บทคัดย่อ

รหัสโครงการ: RSA 5280018

ชื่อโครงการ: การเตรียมและการประยุกต์ใช้เชลแล็กดัดแปรเพื่อใช้เป็นสารช่วย

ทางเลือกสำหรับระบบนำส่งยา

ชื่อหักวิจัย: สนทยา ลิ้มมัทวาภิรัติ์ คณะเภสัชศาสตร์ มหาวิทยาลัยศิลปากร

E-mail address: sontaya@su.ac.th

ระยะเวลาโครงการ: 3 ปี

การวิจัยครั้งนี้มีวัตถุประสงค์เพื่อพัฒนาเชลแล็กดัดแปรสำหรับใช้เป็นสารช่วยสำหรับระบบนำส่งยา ทั้งในรูปแบบเคลือบเอนเทอริกและรูปแบบเมทริกซ์ลอยตัว การดัดแปรเชลแล็กทำโดยการเตรียม เชลแล็กในรูปเกลือและเอสเทอร์หลายชนิด ผลการทดสอบเชลแล็กในรูปเกลือแสดงให้เห็นถึงการ เพิ่มความคงตัวอย่างชัดเจน ซึ่งชนิดและสัดส่วนของเกลือมีผลโดยตรงต่อสมบัติดังกล่าว สำหรับ การเตรียมเชลแล็กในรูปเอสเทอร์นั้นพบว่าสามารถเพิ่มการละลายของเชลแล็กโดยเฉพาะที่พีเอช ในช่วงของลำไส้เล็กส่วนต้น ซึ่งแสดงให้เห็นการแก้ปัญหาสำคัญของเชลแล็กทั้งในเรื่องความคงตัว และการละลายด้วยการดัดแปรดังกล่าว การศึกษาต่อมาเพื่อประยุกต์ใช้เชลแล็กเอสเทอร์ในการ ้เคลือบ พบว่ายาเม็ดเคลือบด้วยเชลแล็กเอสเทอร์มีการแตกตัวและปล่อยปล่อยยาได้อย่างได้อย่าง รวดเร็วในสารละลายบัฟเฟอร์พีเอช 6.8 ในขณะที่ไม่แตกตัวและมีการปลดปล่อยยาได้น้อยกว่า 10% ใน 0.1 N ไฮโดรคลอริก เมื่อเทียบกับเชลแล็กก่อนการดัดแปรแสดงให้เห็นถึงความสามารถ ของการเป็นเอนเทอริกพอลิเมอร์ที่ดี โดยเชลแล็กในรูปทาเลตและซักซิเนตมีการละลายไม่แตกต่าง กันมากนัก แต่เชลแล็กในรูปทาเลตมีข้อดีกว่าในเรื่องความคงตัว สำหรับการเตรียมเชลแล็กใน รูปแบบเมทริกซ์ลอยตัวนั้นพบว่าเชลแล็กสามารถใช้เป็นสารก่อเมทริกซ์ที่ดีกล่าวคือสามารถเพิ่ม ความแข็งของยาเม็ดและสามารถควบคุมการปลดปล่อยยาได้ โดยมีความสัมพันธ์กับความร้อนที่ใช้ ในการอบ และปริมาณสารช่วย ยาเม็ดที่ได้สามารถลอยตัวได้และปลดปล่อยได้มากกว่า 8 ชั่วโมง จากผลการวิจัยทั้งหมดแสดงให้เห็นถึงแนวทางการแก้ไขปัญหาที่สำคัญของเชลแล็กและการ ประยุกต์ใช้เชลแล็กสำหรับระบบนำส่งยาต่อไป

คำหลัก: เชลแล็ก ระบบนำส่งยา ระบบยาลอยตัว เกลือ เอสเทอร์

Abstract

Project code: RSA 5280018

Project title: Preparation and Application of Modified Shellac as an Alternative

Excipient for Drug Delivery System

Investigator: Sontaya Limmatvapirat

Faculty of Pharmacy, Silpakorn University

E-mail address: sontaya@su.ac.th

Project period: 3 years

.

The objective of this study was to develop modified shellac as an excipient for drug delivery systems, including enteric coated dosage form and floating matrix system. The modification of shellac was achieved through salt formation and esterification with various bases and cyclic anhydrides, respectively. The result indicated that the stability of shellac salts was significantly increased and was correlated with the type and ratio of salt forming agents while the solubility enhancement, especially at pH of small intestine, was achieved though esterification of shellac. The tablet coated with shellac esters was rapidly disintegrated and released model drug in buffer pH 6.8 while less than 10% of drug release was observed in 0.1 N HCl, suggesting the good enteric properties. The shellac esters, including shellac phthalate and shellac succinate, demonstrated improved solubility as compared to native shellac although shellac phthalate showed better stability. For floating matrix systems, shellac was successfully utilized as a matrix forming agent as suggested by the optimized hardness and drug release profile. The hardness, floatability and release characteristic of shellac matrix tablet were depended on annealing condition and added excipients. The optimized formulation could be floated and controlled drug release for more than 8 hours. The knowledge gain from this study should provide the guideline for solving the major problems of shellac and give the alternative mean to use shellac and modified shellac as an excipient for drug delivery system in the near future.

Keywords: shellac; drug delivery system; floating drug delivery; salts; esters