

รายงานวิจัยฉบับสมบูรณ์

การศึกษาคุณสมบัติของโอลิโกแซคคาไรด์จาก กัมของเมล็ดมะขาม

โดย ดร. ชิตสุดา ชัยศักดานุกูล

ตุลาคม 2547

รายงานวิจัยฉบับสมบูรณ์

การศึกษาคุณสมบัติของโอลิโกแซคคาไรด์จาก กัมของเมล็ดมะขาม

โดย ดร. ชิตสุดา ชัยศักดานุกูล

ตุลาคม 2547

รายงานวิจัยฉบับสมบูรณ์

การศึกษาคุณสมบัติของโอลิโกแซคคาไรด์จาก กัมของเมล็ดมะขาม

ผู้วิจัย ดร. ชิตสุดา ชัยศักดานุกูล

สาขาวิชาเทคโนโลยีอาหาร คณะเทคโนโลยีชีวภาพ มหาวิทยาลัยรังสิต

สนับสนุนโดยสำนักงานกองทุนสนับสนุนการวิจัย

ทุนวิจัยหลังปริญญาเอก

กิตติกรรมประกาศ

โครงการวิจัยเรื่อง การศึกษาคุณสมบัติของโอลิโกแซคคาไรด์จากกัมของเมล็ดมะขาม ได้คำเนินการมาตลอดเวลา 2 ปี ภายใต้การดูแลของ รศ.คร.กล้าณรงค์ ศรีรอต ในฐานะนักวิจัยที่ ปรึกษา ซึ่งดิฉันขอกราบขอบพระคุณ รศ.คร.กล้าณรงค์ ศรีรอต เป็นอย่างมากที่ได้กรุณาให้ความ ช่วยเหลือ คำแนะนำที่เป็นประโยชน์ และการสนับสนุนในทุก ๆ ด้าน รวมทั้งเอาใจใส่ดูแล ระหว่างการทำวิจัยอย่างดียิ่ง จึงทำให้งานวิจัยในครั้งนี้สำเร็จลุล่วงไปได้ด้วยดี

คิฉันขอขอบพระคุณ ผศ.คร.โชคชัย ธีรกุลเกียรติ ที่กรุณาอนุญาตให้ใช้ห้องปฏิบัติการ วิจัยในความดูแลของอาจารย์ในช่วงเวลาหนึ่ง และขอขอบคุณเจ้าหน้าที่ของศูนย์เทคโนโลยี โลหะและวัสดุแห่งชาติ (MTEC) ที่ได้อำนวยความสะควก และสอนเทคนิคการวิเคราะห์ในบาง ส่วนของงานวิจัยในครั้งนี้

คิฉันขอขอบคุณมหาวิทยาลัยรังสิตที่เปิดโอกาสและให้การสนับสนุนการทำวิจัยในครั้งนี้ ท้ายสุดนี้คิฉันขอขอบพระคุณสำนักงานกองทุนสนับสนุนการวิจัย ที่ได้ให้การสนับสนุน ทุนวิจัยในครั้งนี้ ทำให้งานวิจัยสำเร็จลุล่วงไปด้วยดี

บทคัดย่อ

รหัสโครงการ หมายเลข PDF 4580001

ชื่อโครงการ การศึกษาสมบัติของโอลิโกแซคคาไรค์จากกัมของเมล็ดมะขาม

ชื่อนักวิจัย คร. ชิตสุดา ชัยศักดานุกูล สาขาวิชาเทคโนโลยีอาหาร

คณะเทคโนโลยีชีวภาพ มหาวิทยาลัยรังสิต

E - mail address chitsuz@hotmail.com

ระยะเวลาโครงการ 2 ปี

งานวิจัยครั้งนี้มีวัตถุประสงค์ เพื่อศึกษาคุณสมบัติของโอลิโกแซคคาไรค์ที่ได้จากการข่อย กัมที่สกัดแยกได้จากเมล็ดมะขามด้วยเอนไซม์เซลลูเลส โดยงานวิจัยเริ่มตั้งแต่ การศึกษาผลของ วิธีการลอกเปลือกเมล็ดมะขามต่อคุณสมบัติของแป้งเมล็ดมะขามในด้านองค์ประกอบทางเคมื คุณสมบัติทางกายภาพ และคุณสมบัติด้านการไหล ผลการทดลองพบว่าการลอกเปลือกเมล็ด มะขาม 3 วิธี คือไม่ผ่านความร้อน ผ่านความร้อนที่อุณหภูมิ 150°C เป็นเวลา 15 นาที และผ่าน ความร้อนที่อุณหภูมิ 200°C เป็นเวลา 2 นาที ให้แป้งเมล็ดมะขามที่มีเปอร์เซนต์ผลผลิตไม่แตก ต่างกัน คือประมาณ 50 เปอร์เซนต์ และมีองค์ประกอบทางเคมีที่ใกล้เคียงกัน อย่างไรก็ตามแป้ง เมล็ดมะขามที่ผ่านการลอกเปลือกโดยไม่ใช้ความร้อนจะมีค่าความสว่าง (lightness ; L'value) และความขาว (whiteness) มากกว่าแป้งเมล็ดมะขามที่ผ่านการลอกเปลือกด้วยความร้อน โดยมี ความแตกต่างอย่างมีนัยสำคัญกับแป้งเมล็ดมะขามที่ผ่านการลอกเปลือกโดยการคั่วที่อุณหภูมิ 200°C เป็นเวลา 2 นาที

ผลการศึกษาค้านคุณสมบัติการไหลพบว่า แป้งเมล็ดมะขามที่ผ่านการลอกเปลือกที่ความ เข้มข้น 3 เปอร์เซนต์ มีคุณสมบัติการไหลแบบ pseudoplastic และไม่แสดงคุณสมบัติ yield stress อย่างไรก็ตามแป้งเมล็ดมะขามที่ได้จากการลอกเปลือกโดยไม่ผ่านความร้อนจะมีค่า consistency coefficient (k) สูงกว่าแป้งเมล็ดมะขามที่ผ่านการลอกเปลือกโดยใช้ความร้อนทั้ง 2 วิธี อย่างมีนัยสำคัญ ในขณะที่ค่า flow behavior index (n) มีค่าต่ำกว่า นอกจากนี้แป้งเมล็ด มะขามที่ผ่านการลอกเปลือกโดยใช้ความร้อนจะสูญเสียความหนืดเมื่อทำการกวนที่อุณหภูมิ 95° C เป็นเวลา 30 นาที เมื่อทำการสกัดแยกกัมจากแป้งเมล็ดมะขาม หรือ xyloglucan ที่ผ่านการ ลอกเปลือกทั้ง 3 วิธี แล้วนำมาตรวจสอบการกระจายของน้ำหนักโมเลกุลโดยเทคนิคทางคอลัมน์ โครมาโตกราฟฟี และวิเคราะห์น้ำหนักโมเลกุลโดยเทคนิคการกระเจิงแสง พบว่ากัมจากแป้ง

เมล็คมะขามที่ผ่านการลอกเปลือกโดยไม่ใช้ความร้อนจะมีน้ำหนักโมเลกุลสูงสุด คือ 3.831 x 10° กรัม /โมล แสดงว่าการลอกเปลือกเมล็คมะขามโดยใช้ความร้อนมีผลต่อการแตกหักของสาย โพลิเมอร์ของ xyloglucan ซึ่งมีผลกระทบโดยตรงต่อคุณสมบัติด้านการไหล

เมื่อนำกัมที่สกัดจากแป้งเมล็ดมะขามที่ผ่านการลอกเปลือกโดยไม่ใช้ความร้อน มาทำการ ย่อยให้เป็นโอลิโกแซคคาไรค์ ด้วยเอนไซม์เซลลูเลส แล้วนำมาผ่านคอลัมน์เจลฟิวเตรชัน พบว่าสาร ละลายโอลิโกแซคคาไรค์ที่ได้ ประกอบด้วยโอลิโกแซคคาไรค์ที่มีขนาดแตกต่างกัน 4 ชนิด ซึ่ง เมื่อนำมาวิเคราะห์ด้วยเครื่อง MALDI – TOF mass spectrometer พบว่าแต่ละชนิดมีน้ำหนัก โมเลกุล 956, 960, 1424, และ 5039 ดาลตัน ตามลำดับ ผลการศึกษาคุณสมบัติการเป็นสาร prebiotic ของโอลิโกแซคคาไรค์ จากกัมเมล็ดมะขาม แสดงให้เห็นว่าโอลิโกแซคคาไรค์จากกัม ของเมล็ดมะขาม สามารถช่วยการเจริญเติบโตของเชื้อจุลินทรีย์สุขภาพ (probiotic) 4 ชนิดคือ Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum และ Biphidobacterium bifidum ได้คีกว่า inulin ซึ่งเป็นสาร prebiotic ทางการค้า

Abstract

Project code:

PDF 4580001

Project Title:

Study of oligosaccharide from tamarind seed gum

Investigator:

Chitsuda Chaisakdanugull, Department of Food Technology,

Faculty of Biotechnology, Rangsit University

E - mail address:

chitsuz@hotmail.com

Project Period:

2 years

This research was conducted to study the properties of oligosaccharide from enzymatic hydrolysate of tamarind kernel powder (TKP) by cellulase. First, the effect of dehulling processes on the physical and rheological properties of TKPs were studied. The results showed that the yield of TKPs from the three different dehulling processes, namely nonheating, heating at 150°C, 15 min and roasting at 200 °C, 2 min were about 50%. The chemical compositions of TKPs from the three different dehulling processes were not significant different. However, TKP from non-heating dehulling process showed more lightness (L'value) and whiteness than TKPs from the other two heating dehulling processes. The rheological data indicated that 3% of TKP suspensions from different dehulling processes were pseudoplastic fluids and did not exhibit yield stress. The consistency coefficient (k) of TKP from non-heating dehulling process was significantly higher than that of TKPs from the other two heating dehulling processes, whereas the flow behavior index (n) was the lowest. Inaddition, the loss of viscosity with stirring at 95°C for 30 min was found in TKPs from heating dehulling processes. The macromolecular distribution of purified xyloglucan from TKPs was studied by gel permeation chromatography and their molecular weight (Mw) were determined by light scattering technique. The Mw of xyloglucan was found to be 3.831×10^6 , 3.440×10^6 and 3.304×10^6 g/mol respectively. This indicates the polymer degradation due to dehulling process by heating.

The purified xyloglucan of TKP from non-hesting dehulling process was hydrolyzed to oligosaccharides by cellulase and the molecular weight distribution were studied by gel

permeation chromatography. The result indicated that hydrolyzed xyloglucan from tamarind seed composed of 4 fractions. The molecular weight of each fraction studied by MALDI-TOF mass spectrometry were 956, 960, 1424 and 5039 dalton respectively. The pooled fraction of oligosaccharides from hydrolyzed xyloglucan was evaluated for prebiotic effect and the results showed that it could promote cell growth of *Lactobacillus acidophilus*, *Lactobacillus casei*, *Lactobacillus plantarum* and *Biphidobacterium bifidum* better than inulin, a commercial used prebiotic in many food products.

เนื้อหางานวิจัย

บทน้ำ

โอลิโกแซคคาไรค์เป็นสารพอลิแซคคาไรค์ ที่ประกอบด้วยหน่วยย่อยโมโนแซคคาไรค์ 2 ถึง 10 หน่วย ซึ่งในปัจจุบันได้รับความนิยมในการนำมาใช้เป็นส่วนประกอบของอาหารมากขึ้น เนื่องจากคุณประโยชน์ในด้านการส่งเสริมสุขภาพ โดยช่วยกระตุ้นการเจริญเติบโตหรือ ประสิทธิภาพของจุลินทรีย์ สุขภาพในลำไส้ใหญ่ ที่จะทำให้สุขภาพของผู้บริโภคดีขึ้น นอกจาก นี้ยังใช้เป็นวัตถุเจือปนอาหารเพื่อปรับปรุงคุณสมบัติของอาหารให้ดีขึ้น ในประเทศไทยเนื่อง จากยังไม่มีงานวิจัยและอุตสาหกรรมการผลิตสารโอลิโกแซคคาไรค์อย่างเป็นรูปธรรม จึงมีการ นำเข้าสารประเภทนี้ในแต่ละปีเป็นจำนวนหลายล้านบาท และมีแนวโน้มเพิ่มขึ้น ซึ่งตามความ เป็นจริงแล้ว ประเทศไทยมีวัตถุดิบทางการเกษตรหลวยชนิด โดยเฉพาะวัสดุเหลือทิ้งทางการ เกษตร เช่น เมล็ดมะขาม ที่สามารถนำมาผลิตเป็นสารโอลิโกแซคคาไรค์ ได้

ดังนั้นงานวิจัยครั้งนี้จึงมีวัตถุประสงค์หลักเพื่อศึกษาวิธีการในการผลิต และคุณสมบัติ ของโอลิโกแซคคาไรค์จากกัมของเมล็ดมะขาม เพื่อเป็นการส่งเสริมการใช้เทคโนโลยีภายใน ประเทศ ซึ่งจะเป็นประโยชน์ในการลดการสูญเสียเงินตราของประเทศในการนำเข้าสารประเภท นี้ และเป็นแนวทางหนึ่งในการสร้างมูลค่าเพิ่มให้กับวัตถุดิบทางการเกษตรของประเทศอีกด้วย

วิธีการทดลอง

งานวิจัยในครั้งนี้เริ่มตั้งแต่การศึกษาผลของวิธีการลอกเปลือกเมล็ดมะขามต่อคุณสมบัติ ของแป้งเมล็ดมะขาม การสกัดกัมจากแป้งเมล็ดมะขามแล้วนำมาย่อยด้วยเอนไซม์เซลลูเลสเป็น โอลิโกแซกคาไรด์ เพื่อนำมาศึกษาคุณสมบัติในด้านต่าง ๆ ซึ่งมีขั้นตอนการดำเนินงานสรุปได้ ดังต่อไปนี้

 การศึกษาผลของวิธีการลอกเปลือกเมล็คมะขาม ต่อคุณสมบัติทางกายภาพ และคุณ สมบัติด้านการ ใหล (rheological properties) โดยเปรียบเทียบวิธีการลอกเปลือกเมล็คมะขาม 3
 วิธี คือ (1) ไม่ผ่านความร้อน (2) ผ่านการอบที่อุณหภูมิ 150°C เป็นเวลา 15 นาที และ (3) ผ่านการคั่วที่อุณหภูมิ 200°C เป็นเวลา 2 นาที

- 2. การศึกษาการกระจายตัวของน้ำหนักโมเลกุลของกัมที่สกัดแยกจากแป้งเมล็ดมะขามที่ ผ่านการลอกเปลือกด้วยวิธีการต่าง ๆ โดยใช้เทคนิคทางคอลัมน์โครมาโตกราฟฟี (Sepharose CL - 2B column) และศึกษาน้ำหนักโมเลกุลโดยใช้ multi – angle laser light scattering (MALLS)
- 3. การศึกษาคุณสมบัติของโอลิโกแซคคาไรค์ที่ได้จากการย่อยกัมจากแป้งเมล็ดมะขามที่ ผ่านการลอกเปลือกโดยไม่ใช้ความร้อนด้วยเอนไซม์เซลลูเลส ดังต่อไปนี้
- 3.1 แยก fraction ของโอลิโกแซคคาไรด์ที่ได้ โดยใช้เทคนิคทางคอลัมน์โครมาโตกราฟฟี (Biogel P-2 column)
- 3.2 ศึกษาน้ำหนักโมเลกุลของโอลิโกแซคคาไรค์แต่ละ fraction โดยใช้ MALDI TOF mass spectrometer
- 3.3 ศึกษาคุณสมบัติการเป็นสาร prebiotic ของโอลิโกแซคคาไรค์ที่ได้ โคยใช้เชื้อ จุลินทรีย์สุขภาพ 4 ชนิค คือ Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus plantarum และ Bifidobacterium bifidum เปรียบเทียบกับ inulin ซึ่งเป็นสาร prebiotic ทางการค้า

ผลการทดลอง (โปรดดูรายละเอียดใน manuscrip ที่แนบมาด้วย)

- 1. จากการศึกษาวิธีการลอกเปลือกเมล็ดมะขามต่อคุณสมบัติทางกายภาพและคุณสมบัติ ด้านการใหล (rheological properties) ของแป้งเมล็ดมะขาม พบว่า การลอกเปลือกเมล็ดมะขาม โดยไม่ใช้ความร้อนจะได้แป้งเมล็ดมะขามที่มีความขาว และคุณสมบัติด้านการให้ความหนืด ดี กว่าแป้งเมล็ดมะขามที่ผ่านการลอกเปลือกโดยการอบที่อุณหภูมิ 150°C เป็นเวลา 15 นาที และ ผ่านการคั่วอุณหภูมิ 200°C เป็นเวลา 2 นาที นอกจากนี้แป้งเมล็ดมะขามที่ผ่านการลอกเปลือก โดยไม่ใช้ความร้อน ยังมีคุณสมบัติรักษาความหนืดไว้ได้เมื่อทำการกวนที่อุณหภูมิ 95°C เป็น เวลา 30 นาที ทั้งนี้เนื่องจากความร้อนในระดับที่ใช้ในการลอกเปลือกนี้มีผลต่อการแตกหักของ โมเลกุลโพลิเมอร์ของกัม (xyloglucan) ซึ่งเป็นองค์ประกอบหลักของแป้งเมล็ดมะขาม
- 2. จากการศึกษาคุณสมบัติของโอลิโกแซคคาไรค์ที่ได้จากการย่อยกัมที่สกัดแยกจาก แป้งเมล็คมะขามด้วยเอนไซม์เซลลูเลส พบว่า สารละลายโอลิโกแซคคาไรค์ที่ได้ประกอบด้วย โอลิโกแซคคาไรค์ 4 ชนิคที่มีน้ำหนักโมเลกุลแตกต่างกันคือ 956, 960, 1424 และ5039 ดาลตันตามลำดับ
- 3. จากการศึกษาคุณสมบัติการเป็นสาร prebiotic ของโอลิโกแซคคาไรด์จากกัมของ เมล็ดมะขาม พบว่า โอลิโกแซคคาไรด์จากกัมของเมล็ดมะขามสามารถช่วยการเจริญเติบโต ของเชื้อจุลินทรีย์สุขภาพ (probiotic bacteria) 4 ชนิด คือ Lactobacillus acidophilus Lactobacillus casei, Lactobacillus plantarum และ Bifidobacterium bifidum ได้ดีกว่า inulin ที่เป็นสาร prebiotic ทางการค้า ซึ่งแสดงให้เห็นว่า โอลิโกแซคคาไรด์จากกัมของเมล็ด มะขามสามารถนำมาใช้ประโยชน์เป็นส่วนผสมของอาหารเพื่อสุขภาพ โดยให้ประโยชน์ในด้าน การช่วยการเจริญเติบโตของเชื้อจุลินทรีย์สุขภาพได้

เอกสารอ้างอิง

Bhattacharya, S., Bal, S., Mukherjee, R.K., Bhattacharya Suvendu, 1991. Rheological behaviour of tamarind (*Tamarindus indica*) kernel powder (TKP) suspension.

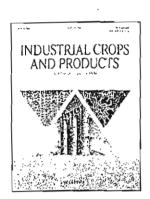
J. Food Eng. 13, 151-158.

- Bhattacharya, S., Bal, S., Mukherjee, R.K., Bhattacharya Suvendu, 1994. Study on the characteristics of some peoducts from tamarind (*Tamarindus indica*) kernel.
 J. Food Sci. Technol. 31(5), 372-376.
- Burchard, W., 1994. Light scattering techniques. In: Ross-Murphy S.B. (Ed), Physical techniques for the study of food biopolymers. Blackie Academic & Professional, Glasgow, pp. 151–213.
- Chen, J.J., Vivian, M.F., Chen-yi, L., 2003. Effects of compositional and granular properties on the pasting viscosity of rice starch blends, Starch/Starke. 55, 203-212.
- Gidly, M., Lillford, P.J., Rowlnds, D.W., 1991. Structure and solution properties of tamarind-seed polysaccharide. Carbohydrate Research. 214, 299-314.
 Glicksman, M., 1996. Tamarind seed gum. In: Glicksman, M. (Ed.), Food hydrocolloids, volume III. CRC Press Inc., Baca Raton, Florida, pp. 191-202.
- Krumel, K.L., Sarkar, N., 1975. Flow properties of gums useful to the food industry. Foods Technol. 36–44.
- Marathe, R.M., Annapure, U.S., Singha, R.S., Kulkarni, P.R., 2002. Gelling behaviour of polyose from tamarind kernel polysaccharide. Food Hydrocolloids. 16, 423-426.
- Picout, D.R., Ross-Murphy, S.B., Errington, N., Harding, S.E., 2003. Pressure cell assisted solubilization of xyloglucans: tamarind seed polysaccharide and detarium gum. Biomacromolecules. 4, 799–807.
- Prabhanjan, H., Zakiuddin Ali, S., 1995. Study on rheological properties of tamarind kernel powder, its derivatives and their blends with maize starch. Carbohydrate Polymer. 28, 245–253.
- Sim, I.M., Gane, A.M., Dunstan, D., Allan, G.C., Boger, D.V, Melton, L.D., Bacic, A., 1998.

 Rheological properties of xyloglucan from different plant species. Carbohydrate

 Polymer. 37, 61–69.
- Van Den Einde, R.M., Van Der Goot, A.J., Boom, R.M., 2003. Understanding molecular weight reduction of starch during heating-shearing processes. J. Food Sci. 68(8), 2394–2616.

- York, W.S., Van Halbeek, H., Darvill A.G., Albersheim, P., 1990. Structural analysis of xyloglucan oligosaccharides by ¹H-n.m.r. spectroscopy and fast-atom-bombardment mass spectrometry. Carbohydrate Research. 200, 9-31.
- Kaplan, H. and Hutkins, R.W. 2000. Fermentation of oligosaccharides by lactic acid bacteria and bifidobacteria. Applied and Environmental Microbiology. 66 (6), 2682-2684.


Output ที่ได้จากงานวิจัย

- 1. ผลงานตีพิมพ์ในวารสารนานาชาติ "Industrial Crops and Products " ซึ่งกำลังอยู่ ในระหว่างการพิจารณา
- 2. การเสนอผลงานในรูปโปสเตอร์ เรื่อง "Fractionation of xyloglucan oligosaccharides from tamarind seed and its prebiotic effect" ในการประชุมวิชาการนานาชาติ 22nd International Carbohydrate Symposium ที่ Scottish Exhibition & Conference Centre (SECC), Glasgow, UK ในระหว่างวันที่ 22 27 กรกฎาคม 2547

ภาคผนวก

INDUSTRIAL CROPS AND PRODUCTS

AN INTERNATIONAL JOURNAL

Editors-in-Chief: Dr. E. de Jong Dr. F.S. Nakayama

Reply to:
Dr. E. de Jong
Agrotechnology and Food Innovations
Biobased Products
Fibre & Paper Technology Department
P.O. Box 17, 6700 AA Wageningen
The Netherlands

Tel.: +31 317 475298 Fax: +31 317 475347 E-mail: ed.dejong@wur.nl Dr. K. Sriroth
Department of Biotechnology
Faculty of Agro-Industry
Kasetsart University, Bangkok
Jatujak
Bangkok
Thailand

Re: ICP16-2004/ej/ks

Wageningen, 10 March 2004

Dear Dr. Sriroth,

I acknowledge with thanks the safe receipt of the manuscript entitled "Effect of dehulling processes on the rheological properties of tamarind (Tamarindus indica) Kernel powder".

Copies will now be sent to members of the Editorial Board for review.

A decision on publication will be communicated to you as soon as possible.

Yours sincerely,

Dr. E. de Jong

Editor-in-Chief Industrial Crops and Products

Effect of dehulling processes on the rheological properties of tamarind (Tamarindus indica) kernel powder

Chitsuda Chaisakdanugull¹ and Klanarong Sriroth²*

¹ Department of Food Technology, Rangsit University, Pathumthanee, Thailand ² Department of Biotechnology, Kasetsart University, Bangkok, Thailand

*To whom correspondence should be addressed:
Dr. Klanarong Sriroth
Department of Biotechnology
Faculty of Agro-Industry
Kasetsart University, Bangkok,
Jatujak
Bangkok
Thailand

Tel.: (02) 9405634 Fax: (02) 9405634. e-mail: aapkrs@ku.ac.th

Abstract

Tamarind (*Tamarindus indica*) kernel powders (TKPs) were prepared by three different dehulling processes, namely non-heating (TKP1), heating at 150 °C, 15 min (TKP2) and roasting at 200 °C, 2 min (TKP3). Rheological and shear thinning properties of TKPs were investigated to elucidate the effect of the dehulling process on the powder. TKP1 showed more whiteness than TKP2 and TKP3 respectively. The shear rate-shear stress data indicated that 3% of TKP suspensions from different dehulling processes were pseudoplastic fluids and did not exhibit yield stress. The consistency coefficient (k) of TKP1 was significantly higher than that of TKP2 and TKP3, whereas the flow behavior index (n) was the lowest. In addition, the loss of viscosity with stirring at 95 °C for 30 min was found in TKP2 and TKP3. The macromolecular distribution of purified xyloglucan from TKPs was studied by gel permeation chromatography and their molecular weight (Mw) were determined by light scattering technique. The Mw was found to be 3.831 × 10⁶, 3.440 × 10⁶, and 3.304 × 10⁶ g/mol for xyloglucan from TKP1, TKP2 and TKP3 respectively. This indicates polymer degradation due to dehulling process by heating.

Keywords: tamarind kernel powder, dehulling, rheological properties, shear thinning, molecular weight

....

1. Introduction

Tamarind (Tamarindus indica) is amongst the most important common and commercially important tropical trees that grows abundantly in Thailand and South East Asian countries. The pulpy portion of fruit is mainly used as acidulant in food and can be processed for many products. Tamarind seed is a by-product of tamarind pulp industries, the seed flour or tamarind kernel powder (TKP) has been used as a sizing material in the textile industries, as a thickener for textile printing and as an adhesive or binding agent in other industries (Rao, 1972). Bhattacharya et al. (1972) found that the low-cost TKP could be a good substitute for costly pectin for making jelly and could be fortified up to 15% in flour mix for bread and biscuits making without being unacceptable to the test panel. Tamarind gum is a polysaccharide polymer (D-galactose, D-xylose and D-glucose) obtained from the endosperm of the seed. It is extracted, purified and refined and is used as a thickening, stabilizing and gelling agent in foods, especially in Japan where Dinippon Pharmaceutical Co. conducted two years of feeding toxicity tests (Glickman, 1986). Miyazaki et al. (1998) showed that thermoreversible gel formed by xyloglucan polysaccharide derived from tamarind seed has the potential application as a vehicle for rectal drug delivery.

To prepare TKP, it is essential that the outer seed coat or testa is removed. Many methods were recommended to dehull the seed such as being parched at 150 °C for 10-15 min or directly milled followed by screening or by air separation (Whistler, 1993). Bhattacharya et al. (1991) dehulled the seed by roasting in a sand-roaster at 200 °C for 2 min and passing them through a disc shelling machine followed by aspiration.

However, no systematic study has been done on the effect of the dehulling processes on the properties of TKP especially on the rheological properties which are an important consideration in the development of food products (Krumel and Sarkar, 1975).

The objectives of this work were to study how heating and non-heating dehulling processes affect the composition and rheological properties of TKP, and to examine their effect on the molecular weight of purified polysaccharide from the seed flour.

2. Materials and Methods

2.1 Materials

Tamarind seeds were obtained from the tamarind pulp processing industry in Petchabune Province, Thailand. Samples were washed to remove attached pulp and to float away hollow seeds, then dried in a tray drier at 60 °C for 6 h. The average moisture contents of the sample was 8.86% (wet basis).

2.2 Sample preparation

Three dehulling processes were tested: (1) crushing the seeds by hammer mill using a 10 mm screen and removal of the fine testa by air blower, then soaking the crushed seeds for 2-3 h in water and rubbing to remove the attached seed coat. The crushed seeds were then dried in a tray drier at 50 °C overnight (TKP1). (2) Heating the seeds in a hot air oven at 150 °C for 15 min (Whistler 1993) and removal of the brittle testa by pin mill (TKP2). (3) Roasting the seeds at 200 °C for 2 min (Bhattacharya et

al., 1991) and removal of the brittle testa by pin mill (TKP3). After that, all samples were finely ground by hammer mill using a 1 mm screen and the flours or TKPs were packed in plastic bags and kept in container with humectant at room temperature.

2.3 Sample characterization

2.3.1 Proximate analysis

Moisture, protein, fat, ash and crude fiber were determined according to the AOAC methods (AOAC, 1990). Starch contents were analyzed according to the AACC method 76-11 (AACC, 1990) by using glucoamylase with a subsequent measurement of glucose with glucose oxidase.

2.3.2 Color measurement

A Minolta Spectrophotometer Model CM 3500 d (Minolta, Japan) was used for color evaluation on the CIE L* (lightness), a* (redness) and b* (yellowness) value. The whiteness of samples was also measured using a Kett Digital Whiteness Meter Model C-100 (Kett Electric Laboratory, Germany).

2.4 Rheological measurements

A suspension of TKPs was prepared in a concentration of 3% (dry basis) by dispersing the flour in distilled water with constant stirring and increasing temperature up to 70 °C and allowed to cool to room temperature. The apparent viscosity of each suspension was measured at 25 °C using the Brokfield viscometer Model DVIII (Brokfield Engineering Laboratories Inc., USA) equipped with thermostatic bath

.... . ._..