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Abstract

This paper presents an empirical result of using two
thread placemeni algorithms for load balancing and
adaptive parallelism in non-dedicated environments. The
first algorithm called MC places threads on nodes so
parallel load is balanced and thread locations incur
minimum inter-node communication. The second
algorithm called LS relates thread's computation and
communication to approximate balanced load and uses a
simple hill-climbing algorithm to find optimized thread
locations.

Our results showed that MC outperformed LS in all
cases bur both algorithms wenumugaaduadapuvc
parallelism when the number of available nodes is high.
Later, we found that the small improvement in MC and LS
was caused by time-sharing effects on non-dedicated
nodes as performance of the modified algorithm to avoid
such effects, called MC®, was consistenily higher than
adaptive paml!ellm MC* achieves 85-90% of ideal
speedups by average in all of our tests.

1. Introduction

Shared-memory machines and applications become
increasingly popular as business izations buy more
affordable, small-scaled parallel technologies, such as
SMPs, multi-core CPU machines, and small clusters of
SMPs, for their enterprise computing. Traditional parallel
folks suggest users to avoid non-dedicated executions, e.g.
not to run parallel program with another guest program,
for a good reason—to achieve high performance and avoid
time-sharing effects [8].

Nevertheless, since new technology keeps increasing
CPU speed. more work can be processed quickly and it is
more cost-effective to share CPUs most of the time. Time
sharing in paralle] eonpunng has benefits such as reducing
Job wait time and increasing ovenall throughput
Unforunately, it is the interaction between parallel
applications and operating systems that degrades parallel
performance. Thus, our research goal is o find an
efficient, practical, and casy o use paraliel development
wols 1 solve this problem.

As guest processes demand resources at variable rate
lnddynamlcally mqmmndlﬂemtnm.lold
balancing in non-dedicated environments is more complex

*This work was supported in Thailand Research Pund
(PDF7225e4) pastby

than in other environments [6]. Well-known solutions are
in one of the three approaches: avoiding any guest process
at all time, load balancing and scheduling, and adaptive
pnnllel:smtlntcombmestheoﬂlerappmachestogcther

First, the avoidance approach requires parallel system
software to relocate parallel computation from non-
dedicated to dedicated nodes. At runtime, images of a
running application must be able to move on the fly.
Condor [9] is the first system to use this approach and
utilize idle workstations aggressively. The worst case of
Condor occurs when no more dedicated nodes can be
found in a cluster. In fact, we do not think this approach
fits well the execution environment on SMPs and a small
cluster of workstations s0 we will not discuss this
approach here.

Second, the load balancing approach adopts many
techniques from traditional paralle]l researches [10]. This
approach attempts not to avoid non-dedicated nodes but to
reduce negative effects of commmunication bottleneck and
imbalance computation caused by resource sharing among
nodes. Typically, this application-specific approach was
considered difficult for novice users and many researchers
could not obtain speedups in non-dedicated environments.
Several also studied sources of the problem and showed
that not only computation load must be balanced some
enhancements such as co-scheduling and optimized global
:yncluoniutionueneededmuethismhefﬁcienﬂy
1].

Third, adaptive parallelismm merges load balancing and
load avoidance approach into a state-of-the-art approach.
Piranha [4], for example, balanced parallel load only on
nodes not affected by guest processes. Using adaptive
parallelism, parallel applications must be able to adjust
portions of local computation freely on a set of nodes,
resulting in a dynamic change of the number of nodes.
Unlike Condor, adaptive parallelism does not explore extra
dedicated nodes more than what an application has at the
moment of its adaptation. This way the application keeps
load in balance and effectively avoids non-dedicated nodes
at the same time. Adaptive parallelism has one drawback:
application performance is always bounded by the number
of nodes that the application can use. This leads us to an
interesting question: Can load balancing approach really
outperform adaptive parallelism approach? In this paper,
we compare effectiveness of the two approaches using our
thread placement algorithms under the same condition.
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Figure 1: MC balances computation and minimizes communication in separution.

2. Algorithms and mechanisms

We modified DCVM, a software distributed shared
memory system (DSM), that supports coarse-grain
dynamic load balancing using thread migration [12]). To
allow adaptive parallelism like in Piranha, DCVM must be
able to move all threads out of a node and produce an
empty node that needs no CPU cycles. However, under
lazy-released pratocol [7] used by DCVM, remote threads
may delay shared-page requests to empty nodes. Thus, on
every empty node, DCVM must create a skeleton thread 10
help processing an incoming page request and the skeleton
thread is put to sleep as soon as the page request is done.
Next, we implemented two thread placement
algorithms that compute thread configurations with a
possibility of node expansion or reduction. Figure 1 shows
the first algorithm called MC. MC evaluates computation
capacities on local nodes (step 1 and 2). Then, it applies
MINCOMM algorithm to put individual threads on nodes.
Details of MINCOMM can be read in [11). The second

: a set of nodes

G, ; 8 set of threads on node |
G, :thread jon nodei

N : & set of highes! load nodes

algorithm called LS used a simple hifl-climbing to search
all thread location candidates for the best with minimum
Joad imbalance. Figure 2 shows the definition of LS.
Basically. a simple load model, L, is used to approximate
local computation and communication delay of various
attempis to move a thread from a heavily-loaded node to
other nodes. The approximate load is a linear proportion of
computation and communication numbers against the sum
of correlation value (Cli,f]) used in [14]. Note that current
LS search does not utilize look-ahead iteration. Similar to
MC, LS may not find an optimal solution due to the use of
hili-climbing and no structure to guarantee whether local
maxima are also global maxima.

3. Experimental resuits

We ran eight shared memory parallel applications on four
266 MHz Pentium-1I, 256 MB Linux PCs connected by
Myrinet gigabit switch and collected performance numbers
under three different arrangements. Table 1 and Table 2
list the shared memory parallel applications and details of

€Cl{j] : value of comrelation between thread { and thread / captured st runtime by DCVM (see) {14]
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Table 1: Parallel applications used in our suite

Shared
Applications Pl'Soil;Lesm Pages |Epochs It:;:tlﬁ)lns
(8K/page)
ADI 64K 2320 12 24
EXPL 512x512 2512 12 24
FFT 64x64x128 3587 12 12
Gauss 2048x2048 2050 12 48
Spatial 4096 mols 399 12 12
OR 2048x2048 4097 12 12
SWM 512x512 2005 12 24
Water 512 mols 43 12 12

Table 2: Non-dedicated arrangements

Remaining CPU
power (1 node =

100% and assume
fair scheduling)

CPU utilization observed on
Test Name | €ach processor before tests

PO Pl P2 P3

Al 0 0 0| 100% 350%
A2 0 0| 100% | 100% 300%
A3 0] 100%| 100%] 100% 250%

three non-dedicated arrangements used in our experiments
respectively. All the applications were from well-known
benchmark suites, modified to support thread migrations,
and linked with DCVM runtime library to allow dynamic
load balancing and adaptive parallelism. To perform
. adaptive parallelism, we simply applied MC with larger or
smaller N, the number of nodes to our algorithms, and
avoid non-dedicated nodes first. In the past, we also tested
a version of LS that allowed adaptive parallelism but its
performance was inferior to MC so we did not discuss it in
this paper.

Figure 3 shows average performance of all eight
applications under the three arrangements, each with one
of the five actions: no load balancing (NLB), adaptive
parallelism (AP), MC thread placement (MC), LS thread
placement (LS). and a variation of MC called MC*. About
the last algorithm, we will discuss in the next section. The
performance numbers on y-axis were normalized against
approximate speedups to the remaining CPU cycles (see
the last column of Table 2). We want y-axis to represent
how efficient each algorithm can harvest remaining CPU
cycles per arrangement.

We expected that if the applications were not affected
by non-dedicated executions at all, their normalized
speedups would be exactly 1.0. That means the portion of
remaining CPU cycles can be utilized on all four nodes,
some of which with a guest process. For example, if
application speedup is four on four dedicated nodes, the
approximate speedup-bound with a guest program on one
node will be 3.5. So, if we can measure a speedup of 3.5
with non-dedicated execution, the normalized speedup will
be 1.0. We believe such an approximation is reasonable if
boad balancing is succeeded in parts because we used an
infinite-loop program as the guest process.
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Figure 3: Normalized, average speedup from various
approaches (NLB, AP, MC, LS and MC?*) in three non-
dedicated arrangments (Al, A2 and A3)

First, in Figure 3, we observe that without load
balancing, application performances are reduced by 40%.
If we assume that half of the CPU power on each node is
divided equally and synchronously shared by parallel and
guest process, we should see around 50% degradation,
[13)].

Using adaptive parallelism, our applications avoided
nodes that contained a guest process. Consequently their
average speedups were reduced as more nodes were out. In
arrangement Al and A2, adaptive parallelism produced
speedups higher than no load balancing. This confirms
benefits of the rule-of-thumb that suggests parallel users to
avoid non-dedicated executions. On the contrary, if the
applications were about to run sequentially, using two
nodes with no load balancing would be a better choice.
Note that so far we discussed only the performance gain to
parallel applications and did not consider the increasing
complexity in workload and subsequent degradation to the
guest processes.

Comparing our thread placement algorithms, we saw
that MC was slightly better than LS in all arrangements.
On the other hand, we expect the poor performance of LS
was caused by imprecision of our load model (L) as well
as the hillclimbing design. We were further disappointed
by the overall performance of MC and LS that was not as
good as adaptive parallelism in Al and A2.

Consequently. we decided to enhance MC further so
the modified algorithm tried to avoid scheduling and time
sharing effects in non-dedicated environments [2, 13]. The
new MC named MC* yields CPU cycles via micro-sleep
every time it waited for remote messages. As noted in
[13], this enhancement helped reducing penalty from time-
sharing effects and required no modifications to operating
systems. Figure 3 confirms our expectation that load
balancing could perform better than adaptive parallelism.
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Figure 4: Normalized performance of individual paralle! applications used in our suite.

We found that the performance of MC* was consistently
better than adaptive parallelism in all three arrangements.
MC* showed only 10% to 15% less efficient than the ideal
speedups.

To note that most applications behaved well with our
hybrid load balancing approach but some did not, Figure 4
plotted our results per application. Overall, SWM is the
only application contradicting a number of our findings.
Its performances with MC* were not always better than
adaptive parallelism. Further investigation suggested that
both LS and MC (and so MC*) in SWM failed to reduce
communication during the Ioad balancing process. In the
future, we will try to make DCVM realize this kind of
situations and decide to choose adaptive parallelism over
load balancing. This will lead to a smart system that can
exploit benefits of space-sharing and time-sharing more
efficiently and transparently. Majority of the results in
Figure 4 are consistent with Figure 3 so we do not discuss
them further here.

Finally, the improvement we made to MC* repeated
lessons learn from failures not to address negative impacts
between parallel applications and operating systems in
previous work. Obviously, it is the effect of time sharing
that allows MC* to be better than applying either adaptive
paralielism or load balancing alone. Although one would
argue that we hardly ran parallel applications on non-
dedicated nodes, he/she did not say that we could not do so
effectively. Our future investigation will go to explain how
we can build such system that is less complicated, easy to
us¢ and more practical on inexpensive SMPs or multi-core
CPU PCs where non-dedicated executions are norm.

4. Related work

Shared memory parallel applications must handle network
latency efficiently and minimize data sharing across nodes
10 produce speedup. Multithreading has been used to solve
these problems on both hardware and software systems for
a long time [5]. DCVM is one of many systems that use
multithreading to speed up parallel applications.

Previous work in non-dedicated environments takes
task- and process-based approach to enhance application
performance where node dedication cannot be guaranteed.
Condor [9], Piranha [4], and AppLes [3] arc examples of
software systems using load sharing, adaptive parallelism,
and application-level scheduling to solve non-dedicated
problems respectively. On the other hand, DCVM attempts
to take benefits from multiple approaches that are ready to
be used selectively for performance optimization.

5. Conclusions

We introduce two thread placement algorithms, MC and
LS, and present an empirical result based on the real
implementations in DCVM. Our approach is to allow load
balancing and adaptive parallelism to be used dynamically
and co-exist at application level.

Our experiments showed that: with no load balancing,
the overall performance was degraded by 40%. Adaptive
parallelism improved speedups in most cases, except
sequential runs. MC and LS improved overall performance
slightly about 5% to 10% over no load balancing and that
was less than adaptive parallelism. Further investigations
led us to MC*, an enhancement of MC to reduce time-
sharing effects using a technique presented in [13]. MC*
showed the highest performance among the algorithms we
tested. It generated small 10% to 15% overhead and more
CPU cycles were hamessed better than using either
adaptive parallelism or load balancing approach. However,
SWM was the only application that performed badly when
thread placemem failed to find optimal thread locations.
We suggested a solution that if such a case could be
detected, adaptive parallelism should have been activated
by DCVM. We are making research progress to DCVM in
this direction.
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ABSTRACT

Many multithreaded systems implement dynamic threads
because they allow computation grain to be customized
and match available cycles on the fly. In contrast, systems
using static threads must rely on users to select a proper
degree of multithreading in order to achieve maximum
performance. In this paper, we present two algorithms that
together provide multithreading performance transparency
in a software-DSM system, called CVM. First, our grain
emulation algorithm allows static-thread systems to
emulate runtime effects of dynamic threads without
changing thread implementation. Second, our grain
sclection algorithm attempts to decide grain size and
maximize multithreading performance at runtime.

Our cxpecrimental results using five shared memory
paraliel applications showed that performance cffects of
emulated grain were consistent with the effects of actual
grain in all except two occasions where grain emulations
caused unexpected changes in FFT and Shpatial’'s DSM
actions. When we applied grain selection algorithm, CVM
produced 30% improvement in Barnes with 64 threads.
Other applications also showed some improvements but
much less noticeable than Bamnes.

KEY WORDS
Multithreaded DSM, Thread Scheduling, Grain Emulation

1. Introduction

Multithreading [1] is an implementation technique that
allows a single process to be broken into multiple threads
and scheduled 1o CPU whenever local node is waiting for
& remole reply. During multithreaded execution, local
compulation among threads is overlapped with network
latency and thus can be finished faster than single-thread
execution. In theory., multithreading is a promising
lechnique for enhancing paralicl applications especially in
loosely coupled environments like cluster of workstations.

Several factors affect performance of multithreading
but the most significant one is the number of threads
Tnoing on nodes called degree of mullithreading.
Intwitively, increasing degree of multithreading introduces
more thread context switches and resource usage. Having

* This work was supported in part by Thailand Rescarch
Pund (PDF/72/2544).

Peter J. Kelcher
Department of Computer Science
University of Maryland, College Park

MD 20742, USA

not enough threads causes the opposile situation where
systems can not effectively overlap local computation
with network latency. To achieve maximum performance,
multithreaded systems must control effects from degree of
multithreading or in another word, they must control basic
computation unit called grain that is executed without
overlapping before global synchrenization.

In this paper, we present a grain emulation algorithm
that allows static-thread systems to emulate performance
effects of various grain sizes. Combining grain emulation
with a proposed grain selection algorithm, we show its
effectiveness tor enhancing multithreading performance
in a software distributed shared memory system (DSM),
called CVM. In Section 2, we introduce CVM and discuss
grain-selection problems. In Section 3, we describe our
grain emulation and grain-selection algorithm. In Section
4, we present our experimental results with five iterative
shared-memory applications and discuss performance of
grain emulation and grain selection algorithm. At the end,
we provide related work and conclude the paper.

2. Multithreading and Grain Selection

We introduce CVM and discuss performance probiems of
multithreaded systems in this Section.

2.1 CVM and Per-node Model

Like other software-DSMs, CVM is a runtime system that
provides shared memory semantics across machines
connected by a message-passing network. Particularly,
CVM installs OS protection traps to catch memory
accesses to virtual memory pages and transform them into
remote requests according to DSM memory consistency
protocol. After shared page is validated, no subsequent
DSM actions are necessary until page is invalidated again.
The small number of page validations helps reducing
DSM overheads and improving multi-processor speedups.

CVM's primary protocol implements a multiple-
wriler version of lazy release consistency. In lazy release
consistency, a processor delays making modifications to
shared data visible to other processors until the time of the
next subsequent acquire of a released synchronization. In
CVM., consistency states are kept per shared-page so the
possibility of protocol actions to be merged or broken into
multiple DSM messages by multithreaded execution is
Dot trivial.



In multi-writer protocol, two or more nodes can
simultancously modify their copy of a shared-page. These
concurrent modifications are merged using diffs to
summarize the updates. A diff is created by performing a
page-length comparison between the current contents of
the page and a twin of the page that was created at the
first write access. If any concurrent writer summarizes its
maodificalions as a diff, the system can validate or create a
copy that reflects all modifications by applying the
concurrent diffs to the same copy. Similar to protocol
actions, multithreaded executions can increase or decrease
possibility of threads sharing same pages by changing
page-access order. Nonetheless, only one thread that first
accesses shared page sends out remote diff request. The
rest are blocked until page validation is completed.

CVM implements non-preemptive threads and uses
per-node multithreading model {2]. In per-node model, a
thread is created statically at the beginning of application
exccution and stays active until the program is finished. A
thread is also implemented as a process that shares local
CVM image with other threads, except its thread stack.
Using such a model, CVM allows users to select degree
of multithreading at program command line so users can
fully control initial grain size, which is approximately an
inversc proportion to a given degree of multithreading on
a homogencous cluster.

2.2 Grain Selection Problem

In the past, multithreading experiments on software-
DSMs (3] studied effects to application performance but
did not provide solutions to allocation problem especiaily
when applications were run with too many threads.
Deciding optimum grain size was limited to experienced
users who understand program decomposition and process
allocation on a target parallel machine well. From users’
perspective, how the applications should be run to yield
the shortest execution time is the most important question.

A majority of grain-selection researchers prefer
dynamic threads over static threads because in dynamic
thread systems, excessive degree of multithreading can
cause threads to be merged or destroyed independently.
When more paraliclisms can be exploited, new threads
can later be created upon demands. Other sysiems that
adapt Ievel of parallelism implicitly may require ability to
redistribute global computation and advanced compiler
analyses 1n order to perform proper thread decomposition.
Consequently. dynamic threads in these systems are often
short-lived and require a number of thread management
operations. Choosing dynamic threads over stalic threads
then trades additional off-line processing and execution-
time overheads (o performance transparency.

On the other hand, CVM implements static threads so
# requires fixed per-thread context-switching overheads
and no further thread manipulation costs. Moreover, users
can select computation grain by wriling it in the program
&nd no changes to users’ programnung preferences and
offhae requirements. Nevertheless, to avoid application

slowdown once users run their applications with too many
threads, CVM definitely needs other runtime techniques
to make multithreading performance transparent and they
must be suitable for static thread systems. Therefore, we
invent grain emulation and grain selection algorithm o
emulate some behaviors of dynamic threads and solve the
grain selection problem transparently.

3. Grain Emulation Algorithm

Afier 2 user runs an application with a specific number of
threads per node, CVM has no way to adjust actual grain
decomposed by selected degree of multithreading on local
nodes. However, CVM can decide when threads should
be scheduled and try to control multithreading effects. For
example, if CVM does nol dispatch local threads though
node has outstanding remote reply, the execution will
resull in one thread finished after another. Consequently,
it should produce runtime effects close to a typical single-
thread execution.

Thus, we perform grain emulation as follows:

1. CVM bundles local threads into groups. Figure
1¢a), I(b). 1(c) and 1(d) show groups of 1, 2, 4, and
8 threads, respectively. How to assign threads into
groups and how many groups should be used will
be discussed in Section 3.1 and 3.2, respectively.

2. After local threads are grouped, CVM enforces
multithreading scheduling among threads within a
single group at a time. In the worst case shown in
Figure 1(a). no latency hiding exisis because no
overlapping of network latency can occur.

3. At bamrier amivals, CVM continues to another
group of threads at random and performs siep 2)
repeatedty unlil the program ends.

Figure 1(e) also shows unequal number of threads per
group that causes average grain size 1o be a fraction. We
will not discuss this kind of emulated grain in this paper
but undoubtedly this special case will be necessary when
CVM attempis to emulate grain on a node whose number
of threads is not divisible by CVM's desired number of
Eroups.

Next, we answer two important problems: 1) how o
group individual threads and 2) how to select proper grain
size to maximize application performance.

3.1 Grouping Threads

Placing threads in groups requires considering subsequent
effects of program decomposition such as communication
requiremncnls. needed synchronizations, and in our case
effects of shared memory consistency protocols. To group
threads, CVM uses active correlation tracking to capture
global page-sharing information among threads for one
application iteration. Then, CVM places local threads that
access many same shared pages together according lo
group sizes determined by CVM (see Section 3.2).
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"Figure 1: Local Scheduling of Threads to Emulate Multithreading Effects of Various Grain Sizes.

Active correlation tracking [4] is a global process that
tracks all shared-page accesses by threads regardless of
their locations and summarizes page accesses into thread
correlations that represent affinities among threads by the
number of shared pages used mutually between any two
threads. Placing threads with high correlations together
allows DSM protocol actions to be requested minimally
and reduce communications among nodes [5].

For readability, we show page-sharing information in
correlation maps. Figure 2 shows correlation maps of five
parallel applications with problem sizes listed in Table 1.
Each dimension of the maps represents thread ids so a
cecordinate contains a correlation value of thread x and y.
In Figure 2, correlation values are shown in levels of gray.
That is, darker the area, higher the correlation values. All
correlation maps are symmetric since our page sharing
assumes no direction.

Patterns in Figure 2 confirm that these applications
produce nearest-neighbor communication, except Bames
and Shpatial that have random and square pattemns in the
correlation maps besides high correlations seen around

16 threads 32 threads 64 threads
L ¥ - 3 }‘-:Hr
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Figure 2: Application Correlation Maps

diagonals like other nearest neighbor applications. Note
that we previously tried a group-selection policy that
chose next thread group from the highest sum of inter-
group correlations. Without surprise, later we found that
this policy had no impact to grain-emulation performance
because CVM scheduled groups many times less often
than threads. So, we prefer a random policy in step 3) of
the grain emulation algorithm rather than a fancier one.

3.2 Grain Selection Algorithm

To decide how many threads should be used per group,
CVM monitor: reduction in iteration elapsed time. This
iteration time reflects how efficient CVM overlaps local
computation with network latency and how many
computing resources threads and memory protocol use for
a given grain size. Since this decision is an optimization
problem, we decide to use trial-and-error search in which
for each trial CVM systematically changes number of
threads in groups to emulate various grain sizes. The
choice to either decrease or increase grain size depends on
CVM'’s acknowledge of performance changes and current
thread configuration compared to previous iterations.

For example, CVM will decrease number of groups
or decrease grain size if more computation is needed to
hide network latency. Otherwise, if less computation
overlapping is needed, it will increase number of groups
or increase grain size to optimize overall performance. All
of these can be observed from reduction in application
iteration time. Moreover, we implement five-percent
performance threshold to justify significant change before
making a decision to stop the trial-and-error process. We
expect that the threshold should help reducing noises and
making grain selection process recpeatable in our
experiments.

To reduce complexity of our study, we attempt to
select grain size by mode number. That means CVM uses
trial-and-error search in power-of-two threads per group
like the example in Figure 1. Moving from Figure 1 (d) to
1 () results in trials that increase grain size by decreasing
mode number from 3 to 0, and vice versa.

If no improvement can be found during the trial-and-
error process, the algorithm stops and final grain size is
reset to the best-known one. Since CVM uses no look-
ahead iteration, this is just to use grain size from the last
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Table 1: Applications and Their Problem Sizes

iteration or before iteration clapsed time starts to increase
over our threshold. We believe changing emulated grains
on all nodes in steps has two benefits. First, we can keep
grain emulation in balance among nodes. Second, we can
reduce the number of cases studied in our experiments.

4. Experimental Results

We implemented grain emulation and grain selection
algorithm in CVM and tested their performances on a
cluster of four 733 MHz Intel PIII workstations connected
by 100M-bit Ethernet switch. Each workstation had 256-
megabyte memory and ran Linux kemel version 2.4.7.
Our objective is to study effects of emulated grain to
multithreading performance and grain selection benefits.
Table 1 shows details of five itcrative parallel applications
and the problem sizes used in our experiments. Barnes,
Shpatial, and Water are from SPLASH benchmark suite
[6]. FFT and SOR are well-known scientific computations
that implemented Fast Fourier Transform and Successive
Over-Relaxation.

4.1 Performance Effects of Grains

We ran five applications using 4, 8, 16, 32, and 64 threads
on four nodes with grain emulation algorithm bur no
8rain selection and collected clapsed time to compuie

multithreading speedups. The results are shown in Figure
3 where x-axis presents approximate grain to a specified
problem size X (see Table 1) in which we call X roughly
decomposed (or “[") by 4, 8, 16, 32, and 64 threads. For
example, with 64 threads, X|4, X|8, X|16, X|32, X|64 can
be emulated by having 1, 2, 4, 8, and 16 threads per group
respectively. The y-axis in Figure 3 shows normalized
speedups to four-processor single-thread execution for
given numbers of actual threads and approximate grains.
For readability, we also marked default multithreading
speedups with box (O). A series of boxes then represents
what would happen if we do not use grain emulation but
increase degree of multithreading in each application.

In Figure 3, speedups are curved as applications were
affected by different grain sizes. Default multithreading
speedups (with no ermulation) range from 5% to 12%
improvement, except SOR that produced only a-few-
percent improvement with 8 and 16 threads. The probliem
caused by too many threads can be seen in all
applications, except only FFT. Bames, Shpatial and Water
ran best at X}32, X|32 and X|/6, respectively and dropped
down by as much as 60% from the best run in Barnes with
64 threads. Others are slowed down by a few percents but
still on positive side. SOR, the simplest application in the
application suite, produced multithreading slowdown with
32 and 64 threads because there was so limited amount of
network latency that could be efficiently hidden in this
small application.

When considering performance of grain emulation,
we found strong relationships between performance of
actual grain and emulated grain. However, to see that we
must include overheads of thread context switches, which
is easily controlled in dynamic thread system but not in
static one. For example, in Figure 3, the degradation in
Barnes with 64 threads could be improved by dividing 64
threads into two groups, resulting in grain size X|32 and
its performance that was as good as running 32 threads
without grain emulation. The same phenomenon with 64
threads also appeared in Water with a few percent
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Figure 3: Effects of Actual Grains and Emutsted Grains to Multithreading Performance



deviation. In SOR, if we account for thread context switch
overhead increased by the number of running static
threads, performance effects of emulated grain and actual
grain will be close and we believe it could be potentially

predictable.

Next, FFT and Shpatial showed improvements that
were less consistent. With 64 threads, decreasing FFT
grain to X|32 improved performance higher than running
with 32 threads but decreasing grain further gave no
speedups at all. Further investigation pointed us to load
imbalance mainly on the first processor. Although the
total number of remote faults remains the same, global
barrier imbalance increased significantly because of
additional diffs to the first processor from changes in
shared-memory access order. The opposite situation can
explain a sharp drop in Shpatial with 64 threads. In that
case, remote faults at X|32 were about two times higher
than X|64. This means scheduling threads in groups can
perturb shared memory accesses by changing order of
protocol actions.

4.2 Performance of Grain Selection

Next, we ran the same applications with 64 and 32 threads
but this time we allowed CVM to adjust application
performance using grain selection algorithm described in
Section 3.2. We also made sure that the whole selection
process had to be done within ten iterations and we
excluded the first two iterations to avoid including startup
cost and other interferences in our results.

Figure 4 and 5 shows four-processor speedups of the
five applications with 64 and 32 threads, respectively. All
were measured for the same number of iterations per
application: 1) with no grain selection, 2) with grain
selection including trail-and-error overhead in decreasing
grain direction, 3) with grain selection including trail-and-
error overhead in increasing grain direction, 4) with grain
sclection excluding trail-and-error overhead in decreasing
grain direction, 5) with grain selection excluding trail-
and-error overhead in increasing grain direction, and 6)
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Figure 4: Performance of Grain Selection with 64 threads

with the best performance for the same number of actual
threads from previous experiment.

With 64 threads, Barnes that previously slowed down
by 30 percents now achieved 10 percent multithreading
speedup or about 60 percent improvement. In this case,
CVM decided to emulate grain X|32 from both decreasing
and increasing direction. Next, the similar improvement
was seen in Water where 64-thread run caused slight
degradation, but after the grain selection algorithm
decided X|32, its performance was at the best. Results
from other applications led to similar conclusions where
CVM selected grains that were at the best or almost the
best performance achievable by running 64 threads. Also,
a quick glance to Figure 5 that tested with 32 threads
confirmed the same results in which any attempts to
transparently select grain size never caused slowdown.

Next, when we consider application improvements
including iterations that CVM used to perform trail-and-
error search, the results in Figure 4 and 5 showed 10 to 30
percent slowdown for the specific number of application
iterations that we tested. In all cases, CVM stopped the
grain selection process within six application iterations
and this runtime overhead was consistent with emulated
grain effects i Figure 3. All applications except Bamnes
cost more to decrease grain than to increase grain.
Fortunately, if improper grain size becomes performance
problem, it is likely that users are running applications
with too many threads and so CVM will execute grain
selection algorithm in increasing grain direction.

Finally, we noticed that once CVM attempted to
emulate grain X|32 in Shpatial, the speedup drop at X|32
(see Figure 3) caused the grain selection algorithm to stop
and take either X|16 or X|64 depending on trial directions.
‘The sub-optimal problem that occurs with 64 threads was
directly from trial-and-error technique implemented in our
algorithm. Thus, if we applied look-ahead iteration, this
problem would be alleviated in some extent. Note that a
similar speedup drop also occurred in FFT but not enough
to cause the algorithm to stop. Nonetheless, if we did not
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impose five percent threshold, we would have noticed the
sub-optimal problem in FFT too.

5. Related Work

Fine-grain parallelisms [7, 8] have long been used to
provide performance transparency for scientific parallel
applications. Such systems required supports from both
compilers and runtime systemns and often required specific
hardware and software. This technique later expanded to
applications and tools for coarser grain like multithreaded
environments that exploited parallelisms on local nodes to
effectively hide network latency. The comparison studies
between coarse-grain and fine-grain have been done in
many levels of granularity including shared data access
{9]. Our work attempts to emulate grain and control grain
size of static thread systems where we consider as another
method to better exploit available parallelisms.

Many systems in the past supported multithreading
for latency hiding as well as performance transparency
like dynamic task creation [10]. Since they implemented
dynamic threads, their techniques were not compatible to
CVM. Our thread scheduling algorithm proposed here for
grain emulation is similar to other optimizing schedulers
in that ours also attempts to reduce effects to DSM actions
and allows local computation to benefit from data locality
existing on globally shared memory. More discussions
about prain selection problem on other environments can
be found in [11].

6. Conclusions

In the past, multithreaded systemns that implemented static
threads could not adjust computation grain and control
multithreading performance at runtime. In this paper, we
present a novel thread-scheduling algorithm that allows
static threads to emulate effects of dynamic threads and
grain-selection algorithm that implements trial-and-error
process to maximize multithreading performance using
grain emulation at runtime.

Our experimental results with five iterative parallel
applications confirmed that the effects of emulated grain
were very consistent with effects of actual grain. Among
five applications, Barnes with 64 threads slowed down by
30 percents from its single-thread execution but after we
applied grain-selection algorithm, its speedup was at the
maximum or about the same as running the application
with 32 threads with no grain emulation. That was about
60 percent improvement. More importantly, the grain
selection algorithm never decided to emulate grain that
performed poorer than its initial, user-specified grain in
all applications. Cost of trial-and-error process was
between 10 to 30 percent after we included iterations
containing grain selection overhead. Nonetheless, this
one-time overhead could be amortized easily by
lengthening the program execution.

(:_unendy, CVM also uses grain emulation and grain
selection to deal with dynamic load balancing that relies
on thread migrations. In that case, parallel load may be

balanced but numbers of threads can be greatly different
among nodes resulting in high multithreading overheads
on some nodes. Our future work will be in this direction.
That is 10 better understand software multithreading and
load-balancing effects of various DSM memory protocols.
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