บทคัดย่อ

ในการวิจัยเพื่อพัฒนาและปรับปรุงกระบวนการย้อมสีธรรมชาติสำหรับอุตสาหกรรมครอบ ครัว โคยเน้นหนักการย้อมสีเขียว สีน้ำตาล และสีคำ ได้ทำการศึกษาทางเคมีของพืชให้สี หาอุณหภูมิ และเวลาที่เหมาะสมสำหรับการย้อม ผลของสารช่วยย้อมและมอร์แคนท์โลหะที่มีต่อสีที่ย้อมได้และ ต่อความคงทนของสีต่อการซัก ต่อการขัดถูและต่อแสง

ได้ทำการศึกษาทางเคมีพืชให้สี 6 ชนิดได้แก่ สะเดา ยูดาลิปตัส หูกวาง มะพร้าว สาบเสือ และสมอไทย ได้ทำการสกัดสารสีจากพืชวัตถุดิบด้วยน้ำร้อนและ/หรือด้วยเอธานอล ทำการทดลอง แยกสารสีโดยวิธีโครมาโตรกราฟี ทำการวิเคราะห์เชิงกุณภาพหาแทนนิน ฟลาโวนอยด์ แอนธราควิโนน และสารฟีนอลิก ได้ทำการวิเคราะห์เชิงปริมาณหาปริมาณกลอโรฟิลล์ในพืชที่ให้สีเขียวโดยใช้ วิธีทางสเปกโตรสโดปี หาปริมาณแทนนินโดยวิธี Hide powder หาปริมาณสารฟีนอลิกด้วยวิธีอิเล็กโตรโกแอกกูเลชันในพืชที่ให้สีน้ำตาลและสีดำ และทดสอบการข้อมผ้าฝ้ายคิบและผ้าฝ้ายฟอกขาวเพื่อ ดูเฉคสีโดยไม่ใช้และใช้สารช่วยข้อมกรดแทนนิก 0.2 % และมอร์แคนท์โลหะ Al₂(SO₄)₃, FeSO₄, Na₂Cr₂O₇, Co(NO₃)₂, และ CuSO₄ ความเข้มข้น 1 หรือ 10 % นอกจากวัตถุดิบหลักที่กำหนด จำนวน 6 ชนิดแล้วได้ทำการศึกษาวัตถุดิบอื่นเป็นบางส่วนอีกจำนวน 15 ชนิด พบว่าพืชที่น่าจะ สามารถใช้ข้อมสีเขียวได้ ได้แก่ ใบหญ้าหวาน ใบติ้วแดง ใบสาบเสือ ใบจามจุรี และใบขี้เหล็กฝรั่งโดยใช้จุนสีเป็นมอร์แดนท์ พืชที่ใช้ข้อมสีน้ำตาลและสีดำ ได้แก่ ใบสะเดา ใบและเปลือกด้นหูกวาง เปลือกต้นขูกาลิปตัส เปลือกต้นรกฟ้า เปลือกด้นสมอไทย เปลือกต้นกระโดน และผลตะแบก พืชที่ เหมาะสมสำหรับข้อมสีน้ำตาลได้แก่ กาบมะพร้าวแห้ง(ส่วนเปลือกผลและใย) ผลสมอไทย(ส่วน เปลือกและเนื้อ) และเปลือกผลมังคุด

การพัฒนากระบวนการข้อมได้ใช้เส้นค้ายฝ้าย 3 ประเภท คือ ค้ายฝ้ายเบอร์ 40/2 ค้ายฝ้ายเบอร์ 10/1 และค้ายปั่นมือ ที่หาซื้อได้จากร้านค้าในท้องตลาค ได้ทำการทคลองหาภาวะที่เหมาะสมในการ เตรียมค้ายก่อนการข้อมโดยทำกวามสะอาคค้วยวิธีการต่าง ๆ ใช้อัตราส่วน ค้ายต่อสารละลาย เป็น 1: 10 โดยน้ำหนักต่อปริมาตร ทำการต้มค้ายในสารละลายให้เคือคและทิ้งไว้นาน 30 นาที ถึง 1 ชั่วโมง วิธีการทำกวามสะอาคที่ใช้ ได้แก่ ทำกวามสะอาคค้วยสบู่และโซคาแอช ทำกวามสะอาคแบบ 2 ขั้นตอน โดยขั้นตอนแรกใช้ กรคซัลฟูริก 2 %w/v หรือเอนไซม์ไคแอสเตส และขั้นตอนที่สองใช้ สารละลายโซคาไฟความเข้มข้น 5, 7 และ 10 %owf. และวิธีการสุดท้ายทำกวามสะอาคค้วยเบส โซเคียมไฮครอกไซค์ความเข้มข้น 4 และ 6 %ของน้ำหนักค้าย พร้อมการฟอกขาวค้วยไฮโครเจน เปอร์ออกไซค์ชนิค 35%V ความเข้มข้น 5, 10 และ 15 %ของน้ำหนักค้าย ผลการหาความชื้นของ

เส้นค้าย วัดความขาว วัดความแข็งแรงของค้ายในเทอมความทนแรงคึง และติดตามการเปลี่ยน แปลงน้ำหนัก ก่อนและหลังการทำความสะอาคตามขั้นตอนต่าง ๆ พบว่าภาวะที่เหมาะสมที่สุดใน การทำความสะอาคค้ายแตกต่างกันไปตามชนิดและธรรมชาติของเส้นค้ายแต่ผลโดยรวมสามารถ กล่าวได้ว่าภาวะที่เหมาะสม คือ การทำความสะอาคค้วยเบสพร้อมการฟอกขาว โดยใช้ความเข้มข้น ของเบสโซเคียมไฮครอกไซค์ 6 %owf. และสารฟอกขาวไฮโครเจนเปอร์ออกไซค์ชนิค 35%V ความ เข้มข้น 5 %ของน้ำหนักค้าย ที่ภาวะต้มเดือด เวลา 30 นาทีหลังจากเติมเปอร์ออกไซค์ อย่างไรก็ตาม สำหรับการย้อมระดับอุตสาหกรรมครอบครัวนี้ สามารถใช้วิธีการทำความสะอาคค้วยสบู่และโซคา แอชใช้อัตราส่วนค้าย : สบู่ : โซคาแอช : น้ำ = 100 : 10 : 16 : 1000 ที่ภาวะต้มเคือด เวลา 1 ชั่วโมงได้

การเตรียมน้ำข้อมจากพืชวัตถุคิบใช้อัตราส่วนวัตถุคิบต่อน้ำเป็น 1:10 เวลาในการต้ม 1 ชั่ว โมง กรองแยกกากออกก่อนนำไปใช้ข้อมด้าย หรือผ้าฝ้ายคิบ การหาภาวะที่เหมาะสมของกระบวนการ ข้อม ใช้อัตราส่วนค้ายต่อน้ำข้อมเท่ากับ 1 ต่อ 10 โดยน้ำหนักต่อปริมาตรเป็นหลัก ทำการหาอุณหภูมิ และเวลาที่เหมาะสมสำหรับการย้อมโดยติดตามการเปลี่ยนแปลงการคูดซับสีน้ำข้อมโดยวิธีทางเสปก โตรสโคปี และศึกษาผลของสารช่วยข้อมกรดแทนนิกและน้ำต้มใบยูคาลิปตัสและผลของมอร์แคนท์ โลหะความเข้มข้นเทียบเป็นโลหะระหว่าง 0.25 ถึง 5 %ของน้ำหนักค้าย ทำการข้อมมอร์แดนท์ก่อน ข้อมสี ข้อมพร้อมข้อมสี และข้อมหลังข้อมสี อัตราส่วนค้ายต่อสารละลายมอร์แคนท์ 1:10 โดยน้ำ หนักต่อปริมาตร ภาวะที่เหมาะสมของกระบวนการพิจารณาจาก สีที่ข้อมได้ที่ทำการบันทึกภาพและ ทำการวัดสีในเทอม L*, a* และ b* ผลการทดสอบความคงทนของสีต่อการซัก ต่อการติดสี ต่อการ ขัดถูและต่อแสงตามวิธีการมาตรฐาน รวมถึงความสะดวก ความยากง่ายในการนำไปประยุกต์ใช้ใน อุตสาหกรรมครอบครัว

ผลการทคลองพบว่า สำหรับน้ำย้อมสีธรรมชาติทุกชนิดที่ได้ศึกษานี้ การคูดซับสีโดยค้ายฝ้าย อยู่ในเกณฑ์ต่ำ ส่วนมากเกิดการคูดซับได้ไม่เกิน 40 % ยกเว้นน้ำย้อมหญ้าหวาน ใบสะเคา และเปลือก ต้นสมอไทยที่สามารถเกิดการคูดซับได้สูงถึง 70-80% พบว่าอุณหภูมิที่เหมาะสมมีค่าต่ำกว่าจุดเดือด โดยจะมีค่าระหว่าง 60 ถึง 90 °C ส่วนมากสามารถใช้อุณหภูมิ 70 °C ได้ พบว่าเวลาที่เหมาะสมใน การย้อมสีกือ 60 นาที

การข้อมสีเขียวด้วยสีข้อมธรรมชาติจากพืชขึ้นอยู่กับคลอโรฟิลล์ในวัตถุดิบให้สีและความยาก ง่ายในการละลายในน้ำที่ใช้เป็นตัวทำละลาย ผลการข้อมสีเขียวโคยใช้ใบหญ้าหวาน ใบติ๋วแดง ใบ สาบเสือ และใบขี้เหล็กฝรั่ง สรุปได้ว่าอุณหภูมิที่คือ 70 °C เวลา 1 ชั่วโมง ใช้มอร์แคนท์ทองแคงความ เข้มข้น 0.25 - 1 %ของน้ำหนักด้าย

การข้อมสีน้ำตาลจากสีข้อมธรรมชาติเกิดจากสารพวกแทนนินและสารฟินอลิกที่มีในพืช ส่วนประกอบที่แตกต่างกันทำให้สีน้ำตาลที่ได้มีเฉดสีแตกต่างกัน ส่วนมากสามารถข้อมติดได้โดยไม่ ต้องใช้มอร์แดนท์ แต่สีจากพืชบางชนิดไม่ทนต่อแสง การใช้โลหะมอร์แดนท์ช่วยข้อมอาจทำให้ความ RDG4120019

คงทนของสีต่อแสงคีขึ้น ธรรมชาติของสารสีที่แตกต่างกันทำให้อุณหภูมิที่เหมาะสมแตกต่างกันไป ในช่วง 65 ถึง 85 °C ชนิดของมอร์แคนท์(สารส้มและจุนสี) และภาวะการย้อมแตกต่างกัน อย่างไรก็ ตามพบว่าเวลาการย้อมที่เหมาะสมคือ 60 นาทีเช่นเคียวกันกับการย้อมสีเขียว

1

สีคำจากพืชให้สีย้อมธรรมชาติต่าง ๆ คือ เปลือกแห้งต้นยูกาลิปตัส เปลือกค้นสมอไทย ผล มะกอก ใบหูกวาง เปลือกต้นกระโคน เปลือกต้นรกฟ้า และลูกตะแบก เกิดจากสารแทนนินและสาร ฟืนอลิกเช่นเคียวกับการย้อมสีน้ำตาล แต่ต้องใช้เหล็กเป็นมอร์แคนท์ ภาวะที่เหมาะสมในการย้อมจึง ไม่สามารถใช้ภาวะหนึ่งเคียวได้เช่นเคียวกับการย้อมสีน้ำตาล อุณหภูมิที่เหมาะสมสามารถใช้ได้ใน ช่วง 65 ถึง 85 °C และเวลา 60 นาทีเช่นกัน สีคำที่ได้มีโทนสีแตกต่างกันขึ้นอยู่กับวัตถุดิบที่ใช้ ผลการ ทคสอบความคงทนของสีพบว่าอยู่ในเกณฑ์เคียวกันกับพืชอื่น ๆ ที่ศึกษามาก่อนแล้ว

ได้ทำการถ่ายทอดกระบวนการย้อมให้กลุ่มทอผ้าร่วมโครงการรวม 2 ครั้ง และกลุ่มทอผ้าอื่น ในเขตภาคเหนือตอนบน 2 ครั้ง

Abstract

In the process of research to develop and improve the dyeing process using natural dyes for small scale industry, stressing green, brown and black colours, we have studied the chemical nature of plant dyes, the optimum temperatures and time for dyeing, the effect of dyeing auxilliaries and metallic mordants on the dyeing colour, washing fastness, rubbing fastness and light fastness.

We have studied the chemical nature of dyes from 6 plants, viz. neem, eucalyptus, umbrella tree (Terminalia catappa), coconut, Saab Suea (Eupatorium odoratum), and myrobalan (Terminalia chebula). The dye substances were extracted using hot water and/or alcohol, fractionated by chromatography, then analyzed qualitatively for tannins, flavonoids, anthraquinones, and phenolic compounds. Quantitative determinations were carried out by spectroscopic method for chlorophylls in the materials used in dyeing green colour, by hide powder method for tannins, and by electrocoagulation method for phenolic compounds in the materials used in dyeing brown and black colours. Dyeing tests were performed in order to compare colour shades using raw and bleached cotton cloths, with and without 0.2% tannic acid, and using aluminium sulphate, ferrous sulphate, sodium dichromate, cobalt nitrate, and copper sulphate as mordants in 1 or 10% concentrations.

Apart from the above 6 main dyeing materials, 15 others were partly studied and it was found that dyeing materials having a potential for dyeing green colour are the leaves of stevia, Tiu Daeng (Cratoxylum formosum subsp. Pruniflorum), Saab Suea, rain tree (Samanea saman), and Cassia (Cassia floribunda), all using copper sulphate as mordant. For brown and black colours the following are recommended: neem leaves, bark and leaves of umbrella tree, eucalyptus bark, Rok Faa (Terminalia alata) bark, myrobalan bark, Kradone (Careya arborea) bark, and Queen's Crapemyrtle (Lagerstroemia calyculata) fruits. For brown colour the following are suggested: brown husk of coconut fruit, myrobalan fruit and rind of mangosteen fruit.

The sutdy to develop the dyeing process was carried out using 3 kinds of cotton yarn, viz. yarn no. 40/2, yarn no. 10/1, and hand-spun yarn, all commercially available. First, to find out the optimum conditions for cleaning the yarn prior to dyeing, a ratio of yarn to cleaning solution = 1:10 (w/v) and a boiling time of 0.5-1 hour were used. Three cleaning methods employed

RDG4120019

were (1) cleaning with soap and soda ash, (2) cleaning with 2% (w/v) sulphuric acid or diastase enzyme, followed by caustic soda solution (5, 7, or 10%owf.), and (3) cleaning with sodium hydroxide solution (4 or 6 %owf.) and bleaching with 35%V hydrogen peroxide (5, 10 or 15 % owf.). Judging from fibre moisture, whiteness, strength, and weight change before and after cleaning, it was found that the optimum conditions for cleaning the yarn varied as the kind and nature of the fibre, but the best overall condition seems to be cleaning with base and bleaching by sodium hydroxide (6% owf.) and 35%V hydrogen peroxide (5 %owf.) with 30-minute boiling time. However, for small scale industry, cleaning with soap and soda ash in the ratio of yarn: soap: soda ash: water = 100:10:16:1000, with 1 hour boiling time, was found to be good enough.

In the preparation of dyeing solution from the dye material, a ratio of 1:10 for dye material to water and a heating time of 1 hour were used. The dye material was then separated from the dyeing solution, which was then used to dye the cotton fibre in the ratio of 1:10 (w/v) for fibre to dye solution. Determination of optimum dyeing temperature and dyeing time was carried out by monitoring the dye adsorption by spectroscopic method. Also investigated were effects of dye auxilliary (tannic acid and eucalyptus leaf extractive water), mordant concentration (0.25-5% owf.), and mordanting order (pre-mordanting, co-mordanting, and post-mordanting). Optimum conditions for the process were judged from the dyeing results, which include dye colour measured in terms of L*, a* and b*, washing fastness nad degree of staining, rubbing and light fastness, and suitability for small scale industry application.

The results obtained indicated that adsorption of most dye colours by cotton fibre was low (not more than 40%) except those from stevia leaves, neem leaves, and myrobalan bark, which were 70-80% adsorbed. Optimum dyeing temperatures were found to be less than the boiling point (between 60 and 90°C), a value of 70 °C being practical for most preparations. Optimum dyeing time was 60 minutes.

The success of green colour dyeing with plant leaves mostly depends on the degree of dispersibility in water of the chlorophyll pigments. From the results of dyeing with leaves of stevia, Tiu Daeng, Saab Suea, and Cassia, the optimum conditions were found to be 70 °C dyeing temperature for 1 hour using 0.25-1% (owf.) copper sulphate as mordant.

Brown natural dyes have been known to consist of tannins and phenolic compounds. Different shades of colour may arise from different kinds of these substances. Most brown colours are fast with respect to washing without using any mordant. However, the light

RDG4120019

fastness of some brown plant dyes may improve by using mordant. The optimum dyeing temperature and time were found to be between 65 to 85 °C for 1 hour. The mordants that produce brown colours are usually alum or copper sulphate.

Black natural dyes were found to arise from the same plants as those that dyed brown colours, viz. eucalyptus bark, myrobalan bark, Queen's Crapemyrtle fruits, umbrella tree leaves, Kradone bark, and Rok Faa bark. However, while other conditions may be the same as brown colour dyeing, ferrous sulphate must be used as mordant. This will form complexes with tannins or phenolic compounds to give the desired black colour. Fastness testing results for the black colour obtained were more or less the same as other colours studied.

The dyeing processes which were the result of this research were transmitted in two workshops to our co-working weaving groups as well as to other weaving groups in the northern region.