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Figure 1.4: The electromagnetic stirring.

frequently occur in the industrial operations such as
e the formation of oscillation marks on the steel surface;

e the generation of cracks on the longitude and transverse of surface and

subsurface of steel;
e the breakout of molten steel from the bottom of the mould.

Thus, it is necessary to understand the phenomena occurring in the casting
process in order to develop better casting technologies and optimize the process.
Although a great deal of work has been carried out to study various aspects
of the continuous casting process, very few attempts have been made to study
the fluid flow and heat transfer in the meniscus region. The phenomena in this
region are still not well understood. Thus, in this work, the meniscus region is
included in the computational domain. The aims of this work are to establish a

mathematical model for the fluid flow, heat transfer and solidification problem
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and to develop a numerical algorithm for simulating the phenomena occurring
in the meniscus region in the electromagnetic continuous casting process. In
addition, the two-phase flow of steel and flux is studied to predict the meniscus
shape. The effect of electromagnetic field on fluid flow and solidification of steel

is investigated.

1.2 Scope and Objectives

Although various mathematical models have been developed to describe
the phenomena occurring in the continuous casting process [3, 10, 11, 12, 13], the
coupled fluid flow-heat transfer process in the meniscus region and the effect of
electromagnetic field on the process have still not been fully understood. Thus,

this research aims to

e develop a mathematical model to describe the coupled fluid flow and heat
transfer with solidification process in the mould region and the meniscus

region, taking into account the effect of the electromagnetic field;

e formulate the finite element methods for solving the electromagnetic stirring

problem and the coupled fluid flow and heat transfer problem;

e develop a numerical algorithm for simulating the electromagnetic casting

process:;

e investigate the effect of electromagnetic field on the flow field, temperature

field and meniscus shape.

1.3 Outline of the Thesis

This thesis comprises six chapters. In chapter 1, the basic principles
of the continuous steel casting and the electromagnetic stirring technology are
presented. The scope and objectives are also given in this chapter. In
chapter 2, the previous works closely related to our scope and objectives are

summarized. Chapter 3 concerns the mathematical model for studying the
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two-dimensional electromagnetic stirring problem. The governing equations are
Maxwell’s equations. A numerical algorithm based on the finite element method
is developed to solve the problem. The commercial package FEMLAB is also
used to simulate the electromagnetic field in the continuous casting process. The
effect of casting parameters such as source current and frequency of magnetic
field on the electromagnetic force are investigated. In chapter 4, the effect of
electromagnetic field on the coupled fluid flow and heat transfer process is studied.
The governing equations consist of the Navier-Stokes equations, the continuity
equation and the convection-diffusion equation. A numerical algorithm based
on the finite element method is developed to solve the problem. The effect of
various casting parameters and electromagnetic parameters on the flow field and
temperature field are investigated. In chapter 5, we present a 2-D mathematical
model of steel-flux flow in the meniscus region to predict the meniscus shape. An
algorithm based on the pressure balance and the moving finite element method
are developed to solve this problem. The effect of electromagnetic fields on the

flow field is studied in this chapter.

The conclusions gained from this work are given in chapter 6, together

with some suggestions for further work.
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CHAPTER 2

LITERATURE REVIEW

2.1 General Overview

Many complex phenomena, such as solidification of steel, formation
of oscillation marks on steel surface, breakout of molten steel at
the bottom of the mould and flow of flux, occur in the continuous
steel casting process. All these phenomena have effect on the qual-
ity of steel product. To improve the product quality, new technologies

using electromagnetic field in the process have been developed to cast steel products.

Over the last few decades, extensive research has been carried out
to study the various phenomena occurring in the continuous steel casting
process, including experimental studies, analytical studies and numerical studies.
Numerical investigation has been the dominant approach, as experimental studies
are limited due to the high temperature involved in the process and analytical
approach could only solve very simple problems. The previous studies mainly

focused on the following areas [3, 6, 9, 15]:
e the meniscus phenomena,
e flux flow and formation of oscillation marks on the steel surface,
e heat transfer with solidification of steel,
e flow of molten steel,
e the coupled fluid flow and heat transfer,

e the effect of an electromagnetic field on molten steel flow and heat transfer

with solidification.
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2.2 Modelling of Fluid Flow and Heat Transfer

Various mathematical models and numerical algorithms for fluid flow and
heat transfer have been developed to study the pattern of molten steel flow and
the temperature distribution in the continuous steel casting process. In 1997,
Li [14] developed a numerical algorithm based on the finite element method
and the Lagrangian Eulerian formulation for solving the transient evolution
of the fluid flow, heat transfer and solidification phenomena in the ingot and
spreading casting. His model is based on Scheil’s equation to predict temperature
distribution and fluid flow of steel. His results lead to better understanding of the
process and provide useful information which can be used to improve the design
of the casting process and equipment. Wiwatanapataphee (1998) [3] presented a
coupled turbulent fluid flow-heat transfer with solidification model to analyze the
effect of turbulence on the solidification of steel and the flow of molten steel. She
developed a finite element algorithm to solve the problem and investigated the
effect of some casting parameters on the solidification profile and the flow field
of fluid. Yang et al.(1998) [15] developed a coupled model for the fluid flow,
heat transfer, solidification and solute redistribution in the continuous casting
process. The porous media theory is used to model the blockage of fluid flow by
columna dendrites in the mushy zone. The output shows the close relationship
between the flow pattern of molten steel and the shape of the solid shell. In the
work of Lee et al. (1999) [16], the finite difference method is used to analyze
the turbulent fluid flow in a round billet and the finite element method is used
to analyze the thermo-elastic plastic deformation. The simulation results are
in good agreement with the experimental observations. The cracks on surface
were predicted in the work and the effect of casting speed was investigated. In
2001, Takatani et al. [17] developed a mathematical model for simulating the
transient fluid flow in a continuous casting mould. The argon gas injected from
the nozzle, the molten steel and the solidified shell are all taken into account in
the calculation. They also used a water model in their experimental study and

compared experimental results with the simulation results. An algorithm based
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on the SOLA method was used to solve the problem. In 2002, Thomas et al. [18]
presented four different methods for evaluating velocity of fluid flow in the liquid
pool. The computations are based on PIV, CFX and LES, and electromagnetic
sensors at the mould wall are used to measure the flow velocity. The turbulence

effect is modelled by using the standard K — ¢ model.

2.3 Modelling of Electromagnetic Field in Continuous

Casting Process

Major reviews on the application of electromagnetic field in the
continuous casting process are given in many papers due to Birat and Chone
(1983) [6], Garnier (1990) [19], Kolesnichenko (1990) [20] and Nakanishi (1996)
[21]. Various studies have been undertaken to develop mathematical models and
numerical algorithms to study the electromagnetic problem in the continuous
casting process. Makarov et al.(2000) [22] analyzed the conventional method
for electromagnetic separation of small inclusion in metal casting with high
electric conductivity. The separation technique for the electromagnetic force
was presented and analyzed in each case. It is noted that a direct current
superconduction coil can drastically improve the power loss in the process.
Trindade et al. (2002) [23] introduced a low-frequency numerical model for the
electromagnetic field in the continuous casting process. A finite element algorithm
based on the ELEKTRA/OPERA-3D Package was used to solve the problem.
They compared the simulation outputs with experimental measurements and
the results were in agreement. In the same year, Na et al. (2002) [24] used
a high frequency magnetic field in a soft contact continuous casting mould in
the continuous steel casting process. The distribution of electromagnetic field,
the electromagnetic body force and the effect of magnetic field frequency on the

solidification were discussed in their work.
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2.4 Modelling of Fluid Flow and Heat Transfer at the

Presence of an Electromagnetic Field

Over the last two decades, the electromagnetic casting has been
developed to cast steel products. In 1989, the influence of an electromagnetic
field on the solidification was investigated in the work of Miyoshino et al. [9].
They introduced the fundamental of magnetohydrodynamic phenomena through
experimental and numerical studies. A low frequency magnetic field (60 Hz)
was used in the experimental system. In the same year, Ganma et al. [25]
studied the pattern of fluid flow in the mould with the effect of electromagnetic
stirring in the slab caster. The experimental results and the simulation results
were given in the work. The results show that the velocity of molten steel
that is injected from the nozzle is decelerated when the electromagnetic field
is applied. In 1996, Trophime et al. [26] presented a mathematical model for
the magnetrohydrodynamic problem. The electromagnetic model (A — ¢ model)
and the fluid flow model are developed and the finite element method is used to
solve the problem. In 1997, Toh et al.[8] presented a mathematical model for
controlling the solidification of steel in the continuous steel casting process with
the effect of electromagnetic field. The low-frequency magnetic field used in the
simulation was of 60 Hz. The numerical results show that the surface of the steel
is improved by the use of the magnetic field. As in the works of Fujisaki et
al. [27, 28], they presented the mathematical model for In-Mold electromagnetic
stirring in the continuous casting process. The experimental results and
simulation results are in good agreement and show that the electromagnetic
stirring leads to more uniform velocity field near the mould wall. In 1998, Li
[29] used an electromagnetic field in a model for the coupled fluid flow, heat
transfer and solidification process. Maxwell’s equations were used to model the
electromagnetic field. The results show that an electromagnetic field can reduce
the fluid motion and affect the quality of the steel. Dumont and Gagnoud (2000)
[30] presented a model for the molten metal shape in the electromagnetic casting

to analyze the interactions between the shape of a molten metal and a magnetic
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field distribution. They developed a numerical algorithm based on a moving
finite element mesh with impedance boundary condition to solve the problem,
and determined the free surface under the equilibrium of the electromagnetic
and hydrostatic pressures. Fujisaki (2000) [31] developed a three-dimension
magnetohydrodynamic calculation model for the heat transfer and solidification
problem. The electromagnetic force is calculated using the shadow method when
the flow of molten steel changes. The results of this calculation show that the
electromagnetic stirring makes the solidified steel shell uniform and the dynamic
deviation of temperature stable. Li et al. (2000) [32] developed a mathematical
model for the fluid flow with the effect of an electromagnetic field. The effect of
argon gas injection was also investigated in this work. The computational results
show that the argon gas injection affects the flow pattern of molten steel. In
2001, Park et al. [33] presented a mathematical model for the fluid flow and heat
transfer analysis. The effect of varying the nozzle angle is taken into account to
investigate the flow pattern in the mould. In 2002, Park et al. [34] and Kim et al.
[35] studied the effect of a high frequency magnetic field in the electromagnetic
casting technology. The experimental study was carried out to examine the effect
of mould shape on the quality of the steel billet surface. They also investigated
the effect of current source, casting speed and mould oscillation pattern on the

surface quality of steel.

2.5 Modelling of Meniscus Phenomena

The study of the meniscus phenomena in the continuous casting process
has been undertaken by many researchers. The flow of molten steel, lubrication
flux, and heat transfer at the top surface were studied by McDavid and Thomas
(1996) [36]. A three-dimensional finite element formulation was presented in their
work. The effect of various material parameters on the formation of the flux layer
was also investigated. The model gave reasonable results of the flux layer in
the operating slab casting. The melting behavior of mould powders and the

formation of the mould powder liquid pool were studied by Nakano et al. [37] in
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1970. They proposed a one-dimensional heat conduction equation taking into
account the difference in material properties of the various forms of the flux. In
the work of Nakata and Etay (1992)[38], the two-dimensional meniscus shape
under an alternating magnetic field was simulated. The finite difference method
was used to solve the problem. The frequency of magnetic field and coil current
are taken into account to investigate the height of meniscus layer. Li et al.
(1995) [39] studied the behavior on the meniscus region and the properties of the
surface on the billet casting in the presence of a magnetic field. The relations
between the meniscus behavior and the surface quality were investigated in
their work. The effect of a high-frequency magnetic field, mould oscillation on
meniscus behavior was presented. The experimental results using molten gallium
and molten tin were used to confirm the given concepts. The results of the study
also showed that the use of a magnetic field improves the quality of the steel
surface. Lucus (1998) [40] proposed a three-dimensional model for the fluid flow
problem. The meniscus interface was studied by using the commercial package
CFX. His results gave a flow field similar to that simulated using PIV by Thomas
(2001) [41]. Sha et al. (1996) [42] investigated the behavior of meniscus on the
mercury and silicon oil with the effect of oscillation wall. A two-dimensional
mathematical model was presented in the work, together with the initial and
boundary conditions. The Marker and Cell (MAC) method has been used to
solve the problem. The experimental results and the computation results on the

meniscus shape were in good agreement.

2.6 Concluding Remarks

Many models concerning about the phenomena in the continuous
casting process have been developed to describe the complex phenomena.
Many researchers focused only on subproblems of heat transfer, fluid flow
and solidification.  Further work is needed to investigate the influence of
electromagnetic field on the coupled fluid flow and heat transfer with solidification

process occurring in the continuous steel casting process.
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CHAPTER 3

ELECTROMAGNETIC FIELD IN CONTINUOUS
CASTING PROCESS

3.1 General Overview

Over the last few decades, the electromagnetic continuous casting
process, as shown in Figure 1.4, has been used to cast steel products.
The electromagnetic field will generate eddy currents and electromagnetic
forces which consequently influence the flow of molten steel and heat
transfer with solidification.  As steel is a good conductor, the magnetic
Reynold’s number is very small. The change in the magnetic flux
density caused by the fluid flow can thus be neglected. Hence, the elec-

tromagnetic problem is uncoupled from the fluid flow problem and solved separately.

In this chapter, we establish a mathematical model for the electromagnetic
problem in the continuous casting process. The A — ¢ model based on Maxwell’s
equations and boundary conditions are presented in section 3.2. In section 3.3, the
Bubnov-Galerkin finite element method for the solution of the electromagnetic
problem is presented. In section 3.4, the influences of various parameters on the

electromagnetic field in the continuous casting process are investigated.

3.2 Boundary Value Problem for the Electromagnetic Field

The governing equations for the electromagnetic field include the
Maxwell’s equations and the constitutive equations. Let H and E denote

respectively the magnetic field and the electric field. The Maxwell’s equations are

oD
H=J+— A
V X +8t’ (3.1)
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0B
VxE=-" (3.2)
V-B=0, (3.3)

where J is the total current density, D is the electric displacement, py is the free
charge density, and B is the magnetic flux density. The magnetic flux density B
and the electric displacement D are respectively related to the magnetic field H

and the electric field E by the following constitutive equations
B = uH, (3.5)

D =<E, (3.6)

where 1 and € are magnetic permeability and electric permeability, respectively.
Another constitutive equation relating the induced current density with E, B

and the velocity v is as follows

Je=0(E+v xB)+pyv, (3.7)

where o is the electric conductivity. For metal material (good conductors), we

could assume that the field changed in one part of the system radiates to other

parts instantaneously. Thus, the term %—]t) in the equation (3.1) can be neglected
and the equation (3.1) becomes
VxH=1J, (3.8)

from which and noting that the divergence of the curl of a vector field is identical
to zero, we have

vV-J=0. (3.9)

Furthermore, in the case that the magnetic Reynolds number (R, = povL) is
sufficiently small (< 1), the term (v x B) in equation (3.7) due to fluid flow can
be neglected. Under the above approximation and neglecting the displacement

current pg, the field equations are simplified as follows

VxH=1, (3.10)
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VxE:—%]?, (3.11)
V-B=0, (3.12)
V-D=0, (3.13)
B = H, (3.14)
J. = oE. (3.15)

The Maxwell’s equations and the constitutive equations can also be formulated
in terms of potential functions. From equation (3.12) and noting that the
divergence of the curl of a vector field is identical to zero, we can introduce the

magnetic flux density B in terms of a magnetic vector potential A such that
B=VxA. (3.16)
Using equations (3.14) and (3.16), we have from equation (3.10) that

v x (;v < A)— 1. (3.17)

Substituting equation (3.16) into equation (3.11), we have

0A

E _
V x ( +8t)

— 0. (3.18)

Thus, the field E + 38—‘:‘ is conservative and consequently there exists a scalar

potential ¢ such that

0A
— = —Vo. 3.19
=V (3.19)

Hence, the electric field can be determined by

E +

oA
E=—"—V¢. 2
5~ Vo (3.20)

The total current density J is defined as the sum of the induced current density

Je and the source current density Jg, namely

J=Jo+J,= —a%‘i‘ — oV + I, (3.21)
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Substituting equation (3.21) into (3.17), we end up with the Maxwell’s equations

in terms of the magnetic vector potential A and the electric scalar potential ¢ as

follows
1 O0A
- A)=—0— — .22
VX(MVX ) e oV + J, (3.22)
0A
V- -(—0——0Vop+Js)=0. (3.23)

ot

In the case that sinusoidal current is applied for the problem, the solution may
be assumed to have the form of A(x)e?**. Thus, the partial derivative of the
vector potential with respect to time may be replaced by jwA. Hence equations

(3.22) and (3.23) become

1
V x (;V X A)=—0jwA —oVeo+Js, (3.24)

V- (—0jwA —oVep+Js) = 0. (3.25)
These equations with a set of suitable boundary conditions describe the general
3-D electromagnetic field. Based on the FEMLAB user guide [43], the gauge
transformation is applied to obtain the unique solution of the system. Let A and
¢ be the solutions, the fields A=A+VY and ¢ = ¢ — jwl also satisfy the
equations for any scalar field ¥ such chosen that A and ¢ satisfy the boundary
conditions. The system of equations can be reduced by choosing ¥ = —%, as for
this case, A=A- %V(gﬁ and gg = 0. The particular choice of ¥ fixes the gauge

and makes A unique. The electric field and magnetic field are not affected by

this choice of gauge, hence we can reduce the system to one equation as follows

1
V x (;V X A)=—0jwA + Js. (3.26)

In the real world applications, many problems, such as axisymmetric problems
and the problem of one dimension being very large in comparision with others,
can be modelled as two dimensional. For rectangular (x,y, z) coordinates, we can
construct an approximate two-dimensional model to describe the electromagnetic
field on the plane parallel to the x — z plane. For this case, Let A = (0, A,(z, 2),0)
and J = (0, Jy(x, 2),0), and ¢ = constant. Thus,

VXA= (_%?O,aaji‘y)a

= (3.27)
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Figure 3.1: The computation domain for the electromagnetic problem.

V x (Vx A) =(0,-V?4,,0). (3.28)
Hence, equation (3.22) becomes

A
U“aaty =V?A, — uJ;,. (3.29)

For the case of sinusoidal current, we let A, = A,e™* and consequently equation
(3.24) becomes
ocuwjAy, = VA, — s, (3.30)

For the continuous casting problem, we consider a typical computation domain as
shown in Figure 3.1. On the symmetric plane, the restriction that the magnetic
flux cannot penetrate the face is imposed. This means A, = 0 on the symmetric
boundary. On the outer boundary, the vector potential are all set to zero. This
implies that the effect of an inductor on the magnetic field at these points is negli-

gible. An appropriate distance from the inductors is needed to insure high accuracy.
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In summary, the boundary wvalue problem of the two-dimensional

electromagnetic field is as follows

BVP: Find A, such that the field equation (3.30) is satisfied in

the computation domain €2 and all boundary conditions are satisfied.

3.3 Finite Element Method for the Electromagnetic Field

Firstly, we consider the general case, namely, the problem governed by
equation (3.29). To solve this problem by the finite element method, we need to
develop a variational statement of the problem. For this purpose, we multiply
both sides of equation (3.29) by the test function and then integrate over (2,

namely
0A
(U'uaty’ WA) = ((Ay,) > Wa) — (nds,, Wa), (3.31)

where (-, -) denotes the inner product on space L*(Q). As
WaV?A, =V - (WaVA,) - VW4 VA, (3.32)
substituting equation (3.32) into equation (3.31) yields

A,
/Q ouTSEWadS = - /Q (VIW4) - (VA,)dQ + /F WaVA, nds— /Q 1Ty, WAdS.

(3.33)
By choosing W4 = 0 on the boundary where A, = 0, we have
/aaAdeQ——/(VW) (VA)dQ—/ T, WadQ) (3.34)
0 Y ot AL = 0 A Yy QM sy YV AQSL, .
or
04,
O-MW’ WA = (Aym., WAvj) — (/J,sz, WA) (335)

Thus, the variational statement for the problem is as follows

VBVP : Find A, € Hj(Q) such that for all the test function
Wa € H}(Q), equation (3.35) holds, where Hg(Q2) = {v € H'(Q)|v =0 on 9Q}.
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To solve this problem numerically, we pose the problem into an

N-dimensional subspace A, and W}y, namely approximate A, and W, by
N N

Ay =3 (Ay)idi , Wa=D (Wa)kor- (3.36)

=1 k=1

Substituting equation (3.36) into equation (3.35), we have

0A
{(aua;’, czsk) (A 8ry) + (s, ask)} W, =0, (3.:37)
where k =1,2,..., N and j = 1,2. Then,
N 0A,, N
Z(U/'L¢i7 ¢k> atyl + Z<¢i,j7 ¢k,j>Ayi = _<J5y7 ¢k>7 (338)
i=1 i=1
which can be written in matrix form as
O0A
M aty +LA, =F, (3.39)

where

M = {my} with my = (opg, ¢x) = /fo,ltébkﬁbid Q,
L= {Ly} with Iy = (¢ij, o) = /Qébz‘,jéﬁk,j ds2,

F={fi} =-(Js, . 0k) = —/Q(ﬁksz dS.

For the time-harmonic problem, the first term of equation (3.38) can be written as

N
i=1
Therefore, we have
N
Z [(J'WUM% ¢k) + (sz',j, ¢k,j)} Ayi = _(szv Qbk)’ (3-41)
i=1
which can be written in the matrix form as
MA, =F, (3.42)

where

M = {my,} with mgy = /Q(jwambiqbk + i ;0r,;) dSL.

Once A, is determined by solving the linear system of equation (3.42), B and
Je can be determined from equations (3.16) and (3.21) and consequently the

electromagnetic force at each node can be determined by Fep, = Jo X B.
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3.4 Numerical Studies

The example under the investigation is a square billet continuous caster
which has a width of 0.12 m and a depth of 0.8 m. The computation domain
for this problem is given in Figure 3.1. The finite element mesh, constructed
from FEMLAB, has 23180 elements and 11856 nodes as shown in Figure 3.2.
The parameters used in this problem is as given in Table 3.1. The computation
schemes for investigating the effect of varying current source and frequency
of magnetic field on the electromagnetic force are given in Table 3.2. The

computation results are shown in Figure 3.3-3.7.

Figure 3.3 shows the contour plot of the magnetic vector potential

A, (Wb/m) in the computation domain.  All values of magnetic vector
potential are negative. Negative values mean sign of values gives
the same direction as the source current. It indicates that the

magnitude of A, is between 0 and 0.004 Wb/m which reduces 60% from

the original source (coil) to the steel strand while it reduces only 20% to environment.

Figure 3.4 shows the vector plot of the magnetic flux density corresponding
to the magnetic vector potential obtained from Figure 3.3. The distribution of
the magnetic flow field corresponds to the right hand spiral rule (RHS). The
magnitude of the magnetic flux in the steel strand is larger than that in the

environment because of the higher electric conductivity.

The contour plot of induce currents in the molten steel pool is
shown in Figure 3.5. Its direction is in the opposite way of the source
current.  The magnitude of J. is between 0 and 1.14 x 10°A/m?.  Tts
value reduces almost 100% from strand surface to the symmetry plane

because we assume that the magnetic flux cannot penetrate to the symmetry plane.

Figure 3.6 shows the vectors plot of the electromagnetic force generated
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by the magnetic field and the induced current in the steel. The direction
of the electromagnetic force is in-mould direction. The electromagnetic flux
flows into the mould with higher intensity in the top part of mould than
that in other parts. There is no significant electromagnetic force present
at 3 meters below the meniscus. It is noted that the magnitude of

the electromagnetic force decreases with the increase of distance from the mould wall.

The effect of source current on the intensity of electromagnetic force is
investigated by using three different source current densities those are 1000000
A/m?, 2000000 A/m? and 3000000 A/m?. The results as shown in Figure
3.7 indicate that the larger source current generates the larger magnitude of
electromagnetic force. By increasing the source current from 1000000 A /m?
to 3000000 A/m? in a horizontal section 0.05 meters below the meniscus, the
magnitude of electromagnetic force increases about 89% on the strand surface. It
is clear that the intensity of electromagnetic force decreases with decreasing the

source current.

Figure 3.8 shows the effect of the frequency of magnetic field on the
magnitude of electromagnetic force. The results of the investigation, by using
three different frequencies of 60 Hz, 80 Hz and 100 Hz, indicate that the higher
magnetic frequency generates the larger magnitude of electromagnetic force. By
increasing the frequency of the magnetic field from 60 Hz to 100 Hz at 5 cm
below meniscus, the magnitude of electromagnetic force increases about 56% on
strand surface. It is noted that the magnitude of electromagnetic body force

decreases with the decrease of the frequency of the magnetic field.

3.5 Concluding Remarks

The mathematical model for simulating the electromagnetic problem in

the continuous casting process is governed by the A — ¢ model, derived from
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Figure 3.2: The finite element mesh for the electromagnetic problem.

Table 3.1: Material parameters

Parameter Value Unit
Conductivity of molten steel o 7.14 x 10° Q- imt
Magnetic permeability in a vacuum g 4 x 1077 Henry/m

Magnetic permittivity in a vacuum & | 8.8541 x 107'% | Farad/m

the Maxwell’s equations. A finite element technique based on the Bubnov-finite
element method is used to study the electromagnetic field in the continuous

casting process.

The study shows that the electromagnetic force in molten steel

generated by an external magnetic field directs toward the central plane
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Table 3.2: Computation schemes

Scheme | Source Current density | Frequency

Js f

(Ampere/m?) (Hz)
1 1000000 60
2 2000000 60
3 3000000 60
4 2000000 80

5 2000000 100

of the mould and its magnitude decreases with increasing distance from

the mould wall. This force will contribute to the improvement of steel surface quality.

The study also shows that the source current density and the magnetic
frequency have considerable effect on the magnitude of the electromagnetic
force. By decreasing the source current density or the magnetic frequency, the

magnitude of the electromagnetic force in the molten steel decreases significantly.
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Figure 3.3: The contour plot of the magnetic vector potential A(Wb/m) at
frequency f = 60 Hz and source current density J5 = 1000000 A/m?.
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Figure 3.4: The vector plot of the magnetic flux density B (Tesla) at frequency

f = 60 Hz and source current density Js = 1000000 A/m?.
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Figure 3.5: The contour plot of induced current Je (A/m?) in the
continuous casting mould at frequency f = 60 Hz and source current density
Js = 1000000 A/m?.
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Figure 3.6: The vector plot of electromagnetic force F,,, (N/m?) in the
electromagnetic continuous caster at frequency f = 60 Hz and source current

density Js = 1000000 A/m?.
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Figure 3.7: The influence of source current density J5 (A/m?) on the magnitude

of electromagnetic force in the continuous casting process at frequency f = 60 Hz.
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Figure 3.8: The influence of the frequency of magnetic field f (Hz) on the
magnitude of electromagnetic force in the continuous casting process at source
current density Js = 1000000 A/m?.



Fac. of Grad. Studies, Mahidol Univ. Ph.D. (Mathematics) / 31

CHAPTER 4

COUPLED FLUID FLOW-HEAT TRANSFER IN
ELECTROMAGNETIC CASTING

4.1 General Overview

The electromagnetic continuous casting process has been developed
to cast steel over the last few decades. Various mathematical models and
numerical algorithms have been developed to simulate the heat transfer, fluid
flow and electromagnetic stirring occurring in the casting process. A number
of commercial packages, such as FIDAP, PHONIC, PIV, SOLA, OPERA-3D
and MORDY, have been used for the simulation. However, only a few
attempts have been made to study the coupled fluid flow, heat transfer

and solidification problem taking into account the effect of electromagnetic stirring.

As the effect of molten steel flow on the magnetic flux density is
negligible, the electromagnetic problem is decoupled from the fluid flow problem
and is solved in chapter 3. The influence of electromagnetic field on the
coupled fluid flow-heat transfer process is taken into account by adding the
electromagnetic force to the fluid flow model. The molten steel is assumed to be
an incompressible Newtonian fluid and the flow in the mushy region is modelled
on the basis of Darcy’s flow in porous media. The influence of turbulence on
the fluid flow and heat transfer process is taken into account in this work.
A single domain enthalpy method is used for the heat transfer-solidification
problem in the continuous casting process. The complete set of equations for the
coupled fluid flow, heat transfer and solidification process at the presence of an
electromagnetic field is presented in section 4.2. In section 4.3-4.4, a numerical

algorithm based on a Bubnov-Galerkin finite element method is established. In
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section 4.5, a numerical investigation is carried out to study the influence of

electromagnetic field on the fluid flow, heat transfer and solidification process.

4.2 Mathematical Model

In this section, the mathematical model for the coupled fluid flow, heat
transfer and solidification process occurring in the electromagnetic continuous
casting process is described. The governing equations for the problem include
the Navier-Stokes equations, the continuity equation and the energy equation.
The effect of electromagnetic field and turbulence on the flow field and the

temperature field are taken into account.

To simulate the heat transfer process, a single-domain enthalpy method
is used. From the principle of energy conservation, the heat transfer in the region

undergoing a phase change is

0H
p (att + Uth,j> = (koT}) (4.1)

where () ; denotes differentiation with respect to x;, u; represents the velocity
component of fluid in the z; direction, p and ky are respectively the density of
steel and the thermal conductivity of steel. The enthalpy H; is defined as the

sum of sensible heat h = ¢TI and latent heat H as follows
H,=c¢T+ H, (4.2)

where c is the specific heat of liquid steel and the latent heat H is defined by

0 it T < Tq
H = M%%Jﬁ%<T<ﬂa (4.3)
L it T > T,

in which L is the latent heat of steel, T and T; are respectively the solidification

temperature and the melting temperature of steel.
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Substituting equation (4.2) to equation (4.1), we have

8T 8H

From equation (4.3), it is obviously that the last term in equation (4.4) is
equal to zero everywhere except in the region where phase-change occurs.
Consequently, the equation can be applied to all the regions including
the solid region, the mushy region and the liquid region and there are
no conditions to be satisfied at the phase-change boundary.  Thus, the

heat transfer-phase change problem can be solved by using a single domain approach.

For the flow of fluid in the electromagnetic caster, the molten steel is
assumed to be a incompressible Newtonian fluid. The influence of turbulence
on the transport of momentum and energy is modelled by the addition of the
turbulent viscosity pu; to the laminar viscosity o and the turbulent conductivity
k¢ to the molecular conductivity ko, yielding the effective viscosity py and the

effective thermal conductivity k; given by
fif = po + pu, kp = ko + ki, (4.5)

where k; = £t 0y is the turbulent Prandtl number [11, 13, 16, 44, 45]. To simulate
the influence of an electromagnetic field on the flow field in the electromagnetic
continuous casting process, the electromagnetic force F,,, is incorporated into the
fluid flow model. The flow field in the mushy region is modelled by Darcy’s law
for porous media. Thus, the unified field equations governing the multi-phases
heat transfer and fluid flow with turbulence and electromagnetic effects, for all

the regions with or without phase change are as follows
ui; =0, (4.6)

ou;
< + UJ“ZJ) +pi— (:Uff(“w + Uy, 2)) F(uzaT> + pgi + Fem,, (4-7)

ot
oT
(675 +ujfj> (kT;) 4 < +ujH ) , (4.8)
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where Darcy’s law for porous media [3, 44, 46] has been used for modeling the

flow in the mushy region and Fj(u;, T') is determined by

2
py[1 = f(T)]

Fi(u;, T) = C———"(ui — (Ucast )i 4.9
in which f(T') is the local liquid fraction which is approximated by the linear
function

0 T < T
f(T) = T i T < T < Ty (4.10)
1 it 7> 1Ty,

The electromagnetic force Fp,, in the Navier-stokes equations (4.7) can be

determined by
Fom, = (Je x B); (4.11)

which is calculated from the results in chapter 3.

Equations (4.6)-(4.8) do not constitute a closed system as both g
and k; are related to an unknown function p,. Various models, such as the
mixing-length type model, the one-equation model [47, 48] and the two-equation
(K —¢) model [3, 49, 50, 51, 52, 53], have been proposed for calculating p;.
Launder [45] and Ferziger [54], based on a critical review, suggested that the
simple mixing-length type model is suitable for most boundary-layer type flows
in the absence of recirculation; the one-equation model can be used to model
simple recirculation flow; but for more complex flow fields, the two-equation
model should be used. As the flow field in the continuous casting mould is
complex with circulation, u; is calculated by using the two equation K — & model.
As the phase change is taken into account in the heat transfer problem, the
computation region has three sub-regions including the solidified steel region,
the mushy region and the molten steel region. Consequently, the standard
K — ¢ model, which is suitable for the far-wall highly turbulent region, cannot

be applied to the problem for the continuous casting process. Thus, some
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modification to the standard K — e model is needed. According to the work
by Wiwatanapataphee [3], the low-Reynold number K — & model is used in this

project for the turbulent flow of molten steel in the continuous casting process, namely

oK M Py
P (8t + “J’Kd) — (o + =5)K 5) j = ==B9; T + mG — pe, (4.12)
OK o
Oe L1t "
Plgr TWci) (o + ;5)5,1‘)4' = Ci(1— Cs)KigtﬂngJ

£ g2
+ ClEILLtG — pCQfEE, (413)

% The constants involved in equations

where G = 2€ij€ij with €ij =
(4.5)-(4.13) are empirical constants. Extensive examination of turbulent flows
has resulted in a recommended set of values for these constants [3, 50|, namely

Oy = 09, O = 1, O = 125, Cl = 144, CQ = 192, and 03 = (.8.

Equations (4.12)-(4.13) are used to accommodate the region with
relatively low local turbulent Reynolds number and to reduce the effect of
turbulent across the various sub-layers. The turbulent viscosity p; is determined
by [3, 45, 54]

_0.09f,pK?

_— 4.14
Mt c 9 ( )

where the generalized damping mechanism of turbulent transport in both the

liquid and mushy regions f, is determined [3] by

fu =/ f(Texp(=3.4/(1 + R;/50)?), (4.15)

where f(7T) is the liquid fraction as defined before in equation (4.10), R; denotes
the local turbulent Reynolds number defined by

_ pK?

R; .
L

(4.16)

To ensure that all the terms in equations (4.12)-(4.13) will not tend to infinity as

K approaches zero in the near-wall region, the last term of the right hand side of
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equation (4.13) includes a damping function f. defined by
fe =1- Aae—R?’ (417)

where A, is a constant and is chosen as one if K < 10™* or otherwise A, = 0.3
[3, 55, 56]. By choosing A. =1 in equation (4.17), the term % in equation
(4.13) approaches zero as K becomes small. To completely define the problem,
boundary and initial conditions for velocity, temperature, turbulent kinetic
energy, and dissipation rate must be given. The computation region and the
boundary conditions for the problem are shown in Figure 4.2, as detailed below.
On the nozzle inlet I';,, the velocity, the temperature of steel, the turbulent

kinetic energy and the rate of dissipation are respectively determined by
u=uw,, 1 =1, K=K, c=c¢cp. (4.18)

On the solidified strand surface I',q;, the velocity is set to the casting speed,
the heat transfer is determined by the convection boundary condition, the tur-
bulent kinetic energy K and the rate of dissipation € are assumed to be zero, namely

u = (0, Usast), = hoo(T = Tx), K=¢=0. (4.19)

ke

! on
On the meniscus surface I'y and the nozzle wall ', the derivatives of the
turbulent kinetic energy and the rate of dissipation in the normal direction are
set to zero. The velocity is set to zero and the temperature is taken to be the

inlet molten steel temperature, namely

0K  0Oe

=0, I'=17, —=—=0. 4.20
" ™ on on (4:20)
On the plane of symmetry Iy, the normal velocity v, is zero and
the derivatives of the tangential velocity u; and temperature 7T in the

normal direction are both zero; the derivatives of the turbulent Kkinetic

energy and the rate of dissipation in the normal direction are also set to zero, namely
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ou, 0T oK  0Oe
W, =0, SL=5-=0, o=

= = — 0, (4.21)

on  On
where n is the unit vector normal to the boundary.

In summary, the boundary value problem for the turbulent fluid flow-heat

transfer problem is as follows :

BVP : Find w;,p,T,K and e such that the field equations (4.6)-
(4.8) and (4.12)-(4.13) are satisfied in the computation domain € and all
boundary conditions (4.18)-(4.21) are satisfied.

4.3 Finite Element Formulation

To solve the BVP, firstly we use the penalty function method to weaken

the continuity equation as follows
Ui, = —0p", (4.22)
where ¢ is a small positive number and p* is denoted by
P =p—pgz. (4.23)

The variational statement corresponding to the BVP can now be described as

the following variational boundary value problem.

VBVP: Find u;,p*, T, K and ¢ € H(Q2) such that for all w, w?, w?, w’ and
w® € HY(Q), all boundary conditions including (4.18)-(4.21) are satisfied and

(uig, w”) = (=0p*, wh),
(Gt w™) + (wjus g w™) = (B (uiy +uya)) 5 w™)

F (s w) = (LF ) 4+ (4 Fy ™),
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ar T kg T 1 0H T
el T _ Mo — _ (¥ H
<3t’w >+(UJ jyw™) ((pc J)J:w p ot s wh |+ (uH j,wt) e

where H'(Q) is the Sobolev space W2(Q) with norm || - ||[120, Ho(Q) = {v €
HY(Q)|v =0 on 99, where 99, denote a Dirichlet type boundary for v}, and
the inner product (-,-) is defined by

(a,b) = /a-b . (4.25)

Using Green’s formula, the second order derivatives in (4.24) can be reduced to

order one, namely
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where B, B, Br, Bg, and B, are as follows

P POK
B.(w®) = / (MO + /j ) e w-ndl. (4.27)
7 p PO<

To find the solution of the above VBVP problem, the Bubnov-Galerkin finite
element method is used to solve the problem. The problem is posed into an
N-dimensional subspace for u;, T, K and ¢ and an N'-dimensional subspace for

p*. Let H, be an N-dimensional subspace of H'(2) with basis functions
{71,%, 7} and Hz be an N'-dimensional subspace of H'(Q) with basis

function {1, B2, -+, Bn}. Then w¥ w? wX w® and wP are approximated by
o i o ; T, T _ & T
WY R W = Y YWy, W RW =Y YWy,
N N
K~ K _ K e
w ~w - Z ’Vmwma wa ~ wE - Z f)/mwfn; (428)

3
-1
3
>I_I‘

g
IS
Q
=N
IS
I
T=
<
S
iS]

Substituting equations (4.26) - (4.28) into equation (4.24) and noting that the

test function is arbitrary, we have

(ui,’iv ﬁp) = - (5])*7 ﬁp) 9
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8Ui Ky 1 %
() smnrs (o) o))

1 1
N (PE77m> + (pFemia7m> + BU(%@) - Bp(’)/m)v

R ]

&
(-2

Oe Mo | [t
(at“%”>%_0”€”’7m)+'<<</?%_pas>€”>’7m”>

£ £ g2
= (01(1 - 03)[(/;;}ﬁg]j—ij + Cl[(/:t;G - 02][’5?7 %n) _i_BE(er)’ (429)

Similarly, u;, T, K, e and p* are approximated by

wlx,0) % s = 2 (u()u(x).
T(x.t) ~ T = 3 Ti(t)u(x),
K(x )~ K = 5 Ki(t)n(x), (4.30)

o~
Il
—_

N
I
R

Substituting equation (4.30) into equation (4.29), we have

/

N

N
Z i ﬂp Uiy = — Z (6ﬁl7 ﬂp)pz(u
=1

=1
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N
My 1
Z{ Ve, Y )it + (U515 Y )it + == P ('Yl,av%n,])uzl + = P ('Yl,z‘a'ym,j)uﬂ}
=1

/

N
Z{ 517%1 - po('Ym>} = (;E77m> + (;Fem”’ym) + Bu('Ym)v

=1

. k
Z {(')/l»”)’m)Tl + (ufyl,j>7m)Tl + (pi’ﬂj: ’Vm,j> Tl}_BT(’Vm)

N
c Z{ ) Hi 4 (5, ) H
=1

Z{ ’7177m)Kl + (u371]7’7m)Kl + ((MO + Fe ) /Yl,ja/7m7j> Kl}
POK

=1 P

= (utﬂ iy — tG+5>'7m) +BK('Vm)a
POt

N Ko Mt
7l77m g+ (u V.55 Ym )€l + (( + )717"77”7') 61}
>{( g mzt (22424 ) 253

=1 €

2

oyt i€
(clu Co2tt oty + ik cngK,vm)wa(%), (431)

for m=1,2,3,...,N and p=1,2,3,...,N". The Newmann type and Robin
type boundary conditions in (4.18)-(4.21) can now be introduced into system

(4.31). Thus, we have
1 *
By(m) = / ;vmﬁz dr py,

Fezit

1 1
Br(m) =~ | e dl T+ / T dl(452)

1_‘wall 1_‘um,ll
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The system of equations (4.31) can be expressed in matrix form as follows

Uy
[ cr cf ] = —0M,p*,
Uz

SU; + BU; + AL Uy + A2 Uy — Cfp* = Fy, + Foupp,
(4.33)
ST + BT + ArT + AT = Fr+ S H+ B'H,
SK + BK + AxK = Fy,
SE + BE + A.E = F.,
From equation (4.33);, we can write p* in terms of U; as follow

P = —(15M,;1 (CTUy +CTUs).

Thus, the pressure term in the system of equations (4.33) can be eliminated so

that we have

SU; + BU; + ALUy + A2Up + 3C; Myt (CTUL + CTUL) = Fy, + Fo,. (434)

The system of equations (4.34) then can be written into two groups in matrix form

S 0 0 U,
0S5 0 U,
00 S T

B+ AL +3CiMCl AL+ CTMCY 0 Uy

T AL +iCMICT B+ AL +5CMSCT 0 Uy

0 0 B+ Ar+ A T

Fu1 Fem1 O
fr Fu2 + Fem2 + 0 5 (4.35)

Fr 0 S'H+ B'H
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S 0 K B+ Ay 0 K Fy
+ = , (4.36)

0 S FE 0 B+ A, E F.

where the coefficient matrices are defined by

M, = ((mp)lm)N/xN’ with mp /ﬁlﬁm s,

C; = {cfm}NxN, with ¢ / aQ (i=1,2),
0

C = ) {clm — Clm}NxN' with ¢, = / VB AL,

Fezit

1 .
S = (Sim)Nxn, S = _E(Slm)NxN with 55, = /%“Ym ds2,
)

87m

1 . )
B = (bym)nxn, B = _E(blm)NxN with by, /% Uj—— oz, (1=12)
A, AL 2a4,, + di, ay,
A, = = with ap = [ Lpngi %’;7; dQ
A, A aj, Ay, + 2077, .
2N xX2N (/L’] — 172)
. 8% 0V ,
Ap = (al,)nxn  with — af, = /pf 87@67% )d2 (5 =1,2),
. a% o,
Ap = (aF th / (Ho ™Y dQ (= 1,2
k (alm)NXN Wil alm P pUK axj ax] ) (.7 )

_ € : e __ /’l’i ﬂ 87l a’ym
A= (@, )nxy  with af, = / St o G g )G =1.2)
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f
Fu = with fll = / ﬂu% dQ, fl2 = H(U - Ucast)’yl dQJ
17 o PP o Pf
! 2N x1
1 1 1
Fem — em; with elml = / *Femxr}/l de ele = / 7F3mzrn dQ’
2 o P o P

emg
2N x1

. 1
Ab = (a?m)NxN with a’li)j = % hoo’}/l’}/m dF,
Fwall

. 1
Fr = (flT>N><1 with sz = % / hooToo’Yl dF7

I‘u)all

. v 0T
Fie = (ffwa  with  ff = Q/ (G —= = " Ba ) d

2

oT €
ﬂga — C2feE)% dq.

(4.37)

EVy
KO't

. . £
Fe=(f)va with ff = /(ClthG-i- Ci(1—C5)
Q

To find the finite element solutions of (4.35) and (4.36), we discretize the
computation domain €2 into M elements (2., namely
M
Q= Q..
e=1
where ; N Q; =0 Vi # j. The basis functions ,(x;) are chosen to be piecewise
continuous and to have a value of one at its their node and zero at other nodes.

Then, the integral terms defined in (4.37) can be obtained by assembling the

contribution from each element. For example,

M
Jromda =3 [, s, (438)
Q

e=1 0.



