

การพัฒนาสภาพการเผาทับทิม

Development of Heating Condition of Ruby

บทคัดย่อ

ได้ศึกษาวิจัยการปรับปรุงคุณภาพทับทิมจากแหล่งมองซูแบบไม่ใส่สารเติมแต่งใดๆ เตาเผาที่ใช้ในงานวิจัยนี้เป็นเตาเผาอุณหภูมิสูงแบบปรับสภาพบรรยายกาศภายในเตาได้ ทดลองศึกษาอุณหภูมิการเผาในช่วง $900-1700^{\circ}\text{C}$ อัตราการเพิ่มอุณหภูมิในช่วง $260-650^{\circ}\text{C}/\text{ชม.}$ อัตราการลดอุณหภูมิในช่วง $66-800^{\circ}\text{C}/\text{ชม.}$ ระยะเวลาเช่พลอยในช่วง $0.5-60$ ชม. ทำการศึกษาสภาพการเผาแบบมีอุกซิเจนมาก (อากาศ) จำนวน 20 ลักษณะ และแบบลักษณะอุกซิเจนน้อย 57 ลักษณะ โดยใช้ทับทิมดิบจำนวน 230 เม็ด ทับทิมทุกเม็ดมีขนาดต่ำกว่า 1 กะรัต ผลจากการศึกษาพบว่าตัวแปรสำคัญที่ทำให้ได้สีแดงล้วนๆ ได้แก่ อุณหภูมิสูงสุดในการเผาและระยะเวลาในการเช่พลอย ณ. อุณหภูมิสูงสุด พนว่าอัตราการเพิ่มและอัตราการลดอุณหภูมิไม่มีผลต่อการเผาพลอยที่อุณหภูมิสูงประมาณ $1600-1700^{\circ}\text{C}$ ได้สีแดงล้วนๆ ได้แก่ อุณหภูมิต่ำ ลักษณะที่อุณหภูมิต่ำ ส่วนเวลาในการเช่พลอยเพื่อไล่แกนสีน้ำเงินชี้นอยู่กับลักษณะได้แกนสีน้ำเงิน ถ้าแกนสีน้ำเงินเข้มมาก แสงไม่ผ่าน จะใช้เวลาเช่นนานกว่าแกนสีน้ำเงินที่เข้มน้อยและแสงผ่าน ปริมาณหมอกและของแข็งสีขาวที่เกิดชื่นภายในทับทิมชื่นอยู่กับคุณภาพของทับทิมดิบ ทับทิมที่มีรอยแตกมาก เมื่อเผาแล้วจะได้ทับทิมที่ทึบ ในทับทิมที่เผาแล้วบริเวณส่วนใหญ่มีสีม่วงแดงและมีสีส้มในบางพื้นที่ ปริมาณของของแข็งสีขาวลดลงเมื่อเผาในบรรยายกาศแบบมีอุกซิเจนน้อย จากหลักฐานทางอินฟราเรดสเปกตรัม สารสีขาวนี้น่าจะเป็นอลูมิเนียมออกไซด์ที่เกิดจากการสลายตัวของไดอะลปอร์ซีงเป็นมลพิษภายในทับทิมมองซู ลักษณะทางแสง ความถ่วงจำเพาะ และธาตุองค์ประกอบของทับทิมก่อนและหลังเผาไม่มีความแตกต่างกันมากนัก ส่วน UV-VIS-NIR สเปกตรัมมีการเปลี่ยนแปลงบ้างเล็กน้อย

Abstract

The heating conditions of Mong Hsu ruby without adding any additives were determined. The furnace used in this study is high temperature electric furnace that allowed gas flushing. The heating temperatures of 900 to 1700 °C, rate of increasing temperature of 260-650 °C/hr., rate of decreasing temperature of 66-800 °C/hr. and soaking time of 0.5-60 hr. were studied. Twenty conditions under high oxygen atmosphere (air) and 57 conditions under low oxygen atmosphere were performed using 230 ruby samples of less than one carat size. It was found that the main parameters affecting the decrease of the blue core are the highest heating temperature and soaking time. Additionally, the rate of increasing and decreasing temperature showed no observable effect on heat treatment. At high temperature, 1600-1700 °C, the blue core of stones decrease greatly compared to that at lower temperature. Noticeably, the variation of soaking time depended on color intensity and transparency of the blue core. High intensity and low transparency of blue core needed more soaking time. The amount of cloud inside the stones and white solid on its edge depended on the quality of unheated ruby. Ruby with many crack areas had low transparency when heated. After heated, most of the rubies are purplish red, some of them show orange area. Less amount of white solid was observed when heating in low oxygen atmosphere. The infrared spectra showed that the white solid might be aluminium oxide which is a product of decomposition of diasporite inclusion in the stones. Optic characters, specific gravity and elemental composition in ruby before and after heated were compared, showing no significant difference. The UV-VIS-NIR spectra of heated and unheated ruby showed a slight difference.