

การพัฒนาชุดตรวจสอบภาคสนามสำหรับตรวจสอบไฮโอดีนใน Iodized salt (I-Kit)

พิณพิพ รื่นวงศ์ และ กิญโญ พานิชพันธ์

ภาควิชาชีวเคมี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ถนนพระราม 6

กรุงเทพฯ 10400 โทร 2455195 โทรสาร 2480375

บทคัดย่อ

การขาดสารไฮโอดีนยังเป็นปัญหาทางสาธารณสุขที่สำคัญของประเทศไทย โดยเฉพาะประชากรในบางพื้นที่ในภาคเหนือและภาคตะวันออกเฉียงเหนือของประเทศไทย เด็กที่ขาดสารไฮโอดีนจะมีสติปัญญาด้อย เด็กที่คลอดจากการด่าที่ขาดสารไฮโอดีนจะเป็นโรคเอ่อ สติปัญญาเสื่อมประกอบอาชีพไม่ได้ ในประเทศไทยมีประชากรประมาณ 15 ล้านคน ที่อยู่ในพื้นที่เสี่ยงต่อการขาดสารไฮโอดีน สำหรับในโลก 12% ของประชากรทั่วโลกมีอาการคอดหอยพอก ในจำนวนนี้ 26 ล้านคน เป็นในชั้นที่สมองเกิดการเสียหาย และ 5.7 ล้านคน มีสติปัญญาเสื่อมระดับ cretin เนื่องจากขาดสารไฮโอดีน ประเทศไทยส่วนใหญ่ในเอเชีย เมดิเตอเรเนียนฝั่งตะวันออก ละติน อเมริกา และอัฟริกามีอัตราของโรคขาดสารไฮโอดีนสูงมาก

การขาดสารไฮโอดีนเกิดเนื่องจากบริโภคสารไฮโอดีนไม่เพียงพอ โดยเฉพาะในกลุ่มที่ไม่ได้บริโภคอาหารทະเลอย่างพอเพียง ทั้งนี้ ทั้งเกลือทะเลและเกลือสินเร้ามีปริมาณไฮโอดีนไม่เพียงพอต่อความต้องการของร่างกาย คือมีเพียง 2-5 ส่วนในล้านส่วนเท่านั้น แนวทางอันหนึ่งที่จะช่วยแก้ปัญหานี้คือให้มีเกลือเสริมไฮโอดีนกระจายทั่วประเทศไทย กระทรวงสาธารณสุขจึงได้ออกกฎหมายใน พ.ศ.2537 ให้เกลือบริโภคต้องมีไฮโอดีนอย่างน้อย 30 ส่วนในล้านส่วน (พีพี เออม) แต่จากการสำรวจในปัจจุบันพบว่าเกลือบริโภคส่วนใหญ่ทั้งในบ้าน ร้านค้า และจากแหล่งผลิตยังมีปริมาณไฮโอดีนแตกต่างไปมากจากมาตรฐานของกระทรวงสาธารณสุข ซึ่งทำให้ปัญหาการขาดสารไฮโอดีนยังคงอยู่จนทุกวันนี้ ดังนั้น เพื่อที่จะมีการติดตามและควบคุมปริมาณไฮโอดีนในเกลือเสริมไฮโอดีนให้เป็นไปตามกฎหมาย จึงต้องมีวิธีการที่สะดวก สามารถวัดปริมาณไฮโอดีนในตัวอย่างเกลือจำนวนมากได้อย่างรวดเร็วและมีความแม่นยำสูง ทางกระทรวงสาธารณสุขมีความต้องการซุดตรวจสอบไฮโอดีนในเกลือในภาคสนามเป็นจำนวนมากสำหรับใช้ในโรงงานและแหล่งผลิตเกลือเสริมไฮโอดีนและใช้ในพื้นที่ที่ขาดสารไฮโอดีนหรือเสี่ยงต่อการขาดสารไฮโอดีน เพื่อทดสอบว่าเกลือบริโภคควรมีไฮโอดีนประมาณ 30-50 ส่วนในล้านส่วน โดยชุดตรวจสอบดังกล่าวจะต้องมีความไว ใช้ได้ง่าย สะดวก และสามารถใช้โดยบุคลากรโดยทั่วไป

งานวิจัยนี้ได้พัฒนาชุดตรวจสอบไฮโอดีน (ในรูปของไฮโอดีท) ในเกลือซึ่นมา 2 ชนิด คือชนิดชัวดเดี่ยวและชนิดแบบกรະด้า สำหรับชนิดชัวดเดี่ยวนั้นจะมีน้ำยาทุกอย่างสำหรับใช้ในการตรวจสอบผสมอยู่ในชุดเดียว เมื่อหยดน้ำยานี้บนเกลือที่มีไฮโอดีท เกลือจะเปลี่ยนเป็นสีน้ำเงิน ส่วนชุดตรวจสอบแบบแบบกรະด้าจะเป็นกรະด้าอบน้ำยาที่ส่วนปลายของกรະด้า เมื่อจุ่มปลายกรະด้านี้ลงในสารละลายเกลือ (อิมด้า) ที่ต้องการทดสอบ เกลือที่มีไฮโอดีทจะทำให้เกิดเป็นสีน้ำเงินบนกรະด้าเช่นกัน ในชุดตรวจสอบทั้ง 2 ชนิดนี้ ความเข้มของสีน้ำเงินที่เกิดขึ้นจะ

สามารถเปลี่ยนเป็นปริมาณของไอโอดีนได้โดยเทียบกับแผ่นสีมาตรฐาน ชุดตรวจสอบทั้ง 2 ชนิด น้ำดปริมาณไอโอดีนในเกลือได้ในระดับ 4-100 ส่วนในล้านส่วน จากการทดลองใช้ในภาคสนาม ผู้ใช้ส่วนใหญ่มีความสะดวกที่จะใช้ชุดทดสอบชนิดชุดเดียวมากกว่าแบบกระดาษ ค่านะผู้วิจัยจึงได้มุ่งไปทางพัฒนาชุดทดสอบชนิดชุดเดียว จนมีคุณสมบัติที่เหมาะสมกับการใช้งานจริง ทั้งด้าน ความแม่นยำ และความคงทน

ชุดตรวจสอบชนิดชุดเดียว (I-Kit) ได้รับการพัฒนาและปรับปรุงแก้ไขจนสามารถใช้ ตรวจสอบปริมาณไอโอดีนในเกลือได้อย่างดี เพื่อเป็นเครื่องมือหนึ่งที่จะช่วยแก้ปัญหาข้างต้น ชุดตรวจสอบนี้ ใช้ง่าย สะดวก สามารถตัวดปริมาณไอโอดีน (ในรูปของไอโอดีท) ในตัวอย่างเกลือ จำนวนมากได้อย่างรวดเร็วและมีความแม่นยำสูง เมื่อหยดน้ำยาบนเกลือที่มีไอโอดีทจะเกิดสี น้ำเงินที่ความเข้มเพิ่มขึ้นตามปริมาณไอโอดีท ชุดตรวจสอบนี้จะช่วยในการตรวจสอบและ ประกันคุณภาพของเกลือแต่ละรุ่นที่ผลิตจากโรงงานหรือแหล่งผลิตต่าง ๆ เพราะทั้งผู้ผลิตและเจ้า หน้าที่สาธารณสุขสามารถใช้ตรวจสอบ ณ แหล่งผลิตให้ได้ผลทันทีระหว่างกระบวนการผลิต ทำ ให้สามารถแก้ไขเพื่อให้เกลือได้มาตรฐานได้โดยทันที นอกจากนี้ชุดตรวจสอบนี้ยังใช้ได้โดย บุคลากรทั่วไปสำหรับตรวจเกลือบริโภคในห้องถีน จากการทดลองภาคสนามโดยความร่วมมือ ของสาธารณสุขจังหวัดต่าง ๆ ประมาณ 20 จังหวัด โดยเฉพาะในพื้นที่ที่ขาดสารไอโอดีนและใน โรงงานเกลือและแหล่งผลิตเกลือเสริมไอโอดีนกว่า 100 แห่ง พบร่วมชุดทดสอบ I-Kit นี้ใช้ได้ผลดี กว่ามากเมื่อเทียบกับชุดตรวจสอบอื่น ๆ ที่ใช้กันอยู่ในขณะนี้ โดยเฉพาะชุดตรวจสอบที่ใช้กันมาก ที่ซื้อจากต่างประเทศ ซึ่งให้สีที่เกิดขึ้นเมื่อผสมเกลือกับน้ำยาเป็นสีม่วง ซึ่งเป็นคนละสีกับแบบสี มาตรฐานที่ให้มากับชุดทดสอบที่เป็นสีเทาถึงน้ำเงิน ทำให้การอ่านปริมาณไอโอดีทที่ถูกต้องทำ ได้ยาก ไม่สามารถบอกได้อย่างแน่นอนว่าเกลือนั้น ๆ มีไอโอดีทเป็นไปตามมาตรฐาน ของกระทรวงสาธารณสุขหรือไม่ นอกจากนี้สีที่เกิดขึ้นจะเปลี่ยนจากม่วงเป็นน้ำตาลปนเหลือง และจางหายไปในเวลาสั้น โดยเฉพาะในเกลือที่มีไอโอดีทสูง ซึ่งส่งผลให้การวัดปริมาณไอโอดีท มีความผิดพลาดได้มาก ขณะที่ชุด I-Kit จะให้สีที่คงทนไม่ต่างกว่าชั่วโมง ทำให้ใช้วัดปริมาณโดย การเทียบสีได้อย่างแม่นยำ และยังมีความคงทนต่อสภาพการใช้งาน การเก็บรักษา และการชนสั่ง ในสภาพภูมิอากาศต่าง ๆ จากการทดลองใช้อย่างกว้างขวางและการวิเคราะห์แบบสอบถาม พบร ว่าผู้ใช้ส่วนใหญ่มีความพอใจในคุณภาพของชุดตรวจสอบ I-Kit และมีแนวโน้มมากกว่าชุดทดสอบนี้ จะช่วยประกันคุณภาพของเกลือเสริมไอโอดีนได้ (ขณะที่ชุดทดสอบอื่น ๆ ไม่สามารถใช้ได้) ถ้าผู้ ผลิตและเจ้าหน้าที่สาธารณสุขมีความเอาใจใส่เพียงพอ

ได้มีการทูลขอวิชุดทดสอบจำนวนมากแด่สมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราช ภูมารี ซึ่งท่านได้ทรงมีพระมหากรุณาธิคุณส่งต่อให้โรงเรียนตำราจายแตนหัวประเทศไทย เพื่อใช้ สำหรับตรวจสอบปริมาณไอโอดีนในเกลือเสริมไอโอดีนในห้องถีน ในขณะนี้องค์กรเพื่อสาธารณ ประโยชน์ (NGO) จากประเทศไทยได้นำชุดทดสอบนี้ไปใช้แล้ว และชุดตรวจสอบนี้ได้ทดลองใช้ ในบางพื้นที่ในประเทศไทย คาดว่ากระทรวงสาธารณสุขของประเทศไทยจะสั่งไปใช้ในปริมาณ มากในเร็ว ๆ นี้

ชุดตรวจสอบไอโอดีนชนิดขาดเดี่ยว (I-Kit) นี้กำลังอยู่ระหว่างรอผลการพิจารณา
สิทธิบัตรไทย และกำลังยื่นขอสิทธิบัตรของประเทศออสเตรเลีย

เมื่อชุดตรวจสอบ I-Kit นี้ได้รับสิทธิบัตร และคาดว่าจะมีการร่วมมือกับผู้อื่น เช่น
องค์การเภสัชกรรมหรือบริษัทเอกชน เพื่อผลิตในจำนวนมาก อย่างไรก็ตามจะต้องมีการปรับปรุง
คุณภาพของชุดตรวจสอบนี้ให้ดีขึ้นและเหมาะสมกับสถานการณ์อยู่ตลอด ที่สำคัญจะต้องมีการ
ตีพิมพ์ผลงานวิจัยพื้นฐานที่นำไปสู่การทำชุดตรวจสอบนี้ในวารสารระดับนานาชาติ

Development of a Field Test Kit for Iodine in Iodated Salt (I-Kit)

Pintip Ruenwongs and Bhinyo Panijpan

Department of Biochemistry, Faculty of Science, Mahidol University,

Rama 6 Road, Bangkok 10400 Tel 2455195, Fax 2480375

Abstract

Iodine deficiency disorders (IDD) is still a significant health problem in Thailand, manifested most severely as mental deficiency. It affects Thai population in all regions of the Kingdom, especially, in the risk or endemic areas of the North and Northeast : countrywide an estimated 15 million are at risk. The most serious problem in our view is the life-long cretinism afflicting children exposed to low iodine diets only for a short period in their infancy. Globally an estimated 5.7 million iodine-related cretins have been reported in addition to 26 million people with brain damage and a prevalence of 12 percent world population with goitre. Most countries in Asia, Eastern Mediterranean, Latin America and Africa have high prevalence of IDD cases.

The natural root cause of IDD is the inadequate consumption of iodine present in the relatively expensive or locally inaccessible seafood ; contrary to general belief, marine salt and rock salt both contain equally inadequate concentration (at 2 to 5 ppm) of iodine for normal health. A sustained effort has been made by the Ministry of Public Health in rectifying the problem by legislating, in 1994, the supplementation of low-cost consumable salt with a minimum of 30 ppm iodate and encouraging salt producers to consistently make such salt. However, a high percentage of salt sampled in the household and salt factories throughout Thailand showed by titration that iodine levels that deviate markedly from those recommended and thus partially prolonging the iodine problem. Thus, there was a need for a rapid and accurate determination of iodine in iodized salts. However, the kit available during that time did not give results that were quantitative enough to meet this need.

The Ministry of Public Health therefore needs an iodine test kit that is sensitive, rapid and easy to use by salt manufacturers and local people in the affected areas to assure that the iodized salt contains approximately 30-50 ppm iodine. Our research and development efforts at first concentrated on developing 2 types of iodine test kit, i.e., single-bottled kit and paper kit. The single-bottled kit contained all ingredients necessary

for the test of iodate in one bottle and gave blue color upon addition of a few drops of the solution onto the solid salt containing iodate. In the use of paper kit, paper strips coated with all necessary reagents were dipped in the tested salt solution. The blue color developed in both cases were converted to the amount of iodine by comparison to the standard color chart. The sensitivity of detection of both methods was in the range of 0-100 ppm iodine. However, preliminary results from field study and questionnaires indicated that users preferred to use the single-bottled kit rather than paper kit. Thus we focused on further development of the single-bottled kit, and have achieved a rapid, convenient and accurate detection of iodate in iodized salt.

Our single-bottled I-Kit has provided a means for a rapid and simple semi-quantitative monitoring of salt samples. With this kit, quality assurance of salt batches can be performed by the health workers and factory operators, and corrective actions on non-standard commercial salt samples can be taken by both almost instantly. Extensive field works have been performed by supplying a large number of I-Kits to more than 100 salt factories and MOPH health centers in about 20 provinces in risk areas in North, Northeast and the Central and Western regions. Factory operators and health officers have been instructed personally by us and/or trained health officers and by using our video-tapes on how to use the I-Kit. Our I-Kit proves to be superior to the other most internationally utilized single-bottled kit, which is incapable of giving semi-quantitative estimates of iodate in salt samples. The colors developed in this imported kit do not match those given on the color chart. Besides their intensity is not proportional to the iodate content and can even be misleading because the color fades disproportionately at time more than 15 min. Our reagent can generate colors that match those on the color chart and the color does not fade until the tested spots are totally dry about 1/2 - 1 hr after the reagents is dropped on the salt sample. Our reagent can also keep longer under wider weather condition(s) without undue amounts of toxic fungal growth inhibitors added as in other kits. Thus far returned questionnaires on its usage and field follow-ups by us have been very encouraging.

HRH Princess Mahachakri Sirindhorn has graciously distributed our test kits to the Thai Border Patrol Police all over the Kingdom for the purpose of iodine monitoring with the help of the Royal Thai Army Medical Corp. A non-governmental organization in Cambodia has asked for and been provided the I-Kit for the purposes stated above. Some Laotian health officers have been given this kit. A big lot order by the MOPH is being considered.

A Thailand patent for the I-Kit is now pending. An Australian patent is being sought. If and when the I-Kit successfully emerges from pending, a large scale production in collaboration with the Thai Government Pharmaceutical Organization will be considered. Continual improvements are part and parcel of this endeavour. Last but not least, the basic research data leading to the kit's development will be published in an international journal.