

รายงานฉบับสมบูรณ์

โครงการวิจัยเรื่อง

การพัฒนาเครื่องข้อมูลแบบฟลูอิไดซ์เบดสำหรับโรงสีข้าว

และ

การทดสอบระบบระบายอากาศสำหรับโรงเก็บข้าวเปลือก

ส่ง

สำนักงานกองทุนสนับสนุนการวิจัย

28 กุมภาพันธ์ 2540

คำขอบคุณ

ผู้เขียนได้ขอแสดงความขอบคุณต่อสำนักงานกองทุนสนับสนุนการวิจัยที่ได้ให้การสนับสนุนในการดำเนินการวิจัยนี้ประสบความสำเร็จด้วยดี พร้อมกันนี้ผู้เขียนได้ขอขอบคุณ บริษัท ไรซ์ เอ็นจีเนียริ่ง ซัพพลาย จำกัด ที่ได้ร่วมกันพัฒนาเครื่องอบแห้งข้าวเปลือกแบบฟลูอิไดซ์เบด จนประสบผลสำเร็จในเชิงการค้าและสามารถถ่ายทอดไปได้หลายประเทศอีกด้วย ขอขอบคุณ โรงศึกษาข้าวคุ้งหลีจัน ชุมชนสหกรณ์การเกษตรพัฒนานิคม ชุมชนสหกรณ์การเกษตร จังหวัดฉะเชิงเทรา ที่ได้ให้ความสนับสนุนด้วยดีในระหว่างการทดสอบ และขอขอบคุณสถาบันวิจัยข้าวซึ่งได้อธิบายเพื่อเครื่องมือในการทดสอบคุณภาพข้าวหลังการตี

สมชาติ ไสกัณฑ์
อดีศักดิ์ นาถกรณกุล
สมเกียรติ ปรัชญาภรณ์
สมบูรณ์ เวชกานา
สิทธิชัย อินทร์จันทร์
28 กุมภาพันธ์ 2540

บทสรุป

สำนักงานกองทุนสนับสนุนการวิจัยได้ให้การสนับสนุนต่อสถาบันเทคโนโลยีพระจอมเกล้าธนบุรี ในการดำเนินการวิจัยและพัฒนาจำนวน 2 โครงการ คือ “การพัฒนาเครื่องอบแห้งข้าวเปลือกแบบฟลูอิไดซ์เบคสำหรับโรงสีข้าว” และ “การทดสอบระบบระบายอากาศสำหรับโรงเก็บข้าวเปลือก” ซึ่งเป็นโครงการวิจัยข้อภัยได้ชุดโครงการข้าว โครงการทั้งสองมีวัตถุประสงค์เพื่อพัฒนาเครื่องอบแห้งแบบฟลูอิไดซ์เบคสำหรับใช้ในโรงสีข้าวและเพื่อพัฒนารูปแบบและการทดสอบระบบระบายอากาศสำหรับโรงเก็บและจ้างข้าวเปลือก และถ่ายทอดเทคโนโลยีให้กับกลุ่มเป้าหมาย

ในช่วงเวลา 2 ปี ได้ดำเนินกิจกรรมต่าง ๆ เพื่อให้บรรลุเป้าหมายที่ตั้งไว้ ผลงานที่สำคัญ ๆ ได้แก่

1. บริษัท ไรซ์ เอ็นจิเนียริ่ง ซัพพลาย จำกัด ได้ผลิตและจำหน่ายเครื่องอบแห้งข้าวเปลือกแบบฟลูอิไดซ์เบค ขนาด 10 ตันต่อชั่วโมงและขนาด 5 ตันต่อชั่วโมง ประมาณ 70 เครื่อง ส่วนใหญ่ใช้ในโรงสีข้าวอุตสาหกรรมในประเทศไทย บางส่วนส่งออกต่างประเทศ เช่น ได้หัน 5 เครื่อง พิลิปปินส์ 7 เครื่อง และอินโดนีเซีย 2 เครื่อง

2. ได้มีการยอนรับระบบระบายอากาศสำหรับโรงเก็บข้าวเปลือก ซึ่งมีวัตถุประสงค์ในการลดความชื้นข้าวเปลือกและหรือช่วยระบายความร้อนออกจากกองข้าวเปลือกระหว่างการเก็บรักษา ประมาณไม่น้อยกว่า 10 ระบบ ภายในโรงสีข้าวอุตสาหกรรม 3 แห่ง ได้แก่

- โรงสีข้าวคุ้งหลีจัน อ.ตาดบัวหลวง จ.พระนครศรีอยุธยา, 3 x 200 ตัน
- โรงสีข้าวเจียเชียงเสียง อ.ตาดลี จ.นครสวรรค์, 3 x 600 ตัน
- โรงสีข้าวโครงการส่วนพระองค์ พระราชนิเวศน์จิตรลดา, 4 x 125 ตัน

3. ได้เผยแพร่ผลงานวิจัยไปแล้วไม่น้อยกว่า 10 เรื่อง บทความวิจัยที่อยู่ระหว่างการรอตีพิมพ์ในวารสาร 2 เรื่อง และที่อยู่ระหว่างการพิจารณาตีพิมพ์ในวารสารอีก 2 เรื่อง ในภาคผนวกของรายงานนี้ได้นำรูบทความวิจัยที่ได้ทำการคัดเลือกไว้ จำนวน 9 เรื่อง ในจำนวนนี้เป็นบทความที่ตีพิมพ์ในวารสารนานาชาติ 1 เรื่อง และอยู่ระหว่างการตีพิมพ์ในวารสารนานาชาติอีก 1 เรื่อง

4. ได้จัดอบรมระยะสั้นเกี่ยวกับเทคโนโลยีการอบแห้งจำนวน 2 ครั้ง คือ

- International Short Course on Food Drying Technology, 1995 ที่สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี มีผู้เข้ารับการอบรมประมาณ 45 คน

- International Short Course on Grain Drying Technology, 1996 ที่สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี มีผู้เข้ารับการอบรมประมาณ 50 คน

5. เป็นวิทยากรบรรยายในการอบรมระดับสัมมนา หรือการประชุมเชิงปฏิบัติการเกี่ยวกับเทคโนโลยีการอบแห้งจำนวน 4 ครั้ง ดังนี้

- การอบรมระดับสัมมนาด้านการอบแห้งเมล็ดพืช, 2538 ที่มหาวิทยาลัยนเรศวร มีผู้เข้ารับการอบรมประมาณ 25 คน

- การบรรยายในที่ประชุมเชิงปฏิบัติการเรื่อง การอบแห้งข้าวเปลือกในที่เก็บ ที่โรงแรนริชมนองค์ จ. นนทบุรี (จัดโดยกรมส่งเสริมการเกษตร) , 2538 มีผู้เข้ารับการอบรมประมาณ 25 คน

- การบรรยายในที่ประชุมเชิงปฏิบัติการเรื่องเทคนิคการเก็บรักษาคุณภาพข้าวในชั้งชาก ที่พิษณุโลก (จัดโดยกรมส่งเสริมการเกษตร) , 2538 มีผู้เข้ารับการอบรมประมาณ 250 คน

- การอบรมด้านเทคโนโลยีหลังการเก็บเกี่ยวข้าวที่กองเกษตรวิศวกรรม (สนับสนุนโดย สกอ.) , 2539 มีผู้เข้ารับการอบรมประมาณ 25 คน

รายละเอียดของผลงานวิจัยและพัฒนาปรากฏอยู่ในภาคผนวก รวม 9 บทความ ซึ่งพอสรุปสรุปสรุป สำหรับได้ดังนี้

1. ได้พัฒนาแบบจำลองทางคณิตศาสตร์ของการอบแห้งข้าวเปลือกและข้าวโพด โดยเทคนิคฟลูอิโอดีซ์เบค แบบจำลองดังกล่าวมีความแม่นยำ และสามารถนำไปใช้ในการศึกษาหาเรื่อง ในการอบแห้งที่เหมาะสม

2. ได้พัฒนาแบบจำลองทางคณิตศาสตร์ของการอบแห้งข้าวเปลือกและข้าวโพดในชาก เก็บ แบบจำลองดังกล่าวมีความแม่นยำสูง และได้นำมาใช้ในการศึกษาหาเรื่อง ไปที่เหมาะสม รวมทั้งจัดทำไดอะแกรมสำหรับช่วยการออกแบบระบบอบแห้งเมล็ดพืชในชากเก็บ

3. ได้มีการศึกษาความเป็นไปได้ของการลดความเสียหายของข้าวเปลือกชี้ โดยการระบายน้ำอากาศแลดูร้อน และอากาศเย็น (15°C) พนว่าสามารถลดช่วงระยะเวลาการเก็บรักษา ข้าวเปลือกชี้ ได้ การเป่าอากาศเย็นอาจมีค่าใช้จ่ายที่ค่อนข้างสูง

4. ในการอบแห้งและเก็บรักษาข้าวเปลือกในชากเก็บ พนว่าสามารถทำได้ดีและมีความคุ้มทุน เนื่องจากคุณภาพข้าวเปลือกสูงชี้ และมีราคาสูงชี้ สำหรับข้าวโพดพบว่าไม่มีความคุ้มทุน เนื่องจากไม่มีผลตอบแทนในเรื่องคุณภาพข้าวโพด

5. ในการอบแห้งข้าวเปลือกด้วยเทคนิคฟลูอิไดซ์เบด พนักงานสามารถอบแห้งได้อย่างรวดเร็วภายในเวลาประมาณ 2 นาที ตื้นเปลืองพลังงานไม่สูงมากนัก ดังนั้นจึงเริ่มเป็นที่ยอมรับของสื่อสารมวลชนอย่างรวดเร็ว สามารถผลิตข้ายเป็นการค้าได้แล้วกว่า 70 เครื่อง ซึ่งรวมถึงส่งออกต่างประเทศ เช่น ได้หัวนัน พลิปปินส์ อินโดนีเซีย กว่า 10 เครื่อง

แม้ว่าโครงการทั้งสองจะประสบความสำเร็จด้วยดี แต่ก็ยังมีประเด็นที่น่าสนใจสำหรับการศึกษาเพิ่มเติม ได้แก่

1. การศึกษาระบบการอบแห้งที่สมบูรณ์ ซึ่งอาจประกอบด้วยขั้นตอนต่าง ๆ ดังนี้ อบแห้งด้วยเทคนิคฟลูอิไดซ์เบด, การกึ่บในที่อันอากาศ (tempering) การเปาเย็น, การอบแห้งข้าครั้งที่สองซึ่งอาจใช้เทคนิคฟลูอิไดเซ็น, หรือเครื่องอบแห้งแบบ LSU หรือการอบแห้งในช่องกึ่บ

2. การศึกษาเทคนิคการอบแห้งเมล็ดพืชแบบสเปาเต็ดเบด (เทคนิคใหม่) ซึ่งอาจเหมาะสมกับการอบแห้งเมล็ดพืชที่ความชื้นปานกลาง ประมาณ 19-14% มาตรฐานเปีຍก

3. การศึกษาการใช้พลังงานความร้อนจากการเผาไหม้แกลบ ซึ่งควรเน้นระบบเตาที่มีการป้อนแกลบและนำเข้าออกจากเตาโดยอัตโนมัติ และสามารถควบคุมอุณหภูมิได้ดี

4. ควรศึกษาระบบควบคุมอัตโนมัติสำหรับระบบอบแห้งเมล็ดพืชซึ่งอาจจะเป็นที่ยอมรับในอนาคตอันใกล้

CROSS-FLOW FLUIDIZED BED PADDY DRYER: PROTOTYPE AND COMMERCIALIZATION

Somchart Soponronnarit¹
Mustafa Yapha² and Somkiat Prachayawarakorn³

¹ School of Energy and Materials

² Former graduate student, ³ Faculty of Engineering
King Mongkut's Institute of Technology Thonburi
Suksawat 48 Rd., Bangkok 10140, Thailand

Key words: Drying; fluidization; grain; energy consumption

ABSTRACT

The objective of this paper is to design and test a prototype, 0.82 ton/h capacity, fluidized bed paddy dryer for high moisture paddy. Exhausted air is partially recycled. Experimental results showed that the unit operated efficiently and yielded high product quality in terms of head yield and whiteness. In reducing the moisture content from 4.5% to 24% dry-basis using air temperature of 100-120 °C, fraction of air recycled of 0.66, specific air flow rate of 0.05 kg/s-kg dry matter, superficial air velocity of 3.2 m/s, bed depth of 0.1 m, total primary energy consumption was 2.32 MJ/kg water evaporated of which 0.35 was primary energy from electricity (electrical energy multiplied by 2.6) and 1.79 was primary energy in terms of heat.

INTRODUCTION

Soponronnarit and Prachayawarakorn (1994) reviewed some research and development works on fluidized bed drying of grain especially paddy. A mathematical model of a batch fluidized bed dryer including drying kinetic equation was developed. Optimum operating parameters were investigated.

Soponronnarit et al. (1995) described the development of a cross-flow fluidized bed paddy dryer with a capacity of 200 kg/h. Experimental results showed that, final moisture content of paddy should not be lower than 23% dry basis if

quality in terms of both whiteness and head yield was maintained. Drying air temperature was 115 °C. Simulated results indicated that the appropriate operating parameters should be as follows: air speed of 2.3 m/s, bed thickness of 10 cm and fraction of air recycled of 80%. At this condition, energy consumption was close to the minimum while drying capacity was near the maximum. In this study, moisture of paddy was reduced from 30% to 24% dry-basis.

According to the success of the development of the cross-flow fluidized bed paddy dryer, Rice Engineering Supply Co. Ltd., a private company based in Thailand, showed their interest in the collaboration of the development of a prototype with a capacity of approximately 1 ton per hour. The aim of the unit was to dry paddy with initial moisture content of approximately 30-43% down to 23-24% dry-basis in a single pass.

The objective of this paper was to describe the development of a prototype of cross-flow fluidized bed paddy dryer with a capacity of approximately 1 ton per hour. Drying performance as well as product quality were evaluated. Due to the success of the prototype unit, the fluidized bed paddy dryer with a capacity of 2.5-5.0 tons per hour is now commercialized. This will be described briefly in this paper.

MATERIALS AND METHODS

The Prototype Fluidized Bed Dryer

Figure 1 shows the diagram of the prototype fluidized bed paddy dryer. It comprises of a drying section, a 7.5 kW backward curved blade centrifugal fan, a diesel fuel oil burner and a cyclone. The bed length, width and height of the drying section are 1.7 m, 0.3 m and 1.2 m respectively. Paddy bed depth is controlled by a weir. Paddy is fed in and out by rotary feeders. In operation, hot air of which the temperature is controlled by a thermostat is blown through a perforated steel sheet and then into the drying section in which the direction of the air and grain flow is perpendicular. A small portion of exhausted air is delivered to the atmosphere while the remain after being cleaned by the cyclone is recycled, mixed with ambient air and reheated to a desired temperature. Feed rate of paddy can be varied from less than 1 ton to over than 1.5 tons. More detail is available in Yapha (1994).

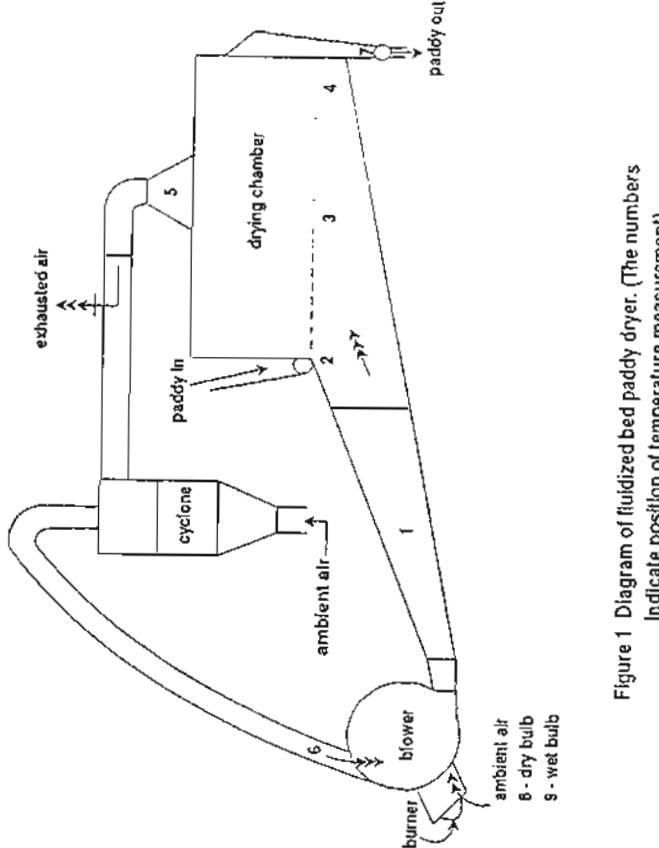


Figure 1 Diagram of fluidized bed paddy dryer. (The numbers indicate position of temperature measurement)

Method of Experiment

The experiment were divided into two parts. The first part was conducted at Rice Engineering Supply Co. Ltd. as being commissioned. Initial moisture content of paddy was 26% dry-basis, air flow rate was 1.6 m³/s and air temperature at the inlet of drying section was 60 °C. During drying, paddy samples at the inlet and outlet of the dryer were collected for the determination of moisture and quality such as whiteness and head yield. Temperatures at nine positions were measured by a thermocouple, type K, connected to a data logger with an accuracy of ± 1 °C. Air velocity was measured by a hot wire anemometer calibrated with a pitot static tube. Electrical energy and diesel fuel oil were measured. Paddy dried in the first pass was re-dried as the second pass with one hour delay.

The second part of the experiment was conducted at Koong Lhee Chan, a paddy merchant site in Central Thailand. Initial moisture content was much higher, 45% dry-basis. Air flow rate remained the same. Air temperature at the inlet of

quality in terms of both whiteness and head yield was maintained. Drying air temperature was 115 °C. Simulated results indicated that the appropriate operating parameters should be as follows: air speed of 2.3 m/s, bed thickness of 10 cm and fraction of air recycled of 80%. At this condition, energy consumption was close to the minimum while drying capacity was near the maximum. In this study, moisture of paddy was reduced from 30% to 24% dry-basis.

According to the success of the development of the cross-flow fluidized bed paddy dryer, Rice Engineering Supply Co. Ltd., a private company based in Thailand, showed their interest in the collaboration of the development of a prototype with a capacity of approximately 1 ton per hour. The aim of the unit was to dry paddy with initial moisture content of approximately 30-43% down to 23-24% dry-basis in a single pass.

The objective of this paper was to describe the development of a prototype of cross-flow fluidized bed paddy dryer with a capacity of approximately 1 ton per hour. Drying performance as well as product quality were evaluated. Due to the success of the prototype unit, the fluidized bed paddy dryer with a capacity of 2.5-5.0 tons per hour is now commercialized. This will be described briefly in this paper.

MATERIALS AND METHODS

The Prototype Fluidized Bed Dryer

Figure 1 shows the diagram of the prototype fluidized bed paddy dryer. It comprises of a drying section, a 7.5 kW backward curved blade centrifugal fan, a diesel fuel oil burner and a cyclone. The bed length, width and height of the drying section are 1.7 m, 0.3 m and 1.2 m respectively. Paddy bed depth is controlled by a weir. Paddy is fed in and out by rotary feeders. In operation, hot air of which the temperature is controlled by a thermostat is blown through a perforated steel sheet and then into the drying section in which the direction of the air and grain flow is perpendicular. A small portion of exhausted air is delivered to the atmosphere while the remain after being cleaned by the cyclone is recycled, mixed with ambient air and reheated to a desired temperature. Feed rate of paddy can be varied from less than 1 ton to over than 1.5 tons. More detail is available in Yapha (1994).

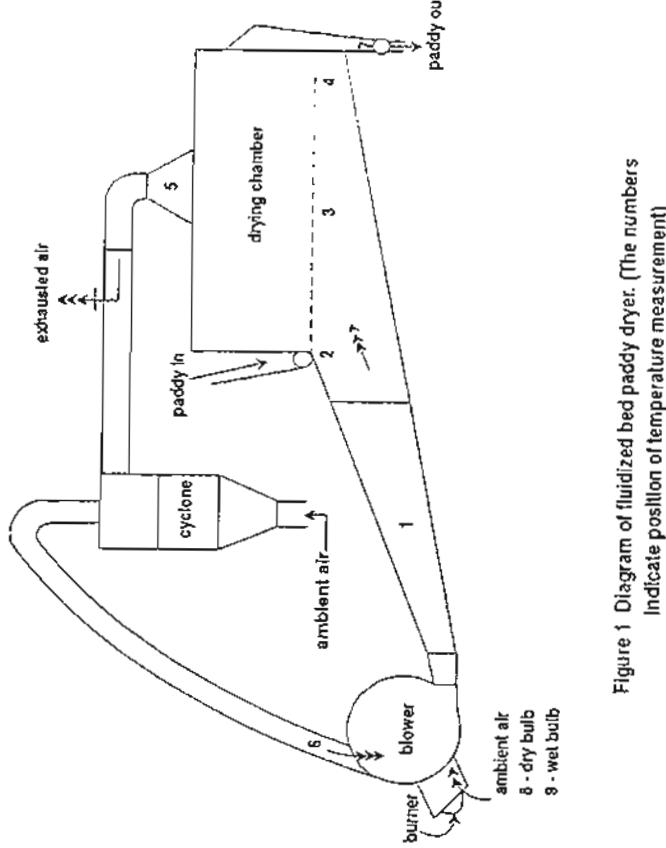


Figure 1 Diagram of fluidized bed paddy dryer. (The numbers indicate position of temperature measurement)

Method of Experiment

The experiment were divided into two parts. The first part was conducted at Rice Engineering Supply Co. Ltd. as being commissioned. Initial moisture content of paddy was 26% dry-basis, air flow rate was 1.6 m³/s and air temperature at the inlet of drying section was 60 °C. During drying, paddy samples at the inlet and outlet of the dryer were collected for the determination of moisture and quality such as whiteness and head yield. Temperatures at nine positions were measured by a thermocouple, type K, connected to a data logger with an accuracy of ± 1 °C. Air velocity was measured by a hot wire anemometer calibrated with a pitot static tube. Electrical energy and diesel fuel oil were measured. Paddy dried in the first pass was redried as the second pass with one hour delay.

The second part of the experiment was conducted at Koong Lice Chan, a paddy merchant site in Central Thailand. Initial moisture content was much higher, 45% dry-basis. Air flow rate remained the same. Air temperature at the inlet of

Temperatures

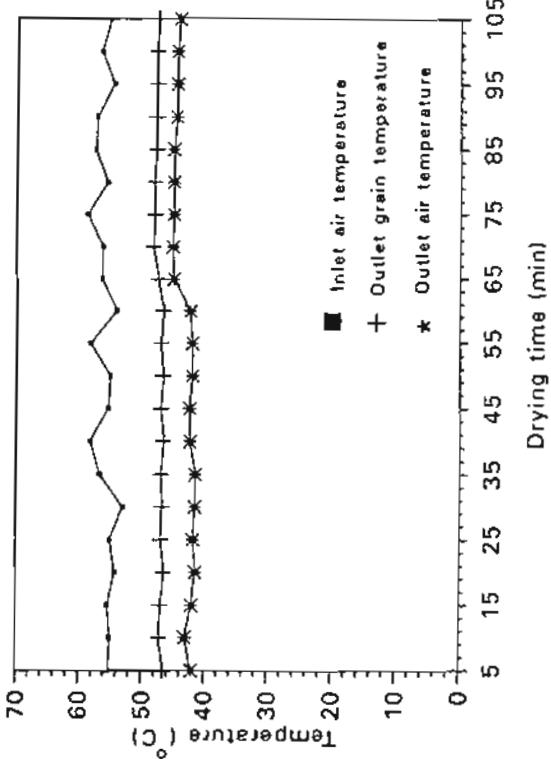


Figure 4 Evolution of temperatures.
[at Rice Engineering Supply Co., Ltd.]

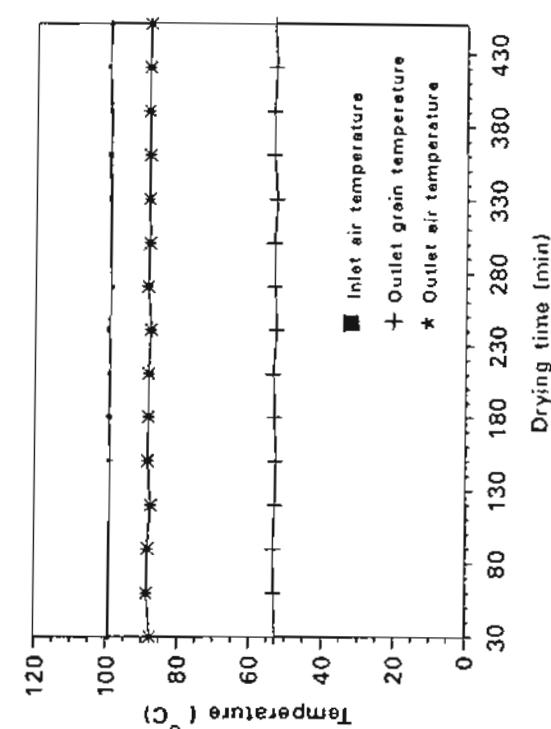


Figure 5 Evolution of temperatures.
[at Koong Lhee Chan]

For low inlet air temperature, 60 °C and low initial moisture content of paddy, 26% dry-basis, average outlet air temperature was close to outlet grain temperature, a bit lower as shown in Figure 4. On the contrary, the two temperatures were significantly different for high inlet air temperature, 100 °C and high initial moisture content of paddy, 45% dry-basis as shown in Figure 5.

Energy Consumption

For drying paddy from 26% to 21% dry-basis with feed rate of 1 ton/h, specific air flow rate of 0.05 kg/s·kg dry matter, drying air temperature of 60 °C and fraction of air recycled of 0.66, it required total primary energy consumption of 5.7 MJ/kg water evaporated of which 2.45 was primary energy from electricity (electrical energy multiplied by 2.6) and 3.42 was primary energy in terms of heat. During the test, average ambient air temperature and relative humidity were 35.7 °C and 67.1% respectively.

For drying paddy from 45% to 24% dry-basis with feed rate of 0.82 ton/h, drying air temperature of 100-120 °C and approximately the same specific air flow rate and fraction of air recycled, it required total primary energy of 2.32 MJ/kg water evaporated of which 0.53 was primary energy from electricity and 1.79 was primary energy in terms of heat. During the test, average ambient air temperature and relative humidity were 36.6 °C and 59% respectively.

Electrical power at various equipments was reported as follows: electrical motor for driving fan, 4.93 kW; electrical motors for driving rotary feeders (in and out), 0.72 kW; electrical motor for bucket elevator, 0.79 kW; diesel fuel oil burner, 0.11 kW. In total, the electrical power was 6.55 kW and heating power was 60.4 kW.

Paddy Quality

Figure 6 shows that head yield of paddy dried in fluidized bed dryer with inlet air temperature of 100-120 °C is on the average approximately 6.5% less than the reference paddy which was dried by ambient air (56.9%). This figure is relatively interesting. Figure 7 shows the result of whiteness. It indicates that the whiteness of paddy dried in the fluidized bed dryer or dried by ambient air is nearly

Temperatures

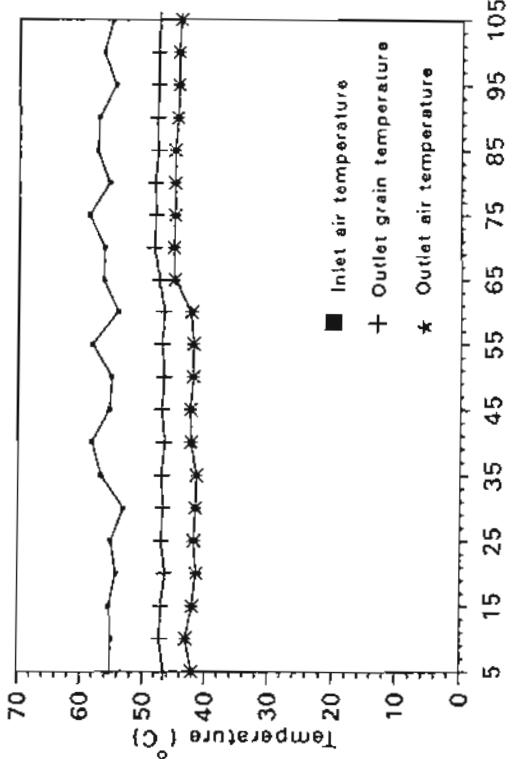


Figure 4 Evolution of temperatures.
Lat Rice Engineering Supply Co.,Ltd.1

For low inlet air temperature, 60 °C and low initial moisture content of paddy, 26% dry-basis, average outlet air temperature was close to outlet grain temperature, a bit lower as shown in Figure 4. On the contrary, the two temperatures were significantly different for high inlet air temperature, 100 °C and high initial moisture content of paddy, 45% dry-basis as shown in Figure 5.

Energy Consumption

For drying paddy from 26% to 21% dry-basis with feed rate of 1 ton/h, specific air flow rate of 0.05 kg/s·kg dry matter, drying air temperature of 60 °C and fraction of air recycled of 0.66, it required total primary energy consumption of 5.7 MJ/kg water evaporated of which 2.45 was primary energy from electricity (electrical energy multiplied by 2.6) and 3.42 was primary energy in terms of heat. During the test, average ambient air temperature and relative humidity were 35.7 °C and 67.1% respectively.

For drying paddy from 45% to 24% dry-basis with feed rate of 0.82 ton/h, drying air temperature of 100-120 °C and approximately the same specific air flow rate and fraction of air recycled, it required total primary energy of 2.32 MJ/kg water evaporated of which 0.53 was primary energy from electricity and 1.79 was primary energy in terms of heat. During the test, average ambient air temperature and relative humidity were 36.6 °C and 59% respectively.

Electrical power at various equipments was reported as follows: electrical motor for driving fan, 4.93 kW; electrical motors for driving rotary feeders (in and out), 0.72 kW; electrical motor for bucket elevator, 0.79 kW; diesel fuel oil burner, 0.11 kW. In total, the electrical power was 6.55 kW and heating power was 60.4 kW.

Paddy Quality

Figure 6 shows that head yield of paddy dried in fluidized bed dryer with inlet air temperature of 100-120 °C is on the average approximately 6.5% less than the reference paddy which was dried by ambient air (56.9%). This figure is relatively interesting. Figure 7 shows the result of whiteness. It indicates that the whiteness of paddy dried in the fluidized bed dryer or dried by ambient air is nearly

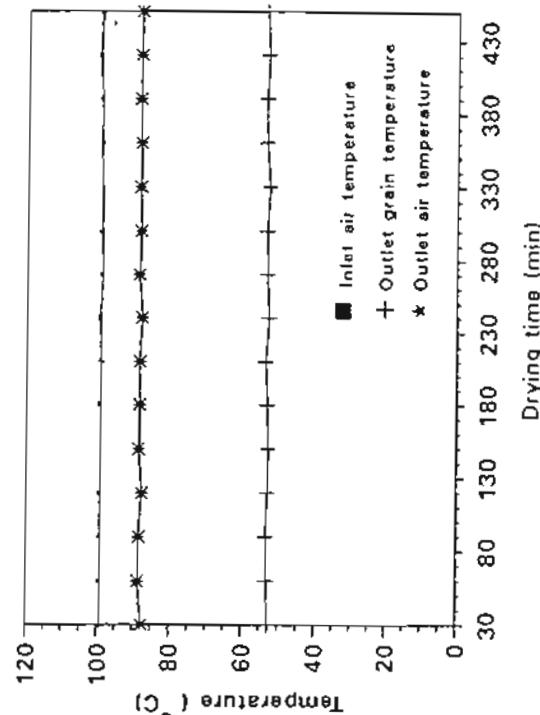


Figure 5 Evolution of temperatures.
Lat Koong Lhee Chanl

Long Run Testing

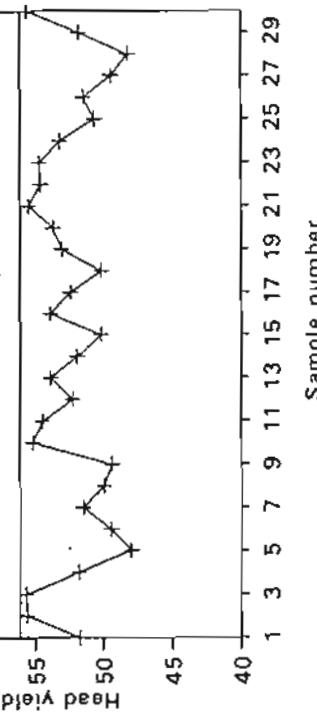


Figure 6 Head yield of paddy after drying compared to controlled sample. [Temperature of 100 - 120 °C, moisture content of paddy from 45 % to 24 % dry-basis]

From Prototype to Commercialization

Through out the wet harvesting period of the year 1994, the prototype fluidized bed dryer was used for 1,497 hours, approximately 1,211 tons of paddy were dried. No repair was required. The owner of the paddy merchant site had a conclusion about the unit as follows: ease of use, very fast drying rate especially at high moisture level, less energy consumption in terms of electricity and diesel fuel oil and more uniform product moisture, compared to the two existing cross-flow columnar dryers at the site.

CONCLUSION

Field trial of the prototype fluidized bed paddy dryer with a capacity of 0.82 ton/h during the wet harvesting season in 1994 for totally 1,497 hours, indicated that the unit was easy to use, efficiently performed in terms of very fast drying rate and low energy consumption and gave uniform product moisture content, compared to the two existing cross-flow columnar dryers installed at the same site, as reported by the owner of the paddy merchant site though there was no comparative performance figures.

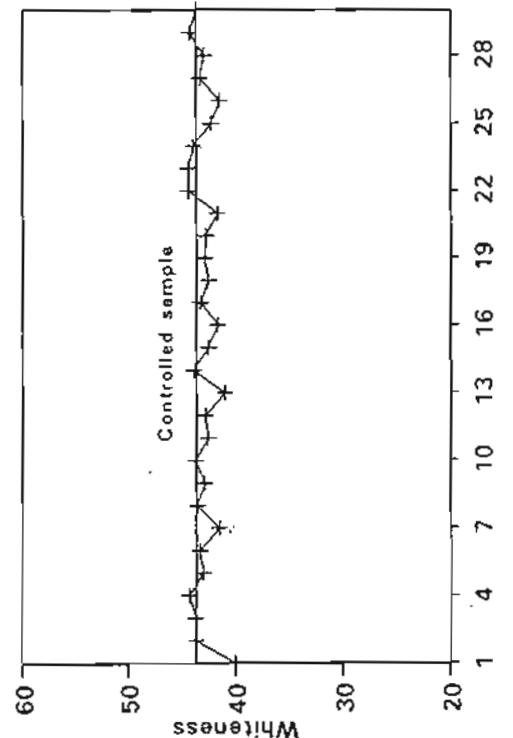


Figure 7 Whiteness of paddy after drying compared to controlled sample. [Temperature of 100 - 120 °C, moisture content of paddy from 45 % to 24 % dry-basis]

Result from the 70 hours of use of prototype indicated that the unit operated efficiently and yielded high product quality in terms of head yield and whiteness. In reducing the moisture content from 45% to 24% dry-basis using air temperature of 100-120 °C, fraction of air recycled of 0.66, specific air flow rate of 0.05 kg/s·kg dry matter, superficial air velocity of 3.2 m/s, bed depth of 0.1 m, total primary energy was 2.32 MJ/kg water evaporated of which 0.53 was primary energy from electricity (electrical energy multiplied by 2.6) and 1.79 was primary energy in terms of heat.

ACKNOWLEDGEMENT

The authors would like to express their sincere thanks to King Mongkut's Institute of Technology Thonburi for providing annual budget of research, Australian centre for International Agricultural Research and the Thailand Research Fund for financial support, Rice Engineering Supply Co. Ltd. for the collaboration in fabrication and installation of the prototype and finally to Rice Research Institute for providing equipments for testing paddy quality.

REFERENCES

Soponronnarit, S. and Prachayawarakorn, S. 1994, Optimum Strategy for Fluidized Bed Paddy Drying, *Drying Technology*, 12 (7) pp. 1667-1686.

Soponronnarit, S., Prachayawarakorn, S. and Sripawatakul, O. 1995, Development of Cross-Flow Fluidized Bed Paddy Dryer, Accepted to be published in *Drying Technology*, 13(7).

Yapha, M. 1994, Design and Testing of Pilot Continuous Fluidized Bed Paddy Dryer, Master Thesis, School of Energy and Materials, King Mongkut's Institute of Technology Thonburi, Bangkok, Thailand.

Sutherland, J.W. and Ghaly, T.F. 1990, Rapid Fluid Bed Drying of Paddy Rice in the Humid Tropics, Presented at the 13th ASEAN Seminar on Grain Postharvest Technology, Brunei Darussalam.

คณะพลังงานและวัสดุ
สถาบันเทคโนโลยีพระจอมเกล้าชัชนาท (สจด.)
ถนนสุขสวัสดิ์ 48 รายวิชานุรักษ์ กรุงเทพฯ 10140
โทร. (662) 4270039 ต่อ 7100
โทรสาร (662) 4279062

SCHOOL OF ENERGY AND MATERIALS
KING MONGKUT'S INSTITUTE OF TECHNOLOGY THONBURI (KMUTT)
Suksawat 48 Rd., Rathurana, Bangkok 10140 THAILAND
Tel. (662) 4270039 Ext. 7100 Fax. (662) 4279062

November 4, 1996

Prof. Arun S. Mujumdar, Editor DRT
Department of Chemical Engineering
McGill University
Montreal, Quebec
CANADA H3A 2A7

Dear Prof. Mujumdar,

Ref. MS-Drying of corn in fluidized bed dryer

Enclosed with this letter are an original manuscript and it's copy. The former copy with the referee's comment is also attached.

With my best wishes.

Yours sincerely,

OK

Somchart

(Dr. Somchart Soponronnarit)
Professor of Energy Technology

Accepted DRT 15(5) (957)

Arun S. Mujumdar
20/11/96

Professor A. S. Mujumdar
Editor, Drying Technology

DRYING CHARACTERISTICS OF CORN IN FLUIDIZED BED DRYER

Somchart Soponronnarit¹ Anan Pongtornkulpanich²
and Somkiat Prachayawarakorn³

1 School of Energy and Materials

2 Former graduate student

3 Faculty of Engineering

King Mongkut's Institute of Technology Thonburi
Suksawat 48 Road, Bangkok 10140, Thailand

ABSTRACT

A batch fluidized bed dryer was carried out for corn drying. Drying characteristics of corn were investigated. The experimental results indicated that moisture transfer inside a corn kernel was controlled by internal diffusion by the following conditions : inlet hot air temperatures of 120 - 200 °C, superficial air velocities of 2.2- 4 m/s, bed depths of 4 - 12 cm, fraction of air recycled of 0.5 - 0.9 and initial moisture content of corn of 43 % dry-basis. The Wang and Sing equation could describe in accordance with the results. Inlet hot air temperature and specific air flow rate were independent variables for drying constant model in the Wang and Singh equation.

Key words : Maiz drying, Fluidization, Thin layer equation

INTRODUCTION

The important agricultural commodities largely grown in Thailand are paddy and corn, which should be dried to 16 % dry-basis for safe storage. At the present, most of corn produced are used as a raw material in domestic feed mill industry. Therefore, the problem of corn quality in terms of aflatoxin substance is very important because this substance is very toxic to human beings and animals. Normally, moisture content of freshly harvested corn varies in a range of 33 - 40 % dry-basis. At this moisture level under hot and humid climates, *Aspergillus flavus* infected in corn kernels grows easily and thus produces aflatoxin substance (Wongurai et al., 1992). Consequently, corn should be dried to 22 - 23 % dry-basis within 1 - 2 days (Prachayawarakorn et al., 1995). Sun drying is not suitable any more due to rapid growth of industry in Thailand. Mechanical drying, an alternative of grain dryings, then becomes more necessary. There are many types of mechanical dryer such as fluidized bed dryer, rotary dryer, LSU dryer, moving-bed dryer, etc. Efficiency of these mechanical dryers is different because of the differences in mechanism of heat transfer and characteristics of materials. The fluidized bed dryer is widely used in many industries because of more several advantages than the other types (Nonhebel and Moss, 1971) as follows:

1. Rates of heat and mass transfer are high, consequently drying time is short, and the dryer is small but high capacity.
2. Isothermal bed yields a desired product quality and makes continuous dryer to be controlled easily.

These advantages are achieved from high air velocity. By the fact of this, thermal efficiency of fluidized bed dryer is rather low (Giner and Calvelo, 1987) and thus it has importance to economic consequence for merchants and customers.

In order to improve thermal efficiency, many experiments have been done to describe drying process first, then mathematical model is performed and computer simulation is used to determine the optimum drying condition at which energy consumption is minimized under acceptable product quality.

The objective of this research is to investigate drying characteristics of corn in a small batch fluidized bed dryer.

MATERIALS AND METHODS

Corn kernel was dried in a batch fluidized bed dryer made of stainless steel sheets as shown in Figure 1. The system comprises of a cylinder-shaped reactor with dimension of 20 cm diameter and 140 cm high, four separately controlled 3 kW electric heaters and a backward curved blade electric centrifugal fan driven by a 1.5 kW motor. Air flow rate could be changed by adjusting a mechanical variable speed unit at the fan and the whole system was insulated with glass wool in order to reduce heat loss. Some parts of exhaust air were recycled, mixed with the fresh air and then reheated to a desired temperature, which was controlled by PID controller with an accuracy of $\pm 1^{\circ}\text{C}$.

Dry corn was rewet by spraying water, mixed and kept in a temperature-controlled room at temperature of 4-8 $^{\circ}\text{C}$ within 5-7 days. The experiments were carried out to dry initial moisture content of corn from 43 % dry-basis to 22-23 % dry-basis using inlet hot air temperature of 120 - 200 $^{\circ}\text{C}$, superficial air velocity of 2.2 - 4.0 m/s, fraction of air recycled of 0.5 - 0.9 and bed depth of 4 - 12 cm. During the experiments, temperatures at various positions such as bed temperature, wet-bulb and dry-bulb temperatures of exhaust air and fresh air were measured with K-type thermocouple from which signal was transferred to a data logger with an accuracy of $\pm 1^{\circ}\text{C}$. For air velocity, it was measured with a hot-wire anemometer. The samples were collected from the dryer at 1, 3, 10, 15 and 20 minutes of drying time. The moisture content of corn was determined at temperature of 103 $^{\circ}\text{C}$ for 72 hours.

RESULTS AND DISCUSSION

Phenomenon of fluidization

Behavior of fluidized corn kernels was observed with a transparent reactor with the same dimension as cylinder-shaped reactor mentioned before. The experimental results showed that although pressure drop in a reactor increased with bed depth, superficial air velocity at minimum fluidizing conditions was independent as shown in Figure 2. This is because drag force by upward moving air per volume of expanded bed was constant. In contrast, superficial air velocity at minimum fluidizing condition increased with the increase of initial moisture content and could be well explained with a linear equation as shown in Figure 3. The movement of corn kernels at minimum fluidizing condition was relatively low and sometimes there was partially unfluidized corn in the reactor. When superficial air velocity was beyond minimum fluidized bed velocity, approximately 1.2 times of minimum fluidized bed velocity, the agitation and the movement of corn kernels were increasingly vigorous because of gas bubbles

formed. In addition, the size of gas bubbles was larger in deeper bed depth than that in shallower bed depth. Thus in this research the experimental drying conditions were specified as previous mentioned under an acceptable quality of fluidized bed : strong mixing of corn kernels and not too large size of gas bubble.

Effects of operating parameters on drying rate

In general, the factors such as air temperature, superficial air velocity and relative humidity affect on drying rate. In addition, for fluidized bed drying, bed depth of materials in the reactor is also rather important.

Temperature

Inlet hot air temperature greatly affected on drying rate of corn in fluidized bed dryer as shown in Figure 4, for three temperature levels at the same bed depth and superficial air velocity. By the fact of the result, it can be explained that moisture diffusion in a corn kernel becomes greater with higher grain temperature which results from higher heat transfer rate between corn kernel and drying air (Hustrulid and Flikke, 1959 ; Husain et al., 1970).

Relative humidity

In order to study the effects of driving force difference of vapor concentration on drying rate of corn, the fraction of air recycled was varied. It was found that relative humidity of drying air in a range of fraction of air recycled of 0.5 - 0.9 was insignificantly different and thus it did not affect on drying rate as shown in Figure 5.

Specific air flow rate

As previous research works about grain drying in fluidized bed dryer by Satayaprasert and Vanishsriwatana (1991), and Tumambing and Driscoll (1991), bed depth is an independent variable in drying rate equation, assuming insignificance in superficial air velocity. However, from the study of the effect of superficial air velocity and bed depth on drying rate, the results revealed that both parameters affected on drying rate of corn especially at high moisture level. Therefore in this research, superficial air velocity and bed depth were combined to be a new parameter called specific air flow rate, which was defined as ratio of mass flow rate of air to dry corn mass. As shown in Figures 6 - 8, moisture content of corn was more rapidly reduced at higher specific air flow rate than that at lower specific air flow rate because humidity of drying air at shallower bed depth was relatively lower than that at deeper bed depth, and corn temperature at shallower bed depth was higher than that at deeper bed depth during the experiment. In order to make sure that specific air flow rate could be explained well the results, the specific air flow rate was fixed by varying both bed depth and mass of corn. The results showed that moisture reduction was equal when specific air flow rates were nearly the same, as shown in Figures 9 and 10.

Drying rate equation

All of the experimental conditions indicated that moisture transfer in a corn kernel was controlled by internal diffusion and grain was rather completely exposed with drying air at constant conditions. Therefore three empirical thin layer drying equations were used to describe moisture transfer in corn kernels as follows :

Lewis' equation (Lewis, 1921)

$$\frac{M(t) - M_{eq}}{M_{in} - M_{eq}} = \exp(-kt) \quad (1)$$

where $M(t)$ = average moisture content of corn at any drying time t , dry-basis decimal
 M_{in} = initial moisture content of corn, dry-basis decimal
 M_{eq} = equilibrium moisture content of corn, dry-basis decimal
 k = drying constant, min^{-1}
 t = drying time, min

This equation neglects internal mass transfer resistance and thus assumes that drying rate is proportional to the difference between average moisture content and equilibrium moisture content.

Page's equation (Page, 1949)

$$\frac{M(t) - M_{eq}}{M_{in} - M_{eq}} = \exp(-xt^y) \quad (2)$$

where x, y = drying constant

The Page equation is an empirical modification of the Lewis equation. Most of experimental data of grain drying are better fitted with the Page equation than the Lewis equation.

Wang and Singh's equation (Wang and Singh, 1979)

$$\frac{M(t) - M_{eq}}{M_{in} - M_{eq}} = a \exp(-bt) \quad (3)$$

where a, b = drying constant

The Wang and Singh equation is modified from a theoretical drying equation, assuming sphere-shaped corn kernel, moisture equilibrium at the corn surface and a value of $Dt/R^2 > 0.1$, where D is a diffusion coefficient and R is a sphere radius of corn kernel. Moisture equilibrium equation for corn developed by Phudphong et al.(1990) was used to estimate equilibrium moisture content. The drying constant of each model was obtained by a linear regression technique. The fitted models were evaluated, based

on R squared and standard error of y estimation. The fitted models were the best fit of experimental data. From a comparison of fitted thin layer drying models and the results as shown in Figure 11, it showed that the Wang and Singh equation could describe the results better than the Lewis equation and the Page equation. Drying constants, a and b, were depended on specific air flow rate and inlet hot air temperature. This could be described with the following equations :

$$a = 0.810686 - 0.001930(T) - 1.166480(SP) + 0.005939(SP*T) - 0.031310 \ln(SP) \quad (4)$$

$$b = -0.073750 + 0.001234(T) - 0.482090 (SP) + 0.002849 (SP*T) + 0.009119 \ln (SP) \quad (5)$$

where SP = specific air flow rate, kg/s of drying air/kg of dry corn
T = temperature, °C

It should be noted that the thin layer drying equation for corn in the fluidized bed dryer in form of the Wang and Singh equation was achieved from data at the experimental drying condition as follows : inlet hot air temperature of 120-200 °C, bed depth of 4-12 cm, superficial air velocity of 2.2 -4 m/s and fraction of air recycled of 0.5 - 0.9.

CONCLUSIONS

The experimental results could be concluded as follows :

1. Drying rate of corn in fluidized bed dryer was affected by specific air flow rate and inlet hot air temperature. There was no constant drying rate period, mechanism of moisture movement inside a corn kernel was controlled by internal diffusion.
2. The Wang and Singh equation could describe the results with a sufficient accuracy in a limited range of drying condition.

ACKNOWLEDGMENT

The authors gratefully acknowledge Australian Centre for International Agricultural Research and The Thailand Research Fund for financial support.

REFERENCES

Giner, S.A. and Calvelo, A., 1987, Modelling of Wheat Drying in Fluidized Beds, *Journal of Food Science*, 52(5), 1358-1363.

Husain, A.C., Chen, C.S. and Clayton, J.T., 1970, Coupled Heat and Moisture Diffusion in Porous Food Products, *American Society of Agricultural Engineers Paper No. 70 - 833*, ASAE, St Joseph, MI.

Hustrulid, A. and Flikke, A.M., 1959, Theoretical Drying Curve for Shelled Corn, *Trans. ASAE*, 2, 112 - 114.

Lewis, W.K., 1921, The Rate of Drying of Solid Materials, *Journal of Industrial Engineering*, 13(5), 427 - 432.

Nonhebel, G. and Moss, A.A.H., 1971, Drying of Solids in the Chemical Industry, Butterworth, London.

Page, G., 1949, Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin layers. M.Sc. Thesis, Purdue University.

Phudphong, A., Soponronnarit, S., and Tia, V., 1990, Study of Parameters for Corn Drying, Thailand Engineering Journal, 4, 95 - 101.

Prachayawarakorn, S., Soponronnarit, S., Nathakaranakule, A. and Inchan, S., 1995, Controlling Aflatoxin Contamination in Maize Stored under Tropical Conditions, Proceedings of 17th ASEAN Technical Seminar on Grain Post-Harvest, Technology, Lumut, Malaysia.

Satayaprasert, C. and Vanishsriwatana, V., 1991, Drying Corn in Fluidized Bed, Thailand Engineering Journal, 44(12), 76 - 79.

Tumambing, J.A. and Driscoll, R.H., 1991, Modelling the Performance of Continuous Fluidized Bed Dryer for Pre-Drying of Paddy, Proceedings of 14th ASEAN Seminar on Grain Post-Harvest Technology, Philippines.

Wang, C.Y. and Singh, P., 1978, A Single Layer Drying Equation for Rough Rice, Paper No. 78 - 3001, Am.Soc.Agr.Eng. St.Joseph, MI.

Wongurai, A., Tsuruta, O. and Arai, K., 1992, Water Activity of Thai Maize and Growth of *Aspergillus Flavus*, Research Report of Maize Quality Improvement Research Centre Project, 7 - 9.

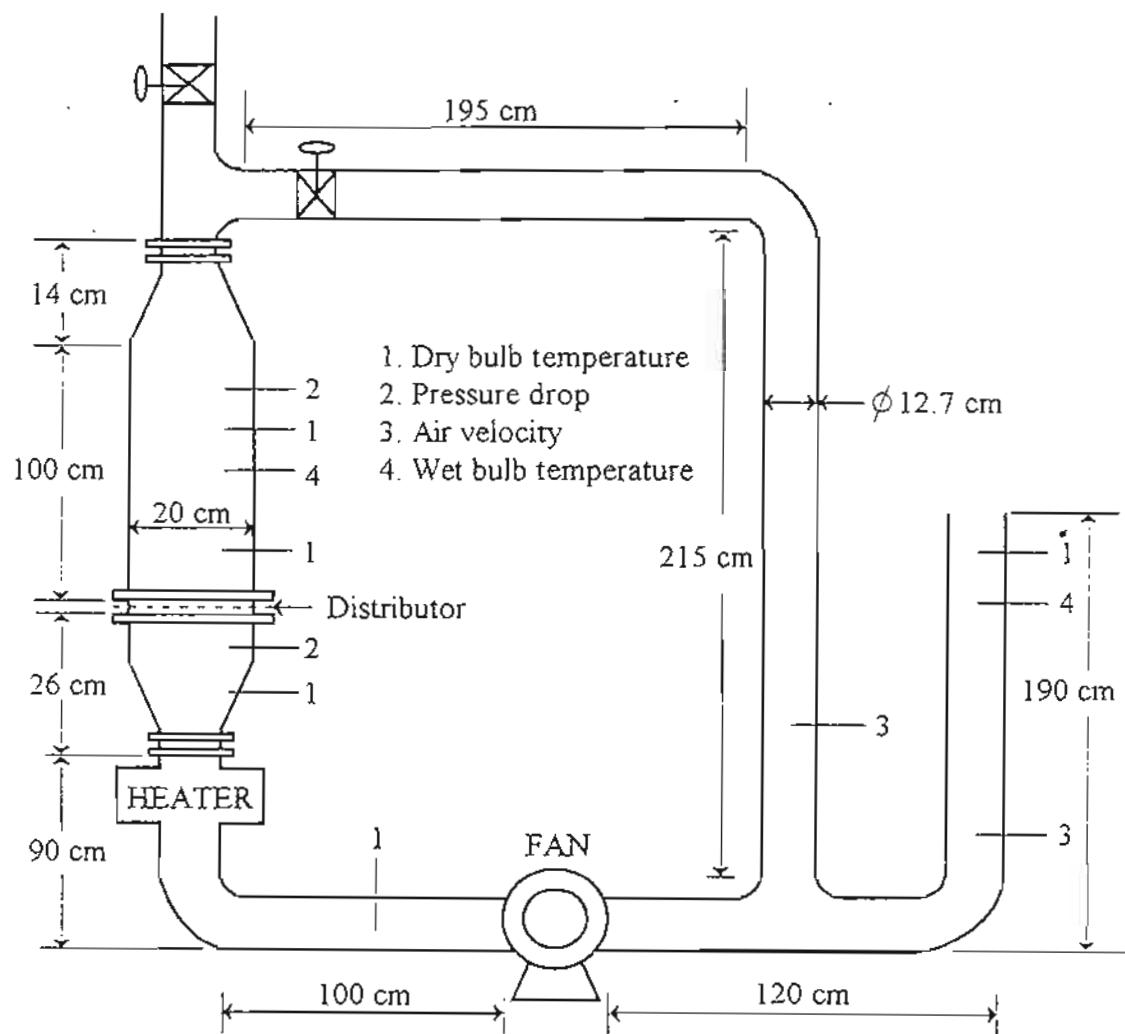


Figure 1 Experimental batch fluidized bed dryer

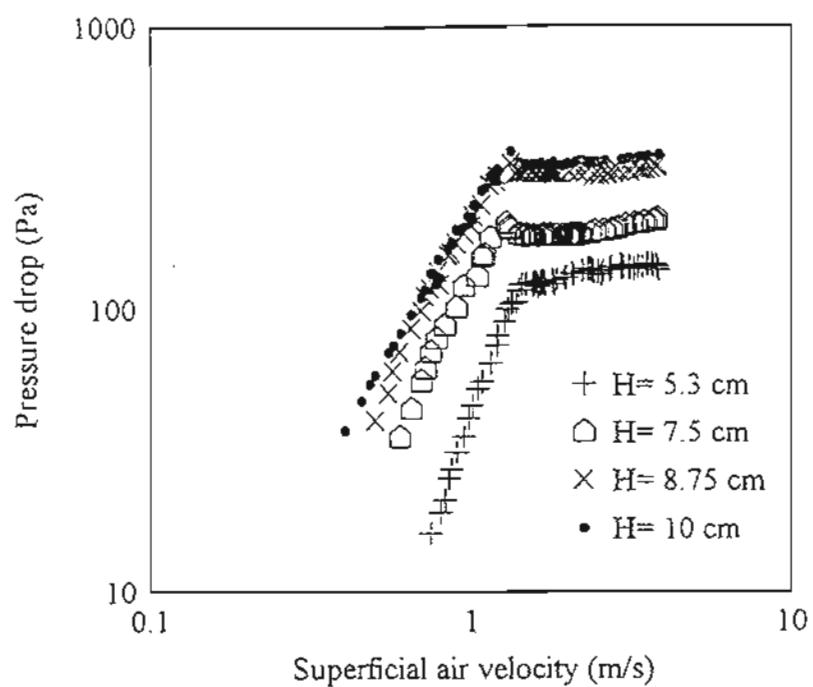


Figure 2: Relationship between pressure drop across bed and superficial air velocity at different bed depths.
[Initial moisture content of corn = 22.7 % dry-basis]

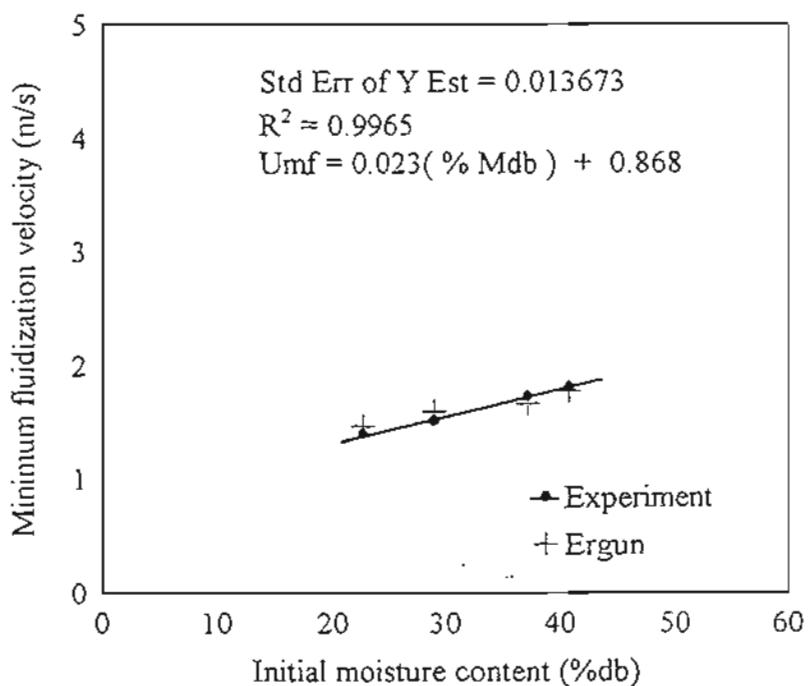


Figure 3: Relationship between minimum fluidized bed velocity and initial moisture content of corn

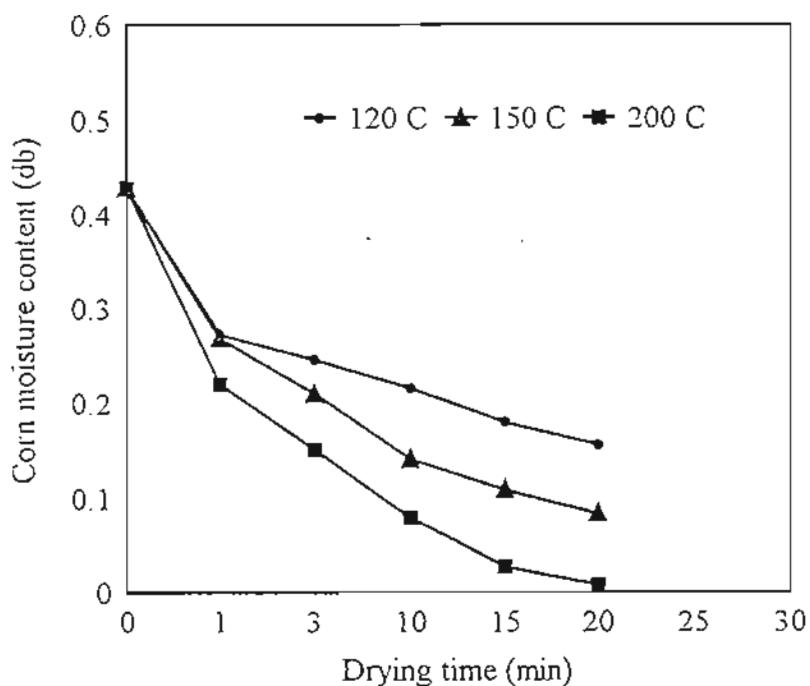


Figure 4: Effect of inlet hot air temperature on moisture content of corn.
 [Initial moisture content of corn = 43 % dry-basis,
 superficial air velocity = 2.2 m/s and bed depth = 8 0 cm]

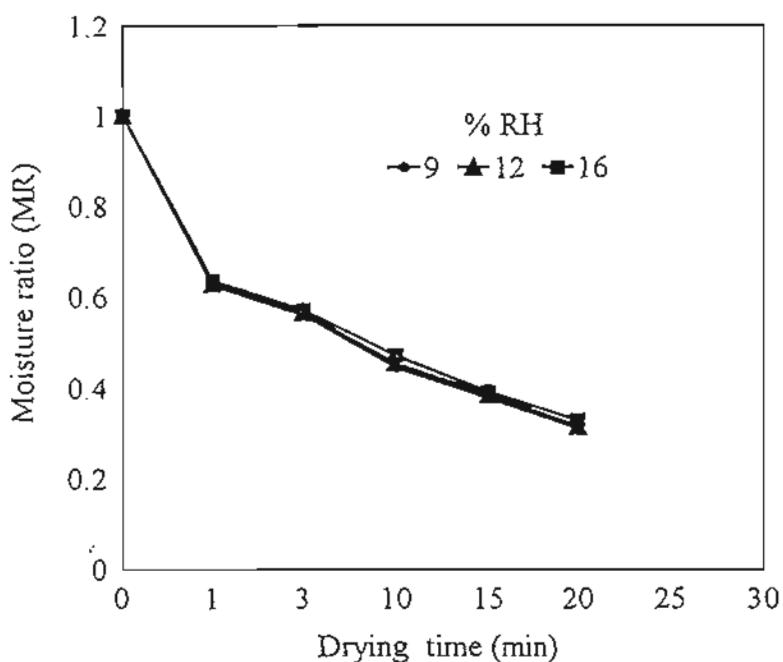


Figure 5: Effect of relative humidity of inlet hot air on moisture ratio
 [Initial moisture content of corn = 43 % dry - basis , bed
 velocity = 3.0 m/s , inlet hot air temperature = 125 C and
 bed depth = 10 cm]

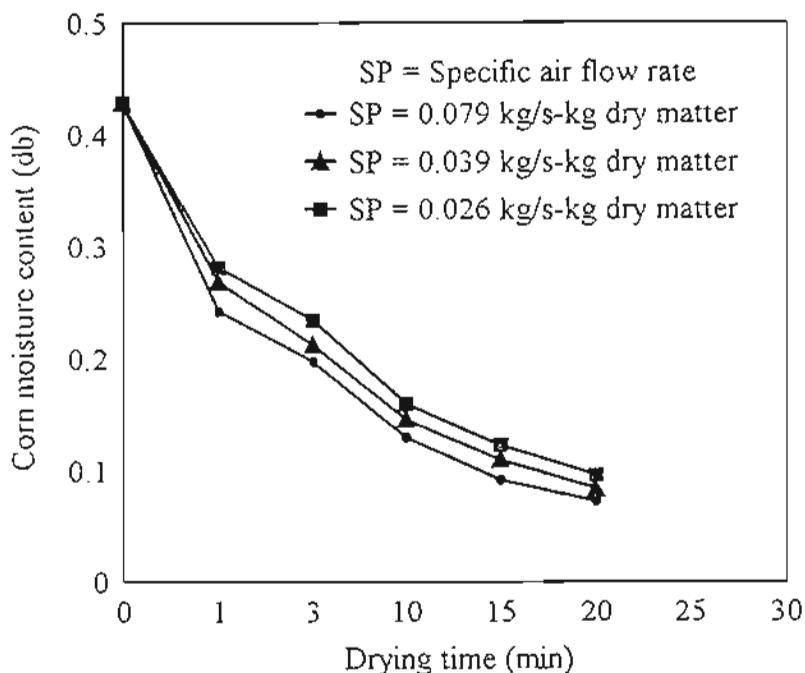


Figure 6: Effect of specific air flow rate on moisture content of corn during drying with a superficial air velocity = 2.2 m/s
 [Initial moisture content of corn = 43 % dry-basis, and inlet hot air temperature = 150 C]

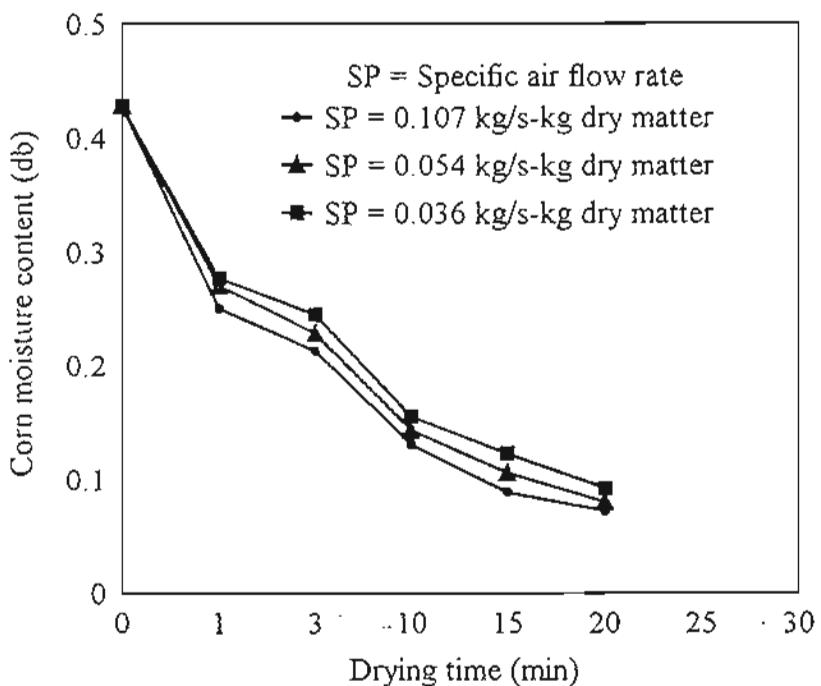


Figure 7: Effect of specific air flow rate on moisture content of corn during drying with a superficial air velocity = 3.0 m/s
 [Initial moisture content of corn = 43 % dry-basis, and inlet hot air temperature = 150 C]

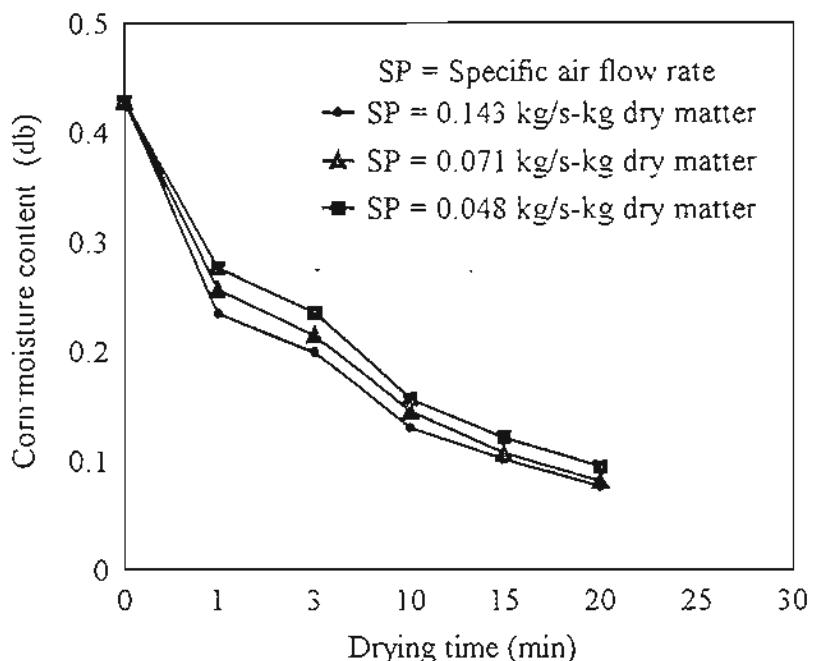
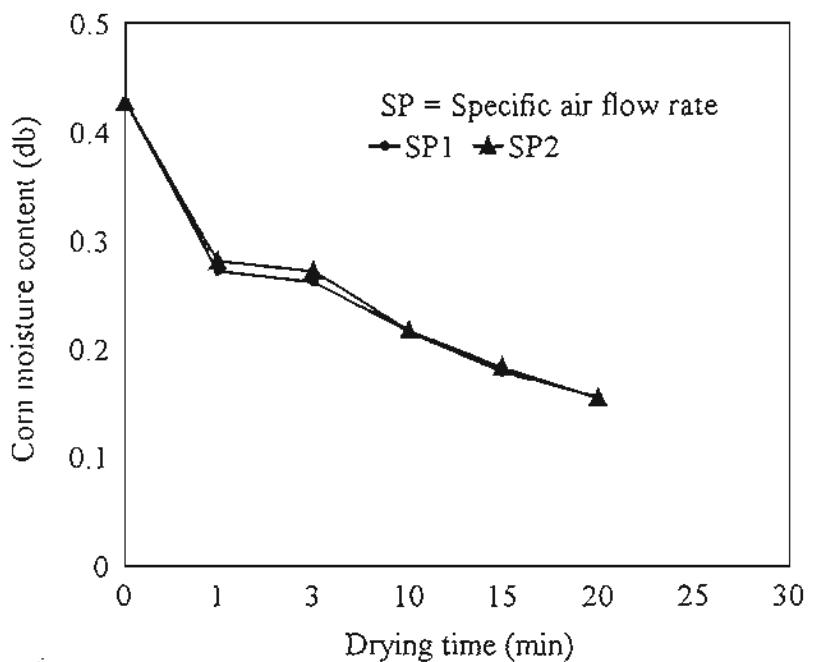
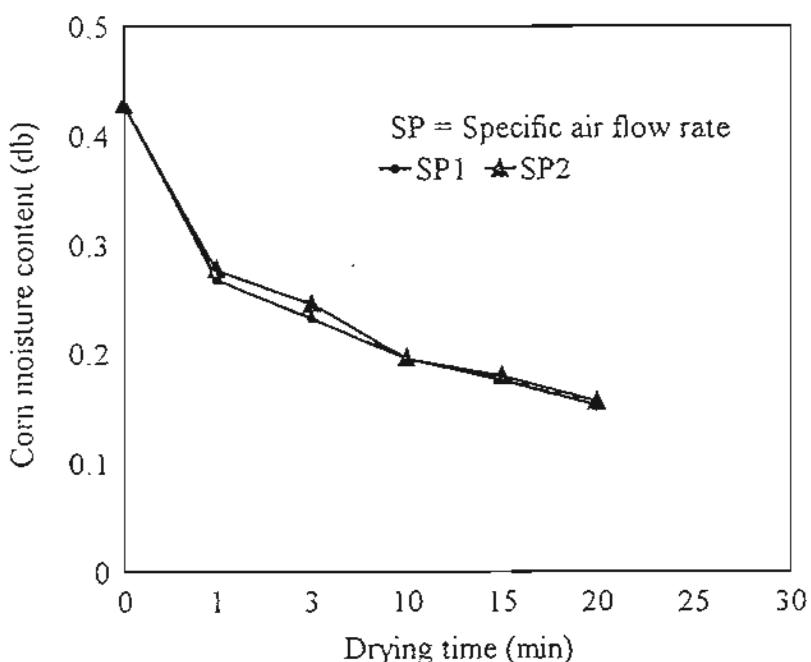
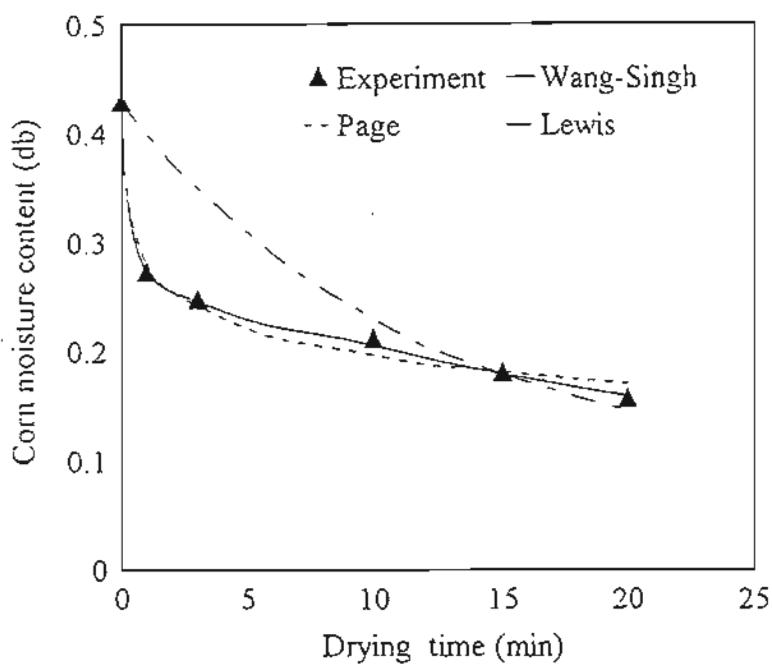




Figure 8: Effect of specific air flow rate on moisture content of corn during drying with a superficial air velocity = 4.0 m/s [Initial moisture content of corn = 43 % dry-basis, and inlet hot air temperature = 150 C]

Initial Moisture Content = 30 %wb , Inlet air temperature = 120 C
 SP1 = 0.039 kg/s-kg dry matter, Bed depth = 8 cm, Superficial air velocity = 2.2 m/s
 SP2 = 0.036 kg/s-kg dry matter, Bed depth = 12 cm, Superficial air velocity = 3.0 m/s

Figure 9 : Relationship between Corn Moisture Content and Drying time



Initial Moisture Content = 30 %wb , Inlet air temperature = 120 C

SP1 = 0.079 kg/s-kg dry matter, Bed depth = 4 cm, Superficial air velocity = 2.2 m/s

SP2 = 0.071 kg/s-kg dry matter, Bed depth = 8 cm, Superficial air velocity = 4.0 m/s

Figure 10 : Relationship between corn moisture content and drying time for the range of specific air flow rate of 0.071 -0.079 kg/s-kg dry matter

	Wang-Singh	Page	Lewis
Std Err of Y Est	0.061879	0.125988	0.371477
R ²	0.981569	0.920178	0.114397

Figure 11 : Comparison of fitted thin-layer models with experimental data
 [Initial moisture content = 43 %dry-basis, superficial air velocity = 2.2 m/s, bed depth = 8.0 cm and inlet hot air temperature = 120 C]

Grain Drying in Asia

Proceedings of an International Conference
held at the FAO Regional Office for Asia and the Pacific,
Bangkok, Thailand, 17-20 October 1995

Editors: B.R. Champ, E. Highley, and G.I. Johnson

Sponsored by:

Group for Assistance on Systems relating to Grain After-harvest (GASGA)
Australian Centre for International Agricultural Research (ACIAR)
ASEAN Food Handling Bureau (AFHB)
U.N. Food and Agriculture Organization (FAO)

Australian Centre for International Agricultural Research
Canberra 1996

Fluidised-bed Paddy Drying

Somchart Soponronnarit*

Abstract

The development of fluidised-bed paddy drying in Thailand is described in this paper, starting with an experimental batch dryer and culminating with a commercial continuous-flow dryer. A mathematical model of the fluidised-bed paddy drying system is derived.

Fluidised-bed paddy dryer is now fully commercialised in Thailand. The potential is great, especially for high moisture grain.

COMBINE harvesting of paddy is becoming popular in Thailand, especially in the central and lower northern regions of the country. Consequently, the problem of high moisture grain is now very serious. Rice mills are responsible for the problem due to strong competition for grain and therefore are looking for appropriate methods of drying. It has been suggested that high moisture paddy should be dried quickly to approximately 23% moisture content (dry basis¹) then subjected to ambient air drying in storage (Soponronnarit et al. 1994; Driscoll and Szczednicki 1991). Following two-stage drying, cost and product quality appear to be optimised. During the first stage, fluidised-bed drying is an alternative to conventional hot-air drying. Its advantages are: (1) uniform product moisture content, and thus high drying air temperature can be employed but with less overdried grain; (2) high drying capacity due to better heat and mass transfer; and (3) a much smaller drying chamber and thus a significantly lower initial cost.

Soponronnarit and Prachayawarakorn (1994) reviewed research and development work on fluidised-bed drying of grain, and conducted both experimental and simulation studies on batch fluidised-bed paddy drying (Fig. 1). Their results showed that the maximum drying air temperature had to be limited to 115°C and final moisture content of paddy to 24–25% if product quality in terms of head rice yield and col-

our were to be maintained. To maximise drying capacity and minimise energy consumption, an air velocity of 4.4 m/s, bed thickness of 9.5 cm (corresponding to a specific airflow rate of 0.1 kg/s/kg dry matter of paddy), and fraction of air recycled of 80% should be employed. Specific energy consumption in terms of primary energy, which is equal to heat plus 2.6 times electricity, was reported at approximately 7.5 MJ/kg of water evaporated. An economic analysis showed that the total drying cost was approximately US\$0.08/kg of water evaporated. Both figures, energy consumption and total cost, are relatively attractive, particularly for Thai conditions.

Soponronnarit et al. (1996a) described the development of a cross-flow, fluidised-bed paddy dryer with a capacity of 200 kg/hour (Fig. 2). Experimental results showed that final moisture content of paddy should not be lower than 23% if quality in terms of both whiteness and head yield were to be maintained. Drying air temperature was 115°C. Simulation results indicated that the appropriate operating parameters should be as follows: air speed, 2.3 m/s; bed thickness, 10 cm; and fraction of air recycled of 80%. With these conditions, energy consumption was close to the minimum, while drying capacity was near maximal. In this study, moisture of paddy was reduced from 30 to 24%.

Following the success of the development of the cross-flow fluidised-bed paddy dryer, Rice Engineering Supply Co. Ltd, a private company in Thailand, showed interest in collaborating in the development of a prototype with a capacity of approximately 1 t/hour (Soponronnarit et al. 1996b). The prototype is shown diagrammatically in Figure 3. It comprises a drying section, a 7.5 kW backward curved blade centrifugal fan, a diesel fuel-oil burner, and a cyclone. The bed

* School of Energy and Materials, King Mongkut's Institute of Technology Thonburi, Suksawat 48 Road, Bangkok 10140, Thailand.

¹ Unless otherwise stated, the moisture contents (m.c.) quoted in this paper are dry basis.

length, width, and height of the drying section are 1.7, 0.3, and 1.2 m, respectively. The depth of the paddy bed is controlled by a weir. Paddy is fed in and out by rotary feeders. In operation, hot air (temperature controlled by thermostat) is blown into the drying section through a perforated steel sheet floor. The air and grain flows are perpendicular to each other. A small portion of the air leaving the drying chamber is vented to the atmosphere, while the remainder, after cleaning in a cyclone, is recycled to the dryer following mixing with ambient air and reheating to the desired temperature. The feed rate of paddy can be varied from less than 1 t to more than 1.5 t. More detail is given in Yapha (1994). Experimental results showed that the unit operated efficiently and yielded high product quality in terms of head yield and whiteness. In reducing the moisture content from 45 to 24% using an air temperature of 100–120°C, a fraction of air recycled of 0.66, a specific airflow rate of 0.05 kg/s/kg dry matter, a superficial air velocity of 3.2 m/s, and a bed depth of 0.1 m, total primary energy consumption was 2.32 MJ/kg of water evaporated, of which 0.35 was primary energy from electricity (electrical energy multiplied by 2.6) and 1.79 was primary energy in terms of heat.

As a result of the success of the prototype, commercial fluidised-bed paddy dryers with capacities of 5 and 10 t/hour are now available. More than 20 units have been sold since the beginning of 1995.

The objective of this paper is to describe the development of fluidised-bed paddy drying, including the mathematical model used. Important results obtained from both laboratory-scale and prototype dryers will be presented.

Development of Mathematical Model

It was assumed that there was thermal equilibrium between drying air and product and that the air and grain flow were plug type. The model is similar to that presented by Soponronnarit and Prachayawarakorn (1994). Figure 2 shows control volumes (CVs) for the derivation of energy and mass equations based on fundamental physical laws.

1. Equation of mean residence time

The empirical equation of mean residence time of paddy developed by Sripawatakul (1994) was used. It is written as follows:

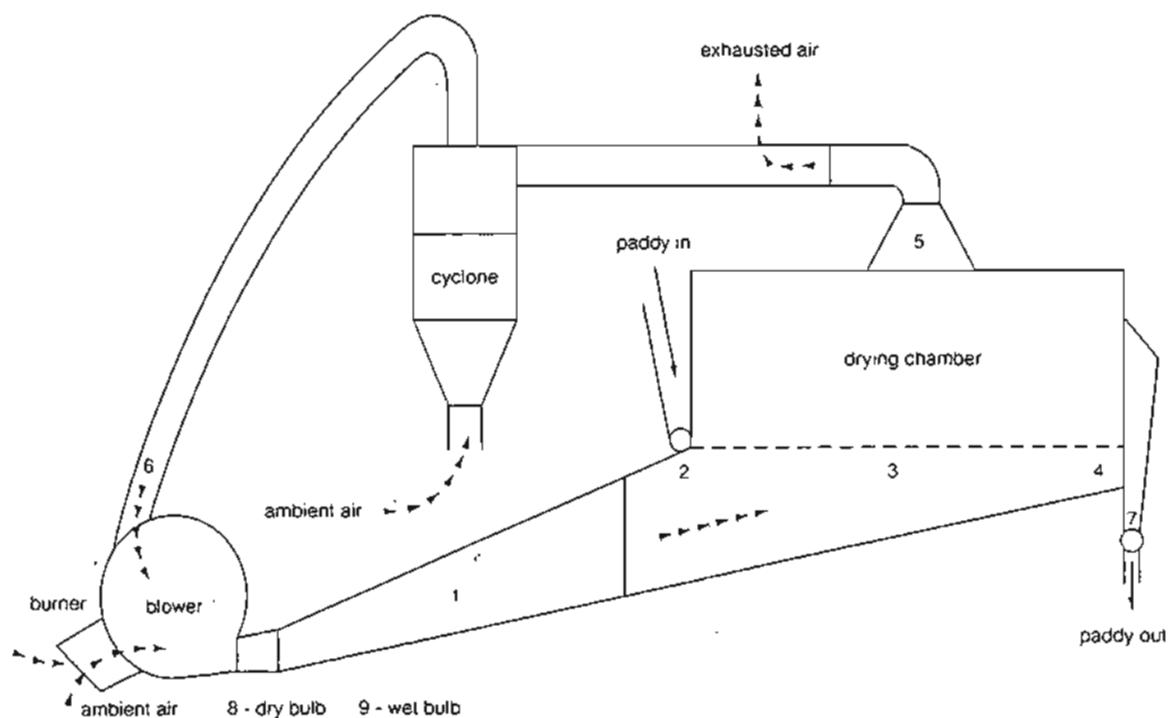


Figure 3. Diagram of fluidised-bed paddy dryer. Numbers indicate where temperature measurements were taken.

$$\tau = hu/F \quad (1)$$

where τ = mean residence time, seconds (s)

hu = hold up, kg

F = feed rate, kg/s

and $hu = [(-0.0095000 + 0.59870 F - (0.00020000 + 0.17360 F) V) + (1.1728 - 0.082300 V + (2.2093 - 0.15050 V) F) h] \rho_p A$

where A = reactor area, m^2

V = air velocity, m/s

ρ_p = average product density, kg/m^3

h = weir height, m

It is valid for weir heights in the range 0.04–0.10 m, air velocities in the range 1.7–2.3 m/s, and paddy feed rates in the range 0.025–0.058 kg/s. For a rough calculation, hu is approximately equal to $h A \rho_p$.

Dividing the paddy bulk into n layers, changes in moisture content of paddy, temperature, and the humidity ratio of air were calculated for each layer. The following basic equations were employed.

2. Equation of drying rate

The empirical equation for fluidised-bed paddy drying in the form of the equation of Page (1949), developed by Sripawatakul (1994), was used. It is written as follows:

$$MR = \exp(-xt^y) \quad (2)$$

where $MR = (M - M_{eq})/(M_{in} - M_{eq})$

t = drying time, min

$$x = 0.00163100 T_{mix} - 1.16202 (m_{mix}/hu) + 0.00415300 (m_{mix}/hu) T_{mix} + 0.147383 \ln(m_{mix}/hu) + 0.474743$$

$$y = -0.00322000 T_{mix} - 0.835960 (m_{mix}/hu) + 0.0203190 (m_{mix}/hu) T_{mix} - 0.143150 \ln(m_{mix}/hu) + 0.548493$$

Equation (2) is similar to that developed by Soponronnarit and Prachayawarakorn (1994) for higher specific airflow rate (m_{mix}/hu). It is valid for temperatures of 90–140°C and specific airflow rates of 0.03–0.16 kg/s/kg dry matter of paddy. The symbols are defined as follows:

M = moisture content of paddy at time t , decimal dry basis

M_{in} = moisture content of paddy at the inlet of drying section, decimal dry basis

M_{eq} = equilibrium moisture content, decimal dry basis

T_{mix} = air temperature at the inlet of drying section, °C

m_{mix} = airflow rate at the inlet of drying section, kg/s

During calculation, Equation (2) was differentiated with time, and finite difference was employed to obtain the solution. Equilibrium moisture content was determined using the equation developed by Laithong (1987).

3. Equation of mass conservation

$$W_{fl,i} = R(M_i - M_f) + W_{mix} \quad (3)$$

where $W_{fl,i}$ = humidity ratio of outlet air at the i^{th} layer, kg water/kg dry air

W_{mix} = humidity ratio of inlet air at the i^{th} layer, kg water/kg dry air

M_i = moisture content of paddy at the inlet of i^{th} layer, decimal dry basis

M_f = moisture content of paddy at the outlet of i^{th} layer, decimal dry basis

R = ratio of dry mass of paddy to mass of dry air.

4. Equation of energy conservation

$$T_{fl,i} = [Q_1/m_{mix} + C_a T_{mix} + W_{mix} (h_{fg} + C_v T_{mix}) - W_{fl,i} h_{fg} + R C_{pw} T_{mix}] / (C_a + W_{fl,i} C_v + R C_{pw}) \quad (4)$$

where $T_{fl,i}$ = temperature of outlet air at the i^{th} layer, °C

Q_1 = heat loss, kW

C_a = specific heat of dry air, kJ/kg °C

C_v = specific heat of vapour, kJ/kg °C

C_{pw} = specific heat of wet paddy, kJ/kg °C

h_{fg} = latent heat of moisture vaporisation, kJ/kg

Average temperature and humidity ratio of the outlet air from n layers were determined by arithmetic mean.

For other calculations such as mixing of air streams, and consumption of energy at the fan and the heater, solutions can be achieved by the application of first law of thermodynamics [see Soponronnarit and Prachayawarakorn (1994) for details].

The equations were solved by iteration. Firstly, the value of exit humidity ratio of air was assumed. The equations presented by Wilhelm (1976) were used to determine properties of moist air.

The accuracy of the mathematical model was tested and found to be in good agreement with the experimental results. The model was employed to investigate optimum operating parameters such as air temperature, specific airflow rate, and fraction of air recycled. Details are available in Soponronnarit et al. (1996a).

Performance of Fluidised-bed Dryer

Minimum fluidised-bed velocity

From the experimental results reported by Soponronnarit and Prachayawarakorn (1994), the minimum fluidised-bed velocity for paddy was approximately 1.65 m/s and increased with moisture content. The relationship between pressure drop across the paddy bed and bed velocity is presented in Figure 4.

Paddy quality

According to the experimental results on paddy quality reported by Soponronnarit and Prachayawarakorn (1994), for drying temperatures of 100 and 130°C, relative head yield, which is defined as the ratio of head yield to reference head yield (paddy dried by ambient air), dropped rapidly (below 80–90%) when moisture content after drying reached about 23–26% as shown in Figure 5. Initial moisture content was 45.3% dry-basis. Due to the relatively fast drying rate, the grain surface became hard rapidly and resulted in cracking of grain kernels if drying continued. For a drying temperature of 150°C, relative head yield increased when final moisture content decreased. This was due to a gelatinisation effect. Figure 6 shows the relationship between relative whiteness as measured by Keit meter and final moisture content. The initial moisture content was 45.3%. It could be concluded that relative whiteness was higher than 90% (still acceptable) for all final moisture contents if drying air temperature was 100°C. However, relative whiteness decreased relatively rapidly with decreased final moisture content, particularly at 130 and 150°C. It was believed that decreasing whiteness was due to caramelisation.

Prototype fluidised-bed dryer

The prototype fluidised-bed paddy dryer shown in Figure 7 and described at the beginning of this paper was tested first at the Rice Engineering Supply Co. Ltd for 2 hours (2 passes). The unit was then transported and installed at Koong Lhee Chan, a paddy merchant site, and was tested for 1497 hours during the wet harvest season in 1994. Approximately 1211 t of paddy were dried from different initial moisture contents to approximately 23%. For the analysis, data obtained from 70 hours of use were employed (Soponronnarit et al. 1996b).

Moisture content of paddy

Figure 8 shows the relationship between inlet and outlet moisture content for paddy drying tests conducted at the Rice Engineering Supply Co. Ltd. Feed rate was 1 t/hour, inlet air temperature was 60°C, initial moisture content of paddy was 26% dry-basis and resident time was 1.8 minutes. Moisture was reduced by approximately 4 and 1.5% during the first and second passes, respectively.

At Koong Lhee Chan, the feed rate was 0.82 t/hour, inlet air temperature was 100°C, initial moisture was 45%, and residence time was 2.2 minutes. Moisture was reduced 20% as shown in Figure 9. Other tests gave similar results.

From Figures 8 and 9, it may be concluded that fluidised-bed drying is more efficient at higher paddy moisture levels.

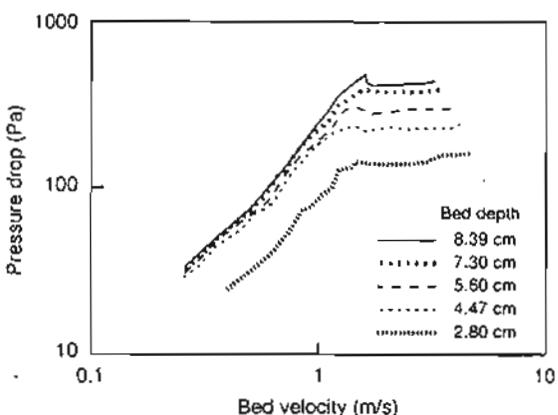


Figure 4. Relationship between bed pressure drop and bed velocity at different bed depths in fluidised-bed paddy dryer.

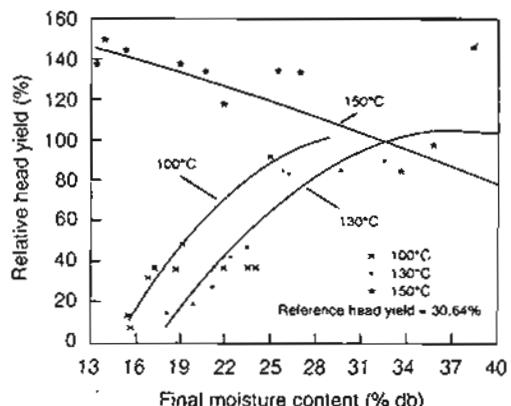


Figure 5. Relationship between relative head yield and final moisture content in fluidised-bed drying at different temperatures ($M_i = 45.30\%$ dry basis).

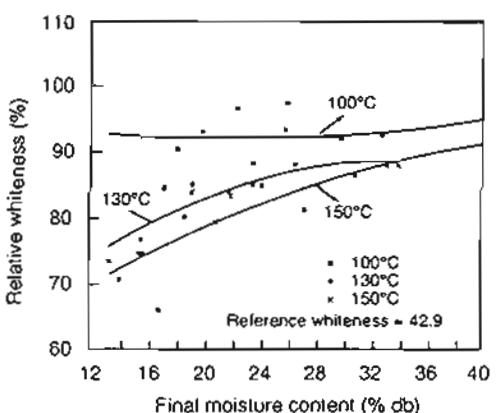


Figure 6. Relationship between relative whiteness and final moisture content in fluidised-bed drying at different temperatures ($M_i = 45.30\%$ dry basis).

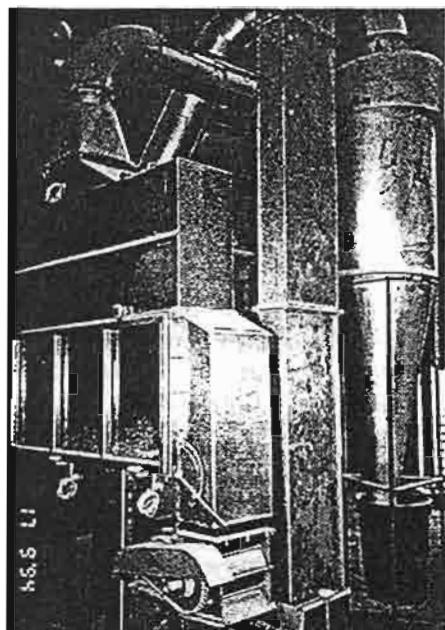


Figure 7. Prototype 1/4-hour fluidised-bed paddy dryer.

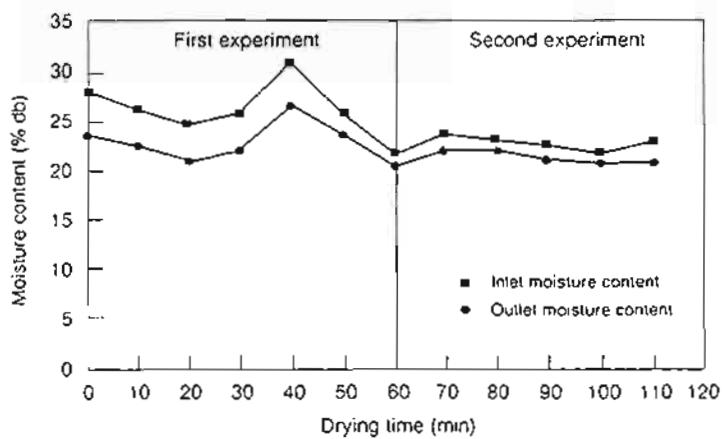


Figure 8. Relationship between inlet and outlet moisture of paddy with fluidised-bed inlet air temperature of 60°C (at Rice Engineering Supply Co. Ltd).

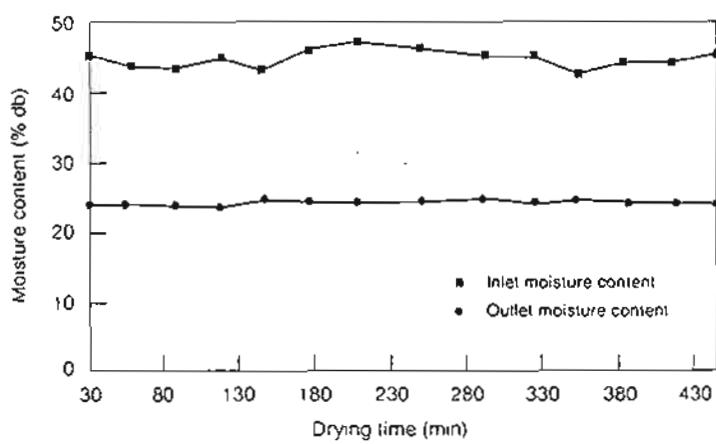


Figure 9. Relationship between inlet and outlet moisture of paddy with fluidised-bed inlet air temperature of 100°C (at Koong Lhee Chan).

Temperatures

For low inlet air temperature (60°C) and low initial moisture content of paddy (26%), average outlet air temperature was close to (just below) outlet grain temperature, as shown in Figure 10. In contrast, the two temperatures were significantly different for high inlet air temperature (100°C) and high initial moisture content of paddy (45%), as shown in Figure 11.

Energy consumption

For drying paddy from 26 to 21% dry-basis with a feed rate of 1 t/hour, specific air flow rate of 0.05 kg/s·kg dry matter, drying air temperature of 60 °C and fraction of air recycled of 0.66, it required a total primary energy consumption of 5.7 MJ/kg water evaporated, of which 2.45 was primary energy from electricity (electrical energy multiplied by 2.6) and 3.42 was primary energy in terms of heat. During the test, average ambient air temperature and relative humidity were 35.7 °C and 67.1% respectively.

For drying paddy from 45 to 24% with a feed rate of 0.82 t/hour, drying air temperature of 100–200°C and approximately the same specific airflow rate and fraction of air recycled, it required total primary

energy of 2.32 MJ/kg of water evaporated, of which 0.53 was primary energy from electricity and 1.79 was primary energy in terms of heat. During the test, average ambient air temperature and relative humidity were 36.6°C and 59%, respectively.

Electrical power needed for various pieces of equipment was reported as follows: electrical motor for driving fan, 4.93 kW; electrical motors for driving rotary feeders (in and out), 0.72 kW; electrical motor for bucket elevator, 0.79 kW; diesel fuel oil burner, 0.11 kW. In total, the electrical power was 6.55 kW and heating power 60.4 kW.

Paddy quality

Figure 12 shows that head yield of paddy dried in the fluidised-bed dryer with an inlet air temperature of 100–120°C is, on average, approximately 6.5% less than the reference paddy which was dried by ambient air (56.9%). Figure 13 shows the result of whiteness. It indicates that the whiteness of paddy dried in the fluidised-bed dryer or dried by ambient air is nearly the same. The above results confirm the findings of Soponronnarit and Prachayawarakorn (1994) and Sutherland and Ghaly (1992).

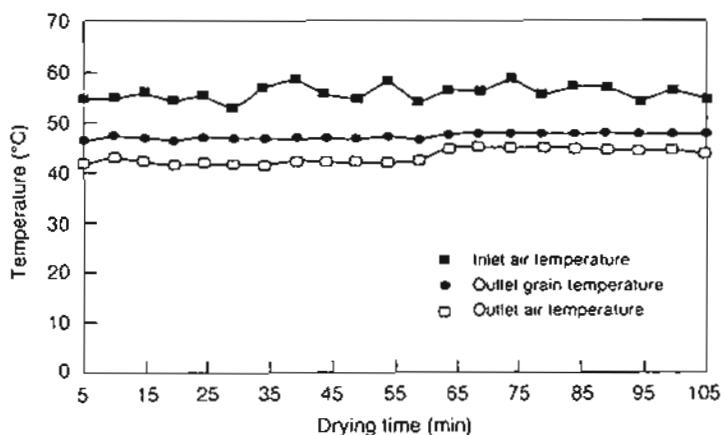


Figure 10. Evolution of temperatures in fluidised-bed dryer at Rice Engineering Supply Co. Ltd.

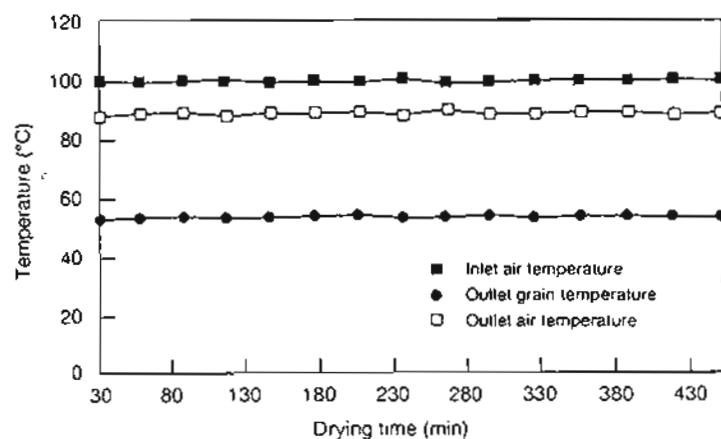


Figure 11. Evolution of temperatures in fluidised-bed dryer at Koong Lhee Chan.

Long term testing

Throughout the wet harvest period of 1994, the prototype fluidised-bed dryer was used for 1497 hours, and approximately 1211 t of paddy were dried. No repair was required. The owner of the paddy merchant site reported that the unit as follows: easy of use; had a very fast drying rate, especially at high moisture levels; consumed less energy in terms of electricity and diesel fuel-oil; and yielded a more uniform product moisture content than the two existing cross-flow columnar dryers at the site.

From Prototype to Commercialisation

As a result of the very successful trial of the prototype fluidised-bed paddy dryer with a capacity of 0.82 t/hour, the owner of the paddy merchant site where the prototype was tested placed an order for a larger fluidised-bed dryer with a capacity adjustable between 2.5 and 5 t/hour. The commercial unit was designed by the research team of King Mongkut's Institute of Technology Thonburi and fabricated by Rice Engineering Supply Co. Ltd. It has been used with success during the main harvesting season in 1995. The unit

comprises a drying section, a 11.2 kW backward curved blade centrifugal fan, a diesel fuel oil burner and a cyclone. It costs approximately US\$16 000. The bed length, width, and height of the drying section are 2.1, 0.6, and 1.3 m, respectively. The capacity of the burner is 180 kW.

The commercial unit was further scaled up to 10 t/hour capacity during mid 1995. As of August 1995, more than 20 units of both 5 t/hour and 10 t/hour have been installed or are being installed in Thailand. Two units of 5 t/hour were exported to Indonesia.

Conclusion

Field testing of the prototype fluidised-bed paddy dryer with a capacity of 0.82 t/hour during the wet harvest season in 1994 for a total of 1497 hours, indicated that the unit was easy to use, performed efficiently in terms of a very fast drying rate and low energy consumption, and gave uniform product moisture content, compared with the two existing cross-flow columnar dryers installed at the same site. This was reported by the owner of the paddy merchant site, but there are no comparative performance figures.

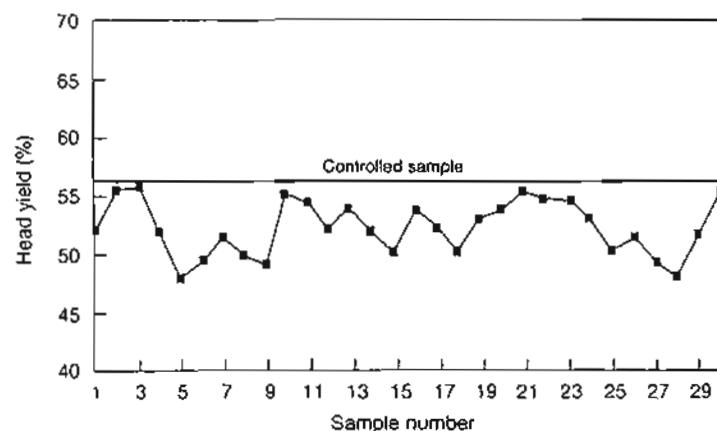


Figure 12. Head yield of paddy after fluidised-bed drying compared with control sample: drying temperature of 100–120°C, moisture content of paddy from 45 to 24% dry basis.

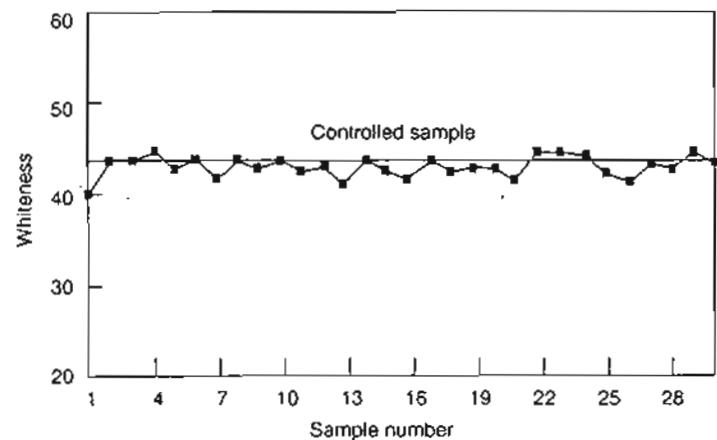


Figure 13. Whiteness of paddy after fluidised-bed drying compared with controlled sample: drying temperature of 100–120°C, moisture content of paddy from 45 to 24% dry basis.

Results from the 70 hours of use of the prototype indicated that the unit operated efficiently and yielded high product quality in terms of head yield and whiteness. In reducing the moisture content from 45 to 24% using an air temperature of 100–120°C, fraction of air recycled of 0.66, specific airflow rate of 0.05 kg/s·kg dry matter, superficial air velocity of 3.2 m/s, bed depth of 0.1 m, total primary energy was 2.32 MJ/kg of water evaporated, of which 0.53 was primary energy from electricity (electrical energy multiplied by 2.6) and 1.79 was primary energy in terms of heat.

Since the beginning of 1995, more than 20 commercial units with capacity of 5 t/hour and 10 t/hour have been sold in Thailand.

Acknowledgment

Thanks are due to the Australian Centre for International Agricultural Research and the Thailand Research Fund for continuous financial support.

References

Driscoll, R.H. and Srzednicki, G.S. 1991. Design for a complete grain drying system under Southeast Asian climates. In: Naewbanij, J.O., ed., *Grain postharvest research and development: priorities for the nineties*. Proceedings of the 12th ASEAN Technical Seminar on Grain Post-harvest Technology. Bangkok, ASEAN Grains Post-Harvest Programme. Surabaya, 29–31 August 1989.

Laithong, C. 1987. Study of thermo-physical properties of rough rice. Masters thesis, King Mongkut's Institute of Technology Thonburi, Bangkok, Thailand.

Page, G.E. 1949. Factors influencing the maximum rate of drying shelled corn in layers. Unpublished thesis. Master of Science, Purdue University.

Soponronnarit, S. and Prachayawarakorn, S. 1994. Optimum strategy for fluidized bed paddy drying. *Drying Technology*, 12, 1667–1686.

Soponronnarit, S., Wongvirojtana, P., Natthakaranakule, A., and Prachayawarakorn, S. 1994. Maintaining paddy quality by appropriate ventilation under tropical climate. *Proceedings of the 9th International Drying Symposium*, Gold Coast, Australia.

Soponronnarit, S., Prachayawarakorn, S., and Sripawatakul, O. 1996a. Development of cross-flow fluidized bed paddy dryer. *Drying Technology*, in press.

Soponronnarit, S., Yapha, M., and Prachayawarakorn, S. 1996b. Cross-flow fluidized bed paddy dryer: prototype and commercialization. *Drying Technology*, in press.

Sripawatakul, O. 1994. Study of drying paddy by cross-flow fluidization technique. Masters thesis, Faculty of Engineering King Mongkut's Institute of Technology Thonburi, Bangkok, Thailand.

Sutherland, J.W. and Ghaly, T.F. 1992. Rapid fluid bed drying of paddy rice in the humid tropics. In: Naewbanij, S.O., ed., *Proceedings of the 13th ASEAN Conference on Grain Postharvest Technology*, Brunei Darussalam, 4–7 September 1990. Bangkok, ASEAN Grain Post-Harvest Programme.

Wilhelm, L.R. 1976. Numerical calculation on psychrometric properties in SI units. *Transactions of the American Society of Agricultural Engineers*, 19, 318–321, 325.

Yapha, M. 1994. Design and testing of pilot continuous fluidized bed paddy dryer. Masters thesis, School of Energy and Materials, King Mongkut's Institute of Technology Thonburi, Bangkok, Thailand.

COMMERCIAL FLUIDIZED BED PADDY DRYER

Somchart Soponronnarit¹,
Somkiat Prachayawarakom² and Montri Wangji¹

1. School of Energy and Materials
2. Faculty of Engineering
King Mongkut's Institute of Technology Thonburi
Suksawat 48 Road, Bangkok 10140, Thailand

Key Words : drying ; fluidization ; grain

ABSTRACT

Technology of fluidized bed grain drying has been introduced since the past 20-30 years. The fluidized bed grain dryer was, however, not commercially successful. In this paper, the concept of continuous cross-flow fluidized bed paddy dryer is described. It is now fully commercialized in Thailand. More than 28 units are available in private rice mills and a few were exported (as of November 1995).

Reasons for supporting successful commercialization may be due to :

1. Recycling of exhaust air which reduces energy consumption significantly
2. Very high capacity due to possible use of very high temperature of drying air and finally
3. Very close collaboration between the research team of King Mongkut's Institute of Technology Thonburi and a private manufacturer of drying equipment.

Performance evaluation of commercial fluidized bed paddy dryers indicated that energy consumption per kilogram of water evaporated decreased with increasing moisture level of paddy and drying air temperature. It is recommended for drying paddy from any moisture level down to 22 % dry-basis in a single pass that drying air temperature may be up to 150 °C with acceptable product quality.

INTRODUCTION

Paddy combined harvester is becoming popular in Thailand especially in the central and lower north of Thailand. Consequently, the problem of high moisture grain is now very serious. Rice mills are responsible for the problem due to high competitiveness and therefore are looking for

appropriate methods of drying. It has been suggested that high moisture paddy should be dried quickly down to approximately 23 % dry-basis then followed by ambient air drying in storage (Soponronnarit et al., 1994, Driscoll and Szczednicki, 1989). Following the two-stage drying, cost and product quality seem to be optimized. During the first stage, fluidized bed drying is an alternative to conventional hot air drying. Its advantages are (1) uniform product moisture content, as a result, high air temperature can be employed due to less over-dried grain, (2) high drying capacity due to better heat and mass transfer and (3) much smaller drying chamber which results in much lower initial cost.

Soponronnarit and Prachayawarakorn (1994) reviewed some research and development works on fluidized bed drying of grain. Little progress was observed during the past few years especially drying of paddy with fluidization technique. Soponronnarit and Prachayawarakorn (1994) also conducted both experimental and simulated work on fluidized bed paddy drying in batch. The results showed that maximum drying air temperature had to be limited to 115 °C and final moisture content of paddy at 24-25 % dry-basis if product quality in terms of head yield and whiteness was maintained. To maximize drying capacity and minimize energy consumption, air velocity of 4.4 m/s, bed thickness of 9.5 cm (corresponding to specific air flow rate of 0.1 kg/s-kg dry matter of paddy) and fraction of air recycled of 80% should be employed. Specific energy consumption in terms of primary energy which was equal to heat plus 2.6 times electricity was reported at approximately 7.5 MJ/kg-water evaporated.

Soponronnarit et al. (in press a) described the development of a cross-flow fluidized bed paddy dryer with a capacity of 200 kg/h. Experimental results showed that final moisture content of paddy should not be lower than 23% dry-basis if quality in terms of both whiteness and head yield was maintained. Drying air temperature was 115 °C. Simulated results indicated that the appropriate operating parameters should be as follows: air speed of 2.3 m/s, bed thickness of 10 cm and fraction of air recycled of 80%. At this condition, energy consumption was close to the minimum while drying capacity was near the maximum. In this study, moisture of paddy was reduced from 30% to 24% dry-basis.

According to the success of the development of the cross-flow fluidized bed paddy dryer, Rice Engineering Supply Co. Ltd., a private company based in Thailand, showed his interest in the collaboration of the development of a prototype with a capacity of approximately 1 ton per hour (Soponronnarit et al., in press b). Figure 1 shows the prototype fluidized bed paddy dryer. It comprises of a drying section, a 7.5 kW backward curved blade centrifugal fan, a diesel fuel oil burner and a cyclone. The bed length, width and height of the drying section are 1.7 m, 0.3 m and 1.2 m respectively. Experimental results showed that the unit operated efficiently and yielded high product quality in terms of head yield and whiteness. In reducing the moisture content from 45% to 24% dry-basis using air temperature of 100-120 °C, fraction of air recycled of 0.66, specific air flow rate of 0.05 kg/s-kg dry matter, superficial air velocity of 3.2 m/s, bed depth of 0.1 m, total primary energy consumption was 1.86 MJ/kg-water evaporated of which 0.36 was primary energy from electricity (electrical energy multiplied by 2.6) and 1.5 was primary energy in terms of heat.

According to the success of the prototype, commercial fluidized bed paddy dryers with capacity of 5 tons/h and 10 tons/h are now available. More than 28 units have been sold since the beginning of 1995 (as of November 1995).

The objective of this paper is to describe the performance of commercial fluidized bed paddy dryers. Paddy quality and energy consumption are discussed.

MATERIALS AND METHODS

Operation of fluidized bed dryer

The fluidized bed dryer, as shown in Figures 1-2, is mainly composed of a drying chamber, a backward curved blade centrifugal fan, a burner using diesel oil or fuel oil for heating air and a cyclone. Paddy is fed in and out by rotary feeders. Paddy bed depth is controlled by a weir. In operation, paddy flows in perpendicular direction to the flowing inlet air of which temperature is controlled by a thermostat. A small part of the exhaust air is delivered to atmosphere. The rest of exhaust air flows through the cyclone. Then it is recycled, mixed together with ambient air at a combustion chamber and reheated to a desired temperature. It is also possible to deliver the exhaust air after the cyclone. Three models of commercial fluidized bed paddy dryer are available, 1.0-2.0 tons/h, 2.5-5.0 tons/h and 5-10 tons/h.

Methods of experiment

In this work, results were obtained from several sites where the fluidized bed dryers with different capacity had already been installed. With a 1-2 ton/h capacity fluidized bed dryer, inlet air temperature varied from 60°C to 120°C, air flow rate was 1.6 m³/s, corresponding to a superficial air velocity of 3.13 m/s measured by a hot wire anemometer, and initial moisture content of paddy varied from 27% to 45% dry-basis. During experiments, paddy samples collected before and after drying were determined for the moisture content and milling quality in terms of head yield and whiteness. Temperatures at various positions, as shown in Figure 2, were measured by type K thermocouple connected with a data logger with an accuracy of ± 1 °C. The quantity of diesel oil consumed was recorded as well. In case of a 2.5-5 ton/h capacity fluidized bed dryer, inlet air temperature was 150°C, air flow rate was 2.57 m³/s, corresponding to a superficial air velocity of 2.1 m/s. Initial moisture content of paddy was roughly 27% dry-basis. Finally, experiments were made with a 5-10 ton/h capacity fluidized bed dryer using an air flow rate of 5.57 m³/s, corresponding to a superficial air velocity of 2.2 m/s, a range of inlet air temperature from 115°C to 130°C and initial moisture content of paddy varied from 22% to 30% dry-basis.

In order to determine moisture content of paddy, samples were kept in a hot air oven at temperature of 103°C for 72 hours. Milling quality was investigated and compared with the reference samples dried by ambient air. Head yield is defined as mass of head rice divided by mass of paddy. For the whiteness of rice kernels, it was measured with a Kett meter, model C-300. Lower value of reading means more yellow. The test method of paddy quality was made accordingly as the guidelines of Rice Research Institute, Ministry of Agriculture and Agricultural Co-Operatives, Thailand.

RESULTS AND DISCUSSION

To analyse the performance of prototype and commercial units, data collected from different testing time at steady-state operation, as shown in table 1, were employed.

From table 1, total energy consumption including electrical and thermal energy could be divided into 3 levels. Firstly, when paddy was dried from 44-46% dry-basis to 24% dry-basis using inlet air temperature of 104-120°C and air recycled of 66%, total energy consumption was approximately 1.64 MJ/kg -water evaporated. Secondly, in case of reducing moisture content from 26-30% dry-basis to 21-23% dry-basis using inlet air temperature of 120-150°C and air recycled of 53-69%,

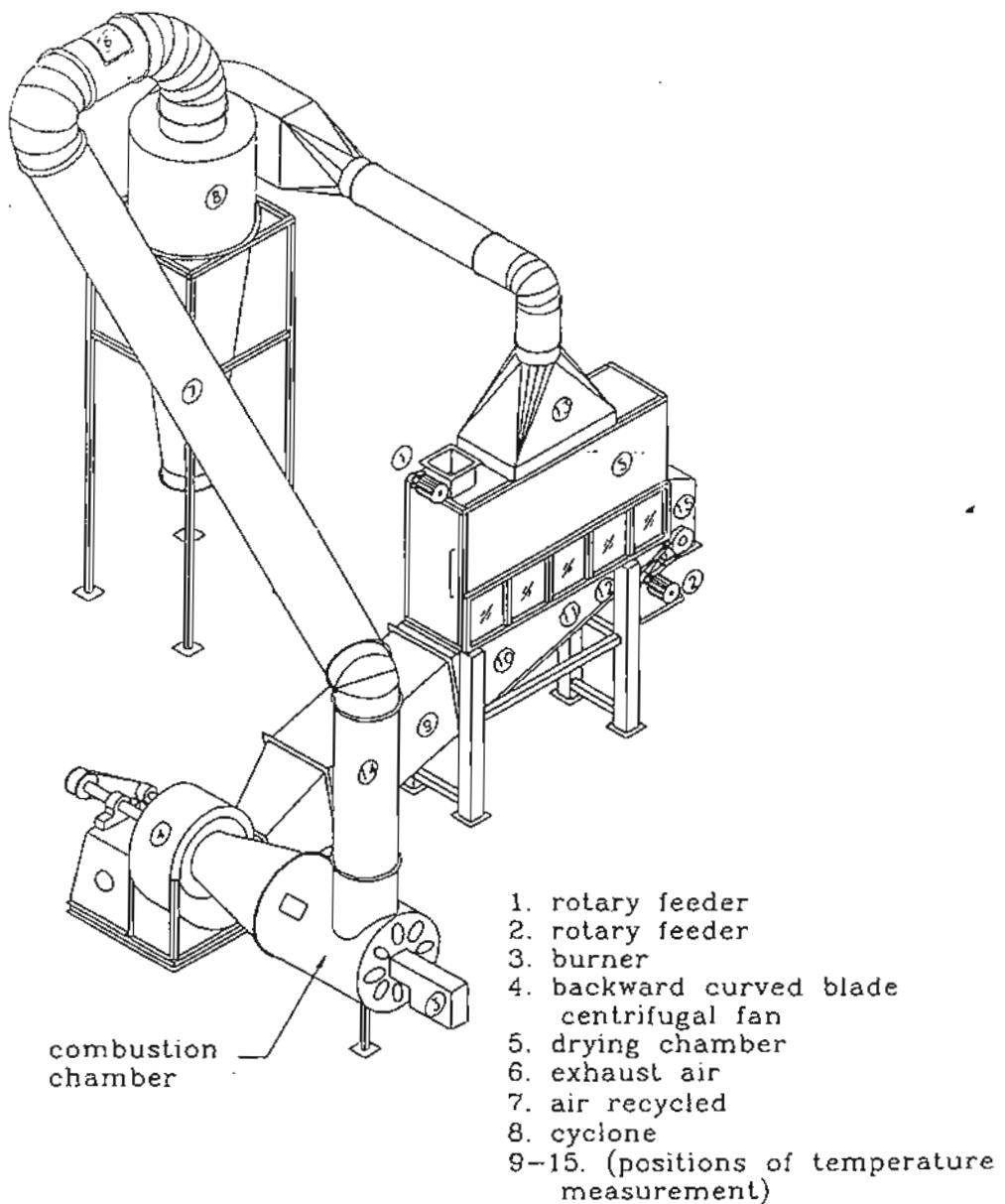


Figure 1 Fluidized bed paddy dryer.

Table 1 Performance test results of commercial fluidized bed paddy dryer

Drying air temp. (°C)	Air recycled (%)	Moisture of paddy (%db)	Outlet moisture of paddy (%db)	Outlet grain temp. (°C)	Electrical energy consumed (MJ/kg-H ₂ O)	Thermal energy consumed (MJ/kg-H ₂ O)	Head yield ^d (%)	Reference head yield (%)	Whiteness ^e	Reference ^e whiteness	Testing hours	Drying capacity (ton/h)
60	66	27.0	23.2	47.0	0.81	3.41	30.1	35.4	-	-	1.0	1 ^f
104	66	44.5	24.1	54.0	0.14	1.36	50.5	56.9	43.1	43.7	18.5	1 ^f
106	66	45.3	24.2	55.0	0.14	1.29	50.5	56.9	43.1	43.7	6.0	1 ^f
107	66	46.6	24.3	56.0	0.13	1.36	50.5	56.9	43.1	43.7	23.0	1 ^f
108	66	44.6	24.0	56.0	0.13	1.49	50.5	56.9	43.1	43.7	1.0	1 ^f
115	69	22.0	20.1	54.0	0.81	7.80	53.2	57.4	40.3	44.4	5.0	9.5 ^g
116	69	26.0	22.5	52.0	0.41	3.13	54.3	57.2	40.7	44.2	35.0	9.5 ^g
120	69	28.7	22.5	54.0	0.26	2.57	53.9	53.9	40.0	40.1	46.0	9.5 ^g
120	66	45.1	24.6	58.0	0.14	1.98	50.5	56.2	43.1	43.7	1.0	1 ^f
130	69	30.6	23.0	57.0	0.21	2.21	57.0	57.0	43.7	43.8	51.0	9.5 ^g
150	53	27.0	21.0	63.0	0.15	3.90	48.1	56.2	36.8	42.6	29.0	4.8 ^h

a Dryer with capacity of 1-2 tons/h. b Dryer with capacity of 2.5.5 tons/h. c Dryer with capacity of 5-10 tons/h

d Dried in fluidized bed dryer. e Dried by ambient air

f Dried with capacity of 1-2 tons/h. g Dried with capacity of 2.5.5 tons/h. h Dried with capacity of 5-10 tons/h

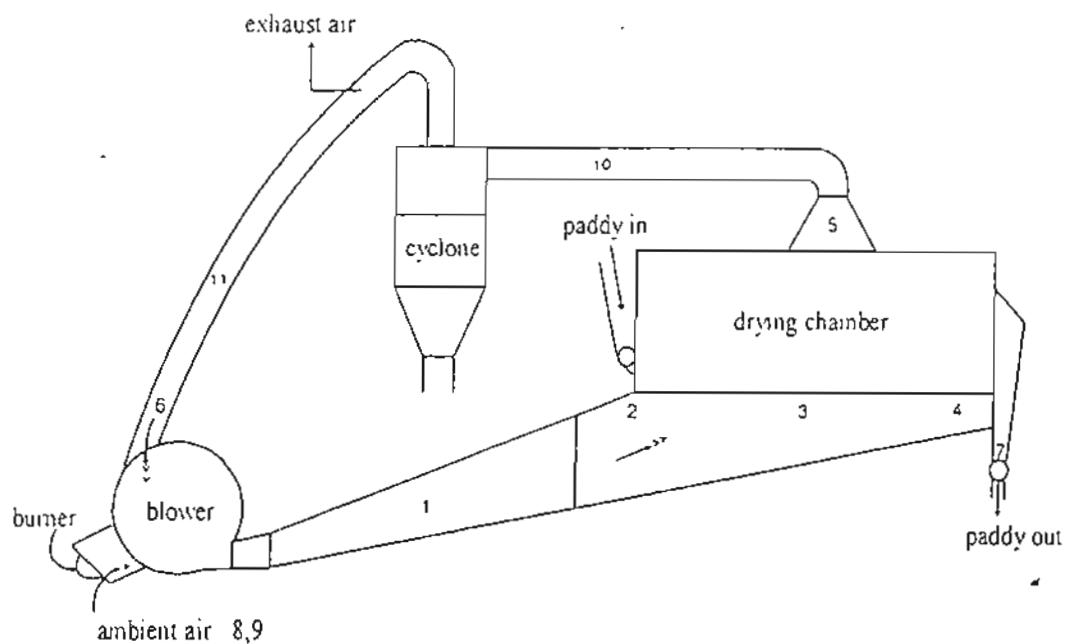


Figure 2. Diagram of fluidized bed paddy dryer:
1-9 temperature measurement, 10-11 air flow measurement

total energy consumption varied from 2.5 to 4 MJ/kg-water evaporated. Finally, as paddy was dried from 22 % dry-basis to 20 % dry-basis by using inlet air temperature of 115 °C and air recycled of 69 %, total energy consumption was approximately 8.6 MJ/kg-water evaporated.

As mentioned above, it reveals that the application of fluidized bed technology for grain drying at high moisture level is of great advantages. However, at low moisture level, normally lower than 24 % dry-basis, this technique is not very efficient. This can be simply explained that at low moisture level, moisture movement is limited mostly by moisture diffusion in grain kernels. Thus, better heat and mass transfer between grain and air obtained by fluidization technique can not play much role.

Paddy quality in terms of head yield and whiteness is shown in table I. It is quite acceptable compared to paddy dried by ambient air. Though drying air temperature is very high, the quality is still maintained. This is due to very short residence time for it takes only a few minutes.

This study confirms the works reported by Soponronnarit and Prachayawarakorn (1994) and Sutherland and Ghaly (1990).

As of November 1995, more than 28 units of fluidized bed paddy dryer have been sold. The success of commercialization is due to : 1) Recycling of exhaust air which significantly reduces energy consumption, 2) Very high capacity due to possible use of very high drying air temperature and finally 3) Very close collaboration between our research team and a private manufacturer of drying equipment.

CONCLUSION

Field trial of the prototype fluidized bed paddy dryer with a capacity of 0.82 ton/h during the wet harvesting season in 1994 for totally 1,497 hours indicated that the unit was easy to use, efficiently performed in terms of very fast drying rate and low energy consumption and gave uniform product

moisture content, compared to the two existing cross-flow column dryers installed at the same site, as reported by the owner of the paddy merchant site though there was no comparative performance figures.

The experimental results indicate that the prototype and commercial units operate efficiently and immensely reduce the moisture content of paddy especially at high moisture level. In reducing the moisture content from 44-46 % dry-basis to 24 % dry-basis using inlet air temperature of 104-120°C and air recycled of 66 %, total energy consumption is 1.64 MJ/kg-water evaporated. When paddy is dried from 26-30 % dry-basis to 21-23 % dry-basis using inlet air temperature of 120-150°C and air recycled of 53-69 %, it requires total energy consumption of 2.5 - 4 MJ/kg-water evaporated. But at the condition of paddy dried from 22 % dry-basis to 20 % dry-basis by using inlet air temperature of 115 °C and air recycled of 69 %, total energy consumption increases sharply to 8.6 MJ/kg-water evaporated. At the above conditions, the paddy quality after drying in terms of head yield and whiteness is maintained.

Since the beginning of 1995, more than 28 units with capacity of 5 tons/h and 10 tons/h have been commercialized in Thailand (as of November 1995).

ACKNOWLEDGEMENT

The authors acknowledge Australian Centre for International Agricultural Research and The Thailand Research Fund for continuous financial support, and finally to Rice Research Institute for providing equipments for testing paddy quality.

LITERATURE CITED

Driscoll, R. H. and Srzednicki, G. S. 1989. Design for a complete grain drying system under Southeast Asian climates. Proc. 12th ASEAN Seminar on Grain Post-harvest Technology, J.O. Naewbani (ed.).

Soponronnarit, S. and Prachayawarakorn, S. 1994. Optimum strategy for fluidized bed paddy drying. Drying Technology, 12 (7) pp.1667-1686.

Soponronnarit, S., Wongvirojana, P., Nathakaranakule, A. and Prachayawarakorn, S. 1994. Maintaining paddy quality by appropriate ventilation under tropical climate. Proc. 9th International Drying Symposium, Gold Coast, Australia.

Soponronnarit, S., Prachayawarakorn, S. and Sripawatakul, O. a. Development of crossflow fluidized bed paddy dryer. Drying Technology. (in press)

Soponronnarit, S., Yapha, M. and Prachayawarakorn, S. b. Cross-flow fluidized bed paddy dryer prototype and commercialization. Drying Technology. (in press)

Sutherland, J. W. and Ghaly, T. F. 1990. Rapid fluid bed drying of paddy rice in the humid tropics. Proc. 13th ASEAN Conference on Grain Post-harvest Technology.

INTERNATIONAL CONFERENCE
ON
**FOOD INDUSTRY TECHNOLOGY
AND ENERGY APPLICATIONS**

November 13 - 15, 1996
King Mongkut's Institute of Technology Thonburi
Bangkok, Thailand

Organized By :

- * King Mongkut's Institute of Technology
Thonburi (KMUTT)
- * National Research Council of Thailand (NRCT)
- * ASEAN - Subcommittee on Food Science and
Technology (ASCFST)
- * ASEAN - Subcommittee on Non - Conventional
Energy Research (ASCNCER - Thailand)

EVALUATION IN PRODUCT QUALITY OF IN-STORE CORN DRYING

Pipatana Amatachaya¹ Somchart Soponronnarit² Adisak Nathakaranakule²
Somkiat Prachayawarakorn³ Sitthichai Inchan²

1 Former graduate student

2 School of Energy and Materials

3 Faculty of Engineering

King Mongkut's Institute of Technology Thonburi
Suksawat 48 Rd., Bangkok 10140, Thailand

ABSTRACT

The aim of this research is to study the feasibility of in-store corn drying. Both economics and acceptable corn quality are taken into consideration. Some parts of this research, energy consumption and corn quality, are presented in this paper. The equipment had been installed at Pra Buddha Baht Settlement Agricultural Cooperatives. Ambient air flow rate of $5.44 \text{ m}^3/\text{min}\cdot\text{m}^3$ of corn was ventilated through a 30 t capacity corn bulk of which initial moisture content was 19 % wet-basis. The experimental results showed that aflatoxin B-1 production during the experiment was completely inhibited as compared to that at the beginning of corn drying even if the number of corn kernels infected with *Aspergillus flavus* increased. In decreasing moisture content of corn from 19 % wet-basis to 12.5 % wet-basis, electricity consumption was 15 kW-h/t of corn (US\$ 0.9/t of corn).

INTRODUCTION

At the present, nearly all most of corn produced has been used in feed mill industry and also still played an important role for Thai people for many years. From a research report (Kositcharoenkul et al., 1992), it was evidenced that corn, which was freshly harvested and then stored in the barns or silos of merchants, would be infected with *Aspergillus flavus* producing aflatoxin substance. *Aspergillus flavus*'s growth rate increases rapidly if corn is stored in unsuitable condition under hot and humid climates. Aflatoxin is very toxic to human health and animals. Therefore, a quantity of aflatoxin contamination in food for animals is not allowed more than 20 $\mu\text{g}/\text{kg}$ (USA). Aflatoxin contamination is often detected in freshly-harvested corn during rainy season. This is because moisture reduction in corn by sun drying on a concrete pad is not available. However, this problem can be solved by using mechanical drying or in-store drying technique.

Morey et al. (1978) studied the energy consumed for corn drying in a bin with a dimension of 5.5 m diameter and 4.5 m high. The experimental results showed that in reducing moisture content of corn from 28 % wet-basis to 24 % wet-basis using 120 °C inlet hot air temperature and a $120 \text{ m}^3/\text{min}\cdot\text{m}^3$ of corn air flow rate and then continually dried to 15 % wet-basis using ambient air, the energy consumed was minimized.

Shove (1984) studied the energy consumption for corn drying with low drying air temperature. It was found that energy consumption was 6 kW-h/t-percentage of water evaporated in reducing moisture content of corn from 22 % wet-basis to 15 %

using a 2 - 4.5 m³/min-t of corn air flow rate. However, when ambient air was heated in a few degrees, energy consumption increased to be 12 kW-h/t-percentage of water evaporated using a 0.8 - 2.2 m³/min-t of corn air flow rate.

Eckhoff et al. (1984) investigated the inhibition of microorganism growth rate using gas mixture, sulfur dioxide mixed ambient air. Mixed gas was flowed through the corn bulk, which was stored in a bin with 5 t capacity. Initial moisture content of corn was 28 % wet-basis. From the experimental results, it was found that when mixed gas was flowed from the top of the bin to the bottom of the bin, the number of microorganisms was very small but when mixed gas was flowed inversely in the direction with mentioned before, microorganisms spread widely at the top area, where moisture content of corn was rather high. In case of corn fumigated with sulfur dioxide gas before loading into the bin, a large extent of microorganisms distributed throughout the bin. Moreover, percentage of stress-cracked corn using sulfur dioxide gas was lower than that using hot air temperature.

El-Gazzar and Marth (1988) carried out the effect of hydrogen peroxide concentration on the aflatoxin production and the growth rate of *Aspergillus parasiticus*. 10⁶ *Aspergillus parasiticus* spores was inoculated on a glucose-yeast-salt medium and then was incubated at temperature of 14 and 28 °C in 90 days. It was found that *Aspergillus parasiticus* growth and aflatoxin production was not produced at 0.3 and 0.5 % hydrogen peroxide concentration.

Nilrattanakorn et al.(1994) studied the optimum rate of carbon dioxide fumigation for controlling *Aspergillus flavus* growth and aflatoxin production at high moisture content of corn. Corn had been fumigated for 4 days at rates of 0.5, 0.75, 1.0 and 2.0 kg CO₂/t of corn. It was found that 0.5 kg CO₂ /t of corn rate of carbon dioxide fumigation could prevent the aflatoxin and the *Aspergillus flavus* growth effectively. For storing corn without ventilating air and carbon dioxide fumigation, nearly all of corn bulk was infected with *Aspergillus flavus*. Also, aflatoxin contamination and temperature in corn bulk increased.

Wongurai et al.(1992) conducted experiments to study the effect of water activity on *Aspergillus flavus* growth in corn. It could be concluded that *Aspergillus flavus* growth was severely infected at 0.94 - 1 water activity at 28 °C temperature, corresponding to 22 - 41 % wet-basis equilibrium moisture content. However, when water activity was less than 0.85 at 28 °C temperature, corresponding to moisture equilibrium lower than 18 % wet-basis, *Aspergillus flavus* growth was inhibited completely.

Prachayawarakorn et al. (1995) studied the prevention of aflatoxin production in in-store corn drying. The experimental results showed that high moisture content of corn should be dried to 18 - 19 % wet-basis within 2 days and then continually dried to 12-13 % wet-basis within 14 days in order to prevent aflatoxin production. In reducing moisture content of corn from 19 % wet-basis to 12 -13 % wet-basis using a 3.6 - 4.6 m³/min-m³ of corn ambient air flow rate, energy consumption was 10-11 kW-h/t of corn (US\$ 0.6 - 0.7 /t of corn).

From the researches outlined above, it was rather clear that microorganism growth and aflatoxin production were in large quantities at the conditions of both high moisture content of grain and high relative humidity of ambient air. In order to control aflatoxin and microorganisms, chemical substances should be applied in a range of high moisture level. In case of moisture content lower than 20 % wet-basis, in-store drying technique with ambient air was rather effective. Therefore, this research is to study feasibility of in-store corn drying system under tropical climate. Both economics

and corn quality will be considered. Some parts of this research, energy consumption and corn quality, are presented in this paper.

MATERIALS AND METHODS

Equipment

A dimensional area for 30 t capacity of corn was 5 m wide, 5 m long and 1.5 m high. Air ducts are principally composed of main ducts (No 1-6) and branching ducts (No 7-9, 10-12 and 13-15) as shown in Figure 1. The 0.4 m X 0.4 m cross sectional area in each main duct was made by galvanized steel sheets with 1.5 mm thickness. Each branching duct is made from 3 semicircular ducts. A semicircular duct, made from 1.5 mm thickness perforated steel sheets with 1.5 mm diameter holes, is 1.20 m long and 55 cm diameter. A backward curved blade centrifugal fan was driven by a 3.7 kW motor.

Experiment

Ambient air flow rate of $5.44 \text{ m}^3/\text{min} \cdot \text{m}^3$ of corn at 35°C temperature and 55 % relative humidity was blown through the corn bulk of which initial moisture content was 19 % wet-basis. In addition to measurement of wet-bulb and dry-bulb temperature of ambient air, temperature in corn bulk was also measured at 2 positions, 3 points each position. Temperatures were measured by type K thermocouple from which measurements were transferred to a data logger (accuracy of $\pm 1^\circ\text{C}$). To check the moisture content of corn during experiment, corn samples were collected at the depths of 0 m, 0.30 m, 0.75 m and 1.20 m from the surface. However, for testing corn quality, corn samples taken from 0.75 m and 1.20 m depths from surface were detected the quantities of aflatoxin B-1 by thin layer chromatography method and also determined the number of corn infected with *Aspergillus flavus*.

To determine the moisture content of corn, corn samples were placed in a hot air oven at a fixed temperature of 103°C for 72 hours. To test aflatoxin B-1 and *Aspergillus flavus* infected, corn samples of which moisture content was higher than 14 % wet-basis must be dried to 14 % wet-basis and then stored in a temperature - controlled room in which temperature was lower than 10°C .

RESULTS AND DISCUSSION

Temperature

Temperature in corn bulk is a significant factor which affects on corn quality : due to great temperature gradient in corn bulk, the natural air recirculation will occur and consequently water vapor in air will condense while air flows against corn of which temperature is rather low. Therefore, microorganism growth increases rapidly in areas of high moisture level. Figure 2 shows the evolution of ambient air temperature and temperature in corn bulk. It was found that temperature in corn bulk was lower than ambient air temperature flowing through the corn bulk and rather insignificantly different throughout the corn bulk. Temperature varied between 26°C and 28°C , which was suitable for producing aflatoxin B-1 by *Aspergillus flavus* (Koehler et al., 1985).

Moisture Content

During 20 day drying time with ambient air ventilation, 8 hours each day, moisture content of corn reduced from 19 % wet-basis to 12.5 % wet-basis. Figure 3 shows that moisture content of corn at deeper depth from surface was lower than that at lower depth from surface. This is because the amount of water vapor in air flowing from the bottom region to the top region increases with direction of air flow. Consequently, moisture reduction at the top region was rather lower as compared to that at the bottom region. However, at the end of drying, moisture content of corn throughout the corn bulk was nearly the same because of movement of drying zone from the bottom area to the top area.

Energy Consumption

In reducing moisture content from 19 % wet-basis to 12.5 % wet-basis using a $5.44 \text{ m}^3/\text{min}\cdot\text{m}^3$ of corn ambient air flow rate, energy consumption in terms of electricity was 15 kW-h/t of corn (US\$ 0.9 /t of corn).

Corn Quality

Figure 4 shows the evolution of aflatoxin B-1 and average moisture content of corn during corn drying. It was found that the quantities of aflatoxin B-1 detected at each depth were rather uncertain. The researchers in the field of microtoxins suggested that each corn kernel must be taken to detect aflatoxin B-1 in order to make sure in quantities of aflatoxin B-1 produced. However, it is impossible in practice. Therefore, the average quantities of aflatoxin B-1 were substituted for the quantities of aflatoxin B-1 throughout the corn bulk. The results showed that the quantities of aflatoxin B-1 at the beginning of drying were nearly equal to those at the end of drying while the number of corn kernels infected with *Aspergillus flavus* increased as shown in Figure 5. It might be explained that *Aspergillus flavus* growth did not affect on aflatoxin B-1 production.

CONCLUSIONS

The experimental results could be concluded as follows :

1. For in-store corn drying with ambient air flow rate, the corn quality in terms of aflatoxin B-1 production at the end of drying could be maintained even though the number of corn kernels infected with *Aspergillus flavus* increased.
2. When corn was dried from 19 % wet-basis to 12.5 % wet-basis using $5.44 \text{ m}^3/\text{min}\cdot\text{m}^3$ of corn, electricity consumption was 15 kW-h/t of corn (US\$ 0.9 /t of corn).

ACKNOWLEDGMENTS

The authors acknowledge Australian Centre for International Agricultural Research and Department of Technology Promotion, Ministry of Science Technology and Environment, Thailand, as well as The Thailand Research Fund for financial support to this project and to Pra Buddha Baht Settlement Agricultural Cooperatives for their assistance in experimental work.

REFERENCES

1. Morey, R.V., Gustafson, R.J. and Cloud, H.A., 1978, Energy Requirement for High-Low Temperature Drying, *Transactions of The ASAE*, 21(2), 562-567.
2. Shove, G.C., 1984, Energy Consumed in Low Temperature Corn Drying, *Drying Technology*, 2(4), 504-511.
3. Eckhoff, S.R., Tuite, J., Foster, G.H., Anderson, R.A. and Okos, M.R., 1984, Inhibition of Microbial Growth during Ambient Air Corn Drying using Sulfur Dioxide, *Transactions of The ASAE*, 27(3), 907-914.
4. El-Gazzar, F.E. and Marth, E.H., 1988, Role of Hydrogen Peroxide in Prevention of Growth and Aflatoxin Production by *Aspergillus parasiticus*, *Journal of Food Production*, 51(4), 263-268.
5. Koehler, P.E., Beuchat, L.R. and Chhinnan, M.S., 1985, Influence of Temperature and Water Activity on Aflatoxin Production by *Aspergillus flavus* in Cowpea (*Vigna unguiculata*) Seeds and Meal, *Journal of Food Protection*, 48(12), 1040-1043.
6. Kositcharoenkul, S., Bhudhasamai, K., Tanboon-Ek, P., Tsuruta, O. and Arai, K., 1992, *Aspergillus flavus* Infection and Aflatoxin Contamination of Maize in Thailand, *Research Report on Maize Quality Improvement Research Centre Project*, 13-22.
7. Wongurai, A., Tsuruta, O. and Arai, K., 1992, Water Activity of Thai Maize and Growth of *Aspergillus flavus*, *Research Report on Maize Quality Improvement Research Centre Project*, 7-9.
8. Nilrattanakoon, W., Srithong, W., Summart, A., Chinchest, A. and Tongdee, A., 1994, Control of *Aspergillus flavus* and Aflatoxin Contamination in High Moisture Maize by Carbon Dioxide Fumigation, *Thai Agricultural Research Journal*, 12(1), 58-65.
9. Prachayawarakorn, S., Soponronnarit, S., Nathakaranakule, A. and Inchan, S., 1995, Controlling Aflatoxin in Corn by In-Store Drying, *The Kasetsart Journal*, 29 (3), 404-415.

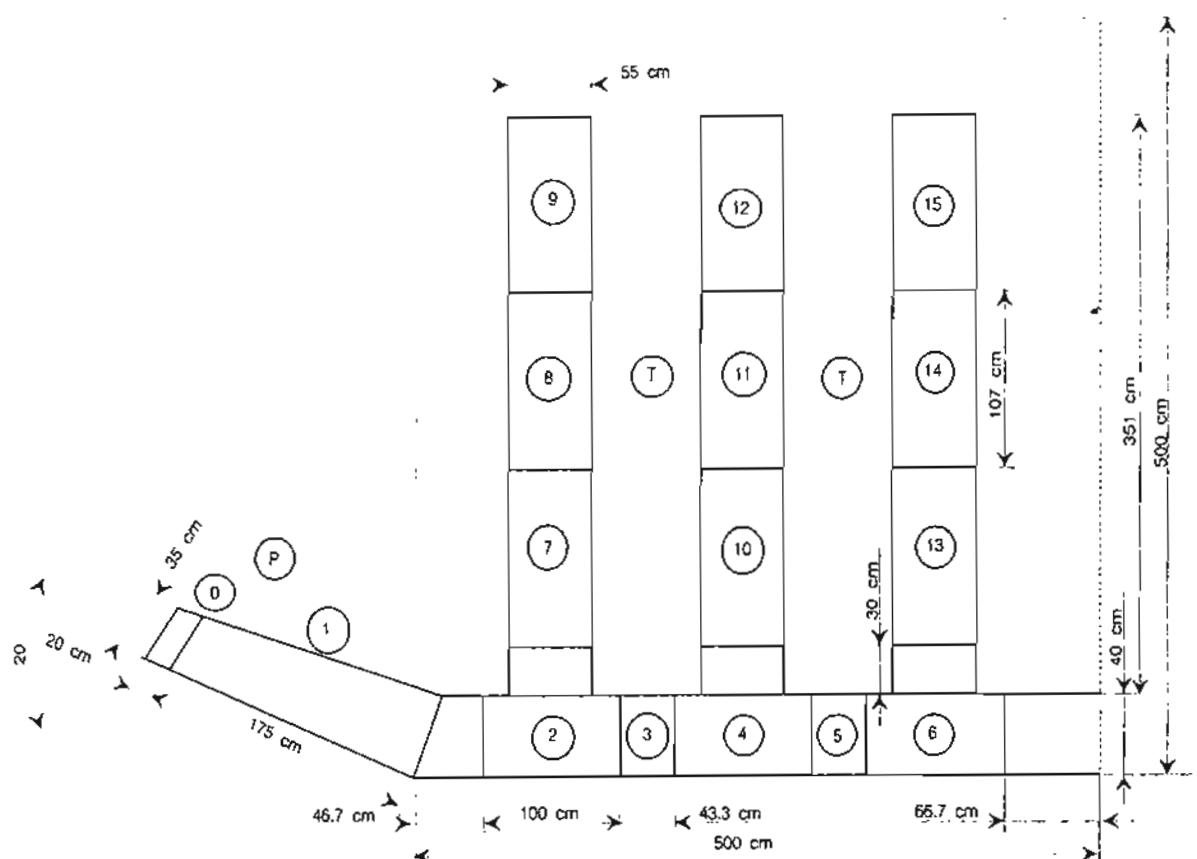


Figure 1 Plan of ducts on floor showing positions of temperature and pressure sensors.

0 = flexible duct

1,2,3,4,5,6 = main ducts, $40 \text{ cm} \times 40 \text{ cm}$

7,8,9,10,11,12,13,14,15 = perforated branching ducts, 55 cm

T = temperature

P = pressure

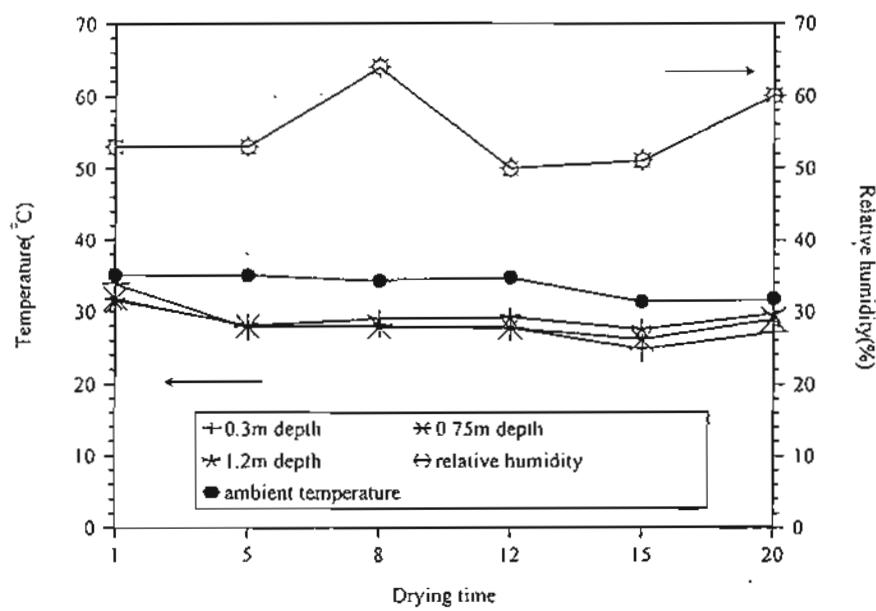


Figure 2 Evolution of temperature in corn bulk and ambient air temperature and relative humidity

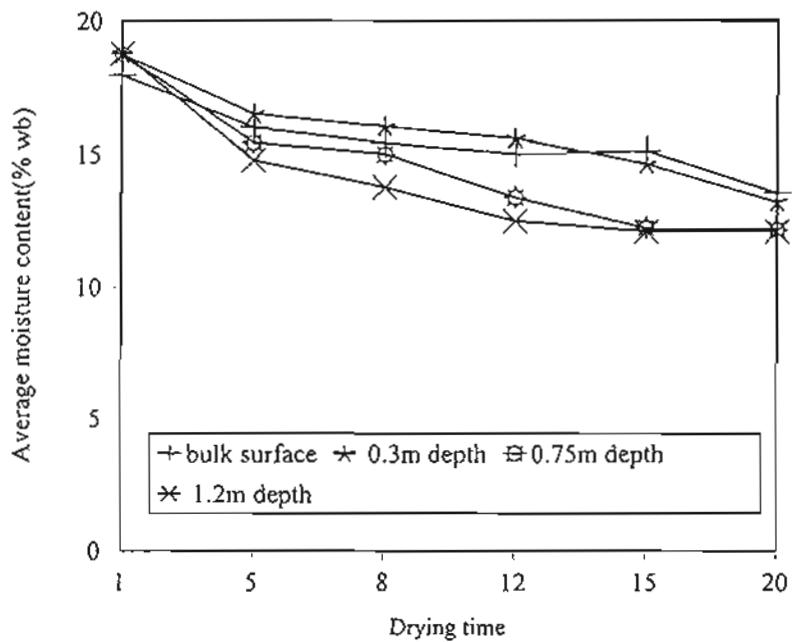


Figure 3 Evolution of corn moisture content at different depths

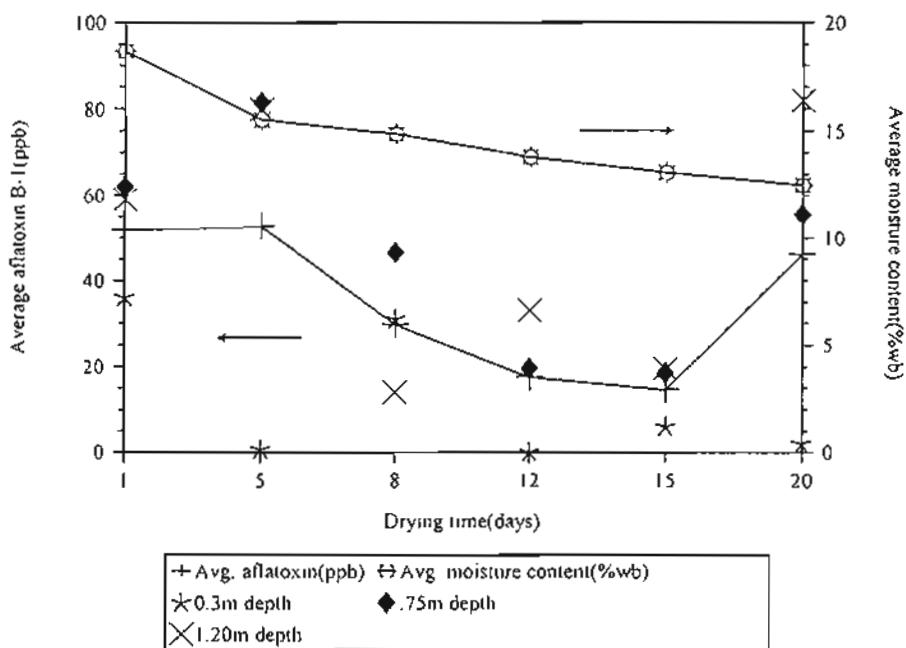


Figure 4 Evolution of average aflatoxin B-1 and average moisture content of corn
{moisture content of corn reduced from 19 % to 12.5 % wet-basis}

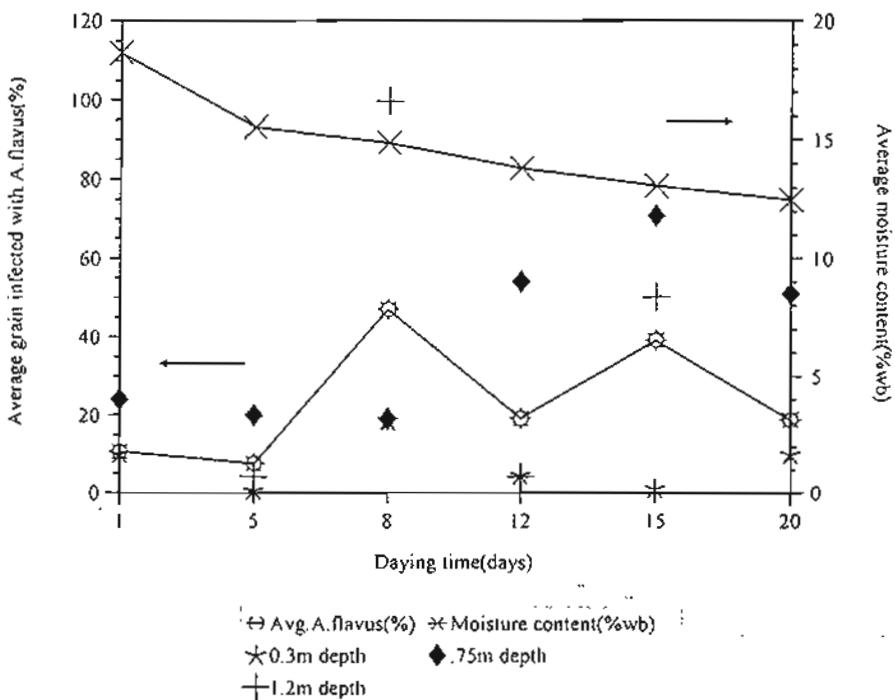


Figure 5 Evolution of average moisture content and average grain infected with A. flavus at different depths
{moisture content of corn reduced from 19 % to 12.5 % wet-basis}

แผนทั่วไปในการจัดการข้าวเปลือกชื้น*

สมชาติ สกุณรอนกุล**

บทคัดย่อ

บทความนี้กล่าวถึงความเสียหายของข้าวเปลือกชื้นหลังการเก็บเกี่ยว สาเหตุและแนวทางการแก้ไขปัญหาอย่างเป็นระบบ โดยเริ่มตั้งแต่การเป่าอากาศแวดล้อมเข้าในกองข้าวเปลือกชื้น เพื่อระบายน้ำร้อนในขณะที่ค่อยการอบแห้ง ซึ่งเป็นการอบแห้งแบบสองระยะ ได้แก่ การอบแห้งอย่างรวดเร็วในช่วงแรก ตามด้วยการอบแห้งอย่างช้าๆ ในช่วงที่สอง และการเป่าอากาศแวดล้อมเข้าในกองข้าวเปลือกเป็นระยะๆ หากว่าต้องการเก็บรักษาเป็นระยะเวลากลายๆ เดือน

ABSTRACT: STRATEGY FOR MANAGING MOIST PADDY*

Somchart Soponronnarit

Associate Member of the Royal Institute, Professor, School of Energy and Materials,
King Mongkut's Institute of Technology Thonburi, Bangkok.

*Paper presented at the Royal Institute, Bangkok, June 21, 1995.

This paper describes damage of moist paddy after harvesting, affecting factors and systematic approach for solving the problem. The solutions include aeration of ambient air through moist paddy bulk during the waiting period for drying, two-stage drying, i.e., fast drying in the first stage, followed by slow drying in the second stage and intermittent aeration of ambient air through the paddy bulk if it is necessary to store the paddy over several months.

* บรรยายในรายการประชุมราชบัณฑิต สำนักวิทยาศาสตร์ ราชบัณฑิตยสถาน เมื่อวันที่ ๒๖ มิถุนายน ๒๕๓๔

** ภาควิชานิรภัย สำนักวิทยาศาสตร์ ประจำมหาวิทยาลัยพระบูรพา; ศาสตราจารย์ คณะพลังงานและวัสดุ สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี, กรุงเทพมหานคร

บทนำ

ใน พ.ศ. ๒๕๓๖ ประเทศไทยผลิตข้าวเปลือกได้ ๑๙.๔๕ ล้านตัน คิดเป็นมูลค่าที่เกษตรกรขายได้ ๒๗,๐๐๐ ล้านบาท ส่วนออกในรูปของข้าวสาร ๓๒.๔๕ ล้านบาท ผลิตภัณฑ์จากข้าว ๑.๙๕๐ ล้านบาท ผลผลิตโดยเฉลี่ย ๓๔๘ กิโลกรัมต่อไร่ ซึ่งจัดอยู่ในเกณฑ์ค่อนข้างดีเมื่อเทียบกับผลผลิตทั่วโลก ผลิตข้าวโพดได้ ๓.๓๓ ล้านตัน คิดเป็นมูลค่าที่เกษตรกรขายได้ ๙.๑๑๙ ล้านบาท ผลผลิตเฉลี่ย ๒๕๕ กิโลกรัมต่อไร่ (ข้อมูลจาก Agricultural Statistics in Brief Crop Year 1993/94)^๑

เนื่องจากความนิยมในการใช้รดน้ำเพื่อยาและน้ำดักข้าวในตัวเพิ่มขึ้นอย่างรวดเร็ว ทำให้ข้าวเปลือกมีความชื้นค่อนข้างสูง ประมาณ ๒๐-๒๘ เปอร์เซ็นต์มาตรฐานเป็นกําลังให้เกิดความเสียหาย ที่สำคัญได้แก่ เมล็ดข้าวสารเปลือกเป็นสีเหลือง (ข้าวพันหนู) และเปอร์เซ็นต์ข้าวตันหลังการสีมีค่าต่ำ

สาเหตุสำคัญที่ทำให้เมล็ดข้าวสารเปลือกเป็นสีเหลือง ได้แก่ ความร้อนภายในกองข้าวเปลือกซึ่งที่อับอากาศ ความร้อนซึ่งเกิดจากการหายใจของเมล็ดพืชเอง และจากจุลินทรีย์ต่างๆ ที่เจริญเติบโตได้ดีในช่วงความชื้นสูง ส่วนสาเหตุที่ทำให้เปอร์เซ็นต์ข้าวตันหลังการสีมีค่าต่ำ ได้แก่ การลดความชื้นอย่างไม่ถูกวิธี เช่น อบแห้งด้วยลมร้อน

ด้วยอัตราการลดความชื้นที่ค่อนข้างสูง การตากบนลานคอนกรีต

การแก้ไขปัญหาทั้งสองนี้ทำได้โดยการขัดสาเหตุ รึ่งแรกทำได้โดยการเป่าอากาศแวดล้อมเข้าในกองข้าวเปลือก เพื่อระบายความร้อนออกจากกอง ส่วนการรักษา เปอร์เซ็นต์ข้าวตันให้มีค่าสูงนั้น ทำได้โดยการอบแห้งให้ถูกวิธี เช่น จะต้องเลือกอุณหภูมิของอากาศที่ใช้อบแห้ง อัตราการให้ลมของอากาศและช่วงเวลาของการอบแห้งในแต่ละครั้งให้เหมาะสม เทคนิคการอบแห้งข้าวเปลือกภายในจางเก็บรักษาโดยการเป่าอากาศแวดล้อม ได้รับการพิสูจน์แล้วว่า สามารถทำให้เปอร์เซ็นต์ข้าวตันมีค่าสูง เมื่อเทียบกับวิธีการอบแห้งอีกหลายวิธี ซึ่งจะได้กล่าวในรายละเอียดต่อไป

บทความนี้มีวัตถุประสงค์ที่จะเสนอแนวทางที่เหมาะสม สำหรับการแก้ปัญหาข้าวเปลือกซึ่ง แนวทางดังกล่าวส่วนใหญ่ได้รับการพิสูจน์แล้วในทางอุตสาหกรรมว่า ใช้ได้ผลดี ประกอบด้วยการเป่าอากาศแวดล้อม เพื่อระบายความร้อนออกจากกองข้าวเปลือกขณะที่รอคิวการอบแห้ง การอบแห้งระยะที่ ๑ โดยใช้อุณหภูมิและอัตราการให้ลมของอากาศสูง และการอบแห้งระยะที่ ๒ โดยใช้อากาศแวดล้อมเป่าเข้าไปในกองข้าวเปลือกภายในจางเก็บรักษา

เครื่องอบแห้งข้าวเปลือกที่มีใช้กันอยู่ทั่วไปในประเทศไทย

จากการสำรวจ^[๒] พบว่าในพ.ศ. ๒๕๓๕ มีเครื่องอบแห้งข้าวเปลือกจำนวน ๑๑๗ เครื่อง ใน ๑๗ จังหวัด มีกำลังการผลิตรวม ๘,๐๔๕ ตันต่อวัน และพบว่าในจำนวนโรงสีข้าวขนาดใหญ่จำนวน ๙๗๖ โรง และตลาดกลางในแหล่งผลิตข้าวจำนวน ๙ แห่ง มีไม้ถังร้อยละ ๑๕ ที่มีเครื่องอบแห้งข้าวเปลือก

เครื่องอบแห้งแบ่งได้เป็น ๒ แบบ คือ

๑. แบบเป็นวง (Batch) ใช้กันระดับเกษตรกร ไม่เหมาะสมกับอุตสาหกรรม (ดูรูปที่ ๑)

๒. แบบไหลต่อเนื่อง (Continuous flow) ที่นิยมใช้กันในบ้านเรือน ได้แก่ แบบเมล็ดพืชไหลข้างกับกระถางอากาศ ซึ่งเป็นแบบหนึ่งของแบบเมล็ดพืชไม่คลุกเคล้า (ดูรูปที่ ๒) และแบบเมล็ดพืชคลุกเคล้ากันใน

ขณะที่ไหล บางครั้งเรียกว่าแบบ LSU (ดูรูปที่ ๓)

หากให้มีการไหลเวียนของข้าวเปลือกจากตรงทางออกกลับเข้าไปในเครื่องใหม่ แม้เรียกเครื่องอบแห้งแบบนี้ว่า แบบเป็นวงหมุนเวียน ซึ่งมักมีความจุของถัง ๖-๑๐ ตัน โดยเฉลี่ยแล้วมีกำลังผลิตประมาณ ๑ ตันต่อชั่วโมง (ลดความชื้นได้ประมาณ ๖ จุด)

สำหรับเครื่องอบแห้งขนาดใหญ่กว่านี้ มีกำลังผลิตประมาณ ๔-๘ ตันต่อชั่วโมง (ลดความชื้นได้ประมาณ ๖ จุด)

เชือเพลิงที่ใช้ในเครื่องอบแห้ง ได้แก่ แก๊ส น้ำมันดีเซล และน้ำมันเตา ซึ่งอาจนำแก๊สร้อนจากการเผาไหม้มาใช้โดยตรงหรือโดยอ้อม หรือนำมาใช้ผลิตไอน้ำ โดยเฉพาะกับเชือเพลิงราคากูก เช่น แก๊ส และน้ำมันเตา

เทคนิคใหม่สำหรับการอบแห้งข้าวเปลือก

ในที่นี้จะยกล่าวถึงเทคนิคใหม่สำหรับการอบแห้งข้าวเปลือก โดยเฉพาะกับประเทศไทยซึ่งมักใช้เครื่องอบแห้งแบบใช้ลมร้อน ดังที่ได้กล่าวมาแล้วในหัวข้อก่อนหน้านี้ เทคนิคดังกล่าวได้แก่

๑. การอบแห้งข้าวเปลือกภายใต้ความร้อน

๒. การอบแห้งข้าวเปลือกด้วยเทคนิคฟลูอิไดเซชัน

การอบแห้งข้าวเปลือกภายใต้ความร้อน

เก็บ^[๓]

การอบแห้งเมล็ดพืชในถังเก็บหมายถึงการอบแห้งเมล็ดพืชในถังหรือโรงคุลุมที่ใช้ในการเก็บรักษา โดยที่ไม่มีการเคลื่อนย้ายเมล็ดพืชระหว่างหรือหลังการอบแห้ง โดยทั่วไปมักมีห้องลมและพัดลมเป็นส่วนประกอบ ซึ่งจะทำหน้าที่เป่าอากาศแฉล้มเข้าไปในกองเมล็ดพืช ขณะที่อากาศผ่านกองเมล็ดพืช จะเกิดการถ่ายเทความร้อนและความชื้น เมล็ดพืชจะมีระดับความชื้น

และอุณหภูมิลดต่ำลง ทำให้ไม่เกิดความเสียหาย ความชื้นเริ่มต้นของเมล็ดพืชไม่ควรสูงกว่า ๒๐ เปอร์เซ็นต์ ในกรณีของการอบแห้งข้าวเปลือก พบว่ามีข้อดีคือเปอร์เซ็นต์ข้าวตันมีค่าสูงมาก เมื่อเทียบกับวิธีการอบแห้งทั่วไป นอกจากนี้เมล็ดข้าวสารยังมีสีขาวปรกติตัวอยู่

ค่าใช้จ่ายของการอบแห้งเมล็ดพืชใน
คงเก็บนับว่าต่ำกว่าของเครื่องอบแห้งหลาย ๆ
แบบ จากประสบการณ์ของโรงสี กิตติศักดิ์
วัฒนา อำเภอคลองหลวง จังหวัดนนทบุรี
พบว่าข้าวเปลือกที่มีความชื้นเฉลี่ย ๑๙-๒๐
เปอร์เซ็นต์ จะสามารถแห้งจนเหลือความ
ชื้นประมาณ ๑๔-๑๕ เปอร์เซ็นต์ได้โดยการ
เป่าอากาศภายนอกในเวลาประมาณ ๑ เดือน
โดยเป่าอากาศเฉพาะในช่วงเวลากลางวัน
โรงคุ้มมีขนาดความจุ ๓,๐๐๐ ตัน ใช้พัดลม
ขับด้วยมอเตอร์ขนาด ๑๒ KW จำนวน ๖
ตัว ค่าไฟฟ้าประมาณ ๑๒ บาท ต่อตันข้าว
เปลือก สำหรับโรงคุ้มพื้นคอนกรีตสามารถ
ออกแบบห้องอบให้อยู่ใต้พื้น ด้านบนของห้อง
ปิดด้วยแผ่นเหล็กเจาะรู รถหนักสามารถวิ่ง
บนพื้นคอนกรีตได้ ทำให้สะดวกในการขน
ย้ายเมล็ดพืช (ดูรูปที่ ๕) ส่วนด้านไม้ยกพื้น
หรือด้านที่มีพื้นเดิมอยู่แล้ว ควรออกแบบ
ห้องอบวางอยู่บนพื้นดิน (ดูรูปที่ ๖) หาก
เก็บรักษาเมล็ดพืชเป็นเวลาหลายเดือน กอง
เมล็ดพืชอาจร้อนได้ เมล็ดพืชที่อยู่ชั้นบนๆ
อาจเสียหาย สามารถแก้ไขได้โดยการเป่า
อากาศอาทิตย์ละครั้ง ครั้งละ ๑-๓ ชั่วโมงก็
เพียงพอที่จะระบายความร้อนออกจากกอง
เมล็ดพืช

การอบรมแห้งข้าวเปลือกด้วยเทคนิค ฟลอ๊อไต์เซชัน [๓, ๔, ๕]

เครื่องอบแห้งข้าวเปลือกแบบฟลูอิ-ไดซ์เปิดมีความสามารถในการอบแห้งค่อนข้างสูง เมื่อเปรียบเทียบกับปริมาตรของเครื่องอบแห้ง นอกจากนี้ความชื้นของข้าวเปลือกหลังการอบแห้งจะมีความสม่ำเสมอ เครื่องอบแห้งแบบฟลูอิไดซ์เปิดเท่ากับเมล็ดพืชที่มีความชื้นสูงมากกว่า ๒๓ เปอร์เซ็นต์มาตรฐานเปรียบขึ้นไป ความชื้นของเมล็ดพืชจะนำไปสู่การเสียหายได้เร็วต่อไปกว่า ๑๙ เปอร์เซ็นต์ เพราะจะทำให้ข้าวมีโอกาสแตกหักมากถ้าในขณะนั้นใช้อุณหภูมิสูง นอกจากนี้ยังจะทำให้สิ้นเปลืองเชื้อเพลิงสูงกว่าปีกติดตัว ซึ่งอุณหภูมิของอากาศที่เหมาะสมอยู่ระหว่าง ๑๐๐-๑๓๐ °C

เครื่องอบแห้งข้าวเปลือกแบบพูลอิ-
ไซเดอร์เบดประกอบด้วย หัวเผาดีเซล ห้องเผา
ใหม่ ห้องอบแห้ง ไซโคลน และกะหล่อดัก
ข้าวเปลือก (ดูรูปที่ ๒)

หลักในการทำงาน ข้าวเปลือกที่มีความชื้นสูงจะถูกนั่งคับให้เหลือผ่านเครื่องทำความสะอาด เพื่อแยกแกลบหรือสิ่งเจือปนขนาดใหญ่ และจะถูกส่งไปยังถังพัก แล้วให้เหลือห้องอบแห้งโดยใช้ชุดป้อนข้าวเปลือก เป็นตัวส่ง และให้หล่อออกจากห้องอบแห้งโดยใช้ชุดป้อนเป็นตัวส่งออก จากนั้นข้าวเปลือกที่ผ่านการอบแห้งแล้วก็จะถูกหงายพลัดตักขึ้นไปยังที่สูง เพื่อสั่งไปเก็บในสตานที่ที่ต้องการ อาการบวมเร่อนอยู่ เครื่องอบแห้งข้าวเปลือกจะถูกดูดให้เหลือมาและมีส่วนที่ต้องการที่ได้จากการเผาไหม้มีเชื้อเพลิงดีเซล แล้วมีส่วน

กับอากาศซึ่งหมุนเวียนกลับมาใช้ใหม่ในห้องผู้สูงอายุ โดยมีพัดลมไฟฟ้าเป็นตัวดูดและเป็นเข้าห้องอบแห้ง อุณหภูมิของอากาศจะถูกควบคุมโดยตัวควบคุมอุณหภูมิ (thermostat) ซึ่งจะไปควบคุมการทำงานของหัวเผาตีเชล อากาศที่ออกจากห้องอบแห้งให้หล่อเท่าน้ำโดยไนโตรเจนเพื่อตักอากาศออก และผู้คนจะสามารถเดินทางเข้าห้องอบแห้งได้โดยไม่ต้องเดินทางกลับไปที่ห้องอบแห้ง ซึ่งจะช่วยให้ผู้คนสามารถเดินทางเข้าห้องอบแห้งได้โดยไม่ต้องเดินทางกลับไปที่ห้องอบแห้ง

ร้อนที่ได้จากการเผาไหม้ต่อไป

จากการเบรินเทียนกับเครื่องอบแห้งที่ใช้ลมร้อนโดยทั่วไปพบว่า เครื่องอบแห้งแบบฟลูอิไดซ์เบดลิ่งพลังงานเชื้อเพลิงและไฟฟ้าต่ำกว่าค่าไฟฟ้าและค่าน้ำมันดีเซลรวม ๐.๕๓ บาทต่อ กิโลกรัมน้ำที่ระเหย^{๑๙} สามารถใช้งานได้ง่ายกว่า นอกจากนี้การสร้างประภอบเครื่องกึ้งทำได้ง่ายกว่าด้วย

แนวทางที่เหมาะสมสำหรับการอบแห้งข้าวเปลือก

เกณฑ์การพิจารณาสำหรับใช้ในการศึกษาหาแนวทางการอบแห้งข้าวเปลือกที่เหมาะสม คือ

๑. คุณภาพข้าวเปลือก ซึ่งแยกได้เป็นความขาวของข้าวสาร และเปอร์เซ็นต์ข้าวตันหลังการตี

๒. ค่าใช้จ่าย ซึ่งแยกได้เป็นค่าใช้จ่ายคงที่ และค่าใช้จ่ายแปรผัน การที่เครื่องมีกำลังการผลิตสูงจะทำให้ค่าใช้จ่ายคงที่ลดต่ำลง การเลือกเครื่องอบแห้งที่เหมาะสม และ/หรือเงื่อนไขการอบแห้งที่เหมาะสมจะช่วยลดค่าใช้จ่ายแปรผันลง

ในการแก้ปัญหาความเสียหายของข้าวเปลือกชั้นนั้น ต้องเริ่มดำเนินการนับตั้งแต่ข้าวเปลือกชั้นเข้ามายังตัวเครื่อง ซึ่งอาจเป็นเวลาหลายชั่วโมง หรือหลายวัน ข้าวเปลือกความชื้นสูงจะเสียหายได้ง่ายภายในเวลาไม่กี่วัน โดยข้าวสารจะเปลี่ยนเป็นสีเหลือง เนื่องจากความร้อนที่ปลดปล่อยจากการหายใจของเมล็ดพืชและจุลินทรีย์

ต่างๆ การแก้ปัญหาสามารถทำได้ง่ายโดยการระบายอากาศแวดล้อมเข้ากองข้าวเพื่อลดอุณหภูมิลง จากผลการทดสอบขั้นต้นพบว่าสามารถใช้อัตราการไหลของอากาศที่ค่อนข้างต่ำ $0.35 \text{ m}^3/\text{min-m}^3$ ของข้าวเปลือกเพื่อช่วยลดความเสียหายของกองข้าวเปลือกชั้นที่มีความชื้นเริ่มต้นประมาณ ๒๒ เปอร์เซ็นต์มาตรฐานเปียกได้นานกว่า ๑-๒ เดือนอย่างไรก็ตาม ความมีการศึกษาในรายละเอียดให้มากกว่านี้ทั้งนี้เพื่อที่จะได้เลือกอัตราการไหลของอากาศ และช่วงเวลาเป่าอากาศที่เหมาะสม

เมื่อข้าวเปลือกพร้อมที่จะเข้ากระบวนการอบแห้ง ควรทำการอบแห้งอย่างรวดเร็วโดยใช้ลมร้อน โดยให้ความชื้นลดลงเหลือประมาณ ๑๘ เปอร์เซ็นต์มาตรฐานเปียกแล้วจึงลดความชื้นลงอย่างช้าๆ ที่เป็นชั้นนี้ เพราะว่าที่ระดับความชื้นประมาณ ๑๘ เปอร์เซ็นต์ ข้าวเริ่มมีอุณหภูมิสูงชั้นเทียบกับอากาศที่ใช้ในการอบแห้ง ดังนั้นข้าวจะเริ่ม

แทกร้าวหรือเปลี่ยนเป็นสีเหลืองได้ง่าย

ในการลดความชื้นข้าวเปลือกอย่างรวดเร็วในช่วงแรกนั้น สามารถทำได้โดยใช้เครื่องอบแห้งแบบต่างๆ ดังที่ได้กล่าวมาแล้วข้างต้น แต่อาจจะมีความเหมาะสมกว่าในแขวงค่าใช้จ่ายที่ต่ำกว่า และการใช้งานง่ายกว่าหากใช้เครื่องอบแห้งแบบฟลูอิเดซ์เบด

ในการลดความชื้นข้าวเปลือกอย่างรวดเร็วในช่วงที่สองจากความชื้นประมาณ ๑๙ เปอร์เซ็นต์เหลือ ๑๕ เปอร์เซ็นต์ สามารถทำได้โดยใช้เครื่องอบแห้งแบบต่างๆ ดังที่ได้กล่าวมาแล้วเช่นกัน โดยการลดอุณหภูมิของอากาศที่ใช้ในการอบแห้ง แต่อาจจะมีความเหมาะสมกว่าหากใช้เทคนิคการอบแห้งข้าวเปลือกภายในด้านเก็บรักษาโดยใช้อากาศแวดล้อมในแขวงค่าใช้จ่ายที่ต่ำกว่า และเปอร์เซ็นต์ข้าวตันที่สูงกว่า (๕๙ เปอร์เซ็นต์)

สรุป

แนวทางที่เหมาะสมสำหรับการแก้ปัญหาข้าวเปลือกชั้นสรุปได้ดังนี้

๑. เป่าอากาศแวดล้อมด้วยอัตราการให้เหล้าๆ เข้าภายในกองข้าวเปลือก ในขณะที่รอคิวการอบแห้ง อัตราการให้เหล้าที่แนะนำประมาณ $0.๑๕\text{ กก}/\text{min}\cdot\text{ก}^3$ ข้าวเปลือก

๒. ลดความชื้นข้าวเปลือกอย่างรวดเร็วในช่วงแรกโดยใช้ลมร้อน จนความชื้นเหลือประมาณ ๑๙ เปอร์เซ็นต์มาตรฐาน เปียง เครื่องอบแห้งสำหรับการลดความชื้นในช่วงแรกนี้จะเป็นเครื่องอบแห้งแบบฟลูอิเดซ์เบด เพราะสิ้นเปลืองค่าใช้จ่ายต่ำ

เซ็นต์)^(๗) อัตราการให้เหล้าของอากาศที่เหมาะสมอยู่ระหว่าง $0.๕-๑.๐\text{ กก}^3/\text{min}\cdot\text{ก}^3$ ข้าวเปลือก ความสูงของกองข้าวประมาณ ๓-๕ กม^(๘) ถ้าใช้อัตราการให้เหล้าของอากาศที่สูงกว่านี้อาจทำให้สิ้นเปลืองค่าไฟฟ้าเกินความจำเป็น ควรเป่าอากาศเฉพาะในช่วงเวลากลางวันเท่านั้น

เมื่อบาทแห้งข้าวเปลือกภายในด้านเก็บรักษาแล้วเสร็จ และหากต้องการเก็บรักษาไว้นานหลายเดือน อาจทำการเป่าอากาศแวดล้อมเป็นระยะ เช่น เป่าอากาศ อาทิตย์ละครั้ง ๆ ละประมาณ ๑-๓ ชั่วโมง ทั้งนี้เพื่อให้ความร้อนอันเกิดจากการหายใจของกองข้าวเปลือก และช่วยให้อุณหภูมิของกองข้าวเปลือกสม่ำเสมอ ทำให้ลดการให้เหล้าของอากาศโดยธรรมชาติภายในกองข้าวเปลือกได้

อบแห้งได้รวดเร็วและใช้งานง่าย

๓. ลดความชื้นข้าวเปลือกอย่างรวดเร็วในช่วงที่สอง จากความชื้นประมาณ ๑๙ เปอร์เซ็นต์ เหลือ ๑๕ เปอร์เซ็นต์มาตรฐาน เปียง เทคนิคการอบแห้งในช่วงนี้จะเป็นการอบแห้งข้าวเปลือกภายในด้านเก็บรักษาโดยใช้อากาศแวดล้อม เพราะสิ้นเปลืองค่าใช้จ่ายต่ำ เปอร์เซ็นต์ข้าวตันสูง อัตราการให้เหล้าที่แนะนำประมาณ $0.๕-๑.๐\text{ กก}^3/\text{min}\cdot\text{ก}^3$ ข้าวเปลือก และควรเป่าอากาศเฉพาะช่วงเวลากลางวันเท่านั้น หากไม่มีมีน้ำในอากาศ ในการเก็บรักษาข้าวเปลือก เทคนิคการอบแห้งข้าวเปลือกภายในด้านเก็บรักษาอาจไม่

สามารถนำมาใช้ได้ การลดความชื้นในช่วงที่สองสามารถทำได้โดยใช้เครื่องอบแห้งที่ใช้ลมร้อนทิ่มไป แต่ควรปรับอุณหภูมิให้ลดต่ำลงเพื่อป้องกันข้าวแตกร้าว

๔. หากเก็บรักษาข้าวเปลือกเป็น

ระยะเวลาหลายเดือน ควรเป่าอากาศแวดล้อมเข้ากองข้าวเป็นระยะๆ อาจจะ ๑-๓ ชั่วโมงต่อสัปดาห์ เพื่อให้ความร้อนออกจากกองและทำให้อุณหภูมิกายในกองสม่ำเสมอ

ข้อเสนอแนะ

การระบายอากาศโดยใช้อากาศเย็น (~๑๕-๒๐°C) เป็นแนวทางหนึ่งในการลดความเสียหายของกองข้าวเปลือกชั้นและการควบคุมความเสียหาย โดยเฉพาะอันเนื่องมาจากแมลงในระหว่างการเก็บรักษาข้าว

เปลือกที่อบแห้งแล้วไว้เป็นระยะเวลานานๆ ชี้งเห็นควรให้มีการสนับสนุนงานวิจัยทางด้านนี้ เพื่อให้สอดคล้องกับสถานการณ์ในอนาคต ซึ่งคาดว่าการใช้สารเคมีเพื่อกำจัดแมลงจะต้องลดลง

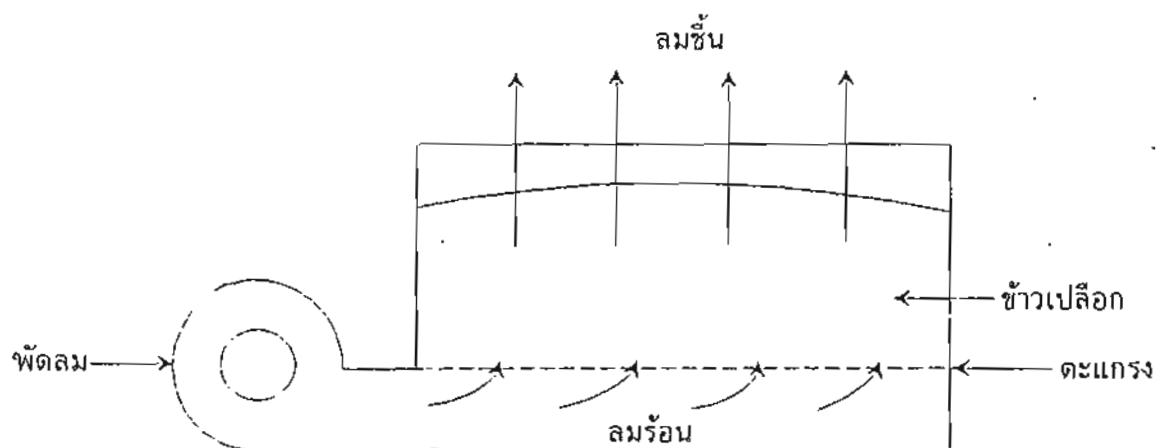
คำขอบคุณ

ผู้เขียนได้รับความช่วยงานต่างๆ ที่ได้ให้การสนับสนุนงานวิจัยเรื่องนี้อย่างต่อเนื่อง ได้แก่ Australian Centre for International Agricultural Research กองส่งเสริมเทคโนโลยี กระทรวงวิทยาศาสตร์ เทคโนโลยีและสิ่งแวดล้อม และสำนักงานกองทุนสนับสนุนการวิจัย

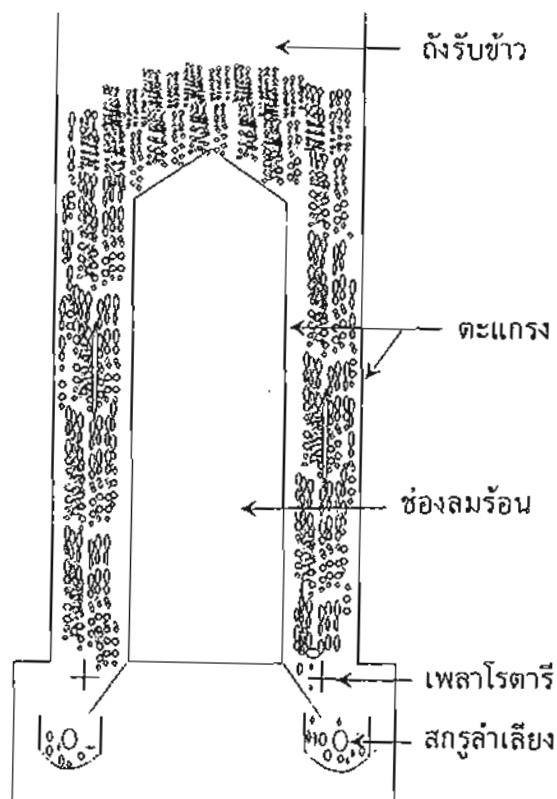
เอกสารอ้างอิง

๑. Anon. Agricultural Statistics in Brief Crop Year 1993/94. Center for Agricultural Statistics, Office of Agricultural Economics, Ministry of Agriculture and Cooperatives, Bangkok 1995.
๒. อรรถพล นุ่มห้อม และครัญ ลิขิตตันพร. สถานภาพของเครื่องอบแห้งข้าวเปลือกในประเทศไทย. รายงานการประชุมวิชาการทางวิศวกรรมเกษตร มหาวิทยาลัยเกษตรศาสตร์ วิทยาเขตกำแพงแสน, ๑๕-๒๐ พฤษภาคม ๒๕๓๗.
๓. สมชาติ. โสภณรณฤทธิ์. การอบแห้งเมล็ดพืช. สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี, กรุงเทพฯ, ๒๕๓๗. หน้า ๓๘๔.

๔. Soponronnarit S and Prachayawarakorn S. Optimum strategy for fluidized bed paddy drying. *Drying Technology - An International Journal* 1994; 12(7): 1667-1686.


๕. Soponronnarit S, Sripawatkul O and Prachayawarakorn S. Development of cross-flow fluidized bed paddy dryer. Accepted to be published in *Drying Technology - An International Journal* 1995; (7).

๖. มุสตาไฟ ยะภา. การออกแบบและทดสอบเครื่องอบแห้งข้าวเปลือกแบบฟลูอิไดซ์เบด แบบต่อเนื่องขนาดดันแบบสำหรับอุตสาหกรรม. วิทยานิพนธ์ระดับปริญญาโท สาขาวิชาเทคโนโลยีพลังงาน, คณะพลังงานและวัสดุ, สถาบันเทคโนโลยีพระจอมเกล้าธนบุรี, กรุงเทพฯ, ๒๕๓๗.


๗. สมชาติ ไสภรณ์ฤทธิ์ และเพชรร้า ปรีชาภุล. การทดสอบการอบแห้งข้าวเปลือกแบบในตั้งเก็บและแบบเป็นวงเดือนคุณภาพผลิตภัณฑ์. *วิทยาสารเกษตรศาสตร์ (วิทย.)* ๒๕๓๗; ๒๙: ๓๖๗-๓๗๗.

๘. สมชาติ ไสภรณ์ฤทธิ์, ไพรเจน วงศ์วิโรจน์ธนา, อดิศักดิ์ นาถกรรณกุล และสมชัย ฉินสกอลนาการ. การรักษาคุณภาพข้าวเปลือกโดยการเป่าอากาศอย่างเหมาะสม. *วารสารราชบัณฑิตยสถาน, ฉบับผนวก สำนักวิทยาศาสตร์* ๒๕๓๗; ๓: ๕๕-๖๖.

๙. Soponronnarit S, Wongvirojtana P, Nathakaranakul A and Chinsakolthanakorn S. Maintaining paddy quality by appropriate ventilation under tropical climates. *Proc. 9th International Drying Symposium, Gold Coast, Australia*, 1994.

รูปที่ ๗ เครื่องอบแห้งแบบเป็นงวด

รูปที่ ๘ เครื่องอบแห้งแบบให้ร้อนเนื่อง-ไม่คูลกเคล้า