บทคัดย่อ

ในงานวิจัยนี้ มีการเตรียมตัวอย่างคอมโพลิทจากเชรามิกชนิดพีแชดทีกับอีพอกรี และคอมโพสิทจากพี
แชดทีกับโคพอลิเมอร์ชื่อ พอลิไวนิลลิดีนฟลูออไรด์-ไตรฟลูออไรด์เอธิลีน ในคอมโพสิทชนิดแรก พีแชดทีมี
พื้นที่หน้าตัดสี่เหลี่ยมล้อมรอบด้วยอีพอกรี ความต่อเนื่องของแต่ละเฟสในคอมโพสิทจึงเป็นแบบ 1-3 ตัวอย่างที่
ใช้ในงานวิจัยแบ่งตามลัดส่วนโดยปริมาตรของพีแชดทีได้ 2 กลุ่ม คือ 0.4 และ 0.6 คอมโพสิทชนิดที่สองมี
ลักษณะของพีแชดทีเป็นก้อนหรือเม็ดกระจายอยู่ในเมทริกช์ของโคพอลิเมอร์ ความต่อเนื่องจึงเป็นแบบ 0-3
ลัดส่วนโดยปริมาตรของพีแชดทีเท่ากับ 0.3

นำคอมโพสิทพีแขดที/ชีพอกซี หนา 0.45 มม. ที่มีชั่วไฟฟ้ากาวเงินมาผ่านการโพลิงด้วยสนามไฟฟ้า 10 กิโลโวลต์ต่อมิลลิเมตร เพื่อให้พีแขดทีแสดงสมบัติไพอิโชอิเล็กตริก จากนั้นวัดคำคงที่ไพอิโชอิเล็กตริก ความเครียด (d) ด้วยระบบอินเทอร์เฟอร์โรมิเตอร์แบบไมเคิลสัน ซึ่งจำเป็นต้องขัดผิวกาวเงินจนส่องเห็นเงา เนื่องจากระบบนี้อาศัยลำแลงเลเขอร์ที่สะท้อนกลับจากขั้วไฟฟ้าบนผิวตัวอย่าง สำหรับคอมโพสิทพีแขดที/โคพอ ลิเมอร์ ความหนา 30 ไมโครเมตร ขั้วไฟฟ้ากาวเงินหลุดง่ายเนื่องจากมีปริมาณเมทริกซ์ค่อนข้างมากเมื่อเทียบกับ เขรามิก จึงใช้วิธีทางเรโขแนนข์แทนวิธีอินเทอร์เฟอร์โรมิเตอร์ จากการทดลองได้ค่าคงที่ไพอิโชอิเล็กตริกเฉลี่ยของ คอมโพสิทพีแขดที/ชีพอกซี และ พีแขดที/โคพอลิเมอร์เท่ากับ (190 ± 10) x 10⁻¹² และ (13 ± 2) x 10⁻¹² เมตร ต่อโวลต์ ตามลำดับ ค่าแรกลอดคล้องกับค่าที่มีการรายงานทางทฤษฎี และมีค่าประมาณครึ่งหนึ่งของค่าของพี แขดทีทางการค้า ค่าหลังมีความความคลาดเคลื่อนมากเป็นเพราะอาศัยสมการของวิธีเรโขแนนข์ซึ่งขึ้นกับตัว แปรหลายตัว อย่างไรก็ตามผลการวัดไปกันได้กับกระบวนการโพลิงที่ใช้ซึ่งได้โพลในทิศทางเดียวกันทั้งพีแขดที่ (เฟลที่มีค่าคงที่ไพอิโชอิเล็กตริกเป็นฉบ) ทำให้การ ตอบลนองไพอิโชอิเล็กตริกถูกลดทอน ค่าคงที่ไพอิโชอิเล็กตริกจำค่าของคอมโพสิทพีแขดที/ชีพอกซี

มีการเปลี่ยนแปลงอุณหภูมิของคอมโพสิทเพื่อวัดประจุโพลาไรขัที่เกิดขึ้นและนำไปคำนวณค่าคงที่ไพ โรอิเล็กตริก พบว่าค่าคงที่เพิ่มขึ้นตามปริมาณพีแขดทีในคอมโพสิทพีแขดที/ถึพอกซี และมีค่าสูงสุดเท่ากับ 54 x 10⁻⁵ กูลอมบ์ต่อตารางเมตร . องศาเซลเซียล ค่าคงนี้ค่อนข้างต่ำผิดปกติสำหรับคอมโพสิทพีแขดที/โคพอลิเมอร์ คือเท่ากับ 0.74 x 10⁻⁵ กูลอมบ์ต่อตารางเมตร . องศาเซลเซียล พบว่าเป็นเพราะการโพลิงไม่สมบูรณ์ของพีแขดที่ จากนั้นมีการทำให้เกิดคลื่นความร้อนเดินทางผ่านเนื้อคอมโพสิทพีแขดที/อีพอกซีเท่ากับ (2.15 ± 0.05) x 10⁻⁷ ตารางเมตรต่อวินาที ซึ่งประมาณครึ่งหนึ่งของค่าของพีแขดที่ทางการค้า ค่าสภาพการแพร่ความร้อนของ พีแขด ที/โคพอลิเมอร์เท่ากับ 2.0 x 10⁻⁷ ตารางเมตรต่อวินาที ไม่สามารถทำการทดลองซ้ำได้เนื่องจากคอมโพสิทมี การอีกขาดระหว่างโพลิง จากการหาค่าคงที่ไดอิเล็กตริกด้วยวิธีวัดความจุไฟฟ้าพบว่าเมื่อปริมาณพีแขดที่ลดลง คอมโพสิทพีแขดที/อีพอกซีมีค่าคงที่ไดอิเล็กตริกลดลงอย่างมาก ในขณะที่ค่าคงที่ไพอิโซอิเล็กตริกความเก้น (g) ที่คำนวณได้มีค่าสูงขึ้น บ่งบอกถึงความสามารถในการดัดโค้งคอมโพสิทได้ ตลอดจนการมีค่าคงที่ไพอิโซ-โพโรอิเล็กตริกลูง แสดงว่าคอมโพสิทเหมาะลมที่จะนำมาทำเป็นทรานลดิวเซอร์ไพอิโซอิเล็กตริกหรือหัววัดไพโรจิเล็ก ซักก ข้อควรคำนึงในการใช้งานคือการถ่ายเทความร้อนของคอมโพสิทตลอดจนลิ่งประดิษฐ์ที่มีคอมโพสิทนี้เป็น ส่วนประกอบ

Abstract

In the present work the composites of PZT/epoxy and PZT/copolymer of polyvinylidene trifluoroethylene were prepared. The first consisted of the PZT bars surrounded by the epoxy; the connectivity of each phase in the composite was 1-3. The samples used were divided into 2 groups according to the volume fraction of PZT, i.e., 0.4 and 0.6. The second consisted of the PZT particles dispersed in the copolymer matrix; the connectivity is 0-3 and the volume fraction of PZT was 0.3.

In order that the composite was piezoelectric 0.45 mm PZT/epoxy with silver electrode was poled at 10 kV/mm. In the piezoelectric strain constant (d) measurements using a Michelson interferometer system, the electrode was polished until it was reflective. This was because the system used a laser beam reflected from the electrode on the top of the sample surface. For the 30 μ m PZT/copolymer sample, the silver electrode was easily rubbed off because the matrix content was relatively high compared to that of the ceramic. A resonance method was then used instead of the interferometer. The average piezoelectric constants were $(190 \pm 10) \times 10^{-12}$ and $(13 \pm 2) \times 10^{-12}$ m/V for the PZT/epoxy and PZT/copolymer composites, respectively. The first corresponded with the theoretical values previously reported and was about half of the value of commercial PZT. The latter was erroneous owing to the many parameters involved in the resonance equation. However, the results obtained were possible for the poling process used in which the poling direction was the same for both PZT (positive piezoelectric constant) and copolymer (negative piezoelectric constant). The resultant piezoelectric response was reduced, consequently, the piezoelectric constant was smaller than that of PZT/epoxy.

The composite was subjected to a temperature change in order to measure the polarized charges for a calculation of the pyroelectric constant. Values of the constant increased with the content of PZT in PZT/epoxy composite and the maximum value of 54 x 10⁻⁶ C/m².s was obtained. A value for the PZT/copolymer composite was unusually low, i.e., 0.74 x 10⁻⁶ C/m².s. This was found to be because of the incomplete poling of ceramic. In order to measure the thermal diffusivity, thermal waves were generated and passed through the composite to a thermal detector. The thermal diffusivity of PZT/epoxy was averaged (2.15 ±0.05) x 10⁻⁷ m²/s, which was about half of the value of commercial PZT. This value for the PZT/copolymer was 2.0 x 10⁻⁸ m²/s. Experiments could not be repeated because of the damage of the composite during the poling. From the dielectric constant measurement using the capacitance method, it was found that when the ceramic content was decreased, the constant of the PZT/epoxy composite was considerably decreased while the calculated piezoelectric stress constant (g) was increased. This indicated that the composite was flexible. Together with the relatively high values of the piezo-pyroelectric constants, the composite was suitable for making the piezoelectric transducer or pyroelectric detector. These applications need to take into account the heat transfer of the composite and the devices consisting of the composite.