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Abstract

A model of the predator-prey dynamics, as modified by the action of a parasite, is considered in which the prey
population is divided into two classes, the susceptible and the infective members. The predator population is assumed
to be of a social type, and have very fast dynamics, with all of its members infected by the parasite. Analysis of the
model is carried out through singular perturbation arguments which allow us %0 derive explicit conditions on the
parameters that identify different dynamic behavior of the system, and specifically ascertain the existence of a limit
cycle composed of a concatenation of catastrophic transitions occurring at different speeds.

Keywords: Parasite-host interaction; Singular perturbation; Limit cycles

1. Introduction

Many different researchers (Holmes and
Bethel, 1972; Moore and Lasswell, 1986; Dobson,
1988) have reported and extensively discussed the
ability of parasites to change the behavior of
infected hosts. It is well documented that the
physiological interactions between parasites and
their hosts often lead to changes in the behavior
of infected animals which are usually beneficial to
the pathogen and often detrimental to the host.
According to Dobson (1988), the induced changes
in host behavior have the effect of increasing the
rate of parasite transmission. To achieve this ef-
fect, however, it is observed that the mechanisms
involved in terns influence the host’s survival, and
occasionally they also affect its fecundity. This

establishes a conflict of interest between the para-
site and its host. It is now recognized that para-
sites and pathogens are important factors in
determining both the density and long-term popu-
lation dynamics of many population (Anderson
and May, 1979; Dobson, 1988). While previous
workers have mainly considered predation and
competition as important factors influencing both
the individual and social behavior of various ani-
mal species, more recent studies (Anderson and
May, 1979; 1986; Dobson, 1988) have now con-
sidered this interaction between parasites and
their host to have significant effects on both eco-
logical and evolutionary time scales (Dobson,
1988). Anderson and May (1986) proposed that
parasites and pathogens can be divided, according
to the response of the host to their presence, into

0303-2647/96/315.00 © 1996 Elsevier Science Ireland Lid. Al rights reserved
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two. broad classes: the microparasites and the
macroparasites. The former is characterised by
their ability to produce a sustained immunological
response in the host. These include the viruses,
bacteria and protozoa. The latter, on the other
hand, tends not to induce a sustained immunoiogi-
cal response, and includes the helminths and other
metazoanh parasites.

Holmes and Bethel (1972) suggested four ways
in which the parasite may modify infected mem-
bers of the prey population: reduced stamina,
increased conspicuousness, disorientation, and al-
tered responses. In their earlier work, Arme and
Owen (1967) reported on stickiebacks, infected by
plerecercoids (Schistocephalus solidus), tending to
swim closer to the surface of lakes and making
themselves more susceptible to predation by birds.
It has also been documented (Tiner, 1953) that the
presence of larvae of Ascaris columnaris Leidy in
mice and squirrels produces incoordination, blind-
ness and loss of fear of larger animals. In other
specific examples such as the moose-wolf system on
Isle Royale (Freedman, 1990), this parasite-host
interaction has been discovered to be necessary in
the survival of the predator population.

In Dobson’s seminal work (1988), various simple
mathematical models were described which al-
lowed the author to examine the demographic and
evolutionary consequences, leading to the determi-
nation of how changes in the behavior of individ-
ual host affect both the net reproductive success of
the parasite and the population dynamics of the
parasite-host interaction.

More recently, Freedman (1990) studied a model
of predator-prey dynamics as modified by the
action of parasite, All predators in his model are
invaded by the parasite, while the prey population
is divided into two classes, the susceptible and the
infectives. Anderson and May (1979) have previ-
ously shown that invasion of a resident predator-
prey system by a new strain of parasite could cause
destabilization in the sense that limit cycles may
appear and extinction becomes possible. Freedman
(1990} showed the opposite effect that an unstable
(in the sense of extinction} system could be stabi-
lized. He was also able to derive the criteria for
persistence and discuss the stability of an interior
equilibriem.

-

In this paper, we consider an adapted version of
Freedman’s modei, so that the density-dependent
death rate of the predator describes a social popu-
lation which tends to survive better in herds or
packs. Analysis of the model is carried out by
applying a singular perturbation technique. We
derive explicit conditions on the system parameters
which identify different dynamical behavior exhib-

. ited by the system. When the predator population

is assumed to have very fast dynamics with respect
to prey, the analysis can be carried out through
singular perturbation arguments which are based
on simple geometric characteristics of the equi-
librium manifolds of the fast, intermediate and
slow variables of the system, allowing one to derive
explicit conditions that guarantee the existence of a
limit cycle in the extreme case of very fast very slow
dynamics. The resulting limit cycle is composed by
the alternate concatenation of two slow and two
fast transitions and has interesting biological inter-
prelations leading to better understanding of the
system under study.

2. The model
In his study, Freedman (1990) considered the
following model system of three ordinary differen-
tial equations: .
S(D*X(r))
X(1)

—[Bo+ B.2(1)]S(¥)
_S@p )=

S(1) = B*{X (1)) ~

X() )
i HOD* (X
I(r)=[ﬁo+ﬁlz(r)]S(:)—ﬁ(’)—X(E)Jt—)!
I(e)p, (X(1))z(1}
T oxay (2)
Z'(f)=2(f)[-}"(2(f))
S (XN + IDp L X (ON
”( ¥(0) )] @

with S(0) = 0, 7{0) = 0, z(0) = O, where S(¢),
Iy, X(0)=3() + Kb, z(1), r > 0, are the
susceptible, infective, total prey, and predator
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population densities, respectively. Here, B*(X) and
D*(X) are, respectively, the birth rate and the
natural death rate of the prey population, y*{z) is
the death rate of the predator in the absence of
prey, while p,(X) and py(X) are the functional
responses of the susceptible and infective prey,
respectively, assumed by Freedman {1990) to de-
pend on X" alone. The constant ¢ is the rate of
increase of predator per unit prey uptake.

For our specific purpose, we will make the
reasonable assumption that the birth rate B*(X)
and the natural death rate D*(X) of the prey
population both vary directly as the total prey
population X, namely;

B*X) = ByX (5)

where B, is a conswant, and similarly for D*(X).
We further assume that §,, which is the rate per
unit predator of prey infection due to parasitic
reproduction in the predator population, is negligi-
ble (#, =0}, while the infection rate of susceptible
prey in the absence of predator is 5, #0. For

"

253

regularity reason, if #, > 0 in the system model,
the solution should not be very much different
from what we shall find here under the assumption
that f, is zero, as long as §, is not too large.

The density-dependent death rate p*(z) of the
predator in the absence of prey is assumed to have
the form

Co

y*(z)—sao+boz+d+ ,

)
the graph of which car be seen in Fig. 1. Such a
mortality curve would describe the death rate of
social predators, such as wolves or hyenas, which
survive somewhat better by staying in a pack, so
that the mortality rate decreases initially as the
number of predators in the pack increases. When
the population density is too high then its mortality
rate begins to rise as described by the graph of the
function in Eq. (6). Field studies which support this
form of y*(z) can be found in the work by Barton
and Whiten (1993) which described feeding compe-
tition among female olive baboons. It was stated

0.5 o "
~ 0.4 .|
N
*
~
.
0'3 T I T '!__l'_j T I T z
0 1 2 3 4 5

Fig. 1. The graph of the ;:iensity-dependem death rate of the predator described by Eq. (6). Here, a =02, b= 0.05,¢ = 0.2.4=1.0.
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0 X
Fig. 2. The three equilibrium manifolds /=0, g =0/ =0. The
intermediate manifold g =0 scparates the line DP from the

Jine OQ.

that group-living is, on the one hand, a mutualistic
or cooperative solution to predation pressure or
resource acquisition. On the other hand, once the
group exists, characteristic patierns of interactions
between individuals within the group may then
reflect the social partitioning of resources; competi-
tion for food and mates, Brault and Caswell (1993)
also did a study on pod-specific demography of
killer whales. They investigated the suggestion that,
in social animals, group structure influefices the
vital rates and the fitness of members of the group
or ‘pod’.

Finally, the predator functional respenses in Eq.
(3) are modified so that the functional response of
the susceptible population follows the Michaelis
Menten kinetics, while that of the infected popula-
tion varies directly as the density of the total prey
popuiation (X7. Namely, we let

_ %X
PL=rys

where a4 is the maximum predation rate and & is the
half saturation constant, while

P2 = ¥X

where y is a positive constant of variation.
We are thus led to the following system of
differential equations:

oSz

S‘=BO(S+I)—D,S—,8°S—k+S

Y

f=pS—DI—yiz (8)

d+z + k+ 8
where the infected prey has an increasingly higher

functional response, owing to the action of the
parasites, than the uninfected prey.

i= z[—ao —byz — ‘o LS + q,,I:I (9)

3. Singular perturbation analysis

To analyze the predator-prey dynamics as
modified by the action of a parasite, we consider
then the model equations (7)-(9) and scale the
dynamics of the three hierarchical components of
the systern by means of two small dimensionless
positive parameters £ and &, namely; we let x = I,
y=8p8=f5 B=B f'=f/e, D = Die=Dyu
= g, @ =anytd, b = byed, ¢ = ¢80, ! = 1,65, and
n =ned. We are led to the following system of
differential equations:

X=py—Dx—yxz=f(x,y,2) (10)
8J7=B(x+y)—Dy—ﬂy—%Eg(x,y,z) (1n
. ; 4 Iy
séz—-z[—a bz—d+z+m+nx]
= h(x, y, 2} (i2)

which shows that during transitions, when the right
sides of Egs. (10-12) are finite but different from
zero, Ip] is of the order 1/¢ and }Z| is of the order
1/ed. This means that, if ¢ and & are small, the
growth of infected population is slower than the
growth of the susceptible one, and the predator
population has, in comparison, very fast dynamics.
These assumptions are satisfied in many predator-
prey systems found in nature which are effected by
the host-parasite interactions.

We shall first show that if certain conditions on
the parametric values are satisfied then the equi-
librium manifolds of the system of Egs. (10-12) will
be shaped as in Fig. 2. Transients of varying speeds
along these manifolds will form a path which
results in a closed cycle in this case. Such a path
approximates the exact solution to the model
system Egs. (10—12) in the sense that the solution
trajectory will be contained in a tube around that
path and the radius of the tube goes to zero along
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with ¢ and é. Consideration of the various regions
in the parameter plane, as delineated by the above
mentioned conditions on the parameters, then
allows us to gain a better insight into the effect of
parasite invasion on the stability of the predator-
prey system and the survival of the species.

As is well known (Muratori, 1991; Muratori and
Rinaldi, 1992}, the system Eqs. (10-12), with ¢and
¢ small, can be analyzed with the singular perturba-
tion method which, under suitable regu-
arity assumptions, allows approximating the solu-
tion of the system Eqs. {10-12) with a sequence of
simple dynamic transitions along the equilibrium
manifolds of the system and occurring at different
speeds. First, the slow (x) and intermediate (y)
variables are frozen at their initial values x(0) and
{0, and the evolution of the fast component of the
system is determined by solving the ‘fast system’

(1) = h(x @)y (0).z(t) (13)

Thus, z(¢) eventually tends toward a stable
equilibrivm of z{x(0),¥(0),z{0})) of Eq. (13), assum-
ing here that the system has unique stable equi-
libriumn. Then keeping x frozen at x(0), we look at
the ‘intermediate system’ which has now become
active, namely,; :
yi)= g(x(o},y(l ),E(x(O),)'{t),Z(O))) (14)
where Z(x(0),§(0),z(0)) is a stable equilibrium of the
fast system (Eq. (13)) with (0} substituted by y.

In Fig. 2, where low-, intermediate-, and high-
speed trajectories are indicated, respectively, with
one, two, and three arrows, the three equilibrium
manifolds of the system Eqs. (10-12) are shown.
The intermediate manifold g =0 is seen here to
separate the line DP from the line OQ. Here, the
line DP lies along the intersection of the slow
manifold /=0 and the nontrivial fast manifold
given by an equation of the form y = ¢(x.z) on
which £ = 0. The line OQ lies along the intersection
of the slow manifold /=0 and the trivial fast
manifold z =0 on which & =0 as well.

At first a high-speed transition develops at con-
stant x and y and brings the system from
(x(0),»(0),2(0)) (point R in Fig. 2) to a stable
equilibrium of the fast manifold # =0 (point S in
Fig. 2). Then, the intermediate system having now

-

become active, a second intermediate-speed transi-
tion takes place on the manifold at constant x
(segment ST’ in Fig. 2) until a point is reached
(point T' in Fig. 2) where the stability of the
equilibrium manifold # = 0 is lost and a quick
transition then takes the state of the system to the
equilibrium point on a stable part of the manifold,
which will be the point T in Fig. 2. A transition of
intermediate speed then develops along this part of
the manifold to the point D' of Fig, 2.

The proof of the existence and location of the
point T' can be found in Schecter (1985) and
Osipove et al. (1986). The direction of transition
along the line ST' or T’ depends on the sign of j
namely g(x,y,z). Thus, let us assume that for
suitable values of the parameters the intermediate
(stable) manifold g = 0 separates the trivial mani-
fold z = 0 from the part of the non-trivial manifold
h = 0 on which the line TD' and CD lie (see Fig. 2},
and that g is positive below the manifold g = 0 and
negative above it. Under these conditions the
system moves toward point D’ along the line TD',
and when D’ is reached we have a saddle-node
bifurcation of the fast system: the variable z at point
D’ is not at a stable equilibrium anymore and a
catastrophic transition from D' to A’ occurs at 2
very high speed. This almost closes the cycle but for
the fact that during this time the variable x has been
increasing very slowly, assuming that we have
started on the side of the manifold /=0 wheref >
0.

Once the system is at A’, a slow motion deveiops
again from A’ in the direction of increasing y
because g is positive here. The same cycling is
repeated, densely covering the manifold k = 0 while
the variable x increases slowly until the equilibrium
point B’ on the manifold f=0 is reached where
i = 0. A high-speed transient brings the state of the
system back onto the non-trivial manifold A = 0 at
the point C along the line of intersection between
the manifold 4=0 and f=0. A transition of
intermediate speed to D then takes place along this
line followed by a catastrophic transition from D to
A. An intermediate speed transitioni from A then
brings us back to B’, resulting in a closed cycle
AB'CD lying on the manifold f= 0, (see Fig. 3a)
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{c)

Fig. 3. Four possible cases identified in the text according to the refative positions of the three equilibrivm manifolds.

4, Existence of limit cycle

We now show that if ¢ and & are sufficiently
small and

I'>a+ cfd (15)
b < cfd? (16)
D+ 8- B>0 an
B x D+ﬁ~3)
—  (kyyp )L = 18
a>VGE_d( +))Cu 7 (18)
D - B !
—*ﬁ}ﬂ«% 19)
where

z
h=0 f=0 > 970
A P
Ty g
o -
At <
[+] X
{b)
z
A = .
170 g0
h=0 C
[+]
1] X
{d)

(@ — nxa)+2/bc — bd

_ (20)
T @ nxy)— 2 bo+ bd
_ B'ya
K=y 0
2= 54 (22)
4
o | l@a—nxg)+-
k d
x| L 23

c
[-(a—nxs)—~

then a limit cycle exists for the model system
Egs. (10-12),
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We first prove that Egs. (15-19) gﬁarantee
that the geometry of the manifolds f=0, g=0,
and =0 is as in Figs. 2 and 3a.

Manifold 4 =0

We observe that the manifold A= ( consists
of 2 parts; the trivial manifold z=0 and the
non-trivial manifold given by the equation

¢ W

qv: kiy 24)

a+bz+

Eq. (24) defines a surface y = ¢(x,z) which
intersects the (x,y) plane at

a—nx)+5
ya=k——— (25)

c
!—(a~qx)~g

so that yg > 0 for some values of x > 0 if

c

a+-
——d;>0 " (26)

I—GME

using the fact that yy is a continuous function
of x in the neighbourhood of x=0.

Eq. (26) holds if Eq. (15) is satisfied. Further,
differentiating Eq. (24) with respect to y, we
find that, for a fixed x,

h C lk  do
d+z)? (k+yPdz

so that Eq. (16) implies that de/dz for z=0.
Thus, the manifold y = @(x,z) is shaped as in
Fig. 2, and the function y = ¢(x,z} has a min-
imum at point D with

.y .

which is positive due to Eq. (16), and indepen-
dent of x. Therefore, we find that

Ya=Ya=0x2p}
fa—nx,)+2./bc~bd
=k
I—(a—nx,)—2/bec+bd

Manifold f=10
This manifold is given by

(28)

o B
D+yz
Thus,x > 0 for all y > 0 and

29)

x__p
dy D41z

30)

which is positive for y =0 so that the manifold
is as in Figs. 2 and 3a. Moreover,

d
l= —D—yz<0
ox

for all positive values of z and of the parame-
ters, so that the equilibria of the intermediate
system Eq. (11) with y frozen are always stable.

The manifold /=0 intersects the manifold
# =10 along the curve characterized by the value
of xgz given in Eq. (23).

Manifold g=0
The manifold g =0 is given by the equation
D+ pg—B oyz
- = 31
x=pb2) ( B )”B(kﬂ) ey

so that Eq. (17) implies that p is increasing with
y as well as with z. The manifold is thus shaped
as seen in Figs. 2 and 3a, and x increases from
C to D along line DQ. The manifold x =
p{y,z) is therefore below the line segment CD if

plyp.zp) > xe (32}
But x. = xg and y, = y, therefore, Eq.

{32) is guaranteed by

Pz >xs (33)

Using Egs. (27) and (28) in Eq. (33) we arrive
at Eq. (18) which guarantees that the manifold
x = p(p.z) is below the line CD of Fig. 3a.
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2.0
1.5
(36)

ml.o._ (3s) I

0.5 {37}

v
0.0 T I L I— LIt B I T
0.0 0.2 0.4 Q.6 g.8 1.0

Fig. 4. Four regions in the (D.B) parameter plane delineated by Egs. (35--37) where different dynamic: behavior can be expected.
Here,a = 0.1, =025, c=0.1,d=10,/=03, k5 10=08=02=02=0.1, and =1.025.

Finally, along the line OB

Bl B

X
y D+}’zz=0 D

(34

while the intersection of manifold =0 with the
(x,p) plane (z =0) is given by

{_D+ﬁ—B
y— B

We also observe, considering Eqs. (30) and
(31), that the slope 2x/dy decreases with z along
the manifeld /=0 but the slope of dx/dy the
manifold g =0 increases with z. Therefore, the
requirement that the line formed by Eq. (34) is
below the line formed by Eg. (35) will be assured
if Eq. (19} is satisfied.

Thus, the manifold g=0 separates the line
segment AB from the line segment DC of Fig. 3a
and the transitions of various speeds can develop

(35)

as argued in the previous section. Starting from
the point C, a transition slowly develops along
PD towards the point D, since g < 0 here, where
a saddle-node bifurcation occurs. A catastrophic
transition from D to A then takes place followed
by a slow transition from A towards B, since the
line segment AB is below the manifold g =0 so
that g > 0 and yp is increasing along this line.
Once a point B’ is reached a quick jump back to
C closes up the transition AB'CD, resulting in a
limit cycle composed of the concatenation of tran-
sitions occurning at two different speeds.

5. Parameter space classification of dynamic be-
havior

We now discuss the different cases into which
the transitions can develop according to different
regions in the parameter space. For fixed values of
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Fig. 5. Computer simulations of the model system Eqs. (10~12) with a=0.156=0025¢=01,d=10/=03,k=10=08, =

z
4}
2 b
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0.4
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0.2=02=0.1=0025=1.0=05 0. In Figures (a), (b), {c), and (d), the point (D,B) is located in Regions I, Il, [1l, and IV of Fig,

4, respectively.

the parameters a, b,c,dk.l, «, B, f', y, and 7, the
graphs of equations

D4 g — B=0 (36)
b+i- B I (37)
B D
and
D _
wm—— e (2228 g
cfb—d 4

divide the (D, 8) space into four regions as shown in
Fig. 4. ‘
In region I, inequalities (15— 19) are satisfied, and

therefore, the transitions are as in Fig. 3a and the
solution trajectories develop into a limit cycle
which is guaranteed by the discussions in the
previous section. Fig. 5a presents a computer
simulation of the model system Egs. (10~12) with
(0,8)=(0.1,0.2) in this region I, showing the
predicted limit cycle seen here projected onto the
{(».z) plane.

In region II, inequality (18) is violated which
means that the requirement that the manifold f =0
is below CD cannot be guaranteed. The positions of
the manifolds can be as in Fig. 3b, in which case the
intersection point § of the three manifolds f = 0,g =
0 and £ =0, (the steady state) is located on the
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stable portion of the manifold #=0. When the
transitions reaches the point N on the line of
intersection between the manifolds f=0and 2 =0,
a slow motion develops along this line in the
direction of increasing y and the transition ends
once the point § in Fig. 3b is reached. Thus the
solution trajectory is expected to spiral towards this
stable equilibrium point 5. Fig. 5b presents a
comptiter simulation of the model system for this
case with (D,B) = (0.00002,0.2) in region II,
showing the solution trajectory spiralling towards
the stable equilibrium state.

In region III, inequalities (17) and (18) are
viclated. The property of the manifold g = 0 that
p{».z) increases with y is not guaranteed and it
is possible for the manifolds to be positioned in
this case as in Fig. 3¢ in which the line segment
DP is in the region where g > 0. This means that,
once the state of the system reaches the point T
transition of intermediate speed will develop in the
direction of increasing x toward the point P. We
therefore, have in this case an overflow in all three
populations. Fig. 5¢ shows an example of solution
trajectory in this case with (D,8) = (0.0002,0.8)
in region IiI. )

Finally, in region IV inequality (19) is now
violated and it can not be guaranteed that the
manifold g =0 is above the line segment AB. It
is then possible for the manifolds to be positioned
as shown in Fig. 3d. Here, along OB we have g
< 0, and once the state of the system reaches the
peint 7, a slow transition wili develop in the
direction of decreasing y along TDO towards the
point O. In this case, we have extinction of all three
populations in the system under study. Fig. 5d
shows a computer simulation of the system model
in this case with (D,8}=(0.14, 0.08) in region IV
and the solution trajectory is observed to approach
the origin as time passes as expected.

6. Discussion

From the above analysis of our model system
Eqgs. (10-12), we can immediately make the follow-
ing observations and comments.

The ‘stable’ region Il is located between the lines
given by Egs. (36) and (37). In the case that § = f°,

this means that for a stabilized situation, it is
necessary that we have

D < B<D+ § (39

In other words, the birth rate of the susceptible
prey must not be less than its death rate, but should
not exceed the sum of its death rate and the rate
of infection #, This is not surprising and no more
than what we should expect.

Moreover, inequality (18) says that in order lo
drive the system into the stable region II, the value
of the constant « in the response function of
uninfected prey should not be too large. In fact,
it must be smaller than the quantity on the right
hand side of inequality (18). This is again a rea-
sonable condition for parasite-host dynamics in
which the uninfected prey has lower functional
response than the infected prey. If, on the other
hand, ¢ becomes too high, the system can desta-
bilize and limit cycles appear.

The interesting feature of the limit cycle which
is discovered to be composed of transitions of two
different speeds fits well with the host-parasite
dynamics observed in nature. When the number
of the predator”is low, susceptible and infected
preys grow relatively slowly for a long period until
they reach a biomass at which the sitvation be-
comes so attractive to members of the predator
population that we have an abrupt increase in the
number of the predator in a very short space of
time. This is then followed by a second long period
during which the prey biomass slowly decays. As
a result, the predator population also decreases
smoothly until it reaches a critical density at which
point its own mortality mechanisms destabilize it.
The predator population then collapses quickly to
almost extinction,

We also observe that if the parasite is no longer
present, which will be the case if §=£"=0 then
Eqgs. (17} and (19) cannot be satisfied simulta-
neously. This means analytically that the stable
region (Region 11} no lenger exists and neither does
Region 1. The system may destabilize to extinction.
I, on the other hand, # and 8’ are non-zero, then
the stable region 11 exists and the prey and predator
populations can tend toward the stable steady state
values as time progresses. In the case where inequal-
ities (15--19) are satisfied, the population densities
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will oscillate close to these steady state values.
This seems to indicate that stable existence of the
predator population depends, to a certain extent,
on the presence of the parasites. In other words,
the invasion of the parasite can stabilize the sys-
tem resulting in persistence and the survival of the
predator. This is in agreement with the observa-
tions made by several other authors who have
done extensive research work in this field (Peter-
son, 1977, Rau and Caron, 1979). :

1. Conclusion

In this paper, singular perturbation arguments
have been used to detect limit cycle behavior as well

as describe other dynamical situations which are

observed in the predator-prey interaction which is
modified by the action of a parasite. Implicit
conditions have been derived which identify the
ranges of parametric values for which, in particular,
the existence of a parasite (8, > 0) can cause
destabilization and the appearance of limit cycles
(Region 1 of Fig. 4). On the other hand it is possible
to stabilize an unstable (in the sense of extinction)
system by driving the system into Region 11 of
Fig. 4.

The method of analysis is based on purely
geometric arguments which is an extension of a
known method used to study relaxation oscillations
in second order systems (Hoppensteadt, 1974).
Examples where the method were applied can be
found in the work on a mathematical model of a
food chain by Muratori and Rinald) (1992) and
more recently in the work of Lenbury and Kam-
nungkit (1995). The method allows us to describe
and identify different transients and attractors
which develop in our system in the case where it is
assumed that the predator population has infinitely
faster dynamics than that of the prey. Nevertheless,
experimenting with simulations has shown that the
limit cycle behavior is preserved even though this
assumption is not strictly satisfied and ¢ and & are
not necessarily small.

The analysis of our model seems to indicate that
in the absence of the parasites, the predator may
not be able to survive on the prey, given unfa-
vourable conditions. The absence of the parasites

-

can result in the persistence of the predator popula-
tion, in which case a paradoxical situation arises.
On the one hand, the parasites are an obligate
mutualist of the predator (Freedman, 1990); that is,
survival of the predator population is to some
extent dependent on the presence of the parasites in
the prey. On the other hand, the parasiles cost the
predator some energy, causing detrimental effects
such as reduced fitness or reduced life span. This
paradox of mutualism remains a complex topic for
future research.
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Nomenclature

a, Basic mortality rate of predation.

boz  Surplus mortality rate of predation.

co.d parameters accounting for effect of group-
living on mortality rate.

c Rate of increase of predator per unit uptake

of prey.

k Half saturation constant,

p,  Functional response of susceptible prey.

p.  Functional response of infective prey.

¢ Time.

z Predator population density.

B*  Birth rate of prey population.

B, Specific birth rate of prey.

Death rate of prey population.

D, Specific death rate of prey.

I Infective prey density.

s Susceptible prey density.

X Total prey denstty.

®, Maximum predation rate in function p,.

B, Infection rate of susceptible prey in the
absence of predator.

B, Rate per unit predator of prey infection due
to parasitic reproduction in the predator

population.
g0  Scaling parameters, assumed small,
y constant of variation in function p,.

y*  Death rate of predator in absence of prey.
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HOW CAN NONLINEAR DYNAMICS ELUCIDATE MECHANISMS
RELEVANT TO ISSUES OF ENVIRONMENTAL MANAGEMENT AND
GLOBAL CHANGE

ABSTRACT

To illustrate how nonlinear dynamics can help elucidate mechanisms in
ecological and biotechnological processes relevant to the environmental issues, we
discuss recent work where bifurcation theory and singular perturbation theory are
applied to matnematical modeis of predator-prey systems invaded by parasites and
continuous bio-reactor in order to classify various dynaric behavior to be expected
in our systems according to different ranges of the system parameters. Through
bifurcation and stability analysis, we show that a model for a continuous bio-reactor
subject to product inhibition can exhibit complexed dynamic behavior in which up to
5 possible invariants can occur in a phase plane, Owing to the importance of the
process often used in waste water treatment, and the hazardous nature of the
compounds which might be involved, particular attention must be given to the
identification of the operating zone in which it is possible to carry out the process
while avoiding undesirable complexed dynamic behavior. We resort to the use of
singular perturbation techniques, however, to identify limit cycle behavior in a model
for a predator-prey system modified by the action of parasites.

INTRODUCTION

The theory of dynamical systems has had an impact in many areas including
physics, chemistry, and engineering. Not the less significant is its contribution to the
field of biology, where key issues in environmental management and global change
have engaged the interests of administrators, academics and researchers world wide.
How do we deal with environment-genotype interactions? What factors regulate
populations? How important are competitive interactions? What determines
community diversity and stablity? How does trophic structure evolve? Are there
general food web patterns which apply across the planet? What is the role of
competition in determining community patterns? How do we couple knowledge of
flows within ecosystems to build knowledge of global-scale processes? How do we
couple processes acting on vastly different temporal and spatial scales to address
important problems of environmental management? These are only a few of the key
biological questions being put forward in the scientific world.

To illustrate how nonlinear dynamics can help elucidate mechanisms in
ecological and biotechnological processes relevant to the environmental issues, we
discuss recent work where bifurcation theory and singular perturbation theory are
applied to mathematical models of predator-prey and continuous bio-reactor in order
to classify various dynamic behavior to be expected in our systems according to
different ranges of the system parameters,



CONTINUOUS BIO-REACTOR SUBJECT TO PRODUCT INHIBITION

A model for such a chemostat in which the growth of a microorganism is
inhibited by its product was presented and theoretically studied in a paper by Yano
and Koga [ 1 ] where the specific growth rate was assumed to have the form

HmS
= 1
. (Kg+8S) [1+(P/Kp)n] W

in order to cover wider problems of product inhibition. If the growth limiting
substrate (S) is supplied in sufficient amount so that S >> Kg at any moment, then
the concentration change of S has little effect on the rates of change of cells.
concentraition {X) and product concentration (P). The product inhibition system may
then be described by the following two - variable system:

dX

& . X -DX 2
@t 2 2

@ By opp (3)
dt Yo

where D is the dilution rate. If the yield Yp is assumed constant, it can be shown [2]
that the system of Equations (2) and (3) will not admit periodic behavior. It was also
shown by Lenbury and Chiaranai [3] that if Yp is a linear function of the product
concentration, sustained oscillation in X and P is possible due to a Hopf bifurcation
in the system of differential equations which comprises the model. In this paper, we
shall therefore consider the system of Equations (2) and (3) with

Yp= A-BP (4)

where A and B are constants, allowing for the negatively-growth associated situation.
We also adopt for simplicity the function

B =po(1+P/ky-P?/kp) (5)

where mg, ky,, and kp are positive constants, which results for linearizing the
exponential term in the ' one hump' product inhibition model

p o =k(P+1)exp(-P/K) ©)
Introducing appropriate dimensionless variables will reduce the Equations (2)
through (5) to

F{— =-x; + DaM(x32) x; (7)

dx
| 7‘?2 =-x3 + DaM(x2) X; / y(x3) (®)



where y(x2) = (B - X2)/B ©)
M{(x2) =1+ xy - axg (10)
Letting R
Z(x2) =M(x2)/y(x2) 1y
f1(XI, X2, Da) =-x1+ Da M(xz)xl (12)
b(x)%3,Da) =-x; + Da X(x2)x;, (13)

Equations (7) and (8) may be recast in vector form as
dx/dT =f(x,Da) (14)
Solving the equation
f(xg,Da)=0 . (15)

for Xg = (Xg, , Xg, ), we obtain the steady state solutions as
(a) trivial (washout) steady state : Xs, =Xg, = 0, and
(b) nontrivial steady state (s): Xg, = y(xsz) Xg, » M(st) = 1/Da

The Hopf bifurcation occurs at a steady state x; if the Jacobian matrix J of

(14) evaluated at x; has purely imaginary eigenvalues, which requires that

detJ > 0 and trJ = C. (16)

Applying conditions (16) to the functions in Equations (12) and (13), we find that for
positive detJ the following condition must be satisfied

1-2axg <0 (17)
while trJ = 0 is equivalent to the requirement that
* ¥ *
g(xs,) = (1-ap)(xg,)2+ 2xg -B =0 (18)

the other factors in trJ being always positive.
The function g(xgz) will have two distinct positive real roots ng =1} and
ry, with 17 < 19, if

Vg >ap -1>0 (19)



On the other hand, if ofp-1 <0 then g (xgz) has only one positive real root rq. In
fact, M'( xgz ), and correspondingly det J, changes signs when

aB-1 =0 o (20)

Finally, onset of instability of steady states xg is realized when tr J = 0 and
(tr J) = O which, from Equation. ( 18 ), occurs when

ap2-p-1=0 1)

Applying the Poincare's criterion and Friedrich's bifurcation theory (4], we
may derive the following condition for the stability of the periodic solution which

. *
bifurcates from the point xg, = Xg,

(B—xs, V' (3-1400x3, )

9[(1 - s +1l(xg 2 < .
[(1 - aB)xs, +11(x5,) Ny

(22)

It can be shown that a limit cycle bifurcating from the bifurcation point

ax;2 = rp is always stable.

Substituting the appropriate root ry in (22}, we find that a loss of stability of
the periodic solution which bifurcates from Xg, =11 occurs when

) (1—c)(—14c2 +68c-54)
) (302 —38¢ +H _ *)

where ¢ = /1— Blap ~1).

Thus, it is clear from the above discussions that the two system parameters o
and P determine the stability regions of bifurcating periodic solutions. Figure 1
shows the (o, ) plane divided into 5 regions by the graphs of Equations (20), (21),
(23) and the equation
1+ 2a

afd =
P l+ao

(24)

which holds when 1 is equal to the value o exactly.
Following the representation used by Uppal er al. [5] we show in Figure 2
typical steady state and limit cycle plots of xg, versus w for each region, where

w=1-1/Da
There can be as many as eleven different types of qualitative phase plane which are

possible for different ranges of w, and correspondingly the Damkohler numbers.
These are labelled A through K in Table I.

In Region I, there is no bifurcation (aB2 —B - 1> 0). Three types of phase
plane are possible: A, B and C.



Region II is bounded above by the line aB®~B - 1= 0 and below by the
graph of Equation (24). This region is also above the graph of Equation (23).

Therefore unstable bifurcation originates at the Damkohler number Da;
corresponding to the lower w' value w;, with stable bifurcation originating at the

Damkohler number Da; corresponding to the upper w' value w;. In this region,
two cases are possible, Ila and IIb, permitting seven types of phase plane, A through
G.

Region III is bound above by the graph of equation (24) and below by that of
equation (23). Here, 1y lies below the value 1/00 and there can be two cases, I1la and
IlIb, in this region admitting eight types of phase planes, A through C, E, and H
through K.

Region IV is one of stable bifurcation at the Damkohler number Da;.
Therefore, five types of phase plane trajectories are possible, A through C, E and L.
Figure 3 shows a computer simulation of the system model for oo = 0.273997 and B
= 3.9 in this region IV and Da = 1.891370559 of the type E, showing the predicted
asymptotically stable limit cycle swrrounding the unstable steady state .

Finally, in Region V ap-1 < 0 and no bifurcation occurs. Tr J-becomes
positive at xg for which M'(Xs,) < 0 so that the non-washout steady states are

always unstable. Thus, there are 3 possible types of phase plane in this region, A, G
and K. '

PREDATOR-PREY SYSTEM INVADED BY A PARASITE

Holmes and Bethel [6] suggested four ways which the parasite may modify
infected members of the prey population : reduced stamina, increased
conspicuousness , disorientation , and altered responses. In [7], Arme and Owen
reported on sticklebacks, infected by pierocercoids [Schistocephalus solidus), tending
to swim closer to the surface of lakes and making themselves more susceptible to
predation by birds. It has also been documented that the presence of larvae of
Ascaris columnaris Leidy in mice and squirrels produces incoordination, blindness
and loss of fear of larger animals. In other specific examples, this parasite-host
interaction is even discovered to be necessary to the survival of the predator
population.

In this paper, we consider an adapted version of the Freedman's model
proposed in his recent work [8], where the density-dependent death rate of the
predator describes a social population which tends to survive better in herds or packs.
Analysis of the model is carried out by applying the singular perturbation technique.
We derive explicit conditions on the system parameters which identify different
dynamical behavior exhibited by the system. When the predator population is
assumed to have very fast dynamics with respect to prey, the analysis can be carried
out through singular perturbation arguments which are based on simple geometric
characteristics of the equilibrium manifolds of the fast, intermediate and slow
variables of the system, allowing one to derive explicit conditions that guarantee the
existence of a limit cycle in the extreme case of very fast very slow dynamics. The
resulting limit cycle is composed by the alternate concatenation of two slow and two



fast transitions and has interesting biological interpretations leading to better
understanding of the system under study. '

The reference model, after we have scaled the dynamics of the three
hierarchical components of the system by means of two dimensionless positive
parameters ¢ and 8, is the following system of differential equations:

x=py-Dx-yxz=1(x,y,2) | (25)
&y = B(x+y) - Dy - By—-kjf 8(x,¥,2) 26)
+y

| c ly
o0z=z/~-a—-bz—-—+-—"—+ =h R 27

where x(t), y(t), and z(t) are the susceptible prey, infective prey, and the predator
population, respectively. Here 8 =gf’ is the rate of infection, D the natural death
rate of the infectives and the susceptibles, and B is the birth rate of the susceptible

prey. The density-dependent déath rate y ( z) of the predator in the absence of prey
is assumed to have the form

y (z)sa+bz+dj_z (28)

Such a mortality curve would describe the death rate of social predators, such as
wolves or hyenas, which survive somewhat better by staying in a pack.

As is well known [9], the system (25)-(27), with € and & small, can be
analyzed with the singular perturbation method which, under suitable regularity
assumptions, allows approximating the solution of the system (25)-(27) with a
sequence of simple dynamic transitions along the equilibrium manifolds of the
system and occuring at different speeds. First, the slow (x) and intermediate (y)
variables are frozen at their initial values x(0) and y(0), and the evolution of the
fast component of the system is determined by solving the "fast system"

2(t) = h(x(0),y(0),2(t)) (29)

Thus z(t) eventually tends toward a stable equilibrium Z(x(0),y(0),z(0)) of
{29), assuming here that the system has unique stable equilibrium. Then keeping X
frozen at x{0), we look at the "intermediate system” which has now become active,
namely ;

y(t) = g(x(0),y(t),Z(x(0),y(t),z(0))) (30)

where Z{x(0),y(t),z(0)) is a stable equilibrium of the fast system (29) with y(0)
substituted by y.

Referring to Figure 4, where low-, intermediate-, and high-speed trajectories
are indicated, respectively, with one , two , and three arrows, at first a high-speed
transition develops at constant x and y and brings the system from (x(0), y(0),2(0))
(point R in Fig. 4) to a stable equilibrium of the fast manifold h=0 (point S in
Fig. 4). Then a second intermediate-speed transition takes place on the manifold at



constant x (segment ST in Fig. 4) until a point is reached (point T* in Fig. 4) where
the stability of the equilibrium manifold h =0 is lost and a quick transition then
takes the state of the system to the equilibrium point on a stable part of the manifold,
which will be the point T in Fig. 4. A transitien of intermediate speed then develops
along this part of the manifold to the point D' of Fig. 4.

The resulting curve RST'TD’ approximates the solution of the system, in the
sense that the real trajectory is contained in a tube arround that curve with the radius
of the tube going to zero with € and 8.

The direction of transition along the line ST’ or TD’ depends on the sign of
y namely g(x, v, ). Thus, let us assume that for suitable values of the parameters the
intermediate ( stable ) manifold g = 0 separates the line ST’ on the trivial manifold
z = 0 from the line TD' on the nontrivial manifold h = 0 (see Fig. 4) and that g is
positive below the manifold g = 0 and negative above it. Under this conditions the
system moves toward point D’ along the line TD’, and when D' is reached we have
a saddle-node bifurcation of the fast system : the variable z at point D is not at a
stable equilibrium anymore and a catastrophic transition from D’ to A’ occurs at a
very high speed. This almost closes the cycie but for the fact that during this time the
variable x has been increasing very slowly, assuming that we have started on the side
of the manifold f = 0 where £> 0.

Once the system is at A’, a slow motion develops again from A’ in the
direction of increasing y because g is positive here. The same cycling is repeated,
densely convering the manifold h = 0 while the variable x increases slowly until the
equilibrium point B’ on the manifold f = 0 is reached where X = 0. A high-speed
transient bring the state of the system back onto the nontrivial manifold h = 0 at the
point C along the line of intersection between the manifold h = 0 and £ = 0. A
transition of intermediate speed to D then takes place along this line followed by a
catastophic transition from D to A. An intermediate speed transition from A then
brings us back to B’, resulting in a closed cycle AB'CD lying on the manifold f= 0.
(See Fig. 4.)

It can be shown, from the above discussion, that if € and & are sufficiently
small and

I > a+§ (31)
b < d°—2 | (32)
D+f£-B>0 (33)
B xR D+f-B
2 _(ktya (B TRTD 34
a>m_d( YA)(YA B ) (34
D+B-B B

——mg <% (35)

- bc —bd
" —k (a~mxa)+2+/bc 36
e A (a=nxa)—2/be + bd GO
Xa = oA~ (37)

B D+]f Za



zZp = % ~d (38)

pk| (@-mxs)+ %

X = (39)

Pli-@a-nxp)-$

then a limit cycle exists for the model system (25)-(27).

Figure 5 shows a computer simulation of the model system (25)-(27) when
the inequalities (31)-(35) are satisfied showing the solution trajectory tending toward
a stable limit cycle as predicted.

We observe that if the parasite is no longer present, which will be the case if

B =P’ =0, then conditions (33) and (35) cannot be satisfied simultaneously. The
system may destabalize to extinction. This seems to indicate that stable existence of
the predator population depends, to a certain extent, on the presence of the parasites.
In other words, the invasion of the parasite can stabalize the system resulting in
persistence and the survival of the predator. This is in agreement with the
observations made by several other authors who have done extensive research work
in this field.

CONCLUSION

We have illustrated, by way of two examples of mathematical models of
important biological processes, how the theories of nonlinear dynamics may be
applied to gain insightful information concerning the systems under study. The
results of such theoretical analysis lead to significant advances in the field of
theoretical biology, and have come a long way in the attempt at answering key
biological questions of environmental concerns that will engage the attention of
scientists, researchers, and administrators in the years to come.
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FIGURE CAPTION

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

The (o,B) plane delineated by graphs.of Equations. (20)-(21), (23), and
(24) into 5 regions of qualitatively different dynamic behavior.
Typical plots of w versus Xg, for each region in the (o, ) plane.

stable steady state,
______ unstable steady state,
TI stable limit cycles,
0000000 unstable limit cycles.

Computer simulation of the model system (2) and (3) with parametric
values in Region IV (type I), showing solution trajectories tending away
from the saddle point towards the stable limit cycle or the stable washout.
The three equilibrium manifolds f =0, g = 0, h = 0. The intermediate
manifold g = 0 separates the line DP from the line OQ.

Computer simulations of the model system (25)-(28) when all the
conditions identified in the text for the existence of a limit cycle are
satisfied.
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SINGULAR PERTURBATION ANALYSIS OF A MODEL
FOR THE EFFECT OF
TOXICANT IN SINGLE-SPECIES SYSTEMS

ABSTRACT

We consider a mathematical model for the effect of toxicant levels on a
single-species ecosystem in the case where there is an initial instantaneous
introduction of toxicant into the environment. The population birth-rate as well as
the carrying capacity are assumed to be directly effected by the level of toxicant in
the environment as it is absorbed by the population. The toxicant level in the
population can be depleted at a constant specific rate, a part of which amount may
return to the environment. Through a singular perturbation analysis, we are able to
identify different dynamical behavior which may be possible to the system,
including the existence of sustained oscillation in the levels of toxicant in the

population and in the environment.

Key words : Toxicants, singular perturbation, sustained oscillation, single-species,

mathematical model.

INTRODUCTION

In the past decade or so, there has been a burst in the number of literatures
concerned with the study of effects of pollutants and toxicants on ecological
communities simply because such studies are not only of great interest from

environmental and conservational points of view, but also bear great relevance to



the decision making process of any abiding policy makers in matters of
environmental regulation and control.

Case studies and field observations ha;e yielded a number of insightful
articles such as the study by Nelson [1] on the problem of oil poliution of the sea,
and the work by Woodman and Cowling [2] on the effect of airborne chemicals
on forest health. From a physiological point of view, many researchers have
carried out studies on the effects of toxic substances on the human body and other
living organisms. Examples include the article by Chen and Hsu [3] on the
polychlorinated biphenyl poisoning from toxic rice-bran o¢il in Taiwan, and the
paper by J.J. Ryan [4] concerning the variation of dioxins and furans in human
tissues. These studies lead to a number of valuable efforts to describe and
analytically study the effects of toxicants and pollutants on various ecosysiems,
and on the human population or other living organisms, by utilizing mathematical
models. Examples of such work include a series of papers by Hallam and his
coworkers [5-8], a paper by Shukla et al. [9] on a mathematical model for the
degradation and subsequent regeneration of a forestry resource, and a series of
papers by Carrier er al [10-11] attempting to model the toxicokinetics of
Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in mammalians, including
humans.

More recently, Freedman and Shukla [12] proposed a model for the effect
of toxicant in single-species systems and one for predator-prey polluted systems.
So that their model should be more viable, they modelled the interactions of the
populations and the toxicants in the population and in the environment by means
of ordinary differential equations in terms of their concentratiéns with respect to
mass or volume of the total environment in which the population lives.

In their model for a single-species system, the amount of toxicant in the
population is depleted due to their death, some of which re-entering the
environment in proportion to the population biomass. Such a model was found to

exhibit no oscillatory behavior in the case that there is no more dumping of



toxicants after the initial instantaneous introduction. It was shown that provided
that the poilutant concentration was not sufficient to kill all the population,
eventually the toxicant would be removed and tilc population would recover to its
former level. However, cases have often been found in nature in which this is not
so, and persistence of toxicant levels in the population and the environment have
been observed such as the incidents described in the paper by Xober and Papke
[13] on their study of the concentrations of PCDDs and PCDFs in human tissues
36 years after accidental dioxin exposure.

Such toxic substances are persistent and bioaccumulate and therefore
contaminate air, water, soil, and most living organisms, including humans,
Accidental intoxication of humans by these substances can result in chronic
effects [11] and the possible toxicological consequences are of great concem;-

The uncertainties inherent to the conventional response assesment make it
difficult to determine realistic allowable exposure limits for these substances, and
the debate on how such toxic substances should be regulated continues for
governments around the world [11]. More extensive studies which elucidate
quantitatively the toxicokinetics and dynamics of these substances are needed to
provide a credible basis for reducing the uncertainties involved in the response
assesments and regulation decision making.

In this paper, we therefore consider single-species in a closed
homogeneous environment, in which the carrying capacity and the population
birth-rate are both affected by the exogeneous introduction of toxicant. By
modifying the mode! proposed by Freedman and Shukla [12], we allow the
toxicant in the population to re-enter the environment, a part of which amount
varies directly as the toxicant level in the population alone.

We arc interested in determining the different dynamics that may result
from the effects of toxicants on such a closed ecosystem. If the population is
assumed to have a very fast dynamics, as compared to the toxicant levels in the

population and in the environment, and the time responses of the different state



variables are assumed to increase from bottom to top, a singular perturbation
approach can be utilized and the structures of corre_sponding attractors and the
nature of the transients can be analyzed geor;lehiéally. Explicit conditions are
derived which separate the various dynamic structures and identify, in particular,

the limit cycles in the case of extreme dynamics.

DESCRIPTION OF THE MODEL

Based on a model by Freedman and Shukla [12], we let

concentration of the population biomass

x(t) = - .
( mass(or volume)of the total environment where the population lives
T(t) = concentration of the toxicant in the environment
mass(or volume)of the total environment where the population lives
U(t) = conceniration of the toxicant in the total population

mass(or volume)of the total environment where the population lives
It is assumed that the population growth is logistic. The absorbtion of the
toxicant in the environment by the population causes the birth-rate r of x to
diminish, and we shall therefore assume that r depends explicitly on T with the
following properties :
r(0)=ry>0

r’'(T)<0 for T20

and r(T)=0 for someT.



The carrying capacity K(T) of the environment also decreases with the

increase in T and has the following general properties :
K(T)=Kq >0
and K'(Ty<0 for T=0.

The following system of ordinary differential equations can be derived.

2

. IgX
x=1r{T)x- 1
(T) K(T) (1)
T=-8pT —a;xT+ my;xU +p;U 2
U=—51U+U.1XT—’Y]XU 3)

where 8y and 8; are the depletion rates of toxicant in the environment, and in the
population, respectively; a; is the depletion rate of toxicant in the environment
due to its intake by the population; y; the depletion rate of toxicant in the
population due to their death or removal; and = the fraction of the toxicant which
re-enters the environment due to death. The term P;U in equation (2) takes into
account of the portion that is returned to the environment even in the absence of x,
since even though all population has died out, toxicants in their remains can still

keep re-entering the environment (T > 0 when x = 0 and T = 0).



SINGULAR PERTURBATION ANALYSIS

In order to carry out the analysis, we introduce the following change of

variables and system parameters : dg =§g s azﬂ , dj :6_1 , Y= 8! ,
€ S £0 o
|3=B_;5 , y=¢€T and z=edU. We are led to the following system of
>
differential equations.
<2
x=R(y)x———=1(x,y) (4)
k(y)
y = g[-dgy — oxy + myxz +Pz] = g(x,,2) (5)
z = 8] —dyz+ oxy — yxz| =h(x,y,2) (6)
K(T)

where R(y)=r(T) and k(y)=—>=.
Ip

Thus, during the transients, when the right hand sides of equations (4)-(6)

are finite but different from zero,

y| is of the order & and |2 is of the order €3.
This means that, for small values of £ and &, the change in the toxicant level in
the population takes place more slowly than that in the environment, and the
population has, in comparison, a very fast dynamics. This is quite a reasonable
assumption in view of the ficld observations reported in the previously mentioned
studies.

So that the following analysis may be carried out explicitly in a simple

manner, we shall consider the case where the population birth-rate R has the form

R(y)=A-By (M



where A and B are positive constants, while the effect of the toxicant level on the
carrying capacity is negligent (k = constant).

Under the above assumptions, for smallxvalu}:s of £ and 8, the solution of
the system (4)-(6) for given initial conditions can be approximately found by
means of singular perturbation analysis [13, 14]. First, the slow (z) and
intermediate (y) variables are frozen at their initial values z(0) and y(0), and the
evolution of the fast component of the system is determined by solving the "fast

system"
% = f(x,y(0)) (8)

The fast variable x tends asymptotically to one of the stable equilibria of the fast

system on which g < 0. Figure 1 shows how a fast transient develops toward an

equilibrium manifold f =0 of the fast system. Here, slow, intermediate, and fast
transients are indicated by one, two, and three arrows, respectively.

Once the state of the system has reached the fast manifold f =0, the
variable with intermediate speed begins to become active and we can now

consider the "intermediate system".
y(1) = g{x(1),y(1),2(0)) 9

As before, the variable y(t) tends to a stable point of its equilibrium manifold

g = 0. Thus, it is seen in Figure 1 that the trajectories start from the point B of the
fast manifold and tend toward a stable point C of the intermediate manifold at
intermediate speed.

At this point, a slow transient develops subject to the constraints

f(x,y)=g(x,y,2)=0 (10)



and brings us to a stop at a stable equilibruim point D where f=g=h=0 or
reaches the point U where the manifold f=g = 0 bevomes unstable and a saddle-
node bifurcation occurs. A catastrophic transition at a very high speed takes place
from U to a stable point E on an eqﬁilibrium manifold.

The directions in which the transitions take place are determined by the
signs of f, g, or h as each state variable becomes active. If € and 8 remain
small, the resulting trajectory composed of all such transients of different speeds
represents a close approximation to the actual solution trajectory of the model
equations in the sense that the solution trajectory will lie in a small tube about
these transients and the radius of the tube tends to zero with € and 8.

More detailed description of the singular perturbation technique can be
found in [13] and [14], while examples of its application to mathematical models

can be found in [15 Jand [17].

DESCRIPTION OF THE EQUILIBRIUM MANIFOLDS

In order to determine the structure of the attractors and the nature of the

transients, we now identify the various equilibrinm manifolds.

The Fast Manifolds
The manifold f=0 has 2 parts; namely, the trivial manifold x=0 and

the nontrivial one which is a surface parallel to the z axis given by the equation
x=a—by (11)

where a=Ak and b=Bk

The surface in (11) crosses the (x,z)-plane along the line



a
== 12
Y=% (12)
as seen in Figure 2.
Since
o 1 1
2 =Z[ta—-bvV)—-x]-= 13
Poiain (Gl b (13)

it is clear that % <0 on the surface given by the equation [11], and thus the

nontrivial fast manifold is always stable.

The Intermediate Manifold

This manifold is given by the equaticn g=0 which defines a surface

2= p(x,y) (14)
It intersects the nontrivial fast manifold along the curve

_ (do + aa)y — ozby2
(B + nay) — mbyy

z=p(a~by,y) (15)

We observe that this curve intersects the (x,y)-plane (z = 0) at the points where

y=0
a do
and =—+4— 16
Y= 3 b (16}

Thus, the curve f =g=0 reaches the (y,z)-plane in the first octant if

10



11
dg>0 (17)

Now, differentiating (15) with respect to y, we find that the numerator of ;E
: y

along the curve f=g=0 is

Num{%) =(dg +aa }(B+naa) — 2ba(B + nay )y + nbZayy? (18)
f=p=0

Therefore the curve f=g =0 has a stationary point when the left hand side of

{18) vanishes. However, we find that the two roots of (18) are

_ 2ba(f+may)tA a

Yio =—+2baft A (19)
’ 2nblay b
1
where A= Zb[(B +may Y02 — maydy )]2 (20)
Thus, for y;» to be real, we require that
B> m¥8 QD

o

a
Moreover, for at least one root to be less than E, we need

1

2boeB—2b[(B+nay)(a2{3—nayd0)]2 <0 22)

Squaring and rearranging (22) lead to the requirement that

> mardy 23)
act — do



12

provided
ao,—dg >0 (24)

At this point, we note that since

maydp _ mydo
ao, —dg o

(25)
the conditions (21) and (23) are guaranteed by the requirement that (23) and (24)
hold.

The Slow Manifeld
This is the surface h =0 which defines a surface

z=0(X,y) , (26)
that intersects the fast manifold f = 0 along the curve given by

aQy ~ bcaty2

z=¢(a-by,y) =m

27

forwhich z=0 when y=0 and y= —E (see Figure 2).

Thus, we can identify essentially 5 cases of different dynamical behavior

as follows.

Case ]l

This case is identified by the inequalities (23) and (24). The shape of the
fast manifold is therefore as shown in Figure 2(a) and the curve f=g=0 has a
stationary point P above the (y, z)-plane and intersects the (y, z)-plane at the point

H in the first octant.



Now, to also guarantee that the point S where f =g=h=0 is below the

point P we need that at y =y, we have

aoy, — bay% (do +aa)y, —aby%
(dy+ay)=byys ~ (dj +may)-nbyy,

(28)

using (15) and (27).

Inequality (28) means that the part of tﬁe curve f=g=0 from Cto P lies
"above" the surface h=0 while the line DG lies "below" the surface h=0.
Looking at the sign of h, we see that h > O along CP and h < 0 along DG which
determines the directions of the transients along these curves as shownin Figure
2(a). Moreover, for the curve f =g =0 and f =h =0 to be located with respect to
each other as shown in Figure 2(a) we require that at y =0, the slope along the

curve f=g=0 should be less than that along the curve f =h =0. That is, we

need
dz dzi
JR— < —
ip_geo DYlr-n=o
which leads to the inequality
dg +aa L 2o
B+may d;+ay
d d
o g Gorac)divar) 29

ao

Starting from some initial point, say A (see Figure 2(a)), if A is above the
nontrivial fast manifold, f <0 here and a high speed transition will develop in the
direction of decreasing x towards the stable fast manifold (point B). As B is

approached, the intermediate system has become active and, since g < 0 here, a

13



transition of intermediate speed will develop along the fast manifold towards
point C on the curve f =g=0. As mentioned above, along this portion of the
curve, h > 0 and so a slow transition develops m the direction of increasing z untit
the point P is reached, at which point the stability of the manifold is lost. A
transition at a very high speed then takes place which brings us to the point D on

the trivial manifold x = 0. Since we are now in the region where h < 0, transition

develops slowly along the line y = b until a point E is reached where the stability
a .

is again lost. The existence of such a point E in a similar system has been shown
in a previous work by Osipov et al. [18]. For the point E to be to the right of G as
in Figure 2(a), we further require that the second coordinate yg of this point is

positive, namely

yE>0 (30}

However, considering (16), this is easily accomplished if b is made sufficiently
small.

A quick jump from E will then take us back to the point F on the curve
f = g = 0 which completes the closed cycle FPDEF in this case.

Thus, this is the case where the attractor is a limit cycle composed of a
concatenation of catastrophic transitions occurring at different speeds,
corresponding to the situation where persistence in the toxicant levels and the
population density is observed exhibiting sustained oscillations in all three state

variables.
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Case 2
This case is shown in Figure 2(b), identified by the inequalities (24), (29)

and the one opposite to (23), namely

m_do>5 (31)
ac—dy

This last inequality means that, in this case, the stationary point of the curve
f =g =0 is below the (y, z)-plane and the position of the manifolds are as shown
in Figure 2(b).

Starting at an initial point A, transitions will develop as described before
until C is reached, from which point a slow transition brings us to a stop at the
stable equilibrium point S where f =g=h=0.

This therefore corresponds to the case where population density and both

toxicant levels attain stable equilibrium values as time passes.

Case 3
This case is identified by inequalities (23), (24) and the one opposite to
inequality (29}, namely
5 oram)(dyray) 2

a

Thus , in this case, once we are at the point B on the fast manifold { see the
Figure 2(c) ), h <o here and a slow transition will develop along the curve
f=g =0 in the direction of decreasing z instead. This takes us to a stop on the x-
axis (y =z=0)

This is therefore the case where toxicants eventually get depleted and the

population re-establishes itself as time passes.



Case 4
This case is identified by the inequalities (23), (24), (29), and the opposite

to inequality (28), namely
aoys — bay% < (do +aa)- abyg
(dy +ay)-byys (d+may)—nbyy,

This last inequality means that the point S is above P on the curve f=g=0 as

(33)

seen in Figure 2(d).

Again the transitions develop from A to B then to C as before. However, a
slow transtion from C will stop at the point S since here f = g =h = 0. This is also
the case where each state variable attains an equilibrium value as time progresses.
Case §

This last case is identified by (23), (24), (29), and

yg <0 34)
However, considering (16), condition (34) can be satisfied if b is made
sufficiently large.

The manifolds are then positioned as shown in Figure 2(e). The
transitions, once P is reached, will make a quick jump to the point D on the (y, z)-
plane. Since the trivial ma.nifolci is stable troughout the line DG in this case, the
slow transition from D will continue until G is reached where g < 0. Transition is
then made toward the origin. This then corresponds to the case where the
population becomes extinct and the toxicant in the population of course gets
depleted as a result, while the toxicant level in the environment reaches a high
level then slowly depletes itself as time passes.

By the above analysis, we have proved the following theorem.

Theorem If € and & are sufficiently small and inequalities (21) and (24) hold,
then the system (4)-(6) has a unique global attractor in the first octant. The
attractor will be a stable equilibrium point if (23), (29) and (33) hold or (29), and
(31) hold, while it will be a limit cycie if inequalities (23), (28), (29) and (30)
hold.

16



Numerical simulations of the system (4) - (6) when the parametric values
are chosen to satisfy the requirements in each of the 5 cases are shown in

Figure 3.

CONCLUSION

In this paper, we have analyzed a model for the effects of a toxin
introduced into the environment of a single-species system. The population
growth is logistic, while the time responses of the different state variables are
assumed to increase from bottom to top. We have been able to identify five
separate cases in which different dynamic behavior can be observed. |

It has been shown that if the rate B at which the toxicant in the population
re-enters the environment is higher than the levels given by inequilities (21) and
(23) then toxicant will not get depleted to allow the population to recover its
former level. If this is further compounded by the condition where the effect of
toxicant on the birth-rate is too high (b >>1) then we can expect extinction of the
species which is case 5 identified above.

Thus, the model has proved to be quite versatile and fits well with field
observations, yielding greater insights into this perplexing problem of interactions
among the population and the toxicants in the environment which is of great

concern to us all.
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FIGURE CAPTION

Figure 1.

Figure 2:

Figure 3:

A fast (f = 0), intermediate (g = 0), and slow (h = 0) equilibrium
manifolds, with the fast (triple arrow), intermediate (double arrow)

and slow (single arrow) transients.

The solution trajectories of the system (4)-(6) in the five cases
identified in the text. The attractor is a limit cycle in Case 1, and an
equilibrium in Case2, or 4. The population recovers itself in Case3,

but becomes extinct in Case 5.

Numerical simulations of the system (4)-(6) for each of the five
cases identified in the text. Here, ¢ =8 = k=1; Casel: a=0.5,
b=01,a =09, =09, y=09, n =09, dg= 0.3,
dy = 0.01; Case2: a=09,b=0.1,a=05,p =09,y =09,
n1=09,dy=04,d;=00]; Case3: a=05Db=0.1,a = 0.9,
B=057=09,n=01,dp=03,d;=001;Case4: a =09,
b=01,a =05 p=097y=09 n=09dy=0.1,d;=05;
Case 5:2=0.5,b=01,0=09,p=09,vy=09,n=09,
dg =0.001, d; = 0.01.
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DYNAMICAL MODELLING OF THE EFFECT OF
TOXICANTS ON A SINGLE-SPECIES ECOSYSTEM

ABSTRACT

We consider a mathematical model of the effect of toxicants on single-species
in a closed homogeneous environment. The population birth-rate as well as the
carrying capacity are assumed to be directly effected by the level of toxicant in the
environment as it is absorbed by the population. The toxicant level in the population
can be depleted at a constant specific rate, a part of which amount may return to the
environment even in the absence of any living organisms. A Hopf bifurcation analysis
is carried out yielding boundary conditions which divide the parametric plane into
regions of different dynamical behavior. It is found that when the natural birth rate of
the population is too low, no non-trivial equilibrium state exists in the system. At a
fixed sufficiently high natural birth rate, the system can settle back to its former stable
equilibrium state after the initial dumping of toxicant into the environment, provided
that the rate at which the toxicant in the population returns to the environment is not
too high. Sustained oscillation in the population and toxicant levels is exhibited for
suitable ranges of parametric values. However, if the per capita decay rate or birth rate
i$ too low, the system no longer admits a stable non-trivial equilibrium state if the

return rate is too high, and population may become extinct.

Keywords: toxicants, modelling, single species, bifurcation.



INTRODUCTION

The question of effects of pollutants and toxicants on ecological communities
has become of grave concern to scientists, en;/irorimental agencies and authorities on a
global scale, especially in the past decade or so. Toxic substances are persistent and
bioaccumulate, and therefore contaminate air, water, and most living organisms,
including humans. Accidental intoxication by these substances can result in chronic
effects and the possible toxicological consequences can no longer be disregarded. In
one of their papers, Xober and Papke [{] reports the incidents where concentrations of
Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDDs and PCDFs) in
human tissues can be detected 36 years after accidental dioxin exposure.

Several efforts have been made to qualitatively describe and study the effects
of toxicants and pollutants on various ecosystems. In a series of papers by Hallam and
his coworkers [2-5], analytical study was caried out utilizing various mathematical
models. Shukla et al. [6] later studied a mathematical model for the degradation and
subsequent regeneration of forestry resource. More recently, in papers by Carrier et al.
[7-8] , attempts were made to model the toxicokinetics of PCDDs and PCDFs in
mammalians, including humans.

Realistically, a great number of sociological and physiological factors play a
part in the dynamics of toxicological pathways in nature. The resulting mathematical
model can be quite complexed, handled mainly by powerful computers, and requires a
great number of field data for its validation.

A relatively less complicated model involving only a few mathematical
equations is often preferred for its capability to give a deep understanding and a great
deal to new valuable insights to the system under study, while requiring fewer data for
its verification. It can moreover give policy makers the much needed preliminary
information to justify their decision or choice of actions concerning important
envirommental issues.

In [9], Freedman and Shukla proposed a medel for the effect of toxicant in
single species systems and one for predator-prey polluted systems. The interactions of
the population level (X) and toxicants in the population (U) and in the environment
(T) are modelled by means of ordinary differential equations in terms of their
concentrations with respect to mass or volume of the total environment in which the

population lives.



In their model for a single-species system, the amount of toxicant in the
population is depleted due to their death, some of which re-entering the environment
in proportion to the population biomass. Such ‘a model was found to exhibit no
oscillatory behavior in the case that there is no more dumping of toxicants after the
initial instantaneous introduction. It was shown that provided that the poliutant
concentration was not sufficient to kill all the population, eventually the toxicant
would be removed and the population would recover to its former level. However,
cases have often been found in nature in which this is not so, and persistence of
toxicant levels in the population and the environment have often been observed such
as in the earlier mentioned paper by Xober and Papke [1].

In this paper, we therefore consider single-species in a closed homogeneous
environment, in which the carrying capacity and the population birth-rate are both
affected by the exogeneous introduction of toxicant. By modifying the model
proposed by Freedman and Shukla [9], we allow the toxicant in the population to re-
enter the environment, a part of which amount varies directly as the toxicant level in
the population alone. This will account for the portion of toxicant in the population
carcasses which may keep re-entering the closed environment even in the dwindling
presence (x = 0) of the living organism.

We are interested in determining the different dynamics that may result from
the effects of toxicants on such a closed ecosystem. Application of the Hopf
bifurcation analysis allows us to derive boundary conditions which delineate the
parametric plane into regions of different dynamic behavior. It is shown that, after an
initial dumping of toxicant into the environment, if the toxicant level in the population
and the environment keep decaying at a constant per capita degradation rate, the
system can settle back to its former stable equilibrium state provided that the rate at
which toxicant in the population re-enters the environment is not too high. However,
if the natural birth rate is too low, the non-trivial equilibrium state no longer exists.
Moreover, even for high natural birth rate, the equilibrium state can become unstable,
and sustained oscillation in the population and toxicant levels is observed if the retumn

rate is high enough.



THE SYSTEM MODEL

Following Freedman and Shukla [9], we let

concentration of the population biomass

X(t) = - T

® mass (or volume) of the total environment where the population lives
I concentration of the toxicant in the environment

© mass (or volume) of the total environment where the population lives
U = concentration of the toxicant in the total population

mass (or volume) of the total environment where the population lives

It shall be assumed that the population growth is logistic, while the absorbtion
of the toxicant in the environment by the population causes the birth-rate { R }of X to

diminish. We therefore assume that R depends explicitly on T with the following

propetties:
R(O) =15 >0 (1)
R(T) < 0 forT = 0 )
and R(T) = 0 for someT. (3)

The carrying capacity K(T) of the environment is also effected by the level of

toxicant in the environment and has the following general properties

K(T) = Kg > 0 (4)

and K(T) < 0 for T > 0. (5)



The toxicant levels in the environment, and in the population, have natural
depletion (or decaying) rates of & and §;, respectively. The toxicant in the
- environment is also depleted at a per capita rate oy due to its intake by the population.
On the other hand, the toxicant in the population is depleted at a per capita rate of y

due to death or removal, a fraction of which amount re-enters the environment. We

therefore arrive at the following system of ordinary differential equations.

dX I'0X2

i R(DX - K(T) (6)
dt

o = ST XT+£(X,U) )
du

5 = 8 Ut XT—y XU (8)

where the last term f{X,U) of equation (7} accounts for the fraction of toxicant in the
population which returns to the environment. Since this return rate must increase with
the increase in X or U, while in the absence of living organisms { X = 0 ) toxicant can
still keep re-entering the environment at a positive rate which necessarily depends on
the level of toxicant in the population (U) at that moment in time. The function f(X,U)

is thus assumed to have the form

f(X,U) = ny{XU+pU 9

where Y1 and P are positive constants.



STEADY STATES AND THEIR STABILITY- |

For the following analysis, we shall assume that the population natural birth-

rate has the form

R(T) =r-nT, rp > 0,1 > 0. (10)

which satisfies the properties (1)-( 3) with r, > and T = ’;—0 We will also carry
. 1

out the analysis for the case where the effect of toxicant on the carrying capacity K is
negligible and therefore K = constant.
In order to carry out the stability analysis, we introduce the following change

: X
of variables and system parameters : x = 0?’ y=T,z=U,a=r1,b=nrn,
Ka K:
dg = §g. a0 = 1,‘y= Yl,andd1=6
I'O 1'0

The model equations (6)-(8) with (9) can then be written as

dx

2 o (a. 2

it (a-by)x -x (1D)
dy .

- -dgy —axy + nyxz+ Pz (12)
dz

Fr -djz+oxy —yxz (13)



The system of equations (11)~(13) thus admits three steady states, namely

i} the washout steady state: (x,y,z) = (0,0,0)
it) washout of toxicant only : (X,¥,z) = (a,0,0)
iii) the nonwashout steady state(s), (X,¥,Z) satisfying

(a-by)-%X = 0 (14)
~dg¥ - Xy +myxz+BZ =0 (15)
~d,Z+ 00Xy —yXZ =0 (16)

Solving equations (14)-(16) for X, we find

81-\/62 —4(1—m)aydgd,

= 17
X1.2 2(1—m)ay 17
where
é = aﬁ—do‘f"dla
Then
_ a-X
A
_ oxXy aX(a—X)
and 7 = — = —
dy +9X d; +¥X
We note that if
d07+d1a

(18)



then & < 0 and both X; and X, are negative and have no physical meaning in our

system. Moreover, for values of B such that

52 < 4(1-m)aydyd

the term under the square root sign in (17) is negative. The system therefore admits

only the washout steady states until B crosses the critical value

1
Be = " [2J(1-m)oydgdy + dgy + djo] 1%

at which point the system undergoes a saddle node bifurcation and two more steady
states appear which move further apart as [ increases. As B increases even further,
one of the roots given in (17} becomes negative as shown in Figure 1, and the bigger
B gets the roots can become either negative or bigger than a, in which case

a-X .
y = T < 0, leaving us with only the two washout steady states, as shown in the

bifurcation diagram presented in Figure 1.

The Jacobian matrix evaluated at the trivial steady state (0,0,0) is

|_a 0 0
Jo =10 —50—!-[3 0 (20)
0o o

one of whose eigenvalues is always positive ( namely a ), and one is always negative
( -8 ). This means that the washout steady state (0,0,0) is a saddle point for all
positive values of the system parameters and thus the dashed line along the p-axis

signifying that the trivial steady state X= 0 is unstable.



The Jacobian matrix of the system (11-(13) evaluated at the steady state (a,0,0)

is

-a —ab 0
Ja=1|0 —dO —oa wya+f
' 0 ‘o -d; —ya

and the corresponding eigenvalues are -a and

A+ 8% - 4[(dg +0a)(d; +ya) ~ca(wya-+B)] -
¢ @1

where

A= —dy—d;—aa—ya.

Expanding Az, we find that the term under the square root sign in {21) is

always positive. Moreover, the term will be less than A2 if

(dg+oa)(d; +va)
< -7
oa

p a=p (22)

in which case the steady state (a,0,0) will be a stable node since A < 0. On the other
hand if

B> p (23)

then the point will be an unstable saddle point since one of the eigenvalues will be

positive.
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The Jacobian matrix evaluated at the nontrivial steady state (X,¥,Z), whenever

it exists, is

-X -bx 0
J =|-ay+nyz —dpg—aX myX+p (24)
oy —-vZ oxX —d; - viJ

when X, ¥, and Zz satisfy equations (14) through (16). The corresponding

characteristic equation is

X +a,3% +ajh+ag = 0. (29)
where

ag = b|(nyz —ay)(d; +v8) +{myx + B{oy - v2)] 26)

ay = i[do +dy +{o+ y)i] + bi(m/i— a?) (27)

ap =dg+d;+(1+a+7y)X (28)
If we let

1 1,
q=331~-532 (29)

1
= (2123 ~3a9)- (30)

3
272

1 1
S = [r+(q® +r?)2]3 31

11
S, = [r-(q° +r%)2}3 (32)



i3

In region II, however, ag > 0 whil:e ajas > ag and the real parts of all 3
eigenvalues are negative. The non-trivial steady state is therefore a stable spiral node
in this case. As time passes, all trajectories starting from its neighborhood will spiral
toward the equilibrium point where X = X;.

Inregion III, ag > 0 and ajay < agp and limit cycle behavior can be observed
resulting from a Hopf bifurcation from the steady state solution which has now
become unstable. It is found numerically that the bifurcated limit cycle is stable
throughout this region.

Schematic diagram of different dynamic behavior and transients which may be
observed in each of the 10 ranges of parametric value $; namely, A through J, are
shown in Figure 1. Here, solid lines indicate stability, dashed oﬁes indicate
unstability, while closed dots represent stable limit cycles resulting from supercritical
bifurcation and increasing in amplitude as B increases. The numbers of possible
transients or attractors in each of the 10 ranges, A through J, are given in Table 1.

In fact, substituting (26)-(28) into (40) and (42), we find that Hopf bifurcation

occurs for values of § for which aja, < ag or equivalently,

v _ ag%p(0146,) +ag -6y)(mZp —aya bRy

p>p = B TYXy (43)
b%y (0¥ —125)
aswell as ap > 0 which is equivalent to
(myZy —0y2)0 -
B>By= L my%, (44)

YZp —~ Oy

where
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with

91 = dg +U.}_(2
0, =d; +7%;

Thus, Hopf bifurcation occurs for valués of P such that

B > max(B;,B5) | (45)

In Figure 1, four different possibilities in region III are schemetically shown

according to the value of B’ relative to the values B, [3; and B;.

Finally, numerical simulations of the model system (11)-(13) in the different
cases discussed above are shown in Figure 3, in which parametric values for Figures
3(a), 3(b), and 3(c) are chosen to be in region I, II, and III of Figure 2, respectively.
The corresponding time series of the various cases are shown in Figure 4, where
sustained oscillation is observed when the paremetric values fall inside the region III
where periodic solution has been predicted. In region II, on the other hand, the
trajectory is seen to first approach the origin, which is a saddle point, then gets
repulsed as the population recovers itself and returns to its equilibrium value at the
stable steady state (a, 0, 0). However, if in this region we have a very low degradation
rate and birth rate and very high return rate, the population level x is capable of
dropping all the way to zero. The toxicant level reaches a high level so fast that the
population does not have time to recover itself, in which case the population can

become extinct.



15

CONCLUSION

We have considered a mathematical model of the effect of toxicants on a
single species system in a closed homogeneous environment. Application of the Hopf
bifurcation analysis led us to the conclusion that if the return rate §, namely the rate at
which the toxicant in the population re-enters thee environment is sufficiently low, a
stable non-trivial equilibruim state exists in which case the population persists while
the toxicant level may degenerate to zero or tend toward an acceptable level.

However, for a fixed value of the self degradation rate dy and birth rate r,, if B

increases beyond the critical values BT and B; given in the paper, the system becomes
unstable and the toxicant level can rise to an undesirably high level. Through our
analysis, we found that the system can exhibit up to 10 different types of phase space,
and a possibility of up to 5 transients or attractors.

This study of the various dynamic behavior which is possible in such an
important process should serve as a useful tool for trying to understand and efficiently

control such interesting but complexed ecosystems.
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FIGURE 3.

FIGURE 4.

TABLE 1.

Schemetic diagrams to present X as a function of B , showing five
different cases which are possible, in the region Il of Figure 2, for
various values of the parameter . The dashed lines indicate unstable
steady states, the solid lines indicate stable ones, while the closed dots
indicate stable limit cycles. The dashed vertical line is the line g = 8,
whose relative position gives rise to 10 possible types of phase

space; A through J.

The graphs of equations (40) and (42) divide the (8, 1,) plane inio 3

regions of different dynamic behavior. Here, b = 1, dg =03,

d; =001, « =09, =09,y =0.9.

Numerical simulations of the model system (11)-(13). The parametric

values are chosen sothat a) B.5) = (0.4,0.03) inRegionl

of Figure 2, where the solution trajectory is seen to approach the

washout steady state, which is a saddle point , then gets repulsed.
b) B.r)) = (0.36,0.5) in Region II , where the nontrivial steady

state S is a stable spiral node, and ¢) (8,5} = (0.55,0.6) in

Region III, where a limit cycle is observed as theoretically predicted.

The time series of the solutions to the model equations (11)-(13) in

the cases a), b), and ¢) of Figure 3, respectively.

Number of transients or attractors in each of the cases A through J as

indicated in Figure 1.
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