

บทคัดย่อ

จากการสู่มเก็บตัวอย่างเพื่อแยกเชื้อที่มีอยู่ในสวนทุเรียนโดย เก็บตัวอย่างจากดินบริเวณทุ่ง ใบทุเรียน เพื่อตรวจหาเชื้อราที่สำคัญที่เกี่ยวข้องกับอาการผลเน่า คือ *Phytophthora palmivora*, *Lasiodiplodia theobromae*, *Phomopsis* sp., และ *Colletotrichum gloeosporioides* ในช่วงทุเรียนเริ่มออกดอกจนกระตื้งเก็บเกี่ยวผลทุเรียนรุ่นสุดท้าย พบว่าการเปลี่ยนแปลงปริมาณของเชื้อที่เป็นสาเหตุโรคผลเน่าที่แยกได้จากดินและใบทุเรียน มีปริมาณการเปลี่ยนแปลงที่มีรูปแบบไม่แน่นอน เมื่อเปรียบเทียบกับสภาพแวดล้อมที่ตรวจวัดคือ อุณหภูมิ ความชื้น และปริมาณน้ำฝน ไม่มีความสัมพันธ์ต่อกันที่จะนำไปสร้างรูปแบบการพยากรณ์ได้

เชื้อรา *Lasiodiplodia theobromae*, *Phomopsis* sp., และ *Colletotrichum gloeosporioides* ซึ่งแยกได้จากส่วนของใบและผลที่เป็นโรคทุเรียน ผลทุเรียนที่หล่นอยู่โคนต้น จากพืชอื่นๆ คือ เกาะล่องกอง มังคุด กาแฟ และแหล่งอื่นๆ คือ ดิน อากาศ พบว่า เชื้อรา *L. theobromae* จากแหล่งเหล่านี้สามารถก่อให้เกิดโรคกับผลทุเรียนได้ดีโดยเข้าทำลายทางแพลงเตต์ไม่สามารถเข้าทำลายได้โดยตรง สำหรับเชื้อรา *Phomopsis* sp. *Colletotrichum gloeosporioides* แยกได้จากใบและผลทุเรียน ล่องกอง, สาบแร้งสาบกาน, ดิน, อากาศ สามารถทำให้เกิดโรคกับทุเรียนได้ แต่ก็มีความรุนแรงของโรคค่อนข้างต่ำแม้ปลูกเชื้อโดยการทำแพลงท์ผล ลักษณะทางรูปร่างของเชื้อรา *L. theobromae*, *Phomopsis* sp และ *C. gloeosporioides* ที่ได้จากการทำแพลงท์ต่างๆ พบว่า เชื้อรา *L. theobromae* มีลักษณะที่ใกล้เคียงกัน ทั้งลักษณะโคลนนี ขนาดของสปอร์ สำหรับเชื้อรา *Phomopsis* sp. ที่พบมีลักษณะโคลนนีที่แตกต่างกันแม้ว่าทั้งหมดจะมีขนาดของสปอร์ที่ใกล้เคียงกันส่วนเชื้อรา *C. gloeosporioides* มีลักษณะที่คล้ายคลึงกัน

เมื่อตรวจสอบผลทุเรียนที่ตัดแต่งทิ้งไว้โคนต้น โดยทำการเก็บและตรวจตัวอย่างทุก 10 วัน เป็นระยะเวลา 70 วัน พบเชื้อรา *Phytophthora palmivora*, *L. theobromae*, *Phomopsis* sp และ *C. gloeosporioides* บนผลทุเรียนดังกล่าว โดยเฉพาะ *L. theobromae* และ *Phomopsis* sp. ในระดับที่ค่อนข้างสูง แต่เชื้อรา *C. gloeosporioides* และ *Phytophthora palmivora* ในระดับต่ำ

การเก็บเกี่ยวทุเรียนโดยการตัดทุเรียน แล้วโอนลงมาให้อีกคนที่อยู่ใต้โคนต้นรับด้วยกระสอบป่าน แล้ววางกองทุเรียนบนดินใต้โคนต้น แล้วนำไปปูบ่มโดยไม่จุ่มสารเคมีก่อให้เกิดโรคผลเน่าแก่ทุเรียนสูงที่สุดถึง 80 เปอร์เซ็นต์ โดยมีการเกิดโรคที่มีสาเหตุจากเชื้อรา *L. theobromae*, *C. gloeosporioides* และ *Phomopsis* sp. คิดเป็นเปอร์เซ็นต์การเกิดโรคเท่ากับ 42, 28 และ 10 เปอร์เซ็นต์ ตามลำดับ

การศึกษาวิธีการเข้าทำลายของเชื้อรา *L. theobromae* ก่อให้เกิดโรคได้หลังจากปลูกเชื้อนาน 9 ชั่วโมง โดยเข้าทำลายผลทุเรียนทางบาดแผล ได้ดีที่สุด มีขนาดของแผลเท่ากับ 12.5 เซนติเมตร หลังจากปลูกเชื้อ 5 วัน แต่ไม่สามารถเข้าทำลายผลทุเรียนหากไม่ทำแผล ส่วนเชื้อรา *C. gloeosporioides* และ *Phomopsis* sp. เข้าทำลายผลทุเรียนหลังจากเก็บเกี่ยวได้ในระดับที่ต่ำมาก ไม่ว่าจะโดยวิธีการทำแผล หรือไม่ทำแผล

สารเคมี 7 ชนิด ได้แก่ flusilazole, guazatine, imazalil, myclobutanil, propiconazole, thiabendazole และ thiophanate-methyl ความเข้มข้น 250, 500, 750 และ 1,000 ppm มีประสิทธิภาพในการยับยั้งการเจริญของเชื้อรา *L. theobromae*, *Phomopsis* sp และ *C. gloeosporioides* โดยพบว่า สารเคมี imazalil ทุกความเข้มข้น มีประสิทธิภาพดีที่สุดในการยับยั้งการเจริญของสีน้ำเงินเชื้อรา ทั้ง 3 ชนิดและยับยั้งการออกของสปอร์เชื้อรา *L. theobromae* ของเชื้อรา *L. theobromae* ได้สูงที่สุดถึง 100 เบอร์เซ็นต์ ส่วนการใช้สารละลายเกลือ sodium hydrogen carbonate, potassium hydrogen carbonate, potassium carbonate, ammonium chloride และ sodium carbonate ที่ระดับความเข้มข้น 250, 500 และ 1000 ppm พบว่าเกลือ ammonium chloride 1000 ppm มีประสิทธิภาพดีในการยับยั้งการเจริญของเชื้อราดังกล่าว แต่เมื่อเปรียบเทียบกับ imazalil 500 ppm แล้วมีประสิทธิภาพต่ำกว่า การจุ่มผลทุเรียนใน imazalil ความเข้มข้น 500 ppm โดยการจุ่มยกเป็นวิธีที่เหมาะสมที่สุดที่จะนำมาใช้ควบคุมโรคผลเน่าของทุเรียน

การตรวจหาสารเคมีตอกค้างโดยวิธี bioassay พบว่า ผลทุเรียนที่จุ่มในสารเคมี imazalil ความเข้มข้น 500 ppm โดยการจุ่มยกแล้วนำมาตรวจสารเคมีตอกค้างภายหลังการจุ่มทันที, หลังบ่มไว้ 3 และ 6 วัน พบริมาณสารเคมีตอกค้างที่เปลือกผิวเท่ากับ 25.3, 14.4 และ น้อยกว่า 10 ppm ตามลำดับ

Abstract

Changing of fruit rot pathogens including *Colletotrichum gloeosporioides*, *Lasiodiplodia theobromae*, *Phytophthora palmivora*, and *Phomopsis* sp. in durian orchard was investigated during flowering till last harvest. It was found that the levels of fruit rot pathogens collected from the orchard ground and leaf surface were not corresponded to the weather conditions including temperature, relative humidity, and rain fall. Therefore, model for forecasting of these fruit rot pathogens in the orchard could not be initiated.

These pathogens were also isolated from different sources including diseased leaves and fruits, young fruits dropped on the ground, diseased rambutan, diseased mangosteen, diseased coffee leaf, diseased weeds, soil and air in durian orchard. *L. theobromae* from these sources could cause disease on durian fruits by wound inoculation. Whereas, *C. gloeosporioides*, *Phomopsis* sp. isolated from diseased durian leaves and fruits, diseased langsat, weeds, soil, and air also could cause disease by wound inoculation but the symptom was less severity. *L. theobromae*, *C. gloeosporioides* isolated from these sources were similar in their morphological characteristics including colonial characteristics, size and shape of conidia. Isolates of *Phomopsis* sp. were less similarity in their colonial characteristics but not size and shape of conidia.

Handling of durian has an effect on disease incidence. Durian harvested by dropping on the jute sack and then, laid on the ground before transporting to packinghouse had the highest fruit rot incidence at 80%. This fruit rot was caused by *L. theobromae*, *Phomopsis* sp. and *C. gloeosporioides* at 42, 28 and 10% respectively.

Infection studies of these fruit rot pathogens indicated that *L. theobromae* infected durian fruit successfully through wounds. *Phomopsis* sp. and *C. gloeosporioides* could infected durian fruits through wounds as well but disease severity was rather low. *L. theobromae* infected fruit successfully after 9 hrs of wound incubation.

The efficacy of flusilazole, guazatine, imazalil, myclobutanil, propiconazole, thiabendazole and thiophanate-methyl was evaluated. Imazalil was the most effective. It could inhibit mycelial growth of *L. theobromae*, *Phomopsis* sp. and *C. gloeosporioides* and inhibits spore germination of *L. theobromae* at 100%. Salt solution of sodium hydrogen carbonate,

potassium hydrogen carbonate, potassium carbonate, ammonium chloride, and sodium carbonate at concentration of 250, 500, and 1000 ppm were also tested with these pathogens. Ammonium chloride at 1000 ppm gave a good inhibition effect on both mycelial growth and conidial germination. However, it showed less effect in controlling of durian fruit rot as compared with imazalil at 500 ppm. Briefly dipping durian in imazalil at 500 ppm was an effective control of fruit rot. After dipping, chemical residues were check at once and 3 and 6 days later. Residue of imazalil on the fruits were 25.3, 14.4 and less than 10 ppm respectively.