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Abstract

Mathematical models of ecosystems inv;)lving single species or two species, namely a
predator-prey system, are modified to incorporate the effect of an external force or a third factor.
This can be the effect of the geomagnetic field variation on the cell membrane permeability in an
activated sludge process, or the effect of parasite invasion of a predator-prey system, or the effect
of toxicants on the population in a closed environment.

The resulting models consist of three nonlinear ordinary differential equations. The
research project is organized into mainly 4 stages. In the first stage, variation in the third factor
with time is taken under consideration in the form of one of the three differential equations which
comprise the model.

In the second stage, the variation in the third factor is not taken into the ﬁodel, while the
prey population is divided into two groups; namely, the susceptible prey and the infective prey.

In the third stage, the variation in the third factor is still not taken into the model, while
the predator population is divided into two groups; namely, the susceptible predator and the
infective predator.

In the fourth and final stage, the third factor, which is the level of toxicants in this case,
is divided into two groups; namely, the level of toxicant in the environment, and that in the
population.

Analysis of the models are carried out using either the bifurcation theory or the singular
perturbation technique. The study allows us to better understand the systems under study as well
as leamn how to manage and control them more efficiently. The results of our study should

therefore yield valuable insights which has far reaching repercussions on the environmental

problems we are facing today.
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Dynamic Behavior of a Membrane Permeability Sensitive Model

for a Continuous Bio-Reactor Exhibiting Culture Rhythmicity
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ABSTRACT

A modified Monod model of a continuous microbial culture in which the yield term depends
linearly on the substrate concentration is extended 10 incorporate the effect of external forces on the
cell membrane permeability. Bifurcation analysis of the new mathematical model, which consists of
three non-linear ordinary differential equations, shows that the model can simulate the oscillatory
behavior observed in experimental data for certain ranges of the sysiem paramerers. Computer
strmulation of the model Is presemted in support of our theoretical prediciions.

INTRODUCTION

. Sustained oscillations in the patterns of microbial growth and product formation
have been frequently observed in continuous cultures when the feed conditions and the
culture conditions remain constant [ 1, 2 ]. According to Yerushalmi er af. [ 2 |, these
oscillations are even more pronounced in the long term fermentations or in the cell-retention
fermentations where the cells stay in the bio-reactor for long periods of time.

Although the mechanism for these oscillations is not yet fully understood, it is clear
that occurrence of such oscillatory behavicr has adverse effects on the efforts to optimize
the operation of continuous bio-reactors. It also effects productivity of the process and
complicates its proper design. It is therefore most important to investigate in depth the
factors that cause such rhythmicities, the explanations for which range from experimental
errors to the changing microbial physiological behavior often attributed to changes in the
cellular metabolic pathway under certain conditions. Recent studies of the parameter affecting -
the cell physiology of C. a..e:obmyhcum showed a high sensitivity of growth and solvent
production to the cytoplasmic membrane permeability | 2 ]. A bigh permeability of the

cytoplasmic membrane promotes the growth of the microbial culture, the utilization of the
substrate and the biosynthesis of the solvents. The opposite resuit is obtained with a low
permeability of the cell membrane.

The controlling action of the cellular membrane permeability on the activities in
many anaerobic processes has been frequently observed. Examples include the influence of
plasma-membrane lipid composition and membrane fluidity on growth and solute
accumulation by 5. cerevisiae [ 3 |, growth of Closrridium thermecellum { 4 |, and growth and
production of ethanol and glycerol by yeast cultures { 5 |
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In this paper, we consider a mathematical model which incorporates this sensitivity
to the cellular membrane permeability, the specific rate of change of which is assumed to
vary in a sinusoidal fashion. One physical controlling factor which has been proposed to
exert its biological effect on the cytoplasmic membrane permeability is the geomagnetic
field variation. This concept has been extensively investigated and is well supported by
experimental evidence [ 6, 7 ). Attempts to incorporate such effects into a model of the
continuous microbial culture was carried out by Yerushalmi er al. { 2 ]. We consider a
modification of their model based on an adaptation of the Monod model in which the yield
term is assumed to vary linearly with the substrate concentration. Through bifurcation
analysis, the model is shown to simulate different oscillatory behavior observed in
experimental data.

SYSTEM MODEL

Basically, microbial kinetics have varied in diverse ways from a model due to Monod
fashioned after Michaelis-Menten kinetics for single enzyme-substrate reactions. This simple
but valuable model views microbial growth as conversion of a fixed amount of substrate
{ or nutrient ) to biomass occurring autocatalytically in the presence of preexisting biomass
[ 8 ]. The yield coefficient Y in the Monod’s model is constant. The most obvious departure
of the predictions of Monod's model, apparently, is in the variation of the stoichiometric
coefficient Y. Theoretical studies of models in which the yield term varies linearly with the
substrate concentration can be found in the work of Agrawal et a/. [ B ] and that of
Lenburyeral [ 9]. In { 8 ], Agrawal et al. carried out an extensive theoretical investigation
of the dynamic behavior of isothermal continuous stirred tank biclogical reactors modelled
by the following mass balance equations on cells and the limiting substrate:

ds

= = -oSX+D(H - S) (1)
X - utsix-Dx ' '
5 : (2)

where X denores the cells concentration; 5 the substrate concentration; p(S) the specific
growth raté; ofS) the specific substrate consumption rate; S, the feed substrate
concentration; and D the dilution rate.

In their work, the function G(5) was assumed to have the form

sy = M8 _ - HmS :
? ¥{(s) (K + SIY(S) (3)

where u_ is .ne maximum specific growth rate and K = is the Monod constant while
the yie!d term Y( S) has the form
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amount of bilomass formed = aS+b
Y( S ) = amaount of substrate consumaex ( 4 )

~,

which reflects the increase in the yield in response to an increase in the substrare
concentration S. This also includes the case of constant yield when a = 0.

The model equations { 1) and ( 2 ) do not take into account the variation of the
membrane permeability with time. Since studies have confirmed high sensitivity of culture
growth and production to membrane permeability, it is suggested in [ 2 ] that the influence -
is incorporated into the system model so that the mass balance equation on the limiting
substrate 1s given by '

ds n'sx
rr = ———S+Km+D(SO—S) (5)

where n' = kn, with k a proportionality constant, and n the number of active nutrient
transport sites. According to Yerushalmi et al. [ 2 ], permeation dynamics is the major
factor responsible for the formation of the active sugar ( nutrient } trz 1sport sites, especially
in the aging cells. This is in turns due to the accumulation of the non-active deposits in the
cytoplasm which make the permeation control the incorporation of the protein in the lipid -
skeleton of the cytoplasmic membrane. This relationship may be described by the equation:

d d

where P measures the membrane permeability and k is a censtant of variation. Integrating
equation { 6 }, we obtain the relation

NX=KpXP+ k4 (7)

where k, is a constant of integration.

Using ( 7 ), equation ( 5 ) may be cast in the following form:

dS _  (CXP+Cyp)S
dt (S+K)Y

+D(SO—S) (8)

where C; = kkp\" and G, = kk,Y are constants. In other words, assuming that the yield
term is constant, the specific growth rate has the form )
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. (GP+ G/ X)S

# (S+Km) - (9)

so that the mass balance equation for X becomes

dX _ (CXP+Cy)S

dar T N (10)

in which the effect of permeability variation has been taken into account. On the other
hand, it is reasonable to expect the yield coefficient Y to reflect the varying amount of
nutrient mass required to produce a unit of biomass, as has been argued in [ 8 } and
[ 9 ) for example. We therefore combine both effects by letting Y assume the form in
( 4 ) so that the mass balance equation for S becomes

dS _ (GXP+C,)S

R A e A (11)

Fxperimental evidence has shown that external forces such as electrical or magnetic
fields can contribute to permeability by introducing an ‘order in the composition of the
cytoplasmic membrane ( see { 2 ] for more detail ). As a result, the cellular membrane
permeability can follow an oscillatory pattern which can be described by the following
equation:

daP
-CT = -Kcosfiyt)P (12)

where K is a proportionality constant. Equation ( 12 ) describes the periodic changes
in the cytoplasmic membrane permeability when there is no cells growth. If there is cells
growth, the newly formed cells posses thin cell membrane “with high permeability which
contributes to an increase in the apparent permeability of the cells population. In the case
of influence from the geomapgnetic field variations, the period is found to be approximately
24 hours, so that  wy= 2 /24. However, to include other factors which may effect membrane
permeability in the similar manner, we let w, be an arbitrary constant frequency of oscillation
of the applied field. '

Thus, the variation in the permeability of the cells population, based on the overall
cells mass, can be described by the following equation:
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d dX

E(Px) = - Yeos{wpt)PX+ 7’2?
in which the first term on the right was dirccfly obtained from equation (12), describing
- the periodic changes in the membrane permeability, while the second term describes the
increase in the apparent permeability of the cells population due to the growth of the
culture and the formation of new cells, assuming that the inhibitory effect of other factors
such as the butanol level is neglegible. '

Eliminating X from both sidss of the above equation results in the following

expression:

%tf‘. = - Ycoslp)P+ (Y, - P (13)

where p is given by equation ( 9 ).

Therefore, our system model consists of equations (10), (11), and (14) with (9). We
are interested in the dynamic behavior and , in particular, the existence of different types
of oscillatory behavior in the system described by these three equations.

BIFURCATION ANALYSIS

For the following analysis, it is convenient to introduce new variables. Namel- we
define T = Dt, x = Xfa,y = PC/D , 2 =35, p=C/aD , M =k, d = b/a
zg = S, a= 1D, p= ,C/D,u = cos(wgt), v =rysin{wt), and
w = ay/D.

In these variables, our model equations becomes

dx

z
ER A TFea (14)
dy _ - Pz :
5 auy +(8 V)[y+x]M 2 (15)
dz Z
T T T P ()
du

dv = il
Fd (18)
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3

The above system has a steady state solution (x,, ¥, z,, u_, v,) obtained from equ.ating

: the right sides of equations ( 14 ) - ( 18 ) to zero, namely

Y, = B (19)

]
[=]

~(Bxs+ P) +(zp ~ 2¢) (20)

Zg
(M +z)(z5+d)

Xs = (229 (Zgz) (21)
and us = 0, Vg = 0 (22)
If we let
5 (Bxs+PIM
(M + 2 (24)

then the Jacobian matrix | of the system of equations { 14 ) - ( 18} evaluated at the
steady state ( x, y,, Z, u, v,} can be written as

BO-1 oxg 5 o o]

0o -1 0 —ays O

o —xs8 Set-Md)
;- |zs+d zg+d " M(zg+.d)°

O 0 0 0 -w

|_0 0 0 w o_

The 5 eigenvalues of ] are found to be
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Mz = %r(a)*%f\""w) (25)
g = 1 |
,14'5 = *xiw

where
rE = ﬁf”f%ﬁ?* (26)
A(S) = rz’(6)—4{(ﬂ6—1){6$:::;, -1 +zf;i5d} (27)

Due to the complex conjugate eigen-alues * iw , therefore, the model will have a
periodic solution for appropriate parametric values. In particular, by the theory of ordinary
differential equations, if the parametric values are such thar all .igenvalues o.her tha o4
have negative real parts, then the simulated solution trajectorizs close to the steady state
will approach a clnsed cycle surrounding the critical point ( x,, y,, z, u, v} in the five
dimensional phase space. In this case the profile of x( T ) will be periodic with time
closely resembling the regular rhythmicity found in many experimental data. However,
such closed cycles lying on a plane in the phase space cannot simulate more irregular
oscillatory patterns also observed in other data, such as that taken from the work of
Paruleka et al[10] presented in Figure 1. Here, alternatively low and high peaks can be
observed in the growth pattern. Such charactenstics appear in all their runs under d; ferent
operating parameters.

To investigate the possibility of such higher dimensional escillations in our model,
we consider the system of equaticns (14 ) - ( 16 ) with « = 0, and let

5, = (BO-12z+d)/ PO (28)
5, = (2-BA)(ze+d)7 (29)
where
{zg+ dIM

2.2 ZMd (30)
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According to Hopf bifurcation theory [ 11 |, if a value &, can be found such that

) Re A(8) = O,

ii) A,(5) and A,(8,) are complex conjugates,

i) Im A5 = 0,

iv)  Re A(8) = 0, where X’ denotes the derivative of A,
v)  all other eigenvalues have negative real parts,

then the svstem of equations (14 )-(16) with o = 0 will have a family of periodic
solutions for values of 5 in some open in_terval ( &, ,5.+€). The result is stated in the
following theorem.

Theorem If
Y > 0 {31)
B > 1 (32)
-+
B >0 > (33)
and y > M > -6 (34)
)

then the system of equations { 14} - (16} with a = 0 will have periodic solutions bifurcating
from a non-washout steady state for values of & in some open interval (8,5 +€) where
is given by equation { 29 ).

Proof First, we show that with 8 so chosen, B, < &_by considering the equation

ca * 1
-_F(e) = (B8) 2([39}+m =0

The function F(8) is quadratic in 8 and has two real rcots:

0,5 = li___ﬁ__ +Y/ (+1) (35)
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Thus, for 8,> 6>8,, we have F(6) < 0, that is

1
T+

(B8)% = 2(B8) +—< 0

Rearranging ( 36 }, we find
(B8)* — 2(80) + 1< (2B0 - p%6%)Y

Multipying both sides by z +d, we have

(36 —1F (z +d)

Be < (2_Be)(zs+d)'y

That is, we ha =

if 8> 6>8, . However,

o, = ATIYHV o yp
B
so that if @ satisfies inequality { 33 } then

8, > /g = 6 > 8,

which implies ( 39) as claimea,

Now, we observe that

T (8) = 0

and ASY = 4[—({39—1f+ﬂ‘§9—]

zo+d

(36)

(37)

(38)

(39)

(40}

(41)

105
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which is negative because of inequality ( 39 ). Thus,

Re X, (8,) = F(8)2 =0

and A (8. ) and A, (8. ) are complex conjugates. Also, since we have strict inequality
in { 39 ),

maE) = [-A]" %0

These are requirements i), ii), and iii), respectively.

Moreover, from ( 26 ) we have

(z - Md) _ 1

(s = - ———
@) M(zg+ d)° (zs+ 4}

and therefore Re A, (8.) #0 which is requirement iv). Finally, the 1emaining eige..value
is Ay =-1<0.

Thus, all requirements for Hopf bifurcation are met. For & in some open interval
( 8,,8.+¢) , the system of equations ( 14) - {16) with a = 0 will have a periodic solution
bifurcating from its steady state ( x,, y,, z,). For the system of equations ( 14 ) - ( 18)
with ¢ # 0, this means that if conditions { 31 } - { 34 ) are satisfied a Hopf bifurcation
occurs on top of the existing periodic solution ( due to the eigenvalues +iw ) giving rise
to solution trajecctory on a 2-torus in the five dimensional phase space.

With the above choice of parametric values, Hopf bifurcation occurs at a non-washout

- steady state (X, y,, Z ), -'riarr.ely ¥ = B =20 and from ( 23 ),

ZS = o > 0] (42)

Mg ) ‘
since 7”@ > 0, with 0 chosen to be less than 1/B 1. Then, the value of d can be

determined from ( 30 ) as

Y22~z M

¢ Mo (43)
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Since

{ vz} - M) (Mz2-2zM) = M(z2-2z)

and z, > 1 by the second inequality in { 34 }, we have d > 0.

With these values of v, B, 8, z,, and d, the critical value §_can be found from { 29).
It is important to note that with our choice of y .,

'e<9,=“'—47é(””'<%

since WYE < 1. Therefore 2-6f > 0 so that the value of &_ given by (29 ) will be
positive.

The parametric value & > 0 s then chosen to be in the interval ( _,8_+¢)
for some small € > 0 so that Hopf bifurcation may occur. Then, x_can be determined
from (20 ) and { 24 ) as

X = d(M. + z jz/It > U (44)

s

Then, from ( 20 } and { 21 ) we find that

M+z
o = f.é_(__i)_gxs

Zs
That is,

p = x4,1-68)/86 {45)

which is positive since 8 < 1/(.
Finally, from ({ 21 ), we have
Xs

= + 2 0
“ zz+ d s 7

(46 )

using the values of x, y, z and d found previously.
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Fig. 1. Alternatively low and high peaks can be observed in the profile of ¢ells concentration | x ), for w Lich the
data points have been taken from reference [10] of continvous culiure with fixed diluton tate: D = 0.2
hel, pH = 55 Temp = 37 C 4
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Fig. 2. Computer simulation nf ths modet system of equations { 14 ) - { 18 } with parametnc values chosen
so that bifurcation occurs: M =1, y=1,B =15 &=06 y =15d=0375 &=2]1, x, = 7875,
p=13125 Zy=57 w= /12anda =t The solution trajectory, projected onto the { x, y )-plane,
is seen to approach the closed curve on a torus surtounding the steady state (x,y.z, v, v, ) = (7875

1515 00)
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Fig. 3. The simulated time course of cells concentration x of Fig.  exhubiting alternatively low and high peaks
resembling those observed 1n expenmental data.
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In Figure 2, we present a computer simulation of the model equations ( 14 ) - ( 18)
with a# 0 and parametric values chosen to satisfy the bifurcation requirements { 31)
-(34). The solution trajectory is seen to approach the closed curve on the surface of
a 2-torus surrounding the steady state (X, y,, 2, u, v, ) = (7875 15,15,0,0} in
the 5-dimensional phase space, seen here projected onto the ( x, y ) - plane. The time course
of cells concentration is shown in Figure 3 exhibiting alternatively low and high peaks
which compares well with experimental data mentioned earlier { Figure 1 ). When different
parametric values were tried, we have been able to generate different oscillatory patterns
resembling those observed in experimental data of continuous cultures under different
operating parameters [ 1, 10 ].

ASYMPTOTIC BEHAVIOR AND STABILITY ANALYSIS
On multiplying equation ( 14 ) by y, equation { 15 } by x, and adding, we obtain
the equation
dw

z
5 {au—1)w +3(w +,|9)M 3 (47)

where w = xy. We see that equations ( 16 ) and ( 47 ) involve only the two variables w
and z , and therefore can be solved without the help of equation (14). Letting ( w ( T),
Z { T ) ) be the solution to equations ( 16 ) and { 47 }, equation ( 14 } may then be written

as

dx

d_T F(T) - x { Af )
A
where F(T) = (w(T) + pJMz;T- is a known function of T. Equation (48) can be
+

solved directly for the solution x = % (T).

Moreover, on substituting z = 0 in ( 16 ), we find that

which means that

zZ(T)20 forall T =2 0 (49)
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Consiaering equation (47 ) with w = 0, we also have

dwl _ Bpz
dTlye M+z
for positive parametric va[ueé. Thus,
x(T)y(T)20 foral T20 (50)

Using ( 49 ) and (50 ) in { 48), we again have
(T)z 0 forall T20 {51)

Therefore, we conclude that all solutions to our system model remain in the positive octant
of the ( x, y, z ) space.

Further, with (149 ), (50 ) and { 51 ), equation { 15 } can be written as

dy B

a7 = “euly-pi-{y-BG(T)-apu (52)
where G {T) = ()‘((P\-AFJ:;?I’;)Z)(?I'(}T} is a known function which satsfies

G{(T) 2 Qforai T 20 {93

Using the Liebnitz' formula to solve equation ( 52 ), we obtain

—av(T)—h{T){c ~af

u(ydt} (54

y(T)-B;e Iemttj+ht1)
a

where bM = lG‘ﬂdf and ¢ is a constant of integration. Since ( 53 ) holds h( T ) is

. . . ey T) .
increasing with T . Also, © <e® since -1¢g v(T }) <1 Thus, we have

T, T

- - . o

le hi(T) Jeh(”u(t)dq < g2¢ h(T)eh{Tll_fuh_)d_tl < &
o o]
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Thus, letting T — < in ( 54 ) we find
y(T)-B = ofeley, (Tas T >’

where y, (T} is 2 bounded function. In other words, with & = 0, all solutions to the system
of equations ( 14 )-( 16 ) approach and lie, as time passes, on the plane y = B in the ( x,
y, ) space.

Figure 4 shows the effect of varying the field density constant o« on the position and
shape of the solution trajectory. The solution trajectories for smaller o are closer to the
plane y=j

With regards to the stability of these periodic solutions, one can apply various stability
criteria { see, for example, [ 11 ] ) on the systern of equations (16) and ( 47 ) with
o = 0 which describes the solution curve (W{ T ),Z (T ) ). It turns out to be very laborous
calculation if one allows complete generality for the system parameters. However, for the
case p =0 and P = 1, equations ( 16 } and ( 47 ) may be written as

dx
=1 = I -
e ("2)"1 Xy (55)
dx - - .
aT X(XE))\1+x2 (56)
where x; = lv, %= 1- Z,
Zg Zo
m(xp) = (1-x3)
1+¢-x5 (57)
and
. (xp) ‘
z X')} =
(x2 1T+ W -, (58 )
with tn:y-—, and \|!=-g——
) 20

By making use of the Poincare’s criterion and Friedrichs' bifurcation theory, the
following condition for orbitally stable periodic solution of equations { 55 % and ( 36 ) can
be found [ B |:
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4N (xg4') %25

327 (x5 xps® < T (x| 1
an'(x250)|_ ( 59 )

where Xp¢'  is the value of X2 =1——:is—— at the critical value §_ of & That is, from
Q

(24} and (29),

. 1 5
Xgo =1—g{m—d]

_ Using ( 57 ) and (98 ) in ( 59 ), we find that the bifurcated periodic solution will
be stable if

. ’ 8,..
Fib.w) = ["*zs “@9”"9’](9%’—‘1'5*2; Jroope® <0 (60)
where
g (1H¥ ~x247)
(1+¢—X25'}

Therefore, the bifurcation originating at the critical value & of 8 is stable if
F <0 and unstable if F > 0. Moreovet, it can be shown that a stable bifurcated periodic
solution surrounds an unstable critical point. If it surrounds a stable critical point, it is
unstable,

CONCLUSIONS

A model of three ordinary differential equations is used to describe, under certain
simplifying hypotheses, a membrane permeability <ensitive chemostat system. Depending
on the values of the system parameters, the model system may exhibit sustained regular
oscillation in the form of a one frequency himit cycle, or a more irregular oscillation in the
form of a solution trajectory on the surface of a torus surrounding a non-washout steady
state. Thus, by incorporating the effect of membrane permeability variation, the model is
shown to be capable of exhibiting oscillatory behavior which compares well with observed
experimental data. A stability investigation shows that if the quantity F( ¢, w ) has positive
value then the bifurcated solutions are 1epelling and f 1t 1s neganive then the solutions are
attracting.

Factoss such as electric and magnetic forces have been proposed to have significant
effects on cytoplasmic membrane permeability inducing oscillatory pattern in permeabifity
which in turn causes the rhythmicity in the microbial growth patterns. Some investigations
have been carried out in that direction | 2, 7 ]. Nontheless, relatively little efforts have been
made, up to date, to model such effects of rhythmic vanation in membrane permeability



ke

116 J.5¢i.Soc. Thailand, 24(1995)

on microbial culture, in order that their biochemical impact may be better understood and
appreciated. More in depth studies of the causes and mechanism of the rhythmicities are
clearly needed, the repercussions of these kind of studies in the large scale fermeatation
industry being significant indeed.
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Bifurcation and Chaos

i
( in a Membrane Permeability Sensitive Model

! for a Continuous Bioreactor
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Abstract——In this paper, we investigate the dynamic behavior of a continucus stirred tank reactor
modelled by cells and substrate balance equations which have been extended to incorporate the effect
of external forces on the cell membrane permeability. Bifurcation analysis done on the system of
three ordinary nonlinear differential equations which comprises the model shows that it can simulate
oscillatory behavior and mora complex dynamic behavior which have been frequently observed in
experimental data. Investigation is carried out to identify parametric ranges for which we can expect
undesirable complex situations that can compromise the quality of the efffuent.

Keywords—Bifurcation, Limit cycles, Continuous bioreactor, Membrane permeability, Chaotic

behavior.
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NOMENCLATURE

Proportionality constant, hr—1

Constant of integration, g/¢

Dilution rate, hr—1

Constants, gff

Number of active transport sites, ir—!

Measure of membrane permeability

Substrate concentration in the fermentation vessel, g/¢
Substrate concentration in the feeding solution, g/¢

Time, hr

Cell concentration in the fermentation vessel, g/¢

Yield coefficient for cell formation from the lirniting substrate
Proportionality constants, hr—1

Specific growth rate, hr—?!

Maximum specific growth rate for the Monod model, hAr—1
External force field frequency, hr—1

1. INTRODUCTION

Continuous stirred tank reactors (CSTRs) are often used in wastewater treatment and biologi-
- cal technologies, since they represent one of the simplest approaches to continuous processes [1].

{ Appreciation is rendered to the Thailand Research Fund and The National Research Council of Thailand for their

financial support.
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Activated sludge processes and the oxidation of some dangerous compounds usually take place in
well-mixed continuous reactors at ambient temperature. Most of these biological reactions, de-
scribed with Michaelis-Menton kinetics, exhibit chaotic behavior as shown by Agrawal et al. [2]
in their work on the theoretical investigations of isothermal continuous stirred tank biological
reactors. The appearances of limit cycles which can degenerate to chaos for certain values of the
control parameters of CSTRs have been more recently reported and discussed in [1,3]. Although
the mechanisms for this oscillatory behavior are not yet fully understood, it is clear that such
behavior affects the performance of the process and complicates its proper design and optimiza-
tion. Not only are these phenomena undesirable from the point of view of process control, they
can also give rise to potentially dangerous situations in the case of toxic compound treatment. It
is, therefore, necessary to investigate in depth the factors that cause such rythmicities in order
to better understand the underlying mechanisms and learn how best to avoid this undesirable
dynamic behavior. '

Basically, microbial kinetics have varied in diverse ways from a model due to Monod fashioned
after Michaelis-Menton kinetics for single enzyme-substrate reactions [1]. This model portrays
microbial growth as conversion of & fixed amount of substrate (or nutrient) to biomass occurring
autocatalytically in the presence of pre-existing biomass. The yield coefficient, determined by
the amount of fresh biomass produced per unit mass of nutrient, remains fixed during the growth
process. The mass balance equations on cells and the limiting substrate can be expressed as

% =—DX + p(S)X, (1)
ds w5}
— = Dr -8 - 57X, _ (2)

where X denotes the concentration of cells, S the substrate concentration, u(S) the specific
growth rate, Sp the feed substrate, and D denotes the dilution rate. Monod’s model regards the
yield coefficient Y as a constant and simply does not admit any periodic behavior. The most
obvious departure of the predictions of the Monod's model is in the variability of the stoichiometric
coefficient Y, which has led to damped as well as sustained oscillations [4]. Other workers have
also theoretically studied the continuous reactor for the cases in which the specific growth rate
responds with time lag to changes in pH, or the Monod’s equation holds for growth limitation, and
the case where growth inhibitors are formed during the process [5]. In [6], Lenbury et al. made
2 theoretical study on the dynamic behavior of a single-vessel continuous bioreactor subject to a
growth inhibition at high concentration of the rate limitation substrate. Bifurcation and stability
analysis showed oscillatory behavior and complexity in terms of steady-states multiplicity and
characteristics.

Recent studies of the parameters affecting the cell physiology of C. ecetobutylicum showed a
high sensitivity of growth and solvent production to the cytoplasmic membrane permeability [7].
A high permeability of the cytoplasmic membrane promotes the growth of the microbial cul-
ture, the utilization of the substrate, and the biosynthesis of the solvents. The opposite result is
obtained with low permeability of the cell membrane. The controlling action of the cellular mem-
brane permeability on the activities in many continuous processes has been frequently observed.
Examples include the influence of plasma-membrane lipid composition and membrane fluidity on
growth and solute accumulation by S. cerevisiae [8], growth of Clostridium thermocellum [9], and
growth and production of ethanol and glycerol by yeast cultures {10].

In this paper, we consider a mathematical model which incorporates this sensitivity to the
cellular membrane permeability, the specific rate of change of which is assumed to vary in a
sinusoidal fashion. Bifurcation analysis of the model shows that it can exhibit oscillatory behavior
in the form of a closed orbit on the surface of a 2-torus for certain ranges of parametric values.
Further investigation shows that chaotic behavior can result for values of a control parameter
which correspond to the windows of chaos.
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2. SYSTEM MODEL

One physical mechanism which has been proposed to exert its biological effect on the vari-
ability of the cytoplasmic membrane is the geomagnetic field variation [7]. Due to its crystalline
structure, the performance of the cell membrane is influenced by such external forces. This con-
cept has been extensively investigated and is well supported by experimental evidence [11,12}.
Attempts to incorporate the effects of external forces on the cell membrane permeability into a
model of the continuous bioreactor was carried out by Yerushalmi et al. [7] who asserted that,
8s a result of the influence of the geomagnetic field, the cellular membrane permeability can
follow an oscillatory pattern which will in turn cause the complexed oscillatory behavior in the
bicreactor.

The geomagnetic field can exert its biological effect by introducing an “order” in the composi-
tion of the cytoplasmic membrane. It is well documented (7] that the rodlike molecules in a liquid
crystal can orient themselves in a magnetic field which will increase the anisotropy of the liquid
crystals, making the cellular membrane more compact, resulting in a decrease in its permeability.
The opposite effect is observed when the external force is not so strong.

Studying the relationship between the magnetic field strength and the anisotropy of liquid
crystals, which is indirectly related to the cytoplasmic membrane permeability, it was found
in [7] that the variation of the membrane permeability P with time can be described by the
following equation:

dP '

F=n cos{wgt) P, (3)
where <; is a proportionality constant which is related to the intensity of the external force field
that varies in a sinusoidal fashion (with a period of approximately 24 hours for the geometric
field variation}.

Equation (3) describes the periodic changes in the cytoplasmic membrane permeability when
there is no cell growth. Growth of the cells contributes to an increase in the apparent permeability
of the cell population due to the newly formed cells which possess a thin cell membrane with high
permeability. Thus, the variations in the permeability of the cell population can be described by

the following equation:
. d(PX) dX
% T cos(wot) PX t g (4)
where 7, is a proportionality constant. The second term in equation (4) describes the increase
in the apparent permeability due to the growth of the culture and the formation of new cells.
Eliminating X from both sides of (4) results in the following equation for the dynamics of the

cells membrane permeability:

dP
o = ieos(wot) P+ (72 — P, (5)
where g is the specific growth rate. More detailed discussions on the derivation of the above
equations may be found in (7], where the inhibitory effect of butanol was also incorporated, but
which will be considered negligible here, however. '
The rate of nutrient utilization in the continuous culture is proportional to the number of active

sugar transport sites which results in the following equation for nutrient uptake rate:

as 'S

*a-t" = —S—mX+D(SF—S), (6)
where n' = kn, k being a proportionality constant, while the direct relationship between the
number of active transport sites and the membrane permeability can be expressed as

d(nX d{PX
e ™
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Thus, integrating (7), we find that equation {6) reduces to
dS  (C\XP+Cy)S
dt - S+ K, -

where C) = kkp and C; is a constant of integration.

Thus, our model system consists of equations (1),.(5), and (8), where the Monod model will
be assumed for the specific growth rate, that is

W(S) = S ®)

3. BIFURCATION ANALYSIS

For the following analysis, it is convenient to introduce new variables. Namely, we define
T = Dtv a = 71/Dv ﬂ = 72Cl/ﬂm| n= “‘m/Di W= WD/D! g = —02/‘-‘17!: M= Km1 T =X'r
y=C1P/im, z =S, zp = Sr, u = cos(wot), and v = sin{wot).

In these variables, our model equations (1), (5), and (8) become

+ D(SF - S)a . (8)

:T_” - zf-]:if! -5 (10)
g% = —ouy + (8- ¥) 5 ) (11)
% =—(zy - p) TM + (20 — 2), (12)
T =, | 13)
%U = Wi (14)

The above system has a steady state solution (zg,¥s, zs,us,vs) obtained from equating the
right sides of equations {10)—(14) to zero, namely

NZsts

reees =0 15
zs + M Is ] ( )
f1zs
—_ =0, 16
, (- vs) 22 (16)
nzs
- - ~ 2z} =0, 17
(zsys p)ZS+M+(Zo z,) (17
ug =0, vg =0,
from which we obtain .
M
- i8
28 = 7 (18)
ys=4#, and (19)
N € Bk2) Bl (20)
B8
If we let s
6= 21
zg+ M’ (21)

then the Jacobian matrix J of the system of equations (10)—14) evaluated at the steady state
{(zs,¥s, 25, 45,vg) can be written as

- Mné &

0 ‘ 0

0 zs+ M 0
0 -1 0 —af3 0
J = _ _ i MT](S _

—B —zs (B a:s) zg+ M 1o 0

0 0 o 0 —w
Lo o0 0 w 0]
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The five eigenvalues of J are found to be

M2 = 5T(6) % SAY(6),

As = -1, , ' (22)
A4.5 = :t'iw. ’
where )
Mné
r(5)=_( _i) z,+nM_1' (23)
A(8) = T*(8) — 4(n - 1)88. (24)

Due to the complex conjugate eigenvalues +iw, the linearized model will have a periodic
- solution for appropriate parametric values. In particular, if the parametric values are such that the
eigenvalues A; and Az both have negative real parts, then we will observe the solution trajectories
tending toward a periodic orbit in the phase space. This is the oscillatory behavior caused by
sinusoidal variation in the cellular membrane permeability due to the influence of the external
force field. We can show, however, that the system also possesses a natural frequency, which when
compounded with the forced frequency, can give rise to a more complicated dynamic behavior.
To do this, we consider the system of equations (10)-(12) with w = 0, for which the eigenvalues

are also Ay, Ao, and Az. Letting .
S

(p— Bzs)(n—1)
then, according to Hopf bifurcation theory [13], if a value §¢ can be found such that
(i) ReXi(éc) =0,
(ii) A1(6¢) and A2(bc) are complex conjugates,
(iii) Im Ay (6c) # 0,
(iv) ReXy(dc) #0,
{v) all other eigenvalues have negative real parts,

bc = (25)

then a Hopf bifurcation occurs and the system will have a family of periodic solutions for values
of § in some open interval (6c,8c + €). The result can be stated as in the following theorem.

‘THEOREM. If
n>1, (26)
p> Bxs >0, (27)

then the system of equations (10)—(14) with w = 0 will bave periodic solutions bifurcating from
a nonwashout steady state for values of 6 in some open interval {§¢,6¢c + £), where §¢ is given
by equation (25).

Proor. First, we note that if n and p are chosen to satisfy (26) and (27), then éc > 0. Substi-
tuting 8¢ into § in (23) and using (18), we find I'(6¢) = 0, so that Re A1 (8¢) = 0, which is the
requirement (i). Also, at & = é¢, we have

Albe) = —4(n - 1)écf < 0,
so that A1 (6¢c) and Ap(6¢) are complex conjugates, and moreover,
Im 1\1(6(;) # 0.

Differentiating Re A1(é¢) with respect to 8, we find

Moy = - (9= L) 40 #0

1‘—; zs+ M ’
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Figure 1. Computer simulation of model equations (10)-(14) with ¢ = 1.1, 8 = 1.5,
p=11, =86, 86 =024, M =2, w = 1256 29 =02 z5 =05, ys = 1.5, and
zg = 0.05. The solution trajectory approaches and eventually lies on a 2-torus, seen
bere projected onto the coordinate planes.

and finally, A3 = —1 < 0. Thus, all requirements for Hopf bifurcation are met. For § in some
open interval (6c,dc + €), the system of equations (10)—-(12) with w = 0 will have a periodic
solution bifurcating from its steady state (zs,ys, 25). For the system of equations (10)—(14) with
w # 0, this means that if conditions {26) and (27) are satisfied, 2 Hopf bifurcation occurs on top
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Figure 1. (cont.)

of the existing periodic solution, due to the eigenvalues + iw, giving rise to solution trajectories
on a 2-torus in the five-dimensional phase space.

Now, with the above choice of parametric values, Hopf bifurcation occurs at a nonwashout
steady state {zg,ys, zg), namely ys = @ > 0, and from (20},

zs =25+ (p~ Brs) > 0,

while 5 > 0 by (27). In fact, the solution trajectory of the model equations (10)-(12) remains
in the first octant (z > 0, ¥ 2 0, z > 0) of the {z,y, z) space since, on substituting z = 0 into
equation (12}, we find

E'T" =z5 >0, (28)
here. Also, on the (z,z) plane y = 0 so that
dy
d—]:; = >0,
and on the plane z = 0, we have
o
dT ’

so that the solution trajectory does not cross the coordinate planes.

In Figure 1, we present a computer simulation of the model equations (10)-(14) with w # 0
and parametric values chosen to satisfy the bifurcetion requirements (26) and (27), that is, n = 6,
g =15=ys, £5 =05, and p = 11. Then, from (25}, we find

b = 0.125.

Thus, we chose & = 0.241 > 8¢, which gives 25 = 0.05, M = 2, while w = 1.256, a = 1.1, and
zg = 0.2. The solution trajectory is observed to approach the closed curve on the surface of a
2-torus surrounding the steady state (rs.ys,25,us,vs) = {0.5,1.5,0.05.0,0) in the 5-dimensional
phase space, seen here projected onto the coordinate planes.
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4. FORCE FIELD INTENSITY AND BIFURCATION DIAGRAM

We now investigate the influence of the force field intensity @ on the dynamic behavior of the
model system (10}-(14) by first showing that the smaller the force field intensity o, the closer to
the plane y = @ will the solution trajectory on the 2-torus lie.

Letting

n=(T)

= e (29)

we see by (28) that G(T') > 0 for all T. Thus, equation (12) can be written as

d{y — 5)

77— = [Feu -GNy - ) - afu. - GO

Using the Leibnitz’ formula, we then find

T . T T .
y(T) -8 = e-fo (—au—G(r))dr {/ e j; (—uu—C[u)]du(_aﬁu}dT+ C} ) (31)

o
Letting
T
R(T) =/0 G(r)dr, (32)

it is easily seen that h{T) is an increasing function, and therefore, we have
T
WD) = = = DMD L O [ eoniehy ) dr} ,
0

where e M7} 2 0as T — co.
Since ™M™ < MMT) 0 < 7 < T, we have

T T
e—au(T)—h(T) f eau[r)-]-h(‘r)u(_r) dr| < e-au(T)—h(T)eh(T) / eav('r)u(_r) dr| = 1.
0 a

Therefore,
ly(T) ~ Bl < ag, as T — oo, ‘ (33)

which means that for small a, the time course of ¥{T") tends to a value close to 3 as time passes.
In fact, if o = 0, then we have
y(T) — 8. as T — oo,

and the bifurcating solution trajectory eventually lies on the plane y = 3. The expression (33),
in fact, gives us a bound for the extent to which y will be perturbed from the value 8.

Now, we have shown that the critical point (Ts,ys, z5) of the system of equations (10)-(12)
with w = O loses its stability and a Hopf bifurcation occurs when the two complex conjugate
eigenvalues A; and Ay cross the imaginary axis. In other words, at the value é¢ of our bifurcation
parameter &, the two eigenvalues A; and A; have a vanishing real part. Figure 2 shows the stability
region in the (zs5,8) plane for a continuous stirred tank reactor modelled by equations (10}-(14)
under the conditions @ = 1.5, p = 11, and n = 6. The region is the union of two sets §; and S,,
where

S1={(rs.6)10 <15 < pf™',0< 8 < bc},
S2 = {(z5,6) | pf7" < zs}.
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Figure 2. Stability diagram in the {z g, 4} plane for the model system {10)~(14).

In §; US55, solution trajectories near the steady state solution (z,y. 2} = (zs,ys, zg) remain close
to that point as time passes.
On the other hand, in the instability region given by

So={(25.6)]0 < 25 < p37"6c < § < o0},

the reactor can exhibit bifurcation or chaotic behavior. The set is thus to be avoided from a
control point of view. The transition from periodic orbits to chaos is known to occur after a
cascade of period doubling, followed by the appearance of chaos windows, Following the work
presented by Schaffer [14] on how nonlinear dynamics can elucidate mechanisms in ecology and
epidemiology, we create a bifurcation diagram, shown in Figure 3, in the following manner. For
each value of the force FAeld intensity o, the simulation of the model equations (10}-(14), for
parametric values in the region Sy, is allowed to run for a sufficiently long period of time, then
40 data points z(t,), n = 1,2,...,40, are collected every interval of 27 /w, the period of the
external force fGeld. That is,

where Ty = 100 in Figure 3. The values £, = log2(Th), n = 1,2,...,40, are then plotted
against ¢ which ranges from 0 to 3. All other parametric values are the same in all computer
simulations which generate the points in this figure. We see here that the solution is periodic for
small «; all 40 data points for each value of a apparently fall on the same spot in the (@, £) plane.
Windows of chaos are observed for  in the approximate ranges 1.2 < a < 1.9 and 2.1 < & < 3,
although the chaotic scatter of data points is more pronounced in the second range. The data
points for each value of a no longer fall on the same spot, a chatacteristic which is markedly
different from the behavior in the range where o is small.
In Figure 4, we investigate the behavior in the range 2.1 < a < 3 more closely. Here, we plot

A
Hﬂzfn_w_ =1,2,.. ., 40,
2
where
My = max &, My = minéy,
113 n

against . We observe that at @ = 2.1, approximately, the 40 data points apparently fall on
the same spot. As « increases, however, they bifurcate into two groups, one of which bifurcates
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Figure 3. Bifurcation diagram of the model system (10)-(14) with parametric values
in the region So; 8 = 1.5, p= 11, =6, 8§ = 0.24}, M = 2, w = 1.256, 20 = 0.2,
zg = 0.5 ys = 1.5, zg = 0.05: plot of log{z,)} versus a.
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Figure 4. Bilurcation diagram of the CSTR modelled by equations (10)-(14) in the
range 2 < a < 3 with parametric values of Figure 3: plot of H,, versus o.

further into four. For « around 2.45, the solution is apparently no longer periodic. We do not
obtain the same value of z(T) every interval of 27 /w. A similar chaos window can be observed
for o between the values 1.2 and 1.9, approximately, although not so marked. Periodicity is
recaptured, however, at & around 2.1 and 3.0 (points A and B, respectively).

Finally, Figure 5 shows the time course of z(T} for parametric values of Figure 3, but with
o = 1.5, inside the range of a chaos window (point C}. The solution is no longer periodic, as
is born out by the bifurcation diagram in Figure 3. Similar dynamic behavior of this type has
previously been observed in & model for the spread of measles reported in [14], where an increase
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Figure 5. The time course of the simulated substrate concentration z with & = 1.5
and other parametric values as in Figure 3.

in the amplitude of an external factor can drive the system into behaving in such an unpredictable
manner.

5. CONCLUSIONS

We have investigated the dynamic behavior of a continuous stirred tank reactor modelled by
cells and substrate balance equations which have been extended to incorporate the effect of
external forces, such as the earth’s magnetic field, on the cell membrane permeability. From con-
siderations of the relationship between the anisotropy of the liquid crystals and the permeability
of the cytoplasmic membrane, it is deduced that the membrane permeability varies with time ina
sinusoidal fashion. The equation for the dynamics of variation in the permeability is then derived,
taking into account also the increase in the apparent permeability due to the newly-formed cells.

The balance equation for the nutrient uptake rate is also adjusted to take into account the
direct relationship between the membrane permesbility and the number of active transport sites.

Bifurcation analysis done on the resulting model equations shows that, for suitable ranges of
parametric values, the model system admits oscillatory behavior as a result of a Hopf bifurcation
on top of the existing periodic solution due to the sinusoidal variation in the membrane perme- .
ability. Consequently, if parametric values satisfy the conditions put down in the theorem, the
model system will have a solution whose phase space trajectory eventually lies on the surface of
a 2-torus.

Particular attention is then devoted to the identification of the operating zones in which it is
possible to carry out the continuous process while avoiding undesirable complex dynamic behav-
jor. Owing to the importance of the process and the hazardous nature of the compounds which
might be involved, we have attempted to identify the ranges of control parameters (6 and xg,
specifically) to be avoided since they correspond to the region where complex dynamic behavior
is possible. The appearance of chaos windows for ranges of the external force field intensity
identified in the bifurcation diagrams is not only undesirable for control and design problems,
it can also give rise to potentially dangerous situations in the case where toxic compounds are
involved, such as in the operation of wastewater treatment processes. Clearly, further theoret-
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ical studies must be carried out to shed more light onto this complicated, but most frequently
observed dynamic behavior.
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A Singular Perturbation Analysis of a Product Inhibition

Model for Continuous Bio-Reactor



A SINGULAR PERTURBATION ANALYSIS OF A PRODUCT INHIBITION
MODEL FOR CONTINUOS BIO-REACTORS

Y. LENBURY Department of Mathematics, Faculty of Science, Mahidol University,
Bangkok, Thailand.

N. TUMRASVIN Department of Mathematics, Faculty of Science, Mahidol University,
Bangkok, Thailand.

ABSTRACT

A model of a continuous bio-reactor subject to product inhibition is considered where a one
hump substrate-limited specific growth rate is used. Analysis of the model is carried out
through singular perturbation arguments which allow us to derive explicit conditions on the
parameters that identify different dynamic behavior of the system, and specifically ascertain
the existence of a limit cycle composed of a concatenation of catastrophic transitions occurring
at different speeds. Moreover, the interactions between the limiting substrate and the growing
microorganisms can give rise to high-frequency oscillations, which can arise during the
transients toward the attractor or during the low-frequency cycle. This periodic burst of high-
frequency oscillations develops as a result of the effective product inhibitory mechanisms. The
analysis helps us in identifying the safe operating region in which undesirable complexed
dynamic behavior may be avoided. ‘
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1 INTRODUCTION

Viewing the behavior of microbial cultures within the framework of lumped kinetic models, a
multitude of models have been proposed and theoretically studied in diverse ways since the
model due to Monod [1] fashioned after Michaelis-Menten kinetics for single enzyme-
substrate reactions.

In 2], Yano and Koga made a theoretical study on the behavior of a single-vessel
continuous fermentation subject to a growth inhibition at high concentration of the rate

. limiting substrate S. They used the following expression for their continuous fermentation

system :

Mo
(K,/S)+1+ > (S/K,;)’

i=t

n= (1)

where p_ and the K's are positive constants and n is a positive integer. Other workers [3-5]
have adopted simpler specific growth rate functions involving less control parameters but
exhibiting similar necessary characteristics as the usual substrate inhibition model, for example
the one hump substrate inhibition function

u = kSe % (2)

where k and K, are positive constants.

Later, Yano and Koga discussed in [6] the nature of the chemostat in which the specific
growth rate depends on the concentrations of both a substrate and an inhibitory product of a
microorganism. They assumed the specific growth rate equation as follows

= o 3)

P n
(K, +85) 1+(E;j

They showed, with the analog computer, that when the product formation was negatively
growth-associated, diverging as well as damped oscillations appeared. No oscillations could be
observed, on the other hand, when the product formation was either completely growth-
associated, or partially growth-associated. Oscillation phenomena are, however, not unusual in
continuous cultures [3]. Since such penchant for periodicity is undesirable from the point of
view of process control, it is necessary to identify the safe operating regions in which
complexed dynamic behavior may be avoided.

In [4], the dynamic behavior of a chemostat subject to product inhibition was analyzed
and classified in terms of multiplictty and stability of steady states and limit cycles. The
substrate was assumed to be in sufficient supply so that the model was reduced to a system of
two nonlinear differential equations involving only the cells and product concentrations.

In this paper, we consider the full three-variable product inhibition model consisting of
the following nonlinear differential equations ( described in more detail in [6] ):
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ds |
E:D(SF—-S)——;};X 4)
%Xt- =uX-DX (5)
dp

o npX - DP (6)

where X(t) denotes the cells concentration at time t ; S(t) the substrate concentration at time t
; P(t) the product concentration at time t; S, the concentration of the feed substrate; Y the
cells to substrate yield; D the dilution rate; and 1, the constant for product formation.
Equations (4) and (5) are based on the well known Monod's model for cells and substrate
interaction, described in more detail in reference [1]. To take into account the inhibitory effects
of the substrate as well as the product increase in the chemostat, however, we adopt the
following expression for the specific growth rate function :

n= P (7)

Further, the cells to substrate yield Y is assumed to vary linearly with the substrate level
at any time t, allowing for the positively-growth associated situation ; namely

y=AS+B (8)

Such substrate dependent yield has been used previously by several other workers in this field
[3-5].

Equation (6) describes the change in the product concentration as X and S change. The
first term on the right of this equation is the contribution to the rate of change in P, which is
assumed to vary directly as the rate at which X increases, 1o being the positive constant of
variation. The cells X, substrate S, and product P are extracted from the chemostat at a constant
dilution rate D, and hence the terms -DS, -DX, and -DP in the three model equations (4)
through (6).

The analysis of the model is done through a singular perturbation argument, assuming
that the substrate concentration exhibits fast dynamics. The time responses of the different
components in the system are assumed to decrease dynamically from top to bottom. The
structure of the corresponding attractors and the nature of the transients are then analyzed. It is
shown that the model system can exhibit low-frequency cycles in which periodic bursts of
high-frequency oscillations may develop giving rise to more complexed dynamical behavior
for specified ranges of the system parameters.
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2 SYSTEM MODEL

In order to analyze the model system of equations (4), (5) and (6), together with {7) and (8)
through the singular perturbation technique, we-scale the dynamics of the three hierarchical
components of the system by means of two small dimensionless positive parameters £ and 5 ;

S __P - _D _ D _ kSg
namely,weletx—-g?y X, z= Ko , dy —D,dz-g- , d3‘§§ ) =
_M® . _ ko B _Se
n ESKP Y ASE ° B ASp and a Ks
We are led to the following system of differential equations :

B g1y )
ac x+Pl+ez) ‘
dy [ oxe™
—— =gy —d, |=eg(x,y,2) : (10}
dt L 1+ez
dz 1xe ™
— =¢€d y—d,z |=¢edh(x,y,2) (11)
dt | 1+ez

Thus, with € and & small, the equation of the substrate concentration represents the fast
system, while that of the cells and product concentrations represent the intermediate and the
slow systems respectively. Under suitable regularity assumptions, the singular perturbation
method allows us to approximate the solution of the system (9)-(11) with a sequence of simple
dynamic transitons along the various equilibrium manifolds of the system and occurring at
different speeds. The resulting path, composed of all such transitions, approximates the
solution of the system in the sense that the real trajectory is contained in a tube around these
transients, and that the radius of the tube goes to zero with € and &. The formal proof of this is
not given because it is long and trivial and has already been discussed and extensively used in
the literature [7-10].

3 EXISTENCE OF LIMIT CYCLE

We now show that if € and & are sufficiently small and

ax>] (12)

p>l-—-— (13)

Ly1
e“<;0—2<ae[%%%l(l—g](g+ﬁj+l} (14)
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then a limit cycle exists for the model system (9)-£11).

and

We first prove that inequalities (12)-(15) guarantee that the geometry of the manifolds
f=0,g=0 and h=0isasinFig. 1.

Manifold f=0

We observe that this manifold is given by the equation

e o A el e, L o -

dy eaX
y=7(l-X)(X+B)(l+EZ)—; (16)
- which defines a surface y = ¢(x, z) which intersects the (x,y) plane along the curve
d; edX
Y=?(1*X)(X+B)T ' (17}

From equation (16), it is seen that the manifold intersects the (x,z) plane along the line
x =1 as shown in Fig. 1.
The slope of the curve in (17) is given by

%:d* F(x )Hﬂ‘; [~ +(a~aB - 1)x2 + apx — B] (18)

. which may vanish for some values of x <1.

<- Figure 1 Equilibrium manifolds of the model system (9)-(11). In this case, transitions of
. different speeds develop into a closed cycle, where one, two and three arrows indicate
g transitions at low-, intermediate-, and high-speed, respectively.



Manifold g =0

This manifold consists of 2 parts; the trivial manifold y = 0 and the nontrivial manifold given
by the equation

—ax

xe _-_d_z (19)
l+ez o

which defines a surface z = y(x). We observe that at x = 1
A , a

dz _,
dx

. and so Inequality (12) ensures that the point P(x,,y,,z,) in Fig. 1 is located on the manifold

f= 0 at the point where x, = 1 <l
a

We also need the point P to be located on the stable part of the manifold f = 0. This is
guaranteed by requiring that

F(h] <0 (20)

which is equivalent to inequality (13)
The manifolds =0 and g = 0 intersect along the curve given by

_ dio

y= doy (1-x)(x+B)

reaching a maximum at the point M(x,,,¥\.Zy) Where

Finally, the curve f = g = 0 intersects the (x,z} plane at the point O(x,,y,,z,) where

Xy =1 and, from (19),
1{ w
2, = -1 21
© S(d;_.ea ) @h

We see, therefore, that the left side of inequality (14) guarantees that z, > 0.

Thus, the manifold f = g = 0 is shaped as shown in Fig. 1. We note that the point R may
be located on the unstable part of the manifold f = 0. However, the transients also develop into
a limit cycle in the case that inequalities (12)-(15) are satisfied.




Manifold h =0

This manifold is given by the equation

= YET @2)
d,(1+ez)
which defines a surface z = p(x,y). This intersects the manifold f = 0 along the curve
2= "9 (1-x)(x+B) 23)
vd,

using equation (16). Thus, z reaches a maximum along this curve at the point Q(x,,¥q,2q)
1
where x, = 5(1 —Bl=xy
Also, the curve f = h = ( intersects the (x,z) plané at the point (1,0,0) as seen in Fig. 1.

If we let N(xy,¥y.2Zy) be the point on the curve f = h = 0 with x, = 1 , then from equation
a

(23) we find that
7 :“_‘L(l_l][lﬂg) (24)
vd, a/la
while, from equation (19), we find that
Zp = }‘[—m_—lj (25)
e\ aed,

Therefore, so that the equilibrium point S where the curves f = g = 0 and f = g = 0 intersect
should be located on the unstable part of the manifold f= g = 0, we require

Zp < Zy

which is exactly the right side of inequality (14).
Finally, along this curve f=h = 0 given by equation (23),

when x = 0, and therefore inequality (15) guarantees that the curve f=h = 0 crosses the curve
f=g = 0 only once at the point S.

Now, starting from a point A = (x(O),y(O),Z(O)) (see Fig. 1 where low-, intermediate-,
and high-speed trajectories are indicated, respectively, with one, two, and three arrows) at first
a high-speed transition develops at constant y and z while only the fast system



x = £(x(1),y(0),2(0))

is active and the intermediate (y ) and slow (z) variables are frozen at their initial values

y(0) and z(0). The high speed transition brings the system to the point B on the stable part of
the fast manifold f = (, at which point the intermediate system has now become active. A
second intermediate-speed transition takes place on the manifold at constant x (segment AB
in Fig. 1) until the point C isreached. A slow transition is then made along the curve
f=g = 0 until the point P is reached where the stability of the equilibrium manifold g = 0 is
lost and a quick transition then takes the state of the system to the equilibrium point E on the
stable trivial manifold y = 0. A slow transition then develops along this manifold until a point
is reached where the stability is again lost at some point F beyond O (see Fig. 1). The proof of
the existence and location of such a point F is lengthy and can be found in Schecter and
Osipove er al. [11,12]. At this point a quick jump again takes us back to the point D on the
stable manifold f= g =0, resulting in a closed cycle DPEF lying on the equilibrium manifold
f=0.

Fig. 2 shows numerical simulation of the model equations (9)-(11) with parametric
values chosen to satisfy inequalities (12)-(15). The trajectory is seen here to develop into a
low-frequency limit cycle as theoretically predicted. The time courses of the three variables in
this case are shown in Fig. 3. '
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Figure 2 Numerical simulation of the model equations (9)-(11) where the parametric values
have been chosen to satisty inequalities {(12)-(15), so that the solution trajectory tends toward a
low-frequency limit cycle as theoretically predicted. Here, e =0.1,8 =0.01,8=08 ,v =2.0,
N=10.0,0=30,a=15d,=0254d,=03,d,=01, x(0) =05, y(0) =02, and 2(0) = 0.4.
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i Figure 3 The time courses of the three variables x(t), y(t}, and z(t) are shown here

corresponding to the case seen in Fig. 2. Here, e =0.1,6=0.01 ,p=0.8, y =2.0, n=10.0,
fo=30,a=15,d,=025d,=03,4d,=01, x(0)=0.5, y(0)=0.2, and z(0) = 0.4.

4 BURSTS OF HIGH-FREQUENCY OSCILLATIONS

For the occurrence of periodic burst of high-frequency oscillations during each low-frequency
- cycle, we further require that the manifold f = 0 has an unstable portion. This is equivalent to

- requiring that the slope given by equation (18) is positive at some value of x <1, say x= -.

[

1. . .
Letting x = 3 in (18) leads to the following inequality

la—-4
27 - 6a

B< (26)

which ensures that the curve y = ®{x,0) has positive slope on some interval containing the

: ]
point x =

-
2



Combining inequalities (13) and (26) leads to the requirement that

1 1 3a—4

--S<Bgig 27)
It is also necessary to have
F(x)>0 (28)

so that the point R should be located now on the unstable branch of the manifold f = 0.
This is easily accomplished by letting

X =16 (29)

§ for a sufficiently small 6, then simply set

b

(=3

; D _ge-x ¢l _gye-(1/3-6)

; o - X (3 B)e ' 30
5 Finally, in order that the transition goes back into high-frequency oscillations in each
{ low-frequency cycle, we require z, < z,,, which is equivalent to

e—a < I—Be—a[l-ﬁ)ﬂ (31)

SO UUI A LS.

tFigure 4 Equilibrium manifolds of the mode} system (9)-(11). In this case, transitions of
idifferent speeds develop into a low-frequency cycle with a period of high-frequency oscillation
as identified in the text.
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With all the above inequalities being satisfied, the equilibrium manifolds are shaped as
shown in Fig. 4. Starting from the point A, a fast transition takes us, as explained earlier, to the
point B on f= 0. An intermediate transition develeps on this manifold until C is reached where
the stability of the equilibrium fast manifold is lost. A fast transition then takes the system to
the stable equilibrium point D. An intermediate speed transition is then made along this branch
of manifold until G is reached where the stability is again lost and a quick jump brings us to
the stable point H. This almost closes up the cycle but just misses the point B. The slow system
has become active and Z has been slowly increasing since z >0 here. Transitions then develop
following the same paitern but with slowly varying z as seen in Fig. 4 until M is reached, at
which point the trajectory develops into a slow cycle which goes back into the fast cycles since
inequality (31) guarantees that z; < z,,.

Thus, we have proved, by the above discussions, the following theorem

THEOREM If inequalities {12), (14), (15), (27), (30) and (31} hold then the system of
equations (9)-(11) has a periodic solution which will be a low-frequency limit cycle containing
high-frequency oscillations if £ , & , and 8 are sufficiently small.

Fig. 5 shows numerical simulation of the model equations (9)-(11) with parametric
values chosen to satisfy all inequalities mentioned in the above theorem. The corresponding
time courses of the three variables are shown in Fig. 6, where the burst of high frequency
oscillations is observed in each low-frequency cycle.

Figure 5 Numerical simulation of the model equations (9)-(11) where the parametric values
have been chosen to satisfy all the inequalities set out in the Theorem. The solution trajectory

_ is a low-frequency limit cycle which contains a period of high-frequency oscillations. Here,
£=01,8=001,p=002,y=20,n=100, ©=3.0, a=15, d,=0.25, d,=05,

d,=0.1, x(0)=0.5, y(0)=0.2 , and 2(0)=0.2.
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Figure 6 The time courses of the three varibles x(t) , y(t) , and z(t) corresponding to the case
:seen in Fig. 4 are shown here, where periodic bursts of high-frequency oscillations are clearly

‘observed. Here, £ =0.1,6=0.01,p=0.02,,y=2.0,1=10.0,0=3.0,a=15,d, =0.25,
d,=0.5,d,=01,x(0)=0.5, y(0)=0.2 , and (0) = 0.2.

‘5 CONCLUSION

.The dynamic behavior of a continuous bio-reactor described by equations (9)-(11) has been
sinvestigated in this paper. Assuming that the time responses of the three components are highly
-diversified, increasing from bottom to top, we were able to use standard singular perturbation
.analysis to describe the nature of the transients and the attractors of the system.

- Complexed oscillatory behavior is extremely undesirable not only for control and design
problems, but also for its potential for dangerous situations which may result in the case where
toxic compounds are involved, such as in the operation of toxic waste treatment processes.
Insights that can be gained from this type of analysis described above should prove most
valuable in the light of such considerations.
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MODELLING EFFECTS OF HIGH PRODUCT
AND SUBSTRATE INHIBITION ON OSCILLATORY BEHAVIOR
IN CONTINUOUS BIOREACTORS

ABSTRACT

In this study we consider a model for continuos bioreactors which
incorporates the effects of high product and substrate inhibition on the kinetics
and biomass and product yields. We theoretically investigate the possibility of
various dynamic behavior in the bioreactor over different ranges of operating
parameters to determine the delineating process conditions which may lead to
oscillatory behavior. Application of the singular perturbation technique allows us
to derive explicit conditions on the system parameters which specifically
ascertain the existence of limit cycles composed of concatenation of catastrophic
transitions occurring at different speeds. We discover further that the interactions
between the limiting substrate and the growing microorganisms can give rise to
high frequency oscillations which can arise during the transients toward the
attractor or during the low-frequency cycle. Such study can not only more fully
describe the kinetics in a fermentor but also assist in formulating optimum
fermentor operating conditions and in developing control strategy for

maintaining optimum productivity.

Key words:  continuous bioreactors, product inhibition, substrate inhibition,

singular perturbation, oscillation.



NOMENCLATURE

X concentration of cells in bioreactor, g/{

S concentration of substrate in bioreactor, g/£

Sp concentration of substrate in the feeding solution, g/!:‘
P concentration of product in biorector, g/

T time, h

Ks, Kp positive constants, g/¢

D dilution rate, h-!

Y yield coefficient, g cell/g substrate
K specific growth rate, h-!

Hm maximum specific growth rate, h-!
INTRODUCTION

The growth of microorganisms is an unusually complicated phenomenon.
Viewing the behavior of microbial cultures within the framework of lumped
kinetic models, a multitude of models have been proposed and theoretically
studied in diverse ways since the model due to Monod [9] fashioned after
Michaelis-Menten kinetics for single enzyme-substrate reactions.

In ethanol fermentation, instantaneous biomass yield of the yeast
Saccharomyces cerevisiae was found by Thatipamala ef al. in [15] to decrease
with the increase in ethanol concentration (P), indicating a definite relationship
between biomass yield and product inhibition. It was also found in [15] that
substrate inhibition occurs when substrate concentration (S) is above 150 g/¢ .
Figure | shows experimental data taken from the work of Thatipamala ef al. [15]
indicating the effect of substrate inhibition on the specific growth rate at low
ecthanol concentrations. Figure 2, on the other hand, shows the effect of product

inhibition on the specific growth rate, with data taken from the same source [15].



A number of simple kinetic expressions have been suggested iﬁ the
literature for specific growth rate p incorporating product and/or substrate
inhibition [2-4,16]. Mainly, four types of inhibition correlations have been
suggested based on experimental observations: linear, exponential, hyperbolic,
and parabolic. In [16], Yano and Koga made a theoretical study on the behavior of
a single-vessel continuous fermentation subject to a growth inhibition at high
concentration of the rate limiting substrate S. They used the following expression

for their continuous fermentation system :

Hm

. 1)
(Ks/8)+1+ X(S/K;)
j=1

p-".:

where pp, and the K's are positive constants and n is a positive integer. Other

workers [1,8] have adopted simpler specific growth rate functions involving less

control parameters but exhibiting similar necessary characteristics as the usual

substrate inhibition model, for example the one hump substrate inhibition function
p = kSe~5/Ks )

where k and K are positive constants

Later, Yano and Koga discussed in [17] the nature of the chemostat in
which the specific growth rate depends onlthe concentrations of both a substrate
and an inhibitory product of a microorganism. They assumed the specific growth
rate equation as follows ;

| S
"= - 3

Syl PY
(KS+)+_I§

(7S]



They showed, with the analog computer, that when the product formatioﬁ was
negatively growth-associated, in which the rate of ‘product formation decreases
with the increase in the cells concentration, diverging as well as damped
oscillations appeared. No oscillations could be observed, on the other hand, when
the product formation was either completely growth-associated, or partially
growth-associated. Oscillation phenomena are, however, not unusual in
continuous cultures [1]. Since such peﬁi:hant for periodicity is undesirable from
the point of view of process control, it is necessary to identify the safe operating
regions in which complexed dynamic behavior may be avoided.

In [14], Ramkrishna et al. presented a chemostat model which assumed
that viable cells ( X ) interact with a substrate ( S ) so as to produce the new viable
cells and a cell-killing product ( P ). This product interacts with viable cells to
form dead cells, in the process of which the cell-killing product may be released.

In 8], the dynamic behavior of a chemostat subject to product inhibition
was analyzed and classified in terms of multiplicity and stability of steady states
and limit cycles. The substrate was assumed to be in sufficient supply so that the
model was reduced to a system of two nonlinear differential equations involving
only the cells and product concentrations.

In this paper, we consider the full three-variable product inhibition model

consisting of the following nonlinear differential equations :

X X_DX 4
a T

dS—D(S $)-Lx 5)
d o F Y (
dp _ Mot X+ mP —DP (6)

dt



where X(t) denotes the cells concentration at time t; S(t) the suﬁstrate
concentration at time t; P(t) the product.concentration at time t; Sp the
concentration of the feed substrate, while D is the dilution rate at which the feed
substrate is being fed into the reactor and the content of the bio-reactor is being
removed, and 7 is the constant for product formation. The term 1;P in equation
(6) takes into account the release of the cell-killing product during the product's
interaction with viable cells to form dead cells, following the suggestion of
Ramkrishna et al. in their earlier mentioned paper [14]. Here, we assume that the
production rate is directly proportional to the amount of the product present, with
M1 < D being the positive constant of variation.

We also adopt the following expression for the specific growth rate

function :

e )

where a and k are positive constants, to take into account the inhibitory effects
of both the substrate and the product increase in the chemostat.
Further, the cells to substrate yield Y defined as

v amount of cells produced

fl

amount of substrate consumed

is assumed to vary linearly with the substrate level at any time t, allowing for the

positively-growth associated situation ; namely

Y =A+BS (8)

Such substrate dependent yield has been used previously by several other workers

in this field {1, 8].



The analysis of the model is done through a singular pertursation
argument, assuming that the substrate concentration exhibits fast dynamics. The
time responses of the different components in the system are assumed to decrease
dynamically from top to bottom. The structure of the corresponding attractors and
the nature of the transients are then analyzed. It is shown that the model system
can exhibit low-frequency cycles in which periodic bursts of high-frequency
oscillations may develop giving rise to more complexed dynamical behavior for

specified ranges of the system parameters.
SYSTEM MODEL

In order to analyze the model system of equations (4), (5) and (6), together
~ with (7) and (B) through the singular perturbation technique, ﬁre assume that the
substrate has fast dynamics, while the cells and product have intermediate and
slow dynamics respectively, and scale the time responses of the three hierarchical

components of the system by means of two small dimensionless positive

parameters £ and & ; namely, we let X = y=X, 2=—P— d; =D,

Sp’ Kp '

_D , _D-m __kSp __mew __ Kk A
dz_& 'd3_ 85‘ ’OJHSKP’TI-‘ SS’Y—ASF’and B__BS]:"‘Neare
led to the following system of differential equations :

dx 1xe~ ¥

—=d;(l-x%x)~ = f(x,y, 9

o W G ey T oY e
dy wxe 4y | = ea( ) 0
- e "2 |Feeloyz (10)
d —ax

izga[”xe y—dﬂ}za&)(x,y,z) (11)
dt l+ez



Thus, with € and & small, the equation of the substrate concentrétion
represents the fast system, while that of the cells and product concentrations
represent the intermediate and the slow systems, respectively. Under suitable
regularity assumptions, the singular perturbation method allows us to
approximate the solution of the system (9)-(11) with a sequence of simple
dynamic transitions along the various equilibrium manifolds of the system and
occurring at different speeds. The resulting path; composed of all such transients,
approximates the solution of the system in the sense that the real trajectory is
contained in a tube around these transients, and that the radius of the tube goes to
zero with € and 8. The formal proof of this is not given because it is long and
trivial and has already been discussed and extensively used in the literature

[7,10-12].

Two-dimensional dynamics

By means of singular perturbation analysis, the solution of the system of

equations (9)-(11) can be approximately found for small values of £ and &.
First, the slow (z) and intermediate (y) vanables are frozen at their initial values
z(0) and y(0), and the evolution of the fast component of the system is
determined by solving the 'fast system' consisting of equation (9) with z set equal
to 2(0). If, for simplicity of the following analysis, we assume that the starting
value of z is comparatively small, since & is small, the value of z remains small
during the initigl phase. The evolution of the system components can then be
approximately determined by first setting 8 =0 and z = 0 in the equations

(9)-(11). Thus, we are led to the following system :



dx yxe” Xy

"(E“di(l—x)*“—*—(xw) | (12
dy _ .
== ey[mxe ax —dz] (13)

which is a fast-slow second-order system for which the dynamical behavior can
be analyzed and existence of limit cycles detected through the singular
perturbation principle. The results are summarized in Figure 3, where two cases
of interest can be identified. The conditions on the parameters identifying the

two cases are as follows.

Case l

The system (12) has an equilibrium manifold where x =0 given by

ax

y=(1-x)(x+ﬁ)¥°—x-s<p<x) (14)

which intersects the x-axis at the point x =1 as shown in Figure 3. The slope of
the curve in (14) is given by 7
dy e e?X

=" F(x)=—|-x>+(a—-ap - )x* - 15
= 2 FOO xz[ X+(a-aB-Dx+apx—B] (19

1
Letting x = 3 in (15) leads to the following inequality

3a-4
P<7¢a (16)

which ensures that the curve y =@®(X) has positive slope on some interval

1
containing the point x = 5



At e 5 e e e e g

The equilibrium manifold of the intermediate system (13) consists of 2

parts, the trivial manifold y = 0 and the nontrivial manifold given by the equation

dy

@

xe X =

(17)

In Case 1, the curve (17) intersects the graph of (14) at the point R in the

Figure 3 where x =X for which

F(x)>0 (18)
which means that the point'R is located on the unstable branch of the ma.ﬁifo]d
f= 0. This is easily accomplished by letting

1
X=—-6 19
X=3 (19)

for a sufficiently small €, then simply set

d -1
2 xe ¥ = (2-0)e(1/3-0) (20)
w 3 .

Thus, Case 1 is identified by the inequality (18) with (19) and (20).

Case 2

This case is then identified by the opposite inequality to (18), namely
F(x) <0 (21)
However, since the nontrivial intermediate manifold is given by (17),

X >— (22)



[ —

d .
We see that (21) will be satisfied if 2 s sufficiently large as well as satisfying
o

=<1 (23)

to allow for X to be located to the left of the point x = 1 where the fast manifold
crosses the x-axis.

Thus, in Figure 3 where transitions of low, intermediate, and high speeds
are indicated by one, two, and three arrows, respectively, if we start from the
point marked by the number 1 above the curve x = 0, then X < 0 here and a fast
transition develops toward the point 2 on the stable manifold (section AB), while
y still remains frozen at the initial value y(0). (If we start from the point 1 below
the curve x = 0, then X > 0 here and so a fast transition will develop toward point
3 on section CD of the manifold). Since the manifold is stable here, a transition
of intermediate speed is made along the curve as the intermediate system
becomes active. From point 2, the transition develops along the direction of
decreasing y since y <0 on the left of the curve g = 0. Once the point B is
reached, the manifold loses its stability and a fast transition is made towards the
point D on the stable section CD of the manifold. Transition of intermediate
speed upwards along this curve ends if either a stable equilibrium R is reached
in Case 2, or a quick jump brings the trajectory back to the section AB

completing a closed cycle ABDC in Case 1.
Three-dimensional dynamics

As z increases, the slow system (11} becomes active. We now show that,
for suitable values of the parameters and for € and & sufficiently small, the

system (9)-(11) has a unique attractor that is either a stable equilibrium or a low-

10
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frequency limit cycle which may exhibit high-frequency oscillations during a

finite interval of time.
To do this, we observe that the manifold
f(x,y,z) = 0

intersects the nontrivial intermediate manifold along the curve

f=g=0

given by the equation

xe”™ d,

l+ez

1
which defines a surface z = y{x). We observe that at x = —
a

dz_

— =0
dx

24

(25)

(26)

Thus, to ensure that the point P(xp,yp,zp) in Fig. 4 is located on the stable part

1
of the manifold f = 0 at the point where xp = — < 1, we require
a

or equivalently,

N
> ———
p>l--->

and

a>1

27

(28)

(29)



Combining the tnequalities (16) and (28), we arrive at the requirement that

>B>l-—- = 30)
Now, the curve (25) is given by the equation
. 0,
y=—=({1-x)(x+B)
@
which reaches a maximum at the point M{(xp,¥Mm »Zp ) where
1-P
Xp = —
M~

Finally, the curve f = g = 0 intersects the (x,2)-plane at the point

O(Xg,¥0:Zo ) where Xo = 1 and, from (26),

z —l @ -1
S @y

We therefore require that

e < — (32)

to ensure that z, > 0.

We now analyze each of the two cases separately.



Case ]

We observe that in this case the point R is located on the unstable part of
the manifold f= 0 and the curve f = g = 0 remains on the unstable part, as shown in
Figure 4, until the point M is reached. The curve then stretches along the stable part
of the manifold f=0 until either the point S is reached in the cases 1(a) and 1(b),
or the point P is reached first in the cases 1(c) and 1(d). T’hus, four subcases can be

identified as follows.

| Casel(s)  This case is identified by the inequality

a<1 (33)

so that the turning point P is below the (x,2)-plane. Thus, starting from an initial
point A in Figure 4, a fast transient takes us to the point B on the stable part of the
fast manifold f = 0. Transition of intermediate speed is then made along this
manifold in the direction of increasing y until the point C is reached where stability
is lost. A fast jump is made to the point D on the other stable branch of the
manifold f = 0 from which point a transition of intermediate speed develops until
stability is lost again at the point G. A quick jump back to H almost closes up the
cycle. However, z has been slowly increasing in the meantime so that the same

cycling transitions are repeated in the direction of increasing z, densely covering

. the surface f = 0, until the point M is reached. The transient now follows the curve

= g = 0 until the point S is reached in the case 1(a}. In this case, the point S where
% = ¥ = z =0 is on the stable part of the manifold f = g = 0 and thus the transitions
end at this stable equilibrium point.

Case 1(b) This is the case identified by the inequality

a>1 (34)

13
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so that the point P is located on f = 0 above the (x,z)-plane as shown in Figure 4
(b). This case is also identified by the fact that the point S, where f = g = h, is
located on the stable part of the curve f = g = 0. This situation is guaranteed by
requiring that

Zp >ZN (35)

' . . ; 1
where N(xy,yN.2ZN) 1s the point on the curve f = h = 0 with xy =—. From
a

equating f and h to zero, we find that

ﬂdl 1 1 l B 36
Zy=-—1-—-|| =+
Ny afa (.- )
while, from equation (26), we have
e 1 37
= e | aed; G7

Therefore, so that S is located on the stable part of f=g =0, we require

© g ML) L) 38
PR 7N WY PRt e

which guarantees that (35) holds.

In this case 1(b) then, the transition also reaches the point S first and ends
there since it is a stable equilibrium point where X = y = z = 0. Moreover, along

The curve f=h = 0 we have

nd,
z=—0
vds

when x = 0. Therefore we must also require that

d I
II_I_B 5> (39)
Yd3 ae

to ensure that the curve f = h = 0 intersects the curve f=g =0 only once.



Case 1{c) This case is identified by inequality (34) and the opposite
inequality to (38), that is

W end; 1¥1
E; < ae[—‘ya—[l - ;J[;"" BJ"‘ l:l (40)

which guarantees that the point P is reached first during the transition from the
point M in Figure 4(c). At the point P, there is a loss of stability and a quick jump
to E takes place. A slow transition develops now along this manifold where x = 1
until a point is reached where stability ia again lost at some point F. A transition
of intermediate speed will develop along the fast manifold £ = 0 back to the point

L which completes the limit cycle in the case 1(c).

Case 1(d) In order that the iransition goes back into high-frequency

oscillations in each low-frequency cycle, we need to require that z, < zy4, which
is equivalent to

e 2 <

Thus, starting from the point A in Figure 4(d), a fast transition takes us, as
explained earlier, to the point B on f = 0. An intermediate transition develops on
this manifold until C is reached where the stability of the equilibrium fast
manifold is lost. A fast transition then takes the system to the stable equilibrium
point D. An intermediate speed transition is then made along this branch of
manifold until G is reached where the stability is again lost and a quick jump
brings us to the sfabIc point H. This almost closes up the cycle but just misses the
point B. The slow system has becomes active and z has been slowly increasing
since z> 0 here. Transitions then develop following the same pattern but with
slowly varying z as seen in Figure 4(d) until M is reached, at which point the
trajectory develops into a slow cycle which goes back into the fast cycles since

inequality (41) guarantees that z, <zy;.



Case 2
We observe that in this case the point R is located on the stable part of the
fast manifold f = 0 as shown in Figure 5. Mainly 3 subcases can therefore be

identified here.

Case 2(a) If (21) as well as (33) hold then starting from the point A in Figure
5(a), a fast transition develops to the point B, followed by a transient of
intermediate speed to C, from which point a slow transient takes us to the stable

equilibrium point S where the transition ends.

Case 2(b) If (21) holds as well as (38) then, similarly to Case 2(a), transients
develop toward the stable equilibrium point S where x=y=2=0 and the

transition ends.

Case 2(c} Finally, if (21) holds as well as (40) then, from the point C in
Figure 5(c), the point P is reached first where the stability is lost. A quick jump to
E, followed by a transition at slow speed from E to F, then at intermediate speed

back to D, closes the trajectory up into a low-frequency limit cycle for this case

2{c).
The above analysis can be summarized by the following theorem.

Theorem If ¢ and 6 are sufficiently small, and if (16), (30), (32), and (39)
hold, then system (9)-(11) has a giobal attractor which is a stable equilibrium if
(18) and (33) hold, or (18), (34) and (38) hold, or if (21) and (33) or (38) hold. It isr
a low-frequency limit cycle if (21) and (40) hold, or if (18), (34) and (40) hold.
Moreover, if {18), (34) and (40) as well as (41) hold, then the atiractor is a low-

frequency limit cycle which contains a period of high frequency oscillations.

16



NUMERICAL RESULTS AND DISCUSSION

Figure 6(a) shows a numerical simulation of the model equations (9)-(11)
with parametric values chosen to satisfy inequalities (18), (30), (32), (34), (39)
and (40). This is therefore the case 1{c) and the solution trajectory develops into a
low-frequency limit cycle as predicted. The corresponding time courses of the
three variables are shown in Figure 7(a).

Figure 6(b) shows a numerical simulations of the model equations (9)-(11)
with parametric values chosen to satisfy inequalities (18), (30), (32), (34), (39),
(40) as well as (41). This is therefore Case 1(d). The solution trajectory develops
into a low-frequency limit cycle which contains high frequency oscillations as
predicted in the above theorem. The corresponding time courses of the three
variables are shown in Figure 7(b). Such underlying high frequency cycles in the
biomass concentration profile have frequently been observed by a number of
investigators [16-18]. In [16], the total budding ceils count in their bioreactor data
shows oscillatory behavior closely resembling our result of case 1(d) shown in
Figure 7(b). Experimenting with different values for the system parameters such
as PB,ds, a, and so on, shows that the frequencies and amplitude of oscillations can
be appropriately adjusted to fit different chemostat conditions.

We observe that the constant a plays an important role in the kinetics of
the chemostat under study. Considering the model in equation (7), a is in fact an
indicator of how late or how soon the substrate inhibition sets in. In Figure 1,
substrate inhibition seems to set in approxitnately half way to the maximum
substrate level, éuggesting that a should by around 2. Thus, the numerical results
presented in Figures 6(a) and 6(b) can be considered as corresponding to the case
where substrate inhibition is late in setting in (a <2 ). In Figure 6(c), we present a
numerical simulation of equations (9)-(11) in which a = 2.5, thus corresponding to
the situation where the inhibition sets in rather early (a > 2 ). With this value of a,

inequality (32) is violated and z,, < 0. Therefore, the transition develops from the

17



point E (in Figure 4(c) or 5(c)) all the way to the point (1, 0, 0) on the -x-axis‘
which is a stable washout steady state of the system. Figure 7(c) shows the
corresponding time courses of the state variables in this case, where both the cells
and product levels are seen to decrease toward zero, while the substrate level tends
toward the maximum level (S = Sp)

Also, it is numerically found that solution trajectories can still develop as
theoretically pfedicted even though the values of € and & are not so small, and the
assumption that the three components of the system carry highly diversified

dynamics can be relaxed to a certain extent.

CONCLUSION

The appearance of sustained oscillations in bioreactor variables in
continuous cultures indicates the complex nature of microbial systems, and the
difficuities which may arise in bioprocess control and optimization.

In this paper, the dynamic behavior of a continuous bioreactor described
by equations (9)-(11) has been investigated, incorporating the inhibitory effect at
high levels of product and substrate concentrations. Assuming that the time
responses of the three components are highly diversified, increasing from bottom
to top, we were able to use standard singular perturbation analysis to describe the
nature of the transients and the attractors of the system.

Complexed oscillatory behavior is extremely undesirable not only for
control and design problems, but also for its potential for dangerous situations
which may result in the case where toxic compounds are involved, such as in the
operation of toxic waste treatment processes. Insights that can be gained from this
type of analysis described above should prove most valuable in the light of such

considerations.
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FIGURE CAPTIONS

FIGURE 1.

FIGURE 2.

FIGURE 3.

FIGURE 4.

FIGURE 5.

FIGURE 6.

FIGURE 7.

/
Effect of substrate inhibition on spec.iﬁc growth rate at low ethanol

concentration. (Data points taken from reference [15]).

Effect of product inhibition on specific growth rate. (Data points taken
from reference [15]).

Two possible cases of trajectory development for the two dimensional
fast-slow system (12), (13). Trajectories go toward a limit cycie
ABDC in Case 1, and toward a stable equilibrium point R in Case 2.

Trajectories of the model system (9)-(11) in Case 1 exhibiting four
possible subcases 1(a), 1{(b), and 1(c) identified in the text.

Trajectones of the model system (9)-(11) in Case 2 exhibiting three
possible subcases 2(a), 2(b), and 2(c) identified in the text.

Numerical simulation of the model equations (9)-(11). Here, € = 0.1,
5=0.01, y=2.0, n=10.0, ® =3.0, d; =0.25, d, =0.25, and
d; = 0.1. In 6(a), the parametric values satisfy the inequalities of Case
I{c), with p = 0.8, a = 1.5, and the solution trajectory tends toward a
low-frequency limit cycle as theoretically predicted. In 6(b), the
parametric values satisfy the inequalities of Case 1(d), with § = 0.2,
a = 1.3, and the solution trajectory tends toward a low-frequency limit
cycle which contains a period of high-frequency oscillations. In 6(c),
B =0.2, and a = 2.5 which corresponds to the situation where
substrate inhibition is early in setting in.

The time courses of the state variables x(t), y(t) and z(t) are shown
here corresponding to the three respective cases seen in Figure 6.

—— represents x(t) + 2.2 in 7(a), X(t) + 0.4 in 7(b), and x(t) in 7(c).
0—o represents y(t).

x — x represents z{t) + 0.3 in 7(a), and z(t) in 7(b) and 7(c).
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