a3

Finally, we handle the effect of system boundary as follows: for i =12,.. .k (dimensions) ; if (=1 or b=n)
Hmfmmmmm{ﬂﬂ}hrl.wmuhﬂudmﬂtuﬂuufﬂiuuhm Then, we
lddthecﬁmtnrmrﬁjnlngmuummn{kaiﬂjimnﬂmﬂﬂu}lmﬂIuCF{u'_I-E'F{u}*[i-
5B). Since combinable buddies ofaforC)=2 k. or | for three partitioning and combining methods (see
Algorithm A.3-2), then their time complexities are Ofk), Ofk*), and O(k), respectively.

ALGORITHM A 3-2: “Combinable nodes {CY" for each partitioning and combining method is identified
based upon its corresponding partitioning and combining method, as follows:

" Fnrﬂupm:iﬂnnhm;uﬂmh&:ﬂngh}'mdupmmm:mmplﬂiwufﬂummIil]}l}:ndth:
number of combinsble buddies (C) are C = | (ifn.-li.a,uhfpuuhnﬂwm}m'f=2{ifn.-‘ﬂ-1}
and their ID% are defined as Eﬂmmmmh‘ﬂmﬂu in Figure 30 and 51.

ll'm*lmdlrlnﬂfﬂ.niﬂ.lhmc-liﬂj and IDoff, =1 (ifid=2)or 2(ifid= 1.
[fnﬁ-!m:lifm-nfu=hl,lhmﬂ=2whﬂ-ﬂnﬂ

id-1 iFid=2,3, ..., n Tor both nerworks and
IDoff;=+ 0SB ifid=| for & non-wraparound network or
n, ifid =1 for a wraparound network.

IDof Biz= | Id+e if id+e € nyg mhwiuﬂ{ﬁﬂ]ﬁrlmmwmd network (a combing).
{id+1) mod n, ruruurmmmm{ﬂuddﬂ.
{id+<h mod n, for & wraparound network (a combing),
where 5B = System Boundary, ¢ = #combined nodes.

. Furliup:l.rdlimlnamdmnhlntnghynmvmtn'u,menmbrnfumﬁm:hlﬂh{ﬂ=ﬂiﬂ
ummlﬂlwuul'lhnl:ﬂn'lhm']:ndmiimnhhnhdemd:julﬂﬂL—i:‘ﬂq,hduai,]-j*z.
ooy K 18 defined by using the k-bit-map as follows: See ulso some comesponding examples in Figure
52 and 53,

By = by ooe By o bybg) {urmthuj'hitufu-!h_...-b]b.]:q-ﬁcrI.hrlbu:idy.
By =0ty By oo k) (or negate the j* bit (non®) of a=(i,.,....tty); & = 0. Lor * for & combine.

and {idﬂ if id+] < n;; otherwise 0 (SB) for a non-wraparound network (2 buddy),

. thpuﬁlimjnammhininghynﬂmﬁtdmumddmﬂm:!:uulymmmuehddy{{!
= i}:wﬁlml:ﬂﬁmmhﬂn‘u{dﬂmmhﬁk}mﬂlﬁ:mﬂnﬂ:hmﬂeﬂ level L—i (B,
where § = 1,2, ., k) is defined by neguting ID of a (id), then 1D of B, = V(iFid = 2) or 2 (if id = 1),
Sec also a corresponding example in Figure 54,

Some cxamples of the combinable nodes for the partitioning and comhbining by network degree (method 1)
are illustrated in Figure 50 for a 2-D system (e, M{mwna\hﬁ]urmt

network).) First, Figure 50.a illustrates two combinable buddies of & buddy (a = 2) for a 2-D mesh, which
are fl;, = 1, 3 (indicated in dash blocks) for j = 1. 2, respectively, Figure 50.b illustrates two combinable
buddies of & buddy (& = n,) for 8 2-D torus, which are By, = n—1, I. Figure 50.c shows only one
combinable buddy of a combine node (g = 1-2} for another 2-D mesh, which are fy=3. Finally, Figure
50.d illustrates two combinable buddies of a oombine node (a = ny, — ) for another 2-D torus, which sre
Bij=ne=2, | for j= 1, 2, respectively.

.2 .
= 2

]
!

() L ich
Figure 50: Some exampias of tha cambiring fackor fara 2-0 systemn based upan ihe pariitionang and combining by
network degres o) a buddy 2-0 mash; b} & buddy 2-0 lorus: o} a combine 2.0 mesh; and d) 8 combing 2-0 lorus.




Figure 51 illustrates the practical exampie of applying the partitioning and combining by network degree.
ﬂim;i—DM(mm-WMMJMMMEul‘:l.:ll[l.}. The caombinable

1 Bnd fys (ot bevel 3) and By, (st level 2} are illustrated in the k-Tree and the system status. Node: at level
2 {L-1), there is not By, since it is u boundary of the system, Then, the combining factor (CF) of o (where

k= 2) in Figure 51 is computed as follows:
CFia) = CF) loy = o, ) + CF (o = Roony ), Pay)
= [PC, (e, Buad + PCoay, Bis) 1 4 [ PC, (ota, By + PCakans, Pzl
=[1+%]+][0+1]=24.

Finally, when considering the system boundary effect (where k = 2 and SB = 1), then CF(a) is 2V + (k -

SB) = 3% since one size of this sub-system s & svstem boundary,
o )
Z L b
LI

Figure B1: An exampls of computing CF{a) lor the partiticning ard comibining by network degres

hmnmﬂuﬂﬂ:mﬂmﬂemmmmﬁﬁmﬁnﬁﬂdmmiubyn:rwmi:iumdm
illustrated in Figure 52 for a 2-D mesh system. Figure 52.1 illustrates two combinable buddies of & buddy
{u},wtmlbnfu-l{ﬂﬁ],l{ﬂil,![Jﬂ},wl[!ll.mmpmli\-:]r. In the first figure, where D of o = |
(or 00), then IDs of two combinable nodes wre fiy; = 01 (or ID = 2} and P2 = 10 {or ID = 3). Figure $2.b
i]fmmmﬁhnﬂlhﬂdiﬂnflmmﬂmmd:[qI‘ﬂwlﬂﬂ, 10})  Therefore, the two
cambinable nodes are By, = 0] {or ID= 2} and B,; = 11 {or ID = 4) respectively.

a s By w
o2 v} 50 0 iy
Pax By 1 Ba
o | : L= M T |
| i I
3
[

Flgurs §2: Some sxamples of the combining factss for @ 2-0 sysiem based Lo fha panibareg and combining by
natwork e &) 4 possible casa of & buddy and b & combine node

Figure 53 illustrates another practical example of applying the panitioning and combining by network size,
Given & 2-D mesh (N = 64 x 64). Let a (or @) = by = 11 {or ID = 4), residing st level 3 (L) and 2
combinable buddies of o are By, = 18 (or ID =33 ; fy; = @1 (or ID = 2). Assume the new considering nods
ltlt're.l1[L—I]jsﬂurml:rfnud:u|llhu:ll"uu;=ll{q.|}-ID{wlD=J]iMihm1ld]t}mtmd:5nf
aare fiyy =11 {or ID=4) and Py = P (or ID = 1),

Figure 53: An example of compuling CFia) for the partilioning and combining by network size
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Then, the combining fsctor (CF) of o (where k = 2) in Figure 53 is computed as follows;
CFle) = CF{ay=a, By) + CFy (o= Riay), Py}
=[PC, (e, Busd + PCoay, Prg) | + [ PC, {ang, Py + PGy (o, fs)
=[1+%M]+[H+%]=1%,

Enh;ﬂlf,!wln mmhmmmrmt’!uﬂsg-z}.MEHMH VI + (k-
i-'E,I"

Fi,g.ln:ﬂillumuupﬂﬂumﬁuﬂmhmﬁlhiqmmbhinghymm
and size, Gimllﬂmeﬁ[ﬂ-ﬂﬂj. L:thﬂtﬂ:!}ﬂllmj. A combinable buddy of o js B, =
Buddy#1 (at the same level). For another level, B; = Buddy#1 {ltlwdlldnmﬂumumfnhﬂuddﬁzn
level 4. Th:n,ﬂlamuﬂ:inhgfuw{mnfufmt-z}inﬂanﬂhmmmﬂu follows:

CHla) =CF, o =a, ﬁl!‘*ﬁ:{ﬂa"mﬁ:]-ﬁﬂ' W=,

meﬂ‘.ly.“hm-nuniduhq the system boundary effect (where k = 2 and SB = 1) then CFia) is 1% + (k -
5B) =2,

Flgure B4: An exsmpie of computing CFia) for the pariitoning and combining by nestwark degiee and s,

34,14 Adgorithm for Criterion 4 {Best Buddy Location after Partitloning)

W%MMtwhﬂmriithﬁrmiﬁmimm{ﬂq4
in the best-fit heuristic), Inhhmmﬂtb’ﬁulﬁmﬁmﬁqul-litﬂtm
represenied as S, whose size is larger than the requested task. Then, the node § will be partitioned ino B
hllldFﬂ.ndthahu-lnb-ﬂniﬂm[umnfﬂhﬂuwﬂlhﬂhmhdmﬂummj,whutﬂ=|1h2".
ﬂlfnrhihnplﬂﬁuim-ﬂmbhh;nm.mmﬁwh. In this case, we apply an approximate
probability of combining (PC =0, 144, 1/2 , or 1} similsr to that of the criterion 3.

Fhmu.ﬂummbiningﬁﬂurh'duk-lldiﬂﬂlﬂduillllﬂhﬁ:tﬂlpnuiﬂtﬁhﬂdlh:hﬂlhq
always have the same root, mﬁmwjmwﬁﬂummmmmw,m
Fnliuwr.ﬁr|=l.1...,,k;ir{-1=Imh=n.}ﬂmﬂnnmmbmmhﬂﬁﬂ}hyE,whnnr
beginning the value of 5B is set to zerm, Tim,ﬂud’ﬁﬁﬂcmiﬂn{mmﬂwmhmum'yh
deﬁmdinhmunfﬂn;tdnhili&ﬂfmhhlﬂg{?ﬂ‘i—ﬂﬂ}.whiiiilmm&rlllbuddynndﬂin
O(kn}, D{k2"), (k) time for three partitioning and combining methods, respectively. The buddy (o) that
yiclds the minimum probability of combining (min PC), corresponding to the system boundary is selected.
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If all buddy nodes provide the same PC, then we justify our decision in order to select the likely best buddy

(e}, based upon the local combining capability in terms of the probability of combining (PC), which is
defined as follows;

. Fwﬂupuﬂihninguﬂmﬁnimhmmmd:hmubnchhr{mufnﬂnnudm}uﬂlh:
idmlﬁndnfulim:ﬁurj=L..‘!,-.-.n:Ft;=FC{ub—huﬁiuj}ufﬂmI=ﬂmmHmhlnhﬂdHﬂd{w
FC[#|'.iIfiu!lll-hﬂluﬁ:nut:n'ﬂ]+PC{nﬁ-hudﬂnj]ufﬂuﬁghtmmHmhhthdy{ﬁﬂ[nfPC
{B:) if its sub-buddies do not exist). ﬂmﬁnlﬂufullﬂqmIuﬂulDufﬂttaub—hﬂd}'wi{ifil
yields the minimum PC). This process is computed in O(n) time since we have n buddy nodes mnd
mhmmmhini:hmdnﬁrud'.budm-- Sec some corresponding examples in Fimpere 55 and 6.

. Fn'hmhhnuil;ﬂdm‘niniuh}-mm:h:.ﬂubﬂhnd:ty[ﬂn:uf:ll!‘nndu}mhn
Hnﬂﬂddhﬂrhnﬂmﬂnfﬂuhmmmitﬁmﬂpl-]urlluum:ibntm:d:mbe
partithoned). That is the ID of a is set equal to the ID of 8(1, 2, ..., or 2*), This can be computed in
0(2") time since we have 2* buddy nodes. See some corresponding examples in Figure 57 and 58.

Emmmmpluafiduniﬁliuﬂuhuhmldymdufn'ﬂupuﬂﬂnﬂmmdmhlningh-mm
are illustrated in Figure 55, Fm;uﬁ!;mthrwﬂkﬁnfm[rlﬁ].ﬂﬁnhilwﬁrj=I,l].
and 4. Therefore, any buddy can be selected. Then, in this case the minimum address is selected, Figure
!!,hllhum.ﬂurdlﬂh*nnmnlmﬂcj{lﬁwH}wﬁidri:qu!ﬁrﬂl]:.nﬁq:tmglﬁi.

] E 2
forj=112, .4 :'..H for|=4.2, .4
- PGeX+1=1% PCi=14+ 1= 1%
PGy e W+ Weig I}

fak ]

HHLMWWHHMMHM ind comblining by network dagres: 8) any of n buddies
ﬁ.hmmm:mhﬂm I8 salected and b) the second buddy is selecisd since I yields: tha minmum PG

Fim!dﬂﬁmhpﬂﬂmhﬂmﬁummhmwmﬁﬂmhmm
E&mn!-nh{whwuh:}i}mudﬁumh{twu}uMmmm“I-:uhu}-llnmm
In this case, the 3-cube node is partitioned into two buddies. The PC of Buddydl is 4 since its
cormesponding sub-buddy at the same level i busy. mmurﬁﬂhﬂliﬁiﬂiﬂmﬂngw
buddy at the same level is partinlly free. Then the Buddy#| yielding the minimum PC i3 selected.

Figure 58: An mxampie of identifying the best buddy for e pariioning and combining by netark dagrae
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Smnumnqﬂunfﬂnﬁﬁirﬁ|huhnﬂhddynnﬂnﬁrm=phﬁﬁuﬂummmhiningh}-nuw&ﬁam
illustrated in Figure 17, In the first figure, ﬂmmu(mﬂuﬂmhﬂdy}is I, which is the same as the
IDof 5. lrﬂu-.mnl'hudd}-i:amilmﬁml,ﬂulburu{mmwhuddy}hﬂqﬂ;ﬂ.

task
[SHL:mmlﬁﬂmeﬂHhﬂtﬁlhﬂrhﬂnlhnbuﬁwmdnhhﬂ:ﬂ{dﬂ]lhmzil

sehecied, T]'H:P‘Cufbnddy .2 ],lndllnll.ﬂ.}!.l.mm::ﬁvﬂ'j. Thufmnﬂtlﬂ-ﬂﬂdy#!hllhﬁ
Binice it yields the minimum PC = 0 {i.c., k=2 5B=1.

Smmuplmnridmﬁﬁ-inuh:hmhﬂymﬂhhpﬁlﬂuﬁmndcmﬁnmwmmim
and size are illustrated in Figure 59. Fimnﬁ'}.llhmuumﬁ:‘ahhﬁmnﬂmﬂhﬂy,wﬁch
i8 0 (since k= 2 and SB = 2), m&lnwmnﬂdmmilmpﬁnd. Now the PC of the first buddy
ilﬁmdduPCnfﬂtmdhﬂyiuIudhmﬂuﬁmhddyilﬂmudulhehmbuddy. Simllar
result is illustrated in Figure 59.b.

e 5
- () E )

Figure 59: Sams mmuhmwnhmmmwmmmw @) e fral
teidely is the best node snd bj the second buddy is selsctsd

the next incoming sk (101 5), the best sub-system after step |
Afler partitioning, the second buddy that yields the minimum PC (=0} is selected,

Figure 80: An exampile of identifying e best buddy for the partitioning and conhining by network degree and s




341 Best-Fit Hewristic for CU Allocaibon

hﬁammﬁpmhsrrmsmnmwmmip [2] that we use as our system-base for the
resqurce (CL/PE) allocation, all processors are specially designed, called CPEs (comtrol processor
nhnm]ﬂmﬂ:&nﬂﬁ[ﬂjwm}ﬁanigudumﬁmn. Therefore, in our study the CU for the
mmﬁjmhwmﬁdmhﬁmﬂrmmhwbw. For the CU
allocation decision, firs we [rﬂndunﬂuﬂuﬂlmtﬂmhiq{inﬁﬁtlmlllljmﬂmh
application of the general CU searching to our tree-based CLI allocation method {in Section 34.2.2).

34.2.1 The General CU Scanning Methods

hamull,ulmdummmdnnmqiuuﬂ:dﬂuw{uucu for a selected sub-system, namely:
ljmmwmminmmwz}mmwmmﬂmm
m’}ﬁm:,nhcﬂrqrmﬂumﬂumnn.xnn.,.:n}.

34LL1 The Processor-Bit CU-Scanning Strategy

Given a selected sub-sysiem (S) of sine N' = m, x my x...x my, &t address <(ng, 8y ... ;) (by, by ..., By,
where the first k-coordinmte (a;, 8; ,..., &) represents the base address and the second k-coordinate (b, b,
+=+- by} represents the last cover address of the sub-system. Suppose the system size is N =n, xiny x...xn,
and my < ny.  First, we illustrate all possible processors (or CPEs); each of which can be essigned the CL
role for the sub-system, by using two simple examples for 2-D and 3-D mesh systems (see Figure 61),

Fnrlh:l-ﬂ:&ﬂm{mfimﬁl.l],Hhmmdlfﬁullnﬂndﬂimﬂup!‘mhﬂnamdlhn
sub-system (5). Next in order (o find an appropriate free CL at boundary of S, we can start scanning from
th:miui'llmlﬁimFwnﬂpﬂm;hﬂlﬂhnfwbyw]ﬂmimmﬁﬂnuddmﬂmmp
i bestibom, Inihmir:gﬁnmluﬂmﬂ;lu{nluqdimﬁmIj.wehwmdulhﬂmhumiuﬁrﬁu
top and the botiom. In the scanning from top to botom (along dimension 2), we also have to do the
scanning twice for the left and the right. However, it is more difficult for the 3-D system (see Figure 61.b)
mpufmmﬁmmﬂmfwdlmlibhﬂunﬂhmilLﬂhnmuﬂdiﬂ'lnuhﬁ:rmyt-ﬂmm

§7 KB

Figure &1: Some exsrnples of 8 selecied sul-system (5] and &l bf its cormesponding Cle at boundary of 5: &) sl CUs for
& 2-0 mesh sub-system (N’ = 7 x 8} and b) all CUs for & 30 mesh sub-syslem (N" = 7 xBxd),

Im goneral for & k-D system. & number of all possible CPEs that cam be the CU! {or candidate CUs) of the
subsystem § are scanned from the first dimension to the k® dimension and are identified as follows:

A number of @l candidaie CUs of §
k

~ 12 mWxm.x..xm_xlxm, x. cm
dwl

= s g oy Py KX ) L iy Ko KT o) # (my X myx. . X my 11

For example (see Figure 61 for the 2-0 und 3-I3 systems), if k = 2 and the size of & considered sub-system
(%) is H'-mlmﬁIlLﬂldenﬂJlﬂruﬁlubmhﬁl1!+T:Hﬂ3ﬂm
(Figure 61.a)L Fﬂk-ludﬂuﬂuﬂrmmmiﬁlilh"=mmm;:m3 {7 x&=x 2) all
whdidu:ﬂhfu-lhiuub-aﬂm‘ui'iltlr:1+?nl:2+?:i:1}—lnw{ﬁgumﬁ!.b:r
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Mext, we have to find the address of each of thase candidate CUs and indicate its status (i.c., free (0) or
busy (17). Inﬂnk-nqm;pmmmmmmmmnhbmdimm“dum
address (a, 8; ..., &), the cover address (b;, by ..., ), etc.  For the sub-system () of size M =m, x my
K...x My} ol nddress <(8;, 8; ..., &), (by, ba ,..., hP4ﬂ!ﬂﬂﬁnm1d¢mnflh:E-!1pmliH:EU i (a1,
3 ... &)  The scanning process starts from the first dimension to the k® dimension.  For each
dimension i (i = 1, 2, ..., k), there are two consecutive groups of (m; xmyx.x m, x | x M X oo X )
processors, where each of their addresses is identified as follows:

= =
Clls ot demensan i= 1, 2, ....wm&ﬁm:m.:...nn..uum.m..:m.nmmm‘m-u“
Inifiadee  Giroup 1 (6. 8 ..., 5=, B
_ .n..,h-l‘l,_...,t.}_ﬂ-.h,lq.-m-i
mmnmw-{nﬂmlﬂ
ford =012, ., m-1 8wl
ford:=0,1,2, ., mg1 iy

LN

Hote: for wach dimension i ff (a-1< 0, I is & systpm boundsry and o Cls in growp 1 of el dimension.
Furumplel,u:Figlnﬁ-lj,ifk-!-ﬂﬂulhuf:mmdﬂh-um{milw-?xl.-ﬁﬁmnr
lll]l'l:lntﬁihu{!l.ll,Mr:rnm.:m,l?:-lltq'n,qﬂ.{ba.bﬂ}=€(5,ﬁ],{1h 12)> are

*  Candidate Cls at dimension 1: ford,;=0,1,2, ..., 7
Group | (8 PEs): (a1, ayvdy) = (4, 5), (4,6}, ....( 4, 12)
Group 2 (8 PEs): (by+L. ay+dy) = (12, 51, (12 6), .., (12, 1)
* Candidate CUs at dimension 2: for d; =0, 1,2, ..., 6

Group | (7 PEs): (a,+d;, ng-1) = (5, 4), (6, 4), .... {11, 4)
Group 2 (7 PEs): (a+dy, by#1)= (S, 13}, (6, 13}, ... (1 |, 13}

81
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Figure §2: An example of 8 seéected 2-D sub-system (S) all corresponding candidete CUs and their addreasing

In Figure 63, ifk =3 Hﬂﬂud-ﬂlldmﬂlnhﬂmﬁ]hﬂ“—Tx!xlﬂdrHﬂngufﬂ] 172
candidate Cls, where m; x m; x my = TxBx2 st <{a,,82,0), (b bp by Jo=<(5,5,5), (11,12,6)> are

* Candidate CL's &t dimension 1: dy =0, |, 2, ..., Tand dy =0, |

Giroup 1 (16 PEs). (a-1, a5+, ay+ds) = (4, 5, 5). (4, 5,6), ..., ( 4 12, 6)
Group 2(16 PEs): (bytl, ar+dy, st} = (12, §, 5, (12, 5, 6), ... (12, 12.6)

*  Candidate CUs ai dimension 2: for d, =0, 1,2, ., Sanddy =0, |
Group | (14 PEs): (0;+d), a1, s5tdhy) = (5, 4, 5), (5. 4,6), ..., (11,4, 6)
Group (14 PEs): (s +d,, by+1, sy} = (5, 13, 5), (5, 13, 6}, ... (11, 13, 6)

* Candidate CUs at dimension 3: ford, =0, 1.2, .. 6endds=0,1.2,....7
Group | (56 PEs): (a,+d,, nytdy, mp-1) =(5, 5, 4), (5.6, 4), ..., (11, 12, 4)
Group 2 (56 PEs): (ny+d), atdy, byt l) =(5, 5,7, (5.6, 7), ... (11, 12, T)

Figure 83; An sxample of 8 stiected 3-D sub-systam (). o comesponding candidate Cls e their addresging.
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34.2.1.2 The k-Sab-System CU-Scanning Strategy

-, —
For dimension i =1, 2, k, addressing of two CLISE (each of sl = mcm; R e K0 g, et Py = 1) g

Min CUS address = <(a,, &,, ., B TR MR R O TR
Max CUIS acldress Irﬁ{l,,h.....hﬂ,...,u,m,h-..,mi,....Iﬂh

For example (see Figure 62), iIf k = 7 and the size of a selected sub-system (5) is N*= 7 x 8, addressing of 4
CUSs (of 30 candidste CUs), where my X mz=7 x B at <{a;, ag), (by, byl = <5, S0, 12 are

* At dimension 1 min CUS (B PEs): <(a,-1, 8}, (a1, by} =<4, 55 (4, 120
miax CUS (8 PEsk <(by+1, a;), (by+1, byl = {02, 5), (12, 12>

* Al dimension 7 min CUS (7 PEs): <(ay, a;-1), (b, ap-l)> =<5, 4, (11, 4)>
max CUS (7 PEs): <(a,. by+1), (by, byt = <[5, 13), (11, 13

In another example (see Figure 63), ifk = 3 and the size of a selected sub-system (S) is N™ = 7 x & %2,
ldtiurlmnfﬁﬂi&{nﬂﬂm:ﬁmﬁm.whmm.xm,:uh"."x!:Eiq-..l;.l;]. By, by, byj==
<5, 5. 5).(11, 12, 6% are

* At dimension | min CUS (16 PEs): <{a-1, &, &), (m,-1, by, byl =-<(4, 5, 5k 4,12, 6
muwsuﬁﬁsl:qh,ﬂ.la.n:.‘l.l:hﬂ,h,.h-_.j:- =<(11, %, 5), (14,12, 6>

& At dimension 2: min CUS (14 PEs): <(n;, 85-1, 8y), (by, a1, by)> =<(5, 4, 5), (11, 4, 6>
max CLS (14 PEs): <(a, by#1, my), (by, byt1, byl = 5, 13, Sk 11, 13, 6=

* At dimension 3: min CUS (36 PEs): <{a;, a5, ay-1), (by, by, 1) = (35, 5, 4), (L, 12, 4
max CUS (56 PEs): <(ay. ag, by+1), (by, by, by+1)> = (5, AT OLILTE

34.2.2 The Tree-Based CU Searching Methodds

qu:mmcummummuimmmm-&hmwnmﬁmum
tree-node containing some candidate Cls for a selected sub-system in di fferent time complexity: 1) the CU
depth first search (CU-DFS) strategy (O(N,, + kNy + K5)); 2) the CU adjncent search (CU-AS) strategy
{m’}]r.udijﬂut:‘uirﬁtm[malﬂm{ml]}fmﬂlmmmmnﬁmﬁnmgmm

34.2.2.1 The CU Depth First Search {CU-DFS) Strategy

ﬁmdmhﬁmmtmﬂm}mhmmﬂnd-nrﬁumd:{mmwdmn}inﬂuhw
mniuqhnuumihlﬂmdwhﬂmm. The searching starts from the root and goes to the left most
(lent) node, which is the first node R Ifhnﬂhﬂhﬁn.ﬂmhﬁllﬁﬂmnilﬂmmsm
ned (sce Definition 2), identified in O(k) time. H‘m.uubminuluanrthmdekhmnpmdﬁrm
candidate CU of size one processor (p = Ixlx...x1). During the DFS search, we also apply the best-fit
ull!inﬁmiuu!,d.t{&qﬂ-Hwiﬂmuﬂmuﬁm]mthelﬁmuumﬂmlyinﬂ'h}ﬁm Then, the
ledjmlmduRwillhcup:htudIfiljiﬂﬁﬂtbﬂﬁﬁ:hﬂ-ﬂtvdﬁﬁmﬂtmﬂimm
R in the record. ﬂ:mﬂﬂumhr&pﬂdﬁrﬂnmﬁumﬂeﬂfﬂmmm}mﬁlﬂlnﬁnh
the tree are visited, mm,mmmnrmmmwmmmhmmn&rmm
u:,msin{:{m+m,+k‘}m‘numnmmmumﬁ-mu,&ummiﬁmmm
nijnmy:hﬁing}.nﬂhﬂ:mmdu{vhirhgwmm-ﬁtmmﬂ Finally, for the best adjacent
mnlhmﬂmhmmmﬁ“idﬂﬁﬂddlnmﬁﬂﬂih time) and sclect the
umsmmmmmmmmnumqmmﬂlm Jtimel  Therefore,
total time complexity is (N, + kNp + k' + K7 + k%) or O(N, + kNp + k%), This CU-DFS strategy can be
:pplinldhmhmdlthuwﬂhﬁqndmﬂﬁugthIHﬂmﬁk’]lim:.
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DEFINITION 2: Any two sub-systems (5 and R) are adjacent ulong the dimension i if cither |a, — by = 1
OF [by — 8o = 1, where i =1, 2, .., k; (i, fi) = <(a,,, 83, - B (Byi, b, .., By )™ represents the address of
S5 and (an B = <, a, .., 84, By, B, +v=s By J- represents the address of R

Fumﬁumﬁmﬁd}.mh-zm:sﬂuud:ub-thﬂufﬂuhl'nm.xm;n!ha
address <(a,;, a.), (by, h.;b-lmd-mmﬂn—hgﬂumdnhﬂfufﬁnw=m‘.xm‘jl the address <{a,,,
8], by, Ba)e)) ﬁmﬂaﬂlmuﬂwﬂmnﬂm:huh,—bﬂlnlludh.—l,.d:tl fior
allj=1|, 2 Fimﬂ.hillmﬁuﬂh-qmumsihufﬂ'dhli=1.I1.;—:lﬂi-I. Figure 64.c also
illustrates that Risﬂjmlmsainn:fnuﬂmi-I.h..-bnlnl.rmnuinhr.

B, B
Bl iBri, Bl (. Bag) (g, Bz}
] A Trew node
z {RY in e
" iy X ')
H  =7xm By, Bl
TITT LT Bt

(i

ﬂqunu:mmmuuq-m:mm-ummmﬂﬂuﬂ:mmmumm:mm
ch Two adiacent slafusss

3.4.2.2.1 The CU Adjacent Search (CL-AS) Strategy

Searching rnunmummafwshyndqmCU-nFsmnmukuﬂmnm,u’]ﬁmﬁn
n:rmnuh:hdmhrm{&}uﬂhﬂﬂiluwhmﬁmhﬂ!mﬂﬁ:nﬁm{ﬂ].
Then, the CLI adjacent search (CU-AS) strategy is introduced to improve that time complexity.,

Ti:cuvhﬂmunmrinhﬂﬂ&minﬂduiuﬁndm&nmdunlhtnﬂmuqum to the selocted
sub-system 5. Mumtﬁmmﬁmhtdnhdﬁmmmhﬂrﬂnmﬂﬂlmhﬂym
(R in O 1) time, IT that adjacent node R is free, its best-fit value (see Section 3.4.1 {only Step 1 - 3 without
ulhmti.liu-n}iﬁappifﬂfnrlbnEUnrﬂmmplm[p=1111...ﬂ}inﬂik}ﬂmt. Then, the new node
R will be updated if it yields the better the best-fit value than the current node R in the record. This
searching process is repeated for the next adjacent node for at most k nodes in O(K) time including the
best-iit compating, Nmﬂuﬂucu-ﬁsmhnrmu:u-dnﬂlrmwﬁmtm:mmﬂfhm
DFS strategy (see Section J), slthough it does not perform searching for all condidate ClUis s the CL-DFS
Stralegy do.  Time complexity of the CU-AS strategy is only (O{k®), described for each method as follows:

* Fmﬁupﬂﬂmhguﬂmﬁhimhym‘:dqu{meﬁmd 1), there are a1 most two sdjacent
hddynnduiinﬂ::hﬂmdﬁ;h}id:ﬁﬁud[nml}tiru,whm-ﬂplmminﬂmnlwhmy
naxdes can be candidate CUs if they are free, Searching may noed k levels for the minimum free node’s
size a3 must as possible, and hence time complexity of the CL-AS strategy for this partitioning and
combining method is Ofk") Including the (k) time for best-fit computing, Sec the corresponding
example in Figure 65.

» Fwﬂumiliminguﬂmmbiniughymuim{hhlmdEl.ﬂllmmhingmmsmm
adjacent free nodes (st most K nodes) can be identified directly {see Algorithm CU.l and the
comesponding mugl:; in Ofk} time, Searching for all k adjacent nodes of 5 and computing their
best-fit values is O(k) time. Therefore, time complexity of the CU-AS strategy is Ok} time.

. Fmthcpnﬁﬁmﬁnguﬂmrbhﬁuhymmmmﬂu{maj.ﬂuminlmﬁms.
Th::ﬁmmd:ufﬁi:d&mlyidnﬁﬁadhE{l}mﬂﬂnhﬂ-ﬂlvﬂu:mhmw im Ok} time
singe there is only one sdjscent buddy (see Algosithm CU2 and the comesponding example),
Therefore, time complexity of the CU-AS is O(k) the next level searching and hence O(k”) for the k
levels searching for the minimum free node’s size &s much s possible.

Note: In this CU-AS searching straiegy, we illustrate time: compiexity based upon the iden of the combining
wnd expanding, which is stored in the expanded node size (see more detail ln Section 3.3 and Section 15).




FigmgE&illmﬂuwﬁnlmnﬂ:nfmﬂyhgﬂumﬁﬂmfuhmlﬁdmhgIﬂd
mwmm mm::lmdﬂbmiﬁ}hﬁuhﬂyﬂﬂlhd 2 and hence
Lumulthmhd:lymﬂnm#lmﬂ#ﬂulﬂel 2), respectively. Al free nodes of the buddy #1 and 3
mhﬂhﬂrihhmmﬂhﬂwﬁrmm{m,mmm’ﬂltluvﬁd]ni:ulmnd.
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; & Dombingd si-gyimm & pombired aub-sysmm {of szl oy & A & (320}
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Figurs 83: An example of applying the CU-AS for the parioning mni combirmng by netwoik degree.

w«mwm“-mmmrmmmﬂmmw
combining by network size, Thntmﬂm:pnuiﬂammumﬂmﬂulhﬂlymﬂ:w:mmbim
sub-system (see Section 3.3.2):

Case |- if' S is any buddy node (ID = 1, 2, ..., or 2" in an integer format or (b ... by bg) in & conversion
sub-system bit-map format), Eﬂcﬂkﬂjmthdd;mduﬂﬂum

H W

1] .2 3] 2 aciacent bucdies of S fbyba = 00) are 0] and 10 I

...... m—pr
Kyisl 2in] {1
Ik = 3, k adjacent buddies and k adjacent sub-buddies of an § where ID = 1 i

1 i 100 ; 3 poyacent burides of § (gt = 000) are 001, 010, and 100.
1ooey fose) J] .. ’
| |
0

M:ﬂ'shmymmd:ﬁ-mnl‘hﬂdhmmlmmingfmuu.., e Ui g 0f 8
and stored in a special expand node size, there exist js* * and k- bits (b)) in that string, where j= 1,2, ..., k-
|. For each adjacent buddy, we compute the best-fi value (Step -3 without tmsk rotation) in O(k) time.
Fnrlhtll'n:hﬂﬂh&lhnnuﬂ:huﬂmhﬂhuhkhniﬂnﬁ:ﬁﬁhymhglnu‘{mI’hrnm
dimension at & time and then expanding all*s, wherei=1,2, ..., k. Therefore, time complexity for finding
k buddies including best-fit value is O(k"). For example, if k = 2, k adjacem buddies und k adjacent sub-
hﬂdhuufmr5[dmj=lmlmmmhgiiﬂ" 1, *0, or *1) are

® 5 (% [ w
2 adjacan buddies of 5 (kg = 0% are 1° (10 and 11}, il s I i

i Gl [ T l g
i M| i g
r——  — ——

Ifk = 3, k adjacent buddies of an 5 where ID = | and citherj = 1 or 2 {since only the maximum combined
node at any level is stared in the expanded node) are

||||| " *_F'n']:‘l
r : 3 admonnt budtien of S {lsils = 007)
i von it are Of* (010, 011} and 10° {100,181}
& SRS
ol !:.m ] s or For| =2,
ingi H ; 3 adjacant buddies of § ik = 007
: a1 (100, 101, 110, 111).




For example, if k = 2, 2(k-1) adjacent buddies of any 5 (where 8 temary string is 0* and 00 or D1, *0 and 0O
or01, I*and 1000r 11, or *] and 10or 1) are

I:':.? W 2 (20K 1)) acjscent buadies of 5 (ltesd", tbuby=00) are 10, 11, | [ @ _ w [¥0) [

i = - i

Ual ¥ i R P il

- .

hﬂ P % (20%-11) adjacent bucdies of 5 (tis="0, Bybu=00 v 01, 1]

e

ALGORITHM CU.2; “Adjscent buddy of & selected sub-system 5™ for the partitioning and by
LU - combining

I 5 is any buddy node (ID = 1, 2), there is only ane adjacent buddy nodes and we computs the best-fit
value (Step -3 without task rotation) of each adjacent node in O(k) time. In order to find CLs from k
lidnuihliﬁndhj'ﬂtpuﬁﬂmlrurﬂ combining by network slze, we conislder the following two cases:

Case |: Beginning at the same level 88 S, For the same level as 5. thers exisis only one adjacent buddy,
which is identified by negating the ID of § (i.c. if TD of § = | iis 2and if ID of S = 2 it is 1). Therefore,
Hmmﬁuﬂyhﬂnﬁ:ﬂuhﬂhmmM best-fit valise is Ofk).

Case 2: Beginning at the upper level or the sub-sequence rook(s) of 5 (R(S)) up to k-1 levels, In sach
upper level, find an adjacent buddy of the R{S), which is Hillmﬂeﬂb:;ruillmg the ID of the R{S), Time
numplnltyfn‘fmdhuabudd;rhdﬂmbnbﬁﬂﬂuhﬁﬂmﬂfh}Euralmntl:ruh

For example, if k = 2, an adjacent buddy of any $ and an adjacent buddy of 5's oot (where lﬂjt_?:!h"

. ﬂur:1mmdam-:;uz.
ﬂ Case 2= 1 achacent biddy of RES) (D= 1) 2

lfk-?r,mdjﬂuthﬂrﬂﬁf_whnnlﬂ=Hl.ndldjmbudﬁunfﬂ;-ll-l:\-:lﬂ‘:mnum

L - 8. _F

Caomn 1- ¥ scfiscant buddy of 5 10 = 1) 8 2 =1 vl 4
Cass § For RaH),
| meiiacae Busddy of B[S} 0D = 1) & 2 & el 3
For RgE],
1 ifmcent buddy of RS} 60 = 1) & 7 & level 3
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After DFS searching of both sesrching methods (the CU-DFS strategy and the CU-AS strategy} 1o visit all
modes in the tree for the SIMD task. we obtain the best sub-systermn S and the best node for CU, whose size
may equal or larger than the requesied msk.  The final step (applicd only once) for both strategies is
selecting the best-fit PE and CLU after pantitioning. Let's consider the following criterion:
® i the sub-system size alroady fiis to the tesk and the CU node size is equal to one PE, we do not have
o apply the partitioning method
®  Dtherwise, we apply Algorithm A4 for cach buddy node 1o find the most fit one {or the like best
buddy node among B nodes, where B = ny, 2*, or 2 for three partitioning and comhining methods in
Ofkny), O(k2"), O(k) time, respectively, Note that
*  After partitioning, we will have more cendidate ClUs inside 5, where adiscent sub-buddy nodes =
2,k or | for' Method 1, 2, or 3, respectively. Then, we have to compute the besi-fit value (Step 4
in Section 3.4,1) for each adjacent node of the best buddy (from S} in O(k), O{k%), O(k) time, for
Method 1,2, 3.
®  Then, between the best adjacent node inside 5 and the best adjacent node outside 5, the one yields
the better baat-fit valus is selected.
=  Finmily, if the CLI node size is equal to 1, we do not have to perform the partitioning. Otherwise,
we partition that CU node and select the best CU for that best buddy for the sub-system (PE) for
the requested tasks.

34.1.23 The CU Inside Senrch (CU-I8) Strutegy

Searching for all possible candidste CUs by using the CU-DFS strategy takes 0N, + kNp + K°) time and
senrching for some candidate CUs by using the CU-AS needs O(K’) time. The later strutegy improves time
complexity over the previous ang for & corrent sub-system (5). However, it ts still time consuming for all
candidale sub-syitems. Then, the CU inside search (CU-IS) strategy bs introdiced to improve thet time
complexity, which is O{1) time for a corent sub-system (5).  In this case, the searching is similar to that
for the sub-gysiem in PE allocation, encept now we are always looking for the sub-system that is larger than
the requested snd hence it always includes CUs inside that sub-system. Thus, we do not need extra time (o
search for CUs outside the sub-sysiem, as the above two strategies.  Although this strategy does not search
for outside Clls as those fwo sirategies do, they yield the comparable system performance as those of two
previous stmtegies (see Section 5).  Therefore, time complexity of the CU-1S strategy is O(1),

3.5 Searching for Allocation/Deallocation

This section integrales all computing functions (in Section 3.2 - 3.4} to form the scarching for resource
{CLV/PE] a llocation/desllocation de cision. A s a n int roduction in § ection 3.1, Figure 22 illustrates the
diagram of the dynamic tree-based resource (CUPE) sllocation'deallocation computing flow for =
reconfigurable and partitionable MSTMD/MIMD parullel system.

When there is an incoming task, the dynamic resource allocation process will check in the waiting queus
firsi. I the wait priority of the first tsk in the waiting queue is more than the threshold value, that task will
be put in the wiiting queue. Otherwise, the processor “allocation” procedure will find an appropriate free
sub-gystem for that taik by searching imto the tree. If there is o free sub-system, the requested task will be
allocated on the system. 1 no available sub-system, the request will be put in the waiting quene with FCFS

ng. In particular, in the tree-based resource (CU/PE) allocation procedure, searching starts from
the root and performing depth first search (DFS) to visit all free nodes in the tree by visiting the left most
(leaf) node first. IF that node is free and it size can sccommodate the request, its best-fit value (see
Section 3 A4.1) is computed. For an SIMD task, the Cll-searching strategy is also applied (see Section
34.2.2) Then, the best (SIMD/MIMDY) sub-system (5) is updated if the new free § yields the better best-
fit value. The above process is repeated for the next free leafl node in the tree.  Afier all nodes are visited,
the final process is applied, which i cither to 1) allocate the best sub-system directly to the request (if its
siae is oqual 1o that of the request) or 2) partition (see Scction 3.2 wnd 3.4) to find the best sub-partition of
the corresponding node for the request (if its size is larger than that of the request). Next step is applying
the sub-system combining process (see Section 3.3) to recombine sub-systems by starting from the
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partitioned node. Mmmhmimmmdﬁwmﬂlpmﬂbhmbhﬂnhm‘m
the tree since we slways keep the non-overlap sub-sysiems in the tree. Then the expanded node size (sec an
example in Flmﬁﬁ]hlhﬂdiﬂiﬂﬂlﬂmﬁ-iﬂhﬂmﬁﬂhdiﬂwﬂdlﬂhhduﬁmmduh
mmmﬂmmd-mmdmd#hq. Flu]lmhmilnmﬁ'ulin{lmliudinﬂ:hm-m
heuriatic) s updated.

Table | summarizes main functions of eur resource (CL/PE) allocation model for the three partitioning amd

combining methods,
Tabsls 1. i iunciions of e univmmsl fEsowncs mliocadon
%Eﬂ
(1) Luaf node nperation rodes

-mmmmhmmmam Baciion 341 Saction 34,1 Gaction 341
Ea_m_%_@%ﬁm-m ts bast-fn value tor Clis of mach  Sechon343 | Serdn347 | Secen3dz |
[ -1

- for PE {SRDARID} Bacgon 3.4.1.4 Sectior 3.4.1.4 Section 24.1.4
- Tar U (SIEY) Sacion 34.23 Secton 1423 Secicm 3433
- Hadwork pariiticning Baction 3.2 1 Saction 323 B $3 5
- Adocaia
TSV Combanimg aite alloculion e Baet sobsamtiion

-Emmwﬂqmmmm Sachian 331 Saotion 3.7 II:I!!-.I_.I
lliﬁhmgh Sation 14,7 Baclion 3.4.1 Seclion 34 1

Mote. Method 1 s based upon e parSioning and eombining By netannk degres. Mefod 2 i based upon e pariticning
and combining by network size. Method 3 is based upan the partitiondng &nd combining by network degres and sizs.

{or Buddy nodes) &8 soon es they become available, The recombining process stars form the new free
node (of the compleied 12sk) to the root of the tree. mmmwmumummhﬁy
of a comesponding node (along the combining path) i not availshle. Finally, the maximum free size
{applied in the besi-fit heurstic) is updated. At this fime, if there sre task(s) in the waiting queus, the
mnﬁ&ﬁﬂﬂuﬂlhwiﬂmmwuﬂlﬂnmhh“dﬁmuh.

Table 2 semmanzes main functions of our resource (CU/PE) deallocation model for three panitioning wnd
combining mathods

-uulm[wmﬂm - ]
- Unexpanded size & update sigius of soroaponding

(T
T e — =2 Tt By

Mote that in :um&.mmmmmmm,mmmhmﬁw
hmﬂu*mﬁ'mmﬁ-lh&"lnﬂimﬁnmﬂﬁrnﬂnhhdm which is selecied
& the besi free sub-system fior the roguest. This ides is so imponiant for the general tree-based allocstion
for the panitionsble k-D systoms i arder w0 limit the number of nodes in the tree and provide the same
methodology to upkdate and partition & & regular (free) leaf node. For any combined sub-system, a sub-
hﬂynﬂ[ﬂﬂuhﬂﬂﬁﬂhmmwmmﬂumhﬁhﬂlﬂmdmh
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Fipnﬁﬁilluhﬂnmumﬂih:mbiniumd expanding for given a 2-D mesh system with three
mhlllmmdfhuddﬂl:lId#lulnrellhu.dﬂjrﬂlnl:\r:IJ:ueFme.l,}. Suppose that the lasi
allocated node is the buddy | at level 3. Thmu:npuﬂudmd:numlnguflmmhimd[ﬁxﬁ}aub-
system is illustrated in Figure 665, The expanded node's imformation (i.e. expand status, new size. new
hliﬂﬂdn'u.uldlim.ﬂ-ldhncnﬁﬂ.]wﬂlHmﬂm&nﬂﬂdmﬂ:{hﬂ}“ulnﬂl}.

| s

D Frem moxde

[ pastialy rem node
Bl espand noe

(1AL}

mm

) &)

Figure §8: An example of the “node size expending”: &) the cursnt fee with 3 (ask allocaisd and b} tha comaspanding
ree with “sice axpanding”,

LA

3.6 Time Complexity of the Universal Resource (CLU/PE) Allocation Model

Before we start deriving the total time complexity of the universal resource allocation/deallocation model,
we show the summary of time complexity for all major processes (in Section 3.2 - Section 3.4) of the
allocation model in Table 3.

Tabde 3. Tha number of buddies and ime complasity of esch process in e universsi rescurce (CLVPE) alocation model

Functions Method1 | Wethod @ Mathod 1
- Number of Buddies || n i N TR
—— Tima
Sub-sywtam
- in Allpcabion proceas kn™" Dkt o
- in Deatiocstion Difri} o2 Ok}
—Biesi-Fit Hourisiic for PE Aliocation fior 3y SING TN ol
- for Ny astamal Ok
BastFit Adlocation (for ary Gili0 k)
= CU-OFS for any 5 DMy, # KBy + i)
- CLWAS for any & o)
- CLHS for any § o)

Moks: Malhod Th-h-dmnhp-ﬁm-ﬂmhmtm. Medhod 2 s based upon the partitioning
#nd coembining kry etwork size. Mathod 3 is based upon the pariitioning &nd combining by naiwerk degres and size

3.6.1 Time Complexity of Senrching for Allocation/Denllocation for any MIMD task

Let M b the system siee (N =n, £0p % ... X m),
Ma be the maximum number of allocated tasks (N, < N),
M be the corresponding number of free nodes in the k-Tree (N, + Ny £ N),
hd be the maximum number of nodes in the k-Tree, where
M = external {leaf) nodes + internal {non-leaf) nodes < ZN) and n ~ max(n, ny,....n ).
(SN + Ngd + [Nx + M — 1)/ (b= 1), where b=n_ 2*, or 2 for Method 1.2, 0r3)

Table 4 illustrates the summary of each function time complexity and total time complexity of the universal
PE (or sub-system) allocation for any MIMD task.
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Tﬁhkhmﬂﬂydmﬁmahmlm{ﬂmﬂmmhmm ETTS

i Main Funclions Mathod 1 | Mathod 3 Mathod 3
i Leaf noda operation (iar Ny nodes by OFS} | 5 T
best-i value for sach node EH{Ma, * kMg | M + kMg ) DM+ )

2 2l nodes
- Bt sub-pamiton EXhn] Oy Ofk)
- Allocats i Ok} D] k)
- Cambining {Aigarithen C.2-C.3) O™ O™y Oy
- Expand sirs & I-l!h'l.l“.l.!- Ofich Ok}

searching Oikn} o L
1) I Eha finishissd noce i
Cieal |update I o01) 1 o1
3 locabe Bl
- : . Ofkn) cgbllp uﬂf"r
-f-m-'n:qum C.1] 1 1o root O{kn} ofn2') Oikn)

CifPs, # + My + by
T compoety (1 89— e s

In order to simplify the ﬁmmmhiwmnh.wmmﬂmﬁnupuﬂwlrmmmmm
tasks nlways require sub-sysicms that I-mthnminlﬂrmﬂmri:nmﬂnlhlipmvidndb}-lh:
system. Therefore, we derive total lin:mqﬂuui:;rfarmhpnﬁﬁmjugmdmnhhﬁugn:umdin the
following sub-section,

3.6.1.1 Time Complexity when applying the partitioning and combining by network degree

THEOREM 1: ﬁmmuﬁui&dumhﬁlﬂmﬁmmﬁmﬂuhmﬁuwm for each
incoming task on & product network-based systems (of gize N = p, » My X...% ng) that partitioning and
combining by network degree is O(N,, + k*N; + kn**')).

FROGE: Irnh:ll]n:lﬂmuljnﬂﬂlmlnun'ﬂnrnfm“huimﬁuunrfh:ﬂfﬂd:pﬂtﬁmmhlmu
mnuummb:-ufmdniuﬂ!:ﬂumduulyuﬂnwlmﬂmm!nwum{mqm]m‘,ldnmquﬁtm
visited. In this [wbsymﬂlmjwmeuﬂﬂnfmmwmhmmm":
mmhrufhmymdumﬂmItemhn!frﬂ:mdu[ﬂ.}.vﬂw:]’i&*NFEHlnd'Hp = (n— 1M,
Eimﬂ:nmnbm-ufumml:whnmdum-tmﬂﬁ Ny = N and the number of internal nodes ane
al most (Wleaf nodes-1) divided by (n-1), Thunﬁ:mth:bhlnmhwnfminlhnui:ltmﬂﬁld
nodes, where M= (N, + Ny) + (N + Mg — 1)/ {n— 1), For cach (free) leaf node (of Ny nodes), the best-fit
value is computed in O(k’) time and henoe O(CNy) for all lesf nodes. Afier finding the best free sub-
system (Step 3), if its size is equal 10 the request, then it is directly allocated o the request. Otherwise, the
mwkp-ﬁﬁunjngmdﬂuhmnﬁ-piﬁﬁmuillhimid.whi:hﬁnhnmn'q:ulndinﬂthi}ﬁnn. And
ﬂnmmﬁqmﬂﬂn}inhmisuyﬂuﬂ!nﬂk}ﬁm. Nnnﬂummhiningmhupplhuﬂiu
k"' time. Then, the expanding size and update status takes O(k) time. Finally, the maximum free sfze
is updated by applying the DFS in O{N,, + kNy), Thus, total time complexity to visit all nodes in the wree is
approximately O(N, + k"N + kn*™'), In addition, this method when applied to the hypercube (or k-cube)
provides time complexity 0N, + k*Ng + k2" since n = 2.

THEOREM 2: Time complexity of the tree-based deallocation 1o free the particular iree node that stores
d':ﬁniﬂﬁlutmdmmmhin:ﬂuﬁ'uhuﬂ}'mﬂunfﬂummmh-hwm“mmulnfﬂttmrmtht
partitionable product network-based systems (N=mxmx = X My} that partitioning and combining by
network degree is NN, + kN; + kn).
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PROOF: Mﬂ:dunmpmmmmfmﬂulmaﬁmnhﬂmhb-mﬁmumh
il most kn steps. Em#hdn;ﬂlnhddymdﬂﬁmﬂnﬁrﬁﬂudmh-mhﬂ:mmpnﬂh]m
another n{kn) steps. Mhm@hmn!ﬁ%ﬁumﬁfuﬂmh
required in O{kn) time, Finally, the maximum free size is updated by applying the DFS in O(N,, + kN, ).
ﬂn:fma.uulﬁmmmbnil}'nrﬁnmmdulhﬂﬁmiuﬂmﬁ+lﬂg+h} ‘Mote: Our mode],
wi:um:pplindtnlhhyp-nrmlu{wh—mhﬂuﬂmmviduﬁnumﬂaﬁqﬂﬂﬁ+m}imn-l

uunmmmwyummm-ﬂmhumm

THECQREM 3: Time complexity of the tree-based allocation to find the best free sub-system (PE) for each
incoming task m.pmdn.mutmi-buud:;ﬂ:nufnfuiurhn.nug:...:m that partitioning and
combining by network size is O(N,, + K'N; + K°2*),

PROOGFE lnﬂ-:-llnﬂtimﬂpﬁﬂlﬂ.ﬂntﬂ:nufwﬁmhnmhmufﬂuﬂﬁ-{ﬁphﬂm—m}mu
mosi & pumber of nodes in Ihuumduﬂymdumﬂnmluwﬂntﬂth]memm
visiled, hw{mmmmlmkmﬂmdulnhni:m»h
mmqfﬂhuhdmhswhqnndu{H,.jnd!hum#nﬁm:mdu{H.}lnlhhu.lhﬁtHn+Np
% Nand Ne £ (2" - 1)N,. Since the number of extemal (or leaf) nodes are st most Ny + Ny < N and the
number of intemal nodes arc st most (#eaf nodes-1) divided by (2 — 1). Therefore, the 1ots] number of
noddes in is M most M nodes, where M = (N, + Np) + (N, + Ne— 1)/ (25— 1), For each (free) leaf node (of
Ni nodes), the best-fit value is computed in OK’) time and hence ) for all leef nodes. After finding
H:buiﬁwnﬂ:—uym{ﬂhp]],iﬂuﬁniuqud mhmumduithdhﬂflﬂuuﬂhhw
mum-i-e.unmmmﬁm;muhmﬂbﬂﬁﬁmmuhm-mnmhmm
O(k2") ime.  And, the iugnndﬂi}inlh:mltwhhdinﬂlﬂﬁmﬂm.hmﬂﬂm
process is applied in O(k*2™) time. Then, the expanding size and update status inkes Ok) time. Finally,
Mmimmﬁwﬁuhmﬂdwwmmﬂﬁinﬂiﬂ;+kﬂpl Thus, total time complexity o
visit all nodes in the tree is appronimately O(N,, + N + K524, In sddition, this tree-based model, when
lpp]-ind.luthl:!vm-d'.lmhul-ﬂ.l‘l—ﬂmmmﬁduﬂinurﬁmmmh+m}ﬁme
k=1 for the 2-D systems and k = 3 for the 3-D systems.

THEOREM 4 numﬂmmmmmummmum
the finished task and to combine the free buddy nodes of the root sub-tree 1o the root of the tree on the
partitionable product network-based systems (N=n, x 1, x .. x 1y} that partitioning and combindng by
network size is O(N,, + kNg + k™).

PROOF: lnﬂudullnuﬁnupmnnﬁn.mdﬁmfwdu:muimqnﬂﬁiﬂm from the oot is
at most nf2") steps. Cuuthh;dll‘hﬁh-lnhlhmmﬁﬁﬂduhmm&mﬂfpuﬂﬂﬂ
takes another n(2") steps., hm,dnmnudwi::p:mnfdrnpnﬂ-mbdupm_ﬁrnﬂ
may be required in O(k’2") time. Finally, the maximusm free size is updated by applying the DFS in O(N,,
+ kNg). Therefore, total time complexity of the troc-based deatlocation is O(N, + KNy + n2%). Note: Our
best-fit tree-based model, when applied 1o the 2-DV-D mesh or Lorus sysiems, p rovides a linear time
:nn'qﬂ:mym,ﬁﬂr+n}ﬂn¢uﬂmt=2ﬁrﬁw}{lrﬁt¢mnﬂk=lhh3{lm

3.6.1.3 Time Complexity when spplying the partitioning and combining by uetwork degree and size
THEQREM S: Time complexity of the tres-based allocation 1o find the best free sub-system (PE) for each

h:cmnm;l-kunlpmdmmm-hudmrurﬁuﬁrmnnﬂ...: m,) that partitioning and
combining by network degree and size is O(N,, + K'N; + k%),

FROOF: In the allocation algorithm, ammb:rufmniwih:ﬁm-nfﬂ:ﬁ‘&{tﬂhﬂm“ﬂﬂmu
nuuimnnhm-armdninuuuumdunlymdnmn:nmhruuﬂh{qrquih]hwm
visited, hﬁ{mmﬁm]mmmﬂmlnhmurmmh
mmh:ruhllnundtl.lhmbuymdnm,]lndﬂ:mbarnrﬁum%}hhmmm+ﬂp
= N and N < N, EmhmﬂﬂHuMImlunmﬁmmumHﬂHpEHmﬂmmﬂmnr
mm.imdmmum{#hurmdn-l}diﬂddw[!—l}. Therefore, the total number of nodes in the
free t5 a1 most M nodes, where M= (N, + Ny} + (No # Ny — 1)/ (2= 1).  For each (fres) leaf node (of N,
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nndn}.uubmﬁ:mmsmmiuﬂﬂﬁﬁummwm,}ﬁwm leaf nodes. Afier finding the
hmﬁ-u:mb-q-um{&mpi}l.Hiudnhuqultmmamnuﬂmithdimuylunmﬁmhmmt
Mﬂi&mH:HH:ll'thﬂthmmh—pniﬂmﬁllhtiﬁiind,whi:hunhmmpuhdin
(k) time, Aﬂ.hmmuiqmﬁl]inﬁmiuupﬁhdinﬁﬂﬁm Neat, the combining
mhwinm‘]m.nﬂhmuummmmm}ﬁm Finally, the
mlmunheﬂuiumdmdhywmughmhmﬂﬂmp}.Tlmn.mu!unummplmnrmviniiﬂl
nodes in the troe is spproximately O(N,, + k*N; + k¥ In addition, our tree-based model, when spplied 1o
lh:1—[.\-'3-1:!n:lhnrz-ﬂ".'l-l}mmmﬁhnliwﬁmmﬂnﬂyﬂ{m+ﬂﬂﬁmk-1fnf
'Ihl-Dl}lhﬂlﬂl=3lbl‘ﬂl]—]}m.

THEOREM §: Time complexity of the tree-based deallocation to free the particular tree node that stores
ﬂ:ﬂuldudMdmmﬁmhﬂubﬂymﬂnﬁlumMInMMﬂlnrﬂtmum
partitionable product network-based systems m=n|:n;1-..:n.jlhupu1hhmin]lndnm1ﬁnhghy
mtwm‘k&pundliz:il{ﬂl,+H¢,+h}.

1.6.2 Time Complexity of Searching for AllocatisnDenllocation for any SIMD task

Time complexity of searching for allocation for any SIMD task is stmilar 1o that for the MIMD task. except
wul'uvan:ddduﬂi-ﬂmﬁmﬁmmhnm[wmhiﬂuhdmh-qmn}mhﬂhsnp | and 2.

3.6.2.1 Time Complexity when applying the partitioning and combining by network degree

Table 6 illustrates each function wme complexity and total time complexity of the universal CL/PE
dlmntimwuubrurmyEmm&hmdmmmwﬁﬂuiuudmﬂﬁmhymwkm.

Tﬁlhmunﬂmuhmlmmumﬂm“quﬂhw

i
1) Loal node oparation fior e nodes)
Compuse besi-N value
- foe sach frea rod | 3RACARI O
- CLs off pr a1 g
T Pty ecet ods (SM0)
- Baal sutrparton
« for PE (SIDWARID] Cfion )
- for CLI (SIMD) Ofkn)
T Conbi S ) e
- Cambsning (Algorshm C.3-C,3) O™}
- Empaind ﬂﬂ‘lﬂlm D.':i“
=5 T
ﬁ}ﬁ% Ofche + + Ny %Arik. O(M, * °h,
] ) o)

JTHEOREM 7: Time cmﬂmqﬂhmmmmmmcﬂmmm
mmmnmmmuwmrwmmumm.mmmm
that partitioning and combining by network degree is OfcN, + NNy + kMgl + kn**').

PROGCF: Sh:munnmm|,umumrummu1lurmdul;:fmmﬂu;,mm-ﬁmm‘u
computed in O(k’) time for finding PE (or sub-system}) and O[N +kNp+k”) time for finding CU by applying
the CU-DFS strategy. Therefore, it tkes O + N, + Ny + k or (k™ + N, + kNg) time in finding both
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PE and CU for esch node and hence O(N,, + (i + Ny+ kNg) N} for all leaf nades, Thus, total time
complexity to visit all nodes in the tree is approximately O0cNy + NyNp + kN, +kn**'), where O(kn** '} is
time complexity of the combining process by network degres.

-ﬁmmmwurmwmmimmmm‘uwm
find the best free sub-system and the best CU for each incoming task on & product network-based systems
that partitioning and combining by network degree is O{N, + KNy 4 kn*™' }. [PROOF: Similar to that
ilustruted in Theorem 7, except time complexity of the CU-AS straiegy is OVK).]

THEOREM 9: Time complexity of the tree-based sllocation approach including the CU-IS strategy to find
the best free sub-system and the best CU for each incoming sk on u product network-based systems that
purtitioning and combining by network degree is O(N,+H'Ny +Hen™')). [PROOF: Similar to that ilhustrated
in Theorem 7, excepl time complexity of the CU-IS strategy is O(1).]

THEOREM 19: Time complexity of the tree-based deanllocation approach o free the particular tree PE
node and CUF node that siores the finished task and 10 combine the free buddy nodes of the root sub-tree 1o
the ot of the tree on the partitionable product network-based systems that partitioning and combining by
network degree is O(N, + kNy + kn). [PROGF: Similar to that illustrated in Theorem 2.]

3.6.2.2 Time Complexity when spplying the partitioning and combining by network size

Tuble 7 il lustrates ¢ ach function t ime ¢ omplexity and t otal 1 ime c omplexity o £t he u niversal r ssounce
(CLIPE) allocation for any SIMD ek hased upon the partiticning and combining by network size,

Tabis T.mmﬂmmdhﬂﬂm{ﬂﬂjﬁuﬂmmmw 2} o any
SIMD teak.

Nain Functions T E T —
CLU-OE
(1) Leaf node operation (for Ny nodes | O+ Wi s T O+ 4 ] FTRETET T
Campute bast-ii valua
< for ek Trem node (SIMD/MIMD) Ofk®) o0k o)
- for Clis of sach (5IMD) OMa, = khip + k) oK'y (1)
el
- Bast
+ for PE {SEMOMRD) Dk
- for G {S D) Dk
- Adscaate
3} Combining
- Camigining (Algorithm ©.2-C.3) D0ty
- Expand 578 & update siatus k]
- Lipciade trw maimem free sizs Ms +
otal time com ﬁ:#rm A ﬁrl‘ﬁhﬁ

- Ttn:muq:h:ltynﬂhem—buddluuﬁmmhiududiqﬂuﬂ-ﬂﬁmm
ﬁnddnb:nﬂ:mh—mﬁﬂﬁrmhhnmﬂgﬂmnmmtmm-hﬂmmﬂm
partitioning and combining by network size is OfMy + NN or kiNgY + 122,

PROOF: Similar to Theorem 3, except that for each (free) leaf node {of Ny nodes), the best-fit value is
mnpundinﬂ{ﬂlim:fmﬁndir‘ﬁ{wnbgdm)md +kNy+k") time for finding CU by applying
the CU-DFS strategy. Therefors, it mkes Ok +My+kNy+ k') or O{K"+N,+kN,) time in finding both PE
and CU foreachnodeand hence O(N, +{k* + N, +kNg) N ) forall leafnodes, Thus, totsl time
complexity 1o visit all nodes in the tree is approoimately (N, + NJNp + iNgi + K22%), where O(K'2™) is
time complexity of the combining process by network size.

THEOREM 12: Time complexity of the tree-based allocation approach including the CU-AS strategy to
find the best free sub-system (PE) for each incomi task on & product network-based systems that
partitioning and combining by network size is O(N, + +K'2™), [PROOF: Similar to that iliustrsted
m Theorem 11, except time complexity of the CU-AS strategy 1 O(K”).]
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mimemHMMMWMMMﬂEMMm
find the best free sub-system (PE) for each i task on & product network-based systems that
partitioning and combining by network size is O{N, + +E'2Y), [PROOF: Similar to that illustrated
ianl.:m:plﬂucntqﬂ:ﬁtynfﬂuﬂJ—[SMhﬂ{l}]

THEOREM 14: Time numﬂ:ﬂqrnfﬂum—budduﬂimuimmhmﬁ:ﬂmpqﬁmlumrﬁ
node and CU node that stores the finished task and 1o combine the firee buddy nodes of the oot sub-tree 10
mamnﬁhm“m:puﬂumuh:pmdmtwmiuhndmhpuﬁﬁmimud combining by
network size is O(N, + kNy + k'2™), [PROOF: Similar to that illustrated in Theorem 4 ]

346.1.3 Time Complexity when applying the partitioning and combining by network degree and size

Table 8 illustrates each function time complexity and total time complexity of the universal CLVPE
aliocation approach for amy SIMD task, based on the partitioning sod combining by network degree & size.

Tabls B Tima complecdy of man funclions of fhe universal rescurce (CLIPE) allocation process (by Mathod 3) for mny
SIMID) task,

_A__m%m%
mmﬂmmnrm MK My i O M (K il | M +{h7 1 )by

Comparin Desl-& vaba

- fiar anch fres nocs [SIMOIMIMDY okt i) ofe)

- bor CUa of #ach selacted nods (SIMD) DMy * kb » i) oQ’) o1}

l'“
- Bagl sub-parmion
« for PE (SIMDAMIMD) Ofl)

THEOREM L3: Time complexity of the tree-based allocation approsch including the CU-DFS strategy 1o
ﬂniti:huﬁwnﬁ-nﬁm{?ﬂ]hmhimﬂngutmnmmmrbhmds}mhl
partitioning and combining by network degree and size is O(KNy + NN+ KIN:F + k¥

PROGF; Eimﬂrmﬂmmimﬂu.tfﬁﬂ{ﬁm}lufmda{nfﬂp:gh},uuhui-ﬂuimii
computed in Ofk’) time for finding PE (or sub-system) and O(N, + kNy + k) time for finding CU by
applying the CLI-DFS strategy. Therefore, it takes O(k” + M, + kNp + k%) or O(+N, +kNy) time in finding
both PE and CU for cach node and hence O{N,, + {i* + N, + kNy) Ng) for all leaf nodes, Thus, total time
complexity to visit all nodes in the tree is approximately Ok, + NaNy + kNP’ + k%), where O{k") is time
complexity of the combining process by network degree and size.

Time complexity of the tree-based allocation approach including the CU-AS strategy to
ﬁﬂhhﬂﬁwmmﬁ]hmthMM|kjnﬂnlm¢MmMMI
partitioning and combining by network degree and size is O{N, + IC°N; + k'), [PROF: Simsilar to that
illustrate in Theorem 15, except time complexity of the CU-AS strategy is O{k’).]

memmyﬂmwumwmmwmmmm
ﬁdmmmmwﬁymmmqmmn network-based systerns that
partitioning and combining by network degree and size is O{N,, + + k). [PROOF: Similar to that
thminThurm:mIsimmmplniwﬂﬂnm-ISMhﬂilL]

mTimmhiwnﬂmmmmmﬁﬁﬂ:mﬁuﬂumm&mw
the finished task and 10 combine the free buddy nodes of the root sub-tree to the root of the tree on the
puﬁﬁunﬁhpmdunmmt—hmdmhpmﬁﬁnnhanﬂmmﬁdngbymmﬁd:pumﬂﬁuis
O(N, +kNg +ln)  [PROOF: Similar to that illustrted in Theorem 6.]
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4. APPLICATION OF THE UNIVERSAL CU/PE ALLOCATION MODEL

The universal tree-hased resource (CLVPE) allocation modél can be applied to all interconnection networks
that belong to the product network class such as multi-dimensional (k-DY) meshes, multi-dimensional (k-[)
tori, n-ary k-cisbes, hypercubes, hypercycles, etc.  In this section, we show some applications of the
universal resource allocation model to two popular interconnection networks, which are the 2-D mesh
networks and the hypercube (or k-cube) networks.

4.1 The Universal Resource (CU/PE) Allocation Maodel for 2-D Meshes

In the reconfigurable MSIMD/MIMD system, there are two different modes providing for incoming tasks:
SIMI} {single instruction, multiple data) and MIMD (multiple instructions, multiple data). The MIMD task
requires only & free sub-system (or partition), consisting of processing elements (PEs) for distributed
computing of many instructions and data. The SIMD task needs both & free partition (PEs) and & control
umit {CU)) for parallel computing of a single instruction with multiple data, Next, in order to simplify our
explanation, we present the application on the 2-D mesh for all MIMD tasks first (in Section 4.1 A3 mnd
then the application on the 2-D mesh for all SIMD tasks (in Section 4.1.2), However in practical (see
Section 3), mixing modes are wtilized for parallel and distributed computing in the reconfigurable and
partitionable MSIMDVMIMD parallel system.

411 Sub-system (PEs) Allocation for MIMD Tasks

Suppose we have a 1-0 mesh system of size |6x16 and » sequence of § incoming tasks (4x7, 2x2, x4, BxE,
and 3x3), which come in one st & time. Before we apply the universal resource (CU/PE) allocstion model
on this system, let’s show how the product network (G = G, x Gy) of the 2-D mesh-connected sysiem of
size N =y x ny (16x16) is constructed. Figure 67 illustrates the product network G, & product of two basic
networks (or linear armays) G, of size n, = 16, wherek = 2and i = 1, 2.

i
R KR E T e e
-.--.'.-‘I*I+I‘i."l‘l‘l*1’i‘i
Gy Gy =0y 5 G AR R R
=16 i = 18 M= i B0y (1B TB] e e T T

Figure §7: An exampie of a 2-0 mesh-connected sysiem, § product netwark of fwo inear amey netwoke.

For the 2-D mesh-connected sysiem (k = 2), the value of k is very small and hence we can apply either
Method 2 (the partitioning and combining by network size) or Method 3 (the partitioning and combining by
network degree and size) of the universal resource (CU/PE) allocation model,

4.1.L1 Apply Method 2: the Partitioning 2and Combining by Network Size

Figure 68 illustrates the system status and the correaponding k-Tree that shows the allocation of the first
ncoming task (4x7).  For this task, the root node (or the first node) of the k-Tree is created (starting a1
level 1) to store the system informotion (i.e., size = 16x16, based address = <|, |=, status = 0). For the
initial system, we have only one free node in the tree and hence it is the best one (when applying the best-fit
hewristic (Step 1 - 3)).  For the final step (Step 4), the partitioning process (o select the beat buddy node for
allacating to the task is applied. Usually for the first task, we select the first buddy node (see Figure 68.a).
After the allocation, we apply the combining process to the corresponding nodes of the current partitioning.
Now, we have two possible combined sub-systems of sizes 12x16 and 16x9. Then, the expand-node size is
applied 1o the larger size (12x16), the combining of the buddyW2 and the byddy#4 (ar level 2), We store
the new expand size into the free buddy#2 and mark the buddy#4 as a busy node (see Figure 68 k). Then
the maximum free size is updated, which is the buddy#2 (12x16) at level 2.
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Fmﬂmmmm:y-nmumﬂummﬁmt-nudu:hammdi

tesk (2x2) and the third task (3x4), respectively, For the task {2x2), the searching QT&Tme:

mﬁtﬁniﬂ’tmﬂﬁwmﬂn[ﬂ]"@mﬂ.ﬂ. which is the buddy#2 { 12x16) at level 2, Then fis besi-fit
{Swi-ijhm{u,mmﬂs=F.dfﬂEF=2.:Lu=I?E.C‘F'I'.-ﬂuﬂitilm'dad

s the first best node. ‘Thl-dungmmvi:ﬂllhmmﬁwmﬁ,ﬂﬂnhinﬂuhﬂdﬂlﬂﬂ]ulnﬂz-

Trliah:lt-hﬂl_unfﬂmnuh{ﬂlq:I-3}hmm(i.:_mMﬂ-T.dHﬂF=l:h:=!ﬁ CF=

E1 ﬂlﬂﬂﬂll‘lﬂdﬁ{iﬂ]pﬂfmﬂuIh:hﬂlu‘hm-ﬁlwhn[l.u.ltmmlhmn{ﬂhmﬁtluﬂu

free nodes are visited and then Step 4 of the best-fit heuristic is applied 1o the best node (from
: 1-3

hﬁhmlummhﬂmpﬂwmﬁrﬂum&ﬂﬂ}hhhﬂﬂ&!ﬂ InS:P}{au}-
Figure 69.a). Finally afier the combining process of the currem partitioning, there are two possible
combined sub-systems of sizes 4x7 and 2x9. Then, the expand-node size is applied to the larger size (4x7),
the combining of the buddy# and the byddy#2 (at bevel 3). We store the new expand size into the free
buddy# | and n-iﬁlmu:hﬂy node. Next since the maximum free size (12x16), the buddyW2
ﬂm;hmwiummmhuﬂmndﬂnm.
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hmmmmnumﬂun-rmumﬂma based
parfitioning and combiring by network size, for 8 2.0 mesh. PR NS on e

For the third task (3x4), the first free mode (see Figure 69.8) is the buddy#2 (12x16) at level 2 with
computed best-fit value (i.c., preserve maxFSs = F, diffSF = 2, size = 192, CFEE':'E{. Then, it is reconded s
the first best node. Thtu:llﬁ!nmdtiaﬂ:hﬂdyﬂ{h'ﬂt[mmliﬁﬂiﬂnmpundhn-mﬂm
l_'l.e..pmnwnmﬂ.-T.dim=I{ﬁrdtmund:iul:n.ﬁm=zs.l:$-$mwmjl‘umdm
85 the new best node. Neodt, there is the last free node (the buddy#4 at level 3) to visit but it size {2x2) can
not accommodate to the request (3x4), Now, all free nodes are visited and then Step 4 is applied to the best
mﬁ:{ﬁmﬂﬂl-!]huhmlﬂmﬂuhmmmiﬂm. Aﬂulhepuﬂlimimmduhﬂﬂl
at level 4 is selocted for the task (3x4) with the rotated lze 4x3 (see Figure 69.b) since it vields the better
best-fit value. Fmﬂyhrdumimumh:h:!]lﬂﬁ}.hﬂlhmirhnﬂmhhupﬂnﬂl.
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Figure 8%: The system sialus and the comesponding k-Troe of the ailccstion of the second bask | and
m:m;.h-dmhmmmmgwmm.hnzrnnih R i




Figure 70 illustrates the system status and the comesponding k-Tree of the allocation of the fourth task
(88} and the fifth task (3x3), respectively, For the task (8x8), the first free node (see Figure 69.b) is the
huddy#zflleﬁ}mlwdiwhhﬂmmpndbm-muh::Ln.,mtmuF&-F.diﬂEF=2,:i:t-
192, CF = 2%) and it is recorded as the first best node. Next, two sub-sequence free nodes are the buddy#3
{M}Hlﬂd4mdlhuhudd}#l{hﬂuhnrﬂ3hlﬁdrﬂmmnﬂlcmmd.uutnﬂwmquntlxﬂja
So far, &ll free nodes are visited and then Step 4 of the best-fit heuristic is applied to partition the best node
(from Step 1-3), in order 10 select the best sub-partition (the buddy#2 (8x8) at level 3} for the fourth task
(see Figure 70.1). After combining the corresponding nodes of the current partitioning, we have two
possible combined sub-systems (4x16 and 12x8).  The farger size (12xE), the combining of the buddy#3
and the byddy#4 (at level 3), is selected. We store the expand size In the free buddy#3 and mark the
buddy#4 as a busy node. Finally, since the buddy®2 at level 2, the maximum free size (12x16), is
partitioned, we have 10 compute the new maximum free size. Al beginning, we select the new expanded
node (12x8), the buddy#3 at level 3, as the temporary maximum free size. Then, we have 10 update the
maximum free size by performing DFS to visit all free nodes in the tree if the larger node cxists.

For the last incoming task (3x3), the first free node (see Figure 70.a) is the buddyd] (4x8) at level 3 with
the computed best-fit value (i.e., preserve muxFS = T, diffSF = 2, size = 32, CF = 5) and it |s recorded as
the first best node. The next free node is the buddy#3 (12xB) ai level 3, but it cannot preserve the
maximum free size, the first best-fit criterion, Then, the searching goes to the next free node, the buddy#3
(4x4} at level 4. Its best-fit value is computed (i.¢., preserve maxFS = T, diffSF = 2, size = 16, CF = 5%)
and updated 83 the current best node since it performs the better best-fit value, sccording (o the criterion 3
(the smaller size). The last free node is the buddy®4 at level 3, but its size (2x2) can not sccommodate to
the request (3x3). Now all froe nodes are visited and then Step 4 of the best-fit heuristic is applied 1o the
best node (from Step 1-3) in order to select the best sub-partition. Afer the partitioning process, the
buddy®3 st level 5 is selected for the fifth task (see Figure 70.b). After the combining process of the
current partitioning, we have two possible combined sab-systems (4x1 and 1x4). The expand-node size is
spplicd to the first size (4x1), the combining of the buddy# 1 and the byddy#2 (at level 5). The new expand
size is stored imto the free buddy# | end the buddy#2 is marked as & busy node.  For the maximum free size
computing. since the current maximum free size (12x8), is not partitloned. it is not necessary to be updated.

Figure T0- The sysiemn status and the comesponding k-Tree of the allocation of a) the fourth task (BxB) and b) the fih
teek (3x3), based on he parioning and combining by netsork slze. for & 2-D mesh.

L1LLY Apply Method 3: the Partifioning and Combining by Network Degree snd Size

In order to see the compared results (o the previous spplication, we use the same 2-D mesh system and
incoming tasks, defined in Section 4.1.1.1.  Figure 71 illustrates the system status and the commesponding
binary-Tree that illustrates the allocation of the first incoming task (4x7). For this task, the root of the tree
is cresded (& level IHnumﬂtmhfmiu:{i.n,,ﬂu-tﬁ;lﬂmm:-ﬂ_l:ﬁ_m-n},
Initially, we have only one free node, which is the best one (when applying the best-fit heuristic (Step 1-3)).
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The final step {Step 4), the pantitioning process 1o select the best buddy node for allocating to the task, is
applied. Usually for the first task, we scloct the first buddy node.  Finally, the maximum free size s
updated, which is the buddy#2 {12x16) ot level 2.

Figurs T1: The system sialus and the comesponding binary-Tree of ®e allocation of the first task (4x7), based on the
pationing and combeing by nebeork dagree and size. for a 3-0 mesh

Figure 72 illustrates the system status and the corresponding binsry-Tree that shows the allocation of the
second task (2x2) and the third task (3x4), respectively, For the task (2x2), the searching starts from the
ool and the first free node is the buddyW2 (9x4) at level 3 (see Flgure 71).  Then its besi-fit value is
computed (i.e., preserve maxFS = T, diffSF = 2, size = 36, CF = 3'4) and it is recorded as the first best
node.  The nesit free node |s the buddy#2 (16x12) ot level 2. Acconding to the best-fit eriterion 1. it canmet
preserve the maximum free size, which is not better than the current best-fit node. Then, searching goes
o the next free node but now all free nodes are visited. Then, Step 4 of the best-fit heuristic is applied to
the best node (from Step 1-3). After applying the partitioning process twice, the best sub-partition for the
second task (2x2) is the buddy#2 (2x4) o level 4, partitioned along the I* dimension, and then the buddy#1
(2x2) at level, partitioned alone the 2™ dimension (see Figure 72.1), Next since the maximum free size
{16x12), the buddy#2 at level 2, is not partitioned, it ks not necessary (o be updated at this time.

(L] (.1

Figuere T2- The sysiam status and ihe corresponding binary-Tres of the allocation af &) the second task () and b) ne
il gk {3xd}, based on the pariitioning and combining by network degree and size, jor @ 2-0 mesh,

For the third task {Jx4), the first free node (see Figure 72.4) s the buddy#1 (7x4) at level 4 with computed
best-fit value (i.c., preserve maxFS = T, diffSF = 1, size = 28, CF = 3%/,) and it is the first best node.  The
mext free node is the buddy#2 (2x2) st level 5 bt it size (2x2) can not accommodate to the request (3xd).
The last froe node is the buddy#2 (16x12) at level 2 but it cannot preserve the maximum free size, the
criterion | of the best-fit heuristic. Then the partitioning process (Step 4) is applied to the best node (from
Step 1-3) in order to select the best sub-partition, the buddy#1 (3x4) at level 5 for the fifth task (see Figure
T2.b). Finally for the macimum free size (16x12), in this case it is not mecessary 1o be opdated.




Figure 73 illustrutes the system status and the cormesponding binery-Tree of the allocation of the fourth task
(BxB} anad the Tifth task (3:3). For the task (8x38), the first free node (see Figure T2.5) is the buddy#2 (4x4)
an level 5 but ifs size ks less than the msk's size. The nem free node is the buddy#2 (2x2) ot level 5 bt jts
size s too small for the task. The last free node is the buddy#2 (16x12) at level 2 with the computed besi-
fit valun {i.e., presarve muxFS = F, diffSF = 2, size = 192, OF = 2'4) and it is recorded as the first free node.
E-nilni.'lﬂhmdnnﬂﬂhﬂiﬂﬂﬂﬂlmiﬁfﬂﬂbﬂ-ﬂﬂllﬂmilipﬂldmﬂﬂﬂmthhﬂmh
{(from Step 1-3), in order to select the best sub-partition for the fourth task (sec Figure 73.8). In this case,
the portitioning process is applicd twice. According to the criterion 4 of the besi-fit heuristic, we select the
buddy#1 (Bx12) at level 3, partitioned along the 1" dimension, and then the buddy#? (Bx8) mt level 4,
partitioned along the 2* dimension. Flnally, since the buddy#2 at level 2, the maximmm free size {16x12),
is partitioned, we have to compute the new maximum free size. At beginning, we select the new maximum
node (the buddy#2 (8x12) at loved 3) after the current partitioning.  Then, we update the maximum free
size by performing DFS to visit all free nodes in the tree if the larger node exisis,
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Figumi T3 The sysiam status and the comesponding binary-Trea of the slocation of a) the fourth isak (858} and B te
fifth tzak {Jxd), based on fhe parilioning and comibining by netwon degres and site_ Tor 8 2.0 mesh.

For the last incoming task (3x3), the first free node (see Figure T3.a) i the buddy#2 (4x4) at level § with
the computed best-fil value (i.e., preserve maxFS = T, diffSF = 2, size = 16, CF = 3%/,) and it is recorded &y
the first.besi node. The next free node is the buddy#2 (2x2) st level 5, but it cannot accommodate to the
task {3x3). Then, the searching goes 1o the next free node, the buddy# | (Bx4) at level 4 with the

best-fit value (preserve manFS = T, diffSF = 2, size = 32). This node does not perform the better best-fit
value, sccording to the criterion 3 of the best-fit heuristic,  The last free node is the buddy#2 (8x12)
level 3. However, it cannot preserve the maximam free size.  Now all free nodes are visited and then Step
4 of the best-ft beuristic is applicd 1o the best node ( from Step 1-3) kn order to select the best sub-partition,
The partitioning process s spplied twice. According to the eriterion 4 of the best-fit heuristic, we select
the buddy#2 (3x4) at level 6, partitioned along the 1* dimension and then the buddy#] (3x3) at level 7,
partitioned along the 2™ dimension for the fifth task (see Figure 73.b). In this case, we do not have 1o
update the maximum free size since the current maximum free size (8x12) is not partitioned.

4.1.2 Sub-Sysizm {PEs) and Control Unit {CU) Allocation for SIMD tasks

Suppose wa have 8 2-D mesh system of size 16x16 and & sequence of 5 incoming SIMD tasks (4x7, 2x2,
x4, ExB, and 3x3), which come in one st & time. For the 2-D mesh system (k = 2), the value of k is very
small and thus we can apply either Method 2 (the pantitioning and combining by network size) or Method 3
(the partitioning and combining by network degree and size) of the universal CU/PE allocation model,

4.1L.E1 Apply Method I: ibe Partitioning and Combining by Network Sies
Figure 74 illustrates the system sistus and the comesponding k-Tres that shows the allocation of the first

incoming task (4x7). The sub-system {or PEs) allocation is similar o the allocation illustrated in previous
section (see Figure 68) for the MIMD task. For the SIMD task in this saction, we add the allocation for the
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corresponding CU.  Usually for the first tnsk, we sclect the first buddy node for the PE sllocation and
porform another partitioning process to the smallest adjacent sub-partition for the CU allocation.  After the
CLVPE allocation, we apply the combining process to the corresponding nodes of the partitioning for PEs

Figurs T4: The systam status and fhe cormsponding k-Tres of the allscatian of 1he first SIMD task (4x7), based an Be
partitioning and combining by nelwirk ses, for 4 2.0 mash

Figure 73 illustrates the system status and the corresponding k-Tree that shows the allocation of the second
task (2xl). The sub-system (or PEs) allocation is similar to the allocation, [Ilustrated in previous section
(Figure 69.a) for the MIMD msk. For the SIMD task, we have to apply the CU searching (i.e,, the CL-
DFS, CU-AS, or CU-IS strategy) to find the adjacent node (containing some CUs) for each visiting node.
For example, the last free node, the buddy#3 (4x8) at level 3 (see Figure 74) is updated as the best node
since it yiclds the better best-fit value (ie., preserve maxFS = T, diffSF = 2, size = 32, CF = 4%). For CU
searching of this node, the best adjacent node is the buddy#2 at level 3 If we apply the CU-DFS or CL-AS
strategy. I we apply the CU-IS strategy, we do not have to find adjacent node because the corresponding
CU can be inside the best sub-system, the buddy#3 at level 3. Afler all free nodes are visited, Step 4 of the
best-fit heuristic (the partitioning process) is applied to the best node for PEs and its adjacent node for CU
(from Step 1-3). After the partitioning process, the best sub-partition for the second task (2x2) is the
buddy¥1 at level 4 and the cormesponding CU is selected from the outside node (from applying the CU-DFS
ar CLI-AS), the huddyi2 (3x1) ot level 2,
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Figurs 75: The syslem sislus and Be cormespondng k-Tres of the aliocabon of the second SIMD Bk [22). based on fhe
partiticning and combining by naftwork size, for @ 2-0 mash

Figure 76 illustrates the system status and the corresponding k-Tree that shows the allocation of the third
task (3x4), the fourth task (8x8), and the fifth wsk (3x3), respectively. The searching for the best free node
fior the sub-system (PEs) allocation and the comesponding CU for the CLU allocation for each of these tasks
is similar 1o that spplied for the second task.
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Figure 76; The system stalus and the comesponding k-Tres of the allocshion of the 3™, 4% and 5 SEID lasks (e, Buf,
3x3), besad on the pamioning and combining by network size, for @ 2.0 mash

4.1.2.2 Apply Method 3: the Partitioning and Combining by Neiwork Degree and Size

Figure 77 illustrates the system status and the corresponding hinary-Tree that shows the allocation of the
first incoming task (4x7). The sub-system (or PEs) aliocation is similar to the allocation iflustrated in
previous section (Figure 71) for the MIMD task. Then, for the SIMD task we have to add the allocation
for the corresponding CU. Usually for the first tnsk, we sclect the first buddy node for the PE allocation
and perform ancther partitioning process to the smallest adjacent sub-partition for the L allocation. After
the CLIPE allocation, we apply the combining process to the corresponding nodes of the partitioning for

Fhigure TT: The: sysism stirtus and fhe comesponding k-Trea of he aiscasion af the firel S8I0 tagk (4471, based on he
pariticnmng mnd comibining by network degres and sies, far a 2-0 resh

Figure 78 illustrates the system status and the corresponding binury-Tree that shows the allocation of the
second task (2x2). The sub-system (or PEs) allocation is similar 1o the allocation illustrated in previous
section (sec Figure 72.a) for the MIMD task. For the SIMD task we have to apply the CU searching (i.e.,
the CU-DFS, CU-AS, or CL-IS strategy) to find the adjacent node {containing some CLs) for each visiting
node.  Afer visiting all free nodes, the best node (from Step 1-3) is the buddy#2 (Bx4) st level 4 and its
adjacent node is the buddy#2 (1x3) at level 5. Afior the partitioning process, the best sub-partition for the
second task (2x2) is the buddy#| st level 6 and the correspanding CUI is selected from the outside node
{from applying the CLI-DFS or CU-AS strategy), the buddy#2 (1x3) at level 5.

Figure 79 illustrates the system siatus and the cormesponding k-Tree that shows the allocation of the third
tsk (3x4), the fourth task {Bx¥), and the fifth task (3x3), respectively. The searching for the best free node
fior the sub-gystem (PEs) allocation and the coresponding CLU for the CU allocation for each of these tasks
is similar to that applied for the second sk,
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Figure T8: The system stabus and carfesponding k-Troe of the allocation of ihe sacand SIMD task (221, based on e
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3nd), based on B partitioning and combining by netwark degres ang size, for 8 2.0 mash.

4.2 The Universal Resource (CU/PE) Allocation Model for Hypercubes

data). The Mlmﬂm&nw;ﬁum[wp-ﬂIm}. consisting of processing elements
{F&}hdimmﬂw mstructions and data. mmmﬂmﬁm-ﬁumﬁﬂm
{Eu]mlmﬂmiiﬂﬂﬁrmﬂulmnﬂunfu&w: instruction with mubtiple data, Mewx, in
urdumﬂmﬁiﬁmm“mlmwlh#immmh}w:m for all MIMD tasks first (in

4.1.1 Sub-sysiem (PEs) Allocation for MIMD Tasks

Suppmwumw-lwum:usﬂu}mmufﬁun-fud.wufmmmmta-
cube, 4-cube, 2-cube), coming in one at a time. Before we apply the mﬁvmnlm[mﬂ'i'ﬂ}lllnﬂim
model mﬁilmh‘umm&umm{ﬂ-ﬁ.ﬂhﬂmﬁmﬂﬂdhmﬂm
fystem of size N = nyxnpmpamgxng (2°) is constructed.

Figumlﬂlllmﬂ:mmﬂﬂ.lpm:llmurﬁvahnium“h{u-Hmr-n}s}ﬂ,uﬁlum
=l wherek=5mndi=1,234 5 For the hypercube-connected system, the value of n is 2 and hence
mwmmﬂmmhymmtwu
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Figurs 88: An sxample of & hypercube {S-cube)-connacted sysiem, a product neteork of five Enaar mray nabwosiks

Figure B illustrates the system sistus and the corresponding binary tree that shows the allocation of the
first incoming task (3-cube). For this task, the root node (or the first node) of the tree is created (starting a1
level 1) to store the system information (i.c., size = 2°, based address = <1,1,1,1,1>, status = 0). For the
IriﬂllmHm“Iymﬂwmd:hmuumdhm:‘uhuuhmm{mmﬂaiqmmm
heuristic (Step | - 3)). For the final step (Step 4), the pantitioning process is applied (twice for this task
size) to select the best buddy node for allocating to the task. Usunlly fior the first task, we always select the
first buddy node.  Afier the allocation, we will apply the combining process {ie., combining for & 4-cube)
1o the comesponding nodes of the sub-sequence partitioning if the buddy of its root is partially free (or some
of its buddy nodes are busy). In this case, we do not have to apply the combining process since the
budkchy®#2 (4-cube) is free. Then the first maximum free size is the buddy#2 (4-cube) at level 2,

Figurs §1; The sysiem sistus and the comespanding binary-Tree of te alocation of ihe firsd task (3-cube), besed on the
pariiliondrg and combining by nebeark degres. for & ypercube.

Figure 82 illustrates the system status and the corresponding binary treo that shows the allocation of the
socond task (4-cube) and the third task (2-cube).  For the task (4-cube), the searching staris from the root
and goes 1o the left most free node (see Figure 81), which is the buddy#2 (3-cubc) at level 3 but its size
cannol sccommuodate to the task, The searching then visits the next free node, which is the buddy#2 (4-
cube) it level 2. The besi-fit valee of this node (Step 1-3) is computed (j.¢., preserve maxFs = F, diffSF =
0, size = 16, CF = %) and it is recorded as the first best node. At this time, all free nodes are visited and
then Step 4 of the best-fit heuristic is applied to the best node (from Step 1-3) if its size is larger than the
task. [n this case, we do not apply the partitioning process since the node’s size is equal 1o the task's size
{4-gube) and hence no need for the combining process (see Figure 82.a), Next since the maximum free size
(#-cube), the buddy#2 st lcvel 2, is allocated, we have 1o find the new maximum free size by using DFS 1o
visit 2l free nodes in the tree.  Now, the maximum free size is the baddyd2 {3-cube) at level 3.

For the third task {2-cube), the searching starts from the root and goes 1o the left most free node (see Figure
82.a), which is the buddy#2 (3-cube) af level 3, The best-fit value of this node (Step 1-3) is computed (i.c.,
preserve maxF5 = F, diffSF = 0, size = 8, CF = %) and it is recorded as the first best node.  The searching
is continuing Lo the next free node.  So far, all free nodes are visited and then Step 4 of the best-fit heuristic
is applied to the best node (from Step 1-3), the buddy#2 (3-cube) at level 3. After applying the partitioning
process once, we allocate the buddy# | (st level 4) for the third task (2-cube). After the allocation, we will
mmmpm{i;wmmm:mmﬂ-mmﬂmmumm
partitioning if the buddy of its root is panially free (or some of its buddy nodes are busy), In this case, we
do not have to apply the combining process since the buddy#2 (4-cube) is busy. Next since the maximum
free size (3-cube), the buddy#2 at level 3, Is partitioned, we have to find the new maximum free size. At
beginning, we set the temporary maximum free size 1o the buddy#2 (2-cube) at level 4 and then using DFS
1o visit all free nodes in the tree 1o update if the larger node exists.
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Figure 83: The systam sistus snd the corresponding binany-Tees of the akocaion of (8] e sacond sk (4-cube) and (k)
the third task (2-cuba), based on the pariticning and combining by ralwork degree, fot a hypercube

4.1.1 Sub-system (PEs) Allocation and Control Unit (CU) for SIMD Tasks

For the application for SIMD tasks, suppose we have a hypercube (or $-cube) system of sie N = 2* and a
sequence of three incoming SIMD tasks (3-cube, 4-cube, and 2-cube), which come in one at a time, For
the hypercube-connected system, the value of n is 2 and thus we apply Method | (the partitioning and
combining by network degree),

Figurs B3 The syatem siatus and the comesponding binary-Tree of the allocasion of the first SIMD teak (3-cube), based
on i parilcning and cambining by nebsork degres, for 8 hyparcuba.

Figure B3 illustrates the system stutus and the cormesponding binary tree that shows the allocation of the
first incoming SIMD task (3-cube). For this task, the root node of the tree is créated (starting at level 1) 10
store the system information (i.c., size = 2°, based wddress = <I,1,1,1,1>, status = 0). Initially, we have
anly one free node in the tree and hence it is the best one (from applying the best-fit hewristic (Step 1 - 3))
For the final step (Step 4), the partitioning process is applied (twice for the 3-cube) and for the first task, we
always select the first buddy node (at Jevel 3) for the sub-system (PEs) allocation. Then we perform
another partition process on its buddy, the buddy#2 (a2 level 3), for the CU allocation.  After the allocation,
we will apply the combining process o the corresponding nodes of the sub-sequence pantitioning IT the
buddy of its root is partially free (or some of its buddy nodes are busy). In this case, we do not have o
apply the combining process since the buddy#2 is free. Finally, the first maximum free size is the buddy#2
(#-cube) ut level 2.

Figure B4 illustrates the system siatus and the cormesponding binary tree that shows the aliocation of the
second SIMD task (4-cube) and the third SIMD task (2-cube), respectively.  For the task (4-cube), the
searching starts from the root and goes to first free node (see Figure 83), which is the buddy#2 (1 PE) at
level 6 but its size cannol sccommodite fo the task. The searching then visits the next free nodes, which
are the buddy#2 (1-cube) st level 5, the buddy#2 (Z-cube) a1 leved 4, the buddyW2 (3-Cube) ut level 5 but
their sizes cannot sccommodsic to the sk (d-cube). Then, the last free node is the buddy¥2 st level 2
The best-fit value of this node (Step 1-3) is computed (i.e., preserve maxFS = F, diff8F = 0, size= 32, CF =
¥3) and it s recorded as the first best node. For CU searching for this node, the best adjacent node is the
buddy#2 st level 6 if we apply the CU-DFS or the CU-AS strategy,  After all free nodes are visited, then
Step 4 of the best-fli heuristic is applied 1o the best node (from Step 1-3) if its size is larger than the task.
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cube) and hence no need for the combining process (see Figure 84.a), Ment since the maximum free size
(4-cube), the buddy#2 at level 2, is allocated, we have o find the new maximum free size by using DFS to
visit all free nodes in the ree.  Now, the maximum free size is the buddyil2 (2-cube) ot level 4. For the
ﬂiidht(!—mhllh:mrﬂ:h;fhrmehmmduﬁrﬂtubd}m{?&]ﬂnﬁuudh
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Figurs 84: The wysiem stalus and the corresponding binary-Tree af fhe siocston of &) e second SIMD taak (4-cube)
and b the third SIMD task (2-cube), based on fhe parifianing and combining by neteark dagres, for 8 hypencuba,

5. PERFORMANCE EVALUATION

InmmmmmMmmmmimﬂMW{m#ﬂjmw
was developed mnd spplied for two network applications, which are the 2-D meshes and the 3-D meshes.
These two interconnection networks are efficient for the reconfigurable and partitionsble systems since
they provide small node degress {or links), low cost per node, and hence low system cost of links.
Therefore, in the partitioning process we have not (o cut many links in order 1o formt & parition. For
example, there are three values of the node degrees of the 2-1) meshes: It node degree = 4 for each imternal
node, 2} node degres = 3 for each border node, and 3) node degree = 2 for each comer node (see Figure
B5.8). For the 3-D meshes, there are four values of the node degrees, which are 6, 5, 4, and 3 for each inner
node, each side node, cach border node, and each comer node, respectively (see Figure 85.h).

{a) Node degress of amy 2-0) mesh

Figure B8: Mode degrees: 8) al mast 4 for the 2-0f meshas and b) 8 most § for the 3-0 meshes.

By simulation study, n number of experiments are performed to investigate the effect of applying the
“universal tree-hased resource (CU/PE) allocation model™ for performing processor allocation/deallocation
hmmmmmmmmmmmhw
in terms of system utilization, system fragmentation, etc. Note that the system utilization (U,,) is measured
s & summation of the busy processors {(allocated for tasks) over the number of processors in the system,
computed when the systemn reaches the steady state, Similn-l;r.llummﬁm-nﬂum‘.,’l is measured
uaumﬂmﬂhhmmhmﬂmmﬂmurinMMﬁM
mhmmﬂnﬂjﬂIﬁFMFﬂ-l-U“l[iﬁhﬁtilmimn'ﬂliwﬁ}
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Fu-ﬂ:m:l—ﬂmd!-ﬂmh—mmudmtﬂamknlmﬂ!} the value of k {or the number of
dimensions) is mmllnﬂhmnm:pﬂrdﬂmhhhndl{ﬂ:mﬁﬁmiqnﬂ combining by
network size) and sometime lster is called “the modified k-Tree-based resource allocation straiegy”, or
Method 3 (the partitioning and combining by network degree and size), called “the b inary-tree-based
resource allocation strategy”. In particular, for the reconfigurable and partitionable 2.0 gnd 3-D mesh-
connected systems (for both MIMD and SIMI} tasks), we introduces the comparison results between the
mbTmmdlmmun'uﬂhHm resource allocation strategy,
ﬁhnﬁxﬁ:p.ﬁﬁmhh!-ﬂmh—mmndnm{fwnnbﬂ[hﬂlmh}wﬂmmnnm-iunu
mﬂuﬂutnivﬂlmbuﬁdm(PE}dlm-imm&d{HmIpﬂindmth2=Dm:lhﬂ{in
(M, + Ng) time}) 1o recently 2-D mesh-based strategies, which arc the BUSY LIST strmingy (O(N,") [14],
the FREE SUB-LIST strategy (O(N/'}) [26], and the QUICK ALLOCATION strategy (O(N,¥N)) [50].
When considering time complexity, our tree-based approach perform the processor allocation decision in
linear time (of the number of allocated tasks [N,) and corresponding free nodes (Np)), which is effigient,
compared to those (O(N,”), O(N/"), and , O(N,VN) of the sbove existing methods, whers N, = N, (see
system performance results) and Ny < N; (since our model stores only non-overlap free nodes while N,
includes overlap free sub-systems in the free lists.)

For each experiment, o mmmber of simulation time units are jserated around 5,000-50,000 time units and o
numh:nfh:uﬁﬂmhmmmyl,mm.mmmﬂmmhmﬁuufﬂu
system size parameter, the task size (i.¢., row, colunm) parsmeter and the task size’s distribution, For each
nﬂnmdmh:tmhnfﬁfmﬂdmaummmmupmiumuﬁlnnm
system performance does not change (or at least 100 iterations). Experimental results of applying the
nimﬂm{mﬂﬂﬂhuﬁnuluddnmﬂdhrdtmﬁnmmwim
concerning processor allocation for incoming tasks (or jobs) only (or sssumed that no task finishes during
the considering time)) and the dynamic system performance (with taking into account of deallocation for
some finished tasks). In this study, in order jo et the sume incoming tasks and environment o all
strategies for the comparison purpose, the static system performance is concerned (i.c.. when we messure
the system utilization and system fragmentation); otherwise the dynumic system performance is concernad,
In:umnpuimmminﬂimihﬁmmwdnnd:ﬂmtmmﬁmihﬁmmu.ﬂ]mlha.-
Nomal distribution N(ju, o). For each of these distributions, the system sizes (N = n; x n} are varied and
ﬂulﬂ:i::-[lxlwu.:h]m:dum!,nhmn-Lﬂ—n'-.t{nq,nﬂiurihaﬂnihmdimﬂmiuuu[u,
) and p = o= man {n,, n;)/2 for the Normal distribution N{y, o). Other parameters are fixed such as task
arrival rie ~ Poisson (1) (or inter-arrival time ~ Exp(1/5.=5)), and service time ~ Exp(u=10), et

5.1 System Performance Evaluation for the Partitionable 2-D Meshes {only MIMD Tasks)

mmhuﬂumhmumh-ﬂmmmnmmmﬂwmmmmm:mmﬁm
mmu@hmﬂﬂﬁmmmmmmmmmhmmm
represents the maximum number of allocsted tasks in the system and Ny represents the cormesponding free
nodes in the tres,

511 Imvestigate the Effect of System Sizes to the System Performance
hﬂuﬁmuﬂmwhwuﬁpﬂ“lhﬂeﬁaﬂufmmmm}mhl}ﬂ:mulilinlinnﬂ.l.nllud
the sysiem fragmentation (F,,,}" for the 2-D meshes, executing oaly MIMD tasks., In this expenment, the
::.mmmnmm}mmmmunun}mm:-n.mgmmmmwmu
Uniform distribution (see Table 9 und Tuble | 1) or the Normal distribution (sse Table 10 and Tabie 120,

Table §: Effect of “the system sizes” o the system utfizason (%) for the Uindorm disiribution,
- Bystam Sken | ~ Frea
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Table 9 illustrates the results of the system utilization for the Uniform distribution (see also Figure 86),
For all test cases our binary-tree strategy performed approximately &0 - §1% system utilization which waa
comparable 0 those of the k-tree simtegy and was improved over those of the meently 2-D mesh-hased
strategies, which were a1 most 57% syatem utilizstion, )

Table 10 illustrates the results of the system wtilization for the Normal distribution (see also Figure 87).
For the system size N = Sdifd, the binary-tres, the k-tree, and the froe sub-lisr strutegies yielded the
comparsbie results (~61% system utilization) snd wers improved over those (~58% system utilization) of
the busy list and the quick allocation strategics.

For the systern size N = 5122512, our binary-tree stralegy performed 62.2% system utilization which was
improved over that (61.3%) of the k-tree strategy and those (57.0%, 57.2%, and 53.9%) of the recently 2-D
mesh-based strategies (the free sub-lisy, the busy list, and the quick allocation sirategies.)

For other test cases (N = 128x128 and 256x256), our binary-iree sirmiegy performed spprocimaiely 59 -
6% system utilization, which was comparable to those of ihe k-tree strategy and improved over those of
the recently 2-D mesh-based strutegics, which wene at most 38% system utilization. )

Table 0: fct o th systam s’ ot syt st () fr e Mol gt
Systam Shes
B Sinary. Troe weTros S Busy Lint A
A s kL e o »
! ] - B,
3t i —t L — 1] L -
= B —om ok o5 h
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Table 11 wnd Figure 88 illustrwte the results of the system fragmentation for the Uniform distribution.  For
ill test cases our binmry-tree straiegy performed approcimately 39 - 40% system fgmentation which was
comparaible to those of the k-tree strategy and was improved over those of the rocently 2-D mesh-hased
strategies, which were approximmsely 42 - 44% system fragmentation,




Tabie 11: Effect of ‘the sysism sies” io the
" Gystem

{"_“m Binary-Troa k-Trew

Table 12 and Figure 89 illustraiz the resulis of the system fragmentation for the Normal distribution. For
N = 64x64, the binary-tree sirategy performed approximately 38.9% system fragmentation, which was
comparable to those (38.8% and 38.6%) of the k-tree and the froe sub-list strategics and was improved over
those (41.5% and 42.5%) of the busy list and the quick allocation strategies. For other test cases (N =
1282128 and 256x256), our binary-tree strategy performed approximately 40 - 41% system i
which was comparable 1o those of the k-tree and improved over those (42 - 45%) of the recently 2-
D mesh-hased strategics (the free sub-list, the busy list, and the quick allocation strategies.)

Tabile 12: Effect of “the system sizes™ in the system fragmantaion (%)

for ihe Normal disiribution.
Frad
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Figure B8 Efioc] of “the systam sizes” o fhe system fragmemation (%) far the Mormal distribution.

In summary, the varying the system sizes (and the generating the task sizes in 1x1 — 1y % ) do not effect o
the system performance (i.e., U,y, and F,,) for all allocation methods since each strategy tends 1o yield ihe
ressults, effected by the method itsell for all system sizes. In sddition, the effect of wsk sizes generated by
using the Uniform or Normal distributions tends 10 be the same.  Themefore, in the next investigation, we
will show the results of the Uniform distribution only.

5.L.2 Investigate the Effect of Task Skees to the System Performance

[n the second experiment, we investigated “the effect of task sizes 1o the system utilization (see Table 13)
and the system fragmendation (see Table 14)". In this experiment, the system size wid fixed (N=m; amy =
312x512) and the task sizes were generuted and varied {by using the Uniform distribution) in various
ranges (ie., the “large” range (1] - 0y x ny), the “medium™ range (1x1 - x %), and the “small” mnge
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(1x - "4 %)) Table 13 and Figore 90 ifhustrate the results of the system wiilization. For the small
range of task sizes (Ix] - 128x128 or Ixl -*'4 x "), the binary-tree, the free sub-list, and the busy List
allocation sirategies performed the comparable system wtilization, which were B1.1%. B2.6%. and 82.6%,
respectively and were improved over those (79.1%, 80.1%) of the k-tree and the quick allocation strategies.
For the medium range of task sizes (1x1 - 256x256 o 1%1 - *'/3 x /), the top three strategies that performs
the best system utilization were are the busy list (73.4%), free sub-list (71.1%), and the binary-tree (69.2%),
which were improved over those (68.3% and 66.3%) of the k-tree and quick allocation strategies.  For the
large range of task sizes (1xl - 5122512 or 1xl - iy X my), the binany-tree and k-tree sirategies vielded the
best comparable system utilization ($9.3% and 58.6%), which were improved over those ($6.1 1%, 55.9%,
and 56.5%) of the free sub-list, the busy list, and the quick allocation strategies, respectively,

Tabls 13 Effec of “the lask sias® o e AlTadon Hor thes Lindanm distribition,
Thak Simes Friss Guhch
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Figure : Eflect of e isak sizes” o the sysiam utizalion [%) for e Linform disirouson.
Table |4 and Figure 9] illustrate the results of the system fragmentation, the tree-based approach and those
existing 2-I} mesh-based strategics also tended o perform the same effecting results similar 1o the system
utilization since U, = |-F,,, (or since there was no intermal system fragmentation ).

Tabbe 14: Effect of “the task sizes” i iha system ragmentasion (%) for the Uniiorm dissribution.
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Figurs 81; Effect of “the task skas’ o the system fregmeantation (%) for the Untiorm distibution.

In summary, the varying of task sized on the fixed system size (N = ny x ny) is effecting (o the system
performance (i.e., U, and F.,). When generating range of task sives increases (small - large), the systom
utilization increases while the system frugmentation decreases. For the small and medium ranges, the top
mnking are the busy list, the free sub-list, and the binary-tree strategies respectively, whereas for the large
range the top mnking are the binary-tree, the k-tree, and the busy list sategies, respectively,
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3.2 System Performance Evaluation for the Reconfigurable and Partitionable 2-D Meshes
and 3-0 Meshes (both MIMD | SIMD Tasks)

In order 1o set the same incoming tasks and environment to the CU allocation strategies (the CU-DFS and
CU-AS) for the comparison purpose, we assumed that no tusk finishes during the considering time.

[nll‘ulﬂtnpn:in-l.“wﬁ:uﬁm&ufmﬂmﬂﬂhhqmmilin&unmm}.ﬂm
the system sizes (N = 0y x n;} were varied and the task sizes (Ix] — "'/; x /) were gencrated and fixed.
For all test cases the CU-AS and CU-DFS stmiegies performed the same system wtilization. The reason is
that the system performance results of these two methods were different only when sub-system (S5} and task
{T) sizes were equal which mrely occurred.

Tabfe 15 and Figure 92 illustrate the results of the system wiilization of the modified k-tree strategy for the
2-I3 and 3-D mesh-connected systems when the percentage of the SIMD tasks were increased (such as 0%,
10%, 20%). The results showed that increasing the percentage of SIMD tasks did not effect the system
atilization for the 2-D and the 3-D meshes, except when N = 64x64.

Tabie 15. Efect of the sizes” 10 the aysbam ullization (%) for the 2-D and 3-D Meshes.
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Figure 82 fcont): b) for e 3-0 Meshes.
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Table 16 and Figure 93 illustrate the results of the system utilization of the binary-tree and the k-iree
strategies for the 2-D and 3-D meshes. For the 2-D meshes, the results showed that the binary-tree stratcgy
yielded the improved system utilization over that the k-tree stregy, except when N = fidxd, For the 3-D
meshes, both binary-tree and k-tree strategics yiclded the comparable system wiilization in all test cases.
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Figure 83: Effect of “ihe system sizes” (o the system Lillzanon (%)by res-based methode: &) for e 2-0 Meshes.

Table |7 and Figure 54 ilustrate the results of the system fragmentstion of the modified k-tree strategy for
the 2-I) and 3-D) meshes when the percentage of the SIMD tasks were incressed (such s= 0%, 10%, 20%).
The results showed that increasing the percentage of having SIMD tasks in the system did not effcsi the
system fragmentation for the 2-D and the 3-D meshes, except when N = 6dx64.  The resubls wers similar to
the system utilization since U,,, = |-F,,, (or since there wias no internal system fragmentation),

Tabile 17. Efect of he simms” o the for the 2-0 end 3-0 Mashes.
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Figurs 84: Effect of “the sysism sizes” to the systam fragmeration (%) 8} for tha 2-D Meshes,
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Figure 84 {comt.): b) for the 3-0 Meshes. oAt

Table |8 and Figure 95 illustrasz the resulis of the syvem fragmeniation of the binary-tree and the k-tree
strategics for the 2-D and 3.0 meshes. The resulis showed thet the binary-tree strategy yiclded the
mproved sysiem utilization over that the k-tree strategy, except when N = 64x6d they are comparable.

w;%mm_m__hnﬂuimmwl !
z%:'f' Binary-Tres Tree % Binary-Tres
B 3 v

of “the sysiem sizes” 15 the sysiom fragmeniation {%} by res-besed methods: a) for tha 2-0 Meshes,

]
i

J

- =
L & - -
——a — —_

Figurs 85 {cont.J; b) for the 30 Mesnas. 1 B : £




(f 4

6. CONCLUSION AND FUTURE STUDY

mf%hﬂ&ﬂﬁﬁﬁ“ﬂhﬂ'upmdmﬂm{maﬂ]ﬂm
decision for the reconfigurable and partitionable MSIMIYMIMI? paralicl systoms.  Our universal resource
{CLIPE} allocation model can be spplied to all interconnection netwarks in the product-network class sach
as multi-dimensional meshes, multi-dimensional torl, hypercubes, n-ary k-cubes, eic.  Since these
reconfigurable systems can execute various dynamic tasks (with MIMD and SIMD mesdes) in different
purtitions during nm time, we present the new binary-iree-based approach for MIMD and SIMD tasks in
cfficient time. Moreover, we provide the modifisd k-tree-based spproach to be more useful by sdding the
CU allocation to cover SIMD partitions for the reconfigurable and partitionable MSIMD/MIMD paralisl
systems.  Time complexity of the iree-based universal model (for MIMD msks) is efficient for sny k-D
wmmunmmwmmmmmmw
mh!-nmmmhhmﬂfmmmﬂwmwﬁn_m
free sub-list strategy, the busy list sirategy, and ihe quick allocation strmiegy).  The total time complexity
(for CLVPE allocation) depends on the time complexity of integrating the CU allocation method into the
system. Therefore, we also imtroduces three best-fit hewristica for the tree-based CU allocation: |} the CU-
DFS strutegy in O(N, + kN; +k') time and 2) the CU-AS strasegy in O(K”) time and 3) the CULIS strategy
in (1) time. Finally, we perform many experiments 1o investigate system performance of applying our
new binary tee-based (CUPE) allocation model for the reconfigurable and partitionable 2-D and 3D
meshes. By simulation stody, the results showed that our binsry-iree straiegy yvielded the comparshle
system atilimtion and systam fragmentation to these by the k-tres sirstegy and improved over those by the
k-tree strmlegy in some cases.  For the 2-D partitionsble meshes, our binary-tree-based results and modified
k-tree-based results were also comparable 1o those of the recently 2-D mesh-hased strategies {i.e., the free
sub-list strategy, the busy list strategy, and the quick allocation sirtegy) ond improved over those of the
recently mrategies for some 1851 chses in more efficient time.

In the fisture study, we will apply our universal and geneml resource allocation model to some practical
applications in parallel and distributed computing, high performance computing, mnd super computing.
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Abstraci; lnlhhplpu,h:mnmwiﬁmdt-fm-tud
(CUPE) mllocation model & i
MIMD  multi-dimensional  (k-D) mesh-connected dfhibectumes,
ﬁmmﬂ'uﬂ:nuld-ﬁmmmnm aflow  dyrmmic
mades of exeouting tasks, which are SIMD and MIMD. The MIMID
mmmﬂuhm—mmmmmmm
mﬂhhﬂmhhhm‘hw. tn
mmt-ﬁuhd:Mﬂuﬂﬂhtnﬂmhﬁuﬂuiw
best-fit hewristics. fior the CL allocation decision: I} the CU depth
mﬂuch[ﬂi—ﬂfﬂ}hﬂ{kﬂnmmmdzjhﬂummm
(CU-AS) in O(K2') time. By the simulation study, the sysiem
performance of these o O allocation sirnbdgies wid il
imvestignted. Owr sinuslation results showed that the CL-AS gnd
lﬂﬂﬁnﬂ:ﬁnmﬁnﬂhumwﬁmuh
applied for the reconfigurahle MSIMIDVMIMD 2.03 and 3-D mesh-
conmected architectures.

l. Introduction
Amiinuhhmnhmptulummhjtﬂnnfpﬁﬂurwm
thai provides (sl run time) for ing varicus independen
plﬂhﬂdiﬂﬂhﬂlpﬂh:ﬁm{uﬂh}mﬁm-mh
parnlicl. For this system, each of these tasks requests an MIMD
made.  The more flexible partitionable parallel system, called the
reconfigurable mudii-SIMOMIMD - system, provide
sub-sywiems for ihe requessed Lasks, in the SIMD and
MIMD modes. At run time some tmsks muy call the SIMD mode
{which is pood st synchronization snd comsmumication) wheress
some tasks may need o exccuie independend hranching or different
imstructions (which are suitable for the MIMD mode). Therefore, the
dynamic meonfigurable MSIMIVMIMD parsliel architecture hos
commputing enviroment. The SPP MSIMDAMIMD mrchileciure [1]
Bﬂﬂn%dﬁwﬂmhﬁmlmm
ﬁmhnﬂuﬂhm:ﬂhﬂﬂﬁ{mﬂm
dmlwlh-dmmhdhﬁlumlmﬁm s
architecture performs dynasnic reconfigurstion & the network Jevel
1hm1%5WWHIMﬂhMﬂJmM

environmend, &
number of independent tasks (of the same or different applications)
come in. Each of these insks reguires (st um time) o scparsie sub-
EvElEem (of pariition) 1o execuis in cither the SIMD mode or the
MIMD mode. At the froat-end computer, & apecial designed (5
1kmwu-!tum1ﬂhuﬂnduwﬂﬂpmlﬁ
wupﬁ:ﬁusuh—q“fwhuwimi}gmu::. in
particular, that (65 has o dynamically find ihe locaibon of @ fos sk

" This research wis Supponind by fhe Thastand Ressnrcl Fund
under Geant POF44-leempom Sosawat

mlnmﬂuwﬂlmhﬂlmﬂn&m&uwﬂrun
&-IIMnhq.-mb-uymmmTﬂumiﬁnmumulhy
become availuble when s task completes,  In the
MEIMOMIMD sysiems, tlse requested MIMD mode requines only ihe
fiee: sib-gystems but the requested SIMIT mode needs both the free
ltb-m:m:ldtmﬂin;ﬂucu.

Inhmﬂummnﬁﬂngpnm{ﬁ;ﬂhuum
methads were introduced for partiticonatje i allocsic
independent tusks, (execuling in the MIMD moce) and for specific
inserconnection petworks such a5 2-D) meshes.  Those PE adiocation
srulegies inchudes FRAME SLIDE [2], BUSY LIST with Scheduling
[3], ADAPTIVE SCAN (4], FREE SUB-LIST [5), 2-D BUDDY [6].
FREE LIST [T]. BIT-MAP with Partition [8], QUAD TREE (9L
QUICK ALLOCATION [11], and BIT MAP [12]). All of them were
&umiuh&mmmnfwﬂ:pmﬂmm: MIMD 2-
) mesh-comnected  multicompuers. For ke meconfigursble SPP
MEIMDVMIMD mrehitecture [1], the nesource (CU/PE) - allocation
strategy, called Hmmm.mwm“ﬂm
imtroduced.  However, the bit-map BUDDY strategy wis handled by
the: special 0S5 af the back-end MSIMIYMIMD paraliel svsiem,

In this paper, we present a new peneralized k-Tres-basod (oL
Fﬂdhﬂtﬁnmddmpnﬁmdymhmmﬂmﬁl allocmtion
hirh{udtmﬂmmwifwhmﬂpmihh
MSIMIVMIMD parsilel systems, which utilize the vl = imeemnsicna]
{k-1¥) mesh iiverconnection networks. This new ponerslimed k-Troe-
based (CUVPE) allocation modied |5 extended from our previous sty
[10]. The k-Tree-based model was mtroduced fisr perfiorming (PE)
allocation for the partitionable MIMD k- mesh-connected ByShetts,
Cur new model covers the resource (CLUPE) allocation for the
reconfigurshle MSIMIVMIMD k-0 mesh-conmectsd archbiectures,
which allows independent ks, executing i the MIMED and SIMD
modes.  In addition, in order 0 complete the SIMD partithon, we
imrisduce two best-fit heuristics for the CU allocation decisha: 1) the
C11 depih first search (CU-DFS) sirategy in (kM) time and 2) the
CU adjacent search (CL-AS) strategy in ONK2*) time,  With the CLI-
AS sirategy, owr k-Tree-based (CLPE) allocation mioded wickls the
same time: complexity as thil of the MIMD sub-sysiem (PE) aflocation
in our previous study (when applied o 2D and 3D mieshes),
Finlﬂ:.mdq-mpuﬁumnfﬂumm{mnlhn
Investignied ared compared (in terms of system uiilization and system
fragmentation) by the simulstion stedy. In particular, the resubis of
applying our model to the reconfigumble MSIMDWIMD 2-D and 3.
[ mesh-connecied systems are presented.

Mext soction illustrales ot new  pemcralized k-Troe-based
{Em:ﬂmmnmm:mﬂmw
dendlocstion dectsion for the reconfigurable multi-SIMIVMIMD k-D
mesh-connected  archilectures.  Section 3 presents ihe evaluated
system performance of applying the tew k-Tree-bassd (CUPE)
allocation moded for some interconnection networks such as -0
Fonndly, concheion and fisure sudy mne
dHecussed in Section 4.
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2. k-Tree-Based (CU/PE) Allocation Model for

Reconfigurable MSIMD/MIMD k-D Meshes
ﬂllpuﬂhndk-Tm{ﬂUWﬂiﬁrﬁmﬂmﬂimluh-
E~Mmmmlwz.l]wﬂmm
mmumuhmmmmm
13), best-fit heuristic (Section 2d), sewrching for allocation
denllocation decision (Section 2.5), This néw pencrabized k-Troe-
bﬂdﬂﬂ?ﬁlﬂhmhnmﬂiuwnnmmmhmm
|10, applied only for the partitionable MIMD k-I} methes, 50 cover
bt mconfigurable  mult-SIMDMIMD  k-D mesh-consected
i paticulur, in this paper we infroduce two best-fit
Hﬁﬂiﬂhhmdhﬂhmhﬂuﬁﬂﬂmw[h
soction 2.4.2) to complets the SIMID partition kn efficient e,

L1 k-Tree System State Representation
w:u:hmmunt-rmhwmmuf

syﬂmlnhmuimlix_um.thwd&m:mﬂ:rnﬂh
mitialized sysiem, Dhuering ran time when many tasks are i

udm}ﬁmdnur-wh-qm]mh:&n{hlmhqmmn
ﬂrhnr{ﬁrmulﬂg“ﬂﬁ!}udmhimm&pmiﬂh'
available, Inmdurnmmmlrmiruut,whlnw&u
mode can be dynamically crested and partitioned inte 3¢
buddies/node (see Figure 1) Moke: in this mew k-Tree-based model,
mny k-Tree pode is modified o Include o link to 0 CL/ for the SIMD

insk {see Figiee 2),
A,
N bay
> bag ey - i
b 3 |4 7 -
R =2 iy ¥ g 2 k=3

Figure 1. The 2* buddies of the &-Tress: (g} 2-D mesh: and {51 3-0 rmah

Fipgure 2 illistruies in example of the sysiem site repeesentation of
npplying the k-Tree-based (CLUPE) allocation model for allocating
three SIMD tasks (of sizes 2x3, 2%2, and 133} and two MIMID tasks
(ol sizes dxd ond Ix6) on an BxT0-mesh system,

k-Tiwe-based (CUPE] aliocaton e 3 S tesks angd 2

ars Bc10) rusihy sywiern: (a) the aliccated system stetus and
tha cormesponding k-Tree syatem stals represenistion

L1 Network Partitioning

The k-Tree-based network panitioning i the partitioning proces
thed partitions all k dimensions of the k-D symem (N = ngongx. . .xn )
into smaler 2* sub-syssems mnd allocstes #n approprisse one for the
request (of size py npy X X wherepsn, i= L2 . kL In
thix paper, we ulilize Buddy-ID-Address-Stos-Conversion alporithm
of our previous study.  This network pertitioning process (ie.,
idendifying Wbuddies = 2", base-addresses, and sizes) is computed in
OWK2") time (oo more detail in [10]). Mote: the network partitionlng
will be spplied and modified lster (in Section 242} in onder o
handle the CLF pentisoning for @ sclected sub-sysiem,

1.3 Sub-System Combining

The sub-system combining is applied during processor sllocation or

deallocation. W abo wilize the combinations of 2-Adjacent.

Ehﬁiuﬂﬂ:ﬂmnrmpﬂﬂmmﬂyinuﬁhmﬁml‘

buddies (where j= 1,2, ___ k1) into the larper free sub-systems. This
i J-MmﬂWﬂmr-m}mhmmz'}

tiufd-'dljn:sln::u‘+l:2‘+ﬂ’+...+t1‘"-]Iq‘l""-l]:. The k-

1.4 Best-Fit Heuristic

4.1 Best-Mt Hewristie for PE Allocation

The: besi-fit heurlstic i o find the likely best free sub-system for o
incaming tak.  For PE allocstion decision, we also wilize the
gemernlized besi-fit hewriatic |10] for the partitionabe k-0 meshes

Eiski-Fit Criiprin:

t Huihhﬂnnmh‘nhnﬂiﬁitu]

2 ¥ many S5 hive properiy 1), & that gives “mm cfaient size tecior
whﬁ'iml A B |

T I vy t-'nﬁ}lﬂj-,hm-ln'ﬂm'mm
Inctor (CF) s ssbecind | O #ma | Critidswiss, ssiscd by mndom

4. After off nockisi Bre veiad,
-Inuﬂﬂ-mﬂmnnmmhnm
« Othanwise A @ parifiomed and o b iby uddEE Tl ki “min
mdified CF [MCF)" wil b saincted [ 02 ime |

Bitn: Criisria 1-3 srm ppliad for svary free node and comenad & Bl
_ GiMerion 4 I computed iy cnce for e beal #me 5 of Siups 1.3

14.2 Besi-Fit Heuristic for CU Allocation
In the reconfigurable SPP MSEMEMIMD design [ 1], CPEs {comimod
processor elements) were added in the syslem and ther robss (CU or
PE) are assigned al num time.  Therefore, & CU for & selecied sub-
Hystem (5] can be uny CPE that is directly conmected 0 5. First, we
intrucisce & generalined method to identify all possible Cls and their
nddressing. If the size of the slected sub-sysiem (8} s m% M.
my, o address <{ay, ny,.8) (b, by, 0>, then the number of afl
passible Cls are 2 - my % g2 x..x my, xlx my, %% my. Far
Etm'q:ll-:.ifk=lmd5=?:I.ﬂm‘hhl’.‘Ua'ﬂ2{lxﬂ+hij-3{L
I generul, for k dimensions of % there are 2k (outside) sub-
systems of CLis (CLISs), CUSs" addressing are defined as fallows: for
each dim | (of size = my xmex._xlxm,,x.. xmy ), where =12k
Min CU5 address = <, &, apd, il by, b mel L e
Mian CLIS addreas = <y, ay,-..., Bl gy by, B, bkl e
For example, if k = 2 and § = 7 x A, addressing of all 30 CUs jor 4
CLIS3) for & selected sub-sysiem 5 = m,x g = Tw B) (= <y, ), (B,
byl = <{ 8, ) {1, 12)=) are
- For u fined dim |,
amin CUS (8 PEsk <(me-1, 83), (me=1, byl =, §), (4, F2jp=
amax CLIS (8 PEs) <(bi+tag), (bt bre=<(1250012,12>
= For n fined dim 2,
wmin CUS (7T PEs); <(y, 81}, (b, dg-1) =[5, d), (1], 4=
o max CUIS (7 PEsk <(ay. bekl), (by, Bt - =5 133411, 13
For any free node B (of stee ¢y x dy x...x dy) in the k-Tree, there are
2k insidde sub-sysiems at boundary (BSs). BSs® sddressing are defined
s follows: fior ench dimension | (esch of size [(d,-21% (ds=2) x...% (d,
b Lxdyn. xdy]h wheri=1,2, ___ k.
Min BS sddr=<ia Loy 1,. i), (hy- Ly Lo s by
M BS addr=<(a,+ 1,8+ 1 ... by, B, iy (By=1bae 1. By, o by )
For example, if k=2 and R = 7 & &, sddressing of all 26 PEs for 4
B33} for o fres node (R) of size d; x.dy= 7 x 8) (a0 <{a,, sl (by, by =
{5, 5), (11, 12%=) are
= For a fixed dim 1,
wmin BS (B PEs}: <{ay, 8z (e, B = <3, 5}, (3, 12
nmax BS (§ PEsk <(iw, &), (by, el = <{1 1.5], (10,127
= For a fixed dim 2,
o min B5 (5 PEs) <{nctl, @), (by-1, 80 =<{d, 5}, ([0, 55
i maix B3 (5 PEs) <{are ), bal, (-1, Byl =<{6,12) (10,12
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141 mcummm;;cm-m:.

ﬁ:EqurﬂJﬁumMﬂFE}Hmndhﬂndnyﬁdeuﬂ
ﬂmhﬂmmlhdmmms. Th SiaME
ﬁnmﬂ:mn-ig:umhhnmﬂunmd:. If it is free, it
Hﬂwillhtﬂmdmdﬁﬂhh'ulﬁmhﬁ. If s, ibs bhest-i
valug (Section 2.4.1) i Them, new S and R will be
updsied if they yield the better bess-fit value. The above process iy
rupm::lﬁlﬁh:h.ﬂﬁ'mmd:m'ﬁmﬂim}. Time: complexity of
the CU-DFS i OkN,). hurd:midmﬂl}whmmﬂufﬁi
ﬂlﬂhnﬂnwhﬂﬂwmllhlﬂmmﬂhwmﬁnﬁﬂm
E.mdﬂ‘mlhnﬂjm:mhm‘t}_uﬁlmﬂ:

Ll E; i& an _mm:&#mmm
Sy i m frew nede, iz 12 .

1B b my 2 . e, g, i b I 7 - N
m&hwhhnmnmmm“mw
one i 'Mwnu'mhwﬂﬂmruha]-u, K

i Fl-ﬂﬂz_rlw_ﬂ-!_u:--ﬁwml{h--uw

Pwmmwppmh=2ml!mdmh-qmn5:n.nnﬂ
-r:lifrwlud-.-iullrd.xd,ﬁ. Fiplzhmumlhnﬂm
ame satisfied both not-disjolet and
abn-muurm-ndh::uImanEnu}
disjoint but are different in 2 hita

one bit different.  Figure 1b
and R (01) since they are not

y =0T

A E N1

= = Lr
L 5 Iy Hmnmw-m:ﬂ“,j--r.:_-..-n:
T i ey sl of 5 = |5, . e e
Mi:ﬂp."h‘l‘i.t,hhmqh“ 0 e B * g
["Bag.... bys® ﬂ-uq‘u-mlmmumrn
-H_lrﬂthfmumumh: it anok oF . "= @1 &
Doengastn MinBS (n=1) o manBS {re)
Eanmody, tor = | 8T (b, . By by 77, (k412" adiscnm nodes ane
Pageie b (hey ... bong "), bl dim 1 = 509
¥ n=1, compute min BS <(a,. g, 8, - W (b g, by B
[ s OS5 <l by, 8a .., o), by, By, By, b [
b e

o, TR By [Py B By ®), 5 i 1 =,
If'm=1, compuse min B3 <(a, ay, &, Bl by, by,
¥ =0 compuie max BS <(a, a8y gl {By, by By,
for = -1 BT =y, =y " mofieard nodes ars
SIS Dy (M ... ). et alim 1, ... b T O -,

8 R
: e

A B 0T

11z Ihﬂllﬁ#ﬂmﬁ'-r:i[fuij

mmmm;m-u:hMWMnm
any froe node R that is ndjacent s the selected sub-sysiem 5. In this
mmmnmmsmmm:mmh

idertified directly (see the following 4 cases) If thee mode R & free,
iumﬂh;ﬁ&;nlhrﬂﬁu!-diuhﬁ-ﬁtﬂlmlﬁmhn
24.1) is computed. Mew 5 mnd R will be if they have the

better best-fii value. Time complexity of the CLE-DNFS is CHk2®),

In arder bo ldentify uny boundary free
wisather or ot it is adjscent to the selected sub-system S, we define
the adjacent baddics in O for any mas-combined sub-system (5}
or CK2*) for any combined sub-sysem (5),

mwrs i any buddy node (1, 2, .., or 2%), we compute its BS{s)
in O(k

tumae.

- s — — —
Lei 3 Ilm-b-mti-rmnnl.. % ity
s n Boddy I of 5 wham | = 1,2, ar®

i ﬂmnkhm:liﬁuj.p:,a,....t

ey =1, min BS o, & YR

'!4_'.“'""“:1'.‘_"' R uq,ha_.. By, mn___

T-mm1ﬂ1m'ﬂﬁﬂ.wnﬂﬂ{hlﬂ-llﬁhp‘
= Hgam dm 2 nibe == 30}, Compuis minBs (g, [y, Mgl

Case 2: if S is any eombined (2) buddy node (= 1, 2, ..., kel}, we
shmpuie B BE(E) in Oic),

. |® el 2 R

rl-:“ EE 1 HE !:I_H . |I.
mr:nqw&ﬁawﬂmm”
l]-l.l--..i-ll.lﬂlhﬂlhuﬂ‘thuiiﬂﬁ:dbwh-hm
| and Case 2 in Ogk2"), Fn-mpl:,if‘k-l.djmhﬂhd‘uy
combingd 5 are

[ » .,‘ :E| I'ﬂ! &5 T_;[E

| 4 B | " e fi'_lq
Y e IH ) % m
YT wifa e 51 it

Lase 4: if 5 is my combined (k2"') sub-buddies node 0=1.2.... k1),
ull adjacens buddies cam be identifind by applying Case | aod 3 i,
(k") Fﬂ'mift‘luﬂmhﬂiuufwm:d 8 amw

L PYEL e E‘m

= T

procezhane, searching sams
oot and perform DFS (depth I':I'H"I:I'ﬂ'l-}h}'ﬂlll.llllhm
mosd (leaf) node. If that node is free und s sie can
besi-A value is

hlhbﬁiﬂﬂhﬂlﬁl[ﬂl}nﬂdﬂﬂmm
After all nodes are visied, the flisl process is applied to cither 1)
mmmmmwwmhm:immnm

n-ufrmﬂ-mm-ﬂmnmmupuh
until renching the leal node that stores information of the finished
faesk, Ahﬂﬁ]ﬂbTm'lmd:urﬂurnﬂmmhmh
updated Finally, the combining process B recursively applied (io
remnove free intemnd nodes(ii) Fom bodh PE and CU partiiions o ke
root (112 i possible)

THEOREM |:
allocation with

{or leaf) nodes ane &t most N, + Np< N
most (#leal nodes-1) divided by (21},




therefore all nodes (M) = (N, #Ng) + (NytMe1) £ (2%1) < TN, [For
each (free) leaf node, the best-fit value i3 computed In O(") and
{k"My) for ull free nodes. For each internal node, the best-fit value
s computed in O(k'27) for ol combined sub-sysiems and
(25N +M5)) Tor all imernal nodes.)  Finafly, afier all nodes are
wisited, if the best 5°5 size is egual (o the request, then it is directly
allocated w the request. Otherwise, the network pantitioning end the
best sub-partition will be applied m O(k'2™).  Thus, total time
complexity af the k-Tree-based (CUPE) allocation with spplying
the CU-AS heuaristic 18 O (N, ML, where Nyt £ W and
bersce (WM +Ng ) when applied to the 2-DV3-=0) meshes,

Mote: time complexity of the k-Tree-based (CLVPE) allocation
with applying the CU-DFS hewristic is O(k* 25N +Np) (kNg)) and
heroe (MM, +Mp) ) when applied fo the 2-Dv3-D meshes.

THEOREM 2: Time complecity of the K-Tree-based (CLUTE)
denllocation (o free the particuler k-Tree node fhal stores the
fimiabed ek and to combine the free internal nodes o the root of the
k-Tree) on o k-ID mesh is O(n2"), where remaxing ny.. .. A,
PROOE: Searching for the location of @ finished sob-system
from the root i ot most (2" steps. Then, combining all 3* beddy
nades from the finished sub-system to the rool(if § is possibis) takes
mnother n{2°) sieps.  Therefore, total time complexity is O{n2* < M),

). System Performance Evaluation

By simubsiion study, a number of experiments were porformed 1o
Imwestipaie the systiem performance effect (ie., system wilization and
Frngmentation) of applying our k-tree-based (CUPE)  alloeation
model for the reconfigurmble MSIMIVMIMD 2-D amd 3-T meshes.
For each experiment, (stmulation) tme wnlts weee fersied anoand
3,000 20,0600 ninits and incoming tasks were genenmbed arownd 1,00
TG00 sk, nocording o the system parameten(s) seiting. For eech
evalumed result, different data sets were generabod amd the algorithm
was repesicd until an avernge sysiem performance does not change.
The Uniform distoribution Do, §) was considered for the task-sime
distribatlon. Task srrival rate — Polsson{l) dor mber-arrival time -
Excpd 17 =51}, und service time — Expl{y=100. Note: in order bo s=t the
same Imcoming tasks and envirommeni fo both CU  allocathon
strategies for the comparison purpose, we assumed that no fusk
finkshes during the considering time.

In Experiment |, we investipaied the effect of system sizes o
the system utilization (L,,), where the sysiem sizes (N=m,xn;] wers
varied and the task sizes {1x1 — "'/ x "y) were pencrated and fixed.
For wll test cases the CLLAS and CLI-DFS straftegies performed the
same gystem wtilization (xince these methods were different
when sub-sysiem (5) and tesk (T) sizes were egual which hardly
ocourred ). Table | showsd the results (%L,,) of spplying the k-
Tree-based (CLUPE) allocation for 3-D0 and 3-D meshes, which
yielded the same resulis when increasing, percentage of SIMD tasks.

mtmﬁha&gﬂhﬁmmaiﬂi

%_ [ W[ % [ i | ao%
BATE | BB.4E | T1.81

i 3 e T e T

Bagh | Brhg | Gras |
s | TooiE | Tooie | 7ol [ owidE | SOET

sizee 1 the systam isston (%)
1 T8

e 7048 | B8.00T
1} 55 998 Suies | SO0 |
In Experiment 2, we investigased effoct of task sizes o (he
sysiem wiilization, where the system sire was fived (N = 29602 %6)
and the tusk sites were variod  Table 2 showed that the system
utilieation incrensed when the maximum task-size parameter was
reduced sinoe & number of small tasks could be Wliocated. For e
Ups = | - Fy (o no effect of intemal system fragmentation).

Table 2. Efact of ihe tmak
Tash e

riny e
S0

720

i

¥

anby [7]

4. Conclusion and Future Stody _
This paper introdisces two besi-I hewrlstics For ibe k-Troe-bassd CLf
allocation: 1) the CU-DFS struiegy in CKkMy) and 1) the CU-AS
strategy in O(c2), The CU aliocation is added to complete the design
of the new generallzed k-tree-baseed (CLVPE) alkocation model for the
reconfigurnble MEIMDVMIMD k-I} mesh-cornecied archilectures,
By simulation stody, a number of experimenis were performed to
investignie system of spplying our mev k-Tree-hased
{CLPE) aflocation model for meoonfigeables X-00 aml 3-0 meshes.
System performance resubts (e, sysiem utilization & fragmentation)
of applying our model with including the CU-AS strubagy showed the
same results to those of the CLI-DFS siralegy.  However, for the 2-0
of 3-0 meshes the CL-AS sirsiegy vields Of1) time which is betier
thi O M) time performed by fe CL=DFS stranegy.

I the future study, we will modify and sdd the CU searching o
mme existing 1-D mesh-based PE  allogstion methods. Those
modified strategies com support SIMD wasks for the reconfigursbée
MEIMDMIMED 2-[3 meshes. Therefore, ihe sysiem performance of
those {CLPE) allocstion methods will be investigeied ond compared
by oo k- Tree-based (CLVPE) allocation appeoach.
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