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ABSTRACT

Project Code: FPDFM4/2544

Froject Title: A Universal CU and PE Allocation for Dynamic Reconfigurable MSIMD/IMIMD
Parallel System
Investigaior:
1_Assl. Prof. Dr. Jeeraporn Snsawat, King Monghkul's Institute of Technology Ladkrabang

2. Prof. Dr. Wanlop Surakampontomn, King Mongkut's Institute of Technology Ladkrabang

3. Prol. Dr. Mikitas A, Alexandridis, George Washington University, Washington DC, USA
E-mail Address: 1, ksjeerapd@kmitt.acth 2. kswanlop@kmitl.ac.th 3. alexani@seas.gwu.adu
Project Period: 2%% years [(August 15, 2001 - February 14, 2004)

Reconfigurable MSIMD/MIMD systams are generic and flexible partitionable parallel systems that
provide sub-systems for dynamic tasks, sach of which need a specific executing (SIMD or MIMD)
mode. During alocation tme. some lasks may call the SIMD mode for their synchronization
whereas some tasks may need the MIMD mode o execute independent different instructions.
Therefore, the reconfigurable MSIMD/MIMD architeciure has become increasingly impartant in
both parallel and distributed computing and high perfermance computing.  In the past, most
existing processor allocation stralegies were introduced for the partitionable multicomputer to
gllocate independent tasks In ihe MIMD mode, In addition, those methods are limited n their
designs for particular Inlerconnaction networks such as hypercubes or 2-0 meshes.  In this study,
we presant "a unheersal mode™ to parform dynamic resource (CUPE) allocafion decision for the
reconfigurable and partitionable MSIMDMMIMD parailal systems. Qur model can be applicable for
all natworks in the product network class, including multi-dimensional meshes, hypercubes, n-ary
k-cubes, elc. Moreover, this universal model can be utilized for the reconfigurable MSIMD/MIMD
systems that allow various dynamic tasks executing in the MIMD and SIMD mode in different
partitions. In such special system, the MIMD fask raguires only the free sub-system but the SIMD
task needs the free sub-system as well as the corresponding free CLU. For MIMD tasks, the new
generalized PE allocation meathod s introduced, based upon the binary tree, which Improves lime
complexity over that of tha recent k-Tree-based approach.  For the SIMD partition, the generalized
CU al location s trategy is introduced o complete the MSIMD/MIMD partitions in efficient time,
Finally, In Ihe system performance evaluafion on the MSIMD/MIMD systems, we presented the
comparalive performance of our new universal binary-free based model to the modified k-Tree-
based approach to cover both MIMD and SIMD tasks. By simulation study, the results showed
that our binary-tree-based approach yelded the comparable system performanca to those of the k-
tree-based sirategy. In addition, we also compared the system performance of our binary-tree-
based model, when appled on the 2-0 mesh-connected systems, to those of other recent 2-0
mesh-based allocation strategses.  Our binary-iree-based results and modified k-tree-based resulls

for the partiionable 2-D meshes were also comparable lo those of the exisfing 2-D mesh-basad
pirategies in efficient tima.

Keywords: Universal resource (CUWWPE] allocation model, processor (PE) allocation method,
control unit {CL) allocation strategy. reconfigurable mult-SIMD/MIMD architectures, partitionabie
paralled sysiems.
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1. INTRODUCTION

A partitionable multicomputer is n special type of parallel computers that provides at run time for exccuting
vanous independent parallel‘distributed applications {or tasks) on different sub-gystems in parallel. For thar
system, cach of these tasks requests an MIMD mode. The more flexible partitionable parallel system,
called the reconfigurable MSIMD/MIMD system, provide independent sub-systems for the requested tasks,
each of which need to process in sither SIMD or MIMD mode. Al execution time, somé tasks may require
the SIMD mode, which is good st synchronization and communication. Also some taiks may need to
execute independent branching or different instructions which are suitable for the MIMD mode. Thus, the
reconfigurable M SIMDVMIMD p arallel s ystem h as b ecome inc reasingly im portant for t he paraliel and
distributed computing environment. In computer archilecture research, examples of the reconfigurable
MSIMDVMIMD architectures include SPP [4], PM4 [5], REPLICA [32], MAP [36], NETRA [38], and
PASM [ 40]. S uch r sconfigurable M SIMDYMIMD s ystems p erform r econfiguration o r pantitionat the
network level for & number of independent tasks and hence not at the instruction level for any task graph or
specific algorithm, which reconfigure by altering the connections between processors (PEs). The SPP
(single pool processor) MSIMIVMIMD architecture [4] is more generic and flexible in design than those
existing reconfigurable architectures. In that siudy, results showed that the SPP MSIMD/MIMD
archilecture provided the improved sysiem performance over existing reconfigurmble MSIMDVMIMD
architectures. Consequently, our study concentraies on designing the resource {CU/PE) allocation model
for the new computer architecture design in the ares of parallel and distributed systems.

In the reconfigumble and partitionable MSIMIVMIMD environment (see Figure 1}, a number of
independent smaller tasks from the same or different applications come in. Each of these tasks requires at
mumn time & separate sub-system or partition Lo execute in either SIMD or MIMD modes. At the froni-end
computer, o special designed operating system (O5) known as the resource allocator and task scheduler is
mtroduced for this reconfigurable system.  lis major responsibility is to dynamically find the appropriate
location of a free sub-system in order to allocate for cach incoming task, as well as 1o deallocate & specific
wbu}mmdmmﬁlmmﬁummmmummm:Mi:Haﬂm.u&wm-
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multicompater 10 exscute in the MIMD mode. Those existing methods mre also limited in their design for
particular interconnection networks that are either the hypercubes or the 2-I) meshes. For the partitionable
Mmm*mwmmmmu&nmmm&
{ilATl:IJDE[ﬁlhhmiﬂhMM?ﬂElmmﬂl].hmn
mmﬂumumﬂmm}hmﬂmmmmuummmm
the modified FRIME CUBE GRAPH [49]). For the partitionsble 2-D meshes, 2-D mesh-based PE
mmmimummm.hmm[mmmm-ﬁm
task scheduling [15], the ADAFTIVE SCAN [18], the FREE SUB-LIST [26], the 2-D BUDDY (28], the
FREE LIST [31], the BIT-MAP with panition [35], the QUAD TREE [45], the QUICK ALLOCATION
[50]. and the BIT MAP [S2). Those existing PE allocation slgorithms were introduced o be applied at the
from-end compaster for the partitionnble MM paralic! systems. For the design of the reconfiguruble SPP
MSIMDYMIMD architecture, the resource (CL/PE) allocation strtegy [2], called the modified bit-map

A sequence of Incoming Esks (o
oaralel B disnboted apelicationa)

Figure 1; A reconfigurablé and pariiionabis mmammdmwﬁgm

hmM#mﬁMﬂWMﬂhﬂnMnMﬁmh
mumenmwmhhmhﬂmﬂmuw
MIMD parallel systems. COur model can be applicable for all interconnection metworks that are in the
product network class. In general, the product network configurstion is & family of interconnection
MMMMHMMMMWEH,MMME
Our universal model contains & binary-tree system siate representation and allocation/deallocation
slgorithms as well as their time complexity analyses. For specific allocation/deallocation functions, various
mwnmm-mmmmuﬂ
heuristic, and searching for allocation/desllocation decision. In particular, our universal (CL/PE) allocation
model is designed with the new ides based apon the hinnry tree structure along with some modification
hmwmﬁmm‘ﬁwﬂﬂbwmdhmhmmﬂmmﬂndbw
mddﬂh!lﬁﬂ'ﬁlhﬂlﬂﬂﬂﬁl"ﬁeplﬁﬁnﬂupﬂﬂﬂmhlw“ﬁw
Mmmmmﬂﬁmmﬂrhmﬁlﬂpﬂmmm




in efficient time. By simulation study, we presented the system performance evaluation of our universsl
resource (CLYPE) allocation model on the reconfigurable MSIMIVMIME systems. First, we presemted the
comparative performance of our universal binary-tree hased model to the modified k-Tree-based approsich,
Next, we also cvaluied the system performance of our model, when spplied on the 2-D mesh-connested
systems, 10 those of other recent 2-D mesh-based allocation strategies. Many experiments were performed

and the system performance was presented in terms of system utilization, system fragmentation, eic,

Mext section reviews some related research in the reconfigurable MSIMD'MIMD prchitectures and the
study of existing processor allocation methods.  In Section 3, we introduce the universal b

maodel and the modified k-Tree-based to perform resource (CL/PE) allocation/deallocation decision for the
reconfigurable MSIMD/MIMD parailel systems a3 well as comesponding time complexity anslysis.
Section 4 shows applications of our universal model for some particular interconnection networks such as
20 meshes and hypercubes. Section § presents the evalusted system performance of our umiversal modsl,
Finally, conclusions mnd fiture study are discusssd in Section 5.

2. RELATED RESEARCH

This section presents the generic models of existing MSIMD/MIMD architectures (in Section 2.1), the
resource (CL/PE) allocation strategies for the reconfigurable MSIMIVMIMD systems (in Section 2.2), and
the existing processor gllocation sirategles for the partitionable MIMD systems (in Section 2.3,

2.1 Reconfigurable MSIMD/MIMD Architectures

The partitionable parallel system is designed for executing various independent tnsks on different sub-
systems in paraliel. LUsually, each of these tasks requests an MIMD mode. The reconfigurable
MSIMIVMIMD paralic] system is & flexible partitionable parallel system that supports for tasks that request
10 execute in SIMD and MIMD modes.  In the computer architecture research, examples of early
MSIMDMIMD designs are PM4 [5], REPLICA [32], MAP[36], NETRA [38], and PASM [40]. In these
MSIMDMIMD architectures, the system compases of two major parts [4]: & base system and a partition
control system. The hase system is similer to that of the distributed-memory multiprocessor. The partition
conirol system (PCS) introduces the additional hardware (CU-PE network) to handie the SIMD partition,
In wddition, these srchitectures are designed sround two pools of processors, called the double-pool
processor (DIPP) design (see Figure 2): one for processing clements (PE) and another for control units
(CL), where each processor’s role is fixed for assigning as either PE or CLI at their design time.
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The major different among those carty MSIMDYMIMD architectures are the PASM and NETRA systems
dpply the fAxed-PE partitioning wheress the REPLICA, MAP, and PM4 introduce the variable-PE
partitioning.  In the fixed-PE partitioning, each CUl can be permanently connected to a fixed-size block of
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PEs using tree networks.  In such implementations, a partition is formed by combining a number of ClUs
for the desired PE partition. Since cach pantitioned size is equal to integral number of blocks, it may cause
internal fragmentstion for arbitrary tsk sizes. However, the advantage is that the CU-PE networks for
these systems are inexpensive.  In the variable-PE partitioning, the CLLPE network applies an MaM
crossbar switch to provide flexible assignments of any CUs to any requested PE partition, Although this
design could improve the performance, such implementations are generslly expensive due to the cost of the
crosshar, Morcover, using separate PE and CU pools still causes a performance bottlensck. For example,
if the system runs out of CUs, no more SIMDD tasks can be allocated,  Another possibility {s that if all PEs
are allocated, then remaining Clis must be idle

The new design, called the single-pool processors (SPP) srchitecture [4], was introduced (see Figure 3) to
overcome that performance botllencck of the carly DPP design.  Each of processors in the SPF pool, called
& control processor clement (CPE), Bs designed 1o be dynamically assigned the role of CU or PE &t the
sllocation time, In the SPP design, the panitionable broadeasting network (PBN) is introduced 1o
dynamically form a broadeasting bus between a selected CUI and all processars in its PE partition.
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Figura 3: The SPF [Single-Pool Processar) Architechans,

The PBN network is made of N switching nodes (see Figure 4) to dynamically vary connections of the
partitions by combining many Features from both fixed and dynamic interconnection networks, The switch
bowxes are connected together into the same topalogy of the base fixed-interconnection network.  Therefore,
the number of switch 'O ports in & switching node will be equal to the degree of the network.  In the
resource mllocation, after a set of CPEs have been configured as PEs and an additional CPE has been
configured as a CLI, we obtain a traditional SIMD sub-mmchine, a8 shown in Figore 5 and 6 for some
examples of the 2-D mesh-connected system and the hypercube-connected system, respectively.

= [ th

ET)
v

&4

- R

iyl L

tnssssccfen el s s s

(el

: <}

(=) i CPE (insiruction or sontrol eosdcast path i)

Figure 4; a] & switch nodae dealgn for the PBN and b An example of swdch axpansion.

Note that since the SSP architecture provide the general system base similar to the distributed-memory
multiprocessors or multicomputers, except adding the PEN hardware. In our resource {CLVPE) sllocation
study, we adopt the reconfigurable SPP MSIMDYMIMD architecture [4], as the system base of our
proposed universal resource (CU/PE) allocation model (presented in Section 1),
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2.2 Resource Allocation for Reconfigurable MSIMD/MIMD Systems

For the design of the reconfigurable SFP MSIMDVMIMD aschitecture [4], the resource (CU/PE) allocation
ammgy,uﬂndmmaﬂﬁhlmmmmﬂ].mwmpﬂmﬁhmmﬂ
05 al the back-end paraliel system, That bit-map Buddy-based approach was proposed for two specific
interconnection netwarks that are the hypercubes and the 2-D meshes. Although the SPP architscture s the
general design for many interconnection networks, the bit-map BUDDY strategy was limited and modified
differently for the hypercube network or the 2-I) mesh network. This is becsuse they were modified based
upon existing processor allocation/deallocation strategies introduced at that time.

The major sieps in the resource (CLU/PE) allocation method st the back-end paraliel system are performed
85 follows. Firsl, configuring an SIMD or MIMD sub-system starts with allocating a free PE partition. If
ﬂr:mqunstis:uSIMDm-mimmilﬂIMHﬂdﬂﬁ:Pﬂﬂilmﬂwﬂiﬂul
broadcasting link between that CU and its partition. In particular for the hypercube networks, the CLI
algorithm is introduced intﬁt]ﬁm{mﬁm?}.mﬂmckhhdlrmimufthhwwbnm




| ALGORITHM: (Allocate-CUBE-MIN-ID, PE-MAX-ID)

bagin
for all FEs in the partition de in parallel
CU=-found = FALSE:
and=fars

F* Flrst, all PEs in the BPE partition search concurcently for a partitiom co ®f
for i=) s n-1 do
LE [CU-Found=FALSE] AWD (neighber[i] is WoT in the partitioni
AND {neighbor[i] is FEEE)} then
Ci-id = paighbar(i]}
C-found = TRAOZs
and=ifr
and-Eag;

% Then, this is used o select & CU=id with the smalleat ld in the partition =/
for i = p=] down to 0 do
for all FEs in the partition do in parallsl
if (ith bit in cwn-id is 1) than
wend (CU-id, CU-found) to neighbor(i]:
and-for
for all FEa in the partition ds in pParallel
LE fith bit in own id=0] AND (recaiwed [CU-found] = TRIE} | then
CO=-id = min (CO-1d, ceceiwed[CO=Lidbg
Ch=fgund = TROE:
end-for:
end-fory

mhmﬂmﬂnmmmrhmﬂm y
2.1 Processor Allocation for Partitionable Perallel Systemns

lellnntlmlPEmﬂﬂm{wwh—qumwmnnlranﬁmmmﬁumeﬁmfm
hnﬁﬁmﬂa!-ﬂmhmmndmimﬂmﬂm!&.l]uﬂhﬂﬁﬁuﬂlh}m
connected systems (see Section 2.3.2),

2.3.1 PE Allocation for Partiiionabls 2-D Mesh-Connected Systoms
Consider an initial partitionable 2-D mesh-connected system of size N = R x , where R is the number of

rows and C is the number of columns in the system, P(, 1) will be cne of its processing elements (PEs) st
coordinate address (i, j) or the i™ row and the j* colummn in the system, where P(1,1) denotes the PE at the

Figure 8: An exampie of 3 mash-connecied sysham (N = Bl he sysiem siaius with an mlocaled (mek (dad),

For the initial partitionable system, (TLpt) = (1, 1) and (BRpt} = (R, C) and thus the sysiem location is
denoted as <(1, 1), (R, O A sub-system 5{r, c) of size p = r X ¢ will be identified and allocated 1o an
innuniu;uﬂ:mwmhmmmmm:mmmm-{u}mmm
BRpt =(x", y'L where x' = x+r- I SRand y' =y +c- | £C Figure 8 shows an example of an § x &




mesh-connected system at the location <(1, 1), (8, )= and a (4 x 4) task that has been allocated into fts
subsystem st the location <(1, 1), (4, 41>

1311 The Twe-Dimensional Buddy Strategy

The first fit 2-D BUDDY strategy [28] [29], proposed in 1991, was an early study in processor allocation
for partitionable 2-D mesh parallel systems (N = 2"). In this strategy, an srmay of linked lists was used o
store all available square sub-systems (2*x 2°, p = 1, 2, .., 0/2). Therefore, searching to find & free
{mm}nubﬁmm-mum“mmmﬂmma l-lm-u:r “sub-system combining™ (enecuied
in order 10 accommodate deallocation of system resources when a task completes) required O(N) time.
Because this method was applied efficiently only for a square (power of 2) system and square-sized
requesiod sub-systems; it caused high internal systemn fragmentation, especially for non-square requests.

2.3.1.2 The Frame Stide Strategy

Later in 1991, the first fit FRAME SLICE processor allocation method [8] [ 10] was proposed as & solution
to the problem of inlernal fragmentation of the 2-D BUDDY strategy. This method allowed any mesh
system size (N = R x C) and any requesting task size (r X c). A linked list was used 1o store only the
allocaied sub-systems (M, < N). A candidate frame (starting st the left-most free PE) was created and
compared with allocated frames in the list.  IF thero was no intersection, then that frame was svailable;
otherwise, that frame was slided horizomtally by r rows (or vertically by ¢ columns), to find & new candidate
frame in O{N, N/{rXc)) ime. The disadvantage however, was that sliding the frame by & factor of r (or ¢}
might skip over some available sub-sysiems.

2.3.1.3 First Fit and Best Fir Bit-Map Strateghes

In 1992, the first fit and best fit BIT MAP scheme [52] were introduced in order to solve the allocstion miss
problem i the FRAME SLICE strategy. In such bit-map approach, a XD-army system status (N = R x C) is
used to store & freebusy sisius-bit for every processor. For an incoming request {r X ¢}, all W biiz have to
be identified at least fwice 1o find the comesponding available sub-system; therefore, the time complexity of
this bit-mnp method is O{N). The best-fit BIT MAP strategies yielded the better system utilization than the
FRAME SLICE strategy. However, this strategy did not provide task rotation (¢ X r).

1314 The Adaptive Scan Strategy

In 1993, the first fit ADAFTIVE SCAN strategy [18] was presented as another solution to the allocation

miss problem of the FRAME SLICE strategy. This strategy introduced the task rotation to improve the

recognition capability. 1t uses a busy list 1o siore all alloceted tasks (M, = N) and the task rotation method

that can allocate either 5(r, ¢) or S{c, r) for & requested task (r X ¢)). Time complexity for the AS strategy

to find the first free sub-system S(r, ¢} {or S(c, r)) for a tsk s O(N,_N) time. For system performance

mumﬁmmﬂﬁ-mmmwummnfnm
meethod.

23.1.5 The First Fit with Partition Strategy

In 1996, & combining approach (i.e. FRAME SLICE with partition and BIT-MAP with partition) [35] was
proposed to combine previous existing strategies (such as FRAME SLICE and BIT MAP) with predefined
static partitions.  This combining method improved time complexity as well as system performance by
allocating requests with similar sizes close 1o each other (or inio spproprinte static partitions).  This method
could improve the time complexity over existing strafegies by a factor of log M.  For system performance
sfudy, system fragmentation of the BIT-MAP with pertition strategy was slmost identical o that of the BIT
MAFP strategy.

1316 The Busy List Sirategy

The best fit BUSY LIST sirategy was proposed in 1993 [12] and 1996 [14].  This strategy improved time




complexity as well as system fragmentation over the best fit BIT MAP method, i uses “n busy list™ 1o
store allocated sub-systems and proposes the “maximum boundary value (max BVY™ as the besi-fit criteria.
Furminmmi-'n,lmm{lxt],ﬂitwmﬂ}m-ﬁ-mﬂﬂuanlﬂrﬁ'ﬂ;ﬂnnﬂd
from each of the 4 corners of a particular allocated sub-system. Then, the candidate sub-mesh with the
maximum BV is stored. Afier all N, allocated sub-systems are identified, the candidate sub-mesh with
maximum BV is selected to allocate for the task. This BUSY LIST allocation process takes O(N,’) time,
where N, <N, but the deallocation process is only O{1) time.

1.3.1.7 The Free List Strategy

The best fit FREE LIST strategy [11] was proposed in 1995 in order to improve time complexity and
sysiem fragmentation over the best fit BIT MAP, The FREE LIST strategy used sn armay of linked ligts to
store all free sub-systems in increasing order by row (of all lists) and by eolumn {in each list). For an
incoming requested task (rXic), the first sub-system in the list number 1~ is considersad. If it is larger than
the request, then 2-8 candidate sub-systems of size 5{r, ¢) or S{c, r) are crested and the one with the
mmmm{umlummﬂﬁﬁﬂmmmmmmﬂmm-ﬂmm
the request. The time complexity of the FREE LIST is O(N,") for both allocation and desllocation, where
My is the mumber of free sub-systems (N < N).

23,18 The Quick Allocation Strategy

In lﬂ?.hﬂﬂtmﬂme[iﬂ]mWhnd-mimlinc
complexity of the existing allocation method. In that strategy, the following data structures were used; (1)
& busy sub-system list (of allocated N, tasks), (2) a coverage sub-system list, und (3) reject areas. For an
immm{m}.lhmmmlmmﬁdmwlmﬂam The allocation process
began by computing the coversge sub-system list and the reject arcas, Then, all coversge sub-systems
were softed in non-decreasing order. For cach row (starting from 1 1o R of N = R x ©), find a free sub-
system that did not intersect with the coverage sub-systems and the rejected arcas and allocate it o the
request. The time complexity of the QUICK ALLOCATION is O(N,VN), where (N, < N), and the system
performance improved over that of the ADAPTIVE SCAN strutegy.

2.3.1.9 The Free Sub-List Strategy

In early 1998, the best fit FREE SUB-LIST strategy [26], was proposad to improve the sverage waiting
time performance by trying to minimize the smount of potentinl system fragmentation and preserve as
many large free sub-systems as possible for subsequent 1asks. A list of free sub-gystems was used to store
only free sub-systems (M), sorted in decreasing onder of size values. Among all free sub-systems (N, x (up
to B} sub-systems were computed from 4 comers of each froe sub-system in the list), the ome thet yvielded
the minimum degree of fragmentation was selected for allocating 1o the task. The time complexity of this
FREE SUB-LIST processor allocation strategy is O(N;') for an incoming task and the deallocation time
complexity is O{N,') for deallocation of the finished task and also for computing all free sub-systems.
Stmulation resulis showed that the FREE SUB-LIST strategy improves system performance over thase of
the FREE LIST and BUSY LIST methods.

1.3.1.10 The Busy List with Reserved Scheduling Strategy

n:uuswusrwim"mmmtmwmrmm[u]mmhlmhmﬂuu-m
Average w aiting time o ver t he best fit BUSY LIST strategy with FCFS scheduling. For &n incoming
requested task, the reguiar best-fit BUSY LIST [14] is applied firse If there is no svailable sub-sysiem,
then & scheduler (for reserved task scheduling) will be applied by considering all possible (busy) sub-
mﬁmuudfmllr'dnbﬂlsub-m!:mubﬂmhmﬂmmﬁuﬁuﬂmhmﬂy
tendds 10 cause the mainimum system fragmentation In the BUSY LIST with reserved task scheduling
strategy, both allocation and deallocation time complexity is O(N,”), where N, is the number of aflocated
tnaks (M, = M), hMmmdu,hMﬂMﬂwﬂMMnmmﬁw
delay time by about 20-50% over the best fit BUSY LIST with FCFS scheduling.




2.3.2 PE Allocation for Partitionable Hypercubs-Connected systems

A k-dimensional partitionable hypercube- (or k-cube-jconnected system (see Figure 9) iz defined
rmniveryui;'-.=m,.:q.q.uhﬂekiihﬁmhnnrhﬂmmhn{h-Ijndwt:dd:muuf
any two neighbor processors are different in only onc bit. Any processing element (PE) has a unique
imbeger value ranging between 0to 2 - |,

Let ¥ be # ternury symbol set (where T = {0, 1, *] and * is a DON'T CARE symbaol), which is used to
represent 3" sub-cubes in the k-Cube system. Lot & sub-cube (g-cube) of all 3* subcubes i represented by
0. where q = 0, 1,2, ..., k, and its address represented by using a string of the termary symbaols in ¥, For
example, all possible addresses of & sub-cube O in a 4-Cube system mny be 0%=®, [#3% s)es s os b 1
SH1T, U0, or ***1. Note: any sub-system is called a busy sub-system if all of its PEs we busy for
executing & task and any sub-system is called a free sub-system if all of its PEs are fiee.

1-Gune

Figure #: Exampies of soms hypencubs-hased sysiems.

1321 The Gray Code Strategy

The GRAY CODE strategy [6] was propossd in 1987 for a k-cube (or hypercube Q) system (of size N =
2') to improve sub-cube recognition ability over the original BUDDY stategy by using a single GRAY
CODE (twice sub-cube recognition) or multiple GRAY CODEs (almost complete sub-cube reCcoEnition ).
In the GRAY CODE aflocation for an incoming task (q-cube), the least integer m is determined such that
all (i mod 2*)* allocation bit are 0's, where | € #[m2"", (m+2)2'-1]. The allocation time complexity of a
single GRAY CODE is 0{2"*") or (N) and the deallocation time complexity (to combine sub-cubes in
lower dimension(s)) is O{N).

L3121 The Extended Buddy Strategy

The Extended BUDDY strategy [1]. an efficient sub-cube recognition, was proposed in | 992 to recognize
more sib-cubes at different levels of the buddy tree. Two g-sub-cubes are buddies of cach other if the mast
sagnificant (k-g-1) bits are the same, the (4+1)® bit is different, and the least significant q bits are DON'T
CARE (%), where q =0, 1,2, ... ,kand N = 2", For an incoming task (g-cubc), a 2-level extended
BUDDY szarch could recognize the same sub-cubes as the GRAY CODE sirategy, and hence the all-level
extended BUDDY search (from level k-q o k) performed complete sub-cubes recognition. For an
incoming request g-cube, it searched from level k—qunrduwnymmtl.lhurgurimmlud
sub-cubes at that level only (o mvoid check many unnvailable sub-cubes),

13.2.3 The multi-Quene Buddy Scheduling Strategy

The multi-quewe BUDDY scheduling [34 | was introduced in 1995 15 improve system fragmentation of the
original BUDDY strmegy. As the muiti-queue scheduling was provided for the existing BUDDY
allocation, the time complexity of this allocation algorithm was O{N). This method provided better system
performmnce (i.e., less delay time, higher system utilization) than that of the BUDDY strategy. Advantages
of multi-quens scheduling are: 1) a job requiring & small sub-cube is not blocked behind | jobs becawse
the scheduler muintains k separate queues for each dimension of & k-Cube system (N = 2*) and 2) & job
waits for an occupied sub-cube of the same size instead of decomposing & new larger sub-cube.
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1.3.14 The Fast Buddy Tree Strategy

The fasi BUDDY strategy [9] was proposed in 1990 and 1992 1o perform & fast { bit-map) complete
mumwmmnwqummmmw-wmwmdﬁmmﬂn
[huﬂu}mhmﬂt:h:m:nhuhrfwhmﬂu,ﬁhwmd ize complete sub-
cubes as the (bit-map) multi GRAY CODESs in less time complexity, which is only *2) or O(Nlog*N).
In this fast BUDDY strategy, o collapsing mnsform (C-Transform) wits & transformation, which opersted
o & banary tree representation of Hy and produced s collapsed tree. The C-tramsform ai level i (£) involved
collapsing T, uhuwm:hnudﬁwwbmufmm:hwliwmnhmﬂmﬁnwthnm
changing their relative locations and then swapping the incoming links of the two inner nodes in every
block of four nodes at level i+2 throughout level k.

2325 The Free List Sirategy

The best fit FREE LIST strategy [24] [25], a non-bit-map approach, was proposed in 1989 and 1991 in
utd:rln"impuw:n-ﬂdngﬁ:mmdmg:iﬁnnnhiﬂfnwﬂwﬂﬂﬂh’ndﬂﬂh&’mmu
InlheFREEUSTimm.mmrnﬂhljﬁuHmmmﬂmlnnmuni:unillhhwh—
cube{s) for cach dimension i, wherei=10, 1, 2, ..., k (of s system size N=2), For an incoming request of
g-cube, the first froe sub-cube of the q* dimension will be allocated, if the listig] is not empty; otherwise a
free sub-cube of dimension greater than q is decomposed. The FREE LIST processor allocation time
complexity was only Oflogs N); however, the combining complexity in the FREE LIST deallocation was
O(N log; N). The FREE LIST allocation performance was statically optimal, similar to the bit-map
approach (i.e., BUDDY, GRAY CODE, cic.). For dynamic sysiem performance, it was betier in sub-cube
mup&ﬁmﬁi!&y.nﬁlumimnmﬂhd:hyﬁmhyumﬂlﬂidn“pﬂvmmmﬁm

13.26 The Maximum Set of Sub-Cube Strategy

Thurnm'.inmnannfEUMJBEsw[H“Iﬂmehhmmtmﬁmw}FﬂﬂEUHmh
was proposed in 1988 and 1991 by using & max sot of sub-cubes in order to maintain the greatest maximum
#et of sub-cubes after every allocation and deallocation of any sub-cube., In this approach, & set of disjoint
ﬁunﬂuubnuumﬂuﬁﬂumumnfﬁlm—mmﬁﬂmﬂjﬂirmquh{wmuumﬂ!m
sets of the same free sub-cubes. However, the optimal M55 was an NP-hand problem; the “approximate
hﬂS"wpmmdlntlean].bymm:munﬂ{hnudmmmmmw]ﬁrqniﬁh
hmhgamwmﬁ[mcuhnﬁmﬂtm“whkhmmdndhmmﬂmﬂm:
optimal MSS. UMihmmEELEl'lm“.hmthﬂqmuhﬁupmhmdem
mm.zmmmmmmminmmwmy1Mumummm
was done at the deallocation process only.

1317 The Dynamic Binary Tree with Free List Strategy

mmu-mirBMRTTREEthFHEEIJSTm[H].mhhmﬁiwm:h.mp'upmdm
1992. 1t used two armays of free lists, called “real” and “ext’, for fast processor allocation. The ‘real’ list
stored sub-cubes, which were the combination of sibling nodes only, whereas the ‘ext’ list stored sub-
cubes, which were the combination of two cousin nodes. All free sub-cubes that belonged to cithar the
‘real’ list {with the higher pricrity) or the ‘ext’ list were mutually disjoint.  The processor
allocation/deallocation time complexity of this approach was only Oflog; N) and the dynamic BINARY
TREE&FREEU‘ETmmpHﬁmmmmmnﬂebﬂuufﬂuFﬂEELﬁTm,

1.3.28 The Meadifed Prime Cube Graph Strategy

The modified FRIME CUBE GRAPH strategy [48] [49] was proposed in 1991 and 1993 for sub-cube and
non-cubic processor allocations by using & prime cube (PC) graph. A free sub-cube was prime if there was
no other free (larger) sub-cubes covering it The objective of this strategy was to minimize processor
frmgmentation by keeping the redundant intersection information. In this appronch, the strategy tned to
avaid allocating an aniculstion point in the PC-graph to maintain & higher connectivity of the PC=graph.
This reduced the external fragmentation, especially for non-cubic allocation in O(L” log, N) time, whers |




1

is the number of prime-cube intersection and the number of prime-cube non-intersection. This approsch
improved system fragmentation by 25-50% over the FREE LIST strategy.

1.3.2.9 The Least Overlap Free List Sirategy

The least overlap FREE LIST strutcgy [37], another best fit approach, was proposed in 1995, In this
Wum,m“ﬂhmdmwm[mhn]hmmwmﬂmﬁmkﬁufdn
free sub-cubes such that the langest possible number of free sub-cubes remain after the allocation, The least
overlap FREE LIST allocation time complexity was Oflog N 3™) and the deallocation procedure (1o
cambine 8 relessed sub-cube into the free (sub-cube) list to produce a list of all maximal free cubes) was
Oflog” N 3™), where k = log; N. The least overlap FREE LIST strategy yiclded larger svailable sub-cubes
{in higher dimensions) than those of the maximum set of SUB-CUBE and the GRAY CODE srategies,

2.3.3 PE Allocation in Other Interconnecton Nebworks
2.3.3.1 The Prodact Nﬂwurk-!’lrth‘hllq!n'lm“

In 1990, product networks (see Figure 10) were proposed i 4 unified theory, called “theary of Cartesian
product netwarks™ [51], which included common topological analysis (Le., degree, diameter, and average
distance), routing algorithms ([21]), embedding and network partitioning strategies. As & part in that
m,mmmmmwnummnmﬂﬂmm-Mimmmm
partitions) of various sizes for incoming tasks. In the PREDUCT-NETWORK pantitioning allocation, the
“network manager” determines the smallest partition size that can be allocated to the request if it wis free.
For o larger free partition, it is recursively partitioned until a partition of the appropriate size is obtained. IT
there is no free pantition, then the request is queved sccording to & cortain scheduling policy. When a
partition is released, it is added into the pool (i.e., o FREE LIST structure) of fioe partitions and then a
merging process is applied (if it is possible) to form larger free pantitions 1o minimize fragmentation, In
this approach, the generalized idea was introduced for the network pantitioning and sub-system sllocation s
the network level and for a specific interconnection network (i-e.. hypercubes, 2-13 meshes), this approach
suggested to apply any efficient existing stmtegy.

fal PR T T

Figura 10: Examples of soma produc-neseark-based systems.
2.3.3.1 The Bit-Map Hypercycle-Based Strategy

In 1993, first it BIT-MAP hypercycle-hased processor allocation [17] was proposed for hypercycles [16], a
sub-cluss of product petworks (see Figure 11), which include hypercubes (binary k-cubes), multi-
dimensional toruses, et In this approach, all processors in the hypercyele system of size (N =m, xm,., 1
my) were assigned unique numbers from 0 to N-1. The first fit BIT-MAP hypercycle-based aliocation
strategy utilized 8 list of allocation bits (numbered from 0 w N-1), which was set to | if it was allocated;
otherwise it was set (o 0 (or free). The time complexity of 8 processor allocation was O(N) (or O(PN) if P
permutations (or several lists) were used). Note that this approach wes similar 1o the bit-map GRAY
CODE when applied 1o the hypercube networks.

3 I R}
Ring: 'y (B-any 1-cube) Torus: 32, (h-ary 2-cuba) Hypemyee: G4 mmi i
Figure 11: Examples of soma hyparcycle-based systams
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3. UNIVERSAL CU/PE ALLOCATION FOR
RECONFIGURABLE MSIMD/MIMD SYSTEMS

IunnnnmﬁmnﬂvmhmMMmumdﬂmdlmmupnhdemimhﬁq
multi-dimensional meshes, multi-dimensional tori, hypercubes, n-ary k-cubes, etc. In this universal
mm{cwrﬂuﬂmmﬁmmdd.umm“udmmmmmqﬂmmarun
reconfigurable and partitionable parallel systems. In sddition, we present not only 2 universal model but
alzo a generalized method for all networks in the product network class, Term “generalized™ implies that
for each particular interconnection network that belong 1o the product networks (such as 2-D meshes), we
also uses the same tree structure and the same allocation/deallocation methodology, as spplied at any k-D
network level {such ms k-D meshas), Hminurujvmﬂhw—h-&mﬂﬂ,mmﬂnmmm
#tates representation (in Section 3.1) snd a number of generlized algorithms such as the network
pllﬁﬁmin.l[hﬂwﬁnn]_!],ﬂ!ﬂhﬂjﬂmnﬂﬁhﬂﬂ{lﬂ&uﬁmﬂhhhﬂ-ﬁthﬁl&ﬁrnﬁﬂm
(PE) and c ontrol anit { CU) & Hocation de cision { in S ection 3. 4), a nd t he r esoures (CU/PE) allocation'
deallocation decision (in Section 3.5) as well as time complexity analysis (in Section 1.6).

3.1 System States Representation
3.1.1 Product Networks snd Parallel Systems

DEFINITION I: A Cartesian product of k basic networks is defined in [51] a3 G (V, E)= G, 2 Gs ... %
G, where V = {o = (8, 3, ... %) be an sddress of my PE (processing element) in G | 0,eV), 5,6V, .
me Vi) and E = <o, B> be & link between any two PEs in G; a = (a;, 8y, ..., 8) and = by, by, ... by) |
there exists an i such that <a, b € E; {or |#,—by|= 1) and for Wj = &, a=by ). The size of the product
network is represented as N = ny x my x... x ny, where = [V or size of esch sub-network G, | = 1,2, ... k.

For examples, a k-dimensional (k-D) mesh parallel system (see Figure 12) is & product network of k linear
armays G Vi, E)of anodes, i =1, 2, ..., k(where W= {1, 2.0}, E = <, j# 1= | j= 1, 2,..., o1}, and
the network size N =IT* o),

OO e

R 3 e )
o d bbb
-1- I-I-I-I--I
[ -"'1 [ 2 Do 30 [ )

{a} 1-D Linear Array (M =n) i} 2-0 Mesh (N = mymng)
Figurs 12: Same examples of the k-0 meshes; a) a inesr arey (k=1) b} a #D mesh (kn2); and c] i 3-0 mash (ks3),

As another example, 8 k-dimensional (k-D') torus parallel system (see Figure 13) is & product network of k
rings Gi(V, E\) of m nodes, i = 1,2, ... k{where V= [1,2, . n), B = {<,j* modn> | j=1,2.. 1,
and the network size N =I1" ). Note: an n-ary k-cube is a special case of the k-D torus, where sach G, is 2
ring of n modes and the network size N=T1 5 = o*,

{a) 1-0 Ring {N = n} %) 2-0 Tonus (N = nag) () 3-0 Tonus (M=nnym.)
Figurs 13: Some axamples of the k-0 o a) 8 ing (k=1); b) & 2-0 tons (k=2); and ) @ 30 borus (k=13
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As another example, hypercube (or binary k-cube) parallel system (see Figure 14) is a product network of &
linear arrays (or rings) GV, E)) of exactly 2 nodes, | = L2, ..k {wheee V= {0, |}, E, = | <0, 1>}, and
the network size N = [1* 2 = 2%,

Mgﬁ

{m) T-ouba Jcuite
N=2 H=7F mhl:z’
Flgure 14 mmﬂnw'lu1-n.ﬁ:{t=1::b]:?—nﬂa!ul2}:u}|3-mu=-ﬂ:uuﬂud-uﬁ-

(k=4)

Hnta:i:i:mmdudllmlmmﬂhyﬂumhmhmuﬂﬂ{?.ﬂ,}h&upudmmmm
lhui:mwk{i.:qliirm'm+lrﬁm.ﬂ:.1!IHuIn:tu.kaﬂ‘l’.‘{l.l...J\"Jlﬂﬂl!lﬂf
edgs E=fe=<xy |e=@inyeVhi=12 .k However, the more complicated product
nmwmhmmwummiqﬂm&hmmmnﬂﬂhmm
first. Fnrﬂlmple.ﬂ"{ﬁ|!ﬁﬂkﬂjhlﬂﬂﬂﬂ“ﬂrmm:lwﬂdlﬁﬁ\fﬂ[ﬁmﬂﬂ
and a hasio network Gy Filull}'.Hilﬂnmniﬂ'ltlhpuduﬂmw&ﬂ;xﬁ;:...xﬁhw:t
reorganized such that G, provides the maximum number of links.

3.1.2 Tree System States Representation

mmﬂmmiumﬂmwmmﬂbMdhﬁmMih
pastitionable MSIMDYMIMD parallel system. Such a parallel system is constructed with any k-product
nmw:r:knnuﬁmim,uhmti-;mhﬁﬁ:mﬁﬂ{mllmmﬂnﬂm.}hmwm
networks (PN) class, |n our study, a “system” or a “host network™ refers to & given partitionable paralicl
system with a k-product network (G, x Gy x...x G} of size N=ny x 0y x...x my ot & system address,
represented by using two k-coordinates <(1, 1., 1) (ny, mz,...., m)P, the base- and cover-addresses. Foran
incoming task, a “sub-system™ or o “sub-network™ at the address <(a), 83.... . ;) (by, bs,.., . byl> can be
partitioned to have either

1) lﬂlﬂl:dhmhﬂlﬂnﬂwmkdwm{nﬁgmlmm-nﬂ“nfduk-pmdnﬁmmm-
Eqil.ﬂ;:...:ﬂlﬂfﬂHN‘m:‘m:...:n_..m_l"ﬂhnr

I} lmalllnmmﬁumhmmmmwﬂm'xm'l---:n..'l’,uu:HmISbjlhnﬂme
qfih:l:—gwmnnﬁmam:u'immdilI.E...-,ku

3) amﬁmﬂpﬁiﬁmhgufuﬂumtdng-.ﬂﬁu[nmI:!:}.uhlnhmﬁn:-ufmmﬂ:—
systems {ie, N'=n xmx ... xpand N" =g, KX ... XMy X0y—p), wherepz 1, Ifp= 1, then the
ﬁmWhMmmﬁMMhmt—l,mﬂmmmmﬂm
suib-system is still the same (k)

“®ebnee Root®
e 8PN of &

Nalmevng
Gel eGor . =G

IEEFIEGnE
PH of b neboris
e e . i,

o g for 141 Roat
H-n?ﬂ:n.l:..!.. H‘r;:!:?:.;.‘:‘-'.
Bl ek 1,1, S nm
= { L ¥ g
1gl Buddies o Buidies el

mnitvmmw:um:u#mwmmmmumﬂ
bl hmihmmnm];hjmmwmﬂqmmmu-t
diriensions bui MWHFN:nhm};Hﬂﬂlrmuhmm—mﬂn
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In our universal Wmnﬂ,hmﬂﬂnﬁinmmmwc.mngmm
number of tasks allocated, and hence our model % classified as a non-processor-bit-map mpproach. At
beginning, the tree consists of only one node, called the “root”™. That root node 15 used to store the system
information (such as the system’s size, base-address, status, type, etc.). During execution time when many
tasks are allocsted, each leaf node in the tree, repressnting a sub-system, may be available (frec) for
incoming task{s) or unavailable (busy) for executing tmskis) and each internal node is partially svailable,
which are represenied by using status = 0, 1, or x, respectively. In order (o allocate an incoming task. each
larger froe node can be partitioned into a number of children'node, called “buddics”. The number of
buddies of a system network is derived by using partitioning criteria (described in detail Jazer in Section
3.2), sccording to esch incoming task which request a specified k"-product network and a particular size:

'

2)
3

Partitioning by network degree (see Figure |5a) cremtes the number of buddies = n, since the size of
the k™ basic network (ng ) is decomposed to have one processor (see another example in Figure 16),
Partitioning by network size (see Figure 15b) creates the number of buddies = 2* since all basic
network sizes are partitioned (sec also an example in Figure 17), and

Partitioning by network degree and size (sec Figure 15c) creates the number of buddies = 2 since the
E‘Mnﬂm&pﬂﬁﬁuﬂdmh’mmmpma*Pm(mﬁmIl].whutpz1.

Figure 16 illustrates the particular example of the binary tree and the corresponding system status that
stores 3 incoming tasks (3-, 2-, and 4-cubes) with the MIMD mode on a given partitionable 5-Cube system.

Figura 16: The binary tree system state ropresenistan for & §-Cube system wilh 3 MIMD tasks aliocated,

Figure 17 illustrates another specific exampie of the quad tree and corresponding system status that stores
three incoming tasks (4x4, 13, and 2x4) with the MIMD mode on & given 8x10 Mesh-connected system.

50000 O Fre
-[:]- =3
00000 O Buyre
00000

Figure 17: The quad ree sysiem state represantation for & 2-0 (8x10) Mesh sysiem with 3 MIMD tasks allocated.

Figure 18 illustrates the specific example of the binary tree und corresponding system status that stores an
incoming tasks (8x&) with the MIMD mode on & given Bx8x8 Mesh-connectad sysiem,

(LR R
i

BD ks
Famally svaistne nove i -
Busy {leaf) nods r—, A

{8.0.1)
ropresamaton for & 3-0 [Buixl) Mesh sysiem with are MIMD (tsk sfocated.
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Figure 18: The quad-ires-based processor (PE} aliozadion for MIMD insks (dxd, %3, dod, du2, mnd 1x8) on an Bx10 Mesh
system: ) T Allocaied sysiem siatus and b} the comesponding quad iree

lructura
Figure 20 illustrates the system

status of applying the modified quad tree structure with CU allocation for
allocating five SIMD tasks {2x3

+ 2x2, x5, 4x4, and 3x6) on an 8x 10 mesh system.

qum:mmmmmmm alivcation Tor SIMD tasks (233, 2x2,
Mm:::m:hﬂmwmmmhwwm

1x5, 4=d, pnd 28 an &6 B0
struciune

Figure 21 mmﬂ::mmdciufmmﬁmmu:mmmrmuummnmmmhimn
task and a special node structure that represents an

MSIMIVMIMD task, which inchades an additional link
i the corresponding CUI for SIMD tasks.
B i s, By il Buis nde mi, 0o
Simm: LI Seirw N:AMgE, |, 2fy
) Strlus LA ot SamE X
111 |




In ocur universal tree-based model, the genemlized methodology for resource (CU/PE) allocation/

Mhmhﬂlﬂuhﬁdhqmthuufﬁ:u:mn :

(1) Netwark partitioning procedure (Section 3.2): this function is used to pantition & system network into
sub-systems for the smualler requested task,

{1}Submmm“mmmim]3}:ﬂrhﬁmﬁmkundmm;mhﬁ
mpn-dh.ﬂunﬁ-ﬂttdmim:hwﬁunbm

(3) Mlnuﬁwmhuﬂﬂumﬁnim 3.5). the allocation function i defined to find &
ﬁumb-lymﬁnﬂdﬂmin[mhlnﬂminmmuimmhym“uuhm-ﬁthuﬁﬁ:
criteria (Section 3.4). The deallocation function & defined to find the location of a finished task in
deallocation process, and

(4) Tukiduﬁ.ﬂh:gpmuﬁ:ﬂuﬁmiuuudmpufumsdﬁdinghnﬂmhhqu
quene (i.e., a priority FCFS scheduling).

mwmthnum&mkwmmnmwmmmﬁn-
reconfigurable and partitionable MSIMDMIMD pornllel system.

Q=00 ey

Fmﬂ:ﬁmw.mumﬂﬂmm

Muuﬁmﬁmﬂmﬂ-milminmlmm}.iﬂhu.dlp-iumyurﬂu first task in the waiting
mhm-ﬁmﬂu&-ﬁ:aﬂuh:.d-rmhuﬂlhnpminhmiﬂn!m. Oitherwise, the processor

When & ﬂhﬁﬁdﬁ,ﬂum'ﬂmhﬂﬂm“pmnudm will find the allocated position of that
finished task by using sub-set path searching into the tree, After finishing free (or deallocate) the node that
mimmmmhwummmmﬂm{ﬁmmu
{or Buddy nodes) as soon as they hecome available, The recombining process starts form the new free
node (of the completed task) to the root of the tree. This process will stop when there is a1 leust one buddy
nhmnmﬂunuh[llm‘hmﬁrﬂngpuh]hm“ﬂhﬂn Al this time, if there are task{s) in the
nitiqqﬂ.n:.'duprhﬂt-_rmmﬂlingwillhlpﬂiudmpufnrmlﬂmtlﬁumdiﬂmmmm
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3.2 Network Partitioning

3.1.1 Partitioniag by Network Degree

This netwaork pmiliuningi:pufm'mldhjrp-ﬁﬁuuiuﬂ:lllhukm{ﬂdﬂmm included in the
product network (or partitioning slong the k™ dimension). Hence, this partitioning method reduces the
number of basic networks from k to k-1 per partitioning process,

Let a requested network of an i task be a j-product network, where j < k. Ifj = k-1, then only one
pnﬁlimimmiupﬁludmﬂmhn:%] dimension of the system. Therefore, the number of buddies/node
iuquulwlhniuu-ﬂhuﬁ;nﬂwuﬂ]‘h’.l-n}. Each buddy (or sub-netwaork), whase ID = |, 2, v Pk
represénts a (k-1 }product network GyxGga. ., 00k .. The size of each buddy ID is Ny = n, x nox...x ny.
I Thnhm-ddmﬂufmhbuﬂdrhum-[-:.u----n..m)ndhhﬂmmuﬂffh..h:.
o by ID), where by =+ n- landi=1,2..... ﬂmmh:h'nfﬁﬂwﬁﬁuﬂmmhﬂ{h
ny} since there are ny buddies and each buddy's Information s computed for all k basic networks. Hence
the time complexity for the recursive partitioning in L steps {or levels) is O(k'n) which includes identifying
mnmbnnfhuddimmmﬂmbdﬂu‘bm-ﬁmﬂuim,nmeEhmdn-mﬂm.

Figure 23 illustrates an example of the pariitioning by metwork degree on & 3-D mesh {of size 64 x 64 x 64)
i 1o sixty-four 2-D meshes (of size 64x64 (x1)).

s

1 20 mysbam

s 20 ayhiom o x Ayt

g 2-0 wystami (i a gl & Bt |

: L LR = B obdut
w | By m 1‘“&!! ety m
] P Iy X [T
= Bdukid 04
) B4 A0 Busddypet ot 14,84
Rnat i 542y

L] e

Figuire I3: An exampla of e partitioning by netwark dogree on 8 3-D Sysiem (N = B4 x B4 w B4). &) the tros FiTuCiue and
bl the myeiem and sub-sysiems aher partiioning from a 3-0 syatem io 64 of 2-0 systems M = G4 x G4)

Usaially, this partitioning method is applied for the system with the large k (dimensions) and the small n
(processors/dimension).  Figure 24 depicts another example of the partitioning by network degree on a
hypercube or S-cube (k = 5 and n = 2}

1]

anmmmwhudtmm:g by network dogrea on & hypercubs (S-cubs) systam: #) B trew séructure and b)
e systom and sub-systams after paniioning from & S-cube lo he smalies! 1-sub-cubss




312 Partitioning by Network Size

This network partitioning is the partitioning process that partitions all k dimensions of the k=D system (M =
nj X N X.., nm}inlunnﬂlzﬂuh-ﬂmudllhmmm&tﬂnmp, Kpz%... %y, where p,=n, |
= |, & o k. This pﬁhiummmmmmm“ﬁndhﬂn networks (k) ane

still the same. The relationship of the corresponding buddy's ID, base-address, size, snd status are
performed by using “sub-system bit-map™, defined s follows:

Let & requested network is defined 3 G° = G," x Gy'x wor X 0h'(of size py % py x ... x p). Therefore, the
mﬂhﬂdiﬁ#ndehmhpﬂlimhgiummflimmhnfﬂltdlmluiuuu:nrﬂunﬁ
into two sizes, which are not necessary equal. Then buddies’ assigmed Ds are 1, 2, 3, ..., 7° tha
carrespond to the k-bit-mup by, ... bybyby, where by =0 or I, j=1,2, . k. For example if k = 2, then 2* =
4and ID =1, 2, 3, 4 for 00, 01, 10, 11}, respectively. Next, we design the “Buddy-ID- Address-Size
comversion™ algorithm (see all steps in Figure 25). This algorithm provides efficient time complexity for
wuminﬂ-Muﬂummmmmmm[mm
3.3), and the best fit houristic for allocation decision (Section 3.4).  This netwark partitioning process (i.c.,
Jd-mif_-dngﬁuddlu-f.wmuﬂimﬁrdlEdhmdm}hnmldinﬂ{ﬂ‘jﬂm.
Note that this partitioning method is usually applied when k s small.

| Let R b & conaidenng roct node jof size N = p, EMgX ... WM

B be @ systeim bit-map of sach Buddy iD (B = by - Bibg)
J e & requoshed task o job (of size = pyxpy 5.0 E.
o= 3,8, _mu:mmunﬂmnu—mﬂhwun
B = pqupgx unmlmﬂ'lﬁ:wﬂnniﬂﬂﬂuw1dﬂ

1 w-uur-nwnﬁ-ia -1 W) 1o thess cormespanding k-bit-i0s: [ computed in k) |
2 whr B buthdy's basg-acdress = (84, ay, | - By Bnd s size = il g owng]; | Coempude in 11
1%1,2 K

@28 = I By = 0 ff S ™ it [ clirneniaion) s nol paritioned |
-':=:;rn: W, = ey lmzimhﬁmummn Bucdy#'s see |

F;.nu: TMMBHHM'WHﬂI partitioning by nabwork slee

Fimmlﬁllhmtwmhufhpﬂdﬂmmh netwaork size on the 2-D and 3-D mesh systems. In
FigunIﬁ.du-l-[.'lnmlymn{nfﬁnﬂ=n.:n=-ﬂ:ﬂ}hmﬂhhm‘:mmlm
address o = (@, ;)= (1, 1. the first incoming task requests 8 sub-system of size 20620, For this
task. the root is partitioned o = 4 buddies and the request will be allocated to the Buddy# |, where its
base-address is (a), 873 = (1, 1) and its size is (py x py) = (20x20).

Level 1

Leva| 2

Figure 26: An exarmple of the parifioning by network size: &) for the tmsk (230) on the 2-0 mesh system (N = 84 x 64);
and b) for the taak [2020x32) on thir 3-0 mesh system (N = G4x84x54)

By applying m“nm-mwm“wwﬁmmﬁufm:mnrmm i,
{i{1=1,2,3, 4} is converted to {{by by} | by =0 or 1] = {00, 01, 10, 11}, Then, the set of ing
base-addresses is {(a,", ") | & = & + (p * b)) = (1,10 (20.0), (1.20), (21,21)} and the sei of
corresponding sizes is {{n". n2")}={(20020), (44x20), (20x44), (44xd4). In Figure 26b, the similar process
is npplied for the first incoming task (20x20032) on the 3-D systern (N = 64x64x64),
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313 Partitioning by Network Degree and Size

The partitioning by network degree and size Is imroduced as a flexible partitioning method that combine
the first two partitioning methods, which is either 10 decompose & network degree (k) or to partition =
dimension’s size {n,). It is performed by partitioning the i" dimension of the basic network G, {of size ng, |
% 1 % k) finto 2 partitions, corresponding to p und n, - p processors, where p 2 1. This pantitioning method
always creates exactly 2 buddies per node, and hence it is called the binary tree. If i = k and p= |, the
network degree of the first partition is reduced from K to k-1 and the size of the k™ dimension of the second
partition |s reduced from ny to my-1. In @ special case, if i =k and n=2, the network degree of both partitions
are reduced from K to k-1 and the size of the k* dimension of both partitions are reduced from 2 1o 1.

In general, sippose an incoming task needs & j-product netwark, where j < k. If | = k-1, the next level
partitioning is applied to create 2 buddicw/node.  Each buddy (ID = |, 2) represents a k-1 or k-product
network Gy x Gy x ... x Gy (of size n) X 02 % ... X iy X p) and another k-product network Gy x Gax ... x O'
(of size myxmpx ... x Ny xy-p). We may need (o perform k partitioning steps if all k dimensions of the
requested task (p; & p: % ... x ;) are less than those of the system (v, x n; X...% ny) ot sddress (8;, tg.... &)
where p,<n. 1 =1, 2, ..., k. Time complexity of each partitioning process is O(k) since there are 2 buddies
{ID = 1, 2) and iheir information is computed (i.e., base-addresses a" = a; or a+p, and sizes n," = por nepy
for buddy¥1 or 2 of any dimension j (whereas other dimensions are the same as their root). For all k basic
natworks or dimensions, time complexity of the recursive partitioning is O(k"), which is improved over
those (Ofk’'n) and O(k2")) of the first two partitioning methods. Therefore, this pantitioning method is very
usefial fior bath high k and large 0. Figure 27 illustrates an example of the partitioning by nerwork degree
and size on & 3-0 mesh (N = 64x64x64) into 8 2-D mesh (N' = 64x64) and & 3-D mesh (N™ = 64x64x63),
compared 1o those (by the partitioning by network degres ) in Figure 23,
i

L 4 —@ L
x AN
Lovel 3 |
fay ) {54 1)

Figurs IT; Anszample of e parifioning by ratvwork degres snid sre on & 3-0 System (W= 64 = 84 « B4): a) the Binary
I aieed ) el swbam afer pacitiorng a 3-0 systern irlo 2 sub-systems,

Flgure 28 illustrates another example of the partitioning by network degree and size on the 2-D and 3-D
meshes, compared to those (by the partitioning by network size) in Figure 26. In Figure 28a for the 2-D
mesh (N = 64 x 64), suppose the first incoming task requests s sub-sysiem of size 20x20. For this task, the
root, is partitioned into 2 buddies and then the Buddy#1 (64x20) is partitioned into 2 sub-buddies snd the
request will be allocated to the sub-Buddy# | (200c20). For the 2-D system, we need two partitioning steps
to reach the requested size and hence for the 3-D system, we need three partitioning steps to reach the fit
partition (see Figure 28b). In general, for the k-D system, we have to perform k pantitioning steps to
partition all k dimensions.

{11

{10, 04,5

Ll 1 e

Lol SR

Figune 38t An exammgie of the pariioning by ratwork degres and size: &) for the task (20020) on he 2-D meah syshem (N
= Edufia) and b for the sk (20032) on e 3-0 mesh sysiem (N = S4wi4nid]
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Note that we apply sach of thres partitioning methods with different conditions and sssumptions. First, the
partitioning by network degree can be applied with an assumption that the degree of the task must less than
or equal to that of the system and its size in each dimension should be the same as that of the system, For
example, given a hypercube system of size N = 2'°.  Only hypercube tasks with a requested degree k < 10
are allowed to exccute on this system. Next, the partitioning by network size can be applied with an
assumption that the degree of the task must be the same as that of the system and ity size for each of
dimension should be bess than or equal to that of the system. For example, given a 2-D mesh system of size

(N=10x10), Only 2-D task allowed to execute on this system (k = 2) with a required size n, x n; < 10x10,

lﬂi,'p' ﬂ:tpm:ﬂnniugbymmhﬁrn:Mnni:muuﬁ.mdmﬁmmrd;rmmmm

methods in order to support the more flexible tasks and partitions, Usially, it is useful for the
i}'lnlhithhlghtmdllrpn{l.:.,nk-Iﬂmdnﬂﬂ}hﬂlmmmmmﬂltrﬁk=1m
2-D) meshes) or small n (i.e. n = 2 for hypercubes). For example, given a system of size N = 10" (k= 10
and n = 10) and & task requests a hypercube (or 9-cube) of size N=2"(k=9,n=2), Here, we {llustrate
two possible ways to create the fit sub-partition of size 2° that are

Apply the partitioning by network degree first and then the partitioning by network size (Figure 29a):
ﬂmmwﬂlm-uﬂwiﬂﬂﬂmmimhnhm by npplying the pariitioning by network degres
in Ofk’n) time, where k= n = 10, Next, the 1" hﬂdynhrﬂlumunmndhy:mﬂuﬂﬂupruﬂmlngh;
nmﬂuhmhua 2" sub-buddies. The first sub-buddy’s size is 2° and other sizes are Bx2x2", ZxEx2
BxBx2’,..., 2x2x8", Bx2x8", 2x8x8’, 8°, respectively. So we have 9 + 2°- Lﬁunm{uw]m
later we have to combine them. T'rllmbﬂuﬂufﬂ:pﬂmllmf}-ﬂﬂunfm:mmhinmgh

O(k’2™), where k=9,

ﬂmhrﬂumummhynuwﬂkmmﬂm{ﬁmm we need 10 partitioning steps 1o reach the
requested size 2°. Hence we have only 10 fragments of size 10°x 9, 10°x 8, 107 x 8x 2, 10° x 8 x 2%, 10°x
llf.lﬂ"‘llhf 10 x8x 2, | :!:I:I".II]I:E:ET,-MI:LE'. Tim.ﬂumpluﬁyhﬂk:],
where k = 10 and clearly it improves time complexity over the above method,

Figure T8 An example of applying 3 pariiSioning methods on a 10-0 system (N = 10") for the msk 2* a) apply the
memmmmmmmwm-ﬂmmnmwm

In another practical example, given a 3-D system of size N = 505050 (k = 3) and & task noeds & 2-D mesh
(10x10). Again we show two posaible ways to create the fit sub-partition of size 10x10 that are

Apply the partitioning by network size: we cresie a tree with 2 buddies. The first buddy size is 10x10x1
for the request and others are 40x10x0, 10x40x1, 40x40x1, 10x10x4%, 40x10x49, 10x40x49, and
40nA0x49, respectively. Now we have 7 frapments and sometime later we need (o combineg them. Time
complexity of the partitioning is O{k2"), where k = 3.

Apply the partitioning by network degree and size: we need 3 steps 10 get the requested size 10x10 and
hmﬂmnmmlyﬁﬂl}:gnmnfsh&aﬂh]ﬂxh:‘rﬂﬂuﬂ.udmmpmﬁuly. Time complexity
of the pertitioning is , where k=3, Therefore, it improves time complexity and it also provides the
muximum free size {50x30x49) over to the partitioning by astwork size,
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3.3 Sub-System Combining

hmmmwﬂ.hmmﬁwﬂmdnmh:mhqm
{pmhllfﬁu}mﬁinﬁ:mﬂﬂhhuﬂumﬂmhuﬂhﬂumﬂ:ﬂhﬁﬁ:nﬁ-
syslem. ﬁmﬂﬂmﬂuﬂﬂhqﬂﬁmwﬂumwmﬂm‘hﬁw
dﬂ“ﬂﬂdﬂpﬁmhhﬂdﬂtﬂﬂﬂhﬂhhnﬂﬂhﬂhmfﬂﬂ[ﬁmﬂlﬁti

combining methods except the last ono gre spplied from our previous study [41].
33.1 Combining by Network Degree

MWMHMWMHMMMMHhM“hm
degree.  For this type of combining, two buddy nodes of the same root are adjacent if the differont of their
D is |. Inthe combining by network degree, there ame o, buddiea/node. Assume thal some buddies (ai
any level L) are allocated for executing tasks and some buddies are free. Hence for & larger availsble sub-
wystom, & number of combinations to combine other free buddies are identified.

Next, in order to simplify the complexity of the combining process, we clessify this tree-based sub-sysiem
contbining algorithas into throe growps, which will be applied later in the sllseation and desllocation
procediires:

ALGORITHM CI0.1 “All ny-Buddy Combining™ This procedure is used to combine all o, free buddies
(of gize ny xop x ... x nyyx1) ot level L into a larger k-Tree's nods, at lower level L1, whoss base address
a = (&, Wy, ... &) and Gize = fy X 0y X ... % 0, X W This combining process (i.c., identifying u sub-
partition’s status, sccording to #buddies) is computed in Ofn,) time and it is wpplicd afier finishing the
Hhﬁmdlﬁiﬂﬂhﬂ#hﬂhﬁnhmﬂﬂﬂ[ﬂdﬁuﬂﬂ in the iroe xs mush
&8 podaible.

“Some n-Buddy Combining™: This combining procedure is used to combine a
number (2, 3, ..., or -1} of adjacent free buddies (each of size ny x 1 x ... x 0y, x 1) 2t level L+] im0 a
larger free sub-network (of size ny x ns x o & Mgy X 0, where | < n < ny) in onder o allocste for an
inpoming request that is lager than & buddy but equal 1o {or less than) the combined sub-network

Lt n be the number of combined buddies

" Fnrlmunpunuﬂmwl{m.,lIhiu:mn-.amm:t.}.ﬂn-mm.-n-hllpluﬂ:hmﬂuﬂ
each combining size (m2 ngx...x ngix n) whose base address is of the firgi free buddy node of the
combined sub-syaeem.

= For a wreparound network (i.e., o ring. # tonas, etc ), there are n, possible results of cach combining
size (N X ny XK My X 0.

mm#ﬁ:wﬂmﬁﬁhmﬂﬁrimﬁﬂnnml-:n:rq.mihnqdndﬁx
computing the combined size und base address of the combined sub-system. This combining process can
be spplied during allocation or predefined after an aliocation of an incoming msk or deallocation of a
finished tusk,

For instance, there are 2 possible results for combining (n- 1} buddies such as (L3, ... 1) and (2.3,
4 . nyl}olsenxma ...z ngx m-1 {of & non-wrsparound network). And also, there are (ng-1)
possible results for combining 2 buddies (L.e., {1, 2], {2, 3}, {3, 4], ..., [, |} into & sub-gystem of sire
My & fga ... %y, % 2, and 50 on {see Figure 30a).

In the practical example (Figure 30b), we can combine the last 63 free buddies from overnll 64 buddies,
This is & combined sub-system of two possible results, [llestrated in Figure 30s.
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Figure 30: a) Al possible combined resufis of some n-Buddy Combining and b} An exsmple of deniifying & combinad
saib-sysien forn 63 buddias {2, 3, ... 64) of sle Bl on & 3-0 aysbam..

“Some Sub-buddies Combining™ This combining procedure is used to combine
some free sub-buddy nodes from other higher levels L + | < k+1, where | <i <k, to yield more sub-
sysiems recognition than those obtained from the combining in Algorithm CD.2

For more sub-system recognifion, o number of sdjacent free nodes in other dimensions (1< § < k) or m

higher level (L+1, L+2, ..., k+1} can be combined inio a lerger sub-system “{k-1)}-product network™,

mupmﬂ{qtnlhlnpmﬂlhml-l

= At level L, cach buddy node represents & (k-1 j-product network. {of size o x myx..xmg, x 1) with
partitioning along the k™ hasic network (or dimension).,

#  Each of other (k-1 -product networks (or n, = 1, 1 £1 < k) can be recognized by combining firee nodes
#i level L+k<1 = k. There are 0, possible combined sub-systema {whose combined sizss = ny %... 0, 5 1
K Mgy K-..X M) by combining (Mg ¥ Mg X ... X ) free nodes (of slze ny @ ne X ... X 0 ), where ng=1,
and i =k-1, k-2, ..., |, for combining at level L+1, L+2, .., k+l.

Time complexity of this combining algorithm is Ofny) for each combined sub-system sinoe it is combined

firom ny nodes &l level L1,

* For combining ny nodes ot level L+1, time complexity is O{n®) for all (n,.,) possible combinad results,
where = max{ng.., n)

L] Fnrmliniqnm:qu:hﬂlnﬂL+1thumltuhﬂ,’n’}i:r;u[nq}mﬁhmﬁnﬂ
results, where n = max{ng.;, ng.. b

=  Finally, for combining n, x ny x...% iy X 0y nodes at level k+1, time complexity s O(kn") for all (n)
possible combined results, where n = max{n;, ny, ..., m),

Therefore, the total time for all combining results from all levels is Ofln™*") since 2n°
+3n” +...+Hm" < ko' [ 140+ "}=h|!':,“ I}.I'ljn-!l-fh'b ', Note: the base idress of the combined
sub-zystem 18 temporary sored af the first free buddy of that combined sub-sysiem.

For instance, at level L+ (see Figure 31a) there ane ny,) possible combined sub-systems (Le,{1.1, 2.0, ...,
m A, (12 2.2 .. 2} o, (Do 2oy, .o Myl ], where *57 reprosent buddy-1D i at level L and sub-
buddy-10 j at level L+1) of size n) x 82 % ... X Ao % | % my each of which consists of 8 number of f, free
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nodes (of aize 6 % ... € 6% 1 x 1) See also two practical exmmples in Figure 31b (for 8 combing result
ot level L+1 on & 3-D mesh network) and Figure 32a {for 8 combining result at level L+1 on & hypercube
network). Similarty at level L+2, there exists ny ; possible combined sub-systems (of size n; x n2 x ... xny,
1% | x m x ny) ench of which consists of a number of (ny., x ny) free nodes (of size nyx .. xmx 1 X 1 %
1), ete. Figure 32b illustrates the practical example of the combining at L+2 on 8 hypercube network.

T 2 3 .. Meg My My T2 OF . Mea Mea M T 2 5§ .o Mex s

wif x5, -..|.1n,.._1q.1 trfzafmaf . In\,i.1r|...,1n.- ) EXI B |-.q.1n.,...1n..1
12f 222z raﬂl-! 12 ] zaf 2z ... M'ﬂ"ﬂ } 1afzz]az F11-...1u

1a]zafaa) .., 2 eafzafaa] .. bedndAnal ... [rafza]as in.;1-.;
1Tl-.f!ﬂrf-'\-1 H :EL 1h1thf~n H.r:l..;l. s '.-‘rl-.-'.'ln.q r:-n.u g .,.,i

(a]

Bk rs el ]

e i e il i
e o 0 Combines s0me sub-buddss [of sz Baatxd]

Figure 31: &) All possible combined mesuls (of sive miang X @ e x| & ) & beved L7 and b An example of some
on 8 30 sysiem: denlifing a combined sub-systam form 84 sub-buddies {1 64, 2.64, 364, .,

Sub-Buddy Comibining
b B4 of nlew Ban1xgq

L] {B}

Figurm 32: An exemple of soma Sub-Buddy Combining on 8 hypenoubs (or 3-cube)- a) One ({1,1}) of two Z-cubes,
comiinad Bl leved 3 and k) Ome ([1.1,1,1]) of two 2-cubes combined =i level 4.

Note that in any practical k-D system, we usually apply this combining algorithm for a k-0 system with
any k dimension and n = 2, numely hypercube networks, However, for n > 2, we may not apply this

combining algorithm because the nature of the partitioning process may not base apon the partitioning by
network degree, a5 we will disciess next,




33.2 Combining by Network Size

The sub-system combining by network size corresponds to the partitioning that aliows all dimensions to be
partitioned,  Thus, the definition fuﬂmﬂﬁuhﬂuﬁﬂdmyﬁmhmﬁﬁmmw
network degree.  For any k-D system, we introduce the “Combinations of 2' Adjacent Buddies™ algorithm
in arder to provide s generalized method for combining 2' buddies (where j = 1, 2, ..., k-1) into the larger
free sub-gystems. This algorithm (see &l steps in Figure 33) is in O(k2") time for the i
dimension and hence O(k2") time for all values of the varisble | (since 5! k2" =2k (241

Lol R be s consideling mool node (of sios M =ny xngx . 2/l
B bo e gysieen bil-mep ol esch Buddy 10 B = by, .. bybal,

E*!thmi‘mmmmrm.ri.i K- 1) for sach |,
1 B sl [T ebemerts | of k)bt bnary sinngs; | compated i1
2 Appand i slements with | *'s 10 creshe 2 set of some (Sdjacont) k-0 lermary sirngs,; [ compused in ]
3. Shift left (k-1} smes for each mmary siring (T = b . i) of sl 2 siings, whera £, < {0,1,%);

Motz Esch wemary string T compounds of (k- s or 1's #nd j *a.) | compuled in O |

Figure 33: The *Combnations of 2 Adjscent Buddies” aigonihm for the sub-system combining,
For instance, Figure 34 shows all 2 adjacent buddies on & 3-I mesh, where j= 1, 2.

Figure 34: An exsmple of all 2' Adjacent Buddies for the 3-0 mesh: &) | = 1 (2 adcent buddes) and b} | = 2 (4 adjacant
buddies)

As tha practical example, consider a 2-D (64x64)-mesh with 4-buddy partitioning (see Figure 26.a), where
k=2and 2= 4. In order to combine 2' Buddies, if j = 1, there are 1= 22" = 4 possible
combinations (see Figure 35), which are recognized s follows: first, 8 4-element set of “a compound of 2
adjacent buddics™ is a sct of binary strings {0, 1). Next, each of these two elements is appended with j * to
create ihe corresponding set of temary string [0%, |*}. Then, sach termary string is shified lefi (k-1) times
to creste & 4-clement set of temary string (0%, *0, 1%, *1] which represents a set of combinable sirings.
Finally, each temary string is interpreted.  For example, a ternary string 1* = {10, 11} (or Buddy#3 and
Buddy#4) and hence the combimed system’s size is equal (o 64 x 44,

MNext, in order to simplify the complexity of the combining process, we classify this tree-based sub-system-
combining algorithm into three groups, which will be applied later in the allocation and deallocation
procedures:

ALGORITHM CS,1 “All 2*-Buddy Combining”; This combining procedure is used to combine all free 2°
buddies {at level L} into a larger free tree’s node at level L-1. This combining process is computed in O(2*)
titmee and it is applied after finishing the deallocation of any finished task in order to maintain the minimum
number of nodes and the muodimum free nodes’ sizes in the tree as much as possible,




ALGORITHM CS.2 “Some ¥-Buddy Combining™ This combining procedure is wsed to combine &

number (Le, 2,4, ., or 2orj=1,2, ..., k-1} of adjacent free buddies {of the same root sub-tree) uf level
L into & larger free sub-system.

Our purpose is to allocate an appropriate sub-system for an incoming task, whose roquesied size is larger
than that of each of 2* buddics but is less than or equal to that of the combined sub-system.

*  First, applying the combining of 2’ adjacent buddies algorithm (in Figure 33), for a temary string T,
*  Then, the combined sub-system’s size and its base-address are computed by using the *2 Combinable
Buddy-1D-Address-Size conversion™ algorithm (see all steps in Figure 35),

This combining algorithm cun be computed in (32 +k) steps. Therefore, time complexity of this combining

fm'm:zhzéj!nmﬂu 1o combine all possible T_,*" k2™ combined sub-systems (from 2 ndjacent free buddies)
i O(k*2") and hence O(k"2") for all j.

Let B be o corssening oot node (Gs N = ngong i, X M & Baes ackiress o = {0y .8y, . B
T beamrnary sifng (4. By lal, abinined from the Akgadithm o Figue 33,

Huckly-{L - Modrass-Suge Cormmrsion Wi
1, Conwait the emary ging Teil,.; ..nmh-uwmmmm1 b g
i, T= 1" =3 {10, 11} = [BuddEl, Budcyi] | Emputed i DRk |
1.1 Crese 2 binaries i, 1y Fal S replace $iam in lecssdon(s) of s in T:
12 Convert bingry-i0s back to @ et of 2* imageri0y;

2 Computs @ Dese-address & & sz of sach oomisned sub-system of 2 sub-sysisms [ compuind in Oy |
21 Basp adoress = e hase sddness of the minimum buddy-I0 (S0-104,
2.2 Combined size = (nd'x rign %, forwi, (= 1,2,k

W iy (af the min BO-I00 + A fof Sve e BOWIDY By, it thass min BO-I0 = by (of e max BO-ID9)

' = i {af tha min BO-E33

Figurs 35: The *Z Buddy-|D-Address-Size comvarsian” alganthm [Augarifun CE.I)

Figure 34 and 36 ilhustrate all possible combining sub-systems for 3-0 and 2-D meshes, when we apply the
wlgorithms, described in Figure 35,

1 -3 1.1 53

ol 1. g0 | 1]
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Flgmmmnmnfﬂpnuhhmmmlnmm CE.2 for the 2.0 mash

ALGORITHM CS5.J *1-Buddy and Some Sub-Buddy Combining” and “Some Sub-Buddy Combining™
These combining procedures are used 1o combine some free buddies (st level L} and their corresponding
sub-buddy nodes (at Level L+1) to yield more sub-systerms recognition (from any partitioning size) than
those obtained from the combining in Algorithm C5.2.  To sccomplish these combining subsystems,

*  We apply the “Buddy-SubBuddy combining™ algorithm (see all steps in Figure 17a) for recognizing
k2" combined sub-systems of a free buddy at level L and its adjacent free nodes (or sub-buddies) m
bewel L+1.

*  We also apply the “SubBuddy-SubBuddy combining” algorithm (see ail steps in Figure 37h) for
mmﬂﬂ“mﬁmwﬂMldmlﬂmﬁuMulﬂdLﬂ-

Each of these conversion processes can be computed in O(k*2") time for sach combined node (represented
by a ternary string) and O(k2™) time for all possible 2 strings.




Figure 38 and 39 illustrate two practical examples of all possible combining sub-systems for the 2-D
meeshes and tori,

Lt B = {bws.. Dybs) b @ froa Euidiy (reqnssered in e sysiem bit-map].
Telkd— bty besiemary sWing (ona of K cirensions o b combinsd)

B i p

iy LA Oaness - i Lox o It
Compute k combinable buddies C = {0y cwop) of B from el possiés & dimensions:
ie., for the ¥ dim of 2-0 mesn, 1= 1, han T = 0° -+C = 01 o [Buddd?| | comprsed in O]

i kjursly cormminabig sub-tuddes (o sach ) = @ s of temany 570G 5 = (Bes . 5 )

oy repilacng (k-{) 0w in T el *; ard replacieg | 78 In T wiihj b's; [ compuded in Ok} for k C's ]

Ervbli=Dt2 k-1, cel, =" (=0
of sy omehy M=

L., lor above 2.0 meah, 8 =0 3 (00, 10) or {SubBuddy®) . BubSuddy3]
3 Conven sat 5 Dy usng "7 comunable-Budy-|-Address-Siee comversion” sigoriihm (in Figure 33,

indiuding #oombired sub-sysiems (0, BNy] Bnd Their bess ackineasss: [ oamposmd in Y- 3T 1)) ]
4 Compas bise-sddrass & sive of sech comisned 5 om 2 Buddess in e set [ eoumpuded i Ov’) fork S |

41 Final base sddress = Base acdness of the min buddy-10 (of the comtsned 5);

4.3 Fingl combired sme=inEng w0 for vl =9, 2, K

nC = pyed e mn BO-D) & o dof the mao BOI0L o {bg ol ths ein BOSI00 = By Gof e o BO-I00 )
0= ried e min BO4D) cifarnse

Figure 3Ta: The *Buddy-SubBuddy-1D-Address-Sae convarsion® algorithn (Algariiem C5.3-1).

LetT= (e tital hlmmdlwm;rﬂtﬂﬂm

By (i Diybigh De one of 2 free susb-buddies [represerdod in the syshem bil-map), wham =1, 2
SHLL O ECTY cezet [ ALY - B - SACKT TG-S PR L T rEecn NG (i il cRss (& 1]
1. Gorert T io @ sef of (2 elemants) buddy-I0 (B, Ba/ B = (bley . by big) } o1 2 pariially frea buddses ai kel L

by cresling 2 binany-numbers (5. Fy iyl regiacing hem inta [*s of (e . bl | compute in Ofk) |
2. idenify comimnable sub-Doddies of sach of 2 budoias 88 @ BT of heenery siring 5 (e, . = %)

for v btk =0,1.2, . k-4, [ computed i Grk?) |
B0 B2 WL ande) &". & " dy=00i1,
e bli= 00 BE =T and 8 = b1 82 = bl iny=*

1. Smiar in fhat defined n Algorsm C5.3-1 (in Figus 37)
4. Sindar i it defined 1 Algorim C8.3-1 (in Figure 37},
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Figurs J8: A% possivie combEnng of Algonthm C5.3.1: e) for 2-0 meshas and b) B mone for 2-0 Tod.
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Figure 38: All possible combinirg of Mgorithen C5.1.2: a) for 2-0 meshes and b) 4 mone for 2-0 Torl

Mote that we apply only 2-adjacent-level combining methods in Algorithm C5.3 since others (more than 2
levels) are rarely wilized in practical and are not recognized as a regular non-overdap node end size in the
tree.  Figure 40 shows the particular example of 4 rectangles that canmot be simply combined on & 2-D
mesh (of size N = 64x64), where k = 2. However, in the system performance evaluation of our previous
study [41], those combined sub-systems cause very little effect and hence can be ignored.

Figure 40 An example of non-comibinabie sul-systemn for e case of Fadjaceri-vel combaning on & 2-00 mash

333 Combining by Network Degree and Size

The combining by network degree and size i3 introduced, corresponding to the partitioning by netwaork
degree and size, in order to combine two buddies and some sub-buddies. This combining process {ic.,
identifiring a sub-partition's status, according to #buddies) is computed in O 1) time for two buddies of the
same root and O(K") time for other combining of the different roots.  Mext, in order to simplify the
complexity of the combining process, we classify this binary-Tree-based sub-system combining algorithms
into five groups, which will be applied later in the allocation and deallocation procedures:

ALGORITHM CDS.1 “2-Buddy Combining™ This combining procedure iz used to combine two Tree
buddies (n xmgx . xpx.._ xmandm XAz X .. K0 -p X ... x) ot level L into s lnrger free tree's node
{mj x ny % ... % ny) &t level L-1. This combining process is computed in O(1) time and it is applied after
finishing the deallocation of any finished task in order to maintain the minimum number of nodes and the
maximum free nodes® sizes in the tree 83 much as possible.

As compare (0 the combining by network size, Figure 41a illustrates all posaible combined results for 2-D
meshes. These are similar to some combining results of ALGORITHM CS.2.
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ALGORITHM CDS.2.1 *1-Buddy and 1-SubBuddy Combining {different sizes st dimension i)™ This
mfnhmmgmtﬂdumuuudmmhh:uﬁmﬁ-uhddymd:mmdiumbhﬂjlth-mll..-l and
L into a lurger free sub-system.  This combining process is computed in (k") time for each dimension and
O(k") for k dimensions, Mote: the buddy must be pantitioned before combining (see Figure 41b).

ALGORITHM CDS.2.2 “Some 2-SubBuddy Combining (ssme sizes a1 dimension i) This combining
procedure is used to combine two adjacent free sub-buddies (from different roots) ut level L imto & larger
free sub-system similar 1o some combining resubts of ALGORITHM CS.2 (of the combining by network
size). This combining process is computed in O(K’) time for each dimension and Ok") for k dimensions.
Mode that we can combine one dimension i 4f of two sub-buddies if their have the game size ot dimension i,
where i = 1, 2, .., ork, Figure 41¢ iltustrates all possible combined results for 2-D meshes.

“Some I-5ubBuddy Combining (different sizes at dimension i)": This combining
procedure is used 1o combine two adjacent free sub-buddies (from different roots) at level L and L+1 into a
larger free sub-sysiem In case that they have the different size at dimension i, This combining process i
computed in O(k’) time for each dimension and O(k*) for k dimensions. Figure 414 [llustrates all possible
combined resulis for 2-0 meshes.
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Figure 41: An exampie of all combned sub-sysiems n Sa panborsng and combmmg by network degres and size on @ 2-
D mash ; a) eauls of ALGORTTHM CDS.1; b) resulls of ALGORITHM COS2.1; ¢ results. of ALGORITHM COS 2.2 and
o) results of ALGCRIHTM CDE3
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So fur, there are two advantages of this partitioning and combining method over the previous two methods:
1. It improves time complexity of the partitioning and combining process and

Z Jtnm-i&:Inpﬁumdu{mhgnm}uﬂhmﬂddﬁmﬂmmmhuaﬁ*mmhﬂmmum.
However, this combining method yields less recognition capability (in the rare cases) than those obtained
from the combining by network size. In practical, such rarely combined sub-systems cause very little
effect 1o the system performance (see results in Section ),

In particular, ALGORITHM CDS.1-3 are applied dirsctly for the k-D mesh-like systems (1., k-D meshes,
k-D torl, sy k-cubes, etc.) Maore advantage of this pantitioning and combining method is it provides o
flexible way of partitioning and covers all networks in the produce network class, as describe pext.

ALGORITHM CDSd “Two Sub-buddies Combining if they are partitioned along the same dimensions™
Thiz combining procedure is used to combine two free sub-buddy nodes (1.e. subBuddy#2 of the lefi sub-
tree and the corresponding subBuddy#1 of the right sub-tree) ai loved L+1 if 2 sub-buddy nodes in L i L+1
bevels are pantitioned based upon the same dimensions in O(1) time, For levels L+i < n, more sub-systems
recognition are found if 2 sub-buddy nodes in L to L+i levels are partitioned based upon the same
dimensions. Time complexity of this combining process is Ofn+k), where n = max (nj, ng, 1y, ..., B).

Figure 42 illustrates an example of the combining by network degree and size on & 3-D mesh (N = 64 x 64
x 64} ut level 3 (see Figure 42.a) for N' = 64x64x24 and s level 4 (see Figure 42.b) for N™ = 6dx6dx12.

T P ST = j 5 a3
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........... i dudgyer | 1| W (81
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Figure 42: An exampie of wo Sub-Buddy combining (partiioned on the k™ denension) on & 3-0 Systern (N = Sdliduid )
&) 8 combining result st L+ (N' = G4ul4u4) and b another combining result sl L+ (N° = SiuBaui2)

ALGORITHM CD&.5 “Some Sub-buddies Combining if they are partitioned into 2 equal sizes™ The
combining procedure is special for a particular system (of size N =", n= 2, 2%, 2°..., 7%, In this case, It is
partitioned cach time {or cach dimension) into two equal sizes (n/2). This combining procedure is used to
combine some free sub-buddy nodes from the same level L (identified from 2 or more-adjacent levels) to
yield more sub-systems: recognition in O{j2') time for a particulsr | that combines ' buddies and hence
O(kd 2% time (since E, j2 < 2kd[1+2+2%,..+2"%] = kd 2 for all js {or all levels) to get the same
combined size, where = 1, 2, ..., kd-L
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Figure 43 illustrates an example of the combining by network degree and size on & 3-D mesh (N = 64 x 64
x 64, k= 2) of level 3 (see Figure 42.a) for N' = 32x64, ai level 4 (see Figure 42.b) for N™ = 64x372, and o
level 5 {soe Figure 42.¢) for N™ = 312x64.

- -

““L__ ey anwm

Leha

Figure 43: An example of some Sub-Buddy Combining (sach of the same size and level) on a 3-D mesh (B4x84) &) One
of two } from 2 nodes combined el beved 3; B} One (B84x32) from 2 nodes combined st level 4; and o) one (35d64)
from 2° rodes comibnned &l leval 5.

The last combining method (ALGORITHM CIXS_5) can be applied to the hypercube networks (where n =
ld'I',I*Ilhlhl:mﬁmmﬁ:ﬁtyﬂﬂﬂ'}-ﬂmﬁﬂumbﬁinlhmuﬂdmtﬂ#ﬂmﬁm
32). Therefore, this partitioning and combining method provides the more generality than that of Method
| and Method 2 since it can be applied for both of the following cases: 1) for the pantitionable systems with
small n and high k (i.e., Hypercube netwaorks) and 2) for the partitionable systems with small k and high n
(i.e., 2-0 Meshes)), Whereas the panitioning and combining by network degree (Method 1) is suitable for
the partitionable systiems with small n and high k and the partitioning and combining by network size
{Method 2) is efficient for the partitionable systems with small k and high n.

Mote that “the expanded node size of the combined node™ is introduced to improve the disadvantage {many
small fragments in the wee) especially for Method | and Method 2. Also more benefit of this idea is o
limit the number of free nodes (W) in the tree and provide the same methodology to npdate and partition as
& regular (free) leaf node.  For examiple, in Figure 23 (for Method 1) the expanded node size is 64x64x63
stored in Buddy#2 (after the allocation of BuddyW1(64x64x1)). In Figure 26 (for Method 2) the expanded
node size is G4x44 stored in Buddy#3 (after the allocation of Buddy#1 (20x20).) This expanding process
will be applied afier the allocation of any task by combining the corresponding buddies and sub-buddies of
that allocated node (not all nodes in the troe) and oaly the maximum free size will be stored in the tree as
the expanded free node size and others are masked &8s bosy. This ides will be applied in Section 3.4 (in the
CLl of the combined node) and Section 3.5 {in the expanded node after the allocation of o task).
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3.4 Beat-Fit Heuristle

The best-fit heuristic is to find the likely (or approximately) best frez sub-system among all available sub-
systems for any task. For the partitionahle MSIMDYMIMD k-D system, we always apply the besi-fit
heuristic for processor (PE} or sub-system allocation (in Section 3.4.1) for all tasks requesting SIMD or
MIMD mode. [n addition, for a particular task with SIMD mede, we have 10 add the bese-fit heuristic to
find the correspanding free CLU (in Section 3.4.2) for the predefined sub-system or partition,

341 Best-fit Henristic Tor PE Allocation

In our moded, for sub-system or processor (PE) allocation decision we apply our previous study [41] to find
the likely best sub-system for the k-Tree-based moded, based upan the firsl two pantitioning and combining
moethods, Inddiﬁmmlmuduuﬂr:whim-hudmbm;mﬂﬂ:p-ﬂﬁuiumd
combining by network depree and gize, In particular, there are four effectively criteria that are applied in
our resource (CLIPE) allocation mode! by using the following priority:

e
Besl-Fil Crieris
For mach visfed node dunng performing OF S [dapth sl ssanch) in e nes,
Citetion 1 Find ail fres sub-systems (sizes = request) thaf can prosarve the “masimum free size”as posaibie
Critgraon 2 H there am many candidaes that have the sama property i (1], then the candidae
that gives the ‘mesmum difesent sce facior (GFSF]° after k-rotians i selecied
Critenan 3 ¥ there s many candidates thal have e sema property in (1) & (2,
i the " srralesd size” candidate that yinkds he “minimum comireng facioe (CF) 18 selechsd.

Finaily after sasrching 10 vied &l nodes in e e then for e best fres sub-aysbem
if it s "eisal ™ the reduast. than i is direclly slocatsd ko the requesi,
Crerion 4 Paricm fha pruocess
i it = “larger ihan' the fequssy, Sen spply parsoonng and one of 8 buddies which yeids
properiies BimAar io that e in Step 1 = Step 3 plus baing The “best uddy node® wil be sslecied.

Mote: the criterion | to criterion 3 are applied for every free leaf node and every free combined

whereas the criterion 4 is utilized only once for the best free sub-system, obtmined from Steps 1-3. For
time complexity, the eriterion | is applied in O(k) time for all partitioning and combining methods, Tha
criterion 2 is applied in O(k”) time for all three partitioning and combining methods.  The eriterion 3 is
applied in (k) time for the first and last partitioning and combining methods and O(k’) time for the second
partitioning and combining method.  Finally, the criterion 4 is applied in O{kn), O(lﬂz]'. and O(k) time for
three partitioning wnd combining methods, respectively,

In the practical example of applying the PE best-fit heuristic for the partitioning and combining by network
size, consider a 64x64-system with two tasks allocated (see Figure 44), Suppose there are two new
incoming tasks (22x5 and 15x10). For the first task T{22x5), searching process starts from the root and
then performs DFS to visit all k-Tree nodes.  Afler applying criterin 1-3, the bett free node thai can
sccommiodate the request is 5,(22, 5) (see Figure 44.2). This free size iz equal to the requested task 22x5
and hence we do not have to apply the criterion 4. For another task T{15x10) (see Figure 44.b), afier
applying the criteria 1-3, the best sub-system at that time is S{22, 15) found at level 3. Next the criterion 4
is applied since it is larger than the requested

[t} (@)

Figure 44: An examole of the “best it k-Tree-based aliocation: a) he best 5 afier atep 1.3 for B tesk (2235) and b) the
bt & afier step 4 for another (Bas, (15610}
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T(15x10), and hence 5(22, 15) is pantitioned. Afler partitioning, the rotated size 10x15 (S:) provides the
better best-fit value than that of the regular size 15x10 (5,). Finally, among S; and 5", the 5,'(10,15)
vielding the best-fit value is sclected and allocated to the request task (15x10)),

Figure 45 illustrates another application of our binary-Tree-based model when we apply the pantitioning
urwd combining by network degree and size to the previous example (described in Figure 44). For the first
task T(XIx5), searching process stars from the root and then performs DFS o visit all wee nodes,  After
applying criteria 1-3, the best free node thal can asccommodate the request is 5(44, 5) (see Figure 45.a).
Although S(22, 15) and 5(44, 5) vield the same different size factor (diffSF = 1), the smaller 5(44, 5) is
salected . Mext the criterion 4 is applisd since it i larger than the requested T{22x5), snd hence S{44, 5] s
partitioned, Afier partitioning, among 5, and 5;, the 5, iz selected and allocated 1o the request task (22x5)).
For the second task T(15x10) (see Figure 45.b), this method yields the similar result (applied step 1-4) to
that of the above example. Therefore, the 55°(10,15) is selected and allocated to the request task ( 15x10)).
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Figure 45: An exampie of the “best iT° binary-Tres-based afocaion: a) the beal S ser step 4 Tor fhe sk (22x5) and b)
T et 5 after shep 4 for ancihes lask (1810}

J4.1.1 Algorithm for Critevion | (Mainmain the Maximum Free Size)

Before applying the criterion |, we have fo find the maximum fres size (described later in Section 3.5),
MNow let's assume that it already exists, During searching into the tree under criterion 1, the maintaining of
the maximom free size in our study is identified in terms of the overlap ststus (disjoint, intersect, or subset)
between each node and the maximum free size (see Algorithm A.1). This algorithm can be applied to all
three partitioning and combining methods in O(k) time.

ALGORITHM A.1: “Overlap Staius” of two avallable sub-sysiems 5, (the maximum fres size) and 5,
{any free sub-sysiem) in the tree is idenfified as follows: Let two sub-systems (5, | = 1, 2) represant in
term of base-address o = (8y, 8g.,..., 8, last-cover address [, = (by, by, ..., by), and size 8] = (0, x ng
xooxmg) where by =ag+ny=1;i= 1, Zand j= 1.2,.... k. Then, 5; is a “subset™ of 5, if (8 = m,; and by, =<
bug) for %], =12, k. 5 and 5; are “disjoint™ cither if (ay-ay2 ng) or i (a2 ng) for 3, § =1, 2.k
Oiherwise (neither subset nor disjoint) 5, “imersects™ 5;. Time complexity of identifying cach siatus
(disjoint, imersect, or subset) can be computed in O(k) time since a1 most k dimensions sre compared, See
soime examples of the overlap statuses (disjoint, intersect, or subset) in Figure 46.

=)
K| IR

o) b} o
Figure #6: Some possibee examples of the overlap siatuses: &) disjoind; b) miersect and ¢} subset.
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Figure 47 illustrates the practical example of “overlap status™ for the partitioning & combining by network
size. This example shows various overtap statuses between S, “the maximum free sizs™ [mi=6x6at <],
S) (6, 107>] and other free sub-systems such ss S; [n; = 4xdmt<(51) (34218 [ n'y=2x dnt 3, T),
(6, 10)=], and 57 [n"; = 4 x 2 at <(5, 5), (4, 6}>]. §, und 5; are disjoint since for i =2 there exists (82 - 8y}
=(5—1=4) 20z (= 4). 8'; is subset of 8, sinca §'y=<{5,7), (6, 10)> =5, = <{1, 5), (6, 10)> {or Vi =1, 2:
By & &y;; and by < by ) 8"; intersects 1o 5, since they are not digjoint and also neither is & subset of the athes,

Figure 4T: An example of idamtifying “overiap status® for the paritaning and combining by netvwork size

3.4.1.2 Algorithm for Criterion 2 {Minimum DNfferent Sizs Factor)

ﬁﬂwwh'huﬂnﬂ'ﬁeﬂmLwnml_rhmmqlrmcdhhniﬂuulﬂdljhummmdﬂm

that can preserve the maximum free size. In cur study, the minimmum different size fiactor is identified

among all rotated sizes (see Algorithm A.2), The minimum different size factor ia to find the most fit size

(or yielding minimum different size < k) for any free node, Among many rowted sizes of & task that yield

m:mmmmmdiﬁmmﬁuﬁum(s%mcnmmlmumunfﬂpﬁud}h

selecied. This algorithm is computed in ﬂmudmhqﬂhﬂmﬂnmﬂmmw
bint hod

ALGORITHM A.2: “Task Rouation” in this study is & process abtained by shiffing s task size k-1 times 1o
find the suitable allocate imto the free sub-system (5) for the roquesied (k-D) task of size p; x ps x ... X Py
Thli,lhm:nI:pmhhrﬂd:imdﬂmhdhﬂdhhtﬂﬁhm{pmp;l." X (py x
PaXooo X PoX Poly oooy mmd (Py X Py x ... X g ), TeSpectively. If thet 5 i partitioned for esch roteted size, the
diﬁuﬁrtli::flm{l}sdﬂﬁi'sk]mutnﬁmmﬂm.hiwﬁulhﬂmmﬂﬂﬁﬂﬂhli
| F5 before partition [} are computed in Ofk) time and hence in O(k*) time for all k possible rotsted sizes,

hmmﬂndhmmm{inﬂmn}hlmm Suppose we wre now considering &
ﬁun#—umnfﬁuﬂxﬂ1!54ﬁriuﬂ:{ﬂﬂhﬂ,ﬂx!ﬂﬂi-ﬂ!::ﬂ:h; Al & time,
mmhmmmmmmmmxnnﬁq. For the task 64 x 32 x 64 (Figure
l-l,l}.ﬂn‘:n]mﬂﬂm{ﬂnﬂ:HHIM:H.H&H:H:E}};!&HMM&:“
ﬂﬂ{llmwnmh:ﬂmﬂ,mﬂ:ﬂuﬂhnﬂhhpﬂum-ﬂﬂnﬂﬁuw
network degree. For the task 64 x 32 x 32 (Figure 48.b), there are 3 rotsted sizes (64 x 32 x 32, 322 32 &
64, and 32 x 64 x 32); each of which vields the same diffSF (2) then 64 x 32 x 32 is selaciad, Finally, for
lluultﬂ:l‘l:ﬂfﬁmdlm.thﬂeﬁdﬂ:ndymmﬂﬂﬁm-dﬂﬂidlﬁnﬁhhmdﬂﬁr
(3). Mote: if any rotated size can hﬂmﬂ.wnmﬁmhmhﬂlmnmnﬁﬁnhm
ma;.ﬁummmm-mmmﬂqhwmﬂmlmum

node first; otherwise the combined node s sclected.
l e = ‘ &
] i

Figuare 4B Same possible axgmples of the (ask rotalion for 3-0 system- 5) he iee sysism: b} 3 rotated sizes for tagk
Bdxhaid ©) 3 rotabed sires for fask GAxE2%32; and d} one rolabed sies for tagk 32eideas.
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Two prictical mhufmplﬂngﬂmn-lminn!fﬂunﬂrﬂmmdtﬂhmuimﬁcmr}nilhmbﬁnm
in Figure 44.b and Figure 45 for the last two partitioning and combining methods, respectively. Figure
49 illustrates another practical example of applying “task rotation”™ for the partitioning and combining by
network degree and size. Summﬁmuz-nuﬂmm-ﬁ#mﬂ}mdmmmuﬁ{mﬂm
allocaied, Iflhunﬂnhltruqumfuruub-mnfuinmﬂﬂ. After rotated, there are two sizes
(20x10 and 10x20) that can be allocated for the task 20x10, First fior the size 20x10 (see Figure 49.3), the
diﬂu*emnimh:mh!udmmmmlpplytwnp-ﬁﬂmh]nqumdimmhnnﬂmmﬁuﬂu
after partitioning is 480 processor, Then for the rotated size 10620 (see Figure 49.b), the different size
Buctior is | {min':-:dll'lmwmlmlrmwmwﬁﬂmﬂntumudhmuiumimumhﬁmnﬂn
partitioning is 680 processor (max), Therefore, we selected the rotated size |0x20 for the task 20x10.

Figure 48: An axample of identilying “Lask ratedion” kor the pariiioning and cambirang by network degree and sizs,

3.4.1.3 Algorithm for Criterion 3 (Smallest Size as well a3 Minimum Combining Factor)

Aﬂﬁ-lpplyin:m:wii:imIndlmuuthr“ﬂmmhuhwb'lhuﬁmimidmmh
we still have some candidates thas satisfy both the criteria | and 7. To dentify the minimum combining
factor (minCF), we apply Algorithm A3 for each node to find the most fit one (or the smallest size and the
minimum CF compuled from k dimensions), Thﬂllm&!lﬂ‘hm'lndﬂﬂlﬂfiddllul-mlmnﬂﬂlsim.
the one with minimum combining factor is selecied, This algorithm can be applied to all partitioning and
combining methods.  For time complexity, the criterion 3 is applied in O(k) for the partitioning and
mmhininghrmrkdng.me.D{ﬁhmmmwwmhhiqumﬁﬂnmqumﬂm
partitioning and combining by network degree and size.

W:TMHEWFW#WMMMSHH[E!M L) is compasted from its
adjacent neighbor nodes (B). In our study, the combining factor is an approximate valae (or probability of
combining (PC)), which is defined as

0 irﬂup-ﬁmmamﬁhuuidehmnfknﬁmhmmdﬁu{ﬁmahmhmmhjmd};
pr=d ifhlﬂhﬁntuudunfﬂllplrﬁuuh:ui&:ilhuq'{ﬂm:hmh:mlhhnd|I'l=ri'.thnl:am1¢|flu};
!&iﬁunq}tmunuduhpuﬂlllynﬂlﬁe{nﬂmnnﬁ::ui:-buddinmuyhmhinud];w

1 ifiulﬁmm&hﬁu{m’ilmhimﬂlﬂﬂymﬁnﬂ}.

Then, the combining factor for the first adjacent level is defined in term of o summation of PC of each of
combinsble buddies () from all B buddies () of the same root sub-tree (R) of the free sub-gysiem 5 (or
@), where B=ny, 2, or 2 for the three partitioning and combining mothods, respectively,

Lex CF) (my, fy)) = f PC (@, Py} is the combining factor of o, and its adjacent nodes f;

b
Mﬂumhhin;ﬁﬂmmmﬁdﬂ‘mki:ljmfwula{tﬂu}}lsiduﬂﬁudiﬂhmnfthmmnm
&8 the summation of IhuEI'.dn:hlw:lL—Hlnﬂmmnﬁnsdlmuhnj{CF.{n. Byl where i =
L,2,..kandj= 1|, 2. C(combinable buddies of c), Note: we use the comesponding root of o (Ria))
in the adjacent level,

CFia) =5: CFiloy = Ria,.) By where o, <o
dwt




a3

Finally, we handle the effect of system boundary as follows: for i =12,.. .k (dimensions) ; if (=1 or b=n)
Hmfmmmmm{ﬂﬂ}hrl.wmuhﬂudmﬂtuﬂuufﬂiuuhm Then, we
lddthecﬁmtnrmrﬁjnlngmuummn{kaiﬂjimnﬂmﬂﬂu}lmﬂIuCF{u'_I-E'F{u}*[i-
5B). Since combinable buddies ofaforC)=2 k. or | for three partitioning and combining methods (see
Algorithm A.3-2), then their time complexities are Ofk), Ofk*), and O(k), respectively.

ALGORITHM A 3-2: “Combinable nodes {CY" for each partitioning and combining method is identified
based upon its corresponding partitioning and combining method, as follows:

" Fnrﬂupm:iﬂnnhm;uﬂmh&:ﬂngh}'mdupmmm:mmplﬂiwufﬂummIil]}l}:ndth:
number of combinsble buddies (C) are C = | (ifn.-li.a,uhfpuuhnﬂwm}m'f=2{ifn.-‘ﬂ-1}
and their ID% are defined as Eﬂmmmmh‘ﬂmﬂu in Figure 30 and 51.

ll'm*lmdlrlnﬂfﬂ.niﬂ.lhmc-liﬂj and IDoff, =1 (ifid=2)or 2(ifid= 1.
[fnﬁ-!m:lifm-nfu=hl,lhmﬂ=2whﬂ-ﬂnﬂ

id-1 iFid=2,3, ..., n Tor both nerworks and
IDoff;=+ 0SB ifid=| for & non-wraparound network or
n, ifid =1 for a wraparound network.

IDof Biz= | Id+e if id+e € nyg mhwiuﬂ{ﬁﬂ]ﬁrlmmwmd network (a combing).
{id+1) mod n, ruruurmmmm{ﬂuddﬂ.
{id+<h mod n, for & wraparound network (a combing),
where 5B = System Boundary, ¢ = #combined nodes.

. Furliup:l.rdlimlnamdmnhlntnghynmvmtn'u,menmbrnfumﬁm:hlﬂh{ﬂ=ﬂiﬂ
ummlﬂlwuul'lhnl:ﬂn'lhm']:ndmiimnhhnhdemd:julﬂﬂL—i:‘ﬂq,hduai,]-j*z.
ooy K 18 defined by using the k-bit-map as follows: See ulso some comesponding examples in Figure
52 and 53,

By = by ooe By o bybg) {urmthuj'hitufu-!h_...-b]b.]:q-ﬁcrI.hrlbu:idy.
By =0ty By oo k) (or negate the j* bit (non®) of a=(i,.,....tty); & = 0. Lor * for & combine.

and {idﬂ if id+] < n;; otherwise 0 (SB) for a non-wraparound network (2 buddy),

. thpuﬁlimjnammhininghynﬂmﬁtdmumddmﬂm:!:uulymmmuehddy{{!
= i}:wﬁlml:ﬂﬁmmhﬂn‘u{dﬂmmhﬁk}mﬂlﬁ:mﬂnﬂ:hmﬂeﬂ level L—i (B,
where § = 1,2, ., k) is defined by neguting ID of a (id), then 1D of B, = V(iFid = 2) or 2 (if id = 1),
Sec also a corresponding example in Figure 54,

Some cxamples of the combinable nodes for the partitioning and comhbining by network degree (method 1)
are illustrated in Figure 50 for a 2-D system (e, M{mwna\hﬁ]urmt

network).) First, Figure 50.a illustrates two combinable buddies of & buddy (a = 2) for a 2-D mesh, which
are fl;, = 1, 3 (indicated in dash blocks) for j = 1. 2, respectively, Figure 50.b illustrates two combinable
buddies of & buddy (& = n,) for 8 2-D torus, which are By, = n—1, I. Figure 50.c shows only one
combinable buddy of a combine node (g = 1-2} for another 2-D mesh, which are fy=3. Finally, Figure
50.d illustrates two combinable buddies of a oombine node (a = ny, — ) for another 2-D torus, which sre
Bij=ne=2, | for j= 1, 2, respectively.

.2 .
= 2

]
!

() L ich
Figure 50: Some exampias of tha cambiring fackor fara 2-0 systemn based upan ihe pariitionang and combining by
network degres o) a buddy 2-0 mash; b} & buddy 2-0 lorus: o} a combine 2.0 mesh; and d) 8 combing 2-0 lorus.




Figure 51 illustrates the practical exampie of applying the partitioning and combining by network degree.
ﬂim;i—DM(mm-WMMJMMMEul‘:l.:ll[l.}. The caombinable

1 Bnd fys (ot bevel 3) and By, (st level 2} are illustrated in the k-Tree and the system status. Node: at level
2 {L-1), there is not By, since it is u boundary of the system, Then, the combining factor (CF) of o (where

k= 2) in Figure 51 is computed as follows:
CFia) = CF) loy = o, ) + CF (o = Roony ), Pay)
= [PC, (e, Buad + PCoay, Bis) 1 4 [ PC, (ota, By + PCakans, Pzl
=[1+%]+][0+1]=24.

Finally, when considering the system boundary effect (where k = 2 and SB = 1), then CF(a) is 2V + (k -

SB) = 3% since one size of this sub-system s & svstem boundary,
o )
Z L b
LI

Figure B1: An exampls of computing CF{a) lor the partiticning ard comibining by network degres

hmnmﬂuﬂﬂ:mﬂmﬂemmmmﬁﬁmﬁnﬁﬂdmmiubyn:rwmi:iumdm
illustrated in Figure 52 for a 2-D mesh system. Figure 52.1 illustrates two combinable buddies of & buddy
{u},wtmlbnfu-l{ﬂﬁ],l{ﬂil,![Jﬂ},wl[!ll.mmpmli\-:]r. In the first figure, where D of o = |
(or 00), then IDs of two combinable nodes wre fiy; = 01 (or ID = 2} and P2 = 10 {or ID = 3). Figure $2.b
i]fmmmﬁhnﬂlhﬂdiﬂnflmmﬂmmd:[qI‘ﬂwlﬂﬂ, 10})  Therefore, the two
cambinable nodes are By, = 0] {or ID= 2} and B,; = 11 {or ID = 4) respectively.

a s By w
o2 v} 50 0 iy
Pax By 1 Ba
o | : L= M T |
| i I
3
[

Flgurs §2: Some sxamples of the combining factss for @ 2-0 sysiem based Lo fha panibareg and combining by
natwork e &) 4 possible casa of & buddy and b & combine node

Figure 53 illustrates another practical example of applying the panitioning and combining by network size,
Given & 2-D mesh (N = 64 x 64). Let a (or @) = by = 11 {or ID = 4), residing st level 3 (L) and 2
combinable buddies of o are By, = 18 (or ID =33 ; fy; = @1 (or ID = 2). Assume the new considering nods
ltlt're.l1[L—I]jsﬂurml:rfnud:u|llhu:ll"uu;=ll{q.|}-ID{wlD=J]iMihm1ld]t}mtmd:5nf
aare fiyy =11 {or ID=4) and Py = P (or ID = 1),

Figure 53: An example of compuling CFia) for the partilioning and combining by network size
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Then, the combining fsctor (CF) of o (where k = 2) in Figure 53 is computed as follows;
CFle) = CF{ay=a, By) + CFy (o= Riay), Py}
=[PC, (e, Busd + PCoay, Prg) | + [ PC, {ang, Py + PGy (o, fs)
=[1+%M]+[H+%]=1%,

Enh;ﬂlf,!wln mmhmmmrmt’!uﬂsg-z}.MEHMH VI + (k-
i-'E,I"

Fi,g.ln:ﬂillumuupﬂﬂumﬁuﬂmhmﬁlhiqmmbhinghymm
and size, Gimllﬂmeﬁ[ﬂ-ﬂﬂj. L:thﬂtﬂ:!}ﬂllmj. A combinable buddy of o js B, =
Buddy#1 (at the same level). For another level, B; = Buddy#1 {ltlwdlldnmﬂumumfnhﬂuddﬁzn
level 4. Th:n,ﬂlamuﬂ:inhgfuw{mnfufmt-z}inﬂanﬂhmmmﬂu follows:

CHla) =CF, o =a, ﬁl!‘*ﬁ:{ﬂa"mﬁ:]-ﬁﬂ' W=,

meﬂ‘.ly.“hm-nuniduhq the system boundary effect (where k = 2 and SB = 1) then CFia) is 1% + (k -
5B) =2,

Flgure B4: An exsmpie of computing CFia) for the pariitoning and combining by nestwark degiee and s,

34,14 Adgorithm for Criterion 4 {Best Buddy Location after Partitloning)

W%MMtwhﬂmriithﬁrmiﬁmimm{ﬂq4
in the best-fit heuristic), Inhhmmﬂtb’ﬁulﬁmﬁmﬁqul-litﬂtm
represenied as S, whose size is larger than the requested task. Then, the node § will be partitioned ino B
hllldFﬂ.ndthahu-lnb-ﬂniﬂm[umnfﬂhﬂuwﬂlhﬂhmhdmﬂummj,whutﬂ=|1h2".
ﬂlfnrhihnplﬂﬁuim-ﬂmbhh;nm.mmﬁwh. In this case, we apply an approximate
probability of combining (PC =0, 144, 1/2 , or 1} similsr to that of the criterion 3.

Fhmu.ﬂummbiningﬁﬂurh'duk-lldiﬂﬂlﬂduillllﬂhﬁ:tﬂlpnuiﬂtﬁhﬂdlh:hﬂlhq
always have the same root, mﬁmwjmwﬁﬂummmmmw,m
Fnliuwr.ﬁr|=l.1...,,k;ir{-1=Imh=n.}ﬂmﬂnnmmbmmhﬂﬁﬂ}hyE,whnnr
beginning the value of 5B is set to zerm, Tim,ﬂud’ﬁﬁﬂcmiﬂn{mmﬂwmhmum'yh
deﬁmdinhmunfﬂn;tdnhili&ﬂfmhhlﬂg{?ﬂ‘i—ﬂﬂ}.whiiiilmm&rlllbuddynndﬂin
O(kn}, D{k2"), (k) time for three partitioning and combining methods, respectively. The buddy (o) that
yiclds the minimum probability of combining (min PC), corresponding to the system boundary is selected.
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If all buddy nodes provide the same PC, then we justify our decision in order to select the likely best buddy

(e}, based upon the local combining capability in terms of the probability of combining (PC), which is
defined as follows;

. Fwﬂupuﬂihninguﬂmﬁnimhmmmd:hmubnchhr{mufnﬂnnudm}uﬂlh:
idmlﬁndnfulim:ﬁurj=L..‘!,-.-.n:Ft;=FC{ub—huﬁiuj}ufﬂmI=ﬂmmHmhlnhﬂdHﬂd{w
FC[#|'.iIfiu!lll-hﬂluﬁ:nut:n'ﬂ]+PC{nﬁ-hudﬂnj]ufﬂuﬁghtmmHmhhthdy{ﬁﬂ[nfPC
{B:) if its sub-buddies do not exist). ﬂmﬁnlﬂufullﬂqmIuﬂulDufﬂttaub—hﬂd}'wi{ifil
yields the minimum PC). This process is computed in O(n) time since we have n buddy nodes mnd
mhmmmhini:hmdnﬁrud'.budm-- Sec some corresponding examples in Fimpere 55 and 6.

. Fn'hmhhnuil;ﬂdm‘niniuh}-mm:h:.ﬂubﬂhnd:ty[ﬂn:uf:ll!‘nndu}mhn
Hnﬂﬂddhﬂrhnﬂmﬂnfﬂuhmmmitﬁmﬂpl-]urlluum:ibntm:d:mbe
partithoned). That is the ID of a is set equal to the ID of 8(1, 2, ..., or 2*), This can be computed in
0(2") time since we have 2* buddy nodes. See some corresponding examples in Figure 57 and 58.

Emmmmpluafiduniﬁliuﬂuhuhmldymdufn'ﬂupuﬂﬂnﬂmmdmhlningh-mm
are illustrated in Figure 55, Fm;uﬁ!;mthrwﬂkﬁnfm[rlﬁ].ﬂﬁnhilwﬁrj=I,l].
and 4. Therefore, any buddy can be selected. Then, in this case the minimum address is selected, Figure
!!,hllhum.ﬂurdlﬂh*nnmnlmﬂcj{lﬁwH}wﬁidri:qu!ﬁrﬂl]:.nﬁq:tmglﬁi.

] E 2
forj=112, .4 :'..H for|=4.2, .4
- PGeX+1=1% PCi=14+ 1= 1%
PGy e W+ Weig I}

fak ]

HHLMWWHHMMHM ind comblining by network dagres: 8) any of n buddies
ﬁ.hmmm:mhﬂm I8 salected and b) the second buddy is selecisd since I yields: tha minmum PG

Fim!dﬂﬁmhpﬂﬂmhﬂmﬁummhmwmﬁﬂmhmm
E&mn!-nh{whwuh:}i}mudﬁumh{twu}uMmmm“I-:uhu}-llnmm
In this case, the 3-cube node is partitioned into two buddies. The PC of Buddydl is 4 since its
cormesponding sub-buddy at the same level i busy. mmurﬁﬂhﬂliﬁiﬂiﬂmﬂngw
buddy at the same level is partinlly free. Then the Buddy#| yielding the minimum PC i3 selected.

Figure 58: An mxampie of identifying the best buddy for e pariioning and combining by netark dagrae
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Smnumnqﬂunfﬂnﬁﬁirﬁ|huhnﬂhddynnﬂnﬁrm=phﬁﬁuﬂummmhiningh}-nuw&ﬁam
illustrated in Figure 17, In the first figure, ﬂmmu(mﬂuﬂmhﬂdy}is I, which is the same as the
IDof 5. lrﬂu-.mnl'hudd}-i:amilmﬁml,ﬂulburu{mmwhuddy}hﬂqﬂ;ﬂ.

task
[SHL:mmlﬁﬂmeﬂHhﬂtﬁlhﬂrhﬂnlhnbuﬁwmdnhhﬂ:ﬂ{dﬂ]lhmzil

sehecied, T]'H:P‘Cufbnddy .2 ],lndllnll.ﬂ.}!.l.mm::ﬁvﬂ'j. Thufmnﬂtlﬂ-ﬂﬂdy#!hllhﬁ
Binice it yields the minimum PC = 0 {i.c., k=2 5B=1.

Smmuplmnridmﬁﬁ-inuh:hmhﬂymﬂhhpﬁlﬂuﬁmndcmﬁnmwmmim
and size are illustrated in Figure 59. Fimnﬁ'}.llhmuumﬁ:‘ahhﬁmnﬂmﬂhﬂy,wﬁch
i8 0 (since k= 2 and SB = 2), m&lnwmnﬂdmmilmpﬁnd. Now the PC of the first buddy
ilﬁmdduPCnfﬂtmdhﬂyiuIudhmﬂuﬁmhddyilﬂmudulhehmbuddy. Simllar
result is illustrated in Figure 59.b.

e 5
- () E )

Figure 59: Sams mmuhmwnhmmmwmmmw @) e fral
teidely is the best node snd bj the second buddy is selsctsd

the next incoming sk (101 5), the best sub-system after step |
Afler partitioning, the second buddy that yields the minimum PC (=0} is selected,

Figure 80: An exampile of identifying e best buddy for the partitioning and conhining by network degree and s




341 Best-Fit Hewristic for CU Allocaibon

hﬁammﬁpmhsrrmsmnmwmmip [2] that we use as our system-base for the
resqurce (CL/PE) allocation, all processors are specially designed, called CPEs (comtrol processor
nhnm]ﬂmﬂ:&nﬂﬁ[ﬂjwm}ﬁanigudumﬁmn. Therefore, in our study the CU for the
mmﬁjmhwmﬁdmhﬁmﬂrmmhwbw. For the CU
allocation decision, firs we [rﬂndunﬂuﬂuﬂlmtﬂmhiq{inﬁﬁtlmlllljmﬂmh
application of the general CU searching to our tree-based CLI allocation method {in Section 34.2.2).

34.2.1 The General CU Scanning Methods

hamull,ulmdummmdnnmqiuuﬂ:dﬂuw{uucu for a selected sub-system, namely:
ljmmwmminmmwz}mmwmmﬂmm
m’}ﬁm:,nhcﬂrqrmﬂumﬂumnn.xnn.,.:n}.

34LL1 The Processor-Bit CU-Scanning Strategy

Given a selected sub-sysiem (S) of sine N' = m, x my x...x my, &t address <(ng, 8y ... ;) (by, by ..., By,
where the first k-coordinmte (a;, 8; ,..., &) represents the base address and the second k-coordinate (b, b,
+=+- by} represents the last cover address of the sub-system. Suppose the system size is N =n, xiny x...xn,
and my < ny.  First, we illustrate all possible processors (or CPEs); each of which can be essigned the CL
role for the sub-system, by using two simple examples for 2-D and 3-D mesh systems (see Figure 61),

Fnrlh:l-ﬂ:&ﬂm{mfimﬁl.l],Hhmmdlfﬁullnﬂndﬂimﬂup!‘mhﬂnamdlhn
sub-system (5). Next in order (o find an appropriate free CL at boundary of S, we can start scanning from
th:miui'llmlﬁimFwnﬂpﬂm;hﬂlﬂhnfwbyw]ﬂmimmﬁﬂnuddmﬂmmp
i bestibom, Inihmir:gﬁnmluﬂmﬂ;lu{nluqdimﬁmIj.wehwmdulhﬂmhumiuﬁrﬁu
top and the botiom. In the scanning from top to botom (along dimension 2), we also have to do the
scanning twice for the left and the right. However, it is more difficult for the 3-D system (see Figure 61.b)
mpufmmﬁmmﬂmfwdlmlibhﬂunﬂhmilLﬂhnmuﬂdiﬂ'lnuhﬁ:rmyt-ﬂmm

§7 KB

Figure &1: Some exsrnples of 8 selecied sul-system (5] and &l bf its cormesponding Cle at boundary of 5: &) sl CUs for
& 2-0 mesh sub-system (N’ = 7 x 8} and b) all CUs for & 30 mesh sub-syslem (N" = 7 xBxd),

Im goneral for & k-D system. & number of all possible CPEs that cam be the CU! {or candidate CUs) of the
subsystem § are scanned from the first dimension to the k® dimension and are identified as follows:

A number of @l candidaie CUs of §
k

~ 12 mWxm.x..xm_xlxm, x. cm
dwl

= s g oy Py KX ) L iy Ko KT o) # (my X myx. . X my 11

For example (see Figure 61 for the 2-0 und 3-I3 systems), if k = 2 and the size of & considered sub-system
(%) is H'-mlmﬁIlLﬂldenﬂJlﬂruﬁlubmhﬁl1!+T:Hﬂ3ﬂm
(Figure 61.a)L Fﬂk-ludﬂuﬂuﬂrmmmiﬁlilh"=mmm;:m3 {7 x&=x 2) all
whdidu:ﬂhfu-lhiuub-aﬂm‘ui'iltlr:1+?nl:2+?:i:1}—lnw{ﬁgumﬁ!.b:r
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Mext, we have to find the address of each of thase candidate CUs and indicate its status (i.c., free (0) or
busy (17). Inﬂnk-nqm;pmmmmmmmmnhbmdimm“dum
address (a, 8; ..., &), the cover address (b;, by ..., ), etc.  For the sub-system () of size M =m, x my
K...x My} ol nddress <(8;, 8; ..., &), (by, ba ,..., hP4ﬂ!ﬂﬂﬁnm1d¢mnflh:E-!1pmliH:EU i (a1,
3 ... &)  The scanning process starts from the first dimension to the k® dimension.  For each
dimension i (i = 1, 2, ..., k), there are two consecutive groups of (m; xmyx.x m, x | x M X oo X )
processors, where each of their addresses is identified as follows:

= =
Clls ot demensan i= 1, 2, ....wm&ﬁm:m.:...nn..uum.m..:m.nmmm‘m-u“
Inifiadee  Giroup 1 (6. 8 ..., 5=, B
_ .n..,h-l‘l,_...,t.}_ﬂ-.h,lq.-m-i
mmnmw-{nﬂmlﬂ
ford =012, ., m-1 8wl
ford:=0,1,2, ., mg1 iy

LN

Hote: for wach dimension i ff (a-1< 0, I is & systpm boundsry and o Cls in growp 1 of el dimension.
Furumplel,u:Figlnﬁ-lj,ifk-!-ﬂﬂulhuf:mmdﬂh-um{milw-?xl.-ﬁﬁmnr
lll]l'l:lntﬁihu{!l.ll,Mr:rnm.:m,l?:-lltq'n,qﬂ.{ba.bﬂ}=€(5,ﬁ],{1h 12)> are

*  Candidate Cls at dimension 1: ford,;=0,1,2, ..., 7
Group | (8 PEs): (a1, ayvdy) = (4, 5), (4,6}, ....( 4, 12)
Group 2 (8 PEs): (by+L. ay+dy) = (12, 51, (12 6), .., (12, 1)
* Candidate CUs at dimension 2: for d; =0, 1,2, ..., 6

Group | (7 PEs): (a,+d;, ng-1) = (5, 4), (6, 4), .... {11, 4)
Group 2 (7 PEs): (a+dy, by#1)= (S, 13}, (6, 13}, ... (1 |, 13}

81
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Figure §2: An example of 8 seéected 2-D sub-system (S) all corresponding candidete CUs and their addreasing

In Figure 63, ifk =3 Hﬂﬂud-ﬂlldmﬂlnhﬂmﬁ]hﬂ“—Tx!xlﬂdrHﬂngufﬂ] 172
candidate Cls, where m; x m; x my = TxBx2 st <{a,,82,0), (b bp by Jo=<(5,5,5), (11,12,6)> are

* Candidate CL's &t dimension 1: dy =0, |, 2, ..., Tand dy =0, |

Giroup 1 (16 PEs). (a-1, a5+, ay+ds) = (4, 5, 5). (4, 5,6), ..., ( 4 12, 6)
Group 2(16 PEs): (bytl, ar+dy, st} = (12, §, 5, (12, 5, 6), ... (12, 12.6)

*  Candidate CUs ai dimension 2: for d, =0, 1,2, ., Sanddy =0, |
Group | (14 PEs): (0;+d), a1, s5tdhy) = (5, 4, 5), (5. 4,6), ..., (11,4, 6)
Group (14 PEs): (s +d,, by+1, sy} = (5, 13, 5), (5, 13, 6}, ... (11, 13, 6)

* Candidate CUs at dimension 3: ford, =0, 1.2, .. 6endds=0,1.2,....7
Group | (56 PEs): (a,+d,, nytdy, mp-1) =(5, 5, 4), (5.6, 4), ..., (11, 12, 4)
Group 2 (56 PEs): (ny+d), atdy, byt l) =(5, 5,7, (5.6, 7), ... (11, 12, T)

Figure 83; An sxample of 8 stiected 3-D sub-systam (). o comesponding candidate Cls e their addresging.
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34.2.1.2 The k-Sab-System CU-Scanning Strategy

-, —
For dimension i =1, 2, k, addressing of two CLISE (each of sl = mcm; R e K0 g, et Py = 1) g

Min CUS address = <(a,, &,, ., B TR MR R O TR
Max CUIS acldress Irﬁ{l,,h.....hﬂ,...,u,m,h-..,mi,....Iﬂh

For example (see Figure 62), iIf k = 7 and the size of a selected sub-system (5) is N*= 7 x 8, addressing of 4
CUSs (of 30 candidste CUs), where my X mz=7 x B at <{a;, ag), (by, byl = <5, S0, 12 are

* At dimension 1 min CUS (B PEs): <(a,-1, 8}, (a1, by} =<4, 55 (4, 120
miax CUS (8 PEsk <(by+1, a;), (by+1, byl = {02, 5), (12, 12>

* Al dimension 7 min CUS (7 PEs): <(ay, a;-1), (b, ap-l)> =<5, 4, (11, 4)>
max CUS (7 PEs): <(a,. by+1), (by, byt = <[5, 13), (11, 13

In another example (see Figure 63), ifk = 3 and the size of a selected sub-system (S) is N™ = 7 x & %2,
ldtiurlmnfﬁﬂi&{nﬂﬂm:ﬁmﬁm.whmm.xm,:uh"."x!:Eiq-..l;.l;]. By, by, byj==
<5, 5. 5).(11, 12, 6% are

* At dimension | min CUS (16 PEs): <{a-1, &, &), (m,-1, by, byl =-<(4, 5, 5k 4,12, 6
muwsuﬁﬁsl:qh,ﬂ.la.n:.‘l.l:hﬂ,h,.h-_.j:- =<(11, %, 5), (14,12, 6>

& At dimension 2: min CUS (14 PEs): <(n;, 85-1, 8y), (by, a1, by)> =<(5, 4, 5), (11, 4, 6>
max CLS (14 PEs): <(a, by#1, my), (by, byt1, byl = 5, 13, Sk 11, 13, 6=

* At dimension 3: min CUS (36 PEs): <{a;, a5, ay-1), (by, by, 1) = (35, 5, 4), (L, 12, 4
max CUS (56 PEs): <(ay. ag, by+1), (by, by, by+1)> = (5, AT OLILTE

34.2.2 The Tree-Based CU Searching Methodds

qu:mmcummummuimmmm-&hmwnmﬁmum
tree-node containing some candidate Cls for a selected sub-system in di fferent time complexity: 1) the CU
depth first search (CU-DFS) strategy (O(N,, + kNy + K5)); 2) the CU adjncent search (CU-AS) strategy
{m’}]r.udijﬂut:‘uirﬁtm[malﬂm{ml]}fmﬂlmmmmnﬁmﬁnmgmm

34.2.2.1 The CU Depth First Search {CU-DFS) Strategy

ﬁmdmhﬁmmtmﬂm}mhmmﬂnd-nrﬁumd:{mmwdmn}inﬂuhw
mniuqhnuumihlﬂmdwhﬂmm. The searching starts from the root and goes to the left most
(lent) node, which is the first node R Ifhnﬂhﬂhﬁn.ﬂmhﬁllﬁﬂmnilﬂmmsm
ned (sce Definition 2), identified in O(k) time. H‘m.uubminuluanrthmdekhmnpmdﬁrm
candidate CU of size one processor (p = Ixlx...x1). During the DFS search, we also apply the best-fit
ull!inﬁmiuu!,d.t{&qﬂ-Hwiﬂmuﬂmuﬁm]mthelﬁmuumﬂmlyinﬂ'h}ﬁm Then, the
ledjmlmduRwillhcup:htudIfiljiﬂﬁﬂtbﬂﬁﬁ:hﬂ-ﬂtvdﬁﬁmﬂtmﬂimm
R in the record. ﬂ:mﬂﬂumhr&pﬂdﬁrﬂnmﬁumﬂeﬂfﬂmmm}mﬁlﬂlnﬁnh
the tree are visited, mm,mmmnrmmmwmmmhmmn&rmm
u:,msin{:{m+m,+k‘}m‘numnmmmumﬁ-mu,&ummiﬁmmm
nijnmy:hﬁing}.nﬂhﬂ:mmdu{vhirhgwmm-ﬁtmmﬂ Finally, for the best adjacent
mnlhmﬂmhmmmﬁ“idﬂﬁﬂddlnmﬁﬂﬂih time) and sclect the
umsmmmmmmmmnumqmmﬂlm Jtimel  Therefore,
total time complexity is (N, + kNp + k' + K7 + k%) or O(N, + kNp + k%), This CU-DFS strategy can be
:pplinldhmhmdlthuwﬂhﬁqndmﬂﬁugthIHﬂmﬁk’]lim:.
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DEFINITION 2: Any two sub-systems (5 and R) are adjacent ulong the dimension i if cither |a, — by = 1
OF [by — 8o = 1, where i =1, 2, .., k; (i, fi) = <(a,,, 83, - B (Byi, b, .., By )™ represents the address of
S5 and (an B = <, a, .., 84, By, B, +v=s By J- represents the address of R

Fumﬁumﬁmﬁd}.mh-zm:sﬂuud:ub-thﬂufﬂuhl'nm.xm;n!ha
address <(a,;, a.), (by, h.;b-lmd-mmﬂn—hgﬂumdnhﬂfufﬁnw=m‘.xm‘jl the address <{a,,,
8], by, Ba)e)) ﬁmﬂaﬂlmuﬂwﬂmnﬂm:huh,—bﬂlnlludh.—l,.d:tl fior
allj=1|, 2 Fimﬂ.hillmﬁuﬂh-qmumsihufﬂ'dhli=1.I1.;—:lﬂi-I. Figure 64.c also
illustrates that Risﬂjmlmsainn:fnuﬂmi-I.h..-bnlnl.rmnuinhr.

B, B
Bl iBri, Bl (. Bag) (g, Bz}
] A Trew node
z {RY in e
" iy X ')
H  =7xm By, Bl
TITT LT Bt

(i

ﬂqunu:mmmuuq-m:mm-ummmﬂﬂuﬂ:mmmumm:mm
ch Two adiacent slafusss

3.4.2.2.1 The CU Adjacent Search (CL-AS) Strategy

Searching rnunmummafwshyndqmCU-nFsmnmukuﬂmnm,u’]ﬁmﬁn
n:rmnuh:hdmhrm{&}uﬂhﬂﬂiluwhmﬁmhﬂ!mﬂﬁ:nﬁm{ﬂ].
Then, the CLI adjacent search (CU-AS) strategy is introduced to improve that time complexity.,

Ti:cuvhﬂmunmrinhﬂﬂ&minﬂduiuﬁndm&nmdunlhtnﬂmuqum to the selocted
sub-system 5. Mumtﬁmmﬁmhtdnhdﬁmmmhﬂrﬂnmﬂﬂlmhﬂym
(R in O 1) time, IT that adjacent node R is free, its best-fit value (see Section 3.4.1 {only Step 1 - 3 without
ulhmti.liu-n}iﬁappifﬂfnrlbnEUnrﬂmmplm[p=1111...ﬂ}inﬂik}ﬂmt. Then, the new node
R will be updated if it yields the better the best-fit value than the current node R in the record. This
searching process is repeated for the next adjacent node for at most k nodes in O(K) time including the
best-iit compating, Nmﬂuﬂucu-ﬁsmhnrmu:u-dnﬂlrmwﬁmtm:mmﬂfhm
DFS strategy (see Section J), slthough it does not perform searching for all condidate ClUis s the CL-DFS
Stralegy do.  Time complexity of the CU-AS strategy is only (O{k®), described for each method as follows:

* Fmﬁupﬂﬂmhguﬂmﬁhimhym‘:dqu{meﬁmd 1), there are a1 most two sdjacent
hddynnduiinﬂ::hﬂmdﬁ;h}id:ﬁﬁud[nml}tiru,whm-ﬂplmminﬂmnlwhmy
naxdes can be candidate CUs if they are free, Searching may noed k levels for the minimum free node’s
size a3 must as possible, and hence time complexity of the CL-AS strategy for this partitioning and
combining method is Ofk") Including the (k) time for best-fit computing, Sec the corresponding
example in Figure 65.

» Fwﬂumiliminguﬂmmbiniughymuim{hhlmdEl.ﬂllmmhingmmsmm
adjacent free nodes (st most K nodes) can be identified directly {see Algorithm CU.l and the
comesponding mugl:; in Ofk} time, Searching for all k adjacent nodes of 5 and computing their
best-fit values is O(k) time. Therefore, time complexity of the CU-AS strategy is Ok} time.

. Fmthcpnﬁﬁmﬁnguﬂmrbhﬁuhymmmmﬂu{maj.ﬂuminlmﬁms.
Th::ﬁmmd:ufﬁi:d&mlyidnﬁﬁadhE{l}mﬂﬂnhﬂ-ﬂlvﬂu:mhmw im Ok} time
singe there is only one sdjscent buddy (see Algosithm CU2 and the comesponding example),
Therefore, time complexity of the CU-AS is O(k) the next level searching and hence O(k”) for the k
levels searching for the minimum free node’s size &s much s possible.

Note: In this CU-AS searching straiegy, we illustrate time: compiexity based upon the iden of the combining
wnd expanding, which is stored in the expanded node size (see more detail ln Section 3.3 and Section 15).




FigmgE&illmﬂuwﬁnlmnﬂ:nfmﬂyhgﬂumﬁﬂmfuhmlﬁdmhgIﬂd
mwmm mm::lmdﬂbmiﬁ}hﬁuhﬂyﬂﬂlhd 2 and hence
Lumulthmhd:lymﬂnm#lmﬂ#ﬂulﬂel 2), respectively. Al free nodes of the buddy #1 and 3
mhﬂhﬂrihhmmﬂhﬂwﬁrmm{m,mmm’ﬂltluvﬁd]ni:ulmnd.

oy
M iy
’ AMM-J
—
; & Dombingd si-gyimm & pombired aub-sysmm {of szl oy & A & (320}
e i S s o sizm s x 1) x 1)
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Figurs 83: An example of applying the CU-AS for the parioning mni combirmng by netwoik degree.

w«mwm“-mmmrmmmﬂmmw
combining by network size, Thntmﬂm:pnuiﬂammumﬂmﬂulhﬂlymﬂ:w:mmbim
sub-system (see Section 3.3.2):

Case |- if' S is any buddy node (ID = 1, 2, ..., or 2" in an integer format or (b ... by bg) in & conversion
sub-system bit-map format), Eﬂcﬂkﬂjmthdd;mduﬂﬂum

H W

1] .2 3] 2 aciacent bucdies of S fbyba = 00) are 0] and 10 I

...... m—pr
Kyisl 2in] {1
Ik = 3, k adjacent buddies and k adjacent sub-buddies of an § where ID = 1 i

1 i 100 ; 3 poyacent burides of § (gt = 000) are 001, 010, and 100.
1ooey fose) J] .. ’
| |
0

M:ﬂ'shmymmd:ﬁ-mnl‘hﬂdhmmlmmingfmuu.., e Ui g 0f 8
and stored in a special expand node size, there exist js* * and k- bits (b)) in that string, where j= 1,2, ..., k-
|. For each adjacent buddy, we compute the best-fi value (Step -3 without tmsk rotation) in O(k) time.
Fnrlhtll'n:hﬂﬂh&lhnnuﬂ:huﬂmhﬂhuhkhniﬂnﬁ:ﬁﬁhymhglnu‘{mI’hrnm
dimension at & time and then expanding all*s, wherei=1,2, ..., k. Therefore, time complexity for finding
k buddies including best-fit value is O(k"). For example, if k = 2, k adjacem buddies und k adjacent sub-
hﬂdhuufmr5[dmj=lmlmmmhgiiﬂ" 1, *0, or *1) are

® 5 (% [ w
2 adjacan buddies of 5 (kg = 0% are 1° (10 and 11}, il s I i

i Gl [ T l g
i M| i g
r——  — ——

Ifk = 3, k adjacent buddies of an 5 where ID = | and citherj = 1 or 2 {since only the maximum combined
node at any level is stared in the expanded node) are

||||| " *_F'n']:‘l
r : 3 admonnt budtien of S {lsils = 007)
i von it are Of* (010, 011} and 10° {100,181}
& SRS
ol !:.m ] s or For| =2,
ingi H ; 3 adjacant buddies of § ik = 007
: a1 (100, 101, 110, 111).




For example, if k = 2, 2(k-1) adjacent buddies of any 5 (where 8 temary string is 0* and 00 or D1, *0 and 0O
or01, I*and 1000r 11, or *] and 10or 1) are

I:':.? W 2 (20K 1)) acjscent buadies of 5 (ltesd", tbuby=00) are 10, 11, | [ @ _ w [¥0) [

i = - i

Ual ¥ i R P il

- .

hﬂ P % (20%-11) adjacent bucdies of 5 (tis="0, Bybu=00 v 01, 1]

e

ALGORITHM CU.2; “Adjscent buddy of & selected sub-system 5™ for the partitioning and by
LU - combining

I 5 is any buddy node (ID = 1, 2), there is only ane adjacent buddy nodes and we computs the best-fit
value (Step -3 without task rotation) of each adjacent node in O(k) time. In order to find CLs from k
lidnuihliﬁndhj'ﬂtpuﬁﬂmlrurﬂ combining by network slze, we conislder the following two cases:

Case |: Beginning at the same level 88 S, For the same level as 5. thers exisis only one adjacent buddy,
which is identified by negating the ID of § (i.c. if TD of § = | iis 2and if ID of S = 2 it is 1). Therefore,
Hmmﬁuﬂyhﬂnﬁ:ﬂuhﬂhmmM best-fit valise is Ofk).

Case 2: Beginning at the upper level or the sub-sequence rook(s) of 5 (R(S)) up to k-1 levels, In sach
upper level, find an adjacent buddy of the R{S), which is Hillmﬂeﬂb:;ruillmg the ID of the R{S), Time
numplnltyfn‘fmdhuabudd;rhdﬂmbnbﬁﬂﬂuhﬁﬂmﬂfh}Euralmntl:ruh

For example, if k = 2, an adjacent buddy of any $ and an adjacent buddy of 5's oot (where lﬂjt_?:!h"

. ﬂur:1mmdam-:;uz.
ﬂ Case 2= 1 achacent biddy of RES) (D= 1) 2

lfk-?r,mdjﬂuthﬂrﬂﬁf_whnnlﬂ=Hl.ndldjmbudﬁunfﬂ;-ll-l:\-:lﬂ‘:mnum

L - 8. _F

Caomn 1- ¥ scfiscant buddy of 5 10 = 1) 8 2 =1 vl 4
Cass § For RaH),
| meiiacae Busddy of B[S} 0D = 1) & 2 & el 3
For RgE],
1 ifmcent buddy of RS} 60 = 1) & 7 & level 3
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After DFS searching of both sesrching methods (the CU-DFS strategy and the CU-AS strategy} 1o visit all
modes in the tree for the SIMD task. we obtain the best sub-systermn S and the best node for CU, whose size
may equal or larger than the requesied msk.  The final step (applicd only once) for both strategies is
selecting the best-fit PE and CLU after pantitioning. Let's consider the following criterion:
® i the sub-system size alroady fiis to the tesk and the CU node size is equal to one PE, we do not have
o apply the partitioning method
®  Dtherwise, we apply Algorithm A4 for cach buddy node 1o find the most fit one {or the like best
buddy node among B nodes, where B = ny, 2*, or 2 for three partitioning and comhining methods in
Ofkny), O(k2"), O(k) time, respectively, Note that
*  After partitioning, we will have more cendidate ClUs inside 5, where adiscent sub-buddy nodes =
2,k or | for' Method 1, 2, or 3, respectively. Then, we have to compute the besi-fit value (Step 4
in Section 3.4,1) for each adjacent node of the best buddy (from S} in O(k), O{k%), O(k) time, for
Method 1,2, 3.
®  Then, between the best adjacent node inside 5 and the best adjacent node outside 5, the one yields
the better baat-fit valus is selected.
=  Finmily, if the CLI node size is equal to 1, we do not have to perform the partitioning. Otherwise,
we partition that CU node and select the best CU for that best buddy for the sub-system (PE) for
the requested tasks.

34.1.23 The CU Inside Senrch (CU-I8) Strutegy

Searching for all possible candidste CUs by using the CU-DFS strategy takes 0N, + kNp + K°) time and
senrching for some candidate CUs by using the CU-AS needs O(K’) time. The later strutegy improves time
complexity over the previous ang for & corrent sub-system (5). However, it ts still time consuming for all
candidale sub-syitems. Then, the CU inside search (CU-IS) strategy bs introdiced to improve thet time
complexity, which is O{1) time for a corent sub-system (5).  In this case, the searching is similar to that
for the sub-gysiem in PE allocation, encept now we are always looking for the sub-system that is larger than
the requested snd hence it always includes CUs inside that sub-system. Thus, we do not need extra time (o
search for CUs outside the sub-sysiem, as the above two strategies.  Although this strategy does not search
for outside Clls as those fwo sirategies do, they yield the comparable system performance as those of two
previous stmtegies (see Section 5).  Therefore, time complexity of the CU-1S strategy is O(1),

3.5 Searching for Allocation/Deallocation

This section integrales all computing functions (in Section 3.2 - 3.4} to form the scarching for resource
{CLV/PE] a llocation/desllocation de cision. A s a n int roduction in § ection 3.1, Figure 22 illustrates the
diagram of the dynamic tree-based resource (CUPE) sllocation'deallocation computing flow for =
reconfigurable and partitionable MSTMD/MIMD parullel system.

When there is an incoming task, the dynamic resource allocation process will check in the waiting queus
firsi. I the wait priority of the first tsk in the waiting queue is more than the threshold value, that task will
be put in the wiiting queue. Otherwise, the processor “allocation” procedure will find an appropriate free
sub-gystem for that taik by searching imto the tree. If there is o free sub-system, the requested task will be
allocated on the system. 1 no available sub-system, the request will be put in the waiting quene with FCFS

ng. In particular, in the tree-based resource (CU/PE) allocation procedure, searching starts from
the root and performing depth first search (DFS) to visit all free nodes in the tree by visiting the left most
(leaf) node first. IF that node is free and it size can sccommodate the request, its best-fit value (see
Section 3 A4.1) is computed. For an SIMD task, the Cll-searching strategy is also applied (see Section
34.2.2) Then, the best (SIMD/MIMDY) sub-system (5) is updated if the new free § yields the better best-
fit value. The above process is repeated for the next free leafl node in the tree.  Afier all nodes are visited,
the final process is applied, which i cither to 1) allocate the best sub-system directly to the request (if its
siae is oqual 1o that of the request) or 2) partition (see Scction 3.2 wnd 3.4) to find the best sub-partition of
the corresponding node for the request (if its size is larger than that of the request). Next step is applying
the sub-system combining process (see Section 3.3) to recombine sub-systems by starting from the
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partitioned node. Mmmhmimmmdﬁwmﬂlpmﬂbhmbhﬂnhm‘m
the tree since we slways keep the non-overlap sub-sysiems in the tree. Then the expanded node size (sec an
example in Flmﬁﬁ]hlhﬂdiﬂiﬂﬂlﬂmﬁ-iﬂhﬂmﬁﬂhdiﬂwﬂdlﬂhhduﬁmmduh
mmmﬂmmd-mmdmd#hq. Flu]lmhmilnmﬁ'ulin{lmliudinﬂ:hm-m
heuriatic) s updated.

Table | summarizes main functions of eur resource (CL/PE) allocation model for the three partitioning amd

combining methods,
Tabsls 1. i iunciions of e univmmsl fEsowncs mliocadon
%Eﬂ
(1) Luaf node nperation rodes

-mmmmhmmmam Baciion 341 Saction 34,1 Gaction 341
Ea_m_%_@%ﬁm-m ts bast-fn value tor Clis of mach  Sechon343 | Serdn347 | Secen3dz |
[ -1

- for PE {SRDARID} Bacgon 3.4.1.4 Sectior 3.4.1.4 Section 24.1.4
- Tar U (SIEY) Sacion 34.23 Secton 1423 Secicm 3433
- Hadwork pariiticning Baction 3.2 1 Saction 323 B $3 5
- Adocaia
TSV Combanimg aite alloculion e Baet sobsamtiion

-Emmwﬂqmmmm Sachian 331 Saotion 3.7 II:I!!-.I_.I
lliﬁhmgh Sation 14,7 Baclion 3.4.1 Seclion 34 1

Mote. Method 1 s based upon e parSioning and eombining By netannk degres. Mefod 2 i based upon e pariticning
and combining by network size. Method 3 is based upan the partitiondng &nd combining by network degres and sizs.

{or Buddy nodes) &8 soon es they become available, The recombining process stars form the new free
node (of the compleied 12sk) to the root of the tree. mmmwmumummhﬁy
of a comesponding node (along the combining path) i not availshle. Finally, the maximum free size
{applied in the besi-fit heurstic) is updated. At this fime, if there sre task(s) in the waiting queus, the
mnﬁ&ﬁﬂﬂuﬂlhwiﬂmmwuﬂlﬂnmhh“dﬁmuh.

Table 2 semmanzes main functions of our resource (CU/PE) deallocation model for three panitioning wnd
combining mathods

-uulm[wmﬂm - ]
- Unexpanded size & update sigius of soroaponding

(T
T e — =2 Tt By

Mote that in :um&.mmmmmmm,mmmhmﬁw
hmﬂu*mﬁ'mmﬁ-lh&"lnﬂimﬁnmﬂﬁrnﬂnhhdm which is selecied
& the besi free sub-system fior the roguest. This ides is so imponiant for the general tree-based allocstion
for the panitionsble k-D systoms i arder w0 limit the number of nodes in the tree and provide the same
methodology to upkdate and partition & & regular (free) leaf node. For any combined sub-system, a sub-
hﬂynﬂ[ﬂﬂuhﬂﬂﬁﬂhmmwmmﬂumhﬁhﬂlﬂmdmh
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Fipnﬁﬁilluhﬂnmumﬂih:mbiniumd expanding for given a 2-D mesh system with three
mhlllmmdfhuddﬂl:lId#lulnrellhu.dﬂjrﬂlnl:\r:IJ:ueFme.l,}. Suppose that the lasi
allocated node is the buddy | at level 3. Thmu:npuﬂudmd:numlnguflmmhimd[ﬁxﬁ}aub-
system is illustrated in Figure 665, The expanded node's imformation (i.e. expand status, new size. new
hliﬂﬂdn'u.uldlim.ﬂ-ldhncnﬁﬂ.]wﬂlHmﬂm&nﬂﬂdmﬂ:{hﬂ}“ulnﬂl}.

| s

D Frem moxde

[ pastialy rem node
Bl espand noe

(1AL}

mm

) &)

Figure §8: An example of the “node size expending”: &) the cursnt fee with 3 (ask allocaisd and b} tha comaspanding
ree with “sice axpanding”,

LA

3.6 Time Complexity of the Universal Resource (CLU/PE) Allocation Model

Before we start deriving the total time complexity of the universal resource allocation/deallocation model,
we show the summary of time complexity for all major processes (in Section 3.2 - Section 3.4) of the
allocation model in Table 3.

Tabde 3. Tha number of buddies and ime complasity of esch process in e universsi rescurce (CLVPE) alocation model

Functions Method1 | Wethod @ Mathod 1
- Number of Buddies || n i N TR
—— Tima
Sub-sywtam
- in Allpcabion proceas kn™" Dkt o
- in Deatiocstion Difri} o2 Ok}
—Biesi-Fit Hourisiic for PE Aliocation fior 3y SING TN ol
- for Ny astamal Ok
BastFit Adlocation (for ary Gili0 k)
= CU-OFS for any 5 DMy, # KBy + i)
- CLWAS for any & o)
- CLHS for any § o)

Moks: Malhod Th-h-dmnhp-ﬁm-ﬂmhmtm. Medhod 2 s based upon the partitioning
#nd coembining kry etwork size. Mathod 3 is based upon the pariitioning &nd combining by naiwerk degres and size

3.6.1 Time Complexity of Senrching for Allocation/Denllocation for any MIMD task

Let M b the system siee (N =n, £0p % ... X m),
Ma be the maximum number of allocated tasks (N, < N),
M be the corresponding number of free nodes in the k-Tree (N, + Ny £ N),
hd be the maximum number of nodes in the k-Tree, where
M = external {leaf) nodes + internal {non-leaf) nodes < ZN) and n ~ max(n, ny,....n ).
(SN + Ngd + [Nx + M — 1)/ (b= 1), where b=n_ 2*, or 2 for Method 1.2, 0r3)

Table 4 illustrates the summary of each function time complexity and total time complexity of the universal
PE (or sub-system) allocation for any MIMD task.
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Tﬁhkhmﬂﬂydmﬁmahmlm{ﬂmﬂmmhmm ETTS

i Main Funclions Mathod 1 | Mathod 3 Mathod 3
i Leaf noda operation (iar Ny nodes by OFS} | 5 T
best-i value for sach node EH{Ma, * kMg | M + kMg ) DM+ )

2 2l nodes
- Bt sub-pamiton EXhn] Oy Ofk)
- Allocats i Ok} D] k)
- Cambining {Aigarithen C.2-C.3) O™ O™y Oy
- Expand sirs & I-l!h'l.l“.l.!- Ofich Ok}

searching Oikn} o L
1) I Eha finishissd noce i
Cieal |update I o01) 1 o1
3 locabe Bl
- : . Ofkn) cgbllp uﬂf"r
-f-m-'n:qum C.1] 1 1o root O{kn} ofn2') Oikn)

CifPs, # + My + by
T compoety (1 89— e s

In order to simplify the ﬁmmmhiwmnh.wmmﬂmﬁnupuﬂwlrmmmmm
tasks nlways require sub-sysicms that I-mthnminlﬂrmﬂmri:nmﬂnlhlipmvidndb}-lh:
system. Therefore, we derive total lin:mqﬂuui:;rfarmhpnﬁﬁmjugmdmnhhﬁugn:umdin the
following sub-section,

3.6.1.1 Time Complexity when applying the partitioning and combining by network degree

THEOREM 1: ﬁmmuﬁui&dumhﬁlﬂmﬁmmﬁmﬂuhmﬁuwm for each
incoming task on & product network-based systems (of gize N = p, » My X...% ng) that partitioning and
combining by network degree is O(N,, + k*N; + kn**')).

FROGE: Irnh:ll]n:lﬂmuljnﬂﬂlmlnun'ﬂnrnfm“huimﬁuunrfh:ﬂfﬂd:pﬂtﬁmmhlmu
mnuummb:-ufmdniuﬂ!:ﬂumduulyuﬂnwlmﬂmm!nwum{mqm]m‘,ldnmquﬁtm
visited. In this [wbsymﬂlmjwmeuﬂﬂnfmmwmhmmm":
mmhrufhmymdumﬂmItemhn!frﬂ:mdu[ﬂ.}.vﬂw:]’i&*NFEHlnd'Hp = (n— 1M,
Eimﬂ:nmnbm-ufumml:whnmdum-tmﬂﬁ Ny = N and the number of internal nodes ane
al most (Wleaf nodes-1) divided by (n-1), Thunﬁ:mth:bhlnmhwnfminlhnui:ltmﬂﬁld
nodes, where M= (N, + Ny) + (N + Mg — 1)/ {n— 1), For cach (free) leaf node (of Ny nodes), the best-fit
value is computed in O(k’) time and henoe O(CNy) for all lesf nodes. Afier finding the best free sub-
system (Step 3), if its size is equal 10 the request, then it is directly allocated o the request. Otherwise, the
mwkp-ﬁﬁunjngmdﬂuhmnﬁ-piﬁﬁmuillhimid.whi:hﬁnhnmn'q:ulndinﬂthi}ﬁnn. And
ﬂnmmﬁqmﬂﬂn}inhmisuyﬂuﬂ!nﬂk}ﬁm. Nnnﬂummhiningmhupplhuﬂiu
k"' time. Then, the expanding size and update status takes O(k) time. Finally, the maximum free sfze
is updated by applying the DFS in O{N,, + kNy), Thus, total time complexity to visit all nodes in the wree is
approximately O(N, + k"N + kn*™'), In addition, this method when applied to the hypercube (or k-cube)
provides time complexity 0N, + k*Ng + k2" since n = 2.

THEOREM 2: Time complexity of the tree-based deallocation 1o free the particular iree node that stores
d':ﬁniﬂﬁlutmdmmmhin:ﬂuﬁ'uhuﬂ}'mﬂunfﬂummmh-hwm“mmulnfﬂttmrmtht
partitionable product network-based systems (N=mxmx = X My} that partitioning and combining by
network degree is NN, + kN; + kn).
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PROOF: Mﬂ:dunmpmmmmfmﬂulmaﬁmnhﬂmhb-mﬁmumh
il most kn steps. Em#hdn;ﬂlnhddymdﬂﬁmﬂnﬁrﬁﬂudmh-mhﬂ:mmpnﬂh]m
another n{kn) steps. Mhm@hmn!ﬁ%ﬁumﬁfuﬂmh
required in O{kn) time, Finally, the maximum free size is updated by applying the DFS in O(N,, + kN, ).
ﬂn:fma.uulﬁmmmbnil}'nrﬁnmmdulhﬂﬁmiuﬂmﬁ+lﬂg+h} ‘Mote: Our mode],
wi:um:pplindtnlhhyp-nrmlu{wh—mhﬂuﬂmmviduﬁnumﬂaﬁqﬂﬂﬁ+m}imn-l

uunmmmwyummm-ﬂmhumm

THECQREM 3: Time complexity of the tree-based allocation to find the best free sub-system (PE) for each
incoming task m.pmdn.mutmi-buud:;ﬂ:nufnfuiurhn.nug:...:m that partitioning and
combining by network size is O(N,, + K'N; + K°2*),

PROOGFE lnﬂ-:-llnﬂtimﬂpﬁﬂlﬂ.ﬂntﬂ:nufwﬁmhnmhmufﬂuﬂﬁ-{ﬁphﬂm—m}mu
mosi & pumber of nodes in Ihuumduﬂymdumﬂnmluwﬂntﬂth]memm
visiled, hw{mmmmlmkmﬂmdulnhni:m»h
mmqfﬂhuhdmhswhqnndu{H,.jnd!hum#nﬁm:mdu{H.}lnlhhu.lhﬁtHn+Np
% Nand Ne £ (2" - 1)N,. Since the number of extemal (or leaf) nodes are st most Ny + Ny < N and the
number of intemal nodes arc st most (#eaf nodes-1) divided by (2 — 1). Therefore, the 1ots] number of
noddes in is M most M nodes, where M = (N, + Np) + (N, + Ne— 1)/ (25— 1), For each (free) leaf node (of
Ni nodes), the best-fit value is computed in OK’) time and hence ) for all leef nodes. After finding
H:buiﬁwnﬂ:—uym{ﬂhp]],iﬂuﬁniuqud mhmumduithdhﬂflﬂuuﬂhhw
mum-i-e.unmmmﬁm;muhmﬂbﬂﬁﬁmmuhm-mnmhmm
O(k2") ime.  And, the iugnndﬂi}inlh:mltwhhdinﬂlﬂﬁmﬂm.hmﬂﬂm
process is applied in O(k*2™) time. Then, the expanding size and update status inkes Ok) time. Finally,
Mmimmﬁwﬁuhmﬂdwwmmﬂﬁinﬂiﬂ;+kﬂpl Thus, total time complexity o
visit all nodes in the tree is appronimately O(N,, + N + K524, In sddition, this tree-based model, when
lpp]-ind.luthl:!vm-d'.lmhul-ﬂ.l‘l—ﬂmmmﬁduﬂinurﬁmmmh+m}ﬁme
k=1 for the 2-D systems and k = 3 for the 3-D systems.

THEOREM 4 numﬂmmmmmummmum
the finished task and to combine the free buddy nodes of the root sub-tree 1o the root of the tree on the
partitionable product network-based systems (N=n, x 1, x .. x 1y} that partitioning and combindng by
network size is O(N,, + kNg + k™).

PROOF: lnﬂudullnuﬁnupmnnﬁn.mdﬁmfwdu:muimqnﬂﬁiﬂm from the oot is
at most nf2") steps. Cuuthh;dll‘hﬁh-lnhlhmmﬁﬁﬂduhmm&mﬂfpuﬂﬂﬂ
takes another n(2") steps., hm,dnmnudwi::p:mnfdrnpnﬂ-mbdupm_ﬁrnﬂ
may be required in O(k’2") time. Finally, the maximusm free size is updated by applying the DFS in O(N,,
+ kNg). Therefore, total time complexity of the troc-based deatlocation is O(N, + KNy + n2%). Note: Our
best-fit tree-based model, when applied 1o the 2-DV-D mesh or Lorus sysiems, p rovides a linear time
:nn'qﬂ:mym,ﬁﬂr+n}ﬂn¢uﬂmt=2ﬁrﬁw}{lrﬁt¢mnﬂk=lhh3{lm

3.6.1.3 Time Complexity when spplying the partitioning and combining by uetwork degree and size
THEQREM S: Time complexity of the tres-based allocation 1o find the best free sub-system (PE) for each

h:cmnm;l-kunlpmdmmm-hudmrurﬁuﬁrmnnﬂ...: m,) that partitioning and
combining by network degree and size is O(N,, + K'N; + k%),

FROOF: In the allocation algorithm, ammb:rufmniwih:ﬁm-nfﬂ:ﬁ‘&{tﬂhﬂm“ﬂﬂmu
nuuimnnhm-armdninuuuumdunlymdnmn:nmhruuﬂh{qrquih]hwm
visited, hﬁ{mmﬁm]mmmﬂmlnhmurmmh
mmh:ruhllnundtl.lhmbuymdnm,]lndﬂ:mbarnrﬁum%}hhmmm+ﬂp
= N and N < N, EmhmﬂﬂHuMImlunmﬁmmumHﬂHpEHmﬂmmﬂmnr
mm.imdmmum{#hurmdn-l}diﬂddw[!—l}. Therefore, the total number of nodes in the
free t5 a1 most M nodes, where M= (N, + Ny} + (No # Ny — 1)/ (2= 1).  For each (fres) leaf node (of N,
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nndn}.uubmﬁ:mmsmmiuﬂﬂﬁﬁummwm,}ﬁwm leaf nodes. Afier finding the
hmﬁ-u:mb-q-um{&mpi}l.Hiudnhuqultmmamnuﬂmithdimuylunmﬁmhmmt
Mﬂi&mH:HH:ll'thﬂthmmh—pniﬂmﬁllhtiﬁiind,whi:hunhmmpuhdin
(k) time, Aﬂ.hmmuiqmﬁl]inﬁmiuupﬁhdinﬁﬂﬁm Neat, the combining
mhwinm‘]m.nﬂhmuummmmm}ﬁm Finally, the
mlmunheﬂuiumdmdhywmughmhmﬂﬂmp}.Tlmn.mu!unummplmnrmviniiﬂl
nodes in the troe is spproximately O(N,, + k*N; + k¥ In addition, our tree-based model, when spplied 1o
lh:1—[.\-'3-1:!n:lhnrz-ﬂ".'l-l}mmmﬁhnliwﬁmmﬂnﬂyﬂ{m+ﬂﬂﬁmk-1fnf
'Ihl-Dl}lhﬂlﬂl=3lbl‘ﬂl]—]}m.

THEOREM §: Time complexity of the tree-based deallocation to free the particular tree node that stores
ﬂ:ﬂuldudMdmmﬁmhﬂubﬂymﬂnﬁlumMInMMﬂlnrﬂtmum
partitionable product network-based systems m=n|:n;1-..:n.jlhupu1hhmin]lndnm1ﬁnhghy
mtwm‘k&pundliz:il{ﬂl,+H¢,+h}.

1.6.2 Time Complexity of Searching for AllocatisnDenllocation for any SIMD task

Time complexity of searching for allocation for any SIMD task is stmilar 1o that for the MIMD task. except
wul'uvan:ddduﬂi-ﬂmﬁmﬁmmhnm[wmhiﬂuhdmh-qmn}mhﬂhsnp | and 2.

3.6.2.1 Time Complexity when applying the partitioning and combining by network degree

Table 6 illustrates each function wme complexity and total time complexity of the universal CL/PE
dlmntimwuubrurmyEmm&hmdmmmwﬁﬂuiuudmﬂﬁmhymwkm.

Tﬁlhmunﬂmuhmlmmumﬂm“quﬂhw

i
1) Loal node oparation fior e nodes)
Compuse besi-N value
- foe sach frea rod | 3RACARI O
- CLs off pr a1 g
T Pty ecet ods (SM0)
- Baal sutrparton
« for PE (SIDWARID] Cfion )
- for CLI (SIMD) Ofkn)
T Conbi S ) e
- Cambsning (Algorshm C.3-C,3) O™}
- Empaind ﬂﬂ‘lﬂlm D.':i“
=5 T
ﬁ}ﬁ% Ofche + + Ny %Arik. O(M, * °h,
] ) o)

JTHEOREM 7: Time cmﬂmqﬂhmmmmmmcﬂmmm
mmmnmmmuwmrwmmumm.mmmm
that partitioning and combining by network degree is OfcN, + NNy + kMgl + kn**').

PROGCF: Sh:munnmm|,umumrummu1lurmdul;:fmmﬂu;,mm-ﬁmm‘u
computed in O(k’) time for finding PE (or sub-system}) and O[N +kNp+k”) time for finding CU by applying
the CU-DFS strategy. Therefore, it tkes O + N, + Ny + k or (k™ + N, + kNg) time in finding both
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PE and CU for esch node and hence O(N,, + (i + Ny+ kNg) N} for all leaf nades, Thus, total time
complexity to visit all nodes in the tree is approximately O0cNy + NyNp + kN, +kn**'), where O(kn** '} is
time complexity of the combining process by network degres.

-ﬁmmmwurmwmmimmmm‘uwm
find the best free sub-system and the best CU for each incoming task on & product network-based systems
that partitioning and combining by network degree is O{N, + KNy 4 kn*™' }. [PROOF: Similar to that
ilustruted in Theorem 7, except time complexity of the CU-AS straiegy is OVK).]

THEOREM 9: Time complexity of the tree-based sllocation approach including the CU-IS strategy to find
the best free sub-system and the best CU for each incoming sk on u product network-based systems that
purtitioning and combining by network degree is O(N,+H'Ny +Hen™')). [PROOF: Similar to that ilhustrated
in Theorem 7, excepl time complexity of the CU-IS strategy is O(1).]

THEOREM 19: Time complexity of the tree-based deanllocation approach o free the particular tree PE
node and CUF node that siores the finished task and 10 combine the free buddy nodes of the root sub-tree 1o
the ot of the tree on the partitionable product network-based systems that partitioning and combining by
network degree is O(N, + kNy + kn). [PROGF: Similar to that illustrated in Theorem 2.]

3.6.2.2 Time Complexity when spplying the partitioning and combining by network size

Tuble 7 il lustrates ¢ ach function t ime ¢ omplexity and t otal 1 ime c omplexity o £t he u niversal r ssounce
(CLIPE) allocation for any SIMD ek hased upon the partiticning and combining by network size,

Tabis T.mmﬂmmdhﬂﬂm{ﬂﬂjﬁuﬂmmmw 2} o any
SIMD teak.

Nain Functions T E T —
CLU-OE
(1) Leaf node operation (for Ny nodes | O+ Wi s T O+ 4 ] FTRETET T
Campute bast-ii valua
< for ek Trem node (SIMD/MIMD) Ofk®) o0k o)
- for Clis of sach (5IMD) OMa, = khip + k) oK'y (1)
el
- Bast
+ for PE {SEMOMRD) Dk
- for G {S D) Dk
- Adscaate
3} Combining
- Camigining (Algorithm ©.2-C.3) D0ty
- Expand 578 & update siatus k]
- Lipciade trw maimem free sizs Ms +
otal time com ﬁ:#rm A ﬁrl‘ﬁhﬁ

- Ttn:muq:h:ltynﬂhem—buddluuﬁmmhiududiqﬂuﬂ-ﬂﬁmm
ﬁnddnb:nﬂ:mh—mﬁﬂﬁrmhhnmﬂgﬂmnmmtmm-hﬂmmﬂm
partitioning and combining by network size is OfMy + NN or kiNgY + 122,

PROOF: Similar to Theorem 3, except that for each (free) leaf node {of Ny nodes), the best-fit value is
mnpundinﬂ{ﬂlim:fmﬁndir‘ﬁ{wnbgdm)md +kNy+k") time for finding CU by applying
the CU-DFS strategy. Therefors, it mkes Ok +My+kNy+ k') or O{K"+N,+kN,) time in finding both PE
and CU foreachnodeand hence O(N, +{k* + N, +kNg) N ) forall leafnodes, Thus, totsl time
complexity 1o visit all nodes in the tree is approoimately (N, + NJNp + iNgi + K22%), where O(K'2™) is
time complexity of the combining process by network size.

THEOREM 12: Time complexity of the tree-based allocation approach including the CU-AS strategy to
find the best free sub-system (PE) for each incomi task on & product network-based systems that
partitioning and combining by network size is O(N, + +K'2™), [PROOF: Similar to that iliustrsted
m Theorem 11, except time complexity of the CU-AS strategy 1 O(K”).]
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mimemHMMMWMMMﬂEMMm
find the best free sub-system (PE) for each i task on & product network-based systems that
partitioning and combining by network size is O{N, + +E'2Y), [PROOF: Similar to that illustrated
ianl.:m:plﬂucntqﬂ:ﬁtynfﬂuﬂJ—[SMhﬂ{l}]

THEOREM 14: Time numﬂ:ﬂqrnfﬂum—budduﬂimuimmhmﬁ:ﬂmpqﬁmlumrﬁ
node and CU node that stores the finished task and 1o combine the firee buddy nodes of the oot sub-tree 10
mamnﬁhm“m:puﬂumuh:pmdmtwmiuhndmhpuﬁﬁmimud combining by
network size is O(N, + kNy + k'2™), [PROOF: Similar to that illustrated in Theorem 4 ]

346.1.3 Time Complexity when applying the partitioning and combining by network degree and size

Table 8 illustrates each function time complexity and total time complexity of the universal CLVPE
aliocation approach for amy SIMD task, based on the partitioning sod combining by network degree & size.

Tabls B Tima complecdy of man funclions of fhe universal rescurce (CLIPE) allocation process (by Mathod 3) for mny
SIMID) task,

_A__m%m%
mmﬂmmnrm MK My i O M (K il | M +{h7 1 )by

Comparin Desl-& vaba

- fiar anch fres nocs [SIMOIMIMDY okt i) ofe)

- bor CUa of #ach selacted nods (SIMD) DMy * kb » i) oQ’) o1}

l'“
- Bagl sub-parmion
« for PE (SIMDAMIMD) Ofl)

THEOREM L3: Time complexity of the tree-based allocation approsch including the CU-DFS strategy 1o
ﬂniti:huﬁwnﬁ-nﬁm{?ﬂ]hmhimﬂngutmnmmmrbhmds}mhl
partitioning and combining by network degree and size is O(KNy + NN+ KIN:F + k¥

PROGF; Eimﬂrmﬂmmimﬂu.tfﬁﬂ{ﬁm}lufmda{nfﬂp:gh},uuhui-ﬂuimii
computed in Ofk’) time for finding PE (or sub-system) and O(N, + kNy + k) time for finding CU by
applying the CLI-DFS strategy. Therefore, it takes O(k” + M, + kNp + k%) or O(+N, +kNy) time in finding
both PE and CU for cach node and hence O{N,, + {i* + N, + kNy) Ng) for all leaf nodes, Thus, total time
complexity to visit all nodes in the tree is approximately Ok, + NaNy + kNP’ + k%), where O{k") is time
complexity of the combining process by network degree and size.

Time complexity of the tree-based allocation approach including the CU-AS strategy to
ﬁﬂhhﬂﬁwmmﬁ]hmthMM|kjnﬂnlm¢MmMMI
partitioning and combining by network degree and size is O{N, + IC°N; + k'), [PROF: Simsilar to that
illustrate in Theorem 15, except time complexity of the CU-AS strategy is O{k’).]

memmyﬂmwumwmmwmmmm
ﬁdmmmmwﬁymmmqmmn network-based systerns that
partitioning and combining by network degree and size is O{N,, + + k). [PROOF: Similar to that
thminThurm:mIsimmmplniwﬂﬂnm-ISMhﬂilL]

mTimmhiwnﬂmmmmmﬁﬁﬂ:mﬁuﬂumm&mw
the finished task and 10 combine the free buddy nodes of the root sub-tree to the root of the tree on the
puﬁﬁunﬁhpmdunmmt—hmdmhpmﬁﬁnnhanﬂmmﬁdngbymmﬁd:pumﬂﬁuis
O(N, +kNg +ln)  [PROOF: Similar to that illustrted in Theorem 6.]
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4. APPLICATION OF THE UNIVERSAL CU/PE ALLOCATION MODEL

The universal tree-hased resource (CLVPE) allocation modél can be applied to all interconnection networks
that belong to the product network class such as multi-dimensional (k-DY) meshes, multi-dimensional (k-[)
tori, n-ary k-cisbes, hypercubes, hypercycles, etc.  In this section, we show some applications of the
universal resource allocation model to two popular interconnection networks, which are the 2-D mesh
networks and the hypercube (or k-cube) networks.

4.1 The Universal Resource (CU/PE) Allocation Maodel for 2-D Meshes

In the reconfigurable MSIMD/MIMD system, there are two different modes providing for incoming tasks:
SIMI} {single instruction, multiple data) and MIMD (multiple instructions, multiple data). The MIMD task
requires only & free sub-system (or partition), consisting of processing elements (PEs) for distributed
computing of many instructions and data. The SIMD task needs both & free partition (PEs) and & control
umit {CU)) for parallel computing of a single instruction with multiple data, Next, in order to simplify our
explanation, we present the application on the 2-D mesh for all MIMD tasks first (in Section 4.1 A3 mnd
then the application on the 2-D mesh for all SIMD tasks (in Section 4.1.2), However in practical (see
Section 3), mixing modes are wtilized for parallel and distributed computing in the reconfigurable and
partitionable MSIMDVMIMD parallel system.

411 Sub-system (PEs) Allocation for MIMD Tasks

Suppose we have a 1-0 mesh system of size |6x16 and » sequence of § incoming tasks (4x7, 2x2, x4, BxE,
and 3x3), which come in one st & time. Before we apply the universal resource (CU/PE) allocstion model
on this system, let’s show how the product network (G = G, x Gy) of the 2-D mesh-connected sysiem of
size N =y x ny (16x16) is constructed. Figure 67 illustrates the product network G, & product of two basic
networks (or linear armays) G, of size n, = 16, wherek = 2and i = 1, 2.

i
R KR E T e e
-.--.'.-‘I*I+I‘i."l‘l‘l*1’i‘i
Gy Gy =0y 5 G AR R R
=16 i = 18 M= i B0y (1B TB] e e T T

Figure §7: An exampie of a 2-0 mesh-connected sysiem, § product netwark of fwo inear amey netwoke.

For the 2-D mesh-connected sysiem (k = 2), the value of k is very small and hence we can apply either
Method 2 (the partitioning and combining by network size) or Method 3 (the partitioning and combining by
network degree and size) of the universal resource (CU/PE) allocation model,

4.1.L1 Apply Method 2: the Partitioning 2and Combining by Network Size

Figure 68 illustrates the system status and the correaponding k-Tree that shows the allocation of the first
ncoming task (4x7).  For this task, the root node (or the first node) of the k-Tree is created (starting a1
level 1) to store the system informotion (i.e., size = 16x16, based address = <|, |=, status = 0). For the
initial system, we have only one free node in the tree and hence it is the best one (when applying the best-fit
hewristic (Step 1 - 3)).  For the final step (Step 4), the partitioning process (o select the beat buddy node for
allacating to the task is applied. Usually for the first task, we select the first buddy node (see Figure 68.a).
After the allocation, we apply the combining process to the corresponding nodes of the current partitioning.
Now, we have two possible combined sub-systems of sizes 12x16 and 16x9. Then, the expand-node size is
applied 1o the larger size (12x16), the combining of the buddyW2 and the byddy#4 (ar level 2), We store
the new expand size into the free buddy#2 and mark the buddy#4 as a busy node (see Figure 68 k). Then
the maximum free size is updated, which is the buddy#2 (12x16) at level 2.
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tesk (2x2) and the third task (3x4), respectively, For the task {2x2), the searching QT&Tme:

mﬁtﬁniﬂ’tmﬂﬁwmﬂn[ﬂ]"@mﬂ.ﬂ. which is the buddy#2 { 12x16) at level 2, Then fis besi-fit
{Swi-ijhm{u,mmﬂs=F.dfﬂEF=2.:Lu=I?E.C‘F'I'.-ﬂuﬂitilm'dad

s the first best node. ‘Thl-dungmmvi:ﬂllhmmﬁwmﬁ,ﬂﬂnhinﬂuhﬂdﬂlﬂﬂ]ulnﬂz-

Trliah:lt-hﬂl_unfﬂmnuh{ﬂlq:I-3}hmm(i.:_mMﬂ-T.dHﬂF=l:h:=!ﬁ CF=
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free nodes are visited and then Step 4 of the best-fit heuristic is applied 1o the best node (from
: 1-3

hﬁhmlummhﬂmpﬂwmﬁrﬂum&ﬂﬂ}hhhﬂﬂ&!ﬂ InS:P}{au}-
Figure 69.a). Finally afier the combining process of the currem partitioning, there are two possible
combined sub-systems of sizes 4x7 and 2x9. Then, the expand-node size is applied to the larger size (4x7),
the combining of the buddy# and the byddy#2 (at bevel 3). We store the new expand size into the free
buddy# | and n-iﬁlmu:hﬂy node. Next since the maximum free size (12x16), the buddyW2
ﬂm;hmwiummmhuﬂmndﬂnm.
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For the third task (3x4), the first free mode (see Figure 69.8) is the buddy#2 (12x16) at level 2 with
computed best-fit value (i.c., preserve maxFSs = F, diffSF = 2, size = 192, CFEE':'E{. Then, it is reconded s
the first best node. Thtu:llﬁ!nmdtiaﬂ:hﬂdyﬂ{h'ﬂt[mmliﬁﬂiﬂnmpundhn-mﬂm
l_'l.e..pmnwnmﬂ.-T.dim=I{ﬁrdtmund:iul:n.ﬁm=zs.l:$-$mwmjl‘umdm
85 the new best node. Neodt, there is the last free node (the buddy#4 at level 3) to visit but it size {2x2) can
not accommodate to the request (3x4), Now, all free nodes are visited and then Step 4 is applied to the best
mﬁ:{ﬁmﬂﬂl-!]huhmlﬂmﬂuhmmmiﬂm. Aﬂulhepuﬂlimimmduhﬂﬂl
at level 4 is selocted for the task (3x4) with the rotated lze 4x3 (see Figure 69.b) since it vields the better
best-fit value. Fmﬂyhrdumimumh:h:!]lﬂﬁ}.hﬂlhmirhnﬂmhhupﬂnﬂl.
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Figure 8%: The system sialus and the comesponding k-Troe of the ailccstion of the second bask | and
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Figure 70 illustrates the system status and the comesponding k-Tree of the allocation of the fourth task
(88} and the fifth task (3x3), respectively, For the task (8x8), the first free node (see Figure 69.b) is the
huddy#zflleﬁ}mlwdiwhhﬂmmpndbm-muh::Ln.,mtmuF&-F.diﬂEF=2,:i:t-
192, CF = 2%) and it is recorded as the first best node. Next, two sub-sequence free nodes are the buddy#3
{M}Hlﬂd4mdlhuhudd}#l{hﬂuhnrﬂ3hlﬁdrﬂmmnﬂlcmmd.uutnﬂwmquntlxﬂja
So far, &ll free nodes are visited and then Step 4 of the best-fit heuristic is applied to partition the best node
(from Step 1-3), in order 10 select the best sub-partition (the buddy#2 (8x8) at level 3} for the fourth task
(see Figure 70.1). After combining the corresponding nodes of the current partitioning, we have two
possible combined sub-systems (4x16 and 12x8).  The farger size (12xE), the combining of the buddy#3
and the byddy#4 (at level 3), is selected. We store the expand size In the free buddy#3 and mark the
buddy#4 as a busy node. Finally, since the buddy®2 at level 2, the maximum free size (12x16), is
partitioned, we have 10 compute the new maximum free size. Al beginning, we select the new expanded
node (12x8), the buddy#3 at level 3, as the temporary maximum free size. Then, we have 10 update the
maximum free size by performing DFS to visit all free nodes in the tree if the larger node cxists.

For the last incoming task (3x3), the first free node (see Figure 70.a) is the buddyd] (4x8) at level 3 with
the computed best-fit value (i.e., preserve muxFS = T, diffSF = 2, size = 32, CF = 5) and it |s recorded as
the first best node. The next free node is the buddy#3 (12xB) ai level 3, but it cannot preserve the
maximum free size, the first best-fit criterion, Then, the searching goes to the next free node, the buddy#3
(4x4} at level 4. Its best-fit value is computed (i.¢., preserve maxFS = T, diffSF = 2, size = 16, CF = 5%)
and updated 83 the current best node since it performs the better best-fit value, sccording (o the criterion 3
(the smaller size). The last free node is the buddy®4 at level 3, but its size (2x2) can not sccommodate to
the request (3x3). Now all froe nodes are visited and then Step 4 of the best-fit heuristic is applied 1o the
best node (from Step 1-3) in order to select the best sub-partition. Afer the partitioning process, the
buddy®3 st level 5 is selected for the fifth task (see Figure 70.b). After the combining process of the
current partitioning, we have two possible combined sab-systems (4x1 and 1x4). The expand-node size is
spplicd to the first size (4x1), the combining of the buddy# 1 and the byddy#2 (at level 5). The new expand
size is stored imto the free buddy# | end the buddy#2 is marked as & busy node.  For the maximum free size
computing. since the current maximum free size (12x8), is not partitloned. it is not necessary to be updated.

Figure T0- The sysiemn status and the comesponding k-Tree of the allocation of a) the fourth task (BxB) and b) the fih
teek (3x3), based on he parioning and combining by netsork slze. for & 2-D mesh.

L1LLY Apply Method 3: the Partifioning and Combining by Network Degree snd Size

In order to see the compared results (o the previous spplication, we use the same 2-D mesh system and
incoming tasks, defined in Section 4.1.1.1.  Figure 71 illustrates the system status and the commesponding
binary-Tree that illustrates the allocation of the first incoming task (4x7). For this task, the root of the tree
is cresded (& level IHnumﬂtmhfmiu:{i.n,,ﬂu-tﬁ;lﬂmm:-ﬂ_l:ﬁ_m-n},
Initially, we have only one free node, which is the best one (when applying the best-fit heuristic (Step 1-3)).
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The final step {Step 4), the pantitioning process 1o select the best buddy node for allocating to the task, is
applied. Usually for the first task, we scloct the first buddy node.  Finally, the maximum free size s
updated, which is the buddy#2 {12x16) ot level 2.

Figurs T1: The system sialus and the comesponding binary-Tree of ®e allocation of the first task (4x7), based on the
pationing and combeing by nebeork dagree and size. for a 3-0 mesh

Figure 72 illustrates the system status and the corresponding binsry-Tree that shows the allocation of the
second task (2x2) and the third task (3x4), respectively, For the task (2x2), the searching starts from the
ool and the first free node is the buddyW2 (9x4) at level 3 (see Flgure 71).  Then its besi-fit value is
computed (i.e., preserve maxFS = T, diffSF = 2, size = 36, CF = 3'4) and it is recorded as the first best
node.  The nesit free node |s the buddy#2 (16x12) ot level 2. Acconding to the best-fit eriterion 1. it canmet
preserve the maximum free size, which is not better than the current best-fit node. Then, searching goes
o the next free node but now all free nodes are visited. Then, Step 4 of the best-fit heuristic is applied to
the best node (from Step 1-3). After applying the partitioning process twice, the best sub-partition for the
second task (2x2) is the buddy#2 (2x4) o level 4, partitioned along the I* dimension, and then the buddy#1
(2x2) at level, partitioned alone the 2™ dimension (see Figure 72.1), Next since the maximum free size
{16x12), the buddy#2 at level 2, is not partitioned, it ks not necessary (o be updated at this time.

(L] (.1

Figuere T2- The sysiam status and ihe corresponding binary-Tres of the allocation af &) the second task () and b) ne
il gk {3xd}, based on the pariitioning and combining by network degree and size, jor @ 2-0 mesh,

For the third task {Jx4), the first free node (see Figure 72.4) s the buddy#1 (7x4) at level 4 with computed
best-fit value (i.c., preserve maxFS = T, diffSF = 1, size = 28, CF = 3%/,) and it is the first best node.  The
mext free node is the buddy#2 (2x2) st level 5 bt it size (2x2) can not accommodate to the request (3xd).
The last froe node is the buddy#2 (16x12) at level 2 but it cannot preserve the maximum free size, the
criterion | of the best-fit heuristic. Then the partitioning process (Step 4) is applied to the best node (from
Step 1-3) in order to select the best sub-partition, the buddy#1 (3x4) at level 5 for the fifth task (see Figure
T2.b). Finally for the macimum free size (16x12), in this case it is not mecessary 1o be opdated.




Figure 73 illustrutes the system status and the cormesponding binery-Tree of the allocation of the fourth task
(BxB} anad the Tifth task (3:3). For the task (8x38), the first free node (see Figure T2.5) is the buddy#2 (4x4)
an level 5 but ifs size ks less than the msk's size. The nem free node is the buddy#2 (2x2) ot level 5 bt jts
size s too small for the task. The last free node is the buddy#2 (16x12) at level 2 with the computed besi-
fit valun {i.e., presarve muxFS = F, diffSF = 2, size = 192, OF = 2'4) and it is recorded as the first free node.
E-nilni.'lﬂhmdnnﬂﬂhﬂiﬂﬂﬂﬂlmiﬁfﬂﬂbﬂ-ﬂﬂllﬂmilipﬂldmﬂﬂﬂmthhﬂmh
{(from Step 1-3), in order to select the best sub-partition for the fourth task (sec Figure 73.8). In this case,
the portitioning process is applicd twice. According to the criterion 4 of the besi-fit heuristic, we select the
buddy#1 (Bx12) at level 3, partitioned along the 1" dimension, and then the buddy#? (Bx8) mt level 4,
partitioned along the 2* dimension. Flnally, since the buddy#2 at level 2, the maximmm free size {16x12),
is partitioned, we have to compute the new maximum free size. At beginning, we select the new maximum
node (the buddy#2 (8x12) at loved 3) after the current partitioning.  Then, we update the maximum free
size by performing DFS to visit all free nodes in the tree if the larger node exisis,
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Figumi T3 The sysiam status and the comesponding binary-Trea of the slocation of a) the fourth isak (858} and B te
fifth tzak {Jxd), based on fhe parilioning and comibining by netwon degres and site_ Tor 8 2.0 mesh.

For the last incoming task (3x3), the first free node (see Figure T3.a) i the buddy#2 (4x4) at level § with
the computed best-fil value (i.e., preserve maxFS = T, diffSF = 2, size = 16, CF = 3%/,) and it is recorded &y
the first.besi node. The next free node is the buddy#2 (2x2) st level 5, but it cannot accommodate to the
task {3x3). Then, the searching goes 1o the next free node, the buddy# | (Bx4) at level 4 with the

best-fit value (preserve manFS = T, diffSF = 2, size = 32). This node does not perform the better best-fit
value, sccording to the criterion 3 of the best-fit heuristic,  The last free node is the buddy#2 (8x12)
level 3. However, it cannot preserve the maximam free size.  Now all free nodes are visited and then Step
4 of the best-ft beuristic is applicd 1o the best node ( from Step 1-3) kn order to select the best sub-partition,
The partitioning process s spplied twice. According to the eriterion 4 of the best-fit heuristic, we select
the buddy#2 (3x4) at level 6, partitioned along the 1* dimension and then the buddy#] (3x3) at level 7,
partitioned along the 2™ dimension for the fifth task (see Figure 73.b). In this case, we do not have 1o
update the maximum free size since the current maximum free size (8x12) is not partitioned.

4.1.2 Sub-Sysizm {PEs) and Control Unit {CU) Allocation for SIMD tasks

Suppose wa have 8 2-D mesh system of size 16x16 and & sequence of 5 incoming SIMD tasks (4x7, 2x2,
x4, ExB, and 3x3), which come in one st & time. For the 2-D mesh system (k = 2), the value of k is very
small and thus we can apply either Method 2 (the pantitioning and combining by network size) or Method 3
(the partitioning and combining by network degree and size) of the universal CU/PE allocation model,

4.1L.E1 Apply Method I: ibe Partitioning and Combining by Network Sies
Figure 74 illustrates the system sistus and the comesponding k-Tres that shows the allocation of the first

incoming task (4x7). The sub-system {or PEs) allocation is similar o the allocation illustrated in previous
section (see Figure 68) for the MIMD task. For the SIMD task in this saction, we add the allocation for the
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corresponding CU.  Usually for the first tnsk, we sclect the first buddy node for the PE sllocation and
porform another partitioning process to the smallest adjacent sub-partition for the CU allocation.  After the
CLVPE allocation, we apply the combining process to the corresponding nodes of the partitioning for PEs

Figurs T4: The systam status and fhe cormsponding k-Tres of the allscatian of 1he first SIMD task (4x7), based an Be
partitioning and combining by nelwirk ses, for 4 2.0 mash

Figure 73 illustrates the system status and the corresponding k-Tree that shows the allocation of the second
task (2xl). The sub-system (or PEs) allocation is similar to the allocation, [Ilustrated in previous section
(Figure 69.a) for the MIMD msk. For the SIMD task, we have to apply the CU searching (i.e,, the CL-
DFS, CU-AS, or CU-IS strategy) to find the adjacent node (containing some CUs) for each visiting node.
For example, the last free node, the buddy#3 (4x8) at level 3 (see Figure 74) is updated as the best node
since it yiclds the better best-fit value (ie., preserve maxFS = T, diffSF = 2, size = 32, CF = 4%). For CU
searching of this node, the best adjacent node is the buddy#2 at level 3 If we apply the CU-DFS or CL-AS
strategy. I we apply the CU-IS strategy, we do not have to find adjacent node because the corresponding
CU can be inside the best sub-system, the buddy#3 at level 3. Afler all free nodes are visited, Step 4 of the
best-fit heuristic (the partitioning process) is applied to the best node for PEs and its adjacent node for CU
(from Step 1-3). After the partitioning process, the best sub-partition for the second task (2x2) is the
buddy¥1 at level 4 and the cormesponding CU is selected from the outside node (from applying the CU-DFS
ar CLI-AS), the huddyi2 (3x1) ot level 2,
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Figurs 75: The syslem sislus and Be cormespondng k-Tres of the aliocabon of the second SIMD Bk [22). based on fhe
partiticning and combining by naftwork size, for @ 2-0 mash

Figure 76 illustrates the system status and the corresponding k-Tree that shows the allocation of the third
task (3x4), the fourth task (8x8), and the fifth wsk (3x3), respectively. The searching for the best free node
fior the sub-system (PEs) allocation and the comesponding CU for the CLU allocation for each of these tasks
is similar 1o that spplied for the second task.
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Figure 76; The system stalus and the comesponding k-Tres of the allocshion of the 3™, 4% and 5 SEID lasks (e, Buf,
3x3), besad on the pamioning and combining by network size, for @ 2.0 mash

4.1.2.2 Apply Method 3: the Partitioning and Combining by Neiwork Degree and Size

Figure 77 illustrates the system status and the corresponding hinary-Tree that shows the allocation of the
first incoming task (4x7). The sub-system (or PEs) aliocation is similar to the allocation iflustrated in
previous section (Figure 71) for the MIMD task. Then, for the SIMD task we have to add the allocation
for the corresponding CU. Usually for the first tnsk, we sclect the first buddy node for the PE allocation
and perform ancther partitioning process to the smallest adjacent sub-partition for the L allocation. After
the CLIPE allocation, we apply the combining process to the corresponding nodes of the partitioning for

Fhigure TT: The: sysism stirtus and fhe comesponding k-Trea of he aiscasion af the firel S8I0 tagk (4471, based on he
pariticnmng mnd comibining by network degres and sies, far a 2-0 resh

Figure 78 illustrates the system status and the corresponding binury-Tree that shows the allocation of the
second task (2x2). The sub-system (or PEs) allocation is similar 1o the allocation illustrated in previous
section (sec Figure 72.a) for the MIMD task. For the SIMD task we have to apply the CU searching (i.e.,
the CU-DFS, CU-AS, or CL-IS strategy) to find the adjacent node {containing some CLs) for each visiting
node.  Afer visiting all free nodes, the best node (from Step 1-3) is the buddy#2 (Bx4) st level 4 and its
adjacent node is the buddy#2 (1x3) at level 5. Afior the partitioning process, the best sub-partition for the
second task (2x2) is the buddy#| st level 6 and the correspanding CUI is selected from the outside node
{from applying the CLI-DFS or CU-AS strategy), the buddy#2 (1x3) at level 5.

Figure 79 illustrates the system siatus and the cormesponding k-Tree that shows the allocation of the third
tsk (3x4), the fourth task {Bx¥), and the fifth task (3x3), respectively. The searching for the best free node
fior the sub-gystem (PEs) allocation and the coresponding CLU for the CU allocation for each of these tasks
is similar to that applied for the second sk,
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4.2 The Universal Resource (CU/PE) Allocation Model for Hypercubes

data). The Mlmﬂm&nw;ﬁum[wp-ﬂIm}. consisting of processing elements
{F&}hdimmﬂw mstructions and data. mmmﬂmﬁm-ﬁumﬁﬂm
{Eu]mlmﬂmiiﬂﬂﬁrmﬂulmnﬂunfu&w: instruction with mubtiple data, Mewx, in
urdumﬂmﬁiﬁmm“mlmwlh#immmh}w:m for all MIMD tasks first (in

4.1.1 Sub-sysiem (PEs) Allocation for MIMD Tasks

Suppmwumw-lwum:usﬂu}mmufﬁun-fud.wufmmmmta-
cube, 4-cube, 2-cube), coming in one at a time. Before we apply the mﬁvmnlm[mﬂ'i'ﬂ}lllnﬂim
model mﬁilmh‘umm&umm{ﬂ-ﬁ.ﬂhﬂmﬁmﬂﬂdhmﬂm
fystem of size N = nyxnpmpamgxng (2°) is constructed.

Figumlﬂlllmﬂ:mmﬂﬂ.lpm:llmurﬁvahnium“h{u-Hmr-n}s}ﬂ,uﬁlum
=l wherek=5mndi=1,234 5 For the hypercube-connected system, the value of n is 2 and hence
mwmmﬂmmhymmtwu
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Figurs 88: An sxample of & hypercube {S-cube)-connacted sysiem, a product neteork of five Enaar mray nabwosiks

Figure B illustrates the system sistus and the corresponding binary tree that shows the allocation of the
first incoming task (3-cube). For this task, the root node (or the first node) of the tree is created (starting a1
level 1) to store the system information (i.c., size = 2°, based address = <1,1,1,1,1>, status = 0). For the
IriﬂllmHm“Iymﬂwmd:hmuumdhm:‘uhuuhmm{mmﬂaiqmmm
heuristic (Step | - 3)). For the final step (Step 4), the pantitioning process is applied (twice for this task
size) to select the best buddy node for allocating to the task. Usunlly fior the first task, we always select the
first buddy node.  Afier the allocation, we will apply the combining process {ie., combining for & 4-cube)
1o the comesponding nodes of the sub-sequence partitioning if the buddy of its root is partially free (or some
of its buddy nodes are busy). In this case, we do not have to apply the combining process since the
budkchy®#2 (4-cube) is free. Then the first maximum free size is the buddy#2 (4-cube) at level 2,

Figurs §1; The sysiem sistus and the comespanding binary-Tree of te alocation of ihe firsd task (3-cube), besed on the
pariiliondrg and combining by nebeark degres. for & ypercube.

Figure 82 illustrates the system status and the corresponding binary treo that shows the allocation of the
socond task (4-cube) and the third task (2-cube).  For the task (4-cube), the searching staris from the root
and goes 1o the left most free node (see Figure 81), which is the buddy#2 (3-cubc) at level 3 but its size
cannol sccommuodate to the task, The searching then visits the next free node, which is the buddy#2 (4-
cube) it level 2. The besi-fit valee of this node (Step 1-3) is computed (j.¢., preserve maxFs = F, diffSF =
0, size = 16, CF = %) and it is recorded as the first best node. At this time, all free nodes are visited and
then Step 4 of the best-fit heuristic is applied to the best node (from Step 1-3) if its size is larger than the
task. [n this case, we do not apply the partitioning process since the node’s size is equal 1o the task's size
{4-gube) and hence no need for the combining process (see Figure 82.a), Next since the maximum free size
(#-cube), the buddy#2 st lcvel 2, is allocated, we have 1o find the new maximum free size by using DFS 1o
visit 2l free nodes in the tree.  Now, the maximum free size is the baddyd2 {3-cube) at level 3.

For the third task {2-cube), the searching starts from the root and goes 1o the left most free node (see Figure
82.a), which is the buddy#2 (3-cube) af level 3, The best-fit value of this node (Step 1-3) is computed (i.c.,
preserve maxF5 = F, diffSF = 0, size = 8, CF = %) and it is recorded as the first best node.  The searching
is continuing Lo the next free node.  So far, all free nodes are visited and then Step 4 of the best-fit heuristic
is applied to the best node (from Step 1-3), the buddy#2 (3-cube) at level 3. After applying the partitioning
process once, we allocate the buddy# | (st level 4) for the third task (2-cube). After the allocation, we will
mmmpm{i;wmmm:mmﬂ-mmﬂmmumm
partitioning if the buddy of its root is panially free (or some of its buddy nodes are busy), In this case, we
do not have to apply the combining process since the buddy#2 (4-cube) is busy. Next since the maximum
free size (3-cube), the buddy#2 at level 3, Is partitioned, we have to find the new maximum free size. At
beginning, we set the temporary maximum free size 1o the buddy#2 (2-cube) at level 4 and then using DFS
1o visit all free nodes in the tree 1o update if the larger node exists.
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Figure 83: The systam sistus snd the corresponding binany-Tees of the akocaion of (8] e sacond sk (4-cube) and (k)
the third task (2-cuba), based on the pariticning and combining by ralwork degree, fot a hypercube

4.1.1 Sub-system (PEs) Allocation and Control Unit (CU) for SIMD Tasks

For the application for SIMD tasks, suppose we have a hypercube (or $-cube) system of sie N = 2* and a
sequence of three incoming SIMD tasks (3-cube, 4-cube, and 2-cube), which come in one at a time, For
the hypercube-connected system, the value of n is 2 and thus we apply Method | (the partitioning and
combining by network degree),

Figurs B3 The syatem siatus and the comesponding binary-Tree of the allocasion of the first SIMD teak (3-cube), based
on i parilcning and cambining by nebsork degres, for 8 hyparcuba.

Figure B3 illustrates the system stutus and the cormesponding binary tree that shows the allocation of the
first incoming SIMD task (3-cube). For this task, the root node of the tree is créated (starting at level 1) 10
store the system information (i.c., size = 2°, based wddress = <I,1,1,1,1>, status = 0). Initially, we have
anly one free node in the tree and hence it is the best one (from applying the best-fit hewristic (Step 1 - 3))
For the final step (Step 4), the partitioning process is applied (twice for the 3-cube) and for the first task, we
always select the first buddy node (at Jevel 3) for the sub-system (PEs) allocation. Then we perform
another partition process on its buddy, the buddy#2 (a2 level 3), for the CU allocation.  After the allocation,
we will apply the combining process o the corresponding nodes of the sub-sequence pantitioning IT the
buddy of its root is partially free (or some of its buddy nodes are busy). In this case, we do not have o
apply the combining process since the buddy#2 is free. Finally, the first maximum free size is the buddy#2
(#-cube) ut level 2.

Figure B4 illustrates the system siatus and the cormesponding binary tree that shows the aliocation of the
second SIMD task (4-cube) and the third SIMD task (2-cube), respectively.  For the task (4-cube), the
searching starts from the root and goes to first free node (see Figure 83), which is the buddy#2 (1 PE) at
level 6 but its size cannol sccommodite fo the task. The searching then visits the next free nodes, which
are the buddy#2 (1-cube) st level 5, the buddy#2 (Z-cube) a1 leved 4, the buddyW2 (3-Cube) ut level 5 but
their sizes cannot sccommodsic to the sk (d-cube). Then, the last free node is the buddy¥2 st level 2
The best-fit value of this node (Step 1-3) is computed (i.e., preserve maxFS = F, diff8F = 0, size= 32, CF =
¥3) and it s recorded as the first best node. For CU searching for this node, the best adjacent node is the
buddy#2 st level 6 if we apply the CU-DFS or the CU-AS strategy,  After all free nodes are visited, then
Step 4 of the best-fli heuristic is applied 1o the best node (from Step 1-3) if its size is larger than the task.
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cube) and hence no need for the combining process (see Figure 84.a), Ment since the maximum free size
(4-cube), the buddy#2 at level 2, is allocated, we have o find the new maximum free size by using DFS to
visit all free nodes in the ree.  Now, the maximum free size is the buddyil2 (2-cube) ot level 4. For the
ﬂiidht(!—mhllh:mrﬂ:h;fhrmehmmduﬁrﬂtubd}m{?&]ﬂnﬁuudh
r.un'upnnﬂrgtuﬁrﬂ!ﬂdﬂlwﬁmilamlumﬂuwlmmmmmtﬂﬂpﬂﬂ

Figurs 84: The wysiem stalus and the corresponding binary-Tree af fhe siocston of &) e second SIMD taak (4-cube)
and b the third SIMD task (2-cube), based on fhe parifianing and combining by neteark dagres, for 8 hypencuba,

5. PERFORMANCE EVALUATION

InmmmmmMmmmmimﬂMW{m#ﬂjmw
was developed mnd spplied for two network applications, which are the 2-D meshes and the 3-D meshes.
These two interconnection networks are efficient for the reconfigurable and partitionsble systems since
they provide small node degress {or links), low cost per node, and hence low system cost of links.
Therefore, in the partitioning process we have not (o cut many links in order 1o formt & parition. For
example, there are three values of the node degrees of the 2-1) meshes: It node degree = 4 for each imternal
node, 2} node degres = 3 for each border node, and 3) node degree = 2 for each comer node (see Figure
B5.8). For the 3-D meshes, there are four values of the node degrees, which are 6, 5, 4, and 3 for each inner
node, each side node, cach border node, and each comer node, respectively (see Figure 85.h).

{a) Node degress of amy 2-0) mesh

Figure B8: Mode degrees: 8) al mast 4 for the 2-0f meshas and b) 8 most § for the 3-0 meshes.

By simulation study, n number of experiments are performed to investigate the effect of applying the
“universal tree-hased resource (CU/PE) allocation model™ for performing processor allocation/deallocation
hmmmmmmmmmmmhw
in terms of system utilization, system fragmentation, etc. Note that the system utilization (U,,) is measured
s & summation of the busy processors {(allocated for tasks) over the number of processors in the system,
computed when the systemn reaches the steady state, Similn-l;r.llummﬁm-nﬂum‘.,’l is measured
uaumﬂmﬂhhmmhmﬂmmﬂmurinMMﬁM
mhmmﬂnﬂjﬂIﬁFMFﬂ-l-U“l[iﬁhﬁtilmimn'ﬂliwﬁ}
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Fu-ﬂ:m:l—ﬂmd!-ﬂmh—mmudmtﬂamknlmﬂ!} the value of k {or the number of
dimensions) is mmllnﬂhmnm:pﬂrdﬂmhhhndl{ﬂ:mﬁﬁmiqnﬂ combining by
network size) and sometime lster is called “the modified k-Tree-based resource allocation straiegy”, or
Method 3 (the partitioning and combining by network degree and size), called “the b inary-tree-based
resource allocation strategy”. In particular, for the reconfigurable and partitionable 2.0 gnd 3-D mesh-
connected systems (for both MIMD and SIMI} tasks), we introduces the comparison results between the
mbTmmdlmmun'uﬂhHm resource allocation strategy,
ﬁhnﬁxﬁ:p.ﬁﬁmhh!-ﬂmh—mmndnm{fwnnbﬂ[hﬂlmh}wﬂmmnnm-iunu
mﬂuﬂutnivﬂlmbuﬁdm(PE}dlm-imm&d{HmIpﬂindmth2=Dm:lhﬂ{in
(M, + Ng) time}) 1o recently 2-D mesh-based strategies, which arc the BUSY LIST strmingy (O(N,") [14],
the FREE SUB-LIST strategy (O(N/'}) [26], and the QUICK ALLOCATION strategy (O(N,¥N)) [50].
When considering time complexity, our tree-based approach perform the processor allocation decision in
linear time (of the number of allocated tasks [N,) and corresponding free nodes (Np)), which is effigient,
compared to those (O(N,”), O(N/"), and , O(N,VN) of the sbove existing methods, whers N, = N, (see
system performance results) and Ny < N; (since our model stores only non-overlap free nodes while N,
includes overlap free sub-systems in the free lists.)

For each experiment, o mmmber of simulation time units are jserated around 5,000-50,000 time units and o
numh:nfh:uﬁﬂmhmmmyl,mm.mmmﬂmmhmﬁuufﬂu
system size parameter, the task size (i.¢., row, colunm) parsmeter and the task size’s distribution, For each
nﬂnmdmh:tmhnfﬁfmﬂdmaummmmupmiumuﬁlnnm
system performance does not change (or at least 100 iterations). Experimental results of applying the
nimﬂm{mﬂﬂﬂhuﬁnuluddnmﬂdhrdtmﬁnmmwim
concerning processor allocation for incoming tasks (or jobs) only (or sssumed that no task finishes during
the considering time)) and the dynamic system performance (with taking into account of deallocation for
some finished tasks). In this study, in order jo et the sume incoming tasks and environment o all
strategies for the comparison purpose, the static system performance is concerned (i.c.. when we messure
the system utilization and system fragmentation); otherwise the dynumic system performance is concernad,
In:umnpuimmminﬂimihﬁmmwdnnd:ﬂmtmmﬁmihﬁmmu.ﬂ]mlha.-
Nomal distribution N(ju, o). For each of these distributions, the system sizes (N = n; x n} are varied and
ﬂulﬂ:i::-[lxlwu.:h]m:dum!,nhmn-Lﬂ—n'-.t{nq,nﬂiurihaﬂnihmdimﬂmiuuu[u,
) and p = o= man {n,, n;)/2 for the Normal distribution N{y, o). Other parameters are fixed such as task
arrival rie ~ Poisson (1) (or inter-arrival time ~ Exp(1/5.=5)), and service time ~ Exp(u=10), et

5.1 System Performance Evaluation for the Partitionable 2-D Meshes {only MIMD Tasks)

mmhuﬂumhmumh-ﬂmmmnmmmﬂwmmmmm:mmﬁm
mmu@hmﬂﬂﬁmmmmmmmmmhmmm
represents the maximum number of allocsted tasks in the system and Ny represents the cormesponding free
nodes in the tres,

511 Imvestigate the Effect of System Sizes to the System Performance
hﬂuﬁmuﬂmwhwuﬁpﬂ“lhﬂeﬁaﬂufmmmm}mhl}ﬂ:mulilinlinnﬂ.l.nllud
the sysiem fragmentation (F,,,}" for the 2-D meshes, executing oaly MIMD tasks., In this expenment, the
::.mmmnmm}mmmmunun}mm:-n.mgmmmmwmu
Uniform distribution (see Table 9 und Tuble | 1) or the Normal distribution (sse Table 10 and Tabie 120,

Table §: Effect of “the system sizes” o the system utfizason (%) for the Uindorm disiribution,
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Table 9 illustrates the results of the system utilization for the Uniform distribution (see also Figure 86),
For all test cases our binary-tree strategy performed approximately &0 - §1% system utilization which waa
comparable 0 those of the k-tree simtegy and was improved over those of the meently 2-D mesh-hased
strategies, which were a1 most 57% syatem utilizstion, )

Table 10 illustrates the results of the system wtilization for the Normal distribution (see also Figure 87).
For the system size N = Sdifd, the binary-tres, the k-tree, and the froe sub-lisr strutegies yielded the
comparsbie results (~61% system utilization) snd wers improved over those (~58% system utilization) of
the busy list and the quick allocation strategics.

For the systern size N = 5122512, our binary-tree stralegy performed 62.2% system utilization which was
improved over that (61.3%) of the k-tree strategy and those (57.0%, 57.2%, and 53.9%) of the recently 2-D
mesh-based strategies (the free sub-lisy, the busy list, and the quick allocation sirategies.)

For other test cases (N = 128x128 and 256x256), our binary-iree sirmiegy performed spprocimaiely 59 -
6% system utilization, which was comparable to those of ihe k-tree strategy and improved over those of
the recently 2-D mesh-based strutegics, which wene at most 38% system utilization. )

Table 0: fct o th systam s’ ot syt st () fr e Mol gt
Systam Shes
B Sinary. Troe weTros S Busy Lint A
A s kL e o »
! ] - B,
3t i —t L — 1] L -
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Table 11 wnd Figure 88 illustrwte the results of the system fragmentation for the Uniform distribution.  For
ill test cases our binmry-tree straiegy performed approcimately 39 - 40% system fgmentation which was
comparaible to those of the k-tree strategy and was improved over those of the rocently 2-D mesh-hased
strategies, which were approximmsely 42 - 44% system fragmentation,




Tabie 11: Effect of ‘the sysism sies” io the
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Table 12 and Figure 89 illustraiz the resulis of the system fragmentation for the Normal distribution. For
N = 64x64, the binary-tree sirategy performed approximately 38.9% system fragmentation, which was
comparable to those (38.8% and 38.6%) of the k-tree and the froe sub-list strategics and was improved over
those (41.5% and 42.5%) of the busy list and the quick allocation strategies. For other test cases (N =
1282128 and 256x256), our binary-tree strategy performed approximately 40 - 41% system i
which was comparable 1o those of the k-tree and improved over those (42 - 45%) of the recently 2-
D mesh-hased strategics (the free sub-list, the busy list, and the quick allocation strategies.)

Tabile 12: Effect of “the system sizes™ in the system fragmantaion (%)

for ihe Normal disiribution.
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Figure B8 Efioc] of “the systam sizes” o fhe system fragmemation (%) far the Mormal distribution.

In summary, the varying the system sizes (and the generating the task sizes in 1x1 — 1y % ) do not effect o
the system performance (i.e., U,y, and F,,) for all allocation methods since each strategy tends 1o yield ihe
ressults, effected by the method itsell for all system sizes. In sddition, the effect of wsk sizes generated by
using the Uniform or Normal distributions tends 10 be the same.  Themefore, in the next investigation, we
will show the results of the Uniform distribution only.

5.L.2 Investigate the Effect of Task Skees to the System Performance

[n the second experiment, we investigated “the effect of task sizes 1o the system utilization (see Table 13)
and the system fragmendation (see Table 14)". In this experiment, the system size wid fixed (N=m; amy =
312x512) and the task sizes were generuted and varied {by using the Uniform distribution) in various
ranges (ie., the “large” range (1] - 0y x ny), the “medium™ range (1x1 - x %), and the “small” mnge
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(1x - "4 %)) Table 13 and Figore 90 ifhustrate the results of the system wiilization. For the small
range of task sizes (Ix] - 128x128 or Ixl -*'4 x "), the binary-tree, the free sub-list, and the busy List
allocation sirategies performed the comparable system wtilization, which were B1.1%. B2.6%. and 82.6%,
respectively and were improved over those (79.1%, 80.1%) of the k-tree and the quick allocation strategies.
For the medium range of task sizes (1x1 - 256x256 o 1%1 - *'/3 x /), the top three strategies that performs
the best system utilization were are the busy list (73.4%), free sub-list (71.1%), and the binary-tree (69.2%),
which were improved over those (68.3% and 66.3%) of the k-tree and quick allocation strategies.  For the
large range of task sizes (1xl - 5122512 or 1xl - iy X my), the binany-tree and k-tree sirategies vielded the
best comparable system utilization ($9.3% and 58.6%), which were improved over those ($6.1 1%, 55.9%,
and 56.5%) of the free sub-list, the busy list, and the quick allocation strategies, respectively,

Tabls 13 Effec of “the lask sias® o e AlTadon Hor thes Lindanm distribition,
Thak Simes Friss Guhch
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Figure : Eflect of e isak sizes” o the sysiam utizalion [%) for e Linform disirouson.
Table |4 and Figure 9] illustrate the results of the system fragmentation, the tree-based approach and those
existing 2-I} mesh-based strategics also tended o perform the same effecting results similar 1o the system
utilization since U, = |-F,,, (or since there was no intermal system fragmentation ).

Tabbe 14: Effect of “the task sizes” i iha system ragmentasion (%) for the Uniiorm dissribution.
[ Task Sies | s

Frea Guich

11 - Wity T tiond Sub-List s Allocation

1 8.8 .88 (X L] 1045

. 30,80 3N ] HeEl 33.68

- [T [IK[) [T LI 4337
I ; ! Bl OB-Tres
: ﬁ o ok Troe
LY NI e
' = Busyl
\ t: - i QuickA

T L e, DBNEG 512512

| L = : : L I

Figurs 81; Effect of “the task skas’ o the system fregmeantation (%) for the Untiorm distibution.

In summary, the varying of task sized on the fixed system size (N = ny x ny) is effecting (o the system
performance (i.e., U, and F.,). When generating range of task sives increases (small - large), the systom
utilization increases while the system frugmentation decreases. For the small and medium ranges, the top
mnking are the busy list, the free sub-list, and the binary-tree strategies respectively, whereas for the large
range the top mnking are the binary-tree, the k-tree, and the busy list sategies, respectively,
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3.2 System Performance Evaluation for the Reconfigurable and Partitionable 2-D Meshes
and 3-0 Meshes (both MIMD | SIMD Tasks)

In order 1o set the same incoming tasks and environment to the CU allocation strategies (the CU-DFS and
CU-AS) for the comparison purpose, we assumed that no tusk finishes during the considering time.

[nll‘ulﬂtnpn:in-l.“wﬁ:uﬁm&ufmﬂmﬂﬂhhqmmilin&unmm}.ﬂm
the system sizes (N = 0y x n;} were varied and the task sizes (Ix] — "'/; x /) were gencrated and fixed.
For all test cases the CU-AS and CU-DFS stmiegies performed the same system wtilization. The reason is
that the system performance results of these two methods were different only when sub-system (S5} and task
{T) sizes were equal which mrely occurred.

Tabfe 15 and Figure 92 illustrate the results of the system wiilization of the modified k-tree strategy for the
2-I3 and 3-D mesh-connected systems when the percentage of the SIMD tasks were increased (such as 0%,
10%, 20%). The results showed that increasing the percentage of SIMD tasks did not effect the system
atilization for the 2-D and the 3-D meshes, except when N = 64x64.

Tabie 15. Efect of the sizes” 10 the aysbam ullization (%) for the 2-D and 3-D Meshes.
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Figure 82 fcont): b) for e 3-0 Meshes.
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Table 16 and Figure 93 illustrate the results of the system utilization of the binary-tree and the k-iree
strategies for the 2-D and 3-D meshes. For the 2-D meshes, the results showed that the binary-tree stratcgy
yielded the improved system utilization over that the k-tree stregy, except when N = fidxd, For the 3-D
meshes, both binary-tree and k-tree strategics yiclded the comparable system wiilization in all test cases.
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Figure 83: Effect of “ihe system sizes” (o the system Lillzanon (%)by res-based methode: &) for e 2-0 Meshes.

Table |7 and Figure 54 ilustrate the results of the system fragmentstion of the modified k-tree strategy for
the 2-I) and 3-D) meshes when the percentage of the SIMD tasks were incressed (such s= 0%, 10%, 20%).
The results showed that increasing the percentage of having SIMD tasks in the system did not effcsi the
system fragmentation for the 2-D and the 3-D meshes, except when N = 6dx64.  The resubls wers similar to
the system utilization since U,,, = |-F,,, (or since there wias no internal system fragmentation),

Tabile 17. Efect of he simms” o the for the 2-0 end 3-0 Mashes.
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Figurs 84: Effect of “the sysism sizes” to the systam fragmeration (%) 8} for tha 2-D Meshes,
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Figure 84 {comt.): b) for the 3-0 Meshes. oAt

Table |8 and Figure 95 illustrasz the resulis of the syvem fragmeniation of the binary-tree and the k-tree
strategics for the 2-D and 3.0 meshes. The resulis showed thet the binary-tree strategy yiclded the
mproved sysiem utilization over that the k-tree strategy, except when N = 64x6d they are comparable.
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6. CONCLUSION AND FUTURE STUDY

mf%hﬂ&ﬂﬁﬁﬁ“ﬂhﬂ'upmdmﬂm{maﬂ]ﬂm
decision for the reconfigurable and partitionable MSIMIYMIMI? paralicl systoms.  Our universal resource
{CLIPE} allocation model can be spplied to all interconnection netwarks in the product-network class sach
as multi-dimensional meshes, multi-dimensional torl, hypercubes, n-ary k-cubes, eic.  Since these
reconfigurable systems can execute various dynamic tasks (with MIMD and SIMD mesdes) in different
purtitions during nm time, we present the new binary-iree-based approach for MIMD and SIMD tasks in
cfficient time. Moreover, we provide the modifisd k-tree-based spproach to be more useful by sdding the
CU allocation to cover SIMD partitions for the reconfigurable and partitionable MSIMD/MIMD paralisl
systems.  Time complexity of the iree-based universal model (for MIMD msks) is efficient for sny k-D
wmmunmmwmmmmmmw
mh!-nmmmhhmﬂfmmmﬂwmwﬁn_m
free sub-list strategy, the busy list sirategy, and ihe quick allocation strmiegy).  The total time complexity
(for CLVPE allocation) depends on the time complexity of integrating the CU allocation method into the
system. Therefore, we also imtroduces three best-fit hewristica for the tree-based CU allocation: |} the CU-
DFS strutegy in O(N, + kN; +k') time and 2) the CU-AS strasegy in O(K”) time and 3) the CULIS strategy
in (1) time. Finally, we perform many experiments 1o investigate system performance of applying our
new binary tee-based (CUPE) allocation model for the reconfigurable and partitionable 2-D and 3D
meshes. By simulation stody, the results showed that our binsry-iree straiegy yvielded the comparshle
system atilimtion and systam fragmentation to these by the k-tres sirstegy and improved over those by the
k-tree strmlegy in some cases.  For the 2-D partitionsble meshes, our binary-tree-based results and modified
k-tree-based results were also comparable 1o those of the recently 2-D mesh-hased strategies {i.e., the free
sub-list strategy, the busy list strategy, and the quick allocation sirtegy) ond improved over those of the
recently mrategies for some 1851 chses in more efficient time.

In the fisture study, we will apply our universal and geneml resource allocation model to some practical
applications in parallel and distributed computing, high performance computing, mnd super computing.

7. REFERENCES

1} 5. Al-Bassam and et al., Processor Allocaton for Hypercubes, Joumai of Parallel and Distriboted
Computing, v.16, pp. 394401, 1992,

121 M. 5. Baig, Dynamic Reconfiguration of Partitionable MSIMDMIMD Parallel Systems, Doctorul
Digsertation, The George Washingion University, December 1991

31 M S Baig. M. A Alexandridis, and T. El.Ghazawi, A Highly Reconfigurable Multiple
SIMDYMIMD Architecture, In proceeding of the fourth ISMM Intermational Conference on
Pamillel and Distributed Computing and Systerm, pp. 15-36, October 1991,

4] M. 5. Baig. T. El-Ohazawi, and M. A. Alenandridis, Single Processor-Pool MSIMDVMIMD
Architecture, In procesding of Fourth [EEE Symposiom on Paraflel and Distribuied Processing,
pp. 460-457, Texas, December | 592,

151 F.A Briggs et sl, PM4- A Reconfigumble Multiprocessor System for Pattern Recognition and
Image Processing, in Procecding of Mational Computer Conference, pp. 255-265, 1979,

[6] M, Chen and K. G. Shin, Processor Allocstion im an N-Cube Multiprocessor Using Gray Codes,
IEEE Transactions on Computers, v C-36(11), pp. 13%6-1407, 1987,

M P. I, Chusng send M. F. Treng, Dynamic Processor Allocstion in Hypercube Computers, In
Proceeding of the 17 Intemational Symposium on Computer Architecture, May 1990.

[B] P.]. Chusng and NF, Tzeng, An Efficient Submesh Allocation Stmiegy for Mesh
Systems, in Proceeding of International Confarence on Distributed Computing Systems, pp. 256-
263, May 1991,

(9] P. ). Choang and N.F, Treng, A Fesi Recognition-Complete Processor Allocation Strutegy for
Hypercube IEEE Transactions on Computers, v.41{4), pp. 467479, 1992

{10} P ). Cuang and N. F. Teeng, Allocating Precise Submesh in Mesh Connected Sysier, IEEE
Tramsaction on Parallel snd Distributed Systems, v.5(2), pp. 211-217, 1954,



[11]

[12]

[13]
[14]

[15]
[16]

[17)

[ 18]

[19]
|20]
[21]
122]
(23]
[24]
[25]
[26]

[27]

[28]

[29]

[30]
131}
132)

73

D. Das Sharma and D. K. Pradhan, A Novel Approach for Subcube Allocation in Hypercube

Multiprocessors, in Proceeding of the Fourth IEEE Symposivm on Pamallel and Distribuied

Processing, pp. 336-345, December, 1992,

D ﬂa:ShmmdDK.huﬂmgAFﬂmﬂEMnmﬂmmfwﬂuhmthuummMuh-

Conmected Parallel Computers, in Procesding of the fifth [EEE Symposium on Parallel and

Distributed Processing, pp. 682-689, 1993,

D. Das Sharma, Space and Time Scheduling in Multicomputers, Ph D). Dissertation, University of

Massachusetts, 1995,

D. Das Sharma and D.K. Pradhan, Submesh Allocation in Mesh Multicomputers Using Busy-List

A Besi-Fil Approach with Complete Recognition Capability, Journal of Parallel and Distributed

Computing, v.36, pp. 106-118, 1994,

D, Das Sharma and D. K- Pradhan, Job Scheduling in Mesh Multicomputers, IEFE Transactions

on Parallel and Distributed Systems, v.9(1), pp. 57-70, 1998,

M. L mwmunqumﬂhnnmm-wla—m

multiprocessor, in Proceeding of International Conference on Supercomputing.. ACM, pp. 106-

114, 1991,

N. ). Dimopoulos and V. V. Dimakopoulos, Optimal and Suboptimal Processor Allocation for

Hypercycle-based Multiprocessors, [EEE Transsctions on Parallel and Distributed Systems,

w.6(2), pp. 175-184, 1995,

L. Ding and L.N. Bhuyan, An Adaptive Submesh Allocation Strategy for Two-Dimensional Mesh

Comnected Sysiems, in Proceeding of Iniernational Conference on Parallel Processing, wol, 11,

pp.193-200, 1993,

S, Dutt and . P. Hayes, On Allocating Subcubes in a Hypercube Multiprocessor, In Proceeding of

the third Conference on Hypercube Computers and Applications, pp. 801-810, Janaary 1988.

5. Dwtt and J. P. Hayes, Subcube Allocation in Hypercube Computers, IEEE Transactions on

Computers, v.AK3), pp. 341-332, 1991,

T. El-Ghazawi and A. ‘I'mu::f. A General Framework for Developing Adaptive Fauli-Toleran

Routing Algorthms, [EEE Transactions on Relisbility, v, 42(2), pp. 250-258, 1993,

Intel, A Touchstone DELTA System Description, Supercompuisr Svstems Division, [mtel

Corporation, Beaverion, OR 97006, 1991,

hﬂ.h:p:;ngi[ﬂﬁﬂwminw,ﬁummﬂrﬂmﬁﬂdm Intel Corporation, Beaverion,

OR 97006 (1991)

I Kim, C. R. Das, and W. Lin, A Processor Allocation Scheme for Hypercube Computers, In

Proceeding of Internutional Conference on Pamllel Processing, pp. 231-238, August 1989,

J. Kim, CR. Das, and W. Lin, A Top-Down Processor Allocation Scheme for Hypercube
[EEE Transactions on Parallel and Distributed Systems, v.2(1), pp. 20-30, 1991,

. Kim and H. Yoon, On Submesh Allocation for Mesh Multicomputers; A Besi-Fit Allocation

and & Virtual Submesh Allocation for Faulty Meshes, IEEE Transactions on Parallel and

Distribated Systems, v 9%(2), pp. 175-185, 1998,

K. Erishnamurti, Reconfigurable Parallel Architectures for Special Purpose Computing, Ph. D,

Thesis, Departmemt of Computer and Information Sciences, University of Pennsylvania,

Philadelphis, PA 1987,

K. Li and K H. Cheng, Job Scheduling in a Panmitionable Mesh Using & Two-Dimensional Buddy

System Partitioning Scheme, [EEE Transactions on Parallel and Distributed Systems, v.2(4), pp.

413422, 1991,

K. Li and K. H. Cheng, A Two-Dimensional Buddy System for Dynamic Resource Allocation in a

Partitionable Mesh ConnecteSystem, Journal of Parallel and Distributed Computing, v.12, pp. 79-

83, 1991.

H. Li and M. Maresca, Polymorphic-Toms Metwork, IEEE Trensactions on Computers, v, C-30,

pp. 1345-1351, March 1981,

T. Liu and et. al., A Submesh Allocation Scheme for Mesh-Connected Multiprocessor Systems, in

Proceeding of International Conference on Parallel Processing, pp. 159-163, vol, 11, 1995,

Y. W. Ma and R. Krishoemurti, The Architecture of REPLICA- A Special Purpose Computer

System for Active Multi-Sensory Perception for 3-Dimensional Objects. In Proceeding of

Imternational Conference on Parallel Processing, pp. 30-37, August 1984,




(¥3]
(3]
[33]
[38]
137
[38]

[39]
[40]
[41]

(42]

[43])

[44]

[45]

[46]

[47]

[48]

[49]

(0]
[51]
[32]

T4

P Matteon and et al_, Intel/Sandia ASC] ¥ysbem, in Procesding of International Parallel Processing
Symposiam, 1954,

P. Mohapatra and et al., A Lary Scheduling Scheme for Hypercube Compuiers, Journal of Parallel
and Distribute Computing, v.27, pp. 26-37, 1995,

P. Mohapatra, Processor Allocation Using Partitioning in Mesh Connected Parallel Computers,
Journal of Parallel and Distribated Computing, pp. 181-190, v. 39, 1994,

G. J. Nuts, Microprocessor lmplementation of a Parallel Processor, The 4 Anmml Symposiem on
Computer Architecture, pp, 147-152, March 1977,

5. Rai, 1. L. Trahan, and T. Smailus, Processor Allocstion in Hypercube Multiprocessors, [EFE
Transactions on Parsllel and Distributed Systems, v.6(6), pp, 606-616, 1995,

M. Sharma ef al., NETRA: An Architecturs for & Large Mult-Processor Vision System, Parallel
Computer Vision, L. Ubr, editor, Academic Press Inc., Florida, 1987

H I Siegel e1 al., A Survey of Inferconneetion Methods for Reconfigurable Parallel Processing
Systems, In Proceeding of National Computing Conference, pp. 529-541, 1979,

H 1. Siegel et al., PASM: A Partitionable SIMDYMIMD System for Image Processing and Pattern
Recognition, [EEE Transactions on Computers, v.C-30, Pp. 734-547, 1981,

1. Srsawat, A Unified Approach o Processor Allocation and Task Scheduling for Partitionable
Parallel Architectures, Doctoral Dissertation, The George Washington University, Washingion
DC, USA, August 31, 1999,

1. Srisawat and N.A. Alexandridis, Efficient Processor Allocation Scheme with Task Embedding
for P artitionable M esh A rchitectures, i n P roceeding of International Conference on Computer
Applications in Industry and Engineering, pp. M03-308, Las Vegas, USA, November, | 998,

). Srigawal and N.A, Alexandridis, A Quad-Troe Based Dyvnamic Processor Allocation Scheme for
H:ﬁMFﬂhiMﬁthanﬂmﬁmmﬂm
Applications in Industry and Engincering, pp. 309-312, Las Vegas, USA, November, 1998,

1. Srisawat and NA. Alexandridis, Reducing System Fragmentation in Dvnamically Partitionable
Mesh-Connected Architectures, in Procesding of Intemational Conference on Parallel and
Distributed Computing and Networks, pp. 241-244, Brishane, Australia, December, 1995,
J.mmHAMAH:wMTmM Sl.l:—S-}thclflnT-:hm
for Mesh-Connected Pamllel Machines, in Proceeding of the 13" ACM-SIGARCH Internationsl
Conference on Supercomputing, pp. 60-67, Rhodes, Greece, June, 1999,

). Srisnwat and N.A. Alexandridis, A Generalized k-Tree-Based Model 1o Sub-System Allocation
for Partitionable Multi-Dimensional Mesh-Comnected Architectures, in Proceeding of the 3™
International Symposium on High Performance Computing, pp. 205-217, Springer publisher,
Tokyo, Japan, October, 2000,

L. Smyder, Introduction to the Configurable Highly Paraflel Computer, Computer, pp. 47-56, Jan,
1982,

H. Wang and Q. Yang, Prime Cube Graph Approach for Processor Allocation in H ypercube
Multicomputers, In Proceeding of International Conference on Parallel Processing, vol. [, pp. 25-
32, September 199],
ﬂ.?mgde.Wu;,thErq:hAWmhﬁnimiﬂng?manmnﬁmm
Hypercube Multiprocessors, [EEE Transactions on Parallel and Distributed Systems, v.4(10), pp.
1165-1171, 1993,
E.TmmdELuL,AnEMﬂiT.kM!nuﬁdeﬁh:fmlDHﬂhAmHm[EEE
Transactions on Parallel and Distributed systems, v. 8(9), pp. 934-942, 1997

A. Youssef, Design and Analysis of Product Networks, In Proceeding of Frontiers' 95 Fifth
Sympogium of Massively Parallel Computation, pp. $21-528, 1995,

Y. Zhu, Efficient Processor Allocation Strategies for Mesh-Cannected Paraliz! Compiters, Journal
of Parallel and Distributed Computing, v. 16, pp. 328-137, 1992,




75

APPENDIX A
OUTPUT

1. HRATUNART AR

I. ). Srisgwat, W. Sumksmpontom, snd N.A. Alenandridis, “A New Binary-Tree-Based Subsystem
Allseation for Partftionsbie k-D Mesh Multicomputers,™ {expected o be published in Journal of Parallsl
and Distributed Computing in 2004 - 2005 )

2. ). Srisawat, W. Surakampontomn, and N.A. Alexandridiz, “A Universal CU and PE Allacstion for

mmmwmmmm*inmmhmmmm
Transactions on Parallel and Distributed Systems in 2004 - 2005.)

2. maasnuideldl sz Tend

el saosod Wi T Duddime TudrunrimmrdrumeseylussfaFoyognin
s eycyibnian

3. nssusssanluiilsegafeing

1. Srisawal, W. Sarakampomom, and NA. Alexandridis, “A k-Tree-Based Resource (CL/PE) Allocation
for Reconfigurable MSIMIVMIMD Multi-dimessional Mesh-connected Architectures,” in Proceeding
of the 2002 International Tecknical Conference on circuits/systems, Computers and Communications, v, L
pp- 58-62, Phuket, Thailand, July 2002




APPENDIX B
REPRINT PUBLICATION

A k-Tree-Based Resource (CLU/FE) Allocation for Reconfigurable MSIMD/MIMD
Multi-dimensional Mesh-connected Archilectures

Jeeraporn Srisawat, Wanlop Surakampontom, and Nikitas A. Alexandridis

In Proceeding of the 2002 International Technical Conference on Circuits/Sysioms,
Computers and Comnmunications, v, |, pp. 58-62, Phulet, Thailand, July 2002,




A k-Tree-Based Resource

(CU/PE) Allocation for Reconfigurable

MSIMD/MIMD Multi-Dimensional Mesh-Connected Architectures’
Jeeraporn Srisawat' Wanlop Surakampontorn® and Nikitas A Alexandridis’

'Faculty of Science,

King Mongkwt's Institute of Techmology Ladkrabang

Bangkok 10520, THAILAND
*Faculty of Enginsering, King Mongkut's Institute of Technology Ladkrubang
Bangkok 10520, THAILAND

*Department of Elcctrical and Compuster
School of Engincering and Applied

Engineering
Scienee

The George Washington University
Washington, DC 20052, Usa
e=mail: ksjeernpdEiomitl sc.th, ksvwunlopiakmitl.oc.th, alexangisens, geu ady

Abstraci; lnlhhplpu,h:mnmwiﬁmdt-fm-tud
(CUPE) mllocation model & i
MIMD  multi-dimensional  (k-D) mesh-connected dfhibectumes,
ﬁmmﬂ'uﬂ:nuld-ﬁmmmnm aflow  dyrmmic
mades of exeouting tasks, which are SIMD and MIMD. The MIMID
mmmﬂuhm—mmmmmmm
mﬂhhﬂmhhhm‘hw. tn
mmt-ﬁuhd:Mﬂuﬂﬂhtnﬂmhﬁuﬂuiw
best-fit hewristics. fior the CL allocation decision: I} the CU depth
mﬂuch[ﬂi—ﬂfﬂ}hﬂ{kﬂnmmmdzjhﬂummm
(CU-AS) in O(K2') time. By the simulation study, the sysiem
performance of these o O allocation sirnbdgies wid il
imvestignted. Owr sinuslation results showed that the CL-AS gnd
lﬂﬂﬁnﬂ:ﬁnmﬁnﬂhumwﬁmuh
applied for the reconfigurahle MSIMIDVMIMD 2.03 and 3-D mesh-
conmected architectures.

l. Introduction
Amiinuhhmnhmptulummhjtﬂnnfpﬁﬂurwm
thai provides (sl run time) for ing varicus independen
plﬂhﬂdiﬂﬂhﬂlpﬂh:ﬁm{uﬂh}mﬁm-mh
parnlicl. For this system, each of these tasks requests an MIMD
made.  The more flexible partitionable parallel system, called the
reconfigurable mudii-SIMOMIMD - system, provide
sub-sywiems for ihe requessed Lasks, in the SIMD and
MIMD modes. At run time some tmsks muy call the SIMD mode
{which is pood st synchronization snd comsmumication) wheress
some tasks may need o exccuie independend hranching or different
imstructions (which are suitable for the MIMD mode). Therefore, the
dynamic meonfigurable MSIMIVMIMD parsliel architecture hos
commputing enviroment. The SPP MSIMDAMIMD mrchileciure [1]
Bﬂﬂn%dﬁwﬂmhﬁmlmm
ﬁmhnﬂuﬂhm:ﬂhﬂﬂﬁ{mﬂm
dmlwlh-dmmhdhﬁlumlmﬁm s
architecture performs dynasnic reconfigurstion & the network Jevel
1hm1%5WWHIMﬂhMﬂJmM

environmend, &
number of independent tasks (of the same or different applications)
come in. Each of these insks reguires (st um time) o scparsie sub-
EvElEem (of pariition) 1o execuis in cither the SIMD mode or the
MIMD mode. At the froat-end computer, & apecial designed (5
1kmwu-!tum1ﬂhuﬂnduwﬂﬂpmlﬁ
wupﬁ:ﬁusuh—q“fwhuwimi}gmu::. in
particular, that (65 has o dynamically find ihe locaibon of @ fos sk

" This research wis Supponind by fhe Thastand Ressnrcl Fund
under Geant POF44-leempom Sosawat

mlnmﬂuwﬂlmhﬂlmﬂn&m&uwﬂrun
&-IIMnhq.-mb-uymmmTﬂumiﬁnmumulhy
become availuble when s task completes,  In the
MEIMOMIMD sysiems, tlse requested MIMD mode requines only ihe
fiee: sib-gystems but the requested SIMIT mode needs both the free
ltb-m:m:ldtmﬂin;ﬂucu.

Inhmﬂummnﬁﬂngpnm{ﬁ;ﬂhuum
methads were introduced for partiticonatje i allocsic
independent tusks, (execuling in the MIMD moce) and for specific
inserconnection petworks such a5 2-D) meshes.  Those PE adiocation
srulegies inchudes FRAME SLIDE [2], BUSY LIST with Scheduling
[3], ADAPTIVE SCAN (4], FREE SUB-LIST [5), 2-D BUDDY [6].
FREE LIST [T]. BIT-MAP with Partition [8], QUAD TREE (9L
QUICK ALLOCATION [11], and BIT MAP [12]). All of them were
&umiuh&mmmnfwﬂ:pmﬂmm: MIMD 2-
) mesh-comnected  multicompuers. For ke meconfigursble SPP
MEIMDVMIMD mrehitecture [1], the nesource (CU/PE) - allocation
strategy, called Hmmm.mwm“ﬂm
imtroduced.  However, the bit-map BUDDY strategy wis handled by
the: special 0S5 af the back-end MSIMIYMIMD paraliel svsiem,

In this paper, we present a new peneralized k-Tres-basod (oL
Fﬂdhﬂtﬁnmddmpnﬁmdymhmmﬂmﬁl allocmtion
hirh{udtmﬂmmwifwhmﬂpmihh
MSIMIVMIMD parsilel systems, which utilize the vl = imeemnsicna]
{k-1¥) mesh iiverconnection networks. This new ponerslimed k-Troe-
based (CUVPE) allocation modied |5 extended from our previous sty
[10]. The k-Tree-based model was mtroduced fisr perfiorming (PE)
allocation for the partitionable MIMD k- mesh-connected ByShetts,
Cur new model covers the resource (CLUPE) allocation for the
reconfigurshle MSIMIVMIMD k-0 mesh-conmectsd archbiectures,
which allows independent ks, executing i the MIMED and SIMD
modes.  In addition, in order 0 complete the SIMD partithon, we
imrisduce two best-fit heuristics for the CU allocation decisha: 1) the
C11 depih first search (CU-DFS) sirategy in (kM) time and 2) the
CU adjacent search (CL-AS) strategy in ONK2*) time,  With the CLI-
AS sirategy, owr k-Tree-based (CLPE) allocation mioded wickls the
same time: complexity as thil of the MIMD sub-sysiem (PE) aflocation
in our previous study (when applied o 2D and 3D mieshes),
Finlﬂ:.mdq-mpuﬁumnfﬂumm{mnlhn
Investignied ared compared (in terms of system uiilization and system
fragmentation) by the simulstion stedy. In particular, the resubis of
applying our model to the reconfigumble MSIMDWIMD 2-D and 3.
[ mesh-connecied systems are presented.

Mext soction illustrales ot new  pemcralized k-Troe-based
{Em:ﬂmmnmm:mﬂmw
dendlocstion dectsion for the reconfigurable multi-SIMIVMIMD k-D
mesh-connected  archilectures.  Section 3 presents ihe evaluated
system performance of applying the tew k-Tree-bassd (CUPE)
allocation moded for some interconnection networks such as -0
Fonndly, concheion and fisure sudy mne
dHecussed in Section 4.
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2. k-Tree-Based (CU/PE) Allocation Model for

Reconfigurable MSIMD/MIMD k-D Meshes
ﬂllpuﬂhndk-Tm{ﬂUWﬂiﬁrﬁmﬂmﬂimluh-
E~Mmmmlwz.l]wﬂmm
mmumuhmmmmm
13), best-fit heuristic (Section 2d), sewrching for allocation
denllocation decision (Section 2.5), This néw pencrabized k-Troe-
bﬂdﬂﬂ?ﬁlﬂhmhnmﬂiuwnnmmmhmm
|10, applied only for the partitionable MIMD k-I} methes, 50 cover
bt mconfigurable  mult-SIMDMIMD  k-D mesh-consected
i paticulur, in this paper we infroduce two best-fit
Hﬁﬂiﬂhhmdhﬂhmhﬂuﬁﬂﬂmw[h
soction 2.4.2) to complets the SIMID partition kn efficient e,

L1 k-Tree System State Representation
w:u:hmmunt-rmhwmmuf

syﬂmlnhmuimlix_um.thwd&m:mﬂ:rnﬂh
mitialized sysiem, Dhuering ran time when many tasks are i

udm}ﬁmdnur-wh-qm]mh:&n{hlmhqmmn
ﬂrhnr{ﬁrmulﬂg“ﬂﬁ!}udmhimm&pmiﬂh'
available, Inmdurnmmmlrmiruut,whlnw&u
mode can be dynamically crested and partitioned inte 3¢
buddies/node (see Figure 1) Moke: in this mew k-Tree-based model,
mny k-Tree pode is modified o Include o link to 0 CL/ for the SIMD

insk {see Figiee 2),
A,
N bay
> bag ey - i
b 3 |4 7 -
R =2 iy ¥ g 2 k=3

Figure 1. The 2* buddies of the &-Tress: (g} 2-D mesh: and {51 3-0 rmah

Fipgure 2 illistruies in example of the sysiem site repeesentation of
npplying the k-Tree-based (CLUPE) allocation model for allocating
three SIMD tasks (of sizes 2x3, 2%2, and 133} and two MIMID tasks
(ol sizes dxd ond Ix6) on an BxT0-mesh system,

k-Tiwe-based (CUPE] aliocaton e 3 S tesks angd 2

ars Bc10) rusihy sywiern: (a) the aliccated system stetus and
tha cormesponding k-Tree syatem stals represenistion

L1 Network Partitioning

The k-Tree-based network panitioning i the partitioning proces
thed partitions all k dimensions of the k-D symem (N = ngongx. . .xn )
into smaler 2* sub-syssems mnd allocstes #n approprisse one for the
request (of size py npy X X wherepsn, i= L2 . kL In
thix paper, we ulilize Buddy-ID-Address-Stos-Conversion alporithm
of our previous study.  This network pertitioning process (ie.,
idendifying Wbuddies = 2", base-addresses, and sizes) is computed in
OWK2") time (oo more detail in [10]). Mote: the network partitionlng
will be spplied and modified lster (in Section 242} in onder o
handle the CLF pentisoning for @ sclected sub-sysiem,

1.3 Sub-System Combining

The sub-system combining is applied during processor sllocation or

deallocation. W abo wilize the combinations of 2-Adjacent.

Ehﬁiuﬂﬂ:ﬂmnrmpﬂﬂmmﬂyinuﬁhmﬁml‘

buddies (where j= 1,2, ___ k1) into the larper free sub-systems. This
i J-MmﬂWﬂmr-m}mhmmz'}

tiufd-'dljn:sln::u‘+l:2‘+ﬂ’+...+t1‘"-]Iq‘l""-l]:. The k-

1.4 Best-Fit Heuristic

4.1 Best-Mt Hewristie for PE Allocation

The: besi-fit heurlstic i o find the likely best free sub-system for o
incaming tak.  For PE allocstion decision, we also wilize the
gemernlized besi-fit hewriatic |10] for the partitionabe k-0 meshes

Eiski-Fit Criiprin:

t Huihhﬂnnmh‘nhnﬂiﬁitu]

2 ¥ many S5 hive properiy 1), & that gives “mm cfaient size tecior
whﬁ'iml A B |

T I vy t-'nﬁ}lﬂj-,hm-ln'ﬂm'mm
Inctor (CF) s ssbecind | O #ma | Critidswiss, ssiscd by mndom

4. After off nockisi Bre veiad,
-Inuﬂﬂ-mﬂmnnmmhnm
« Othanwise A @ parifiomed and o b iby uddEE Tl ki “min
mdified CF [MCF)" wil b saincted [ 02 ime |

Bitn: Criisria 1-3 srm ppliad for svary free node and comenad & Bl
_ GiMerion 4 I computed iy cnce for e beal #me 5 of Siups 1.3

14.2 Besi-Fit Heuristic for CU Allocation
In the reconfigurable SPP MSEMEMIMD design [ 1], CPEs {comimod
processor elements) were added in the syslem and ther robss (CU or
PE) are assigned al num time.  Therefore, & CU for & selecied sub-
Hystem (5] can be uny CPE that is directly conmected 0 5. First, we
intrucisce & generalined method to identify all possible Cls and their
nddressing. If the size of the slected sub-sysiem (8} s m% M.
my, o address <{ay, ny,.8) (b, by, 0>, then the number of afl
passible Cls are 2 - my % g2 x..x my, xlx my, %% my. Far
Etm'q:ll-:.ifk=lmd5=?:I.ﬂm‘hhl’.‘Ua'ﬂ2{lxﬂ+hij-3{L
I generul, for k dimensions of % there are 2k (outside) sub-
systems of CLis (CLISs), CUSs" addressing are defined as fallows: for
each dim | (of size = my xmex._xlxm,,x.. xmy ), where =12k
Min CU5 address = <, &, apd, il by, b mel L e
Mian CLIS addreas = <y, ay,-..., Bl gy by, B, bkl e
For example, if k = 2 and § = 7 x A, addressing of all 30 CUs jor 4
CLIS3) for & selected sub-sysiem 5 = m,x g = Tw B) (= <y, ), (B,
byl = <{ 8, ) {1, 12)=) are
- For u fined dim |,
amin CUS (8 PEsk <(me-1, 83), (me=1, byl =, §), (4, F2jp=
amax CLIS (8 PEs) <(bi+tag), (bt bre=<(1250012,12>
= For n fined dim 2,
wmin CUS (7T PEs); <(y, 81}, (b, dg-1) =[5, d), (1], 4=
o max CUIS (7 PEsk <(ay. bekl), (by, Bt - =5 133411, 13
For any free node B (of stee ¢y x dy x...x dy) in the k-Tree, there are
2k insidde sub-sysiems at boundary (BSs). BSs® sddressing are defined
s follows: fior ench dimension | (esch of size [(d,-21% (ds=2) x...% (d,
b Lxdyn. xdy]h wheri=1,2, ___ k.
Min BS sddr=<ia Loy 1,. i), (hy- Ly Lo s by
M BS addr=<(a,+ 1,8+ 1 ... by, B, iy (By=1bae 1. By, o by )
For example, if k=2 and R = 7 & &, sddressing of all 26 PEs for 4
B33} for o fres node (R) of size d; x.dy= 7 x 8) (a0 <{a,, sl (by, by =
{5, 5), (11, 12%=) are
= For a fixed dim 1,
wmin BS (B PEs}: <{ay, 8z (e, B = <3, 5}, (3, 12
nmax BS (§ PEsk <(iw, &), (by, el = <{1 1.5], (10,127
= For a fixed dim 2,
o min B5 (5 PEs) <{nctl, @), (by-1, 80 =<{d, 5}, ([0, 55
i maix B3 (5 PEs) <{are ), bal, (-1, Byl =<{6,12) (10,12
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ﬁ:EqurﬂJﬁumMﬂFE}Hmndhﬂndnyﬁdeuﬂ
ﬂmhﬂmmlhdmmms. Th SiaME
ﬁnmﬂ:mn-ig:umhhnmﬂunmd:. If it is free, it
Hﬂwillhtﬂmdmdﬁﬂhh'ulﬁmhﬁ. If s, ibs bhest-i
valug (Section 2.4.1) i Them, new S and R will be
updsied if they yield the better bess-fit value. The above process iy
rupm::lﬁlﬁh:h.ﬂﬁ'mmd:m'ﬁmﬂim}. Time: complexity of
the CU-DFS i OkN,). hurd:midmﬂl}whmmﬂufﬁi
ﬂlﬂhnﬂnwhﬂﬂwmllhlﬂmmﬂhwmﬁnﬁﬂm
E.mdﬂ‘mlhnﬂjm:mhm‘t}_uﬁlmﬂ:

Ll E; i& an _mm:&#mmm
Sy i m frew nede, iz 12 .

1B b my 2 . e, g, i b I 7 - N
m&hwhhnmnmmm“mw
one i 'Mwnu'mhwﬂﬂmruha]-u, K

i Fl-ﬂﬂz_rlw_ﬂ-!_u:--ﬁwml{h--uw

Pwmmwppmh=2ml!mdmh-qmn5:n.nnﬂ
-r:lifrwlud-.-iullrd.xd,ﬁ. Fiplzhmumlhnﬂm
ame satisfied both not-disjolet and
abn-muurm-ndh::uImanEnu}
disjoint but are different in 2 hita

one bit different.  Figure 1b
and R (01) since they are not

y =0T

A E N1

= = Lr
L 5 Iy Hmnmw-m:ﬂ“,j--r.:_-..-n:
T i ey sl of 5 = |5, . e e
Mi:ﬂp."h‘l‘i.t,hhmqh“ 0 e B * g
["Bag.... bys® ﬂ-uq‘u-mlmmumrn
-H_lrﬂthfmumumh: it anok oF . "= @1 &
Doengastn MinBS (n=1) o manBS {re)
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any froe node R that is ndjacent s the selected sub-sysiem 5. In this
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idertified directly (see the following 4 cases) If thee mode R & free,
iumﬂh;ﬁ&;nlhrﬂﬁu!-diuhﬁ-ﬁtﬂlmlﬁmhn
24.1) is computed. Mew 5 mnd R will be if they have the

better best-fii value. Time complexity of the CLE-DNFS is CHk2®),

In arder bo ldentify uny boundary free
wisather or ot it is adjscent to the selected sub-system S, we define
the adjacent baddics in O for any mas-combined sub-system (5}
or CK2*) for any combined sub-sysem (5),

mwrs i any buddy node (1, 2, .., or 2%), we compute its BS{s)
in O(k

tumae.

- s — — —
Lei 3 Ilm-b-mti-rmnnl.. % ity
s n Boddy I of 5 wham | = 1,2, ar®

i ﬂmnkhm:liﬁuj.p:,a,....t

ey =1, min BS o, & YR

'!4_'.“'""“:1'.‘_"' R uq,ha_.. By, mn___

T-mm1ﬂ1m'ﬂﬁﬂ.wnﬂﬂ{hlﬂ-llﬁhp‘
= Hgam dm 2 nibe == 30}, Compuis minBs (g, [y, Mgl

Case 2: if S is any eombined (2) buddy node (= 1, 2, ..., kel}, we
shmpuie B BE(E) in Oic),
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Lase 4: if 5 is my combined (k2"') sub-buddies node 0=1.2.... k1),
ull adjacens buddies cam be identifind by applying Case | aod 3 i,
(k") Fﬂ'mift‘luﬂmhﬂiuufwm:d 8 amw
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procezhane, searching sams
oot and perform DFS (depth I':I'H"I:I'ﬂ'l-}h}'ﬂlll.llllhm
mosd (leaf) node. If that node is free und s sie can
besi-A value is
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After all nodes are visied, the flisl process is applied to cither 1)
mmmmmwwmhm:immnm

n-ufrmﬂ-mm-ﬂmnmmupuh
until renching the leal node that stores information of the finished
faesk, Ahﬂﬁ]ﬂbTm'lmd:urﬂurnﬂmmhmh
updated Finally, the combining process B recursively applied (io
remnove free intemnd nodes(ii) Fom bodh PE and CU partiiions o ke
root (112 i possible)

THEOREM |:
allocation with

{or leaf) nodes ane &t most N, + Np< N
most (#leal nodes-1) divided by (21},




therefore all nodes (M) = (N, #Ng) + (NytMe1) £ (2%1) < TN, [For
each (free) leaf node, the best-fit value i3 computed In O(") and
{k"My) for ull free nodes. For each internal node, the best-fit value
s computed in O(k'27) for ol combined sub-sysiems and
(25N +M5)) Tor all imernal nodes.)  Finafly, afier all nodes are
wisited, if the best 5°5 size is egual (o the request, then it is directly
allocated w the request. Otherwise, the network pantitioning end the
best sub-partition will be applied m O(k'2™).  Thus, total time
complexity af the k-Tree-based (CUPE) allocation with spplying
the CU-AS heuaristic 18 O (N, ML, where Nyt £ W and
bersce (WM +Ng ) when applied to the 2-DV3-=0) meshes,

Mote: time complexity of the k-Tree-based (CLVPE) allocation
with applying the CU-DFS hewristic is O(k* 25N +Np) (kNg)) and
heroe (MM, +Mp) ) when applied fo the 2-Dv3-D meshes.

THEOREM 2: Time complecity of the K-Tree-based (CLUTE)
denllocation (o free the particuler k-Tree node fhal stores the
fimiabed ek and to combine the free internal nodes o the root of the
k-Tree) on o k-ID mesh is O(n2"), where remaxing ny.. .. A,
PROOE: Searching for the location of @ finished sob-system
from the root i ot most (2" steps. Then, combining all 3* beddy
nades from the finished sub-system to the rool(if § is possibis) takes
mnother n{2°) sieps.  Therefore, total time complexity is O{n2* < M),

). System Performance Evaluation

By simubsiion study, a number of experiments were porformed 1o
Imwestipaie the systiem performance effect (ie., system wilization and
Frngmentation) of applying our k-tree-based (CUPE)  alloeation
model for the reconfigurmble MSIMIVMIMD 2-D amd 3-T meshes.
For each experiment, (stmulation) tme wnlts weee fersied anoand
3,000 20,0600 ninits and incoming tasks were genenmbed arownd 1,00
TG00 sk, nocording o the system parameten(s) seiting. For eech
evalumed result, different data sets were generabod amd the algorithm
was repesicd until an avernge sysiem performance does not change.
The Uniform distoribution Do, §) was considered for the task-sime
distribatlon. Task srrival rate — Polsson{l) dor mber-arrival time -
Excpd 17 =51}, und service time — Expl{y=100. Note: in order bo s=t the
same Imcoming tasks and envirommeni fo both CU  allocathon
strategies for the comparison purpose, we assumed that no fusk
finkshes during the considering time.

In Experiment |, we investipaied the effect of system sizes o
the system utilization (L,,), where the sysiem sizes (N=m,xn;] wers
varied and the task sizes {1x1 — "'/ x "y) were pencrated and fixed.
For wll test cases the CLLAS and CLI-DFS straftegies performed the
same gystem wtilization (xince these methods were different
when sub-sysiem (5) and tesk (T) sizes were egual which hardly
ocourred ). Table | showsd the results (%L,,) of spplying the k-
Tree-based (CLUPE) allocation for 3-D0 and 3-D meshes, which
yielded the same resulis when increasing, percentage of SIMD tasks.

mtmﬁha&gﬂhﬁmmaiﬂi

%_ [ W[ % [ i | ao%
BATE | BB.4E | T1.81

i 3 e T e T

Bagh | Brhg | Gras |
s | TooiE | Tooie | 7ol [ owidE | SOET

sizee 1 the systam isston (%)
1 T8

e 7048 | B8.00T
1} 55 998 Suies | SO0 |
In Experiment 2, we investigased effoct of task sizes o (he
sysiem wiilization, where the system sire was fived (N = 29602 %6)
and the tusk sites were variod  Table 2 showed that the system
utilieation incrensed when the maximum task-size parameter was
reduced sinoe & number of small tasks could be Wliocated. For e
Ups = | - Fy (o no effect of intemal system fragmentation).

Table 2. Efact of ihe tmak
Tash e

riny e
S0

720

i

¥

anby [7]

4. Conclusion and Future Stody _
This paper introdisces two besi-I hewrlstics For ibe k-Troe-bassd CLf
allocation: 1) the CU-DFS struiegy in CKkMy) and 1) the CU-AS
strategy in O(c2), The CU aliocation is added to complete the design
of the new generallzed k-tree-baseed (CLVPE) alkocation model for the
reconfigurnble MEIMDVMIMD k-I} mesh-cornecied archilectures,
By simulation stody, a number of experimenis were performed to
investignie system of spplying our mev k-Tree-hased
{CLPE) aflocation model for meoonfigeables X-00 aml 3-0 meshes.
System performance resubts (e, sysiem utilization & fragmentation)
of applying our model with including the CU-AS strubagy showed the
same results to those of the CLI-DFS siralegy.  However, for the 2-0
of 3-0 meshes the CL-AS sirsiegy vields Of1) time which is betier
thi O M) time performed by fe CL=DFS stranegy.

I the future study, we will modify and sdd the CU searching o
mme existing 1-D mesh-based PE  allogstion methods. Those
modified strategies com support SIMD wasks for the reconfigursbée
MEIMDMIMED 2-[3 meshes. Therefore, ihe sysiem performance of
those {CLPE) allocstion methods will be investigeied ond compared
by oo k- Tree-based (CLVPE) allocation appeoach.
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