The surface

The A Angls

Figure A16. The two bell surface

Workpiece 60x60mm, Tool size 10mm
Surface quality: Excellent.

Overcut: Substantial, Undercut: NO.
Side effect: Substantial.

Vo

Figure A17. The graphical CL-Points of the two bell surface
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Figure A19. anshed two bell surface

EXPERIMENT 6. Workpiece simulation compared with practical machining

and other commercial CAD/CAM systems
This experiment demonstrate the workpiece simulation by incorporating the

actual tool trajectories produced by the VMM into the existing CAD/CAM solid
modeling system such as Unigraphics.

Current CAD/CAM system normally simulates the workpiece by using the CL
points in which they do not represent the actual tools trajectories. Therefore, the result
of the simulation does not represent the actual cutting operations and kinematics
errors can not be detected and visualized. Our experiment has shown the realistic
trajectories simulation as illustrated in Figure A20 where it can be verified by the real

cutting operations as shown in Figure A21.

42



T -

Figure A21. Workpiece verified by the Real Machining
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Optimization of Rotations of a Five-Axis Milling Machinc Near Stationary Points
M. Munlin ', S.S. Makhanov' and E. L. J. Bohes?

} Department of Information Technology, Sirtndhorn International Institute of Technology,
Thailand
2School of Advanced Technologics, Asian Institute of Technology, Thailand

Abstract. We consider a new algorithm designed for five-axis milling to minimize the
kinematics error near the stationary  points of the machined surface. Given the tool
orientations, the algorithm optimizes the required rotations on the set of the solutions of the
corresponding inverse kinematics cquations. We solve the problem by means of the shortest
path scheme based on minimization of the kinematics error.

We present an application of the proposed algorithm to tool-path planning and demonstrate
the efficiency of the proposed scheme veriticd by practical machining.

Keywords: CNC-machines, inverse kinematics, tool-path optimization, the shortest path

1. INTRODUCTION

Optimization of the tool path of a five-axis milling machine presents a considerable
challenge. Recent papers have displayed a number of sophisticated methods to optimize the
conventional zigzag or spiral pattern(sce a survey in | 18] ). Besides, a variety of methods is
available to gencrate unconventional patterns, for instance: the neural network approach [17],
the Voronoi diagram technique [4], the monotone chain method [15], the distance map
method [4]. space filling curves[|8]. grid generation methods [12,13], etc.

The optimization criteria and the set of optimized variables vary. The tool path can be
optimized with regard to the machining time, accuracy, the length of tho_: tool path, the vyndth
of thc machining strip, the volume of the removed material, the size of the remaining
scallops, etc. In this paper we will optimize the sequence of rotations of the five-axis milling
machine which contribute to the inaccuracy of a machined workpiece in the vicinity of
stationary points of the desired surface. .

The machine is guided by axial commands MN=(W,MNeR" carrying the three spatial
coordinates W=(x,2) of the tool-tip in the machinc coordinate system an_d the two rotation
angles R=(a,b). The tool path A={,.M,..11} is a sequence of coordinates in the five-
dimensional space. The spatial coordinates of the tool path usually (but ‘nul ncccssa.rily) l.ic on
the required surface S = S(w,v). Usually, the tool visits the positions [1, tollowing a
structured spatial pattern such as the zigzag or the spiral pattern. How.cvcr. the path coulq be
also composed from a varicty of the unconventional patterns and lpcludc tool retractions
[18]. A full optimization scheme involves a model of cutting opcrations, topologies of the
prescribed tool path patterns and an optimization procedure. Let p, be the parameters related
to the configuration of the machine (such as coordinates of the centers of rotation, workpiece

offset relative to the machine coordinates, etc.) and p, the parameters related to



the tool (such as the diameter, length, shape, etc) . The model of the cutting operations,
being fed with p_, p,.S and I, produces a result of machining, namely, the output surface

T =T(u,v). The optimization is usually performed with regard to Il and p,. The cutting
operations could be optimized with regard to the machine configuration p, as well. However,
the “optimal™ machine is often a purely theoretical issue [1]. Let S = S(u,v) be the required
surface. The general optimization problem is then formulated by
minimizelle ||, (1)
. p,

where € denotes the cost function representing the error given by suv)s Suv)-Nwv)| , where

I || is an appropriate norm. Optimization (1) is subjected to the following constraints

1) The scallop height constraint. The scallop between the successive tool tracks must not
exceed the prescribed tolerance [11.12].

2) The local accessibility constraints. The constraint insures against the removal of an excess
material when the tool comes in contact with the desired surface due to the so called
curvature interference and the surface interference[7,8,16].

3) The global accessibility constraints. The constraint ensures that the tool does not come in
contact with either machine parts (collision detection) or unwanted parts of the desired
surface [10).

Given the general context above, we tackle a particular but important problem of
optimization of the rotation angles in the vicinity of stationary points of the desired surface.
It should be noted that there has been a variety of research focused on the orientation of the
cutting tool. A fairly comprehensive review on the subject is given, for instance, in [10].
However, the accuracy is also affected by the way the orientations are being achieved. In
other words, the kinematics error depends not only on the characteristics of the surface
versus the tool orientation but on the previous rotations as well. It is not hard to de.monstrate
that the “history” of rotations becomes in particular important in the vicinity of the
stationary points of the desired surface. However, t0 the best of our knowledge such ana{ysxs
is not provided by commercial CAD/CAM software such as Unigraphics, EdgeCam, Vericut,
etc. Besides, only a few recent research papers deal with the subject. In [5] the authors

analyze the sequence of rotations to minimize the number of the phase reverse steps.

However, from the viewpoint of the global optimization the phase reverse does not

necessarily decrease the accuracy (see our forthcoming Example 1 in section 3). A global
angle adjustment procedure proposed in [2] is based on minimization of the sum Y |R, |
P

which represents the length of the path in the angular space (a,b). However, e_qual in.crements
ual increments in the kinematics error.

in the rotation angles do not necessarily mean €q \ A Such i
Therefore, the minimizer of the functional does not necessarily minimize the error. Such 1s

indeed the case of rough cutting when the kinematics error is large. Furthermore, the case of
stationary points has not been analyzed. As a matter of fac.t, we can ﬁnd_n-o.prewous
academic papers related to rough cutting combined with optimization in the vicinity of the
stationary points.

Therefore, we propose a global optimization p
with regard to the feasible angles (solutions of _
vicinity of the stationary points. The optimization 15

rocedure to minimize the kinematics error
the inverse kinematics) performed in the
performed within the postprocessor.



We show that such optimization increases the accuracy of the milling operations and is the
most appropriate in the case of a rough cut, when the angular steps are large.

Our procedure is in particular beneficial for high speed milling characterized by small spatial
steps. In this case a further decrease of the step size leads to a substantial increase in the
machining time due to dclays in the servo-update rate.

We present an optimization algorithm bascd on the iterative shortest path scheme. As
opposed to [2] our discrete functional directly represents the total error. Although such
minimization could be time consuming, it offers better results. Besides, we show how to
reduce the computational load by pre-computing the error produced by the kinematics of a
particular machine. Finally, the efficiency of the proposed scheme is verified by our
simulation software [14] as well as by practical machining.

2. Optimization of the rotations in the neighborhood of stationary points

Consider a typical configuration of the five-axis milling machinc with the rotary axis on
the table (Fig.1). Recall that the machine is guided by axial commands carrying the 3 spatial
coordinates of the tool-tip in the machine coordinate system M and the two rotation angles.
The CAM software generates a set of successive coordinates (called cutter location points or
CL-points) in the workpiece coordinate system W. Typically, the CAM software distributes
the CL-points along a set of curves which constitutes the so-called zigzag or spiral pattern. A
postprocessing which includes a transformation into the M-system generates a set of the
machine axial commands which provide the reference inputs for the servo-controllers of the
milling machine. Consider how the axial command translates the centers of rqtation afid
simultaneously rotates the W-coordinates. Let W, and W,., be two successive spatial
positions belonging to the tool path and R,, R, the corresponding rotation angles. In order
to calculate the tool trajectory between W, and W), we, first invoke the inverse kinematics
[1,8] to transform the part-surface coordinates into the machine coordinates M,,E(X,,,Y,,,_Zp)
and Mmlﬂxml,ypl.zru. Second, the rotation angles R=R(¢)=(a(s).b(?)) and the mac!'unc
coordinates M=M(1)=(X{(1),Y(1),Z(t)) are assumed to change linearly between the prescribed

points, namely,
M(t)=IM +{1-0OM ,,

R)=1R,,, +(1-0OK .
where ¢ is the fictitious time coordinate (0 < ¢ < 1). Finally, invoking the transformation from

M back to W (for every ¢) yields W(t)=(x(£).(1).2(1)). _ .
The kinematics are represented by matrix-functions A=A(a(1)), B=B(b(D)) a;socnated with
the rotations around the primary (the rotary table) and the secondary (the tilt tabl.e) axes
respectively. Although the kinematics are specified by thf: structure of tf_le mach_me, the
resulting transformation is nothing else than successive rotations and tr_anslauo_ns degugned to
transport the tool to the desired point of the workpiece v_anh the specified orientation. For
instance, the machine configuration depicted in Fig.] implies )
M(O)=B(t)AWW ) +R)+D+C, o (2)
where, R, T and C are respectively the coordinates of the origin of the vyorkple-ce in th.e rotary
table coordinates, coordinates of the origin of the rotary table coordinates in t}}e tilt tal:‘)le
coordinates and the origin of the tilt table coordinates ir_: the cutter .cenfer coordm_ates (Fig.
1). Although the inverse kinematics depend on the particular combination of the linear and
rotational axis the proposed below optimization techt:nqucs are gen_eral. The tf;chnllcllues are
easily modified for any particular combination of the linear and rotational axes [3,8,11].



B i

2.2 Non-linearity of the tool-path in the workpeice coordinates C,, the expcrimental cut C, (section 2).



A simple analysis of inverse kinematics (2) reveals that a linear trajectory of the tool tip
in the machine coordinates may produce a non-linear trajectory in the workpiece coordinates
(see Fig.2 generated by our simulation software [14]). We shall call the deviation from the
non-linear trajectory the kinematics error.

Recall that a stationary point of a surface is either the maximum or the minimum point or the
saddle point. Mathematically, it means that if (u,,v,) is the stationary point then

as| _os

Ol Wl

the surface normal. Clearly, a stationary point presents a special case when the x and the y
components of the normal are equal to zero. It is plain that in this case the rotation angles
may jump considerably leading to unexpected deviations from the prescribed trajectory (the
kinematics errors).

Note that a fine cut of a smooth surface employing small spatial and angular steps may not
demonstrate the detrimental effects near the stationary points. However, a rough cut
characterized by large gradients could produce considerable errors.

It is because of the sharp angular jumps that the machine produces the loop-like trajectories
of the tool. Moving along such trajectories could destroy the workpiece and even lead to a
collision with the machine parts. Fig.3 demonstrates such trajectories in the case of
machining a single curve belonging to the surface presented in Fig.2 (the curve denoted by
C,). Fig.3 (a) shows that as opposed to a linearized version of the tool path, the real

machining produces a loop-like trajectory induced by the large angular steps. We wil_l show
that such trajectories could be repaired (see Fig.3 (c)) by adjusting the rotation angles in such

a way that the kinematics error is minimized. _ _
Let us introduce minimization of the kinematics error in the framework of the kinematics of

a five-axis milling machine. Without loss of generality, consider the configuration introduced
in section 1.

The inverse kinematics of the machine are associated with coordinate systems denoted by
01, 02, 02’, O3 and O4 shown in Fig.4. O] corresponds to the workpiece coordinates, O2
to the center of rotation of the tilt table, 02’ is O2 rotated around y by 90 degrees. Finally, O3
and O4 correspond to the coordinates with the origin at the center of the rotating table and at
the tool tip tool respectively. The machine movements prescribed by a sequence of the
machine commands are executed simultaneously allowing for five degrees of freedom of the
tool. We recall that the goal of the simultaneous movements of the machine parts is
transporting the tool tip into position W=(x,y,z) and establishing orientation R=(a,b) The
angle a is between the x-axis and the projection of the orientation vector onto the_: x-y plane
and the positive direction of the x-axis. The angle b is between th'e projection of the
orientation vector onto the x-z plane and the positive direction of the x axis.

The above makes it possible to represent R in terms of the components of the orientation
vector (7, j, k) . First of all, note that the tool orientation in 04 is (i,, j,,k,)=(0,0,1). In other
words, the rotations must be performed in such a way that the tool becomes collinear with the
z-axis. Observe that the resulting coordinate transformation depends on the zero position W=
(0,0,0), R=(0,0) assigned by a special machine command. Without loss of generality, we
assign it to the rightmost position of the tilt table shown in Fig. 4.

Rotating the orientation vector by @ around z; in O2 yields

=0. Furthermore, suppose that the orientation of the tool coincides with




Fig 3 (a) A loop-like trajectory induced by large gradients of the rotation angles damages the
workpeice, (b) the trajectory simulated by the virtual milling machine, (c) the “repaired”
trajectory, (d) the repaired trajectory simulated by the virtual milling machine

Y1
X1
Ma chine
Spindle
Ell , ‘ 21
T

B axis

Fig 4 . Reference coordinate systems of the five-axis machine MAHO 600



v I, =icos(a)+ jsin(a),
J, =—isin(a)+ jcos(a),
k, =k,
where (i,, j,,k,) denotes the orientation in O2 .
In order to align the z-axis we rotate 02 by 90 degrees around y», obtaining
i==ky,jy =)k =~ .
Next, we rotate O3 by b around y;, namely,
iy, =—i, cos(b) + k, sin(d),
k, =i, sin(b) + k, cos(b),
Ja =Js.
Finally, given (i,, j,,k,) =(0,0,1) we obtain
0=—isin(a)+ jcos(a),
0 = —i, cos(b) + k, sin( b),
1 =i; sin(b) + k, cos(b).
Consider a solution chf system (3) given by

(3)

tan"'(L) , ifi>0 andj=>0,
I

=4 r+tan(L) , ifi<0,
{

2r+tan~'(L) , otherwise.
I I

b, =—sin~' (k).
Consider a set of feasible solutions given by 3, ={a,..,%.. —27.a,,. —n.a,, +7}(see
Fig.5). Clearly 8,={a:| a,,, —a|< 2% }. Moreover, after the rotations Q,,,, or a,,, —2r the
tool is positioned at the same quadrant with the original projection of the tool, whereas the
rotations a,, —-x,a,,, +7 correspond to the tool being located at a different quadrant
shown in Fig. 6. Therefore, a,,, or a,, —27 require the rotation b,,, =—sin"'(k) whereas
rotations a,,_ —-m,a,,, +n correspond to b=-m—b,,, . Therefore, every tool orientation
requires one of the four possible rotations given by
Pabm’bbase
a,, —27,b,,.

A=«
Dpase -"ﬂ',—bm -r

.abm +n,-‘bm — .
Let W, (0, L, .(® be the actual and the linear trajectory of the tool tip between IT , and

IT,,,. Consider the following minimization problem

R T ki ti
minimize (8 incma lc)
R,eA,

b ]



. . base
tood orientation vector

_ tool orientation vector
2r—-a,,,

Qe + 7

- /
b)

Fig.5 The set of feasible rotations

Fig.6 A graph corresponding to the set of feasible rotations
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where the discrete functional ghmem»< - Z gy represents the total kinematics error and
P

ki i . . .
Eprnr - =W, oy =L, .1 |l; is the kinematics error between IT ,and TL .
It is not hard to demonstrate that the above optimization is nothing else than the shortest path

| problem. Indeed, each posttion I, is characterized by the 4 graph nodes A , Whereas the edge

between the nodes represents the kinematics error (see Fig.6). Therefore, such minimization
could be performed by the conventional so-called greedy discrete algorithm [19]. We employ
the classical Dijkstra’s algorithm as applied to the resulting directed acyclic graph. The graph
is constructed by means of the adjacency list. We use the priority queue (the binary heap) [19]
to keep track of the smallest error along the path until we reach the destination. Thus, we
achieve the running time of O(Elog N), where E is the number of edges and N is the number

of points in the vicinity of the stationary point.
The above shortest path scheme is visualized by Fig.7-8, where [ denotes the distance along
the tool path. As a matter of fact, the 4 options are represented by 4 trajectories in the angular
space (a.,b). It is plain that the trajectories are close when b is near -n/2. In this case it is
possible to change the trajectory by considering the shortest path producing minimal error.
Fig.9 shows that the optimization may only be required near the stationary points, namely,
when b is close to —/2 and a is “jumping” from 0 to x or from a/2 to 37/2 etc. Consequently,
the computational load could be substantially reduced by introducing an “optimization
windows” in the neighborhood of the stationary points. The size of the window is evaluated by
an iterative approach. First, the user specifies an initial size of the window heuri§tically by
analyzing the tool trajectories and the kinematics errors visualized by means _of our vmﬂ five-
axis simulator [14]. Next, the procedure determines the source and the destination vertices for
each line across the optimization window and performs the shortest path optimization. We
increment the window and iterate until the error does not decrease. The_prqcedur_e is easily
generalized to the case of several stationary points invoking multiple optimx_zatlon wm_dows.
We remark that prior to the proposed optimization we perform the following correction
a, -2z, if a,—a >n,
a,, +2r,if a,, —a <-T,
a,,,,otherwise.

1+1?

The above correction eliminates jumps exceeding 7 . Therefore, the shortest path routine deals only
with |q,,, —a, |<7.

Finally, the computational load could be further decreased by pre-computing areas where the
kinematics error corresponding to a prescribed average space step and to a particular rotation is
always smaller than that generated by the remaining options. Since such calc.ulatlons are performed
only once for a particular machine, the optimization in these areas no lor_lger invokes a procedure to
calculate the kinematics error (see our forthcoming Example 1, next section).

ar+l.new =

3. Examples and practical machining

rough a stationary point “across or around the hill”

Example 1. A traject ssing th
P jectory passing R,). Let the average space step s=|W- |

Consider two successive points IT =¥, %) and IL, =0#%, . ] .
be 1mm and let R, =(a;,4)=(0,-85") and R, €[l 20,180]x[—60,—80] . It is a typical combination of

the angles in the neighborhood of a stationary point (see Fig. 9).



Across the hill

a
....."‘-u.
3 \\"'\...,‘__ -
Around the hill

Fig.9 Around or across the hill ?



Consider a linear trajectory 7 and actual trajectories Tycross, Taound COrresponding to
R, =(a,.b,)=(-10°-95°) and R,,, = (@) pyoe 103 pree } = (170,-85) respectively. Note that @y=as pase-
180°, b2=-b2 puse~180. Let the distance between the midpoint of the linear trajectory

and the center of the ag-rotation r,=10 mm.

The kinematics error is €™ =149 mm and £:7™" =8.89 mm respectively. In other words

moving “across the hill” by Tycss is better than Tyoung ( “around the hill™).
However, it is not always the case. A small r, entails an alternative choice. For instance, r,= 0.5 mm

produces €50 =071 mm, £57™" =1.59mm. Therefore, when the cutter location point is close

ac ross

to the center of the a-rotations, the tool should move “around the hill” by rotating the tilt table.
Given an average space step one could evaluate the kinematics error for varying r,. Such evaluation
makes it possible to pre-compute the movements of the tool and substantially reduce the

computational load spent on evaluating the error.

Fig.10 shows the kinematics error corresponding to Tacross ahd Tarouna as functions of a; and b; for
r.= 0.1mm, Smm and 20mm respectively. Clearly, r,=0.1mm requires Taouna for any angle, r,=20
mm entails Tpqoss Whereas r,=5 mm requires a further evaluation of the kinematics error for each

particular pair (a, b). N
Such pre-computing performed for a set of prescribed spatial steps characterizes an optimization
strategy for a particular five-axis machine. For instance, minimization of the kinematics error of the

milling machine MAHO 600 (Fig.1) for s=! mm requires Taouna if 7, €[0,5]mm and Tacross if
r, > 10 mm. However, when 7, € (5,10)mm the decision can not be pre-computed and shall be

made by evaluating £*™™" explicitly.

Example 2. The shortest path for a concave-convex surface _ _
The example demonstrates the shortest path optimization performed in the case of a surface given

100u —50
by S(u,v)= 100v-50
—80v(v—1)(3.55u—14.8u% + 21.15u> —9.9u*) - 28

. u,ve[0,1]

(see Fig.2). _ . o
A non optimized tool path (20 x 20) CL-points characterized by t:l1e loop-lgke trajectories induced
by large gradients of the rotation angles near the stationary point_s is sh?wn in Fig_ 11 ?) .'I'I.le loops
produce a considerable error. However, the optimization makes it possible to substantially increase

the accuracy (see Fig. 11 b)).

Consider Table 1, which displays some results o

tool paths consisting of 400 and 800 points leads to an error re

re -vely. - . - - - -

Fig.12 shows surfaces machined with and without optmpzatlon. A non-optimized _cut is

characterized by a trace of the loop-like trajectory near the stationary point. The trace constitutes a
d cut does not have such a defect.

serious violation of the accuracy. However, the optimize .
It should be noted that the optimization may make sense only for the so-called rough cutting or for

haracteri harp i ‘nstance, Table 1 presents the case of a rough cut when
the o the e B o | Increasing the number of

the number of the required cutter location points is not very large.
points along the cutting direction (see Table 1) shows that small angular steps make the

f optimization. For instance, optimization of the
duction of about 65% and 20 %



Fig. 10 The kinematic error as a function of a; and 4, . The rotation radius r,= 0.1 mm (a),
Smm(b) and 20mm (c) .
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optimization superfluous (see the path 130 x 20). When the angular step is small, switching
between the feasible trajectories (see Fig.7-8) increases the step and therefore amplifies the error.

Finally, it should be noted that we consider only smooth surfaces. However, in the case of sharp
corners of the required surface (e.g. when one or both of the first derivatives are discontinuous)
inserting additional CL points does not decrease the jump in the rotation angles. In this case the
proposed method must be combined with either smoothing the angles or the surface itself near the

singular points.

Example 3. Optimization in the case of tool inclination

In practice, five-axis machining requires that the tool is slightly inclined with regard to the surface
normal. The inclination improves the quality of the surface and makes it possible to eliminate the
so-called surface and curvature interference. If the surface is convex then a surface interference is
eliminated by shifting the tool in the direction opposite to the motion vector by the tool radius (
Fig.13). In the convex case the tool may be or may not be inclined. It depends on the technological
characteristics of the cutting process. Usually a small lead angle of about 5-10° is recommended
[9] . However, a concave surface requires an inclination to eliminate the undercut (see Fig. 14). In
this case the region characterized by large kinematics errors is shifted with regard to the stationary
point in the direction of the tool movement. However, if the curvature of the machined surface is
small then the inclination angle required to avoid the undercut is also small. Therefore, the
optimization is required only in the neighborhood of the stationary points. However, in thc? case of
large inclinations the algorithm must deal with regions where k (the z-component of the orientation
vector) is close to 1. Table 2 and 3 show the error before and after optimization performed f(?r the
surface introduced by Example 2 when the tool is inclined by 5% and 15° lead angle respectively.
Although the error decrease is no longer monotone it is of the same order. The tab!es clea;ly show
that our optimization scheme is applicable to the case of an inclined tool as well. F mall)_f, it is clear
that with the kinematics error that large, errors due to curvature interference, local gouging as well

as the thermal errors are negligible.

Table 1 Kinematics error for the optimized and non-optimized tool path.

Number of the | No optimization | Optimization | The max error Path length
CL-points error (mm) error {mm) decrease (%) Non-opt/opt{mm)
20 x 20 0.;:5 ln:.l;38 3‘6%;1;/’;-541 65.01 2508.88/2241.74
30x20 0.125/12.841 0.103/5.405 57.91 2330.73/2180.67
40 x 20 0.079/6.997 0.073/5.555 20.61 2217.96/2168.54
50x20 0.060/9.287 0.053/4.105 55.80 2191.15/2108.12
60 x 20 0.049/10.144 0.043/4.34] 57.21 2166.09/2078.01
70 x 20 0.042/8.673 0.038/5.449 31.17 2131.56/2070.28
100 x 20 0.032/5.969 0.031/5.725 4.09 2068.25/2063.25
130 x 20 0.028/3.254 0.028/3.254 0.00 2029.41/2029.41




Fig.12 Vicinity of the stationary point of the experimental surface (edges enhanced) without
optimization (a) and with the optimization (b).

Fig. 14. Avoiding rundercut by changing the tool inclination



Table 2 Kinematics errors for the optimized and non-optimized tool path with the inclination angle 5°.

Number of the | No optimization | Optimization | error decrease Path length
CL-points error (mm) error, {mm) (%) Non-opt/opt (mm)
avg/max avg/max
20x 20 0.236/13.986 0.180/5.199 62.83 2485.82/2224.49
30 x 20 0.128/7.871 0.098/4.299 45.38 2368.56/2160.61
40 x 20 0.084/7.981 0.065/3.652 54.24 2288.54/2117.87
50 x 20 0.060/5.655 0.053/3.629 35.83 2192.93/2113.41
60 x 20 0.049/6.117 0.043/2.678 56.22 2165.54/2084.19
70x 20 0.041/5.235 0.037/2.276 56.52 2135.49/2070.56
100 x 20 0.031/3.062 0.031/3.062 0.00 2070.54/2070.54
130 x 20 0.028/1.886 0.028/1.886 0.00 2034.90/2034.90
Table 3 Kinematics errors for the optimized and non-optimized tool path.
The inclination angle 15°.
Number of the | No optimization | Optimization | error decrease Path length
CL-points error (mm) error (mm) (%) non-opt/opt (mm)
avg/max avg/max

20x 20 0.249/11.174 0.194/4.569 59.11 2555.35/2286.40

30x20 0.129/6.293 0.121/4.374 30.49 2326.21/2265.82

40 x 20 0.091/8.515 0.084/4.471 47.49 2293.42/2218.14

50 x 20 0.071/7.906 0.065/3.430 56.62 2256.84/2179.24

60 x 20 0.057/5.402 0.056/2.840 47.43 2199.05/2174.77

70 x 20 0.050/6.537 0.048/3.383 48.29 2182.04/2149.31

100 x 20 0.039/5.051 0.038/3.247 35.72 2136.00/2123.82

130 x 20 0.034/3.941 0.034/3.941 0.00 2106.55/2106.55

4. Conclusions

n the five-dimensional space is the subject of optimization on

the set of solutions of the inverse kinematics equations with regard to the reqtured_ rotations. The
optimization is formulated in terms of a discrete ﬁmctional_rcprescntxqg the tota-l kinematics te-n‘t-lc:r
along the tool-path. It is sufficient to minimize the functional only in the nel.gh.bor_hood lc: e
stationary points by means of the shortest path scheme. {t\s. o;?posed' to many opnm1zauo;1. sc emecs1
the procedure does not require additional CL points. This is in particular important for 1gh.sp~:le1

milling when an increase in the number of the points lfaads to a sgbs:tanpal increase mhj ;
machining time. Finally, the procedure could be coupled with other optimization schemes whic

A tool path thought as a trajectory i



insert additional points or distribute the existing points in a desirable fashion. In particular, such
optimization constitutes an efficient tool in the case of rough machining in the five-axis mode. The
numerical experiments verified by practical machining demonstrate the accuracy increase ranging
from 5 to 65 % in the case of rough cutting,
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Abstract, Optimization of cutting operations is an active area of research in the CNC-based
manufacturing. The limited capabilities of the CAD/CAM systems require development of a new
software and new numerical methods verified by practical machining. We formulate the pr_o!:lem
of tool-path optimization in terms of interpolation of the required part surface in thq curvilinear
coordinate system associated with the cutter location points. Next, we present some mtroducto;y
examples to demonstrate that the concept of adaptive curvilinear grid contains almost all the basic
ingredients of tool-path planning, such as: adaptation to regions of . large milling errors,
conventional zigzag/spiral patterns and constraints related to the scallop height. Consequently, we
propose a new grid based optimization procedure characterized by adaptation to a gontrol ﬁ.u?ctlon
which depends on the rotations required to correctly position the tool. We also consider a particular
but important optimization of the rotation angles near the stationary points based on the _shortest
path scheme. Finally, we present an application of the algorithms _to tool-path plann_mg and
demonstrate the efficiency of the proposed scheme by methodological examples verified by
practical machining.

Keywords: Grid generation, CNC-machines, Optimization of a tool-path, the shortest path.

1. INTRODUCTION . _ '

We represent a zigzag tool path of a five axis milling machme-as', a coordinate in a
curvilinear coordinate system adapted to regions of the ‘large milling errors. Sucl'l a
curvilinear coordinate system is constructed numerically in the framework of adaptive
grid refinement. . ' . ]

The problem of tool path optimization is then formulated in terms of mt.:erpolatlon o
the required surface in the curvilinear coordinate system associated with the cutter
location points. N .

In order to construct the required grid we introduce a variational grid generator based onh
minimization of the Dirichlet-type functional [3,8,9,3 1] subJect_ed to ct?n§tramts related t_o the
prescribed scallop height of the machined part. The corretspondmg variational problem is
then solved numerically by a penalty-type iterative algorithm.



We also consider a particular but important optimization of the rotation angles at the vicinity of
stationary points based on the shortest path scheme. Finally, we present an application of the
glgorithm to tool-path planning of industrial milling robots and demonstrate the efficiency of the
proposed scheme.

2. Geometric-kinematics errors in a 5-axis milling machine and tool path optimization

Innovations in the field of mechanical engineering and CAD/CAM have enhanced the involvement
of milling robots in various manufacturing processes. Nowadays, computer guided milling machines
are employed to produce free-shape surfaces in mass manufacturing industries (e.g., automobile,
airplane, ship-building). Unfortunately, several physical phenomena, such as: machine kinematics,
thermal effects, static and dynamic loading, common-cause failures often affect the quality of the
desired surface. However, the particular effect of machine kinematics-geometric errors seems to be the
most significant [4,7,11,15,28,29].

it should be noted that the paper does not focus on the geometric error of the structural elements of
the milling machine, such as positioning errors of the machine axes, spindle errors, thermally induced
geometric errors, etc. We will confine ourselves to the influence of the specific geometric-kinematic
factor, namely the particular tool path that guides the cutting tool. In other words, we investigate the
extent to which the machining tool path evaluated by the CAD/CAM computer contributes to the
inaccuracy of a machined workpiece.

Consider a typical configuration of the S-axis milling machine with the rotary axis on the table
(Fig.1). The machine is guided by axial commands carrying the 3 spatial coordinates of the tool-tip in
the machine coordinate system A and the two rotation angles. The supporting CAM software
generates a successive set of coordinates (called cutter location points or CL-points) in the workpiece
coordinate system W. Typically, the CAM software distributes the CL-points along a set of curves
which constitutes the so-called zigzag or spiral pattern(Fig.2).An appropriate transformation into the
M-systemn generates a set of the machine axial commands which provides the reference inputs for the
servo-controllers of the milling robot.

Consider how the axial command translates the centers of rotation and simultaneously rotates the
W-coordinates. Let W=(x5,Yp2,) and Wi =(Xps1,Vp+1,2p1) bE tWo successive spatial positions of the tool
path and R,~(a,,b,), R,-1=(a,.1,b,+1) be the corresponding rotation angles. _ _ _

In order to calculate the tool trajectory between #, and #,., we, first, invoke the inverse kinematics
[15] to transform the part-surface coordinates into the machine coordinates M=(X,, Y,?,Zp) and Mp. =
(Xp+1,¥p+1,Zp+1). Second, the rotation angles R=R(z)=(a(1),6(¢)) and the machine coordinates M=AM(f)=
(X(0),Y(£),Z(1)) are assumed to change linearly between the prescribed points, namely,

M@)y=tM ,,+(1-0OM,,

R@) =R, +(- HR ,,
where ¢ is the fictitious time coordinate (0 < ¢ < 1). Finally, invoking the transformation from A back
to W (for every t) yields W()=(x(£)3(0).2(1))-

The kinematics are represented by the matrix-
rotations around the primary (the rotary table) and the secon

They are specified by the structure of the machine. The mac
implies

functions A=A(a(t)), B=B(b(1)) associated with the
dary (the tilt table) axes respectively.
hine configuration depicted in Fig. 1

MO=BEXAQ@W(D+R)+D+C, .
where, R, T and C are respectively the coordinates of the origin of the workpiece in the rotary labl;
coordinates, coordinates of the origin of the rotary table coordinates in the tilt table coordinates an

the origin of the tilt table coordinates in the cutter center coordinates (Fig. 1_)- F 18-3_ 5h°"‘_"5 the effe‘:‘t‘:f
non-linearity. The non-linear trajectory between the two cutter location points in Fig. 3 is produced Iy
our software (the virtual milling machine[23])). Although this is an ac-tua_l trajectory the _plot is Turely
illustrative. A fine industrial machining does allow for such sharp variations of the rotation angles. In
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order to ensure a prescribed tolerance, the CAM software will estimate the local errors and will
incorporate additional cuts (if applicable) into a single output-block. However, such a strategy invokes
a substantial increase of the CL-points and consequently a substantial increase of the machining
time.

2. Preliminary examples of the grid based tool path optimization

Grid generation techniques are surprisingly well-adapted to tool-path optimizations. The kinematics
equations[15] imply that the deviation from the linear trajectory increases with the variation of the
rotation angles. In turn, the rotation angles depend on the curvature of the required surface. Therefore,
the grid adapted to the regions of large gradients of the rotation angles or the large curvature may
produce a better surface. Consider a surface having sharp variations along a sinus shaped cunve
(Fig.4). The corresponding adapted grid is depicted in Fig.5. The tool moves along the curvilinear
coordinate enhancing the quality of the required surface(Fig.6). Furthermore, the grid generation
techniques are applicable to generate a tool path in the case of complex boundary. Consider a complex
shaped domain depicted in Fig. 7. First of all, note that such regions are not likely to often appear in
the practice of conventional manufacturing. However, the authors of [6} address this domain as an
example of complex pocket milling which may not be solved by means of a regular zigzag pattern.
However, Fig.7 shows that the grid generation technique enables us to simultaneously generate
appropriate zigzag and spiral tool paths. The grid is well adapted to the internal and external boundary.
Besides, the flexibility of the grid generation approach allows adaptation to the regions where high
quality milling is required.

3. Grid generation and tool path planning
This section introduces general formulations of the tool path optimization and presents a discussion
regarding the assumptions made to fit the problem into the frame work of the variational gridding.
First of all, observe, that the general pattern is not necessarily a structured grid. Popular
manufacturing options include space filling curves[29], evolving curves[17], distance maps[(_i], etc. It
should be also noted that for some manufactured parts the trajectories are allowed to intersect.
Therefore, the pattern may not always fit in the framework of grid generation.
Consider the required surface S = S(w,v) and a tool path, where [T, =W,,R.). Assume that the

tool visits each position I1, in a “grid like” fashion. Introduce a set of points {(u,v),} in the
parametric domain such that I = {S(u, ,,v, ), R(u,,,v, )}, where i and j are running in such a way

that IT constitutes a discrete version of a parametric curve in R® whereas {(u,v),} a discrete analogy
of a structured curvilinear grid. .
Note that one could also employ unstructured grids. However the corresponding unstructured tool
path requires to minimize the number of the tool retractions [24]. Therefore, such optimization
presents a considerable challenge. .
The model of the cutting operations has an input given by p,, p,,S,[1 and an output given by 7.

where p_ denotes parameters related to the configuration of the machine, p, the parameters related to

the shape of the tool(see [25,29]). The model may or may not involve the kinf:mau_cs c_)f the n_1achme.
For instance, the majority of existing solid modeling codes are based on the linearization which does
not employ the actual machine kinematics[23]. However such models do not allow for an advanced
analysis of the geometric error. The optimization could be also performed with regard to p, and. P,
» is only a theoretical issue whereas the optimal
lity of practical industrial machining. .

he optimization is then performed with

However, more often than not the “optimal machine
size and shape of the tool could substantially enhance the qua

Suppose that the configuration of the machine is given. T
regard to the error w(u, v) =| S(u, v)—T(1, V) ||



Fig.6 The machined part

Fig.8 Composed spiral/zigzag pattern. Fig.9 Composed path.
Constraint minimization

Unconstrained minimization

Fig. 10. Experimental machined surfaces. a). b) concave convex surface wood
¢) parabolic surface, wood d) concave convex Bezier surface, steel.
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minimize (w),

I1, p,
where || || is an appropriate norm and where I belongs to a set of the feasible “grid like™ paths.
satisfying non-linear constraints D, (p,.S,I1) 2 0. A typical set of the constraints involves

1) The scallop height constraint (see our forthcoming section 4 where this constraint is discussed at
length, see also [13,25,29])

2) Local accessibility constraints. The constraint insures against the removal of an excess material
when the tool comes in contact with the desired surface due to the so called curvature interference
and the surface interference[25]. The mathematical formulations are based on finding the

intersection of the tool shape and the required surface and the inequality r,<r, . where r| is the
radius of the curvature of the surface at the contact point (in the direction orthogonal to the tool
movement) and r, the radius of the curvature of the so-called swept section of the tool (see

various formulation in [16,25,29] )

3) Global accessibility constraints. The constraint ensures that the tool does not come in contact with
either the machine parts (collusion detection) or the unwanted parts of the desired surface. The
constraints are often constructed by means of the so-called visibility cones (see [32]).

An extended set of constraints could include the tool acceleration constraint [24] and the tool retraction

constraint [24].

Recent research papers have displayed a number of sophisticated methods to optimize a zigzag or

spiral pattern (Fig.3) combined with techniques dealing with the geometric complexity of the

workpiece (see for instance, [1,2,6,7,24]). Besides, there exists a variety of off-line methods to

generate a suitable non-uniform tool-path, for instance: the neural network modeling approach [27]

and the Voronoi diagram technique [6]). However, a robust algorithm to generate such complicated

patterns is still an open problem. .

As opposed to the above schemes the curvilinear grids make it possible to easily generate and
optimize simple and robust zigzag or spiral patterns due to an obvious analogy of the conveqt!onal
patterns with the curvilinear grids. For instance, the zigzag pattern corresponds to a curwl_mez_n'
Cartesian grid whereas the spiral pattern to a polar grid. Therefore, the grid based tool path planning is
suitable to be embedded into the conventional CAM-applications.

Furthermore, the grid refinement enables us to introduce the most important components of the
tool-path planning, such as: adaptation to regions of large cutting errors, a global measure of the
smoothness of the tool-path as well as engineering requirements related to _sc.allops between the
consecutive tracks. As opposed to the conventional methods dealing with the individual errors between
the CL-points, the grid generation technology makes it possible to treat the problem in terms of the
global optimization and to adapt all the CL-points simultaneously. Since such an gdaptau'c-trn s
designed to find the global minima, it substantially improves the accuracy of the r_nachmed surface.
Besides, the tool path optimization for the complex pocket milling(one of the most difficult machm:;:g
problems(see, for instance, [7,20,24]) is solved by constructing appropriate gr ids adapted to the
internal and the external boundaries.

Finally, nowadays powerful grid generators
independent of their type. On the face of it, c
However, application of the general purpose grid generators to : .
stmightforwgfd as it may seemg. First ot? aIrE the tool path must satisfy constraints which depend on th:
characteristics of the machined surface and the machining tool. Therefore, the problem must be treate
as constraint optimization. Second, advanced tool path optimimtiqn involves el:mlnatlgn of culr\-ature
interference, surface interference, global and local accessibility, adjystmer!t of the_ rotation angles, etc.
Therefore, the grid generation must be invoked in the iterative loop involving a su:ta!)le preprocc_ssmfé
It should be noted that an interaction between the workpeice and the ‘°°| '* @ compltct_a:h
technological process which depends on the material, rotation of the tool, positioning errors of he

!

are able to generate grids for complex geometries
onstructing the tool-paths seems a smplg matter.
the tool path planning 1s not as



machine axes, spindle errors, thermally induced geometric errors, etc. A suitable adaptation of the grid
generation methods to the variety of the errors is still an open problem.

The grid generation principles are applicable if w — 0 as the area of the grid cell tends to zero.
We minimize a functional F representing the equidistribution principle subjected to the above
constraints. The optimization problem is then given by

minimize F
subject to the constraints D, 20, &k =1,.., N_, where N_ the number of the constraints.
The functional may adapt the path either to the error or to an error estimate represented in terms of
the characteristics of the required surface such as the rotation angles or the curvature.

Therefore, the grid generation allows for an optimization with regard to the space coordinates of
the tool path. However, the general tool path planning requires optimization with regard 10 R as well.
Furthermore, the relationship between the required tool orientation and the rotation angles R is not
unique. Not only does this relationship depend on the configuration of the machine but it also is not
unique for a particular machine. Consequently, even if the tool orientation is fixed the optimization
must be performed with regard to all feasible rotation angles. Our tool path generator allows to treat
the jumps of the rotation angles as well as the rotations by = and 2n by means of a special angle
adjustment procedure designed for an arbitrary tool path pattern(see our forthcoming section on the
optimization of the rotation angles). Note, that the initial tool orientation along the normal vector may
also be replaced by the orientation based on a technological viewpoint or heuristic experimentally
verified policies (see some feasible engineering solutions in {16]). .

4. Adaptation to the control function ]
This section introduces tool path optimization based on the Dirichelet functional. The control

function could be presented in terms of the milling error or in terms characteristics of-' the required
surface. We demonstrate the techniques in the important case when the control function is represented

in terms of the rotation angles. _ _
The optimization is based on an interpolating surface comprising (by means of the inverse

kinematics) the tool trajectories. Introduce a set of CL-points {(«,v),}, being a discrete analogy of_a
mapping from the “computational region” A={0 <& < 1, 0 <1 < 1} onto the physical region defined in
the parametric coordinate system (w,v). In other words, the set of the CL-points (%,v),, is a structured
curvilinear grid. Next, consider trajectories between the points (§.1,).(&+1,1,) and _
(E.My1).(Ei1, 1), respectively denoted by Tiuos,(f) and Tiwos;+1(2). An obvious change of variables =
(E-E£)(&.1-E) combined with the standard blending interpolation technique produces a subsurface
Tivo.5,+0.5(E,M) spanned onto the grid-cell {(u,v),; ,(#,V)e1; (#,V)i51 {sV)ip1}- The .subscnpt g mdlcatc?s
the movement of the tool along the curves E=const. The non-linear interpollatmg surface T{E,n) is
then composed from the subsurfaces T s,-05(E.n). Note that the obvious iterative loop “error <> tool-
path” leads to computationally costly numerical procedures. On the other hand a smtab[e co_ntrol
function derived from the surface properties which and does not depend on t.he t.ool path is st:ll'an
open problem. However, it is often the case that w is proportional to the derivatives of the rotation
angles. Therefore, the tool path adapted to the control function |a|+|b| may produce a l:tetter
surface. The required grid is then constructed by minimizing the following Dirichlet type functional
[9,10].
@ +u2)(A+K2)+ (7 +v)A+ K]))+ 2K K, (v, +u,,v§)d€dn

FE'[I J‘fl +K2+ K]

JeAEm) denotes the Jacobian of the mapping, K = Ak, k=k(u,v) = a(,v)|+| bg":") | -_A'x the
weight coefficient, the subscripts £,11, # and v denote the partial derivatives. The functional will adapt




the CL points to the regions where grad(k)is large. Obviously, k must be regularized near =0 and

b=0. Consider an approximation of F introduced in [10]. Denote the approximation by F .

The optimization procedure is endowed with constraints related to the maximum allowable scallop
height denoted by Agn.« which characterizes the error between the consecutive tool-tracks. The
constraint is given by d 2 p, where d is the maximum allowable distance and p the distance between
the cutter location points. The explicit form d=d(/..) depends on the shape of the tool and the surface
curvature(see details in [4, 15,16]). We approximate the constraint by

D;_nuz = (d:.jn:z)z - (P;_,u;z )z 20,

where p ., = S04V), ., —S@Y),, EJOS a5, ¥ +00u =%, P +z,u =2, -

In order to solve the constraint minimization problem, we define the penalty function

I= z A,U_p (D-.; ), and the grid-function [ = F+ }'Lpf , where A ,, are the penalty coefficients,
1

Ay the weight coefficient, p(D), D €(-=,0), is a convex decreasing function with p(D)—e< if D — <.
The relevant finite-difference scheme given by

Q Eaal o, a.=21 _¢

o
u,, 8v,._,

is quite lengthy and therefore omitted.
We solve the corresponding algebraic system by the quasi Newtonian iterations given by

u"'" = u:} - [T(ngw - QUQMV )(Ququ - Qwqu )-I ]'-}

ig
v:;t = v:'.} - [T(Qquu - Qunw )(QWQW - Qwqu )—I ]l_j »
where 7 is the iteration index, T the iteration parameter, which is chosen so that the grid consists_of the
convex quadrilaterals. In order to construct the convex grid we control positivent?ss o.f the discrete
Jacobian (see further details in [10]). The penalty coefficients are computed by an iterative procedure
[20] given by

A ={JJ.,, +5;U,_,,ifD,_, <0,

A'..;, otherwise,

where 81, denotes the corresponding increment, / the number of the penalty iteration. '
The initial mesh is generated by means of a marching method. Next, we compute the control funct!on
K at each node and evaluate derivatives of . We repeat the iteration step to convergence upd?tmg
the Lagrange coefficients l’y. In order to improve the stability of the algorithm, we use linear
smoothing,.

Example. A spiral tool-path embedded into a zigzag tool-path.
This example demonstrates advanced techniques of producing a tool-path composed from segments
corresponding to different types of motion. The tool-path on the workpeice 60 x 30 (Fig.8) is adapted
to the curvilinear boundaries and to the zones of large milling errors located inside the circular region

and at the left part of the workpiece. The constraint /15,=0.01 imposed on the_ scallop _height. is quite
d by an unconstrained minimization. The

significant. Fig. 9 displays a grid (147 iterations) constructe _
grid is unaccfptable ::inZe 1.'h§r ma(ximum scallop height is about 50 times more than the prescribed
value. The points where the constraints are not satisfied and points p_osﬂnqned too clqse to each oth:;
are indicated in the figure by circles. The composed tool-path (175 iterations) in Fig.8 is generat

with the penalty function p(D)=[min(D,0))’, 5A=1 and A, =0.25. The tool-path is w_ell agapted ttt:a tthe
regions adjacent to the large milling errors as well as to the constraints. The application demons t;s
that our method allows to satisfy the prescribed constraints by modifying the space ste_psdmt e
irrelevant regions(the regions where the error is small). Moreover, the number of the required steps



does not increase significantly. Therefore, the penalty functions technique constitutes an essential
supplementary measure to improve the properties of the tool-path.

5. Practical machining
~ Some of our experimental surfaces are presented in Fig. 10. We verified our techniques by concave
(a) and convex (b) Bezier surfaces as well as by parabolic surfaces (c) and concave-convex Bezier
surfaces (d). We used workpieces made from wood (a)-(c) and steel (d). Real machining presented in
Table | demonstrates a significant average increase in the accuracy of milling. /4. denotes the average
step for the rectangular pattern, §, the accuracy increase, R, R, denote the roughness of the workpiece
produced by the conventional and the adaptive method, symbol * indicates that real machining was not
performed. Observe that the constraint minimization techniques could produce a grid which actually
does not decrease the error, even increase it with regard to the rectangular tool-path generated without
regard to the constraints. Indeed, our formulation represents the accuracy of milling by the two
criterions w and A, rather than solely by w. Therefore, the constraints related to s, may substantially
affect the solution. Besides, the solution to the minimization problem is not unique or may not exist. In
practice an initial grid typically lies outside the feasible region and there is no prior knowledge whether
the set of grids satisfying the prescribed constraints comprises at least one element. Consequently, the
convergence is analyzed by means of numerical experiments. Note, that the adaptive approach allows
nor a simple estimate of the number of required tracks neither an estimate of the number of the CL-
points belonging to one track. Therefore, we developed a realistic rule applicable to the majority of
practical situations. If a number of the CL-points not satisfying the scallop constrains is more than 2/3
of the total number of points than the adaptation is not possible or requires a very large number of
iterations. In other words, the computational efficiency of the algorithm depends on the number of
points admissible for re-distribution. If this number is small than, first of all, the error can not be
substantially reduced, secondly, the optimal grid may not exist at all. Even if such a grid _exlsts, the
iterations may fail to converge. Table 2, illustrates computational complexity of the algorithm for a
zigzag tool-path having 40 x 40 CL-points constructed for the Bezier surface (steel, Fig.10 (d)). &
denotes the absolute error, the accuracy increase characterized by the ratio £R=100’ E4/€c, where £c the
error on the rectangular pattern, 7 the computational time on a PC (Pentium 3), 1 thfa number of th.e
required iterations, Nz the number of the “bad points”(the points where the constraint Ag.=0.01 is
violated) belonging to the initial rectangular pattern, the symbol # indicates divergence. Observe that
haax=0.015 mm leads to a substantial accuracy increase of about 40 % with regard to the rectangular
tool-path, whereas /,,,=0.013 mm yields only a 22% increase. Fmax=0.001 mm and hm=_0.012 mm
actually increase the error. It should be noted that /m., = 0.015 mm seems to be the most suitable since
the scallop height and the error are approximately in the same magnitude. The .calcu.latlons reveal that
hpax and € varying in the same magnitude often lead to the minimum number of iterations. It means that

appropriate scallop heights could be taken as fractions of € corresponding to the conventional tool-path.

Table 1 : Accuracy and roughness of the surface

hC » 8,4.. RC RA
mm % / mm um m
3.60 34/0.2600 * *
1.80 41/0.0930 * *
1.20 34/0.0580 34.8 17.3
0.90 36/0.0410 14.3 6.6
0.60 32/0.0260 5.9 43
0.45 40/0.0180 2.6 2.1




Table 2: Convergence of the algorithm

A » T, i & Er Ny ]
mm

0.0001 # # # # 1132
0.0010 32 1710 0.094 200 500
0.0012 11 550 0.047 105 92
0.0130 9 421 0.032 78 61
0.0150 4 250 0.024 59 25
0.0170 3 200 0.020 55 0

6. Optimization of the rotation angles in the neighborhood of a stationary point
The inverse kinematics of the five-axis machine involves five coordinate systems denoted by Ol,
02, 02’, O3 and O4 shown in Fig.11 see also Fig.1. Ol corresponds to the workpiece coordinates, O2
to the center of rotation of the tilt table, O2’ is O2 rotated around y by 90 degrees. Finally O3 and O4
correspond to the coordinates with the origin at the center of the rotating table and at the tip of the tool

Y1

B axis

Fig. 11. Five-axis milling machine. Reference coordinate systems

which performs 1) Rotating O2 around_ z; 2)
4) Rotating O3 around ys and 5) Translating O4
f freedom of the machine tool. The goal
W=(x.y,z)

respectively. The milling machine is a mechanism,
Translating O3 along x;, 3) Translating O3 along y3
along 2z, The five types of movement allow for five degrees o _ 3
of the simultaneous movement of the machine is transporting the tool tip to the position



with the orientation (i, j,k) performed by simultancous rotation of the machine parts specified by

R=(a,b). Here a is the angle between the x-axis and the projection of the orientation vector onto the x-y
plane and the positive direction of the x-axis, whereas b is the angle between the projection of the
orientation vector onto the x-z plane and the positive direction of the x axis. Note, that we consider
be [0,—x]. Suppose that the required orientation of the tool is (i, j,k) . After the prescribed rotations
the tool orientation in 04 is (i,, j,,k,)=(0,0,1) (the tool is collinear with the z-axis). Note that the

coordinate transformation depends on the zero position = (0,0,0,0,0) which is assigned by a special
machine command. We demonstrate our optimization techniques for the zero position defined by the
rotating table at the rightmost position shown in Fig.1. Consider the rotations. First, the coordinates are
rotated by a in O2. Therefore, the orientation vector in O2 becomes

i, =icos(a)+ jsin(a),
J, =—isin(a)+ jcos(a),
k, =k.
In order to align the z-axis we rotate by O2 by 90 degrees around y»
iy ==ky j3 = J, k3 =—i,.
Next, we rotate O3 by b around y5, namely,
i, =—i, cos(b)+ k, sin( b),
k, =i, sin(b)+ k, cos(b).
Jo = Js
Finally, (i,, j,,k,)=(0,0,1). The above equations yield
0=-isin(a)+ j cos(a),
0 = —i; cos(b) + k, sin(b),
1 =i, sin(b) + k, cos(b).
Consider the a—angle. Denote the solutions within the range [0,27] by a,, and define a set of
feasible solutions 3 ,={a:| a,,, —a|<2r}.

Clearly,

r .

tan~'(<),if i = 0and j 20,
J

Apose =47t+tan"(-i_-),if(i<Oand j>0)or(i<0 and j<0),
J

27 + tan ' (), otherwise.
J

Consequently, 3, ={a,,,.q,,,. — 27,0y, — 7> Aps. +n} (see Fig 12). Note that, after rotation

Q4o OF a,, —27 the tool is positioned at the same quadrant with the original projection of the

tool whereas rotations a,,, —#,d,,, +7%& correspond to the tool being located at the different

. - :
quadrant(Fig.12). Clearly, @, or a,,, — 27 require rotation b, =—Ssin (k) whereas rotations

@y, — 7,4, + T correspond to b = —7 — b,,,, . Therefore, each position I, = (#,,R,) generates

four possible “offspring” positions represented by pairs of the feasible angles given by



tool orientation vector

2 — Qprce tool orientation vector
a,. +n
abau
2” - abme
X aba.:e
— p

Fig.12 The set of feasible rotations

Fig.13 Optimization. The graph corresponding to the set of feasible rotations



a,..b,.,

J a,,—2rn.b,,

pel>

A, =
., —m,~b,, %

a,,+n.-b,,, —n.
Since the milling error depends on the derivatives the rotation angles we define the tollowing cost

_ da ) 2
functional csc(a,b)=_[I grad(R) | ds =IJ{7‘:] +(%] ds, where [ =1{(s) is the arc length and
n n

s€ [0,1] is the parametric coordinate along the tool path I1.
We consider the following minimization problem
minimize(<)

A,

@,,—a,) +(b,,—b,)

= 3 T 3
(qu —xp) +(.Vp+| —yp) +(-'-,»1-zp)

grid points. Clearly, ¢ is a discrete version of the continuous functional ¢.

The minimization problem is solved by a discrete algorithm based on the shortest path strategy. We

construct a graph with nodes representing the feasible angles and arcs representing the cost ¢, (see

Fig. 13). First, we define optimization windows at the vicinity of the stationary points and determine
the source and the destination vertices denoted by s and ¢. The windows could be specified by a trial
and error approach by means of our virtual five-axis simulator {23] which allows to graphically
visualize manufacturing of industrial parts and to display the geometric error (see Fig.14, Fig 15 and
Fig.16). Next, we construct a graph to represent the feasible paths from s to . Finally, we apply the
Dijkstra’s shortest path algorithm [33] to compute the smallest distance from s to 7. Since a decrease in
the cost function leads to the error decrease, the optimization enhances the quality of the machined
surface near the stationary points.

and N is the total number of the

- 1 - -
where ¢ 572 €,, ¢

Example. A mold for a phone set. Fig. 15, Fig.16 and Fig.17 show the numerical and the graphical
output of the simulator in the case of an experimental surface given by
‘ 100 —S50

S(u,v)= 100v—50
—8OW(v—IX3.55u—14.84" +21.154° —9.9u*) 28

This surface represents a simplified version of a mold for producing a phone set. .Fig.l6‘ and 17
illustrate the optimization. The non optimized tool path is characterized by Ioop—!ll\:e trajectories
induced by large gradients of the rotation angles near the two stationary points(the minimum and the
maximum point). The loops produce a considerable error(see Table 3). Although the optimized path
also contains the loops, they are much smaller. The corresponding accuracy increase is shown in Table
3. For instance, the optimization of the tool path consisting of 400 points leads to the 85 % (!) error
reduction. It should be noted that the optimization makes sense only for the so cal_led rough cutting ,
that is, the cutting characterized by low accuracy and a small number of the CL points. We prove this
argument by increasing the number of points along the direction of the tool movement. Table 3
demonstrates that in the case of a rough cut the optimization technique makes n. possllble_ to
substantially reduce the error. However, increasing the number of points along the cutting direction
(see Table 3 the bottom line) shows that small angular steps make the optimization §upgrﬂuous. It is
Plain that when the angular step is small, switching between the feasible trajectories increases the



Optimization windows

at the vicinity

kS

of stationary points

Fig. 14. Optimization windows
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Fig. 15. Numerical output of the virtual milling machine
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gradient and therefore amplifies the error. In other words if the steps are small the best strategy is the
conventional scheme, that is, to stay on the initially chosen path.

Table 3. The shortest path optimization

Without The shortest path Accuracy

Tool path optimization optimization increase
array o4, %

cost ¢ error cost ¢ error

(mm) (mm)

20 x 20 0.067 2.922 | 0.009 0.446 84.74
30 x 20 0.103 1.166 | 0.010 0.185 84.13
40 x 20 0.109 0.653 | 0.050 0.163 75.04
50 x 20 0.129 0.532 | 0.035 0.135 74.62
60 x 20 0.077 0.153 [ 0.021 0.124 18.95
70 x 20 0.080 0.135 | 0.03} 0.115 14.81
100 x 20 0.087 0.108 | 0.072 0.101 6.48
130 x 20 0.088 0.096 [ 0.088 0.095 1.04
150 x 20 0.090 0.092 | 0.090 0.092 0

Conclusions

Grid generation offers a new concept to build a system of mathematical models for tool-path
planning of the industrial milling robots. The approximation of the required surface by means of the
associated surfaces combined with the Dirichlet type variational approach proves to be significant in
increasing the accuracy. Although theoretical estimates of convergence are not still available, the
proposed algorithm establishes the convergence and stability for the majority of practical cases,
whereas the number of required iterations is only slightly different from that of unconstrained
gridding.

The proposed grid based strategy can be enhanced by the shortest path optimization near the
stationary points.
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