.3 10 0.870 23 10 0.887
24 20 0.908
3.1 20 0.994 3,1 20 0.978
3,2 30 0.995 3,2 30 0.954
3.3 100 0.992 3,3 20 0.860
3.4 30 0.954
4,1 30 0.990 4,1 20 0.950
4,2 10 0.980 4,2 10 0.908
4,3 10 0.985 43 20 0.910
4.4 20 0.950
5,1 30 0.995 5,1 30 0.905
5,2 20 0.980 5,2 20 0.967
5.3 30 0.995 5.3 10 0.967
54 30 0.905
6,1 30 0.998 6,1 10 0.908
6,2 20 0.995 6,2 30 0.968
6.3 20 0.994 6,3 20 0.968
6,4 20 0.955
Table 1: The cost and reliability of each software and
hardware component [6]
Model | Cost 180 | Cost 320 | Cost 460 |Unlimited
1 0.635687 | 0.772099 | 0.772099 |0.772099
(1.4e-2) (@ ©) (0
2 0.635687 | 0.793362 | 0.818126 (0.820888
(-3.2¢-2) (0 ()] (9)
3 0.635687 | 0.791116 | 0.815219 |0.838132
(32e2) | (0) 0 0
4 0.635687 | 0.8381536 | 0.923596 |0.925244
(-3.2¢-2) © ©) @

differences compared to Lingo

Table 2: Results of System Reliability from GA and the

Model | Cost 180 | Cost 320 | Cost 460 | Unlimited
1 3.34e-5 0 0 0
2 0 0 0 0
3 0 6.40e-6 | 7.39e-7 0
4 0 1.82e-6 | 2.23e-8 1.47e-8
Table 3: Variant of the results from GA with Dynamic
Penalty function

7. Conclusions

Comparing the GA optimization results with the
LI_NGO results, we can conclude that our GA approach
w:tl_1 the dynamic penalty function is able to find some
opt_lmal solutions for the embedded system design. Due
to its heuristic characteristics, the GA has great potential

to handle very large and complex combinatorial
problems with tight constraint.

Each of our optimization models (1-4) is
suitable for distinct sets or conditions. Models 2-4
provide system fault-tolerance with NVP/0/1, NVP/1/1
and RB/1/1, respectively. The models help us find the
optimal system structures while considering basic
information on reliability and cost of the available
software and hardware components.
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