

รายงานวิจัยฉบับสมบูรณ์

โครงการวิจัย
ระบบการจัดการพืชอาหารสัตว์ที่ยั่งยืน^{ที่}
สำหรับเกษตรกรผู้เลี้ยงโคนม
ในภาคตะวันออกเฉียงเหนือของประเทศไทย

โดย Mr.Michael D.Hare และคณะ
1 พฤษภาคม 2542 ถึง 30 เมษายน 2546

คณะเกษตรศาสตร์
มหาวิทยาลัยอุบลราชธานี

รายงานວິຈัยລັບສນູຮ່ວມ

ໂຄຮກກາຣວິຈີຍ

ຮະບນກາຣຈັດກາຣພື້ນອາຫາຮສັຕວົງທີ່ຢືນຢັນ

ສໍາຮັບເກຍຕຽກຜູ້ເດີຍໂຄນມ

ໃນກາກຕະວັນອອກເນື່ອງເຫັນຂອງປະເທດໄທ

ຄະນະຜູ້ວິຈີຍ

1. ດຣ.ໄມເຄີດ ແອර	ຄະນະເກຍຕຽກຄາສຕ່ວ່າ ມາວິທຍາລ້ຽວມຸນລາຊາ
2. ນາຍກັງວານ ຊຮຣມແສງ	ຄະນະເກຍຕຽກຄາສຕ່ວ່າ ມາວິທຍາລ້ຽວມຸນລາຊາ
3. ດຣ.ວຽງຈັນ ສູວິຍົກທ່ຽນ	ຄະນະເກຍຕຽກຄາສຕ່ວ່າ ມາວິທຍາລ້ຽວມຸນລາຊາ
4. ດຣ.ກິດຕິ ວິໄລພິເມສູ	ຄະນະເກຍຕຽກຄາສຕ່ວ່າ ມາວິທຍາລ້ຽວມຸນລາຊາ
5. ນາຍສູງຈັຍ ສູວັດນິດ	ຄະນະເກຍຕຽກຄາສຕ່ວ່າ ມາວິທຍາລ້ຽວມຸນລາຊາ
6. ນາຍປະພນທີ່ ນຸ້ມເຈຣີມ	ຄະນະເກຍຕຽກຄາສຕ່ວ່າ ມາວິທຍາລ້ຽວມຸນລາຊາ
7. ນາຍວັນຈັຍ ອິນທິແສງ	ຄະນະເກຍຕຽກຄາສຕ່ວ່າ ມາວິທຍາລ້ຽວມຸນລາຊາ
8. ນາງຈາຍແສງ ໄພ່ແກ້ວ	ກອງອາຫາຮສັຕວົງ ກຽມປະສຸກສັຕວົງ

ສັງກັດ

ສັບສູນໂດຍສໍານັກງານກອງທຸນສັນນານຸ້ນກາຣວິຈີຍ (ສກວ.)

บทคัดย่อ

โครงการระบบการจัดการพืชอาหารสัตว์ที่ยั่งยืนสำหรับเกษตรกรผู้เลี้ยงโคนมในภาคตะวันออกเฉียงเหนือของประเทศไทยได้ดำเนินการที่คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี ตั้งแต่วันที่ 1 พฤษภาคม 2542 ถึง 30 เมษายน 2546

โครงการฯ ได้ผลิตบทความวิชาการจำนวน 13 เรื่อง และหนังสือคู่มือจำนวนหนึ่งเล่ม โดยที่โครงการฯ ได้รักษาคุณภาพผลงานไว้ในระดับสูง ทั้งในประเทศไทยและนานาชาติ

มีความเป็นไปได้ที่การเลี้ยงโคนมในประเทศไทยโดยให้แทรดเดิมแปลงหญ้าทั้งวันและคืนจะประสบความสำเร็จ การทดลองในแปลงหญ้าที่ได้รับน้ำในคุณภาพดี โภคให้น้ำนมเฉลี่ย 12.2 กิโลกรัม/ตัว/วันในคุณภาพดีแล้ว และ 15.6 กิโลกรัม/ตัว/วันในคุณภาพดีที่สอง โดยแปลงหญ้าซิกแนลให้ผลผลิตสูงกว่าส่วนในคุณภาพดี โภคให้น้ำนมเฉลี่ย 17.3 กิโลกรัม/ตัว/วันตั้งแต่เดือนกรกฎาคมถึงตุลาคม โดยแปลงหญ้าพาสพาลัมอุบลให้ผลผลิตต่อไร่สูงสุด (16.9 กิโลกรัม/วัน) ในคุณภาพดีสามารถปล่อยสัตว์ลงแทรดเดิมในแปลงหญ้าพาสพาลัมอุบลในอัตราที่สูงขึ้นได้ เมื่อเปรียบเทียบกับหญ้าซิกแนลและจาร์ราดิจิท

หญ้าพาสพาลัมอุบลที่เกณฑ์มาตรฐานได้รับการประเมินพืชเศรษฐกิจได้ และจะได้ผลตอบแทนโดยเฉลี่ย 3,200 บาท/ไร่ ผลตอบแทนนี้สูงกว่าที่ได้จากข้าว อย่างไรก็ตาม ปัจจุบันยังไม่มีตลาดสำหรับหญ้าสดและหญ้าหมักในจังหวัดอุบลราชธานี เนื่องจากยังมีฟาร์มเชิงพาณิชย์ขนาดใหญ่จำนวนไม่นักพอ

โครงการฟาร์มโคนมในหมู่บ้านประสบความสำเร็จบางส่วน โดยที่มีเกษตรกรที่โครงการฯ ได้เลือกไว้เพียงร้อยละ 50 ประสบความสำเร็จในการปลูกสร้างแปลงหญ้า เกษตรกรจำนวนมากเห็นว่าเป็นเรื่องยากที่จะปลูก ใส่ปุ๋ย และจัดการแปลงหญ้า และพากเพียรยังคงใช้ฟางข้าวเป็นอาหารขยาย ปัญหาใหญ่ก็คือ เกษตรกรมีพื้นที่อยู่มากเมื่อเทียบกับจำนวนโภคที่มีอยู่

งานวิจัยพื้นฐานได้พิสูจน์ว่า หญ้าพาสพาลัมอุบลตอบสนองต่อวันยาว-สั้นในการออกดอก ซึ่งลักษณะเช่นนี้มีผลต่อการจัดการเพื่อผลิตเมล็ดพันธุ์ การจำหน่ายเมล็ดพันธุ์หญ้าพาสพาลัมอุบลเพิ่มขึ้นจาก 1,944 กิโลกรัมในปี 2543 เป็น 2,530 กิโลกรัมในปี 2545 และคาดว่าจะสามารถจำหน่ายเมล็ดพันธุ์ที่มีในปัจจุบัน 5,986 กิโลกรัม ได้ทั้งหมดในปี 2546 เงินทุนหมุนเวียนในการจำหน่ายเมล็ดพันธุ์ประสบความสำเร็จมาก ทำให้งานผลิตเมล็ดพันธุ์สามารถอยู่ได้ด้วยตัวเอง โดยสามารถจ้างเจ้าหน้าที่วิจัยจำนวนหนึ่งคน และไม่ต้องร้องขอเงินเพิ่มเติมจากสำนักงานกองทุนสนับสนุนการวิจัย หญ้าพาสพาลัมอุบลเป็นพืชเศรษฐกิจสำหรับเกษตรกรในหมู่บ้าน โดยสามารถทำเงินได้มากกว่า 10,000 บาท/ไร่จากการจำหน่ายเมล็ดพันธุ์ และในบางกรณี สามารถจำหน่ายหญ้าสดและต้นกล้าได้อีกด้วย เมล็ดพันธุ์หญ้าพาสพาลัมอุบลมีชื่อเสียงทั่วประเทศไทยและเป็นเมล็ดพันธุ์คุณภาพสูง เนื่องจากโครงการฯ จำหน่ายเฉพาะเมล็ดพันธุ์ที่มีน้ำหนักเมล็ดสูง ความคงทนสูง และความบริสุทธิ์สูง

ในดินที่ไม่มีน้ำท่วมขัง สามารถปลูกถั่วสไต โลแบบเป็นแอบร่วมกับหญ้าพาลัมอุบลได้เป็นอย่างดี ดังนั้น จึงเป็นการปรับปะรุงระดับป้องกันขยายของแปลงหญ้าให้สูงขึ้น

ในการปลูกหญ้าจาร์ราดิจิท สามารถใช้ไอลปลูกในลักษณะแคราห่างได้ และเพื่อให้ได้ผลผลิตที่ดี ควรตัดหญ้าทุก 40 วัน และใส่ปุ๋ยในโตรเจนอัตรา 40 กิโลกรัม/เฮกเตอร์ทุก 60 วัน

หญ้า *Brachiaria brizantha* และหญ้าซิกแนลจำนวนสองพันธุ์ให้ผลผลิตวัตถุแห้งมากกว่าหญ้ารูซึ่งอย่างมีนัยสำคัญ โดยเฉพาะอย่างยิ่ง ในช่วงฤดูแล้ง อย่างไรก็ตาม หญ้ารูซึ่งผลิตเมล็ดพันธุ์ได้ดีกว่าและง่ายกว่าหญ้าพันธุ์อื่นๆ ที่อาจจะมีผลผลิตเมล็ดพันธุ์ต่ำหรือเมล็ดใช้เวลาเจริญเติบโตนานนานในฤดูฝน จากการศึกษา พบว่าหญ้าซิกแนลมีศักยภาพที่จะผลิตเมล็ดพันธุ์ได้ดีในประเทศไทย แต่เนื่องจากช่วงออกดอกออกพวงนานจากเดือนกรกฎาคมถึงกันยายนซึ่งเป็นช่วงที่มีฝนตกหนัก จึงเป็นเรื่องยากมากสำหรับเกษตรกรที่จะผลิตเมล็ดพันธุ์หญ้านิดนี้

รายงานฉบับสมบูรณ์เสนอต่อสำนักงานกองทุนสนับสนุนการวิจัย

ส่วน ก การจัดการ

1. โครงการ

ระบบการจัดการพืชอาหารสัตว์ที่ชั้นสำหรับเกษตรกรผู้เลี้ยงโコンมในภาคตะวันออกเฉียงเหนือของประเทศไทย

2. หัวหน้าโครงการ ดร. ไมเคิล แฮร์

ผู้ร่วมวิจัย นายกัจวัน ธรรมแสง

ดร. วรพงษ์ สุริยพัทรอ

ดร. กิตติ วงศ์พิเชษฐ์

นายสุรชัย สุวรรณลี

นายประพนธ์ บุญเจริญ

นายวันชัย อินพิแสง

นางชายแสง ไผ่แก้ว

เจ้าหน้าที่วิจัย นายกิตติพัฒน์ สายประเสริฐ

นางสาวพวน ทักษิณ

นางสาวอรีรัตน์ ลุนพา

นางสาว索สกิตา คำหาญ

3. ระยะเวลาของรายงาน

1 พฤษภาคม 2542 ถึง 30 เมษายน 2546

4. ผลงานวิจัยประยุกต์ของโครงการ

4.1 งานทดลองการแทะเลื้ມเพื่อผลิตน้ำมัน

วิธีการ

ทำงานทดลองการแทะเลื้ມเพื่อผลิตน้ำมันจำนวนสามชิ้นที่คณะเกษตรศาสตร์ มหาวิทยาลัย อุบลราชธานี ในปี 2544 ถึง 2546 งานแต่ละชิ้นประกอบด้วยการแทะเลื้ມหัวสามพันธุ์ (หัวพาสพา ล้มอุบล ซิกแนล และเจร์ราร์ดจิท) และโโคจำนวนสามถึงหกตัวต่อวิธีทดลอง ล้อมรั้วแบ่งแปลงหัวสามเป็น แปลงย่อยขนาดหนึ่งไร่ และให้โโคแทะเลื้ມแบบหมุนเวียนในแปลงย่อยเหล่านี้ทุกสามถึงเจ็ดวัน จึงอยู่ กับการเจริญเติบโตของหัว ปล่อยให้โโคแทะเลื้ມแปลงหัวทั้งวันและคืน

ในงานทดลองทุกชิ้น โโคได้รับอาหารขั้นในอัตราหนึ่งกิโลกรัมต่อหน้ามที่ผลิตได้ 2.5 กิโลกรัม วัสดุผลผลิตน้ำมันมต่อโโควันละสองครั้ง และเก็บตัวอย่างเพื่อทดสอบคุณภาพด้วย

ก่อนปล่อยโคลงแทะเลื้มในแต่ละแปลงย่อย ตัดตัวอ่ายงาษ្យจากกรอบสี่เหลี่ยมขนาด 8×0.25 ตารางเมตร แล้วซึ่งน้ำหนักสด และแบ่งออกเป็นใบและลำต้นเพื่อวิเคราะห์น้ำหนักแห้งและธาตุอาหาร ไส้ปุ๋ย NPK (15:15:15) ในอัตรา 25 กิโลกรัม/ไร่

ถือว่าโโคเป็นช้าในการวิเคราะห์ข้อมูลน้ำหนักระยะสั้น แต่มีจำนวนหกถึงเจ็ดช้าสำหรับการวิเคราะห์ข้อมูลแปลงหญ้า

งานทดลองที่ 1

ทำงานทดลองนี้เป็นเวลา 16 สัปดาห์ 从 25 กันยายน 2544 ถึง 14 มกราคม 2545 โโคเริ่มแบ่งแปลงหญ้าทดลองในเดือนสิงหาคม 2544 ให้น้ำแปลงหญ้ารายสัปดาห์จากเดือนพฤษจิกายนถึง มกราคม แต่ละวิธีทดลองมีโโคที่กำลังให้น้ำจำนวนห้าตัวหมุนเวียนในหกแปลงย่อย (ตารางที่ 1) ซึ่งการแบ่งเลี้ມนานเจ็ดวันสำหรับหญ้าพาล์มอุบลและซิกแนล และสี่ถึงห้าวันสำหรับหญ้าจาร์ราร์ดิจิท

งานทดลองที่ 2

งานทดลองนี้ใช้เวลา 14 สัปดาห์ เริ่มตั้งแต่วันที่ 21 กรกฎาคม 2545 จนถึงวันที่ 27 ตุลาคม 2545 แบ่งงานทดลองออกเป็นสองระยะคือ ระยะต้นของการให้น้ำหมาดสัปดาห์ (28 กรกฎาคม ถึง 1 กันยายน) และระยะกลางของการให้น้ำหมาดสัปดาห์ (8 กันยายน ถึง 27 ตุลาคม) มีช่วงปรับตัวหนึ่งสัปดาห์ก่อนที่จะเริ่มการทดลองแต่ละระยะ วิเคราะห์ข้อมูลในเวลาห้าสัปดาห์ในระยะที่หนึ่ง และเจ็ดสัปดาห์ในระยะที่สอง แต่ละวิธีมีโโคที่กำลังให้น้ำจำนวนสามตัวหมุนเวียนในแปลง เมื่อสิ้นสุดระยะที่หนึ่ง ได้สุ่มโโคใหม่อีกรึ่งสำหรับระยะที่สอง พื้นที่แปลงหญ้าแตกต่างกันแล้วแต่การเจริญเติบโตของหญ้าแต่ละชนิด (ตารางที่ 1)

ตารางที่ 1 พื้นที่ (ไร่) แปลงหญ้าแต่ละแปลงในงานทดลองการแบ่งเลี้ມ

แปลงหญ้า	งานทดลองที่ 1	งานทดลองที่ 2		งานทดลองที่ 3
		ระยะที่ 1	ระยะที่ 2	
พาล์มอุบล	6	3	4	10
ซิกแนล	6	4	5	10
จาร์ราร์ดิจิท	6	4	6	11

งานทดลองที่ 3

งานทดลองนี้ในเวลา 16 สัปดาห์ ตั้งแต่วันที่ 11 พฤษภาคม 2545 ถึงวันที่ 3 มีนาคม 2546 แบ่งแปลงหญ้ามีพื้นที่แตกต่างกัน (ตารางที่ 1) และมีโโคจำนวนหกตัวต่อวิธีทดลอง

แบ่งงานทดลองออกเป็นสองระยะๆ ละแปดสัปดาห์ วิเคราะห์ข้อมูลในเวลาเจ็ดสัปดาห์ในแต่ละระยะ โดยให้สัปดาห์แรกของแต่ละระยะเป็นระยะปรับตัว เมื่อสิ้นสุดระยะที่ 1 ได้สุ่มโคลอิกครั้งสัมหารับระยะที่ 2

ให้น้ำแปลงหญ้ารายสัปดาห์

ผลการทดลอง

งานทดลองที่ 1

โโคที่แทะเลิ่มหญ้าสามชนิดให้ผลผลิตน้ำนมไม่แตกต่างกัน (ตารางที่ 2) อย่างไรก็ตาม โโคที่แทะเลิ่มหญ้าชิกแนลให้น้ำนมสูงกว่าโโคที่แทะเลิ่มหญ้าพาสพาลัมอุบลและจาร์ราดิจิทระหว่างร้อยละ 11 และ 16 โโคที่แทะเลิ่มหญ้าพาสพาลัมอุบลมีไขมันน้ำนมสูงกว่าร้อยละ 5 และระดับโปรตีนในน้ำนมต่ำกว่าร้อยละ 5 เมื่อเปรียบเทียบกับในหญ้าอีกสองชนิด ระดับแอลกอตอลสูงกว่า SNF ในน้ำนมของโโคที่แทะเลิ่มหญ้าพาสพาลัมอุบลต่ำกว่าร้อยละ 2

ตารางที่ 2 อิทธิพลของการแทะเลิ่มแปลงหญ้าสามชนิดที่มีต่อผลผลิตและคุณภาพน้ำนมของโโค (งานทดลองที่ 1)

วิธีทดลอง	ผลผลิตน้ำนม (กิโลกรัม/ตัว/วัน)	ไขมันน้ำนม (%)	โปรตีนน้ำนม (%)	แอลกอตอลน้ำนม (%)	SNF น้ำนม (%)
หญ้าพาสพาลัมอุบล	11.96 a	4.33 a	2.98 a	4.85 a	8.58 a
หญ้าชิกแนล	13.34 a	4.08 a	3.12 a	4.95 a	8.81 a
หญ้าจาร์ราดิจิท	11.47 a	4.16 a	3.21 a	4.84 a	8.80 a

ในคอลัมน์เดียวกัน ค่าเฉลี่ยที่ตามด้วยอักษรตัวเดียวกัน ไม่แตกต่างกันที่ระดับ 5% ทดสอบด้วยวิธี Duncan's Multiple Range

ตารางที่ 3 ผลผลิตวัตถุแห้ง ระดับลำดับและใบ และผลผลิตโปรตีนหมายของหญ้าสามชนิดก่อนที่จะถูกโคนนแทะเลิ่ม (งานทดลองที่ 1)

วิธีทดลอง	ผลผลิตวัตถุแห้ง ทั้งหมด (กิโลกรัม /เฮกเตอร์)	% น้ำหนักสด ลำดับ	% น้ำหนักสด ใบ	% โปรตีนหมาย ลำดับ	% โปรตีนหมาย ใบ	ผลผลิต โปรตีนหมาย (กิโลกรัม /เฮกเตอร์)
หญ้าพาสพาลัมอุบล	4026 a	24 b	76 a	6.6 b	10.5 c	391 ab
หญ้าชิกแนล	3496 a	42 a	58 b	10.3 a	14.1 b	438 a
หญ้าจาร์ราดิจิท	2205 b	40 a	60 b	10.7 a	16.3 a	302 b

ในคอลัมน์เดียวกัน ค่าเฉลี่ยที่ตามด้วยอักษรตัวเดียวกัน ไม่แตกต่างกันที่ระดับ 5% ทดสอบด้วยวิธี Duncan's Multiple Range

โโคที่แทะเลิ่มหญ้าซิกแนลให้ผลผลิตน้ำนมสูงกว่า อาจเนื่องจากโปรตีนหมายของหญ้าชนิดนี้ สูงกว่าเมื่อเปรียบเทียบกับหญ้าพาลัมอุบลและจาร์ราดิจิท (ตารางที่ 3) แม้ว่าผลผลิตวัตถุแห้งของ หญ้าซิกแนลต่ำกว่าของหญ้าพาลัมอุบล เมื่อเปรียบเทียบกัน ลักษณะและใบของหญ้าซิกแนลกลับมี ระดับโปรตีนหมายสูงกว่าถึงร้อยละ 50 และ 38 ตามลำดับ อย่างไรก็ตาม ในหญ้าจาร์ราดิจิทที่แม้จะมี ระดับโปรตีนหมายสูง แต่ก็ไม่สามารถทดสอบผลผลิตวัตถุแห้งที่ต่ำได้ จึงทำให้มีผลผลิตโปรตีนหมาย ต่ำเชกแตร์ต่ำกว่าเมื่อเปรียบเทียบกับหญ้าอีกสองชนิด และเป็นผลให้ได้ผลผลิตน้ำนมต่ำกว่า การที่หญ้า พาลัมอุบลมีสัดส่วนในสูงและผลผลิตวัตถุแห้งสูง ทำให้ระดับโปรตีนหมายที่ต่ำของหญ้าชนิดนี้ไม่ เป็นปัจจัยท้าทาย โโคเมื่อเปรียบเทียบกับหญ้าซิกแนลและจาร์ราดิจิท และทำให้โโคสามารถผลิตน้ำนมได้ดี พอสมควร

งานทดลองที่ 2

ไม่มีความแตกต่างในด้านผลผลิตน้ำนมรายวันต่อตัวระห่ำว่างการแทะเลิ่มหญ้าสามชนิด (ตาราง ที่ 4) ในระยะที่ 1 ทั้งหญ้าพาลัมอุบลและซิกแนลทำให้ได้ไขมัน แลกโตส โปรตีน และ SNF สูง กว่าจากหญ้าจาร์ราดิจิท ในระยะที่ 2 ระดับไขมันในน้ำนมใกล้เคียงกันระหว่างวิธีทดลอง แต่หญ้าพาลัม อุบลให้โปรตีนน้ำนม แลกโตส และ SNF ต่ำกว่าหญ้าอีกสองชนิด

ผลผลิตน้ำนมต่อไร่ของโโคที่แทะเลิ่มในแปลงหญ้าพาลัมอุบลสูงกว่าที่ได้จากแปลงหญ้า ซิกแนลและจาร์ราดิจิทร้อยละ 35-55 (ตารางที่ 4) เนื่องมาจากอัตราการปล่อยสัตว์ลงแทะเลิ่มที่สูงกว่า นั่นเอง และเป็นผลมาจากการปล่อยสัตว์ที่สูงกว่าและสัดส่วนในที่สูงกว่าของแปลงหญ้าพาลัม อุบล (ตารางที่ 5) ที่ทำให้สามารถใช้อัตราปล่อยสัตว์ที่สูงกว่าได้ (ตารางที่ 1) ผลผลิตวัตถุแห้งของหญ้า พาลัมอุบลสูงกว่าของหญ้าซิกแนลร้อยละ 19-30 และสูงกว่าของหญ้าจาร์ราดิจิทร้อยละ 76-80 แม้ว่าแปลงหญ้าซิกแนลและจาร์ราดิจิทจะมีระดับโปรตีนหมายที่สูงกว่า แต่ก็ไม่สามารถทดสอบผลผลิต วัตถุแห้งและสัดส่วนของใบที่มีต่ำกว่าได้

ตารางที่ 4 อิทธิพลของการแทะเลิ่มแปลงหญ้าสามชนิดที่มีต่อผลผลิตและคุณภาพน้ำนมของโโค (งานทดลองที่ 2)

ระยะที่ 1						
วิธีทดลอง	ผลผลิตน้ำนม (กิโลกรัม/ตัว/วัน)	ผลผลิตน้ำนม (กิโลกรัม/ไร่/ วัน)	ไขมัน น้ำนม (%)	โปรตีน น้ำนม (%)	แลกโตส น้ำนม (%)	SNF น้ำนม (%)
พาลัมอุบล	18.77 a	131	4.38 a	2.84 a	4.99 a	8.56 a
ซิกแนล	18.77 a	98	4.17 ab	2.85 a	4.93 a	8.51 a
จาร์ราดิจิท	18.81 a	99	4.05 b	2.73 b	4.77 b	8.24 b

ระยะที่ 2						
พาสพาลัมอุบล	15.72 a	106	4.12 a	2.81 c	4.64 c	8.21 b
ชิกແນລ	15.57 a	77	4.35 a	2.93 b	4.87 a	8.54 a
jarraadijith	15.94 a	68	4.10 a	2.99 a	4.73 b	8.47 a

ตารางที่ 5 ผลผลิตวัตถุแห้ง สัดส่วนลำต้นและใบ และผลผลิตโปรตีน helya ของแปลงหญ้าสามชนิดก่อนที่โคนมจะเข้า
แห้งเลิ่น (ฤดูฝนปี 2545)

ระยะที่ 1						
วิธีทดลอง	ผลผลิตวัตถุแห้ง หักหมด (กิโลกรัม /เอเคตร์)	% น้ำหนักสด ลำต้น	% น้ำหนักสด ใบ	% โปรตีน helya ลำต้น	% โปรตีน helya ใบ	ผลผลิต โปรตีน helya (กิโลกรัม /เอเคตร์)
พาสพาลัมอุบล	3772 a	30 b	70 a	6.7 b	9.2 b	318.4 a
ชิกແນລ	3151 ab	50 a	50 b	10.1 a	11.7 ab	340.6 a
jarraadijith	2133 b	54 a	46 b	8.5 ab	14.9 a	226.8 b
ระยะที่ 2						
วิธีทดลอง	ผลผลิตวัตถุแห้ง หักหมด (กิโลกรัม /เอเคตร์)	% น้ำหนักสด ลำต้น	% น้ำหนักสด ใบ	% โปรตีน helya ลำต้น	% โปรตีน helya ใบ	ผลผลิต โปรตีน helya (กิโลกรัม /เอเคตร์)
พาสพาลัมอุบล	2769 a	32 b	68 a	5.9 b	9.0 c	240.2 a
ชิกແນລ	2131 b	45 a	55 b	8.9 a	12.3 b	240.6 a
jarraadijith	1525 b	48 a	52 b	9.6 a	14.7 a	198.0 b

ในคอลัมน์เดียวกัน ค่าเฉลี่ยที่ตามด้วยอักษรตัวเดียวกัน ไม่แตกต่างกันที่ระดับ 5% ทดสอบด้วยวิธี Duncan's Multiple Range

งานทดลองที่ 3

ในระยะที่ 1 โโคที่แห้งเลิ่นหญ้าชิกແນລให้ผลผลิตน้ำหนัม/ตัว/วันสูงกว่าโโคที่แห้งเลิ่นหญ้าพาสพาลัมอุบลและjarraadijith ร้อยละ 12 และ 8 ตามลำดับ (ตารางที่ 6) ในระยะที่ 2 โโคที่แห้งเลิ่นหญ้าพาสพาลัมอุบลให้ผลผลิตน้ำหนัม/ตัว/วันสูงกว่าโโคที่แห้งเลิ่นหญ้าชิกແນລและjarraadijith ร้อยละ 10 และ 11 ตามลำดับ โโคที่แห้งเลิ่นหญ้าชิกແນລในทั้งสองระยะให้น้ำหนัมที่มีโปรตีนสูงกว่าและแตกต่างกันกว่าโโคที่แห้งเลิ่นหญ้าพาสพาลัมอุบลและjarraadijith (ตารางที่ 6) การที่โโคแห้งเลิ่นหญ้าต่างชนิดกันไม่ได้ทำให้ SNF ของน้ำหนัมแตกต่างกัน แต่ในระยะที่ 1 โโคที่แห้งเลิ่นหญ้าjarraadijith ให้น้ำหนัมที่มีไขมันต่ำกว่า

ในระยะที่ 1 ผลผลิตน้ำหนัมต่อไร่ที่ได้จากแปลงหญ้าชิกແນລสูงกว่าจากแปลงหญ้าชนิดอื่นร้อยละ 11 แต่ในระยะที่ 2 ผลผลิตน้ำหนัมที่ได้จากแปลงหญ้าพาสพาลัมอุบลสูงกว่าจากแปลงหญ้าชิกແນລ และjarraadijith ร้อยละ 9 และ 22 ตามลำดับ

ตารางที่ 6 อิทธิพลของการแทนเปลี่ยนหลักสารนิคที่มีต่อผลผลิตและคุณภาพน้ำนมของโคนม (งานทดลองที่ 3)

ระยะที่ 1 (18 พฤษภาคม 2545-6 มกราคม 2546)						
วิธีทดลอง	ผลผลิตน้ำนม (กิโลกรัม/ตัว/ วัน)	ผลผลิตน้ำนม (กิโลกรัม/ตัว/ สัปดาห์)	ไขมัน น้ำนม (%)	โปรตีน น้ำนม (%)	แอลโตส น้ำนม (%)	SNF น้ำนม (%)
พาสพาลัมอุบล	15.75 c	66	4.41 a	2.84 b	4.92 a	8.50 a
ชิกແນລ	17.60 a	74	4.27 ab	2.99 a	4.74 b	8.52 a
jar'rardicjith	16.34 b	66	4.20 b	2.82 b	4.89 a	8.45 a
ระยะที่ 2 (13 มกราคม 2546-3 มีนาคม 2546)						
วิธีทดลอง	ผลผลิตน้ำนม (กิโลกรัม/ตัว/ วัน)	ผลผลิตน้ำนม (กิโลกรัม/ตัว/ สัปดาห์)	ไขมัน น้ำนม (%)	โปรตีน น้ำนม (%)	แอลโตส น้ำนม (%)	SNF น้ำนม (%)
พาสพาลัมอุบล	15.80 a	66	4.25 a	2.97 c	4.89 a	8.57 a
ชิกແນລ	14.37 b	60	4.24 a	3.06 a	4.75 b	8.55 a
jar'rardicjith	14.17 b	54	4.17 a	3.01 b	4.87 a	8.62 a

ในคอลัมน์เดียวกัน ค่าเฉลี่ยที่ตามด้วยอักษรตัวเดียวกัน ไม่แตกต่างกันที่ระดับ 5% ทดสอบด้วยวิธี Duncan's Multiple Range

ตารางที่ 7 ผลผลิตวัตถุแห้ง สัดส่วนลำต้นและใบ และผลผลิตโปรตีนheyabของเปลงหลักสารนิคก่อนที่โคนจะเข้า แหงเปลี่ยน (งานทดลองที่ 3)

ระยะที่ 1 (18 พฤษภาคม 2545-6 มกราคม 2546)						
วิธีทดลอง	ผลผลิตวัตถุแห้ง ทั้งหมด (กิโลกรัม /เอคเตอร์)	% น้ำหนักสด ลำต้น	% น้ำหนักสด ใบ	% โปรตีนheyab ลำต้น	% โปรตีนheyab ใบ	ผลผลิต โปรตีนheyab (กิโลกรัม /เอคเตอร์)
พาสพาลัมอุบล	3628 a	18 c	82 a	5.9 c	10.4 c	345 a
ชิกແນລ	2970 a	42 a	58 c	9.4 b	15.0 b	375 a
jar'rardicjith	1608 b	34 b	66 b	12.9 a	18.4 a	268 b
ระยะที่ 2 (13 มกราคม 2546-3 มีนาคม 2546)						
วิธีทดลอง	ผลผลิตวัตถุแห้ง ทั้งหมด (กิโลกรัม /เอคเตอร์)	% น้ำหนักสด ลำต้น	% น้ำหนักสด ใบ	% โปรตีนheyab ลำต้น	% โปรตีนheyab ใบ	ผลผลิต โปรตีนheyab (กิโลกรัม /เอคเตอร์)
พาสพาลัมอุบล	2268 a	17 c	83 a	3.9 c	8.2 c	175 b
ชิกແນລ	2114 a	40 a	60 c	7.5 b	12.7 b	224 a
jar'rardicjith	1170 b	31 b	69 b	10.3 a	16.4 a	170 b

ในคอลัมน์เดียวกัน ค่าเฉลี่ยที่ตามด้วยอักษรตัวเดียวกัน ไม่แตกต่างกันที่ระดับ 5% ทดสอบด้วยวิธี Duncan's Multiple Range

ในทั้งสองระยะ หลักjar'rardicjithให้ผลผลิตวัตถุแห้งต่ำกว่าหลักอีกสองชนิดอย่างมีนัยสำคัญ ระดับโปรตีนheyabของหลักjar'rardicjithสูงเป็นสองเท่าของหลักพาสพาลัมอุบล (ตารางที่ 7) และของ

หญ้าชิกแนลอยู่ระหว่างหญ้าทั้งสองชนิด หญ้าพาสพาลัมอุบลมีสัดส่วนใบต่อลำต้นสูงกว่าหญ้าอีกสองชนิดอย่างมีนัยสำคัญในทั้งสองระบบ

ในระบบที่ 1 โโคที่แท้เลิ่มหญ้าชิกแนลให้ผลผลิตน้ำนมที่สูงจากเนื้องามจากผลผลิตโปรตีน hayan ที่สูงกว่า อย่างไรก็ตาม ในระบบที่ 2 แม้ว่าจะมีผลผลิตโปรตีน hayan สูงกว่า ผลผลิตน้ำนมที่ได้จากหญ้าชิกแนลไม่ได้สูงเท่ากับที่ได้จากหญ้าพาสพาลัมอุบล แปลงหญ้าพาสพาลัมอุบลมีสัดส่วนใบมาก (มากกว่าร้อยละ 80) และแม้จะมีระดับโปรตีน hayan ต่ำ สัดส่วนของใบที่สูงกว่าทำให้ยอดได้มากกว่า หญ้าพาสพาลัมอุบลจึงทดแทนระดับโปรตีน hayan ที่ต่ำกว่าโดยการให้ผลผลิตใบที่ยอดได้สูงกว่า ลักษณะนี้แตกต่างจากหญ้าจาร์ราดิจิทที่แม้จะมีระดับโปรตีน hayan สูงมาก ทั้งในลำต้นและใบ แต่ก็ให้ผลผลิตวัตถุแห้งต่ำกว่า ในทางปฏิบัติ จึงต้องขยายนอกที่แท้เลิ่มแปลงหญ้าจาร์ราดิจิททุกสองสามวัน สรุป

โครงการฯ ได้แสดงให้เห็นว่า มีความเป็นไปได้ที่จะประสบความสำเร็จในการให้โคนมแท้เลิ่มในแปลงหญ้าทั้งวันและคืน หญ้าชิกแนลและพาสพาลัมอุบลเป็นหญ้าที่มีความเหมาะสมสำหรับการผลิตน้ำนม แม้ว่าหญ้าพาสพาลัมอุบลจะมีคุณภาพต่ำ แต่ก็ผลผลิตวัตถุแห้งและอัตราส่วนใบต่อลำต้นที่สูง หญ้าชิกแนลยังคงมีคุณภาพที่ดีและให้ผลผลิตโปรตีน hayan ที่สูงตลอดปี แม้ว่าหญ้าจาร์ราดิจิทจะเป็นหญ้าที่มีคุณภาพสูงมาก ผลผลิตวัตถุแห้งที่ต่ำทำให้ผลผลิตน้ำนมต่ำไปตามไปด้วย

แม้โคนมกำลังแท้เลิ่มหญ้าจาร์ราดิจิทด้านหน้า และหญ้าชิกแนลด้านหลังที่มหาวิทยาลัยอุบลราชธานี

4.2 งานประเมินหญ้าและถั่วในท้องถิ่น

ทำงานทดลองเพื่อประเมินการปลูกถั่วเจ็ชนิดแบบมีเนื้อพะถั่ว การปลูกหญ้าเจ็ชนิดร่วมกับถั่ว และการใส่ปุ๋ยในโตรเจน ตามสถานที่ต่างๆเจ็ดแห่งในภาคตะวันออกเฉียงเหนือในช่วงปี 2540-2543 สถานที่ทดสอบมีดังนี้คือ มหาวิทยาลัยอุบลราชธานี วิทยาลัยเกษตรกรรมและเทคโนโลยีอุบลราชธานี สถานีอาหารสัตว์ยโสธร วิทยาลัยเกษตรกรรมและเทคโนโลยีอุบลราชธานี สถานีอาหารสัตว์มุกดาหาร วิทยาลัยเกษตรกรรมและเทคโนโลยีศรีสะเกษ และอำเภอเดชอุดม จังหวัดอุบลราชธานี

รายละเอียดของงานทดลองทั้งหมดได้นำเสนอไว้ในภาคผนวก 1

Hare, M.D., Kaewkunya, C., Tatsapong, P. and Saengkham, M. 2003 Evaluation of forage legumes and grasses on seasonally waterlogged sites in north-east Thailand. *Tropical Grasslands*, 37: 20-32.

สรุป

ถั่ว *Aeschynomene americana* cv. Lee ที่ปลูกแบบมีเนื้อพะถั่วเพียงอย่างเดียวให้ผลผลิตสูงสุดในปีแรก โดยได้ผลผลิตวัตถุแห้งสูงกว่า 14 ตัน/เฮกเตอร์ในสถานที่ทดสอบแห่งหนึ่ง ในภาพรวม ถั่วทุกชนิดอยู่ได้ไม่เกินฤดูฝนที่สองภายใต้สภาพการตัด ถั่ว *Stylosanthes guianensis* cv. Tha Phra (CIAT 184) แสดงให้เห็นจุดเด่นบางประการในพื้นที่ที่มีน้ำท่วมขังไมลีกนัก แม้กระนั้น ถั่วชนิดนี้ก็คงอยู่ได้ถึงฤดูแล้งที่สองในบางแห่งเท่านั้น ไม่มีถั่วชนิดใดเจริญเติบโตได้ดีพอที่จะแนะนำให้ใช้ภายใต้ระบบการจัดการที่มีอยู่

หญ้าที่ดีที่สุดในพื้นที่น้ำท่วมขังและค่อนข้างลึกคือ *Paspalum atratum* cv. Ubon, *P. plicatum* (ชนิดธรรมชาติในประเทศไทย) และ *Setaria sphacelata* var. *splendida* cv. *Splenda* หญ้าทั้งสามชนิดนี้เจริญเติบโตได้ดีในทุกพื้นที่ และมีความสม่ำเสมอในเรื่องของการคงอยู่และผลผลิต ในพื้นที่ที่น้ำท่วมขังไม่มาก *Panicum maximum* cv. Purple ให้ผลผลิตสูงมาก โดยให้ผลผลิตวัตถุแห้งสูงกว่า 30 ตัน/เฮกเตอร์ในรอบหกเดือนของฤดูฝนที่สอง และในพื้นที่สองแห่ง *Brachiaria ruziziensis* (ชนิดธรรมชาติในประเทศไทย) *B. decumbens* cv. Basilisk และ *Digitaria milanjiana* cv. Jarra เจริญเติบโตได้เฉพาะในพื้นที่ที่ไม่มีน้ำท่วม ไม่มีถั่วชนิดใดสามารถคงอยู่ได้เกินฤดูฝนที่สองในแปลงหญ้าที่ได้รับปุ๋ยในโตรเจนอัตรา 100-120 กิโลกรัม/เฮกเตอร์

4.3 อิทธิพลของการตัดที่มีต่อผลผลิตและคุณภาพของหญ้าพาลัมอุบล

ทำงานทดลองจำนวนสองชั้นในช่วงปี 2541-2542 ที่มหาวิทยาลัยอุบลราชธานี เพื่อทราบอิทธิพลของการตัดที่ความสูงและช่วงต่างๆต่อการเจริญเติบโตและคุณภาพของหญ้าพาลัมอุบลที่ปลูกในดินที่มีความสมบูรณ์ต่ำ

ทีมงาน สกอ. ดูงานวิจัยอิทธิพลของการตัดที่มีต่อผลผลิตและคุณภาพของหญ้าพาลัมอุบล ที่สถานีอาหารสัตว์
มุกดาหาร

รายละเอียดของงานทดลองทั้งหมดได้นำเสนอไว้ในภาคผนวก 2

Hare, M.D., Saengkham, M., Kaewkunya, C., Tudsri, S., Suriyajanratong, w.,
Thummasaeng, K., and Wongpichet, K. 2001 Effect of cutting on yield and quality of
Paspalum atratum in Thailand. *Tropical Grasslands*, 35: 144-150.

สรุป

ในงานทดลองที่ 1 การเพิ่มความสูงของการตัด (0-20 เซนติเมตรเหนือระดับดิน) เพิ่มผลผลิต
วัตถุแห้งทั้งหมดในช่วงการตัด 20 วัน แต่ไม่มีอิทธิพลในช่วง 30 วัน และกลับลดผลผลิตในช่วง 60 วัน
ช่วงการตัดทำให้ผลผลิตวัตถุแห้งเพิ่มขึ้นอย่างมีนัยสำคัญ โดยมีการตอบสนองมากในช่วงการตัด 30
และ 60 วัน การเพิ่มเวลาของช่วงการตัดทำให้ความเข้มข้นของโปรตีน hayan ไปแต่เสี้ยม และ
ฟอสฟอรัสลดลง แต่กลับเพิ่มความเข้มข้นของ NDF และ ADF การเพิ่มช่วงการตัดและความสูงในการ
ตัดทำให้วัตถุแห้งของตอและรากต่อต้นเพิ่มขึ้น

ในงานทดลองที่ 2 โดยทั่วไปผลผลิตวัตถุแห้งของหญ้าพาลัมอุบลมีความแตกต่างอย่างมี
นัยสำคัญเฉพาะในช่วงการตัด 20 และ 60 วัน การตัดทุก 20 วันภายในระยะเวลา 240 วันทำให้ได้ผล
ผลิตวัตถุแห้งทั้งหมดเพียงร้อยละ 74 (21.6 ตัน/เฮกเตอร์) เมื่อเทียบกับการตัดทุก 60 วัน (28.9 ตัน/เฮก
เตอร์) แต่ทำให้ความเข้มข้นของโปรตีน hayan สูงขึ้นเกือบสองเท่า (ร้อยละ 10.0 เทียบกับ 5.3)

การตัดหญ้าพาลัมอุบลที่หมู่บ้านในจังหวังอุบลราชธานี

4.4 งานผลิตเมล็ดพันธุ์หญ้าพาลัมอุบล

ทำงานทดลองในแปลงจำนวนสองชิ้นในปี 2541-2542 ที่มหาวิทยาลัยอุบลราชธานี เพื่อต้องการทราบว่าวิธีปลูกแบบใดจะได้ผลผลิตเมล็ดพันธุ์หญ้าพาลัมอุบลดีที่สุด และเวลาใดของปีเหมาะสมที่สุดในการปลูกหญ้าชนิดนี้เพื่อผลิตเมล็ดพันธุ์ นอกเหนือจากนี้ ได้รวบรวมข้อมูลจากเกษตรกรผู้ผลิตเมล็ดพันธุ์ในหมู่บ้านໄว์ด้วย

รายละเอียดของงานทดลองทั้งหมดได้นำเสนอไว้ในภาคผนวก 3

Hare, M. D., Kaewkunya, C., Tatsapong, P., Wongpichet, K., Thummasaeng, K., and Suriyajantratong, W. 2001 Method and time of establishing *Paspalum atratum* seed crops in Thailand. *Tropical Grasslands*, 35 19-25

สรุป

หญ้า *Paspalum atratum* cv. Ubon ที่ปลูกด้วยเมล็ดพันธุ์ไม่สามารถผลิตเมล็ดได้เลยในปีแรกของการปลูกสร้าง ในขณะที่พากที่ปลูกด้วยหน่อภายในเดือนพฤษภาคมซึ่งเริ่มเข้าฤดูฝนให้ผลผลิตเมล็ดพันธุ์ 132 กิโลกรัม/เฮกเตอร์ภายในเวลาห้าเดือนหลังปลูกในงานทดลองที่หนึ่ง และให้ผลผลิตเมล็ดพันธุ์ถึง 330 กิโลกรัม/เฮกเตอร์ในอีกงานทดลอง ในงานทดลองที่สองนี้ หากปลูกด้วยหน่อนล่าช้า

จนถึงเดือนมิถุนายนและกรกฎาคมจะทำให้ผลผลิตเมล็ดพันธุ์ลดลงอย่างมาก โดยลดลงจากที่ได้สูงถึง 330 กิโลกรัม/เฮกเตอร์เมื่อปีก่อนตั้นเดือนพฤษภาคมลงมาต่ำมากเพียง 25 กิโลกรัม/เฮกเตอร์เมื่อปีก่อนลดลงเดือนกรกฎาคม จำนวนช่องดอก/ตารางเมตรและจำนวนเมล็ด/ช่องดอกมีอิทธิพลมากที่สุดต่อผลผลิตเมล็ดพันธุ์

เกษตรกรในหมู่บ้านจำนวน 20 รายที่ร่วมโครงการผลิตเมล็ดพันธุ์หญ้าพาลัมอุบลประสบความสำเร็จเป็นอย่างดี โดยสามารถเก็บเกี่ยวเมล็ดพันธุ์ได้ 1,834 และ 2,207 กิโลกรัมในปี 2541 และ 2542 ตามลำดับ วิธีเก็บเกี่ยวที่ใช้มีอีกเช่นช่องดอกทุกวันเพื่อให้เมล็ดแก่ตกลงในถุงทำให้เกษตรกรสามารถเก็บเกี่ยวเมล็ดพันธุ์ได้เฉลี่ย 632 และ 651 กิโลกรัม/เฮกเตอร์ในปี 2541 และ 2542 ตามลำดับ การเก็บเกี่ยวเมล็ดพันธุ์ด้วยวิธีนี้เมื่อทำร่วมกับการลดความชื้นอย่างช้าๆ ในร่มและการทำความสะอาดอย่างทั่วถึงทำให้เมล็ดพันธุ์ที่ได้มีคุณภาพสูงมาก โดยมีน้ำหนัก 1,000 เมล็ด 3.1 กรัม และเมล็ดพันธุ์มีความบริสุทธิ์สูงกว่าร้อยละ 99 และมีความคงทนร้อยละ 81 ในปี 2541 และร้อยละ 91 ในปี 2542 ภายหลังการเก็บรักษาไว้นานห้าเดือน

เกษตรกรกำลังเก็บเมล็ดหญ้าพาลัมอุบล ที่เก็บเสร็จใหม่ๆ ที่บ้านปากกุดหวาน

4.5 ความต้องการความเยาว์วัยและความยาวของวันเพื่อการอุดตอกของหญ้าพาลัมอุบล

ทำงานทดลองที่มหาวิทยาลัยอุบลราชธานีเพื่อศึกษาพฤติกรรมการอุดตอกของหญ้าพาลัมอุบลภายใต้สภาพการควบคุมในห้องทดลองการเจริญเติบโตของพืช โดยต้องการทราบว่าหญ้าพาลัมอุบลมีช่วงเยาว์วัยหรือไม่ และมีความต้องการวันยาว-สั้นในการอุดตอกหรือไม่

รายละเอียดของงานทดลองทั้งหมดได้นำเสนอไว้ในภาคผนวก 4

Hare, M.D., Wongpichet, K., Saengkham, M., Thummasaeng, K. and Suriyajanratong, W. 2001 Juvenility and long-short day requirement in relation to flowering of *Paspalum atratum* in Thailand. *Tropical Grasslands*, 35: 139-143.

สรุป

หญ้า *Paspalum atratum* cv. Ubon เป็นพืชวันยาว-สั้น โดยตอบสนองเชิงปริมาณต่อวันยาวตามด้วยตอบสนองเชิงคุณภาพต่อวันสั้น หญ้าอายุ 20, 40 และ 60 วันที่ได้รับวันยาวจำนวน 60 วันเต็มเวลาในห้องทดลอง (แสง 14 ชั่วโมง) ออกดอกเต็มที่เมื่อนำมาไว้ในอุ่นห้องในสภาพความยาววันที่กำลังสั้นลงตามธรรมชาติ ในช่วงต้นของการทดลอง ต้นกล้าหญ้าที่ปลูกด้วยเมล็ดพันธุ์ที่เริ่มงอกใช้เวลาสองสามวันสำหรับในแรกเจริญอุ่นมา และหญ้าออกดอกได้ไม่เต็มที่ (ร้อยละ 88) หลังจากได้รับความยาววันที่กำลังสั้นลงตามธรรมชาติ หญ้าที่ได้รับวันยาวจำนวน 0, 20 และ 40 วันไม่ออกดอกหลังจากได้รับความยาววันที่กำลังสั้นลงตามธรรมชาติ ส่วนหญ้าที่ไม่ถูกข้ามอุ่นมาภายนอก แต่ยังคงเจริญเติบโตภายใต้สภาพวันยาวในห้องทดลองก็ไม่ออกดอกเช่นกัน

การศึกษานี้ยังยืนยันด้วยว่าไม่มีช่วงเยาววัยในหญ้าพาลัมอุบล เพราะว่าหญ้าทุกต้นที่อายุ 20, 40 และ 60 วัน ภายหลังจากได้รับวันยาวจำนวน 60 วันในห้องทดลอง ออกดอกหลังจากได้รับความยาววันที่กำลังสั้นลงตามธรรมชาติ

ช่อดอก และเกสรของหญ้าพาลัมอุบล

4.6 ความทนทานต่อน้ำท่วมขังของหญ้าพาลัมอุบลและหญ้าเบตต์รอนอินๆ

ศึกษาความทนทานต่อน้ำท่วมขังของหญ้าเบตต์รอนจำนวนหนกชนิดภัยໄท์สภาพควบคุม โดยปลูกหญ้าในถังพลาสติกในเรือนเพาะชำที่มหาวิทยาลัยอุบลราชธานีในปี 2540 และ 2541 ชนิดหญ้าที่ศึกษาในงานทดลองที่ 1 คือ *Paspalum atratum* cv. Ubon, *Brachiaria ruziziensis* (ชนิดธรรมชาติในประเทศไทย), *Paspalum plicatulum* (ชนิดธรรมชาติในประเทศไทย), *Digitaria milanjiana* cv. Jarra, *Brachiaria decumbens* cv. Basilisk และ *Panicum maximum* cv. Purple ไส้หน้าท่วมขังจำนวนห้าวิช์ทดลอง (หญ้าควบคุมที่ไม่ถูกน้ำท่วมขังภัยหลัง 0, 10 และ 20 วัน และหญ้าที่ถูกน้ำท่วมขังเป็นเวลา 10 และ 20 วัน) ส่วนในงานทดลองที่ 2 ได้ศึกษาอิทธิพลของน้ำท่วมขังอย่างละเอียดในหญ้าพาลัมอุบลโดยมีช่วงหน้าท่วมขังจำนวนสี่วิช์ทดลอง (หน้าท่วมขังนาน 0, 10, 20 และ 30 วัน) และในหญ้าอายุต่างๆสามระยะ (อายุ 30, 60 และ 90 วัน)

รายละเอียดของงานทดลองทั้งหมดได้นำเสนอไว้ในภาคผนวก 5 และ 6

Saengkham, M., Hare, M., Tudsri, S. and Wongpichet, K. 2003 Effects of waterlogging on yield and quality of Ubon paspalum. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 84-91.

Hare, M.D., Saengham, M., Tatsapong, P., Wongpichet, K. and Tudsri, S. Waterlogging tolerance of some tropical pasture grasses. (submitted November 2002 to *Tropical Grasslands*).

สรุป

ในงานทดลองที่ 1 หญ้าที่ทนน้ำท่วมขังมากที่สุดคือหญ้าพลิเคทูลัม รองลงมาคือหญ้าพาลัมอุบลและjar'rada'jith หญ้ากินน้ำสีม่วงทนน้ำท่วมขังปานกลาง และหญ้ารูซี่และซิกแนลไม่ทนน้ำท่วมขังโดยมีหญ้าต่ายร้อยละ 50 หลังจากถูกน้ำท่วมขังนาน 20 วัน หน้าท่วมที่ขังหญ้าทุกชนิดนาน 10 วันทำให้น้ำหนักแห้งของหญ้าลดลงเมื่อเทียบกับหญ้าที่ไม่ถูกน้ำท่วมขัง หลังจากน้ำท่วมขังนาน 20 วัน น้ำหนักแห้งของหญ้าพลิเคทูลัม พาลัมอุบล และjar'rada'jith ไม่มีความแตกต่างกันระหว่างพวกรากที่ถูกน้ำท่วมขังและพวกรควบคุม

ในงานทดลองที่ 2 ระยะเวลาหน้าท่วมขังทำให้น้ำหนักแห้งของต้นหญ้าและของหน่อหญ้าพาลัมอุบลที่มีอายุ 30 และ 90 วันเมื่อเริ่มน้ำท่วมขังลดลงอย่างมีนัยสำคัญ แต่ไม่มีอิทธิพลมากนักต่อหญ้าที่มีอายุ 60 วัน ภัยหลังหน้าท่วมขัง ปลายใบของหญ้าแก่ (อายุ 60 และ 90 วัน) เหี่ยวย่นและเปลี่ยนสีเป็นแดงปนเขียว ส่วนใบล่างๆตาย และมีใบใหม่บางใบพัฒนาขึ้นมา หน้าท่วมขังไม่กระทบต่อระดับ

ในโตรเจนในหญ้าพาลัมอุบลอย่างมีนัยสำคัญ และการที่นำหัวขังเป็นเวลานานทำให้ระดับฟอสฟอรัสในพืชทุกวิธีทดลองเพิ่มขึ้น

หญ้าพาลัมอุบล ขึ้นดีในสภาพดินและที่มีน้ำท่วมอยู่บ้างราชธานี

4.7 อิทธิพลของช่วงเวลาตัดและเวลาใส่ปุ๋ยในโตรเจนที่มีต่อผลผลิตและคุณภาพของหญ้าจาร์ราดิจิท

ทำงานทดลองจำนวนสองชั้นในปี 2544 และ 2545 ที่มหาวิทยาลัยอุบลราชธานี เพื่อศึกษาถึงอิทธิพลของการตัดหญ้าจาร์ราดิจิทในช่วงเวลาต่างๆ และอัตราและเวลาของการใส่ปุ๋ยในโตรเจนที่มีต่อการเจริญเติบโตและคุณภาพของแปลงหญ้า เพื่อจะได้คำแนะนำสำหรับการจัดการที่เหมาะสมสำหรับเกษตรกร

รายละเอียดของงานทดลองทั้งหมดได้นำเสนอไว้ในภาคผนวก 7

Hare, M.D., Tatsapong, P., Lunpha, A. and Wongpichet, K. Effect of plant spacing, cutting and nitrogen on production of *Digitaria milanjiana* cv. Jarra in north-east Thailand. (submitted April 2003 to *Tropical Grasslands*).

สรุป

ในงานทดลองที่ 1 การเพิ่มช่วงเวลาตัดและอัตราปุ๋ยในโตรเจนทำให้ทั้งผลผลิตวัตถุแห้งรวมและผลผลิตวัตถุแห้งของลำต้นเพิ่มขึ้นอย่างมีนัยสำคัญ ช่วงเวลาตัดมีอิทธิพลต่อวัตถุแห้งของใบเพียงเล็กน้อย แต่การใส่ปุ๋ยในโตรเจนทำให้เพิ่มผลผลิตวัตถุแห้งของใบอย่างมีนัยสำคัญ การตัดทุก 20 วันภายในช่วงเวลา 240 วันทำให้ได้ผลผลิตวัตถุแห้งทั้งหมดร้อยละ 70 (13.2 ตัน/เฮกเตอร์) ของการตัดทุก 60 วัน (18.8 ตัน/เฮกเตอร์) แต่ได้โปรตีนสูงกว่าร้อยละ 30-50 และเส้นใย (ADF และ NDF) ต่ำกว่าร้อย

ละ 7-10 การใส่ปุ๋ยในโตรเจนในอัตรา 20 กิโลกรัม/เฮกเตอร์ ทุก 60 วัน ทำให้ผลผลิตวัตถุแห้งทั้งหมดของหญ้าจาร์ราดิจิทเพิ่มขึ้นเหนือผลผลิตของแปลงควบคุมร้อยละ 36 การใส่ปุ๋ยในโตรเจนในอัตราที่สูงขึ้นทุก 60 วันทำให้ผลผลิตวัตถุแห้งทั้งหมดเพิ่มขึ้นอีกเพียงร้อยละ 13 (ในโตรเจน 40 กิโลกรัม/เฮกเตอร์ เทียบกับ 20 กิโลกรัม/เฮกเตอร์) และร้อยละ 7 (ในโตรเจน 80 กิโลกรัม/เฮกเตอร์ เทียบกับ 40 กิโลกรัม/เฮกเตอร์) การตอบสนองของผลผลิต (กิโลกรัมวัตถุแห้ง/กิโลกรัมในโตรเจน) จากการใส่ปุ๋ยในโตรเจนในรูปปูเรียกในช่วงตั้งแต่ 23 (ในโตรเจน 320 กิโลกรัม/เฮกเตอร์) จนถึง 52 (ในโตรเจน 80 กิโลกรัม/เฮกเตอร์)

กำลังตัดหญ้าจาร์ราดิจิทที่สถานีอาหารสัตว์มุกดาหาร

ในงานทดลองที่ 2 การใส่ปุ๋ยในโตรเจนอัตรา 20 กิโลกรัม/เฮกเตอร์ ทุก 30 วัน เมื่อเทียบกับทุก 60 วัน ทำให้ผลผลิตวัตถุแห้งของใบและลำต้นเพิ่มขึ้นประมาณร้อยละ 16 ส่วนการใส่ปุ๋ยในโตรเจนอัตรา 40 กิโลกรัม/เฮกเตอร์ ทุก 30 วัน เมื่อเทียบกับทุก 60 วัน ทำให้วัตถุแห้งของใบเพิ่มขึ้น แต่ผลผลิตวัตถุแห้งของลำต้นและของทั้งหมดไม่ได้เพิ่มขึ้น การเพิ่มช่วงเวลาการตัด (20 เทียบกับ 60 วัน) และเวลาใส่ปุ๋ยในโตรเจน (30 เทียบกับ 60 วัน) ทำให้ความเข้มข้นโปรตีนหมายในใบและลำต้นลดลงถึงร้อยละ 40 และการเพิ่มอัตราปุ๋ยในโตรเจน (20 เทียบกับ 40 กิโลกรัม/เฮกเตอร์) ทำให้ความเข้มข้นโปรตีนหมายของใบและลำต้นเพิ่มขึ้นประมาณร้อยละ 15

4.8 อิทธิพลของระยะปลูกที่มีต่อการปลูกสร้างแปลงหญ้าจาร์ราดิจิท

ทำงานทดลองในปี 2543 ถึง 2544 ที่มหาวิทยาลัยอุบลราชธานี เพื่อศึกษาอิทธิพลของการปลูกหญ้าจาร์ราดิจิทด้วยไหลในระยะแคลต่างๆที่มีต่อการปลูกสร้างแปลงหญ้า เพื่อต้องการคำแนะนำที่เหมาะสม

รายละเอียดของงานทดลองทั้งหมดได้นำเสนอไว้ในภาคผนวก 7

Hare, M.D., Tatsapong, P., Lunpha, A. and Wongpichet, K. Effect of plant spacing, cutting and nitrogen on production of *Digitaria milanjiana* cv. Jarra in north-east Thailand. (submitted April 2003 to *Tropical Grasslands*).

สรุป

ในการตัดหญ้าจาร์ราดิจิทครั้งแรกเมื่ออายุถึงเดือนหลังปลูก แปลงที่ปลูกแบบแตรแคน (0.5 เมตร) ให้ผลผลิตต่ำสุดแห้งมากกว่าสองเท่า มีความหนาแน่นเป็นสองเท่า และมีวัชพืชน้อยกว่าแปลงที่ปลูกแบบแตรห่าง (2.0 เมตร; ตารางที่ 8) แปลงที่ปลูกในระยะแคลใกล้เคียงกัน (1.0-1.5 เมตร) ให้ผลผลิตต่ำสุดแห้งต่ำกว่าอย่างไม่มีนัยสำคัญ แต่มีสัดส่วนของวัชพืชสูงกว่าแปลงที่ปลูกในระยะแคล 0.5 เมตร เมื่อถึงการตัดครั้งที่สองที่อายุหกเดือนหลังปลูก ผลผลิตต่ำสุดแห้งของหญ้าจาร์ราดิจิทจากแปลงที่ใช้ระยะปลูกต่างๆไม่มีความแตกต่างอย่างมีนัยสำคัญ

ตารางที่ 8 อิทธิพลของระยะปลูกที่มีต่อผลผลิตต่ำสุดแห้งและส่วนประกอบทางพุกมยาสตอร์ของหญ้าจาร์ราดิจิท

ระยะแคล	ตัดครั้งที่ 1	ตัดครั้งที่ 2	ตัดครั้งที่ 3	ตัดครั้งที่ 4	ตัดครั้งที่ 5	ตัดครั้งที่ 6	ตัดครั้งที่ 7
(เมตร)	24/10/43	25/12/43	25/4/44	26/6/44	27/7/44	5/9/44	22/10/44
ผลผลิตต่ำสุดแห้งหญ้าจาร์ราดิจิท (กิโลกรัม/เอเคตร์)							
0.5	2536 a	2313 a	753 a	3795 a	2808 a	3918 a	3406 a
1.0	2150 a	1669 a	602 a	2858 a	2021 a	3077 a	3199 a
1.5	1782 ab	1811 a	572 a	3847 a	3169 a	3647 a	3046 a
2.0	1071 b	1553 a	555 a	2506 a	2459 a	4047 a	3254 a
หญ้าจาร์ราดิจิท (ร้อยละ)							
0.5	81 a	87 a	53 a	98 a	91 a	96 a	98 a
1.0	51 b	66 b	41 a	86 ab	76 a	91 a	95 a
1.5	66 ab	79 ab	40 a	95 a	81 a	95 a	95 a
2.0	39 b	66 b	44 a	79 b	75 a	93 a	98 a

รัชพืช (ร้อยละ)							
0.5	19 b	13 b	47 a	2 b	9 a	4 a	2 a
1.0	49 a	34 a	59 a	14 ab	34 a	9 a	5 a
1.5	34 ab	21 ab	60 a	5 ab	19 a	5 a	5 a
2.0	61 a	34 a	56 a	21 a	35 a	7 a	2 a

ในคอลัมน์เดียวกัน ค่าเฉลี่ยที่ตามด้วยอักษรตัวเดียวกัน ไม่แตกต่างกันที่ระดับ 5% ทดสอบด้วยวิธี Duncan's Multiple Range

4.9 การปลูกสร้างแปลงหญ้าพาลัมอุบลและถั่วอาหารสัตว์แบบเป็นแนบ

ทำงานทดลองจำนวนสองชั้น ในที่ดอนที่ดินมีความอุดมสมบูรณ์ต่ำในมหาวิทยาลัย อุบลราชธานี เพื่อพานิชถั่วอาหารสัตว์ที่จะคงอยู่ได้เมื่อปลูกในแคลสตับระยะ 50 เซนติเมตรในแปลง หญ้าพาลัมอุบล และเพื่อปรับปรุงคุณภาพของแปลงหญ้า

รายละเอียดของงานทดลองทั้งหมด ได้นำเสนอไว้ในภาคผนวก 8

Hare, M.D., Gruben, I.E., Tatsapong, P., Lunpha, A., Saengkham, M. and Wongpichet, K. Planting *Paspalum atratum* cv. Ubon and forage legumes in alternate rows to establish pasture swards in north-east Thailand. (submitted February 2003 to *Tropical Grasslands*).

สรุป

ในงานทดลองที่ 1 ถั่วปีเดียวคือ *Lablab purpureus* cv. Rongai, *Vigna unguiculata* และ *Canavalia ensiformis* เจริญเติบโตดีในการตัดครั้งแรกที่อายุ 60 วันหลังปลูก แต่ถั่วเหล่านี้ไม่สามารถ เจริญเติบโตขึ้นมาใหม่ได้ในการตัดครั้งที่สองในเวลา 45 วันต่อมา ถั่วชนิดอื่นๆคือ *Aeschynomene americana* cv. Lee, *Macroptilium gracile* cv. Maldonado, *Stylosanthes guianensis* cv. Tha Phra (CIAT 184), *Centrosema pascuorum* cv. Cavalcade, *Calopogonium mucunoides* และ *Pueraria phaseoloides* ตั้งตัวได้ช้ากว่า แต่ก็ให้ผลผลิตสม่ำเสมอในการตัดสีครั้งในฤดูฝน ในงานทดลองที่ 1 แปลงที่มีหญ้าเพียงอย่างเดียวให้ผลผลิตต่ำๆเท่านั้น แต่เมื่อเพิ่มเข้าไปเป็น 2 ชนิด ก็ได้ผลผลิตสูงกว่า ตั้งตัวได้เร็วและต่อเนื่อง แต่ก็ต้องตัดครั้งที่สองในฤดูฝนสูงที่สุด คือ 12.2 ตัน/เฮกเตอร์ ซึ่งสูงกว่าผลผลิตเฉลี่ยที่ได้จากแปลงหญ้าพสมถั่วร้อยละ 35 เนื่องจากหญ้าพาลัมอุบลมีโปรตีน helyab ต่ำ (ร้อยละ 4.5) จึงทำให้ผลผลิตโปรตีน helyab ทั้งหมดของแปลงที่มีหญ้าเพียงอย่างเดียวต่ำลงถึงร้อยละ 35 เมื่อเปรียบเทียบกับแปลงหญ้าพสมถั่วที่ดีที่สุด นั่นคือแปลงพสมที่มีถั่ว *Centrosema pascuorum* ที่ให้ โปรตีน helyab ถึง 808 กิโลกรัม/เฮกเตอร์จากการตัดสีครั้ง

ในงานทดลองที่ 2 และปีที่สอง ได้ไอลารวนระหว่างแคลวัญญาพาราสพาลัมที่บังเมืองในแปลง โดยทำเมื่อเริ่มต้นฤดูฝน แล้วห่วงเมล็ดพันธุ์ถั่วลง ไประหว่างแคลวเหล่านี้ ถั่วที่เจริญเติบโตดีที่สุดในฤดูฝน แรกคือ *S. guianensis* var. *vulgaris* x var. *pauciflora* (ATF 3308, สีตีโลอุบล), *Macroptilium gracile* cv. Maldonado, *S. guianensis* cv. Tha Phra (CIAT 184), *S. hamata* cv. Verano และ *C. mucunoides* อย่างไรก็ตาม ไม่มีความแตกต่างอย่างมีนัยสำคัญระหว่างผลผลิตโปรตีนหยาบห้องหมุดที่ได้จากแปลง หญ้าพสมถั่วที่ดีที่สุดและแปลงที่มีหญ้าเพียงอย่างเดียว

ไม่ได้ปลูกถั่วใหม่ในงานทดลองที่ 2 ในฤดูฝนที่สอง แต่ปล่อยให้เมล็ดพันธุ์ถั่วที่ร่วงหล่นในฤดู แล้วปีกสายได้งอกขึ้นมาใหม่ ถั่วสีตีโลห้องสามชนิดคือ *S. guianensis* var. *vulgaris* x var. *pauciflora*, *S. guianensis* cv. Tha Phra และ *S. hamata* cv. Verano ให้ผลผลิตวัตถุแห้งในปริมาณสูง (2.0-2.3 ตัน/เฮกเตอร์) และวิธีทดลองเหล่านี้ผลิตโปรตีนหยาบห้องหมุดในฤดูฝนมากกว่าแปลงที่มีหญ้าพาราสพาลัมอุบล เพียงอย่างเดียวร้อยละ 89 แปลงหญ้าพสมถั่วสีตีโลห้องให้โปรตีนหยาบห้องหมุดกว่าแปลงที่มีหญ้าอย่างเดียวสองเท่า ถ้า *S. hamata* cv. Verano เจริญเติบโตรุกถ้าเข้าไประหว่างแคลวในแปลงหญ้าพสมถั่วแปลงอื่นๆ เนื่องจากถั่วที่เป็นชนิดเดียวกันเจริญเติบโตน้อยมากหรือหายไปเลย ดังนั้น จึงทำให้ผลผลิตโปรตีนหยาบในแปลงเหล่านี้เพิ่มขึ้นอย่างมีนัยสำคัญเมื่อเปรียบเทียบกับแปลงที่มีหญ้าเพียงอย่างเดียว

ได้มีการอภิปรายถึงยุทธศาสตร์การจัดการเพื่อรักษาถั่วเอาไว้ในแปลงหญ้าพาราสพาลัมอุบล โดยรวมถึงการใช้อัตราเมล็ดพันธุ์ที่สูง การเลือกตัดเฉพาะหญ้าในช่วงแรกของฤดูฝน และลดการใช้ปุ๋ย ถั่วสีตีโลได้แสดงให้เห็นว่าเป็นถั่วที่เหมาะสมที่จะปลูกร่วมในแปลงหญ้าพาราสพาลัมอุบล ในที่ดอนที่คินมีความอุดมสมบูรณ์ต่ำในภาคตะวันออกเฉียงเหนือ

4.10 ผลผลิตวัตถุแห้งและคุณภาพของหญ้า *Brachiaria* ชนิดต่างๆในภาคตะวันออกเฉียงเหนือ

ทำงานทดลองที่มหาวิทยาลัยอุบลราชธานีเพื่อเปรียบเทียบผลผลิตและคุณภาพของหญ้า *Brachiaria* จำนวนห้าชนิดดังต่อไปนี้คือ *Brachiaria ruziziensis* (หญ้ารูซี), *B. decumbens* (หญ้าซิกแนล ธรรมชาติพันธุ์บราซิลสก์), *B. decumbens* (CIAT 26297), *B. brizantha* (CIAT 6780) และ *B. brizantha* (CIAT 6367) ปลูกหญ้าในงานทดลองนี้ในเดือนพฤษภาคม 2543 ภายหลังจากการตัดที่ระดับดินในวันที่ 25 ตุลาคม 2543 ได้ตัดเก็บตัวอย่างวัตถุแห้ง (8×0.25 ตารางเมตร) จากแปลงย่อยในฤดูแล้งสามฤดู (พฤษจิกายน-เมษายน 2543-2544, 2544-2545 และ 2545-2546) และในฤดูฝนสองฤดู (พฤษภาคม-ตุลาคม 2544 และ 2545)

ผลการทดลอง

ผลการทดลองแสดงให้เห็นว่าผลผลิตตลอดปีของหญ้ารูซีต่ำกว่าของหญ้าซิกแนล โดยเฉพาะอย่างยิ่งในฤดูแล้ง (ตารางที่ 9) ในฤดูแล้งห้องสามฤดู ผลผลิตวัตถุแห้งของหญ้ารูซีต่ำกว่าของหญ้าซิก

แนลร้อยละ 33, 39 และ 22 เม็ดหญ้ารูซี่จะเจริญเติบโตได้ดีที่สุดในฤดูฝน แต่ยังได้ผลผลิตวัตถุแห้งต่ำกว่า ของหญ้าซิกแนลร้อยละ 6 นอกจากนี้ โปรตีนหมายของหญ้ารูซี่ไม่ได้สูงกว่าของหญ้าซิกแนลอย่างมีนัยสำคัญ และในบางครั้งยังต่ำกว่าของหญ้า *B. decumbens* 26297 งานทดลองนี้ได้แสดงให้เห็นว่า มีหญ้านิดที่ดีกว่าหญ้ารูซี่สำหรับให้เกียตกราบลูกในภาคตะวันออกเฉียงเหนือของประเทศไทย

ตารางที่ 9 ผลผลิตวัตถุแห้งของหญ้า *Brachiaria* จำนวนห้าชนิดที่มีมหาวิทยาลัยอุบลราชธานี

ชนิดหญ้า	วัตถุแห้ง (กิโลกรัม/เฮกเตอร์)				
	ฤดูแล้ง ²⁵⁴³⁻²⁵⁴⁴	ฤดูฝน ²⁵⁴⁴	ฤดูแล้ง ²⁵⁴⁴⁻²⁵⁴⁵	ฤดูฝน ²⁵⁴⁵	ฤดูแล้ง ²⁵⁴⁵⁻²⁵⁴⁶
หญ้ารูซี่	5448 b	13883 bc	2747 b	9295 ab	3346 b
หญ้าซิกแนล พันธุ์นาซิลิสค์	8126 a	14725 abc	4467 a	9844 a	4277 a
<i>B. decumbens</i> 26297	6580 b	13336 c	2623 b	7776 b	3134 b
<i>B. brizantha</i> 6780	8968 a	15205 ab	4407 a	9918 a	3911 ab
<i>B. brizantha</i> 6367	8541 a	16011 a	3807 ab	9870 a	4162 a

ในคอลัมน์เดียวกัน ค่าเฉลี่ยที่ตามด้วยอักษรตัวเดียวกัน ไม่แตกต่างกันที่ระดับ 5% ทดสอบด้วยวิธี Duncan's Multiple Range

ตารางที่ 10 ระดับโปรตีนหมายของหญ้า *Brachiaria* จำนวนห้าชนิดที่มีมหาวิทยาลัยอุบลราชธานี

ชนิดหญ้า	โปรตีนหมาย (ร้อยละ)									
	ฤดูแล้ง ²⁵⁴³⁻²⁵⁴⁴		ฤดูฝน ²⁵⁴⁴		ฤดูแล้ง ²⁵⁴⁴⁻²⁵⁴⁵		ฤดูฝน ²⁵⁴⁵		ฤดูแล้ง ²⁵⁴⁵⁻²⁵⁴⁶	
	ใบ	ต้น	ใบ	ต้น	ใบ	ต้น	ใบ	ต้น	ใบ	ต้น
หญ้ารูซี่	10.3ab	5.9a	9.4ab	5.9a	13.4b	8.6b	7.4b	5.5ab	12.4a	6.8bc
หญ้าซิกแนล พันธุ์นาซิลิสค์	9.9bc	5.5ab	8.9ab	5.8a	12.9b	8.4b	7.4b	5.8a	11.5ab	7.7b
<i>B. decumbens</i> 26297	10.9a	5.1bc	9.9a	6.2a	15.2a	9.7a	8.4a	5.6ab	13.1a	9.0a
<i>B. brizantha</i> 6780	9.2c	4.6cd	8.3b	5.5a	10.4c	6.3c	6.6b	5.9a	9.9b	6.2c
<i>B. brizantha</i> 6367	9.2c	4.4d	8.6b	5.2a	13.2b	8.7b	7.1b	4.6b	12.4a	7.7b

ในคอลัมน์เดียวกัน ค่าเฉลี่ยที่ตามด้วยอักษรตัวเดียวกัน ไม่แตกต่างกันที่ระดับ 5% ทดสอบด้วยวิธี Duncan's Multiple Range

4.11 ประสิทธิภาพการสืบพันธุ์ของหญ้า *Brachiaria* ในภาคตะวันออกเฉียงเหนือของประเทศไทย

ทำงานทดลองที่มีมหาวิทยาลัยอุบลราชธานีเพื่อเปรียบเทียบประสิทธิภาพการสืบพันธุ์ของหญ้า *Brachiaria* จำนวนห้าชนิดดังต่อไปนี้ *Brachiaria ruziziensis* (หญ้ารูซี่), *B. decumbens* (หญ้าซิกแนล

ธรรมด้า พันธุ์บัวชิลิสก์), *B. decumbens* (CIAT 26297), *B. brizantha* (CIAT 6780) และ *B. brizantha* (CIAT 6367) ปลูกหญ้าในงานทดลองนี้ในเดือนพฤษภาคม 2543 และวัดองค์ประกอบการสืบพันธุ์ (ลำต้นที่ออกดอก ช่อดอกอย่าง และช่อกระจะ) ในปี 2544 และ 2545

ผล

ในปี 2545 หญ้าทุกพันธุ์เจริญเติบโตถึงช่วงออกดอกสูงสุดชั้ลงหนึ่งถึงสองเดือนเมื่อเทียบกับในปี 2544 (ตารางที่ 11) สาเหตุเนื่องจากได้ตัดหญ้าในทุกแปลงอย่างในเดือนมิถุนายน 2545 ในขณะที่ในปี 2544 ตัดหญ้าในเดือนเมษายน นอกจากนี้ ในปี 2545 ห้องฟ้างมีเมมฟามากและอากาศร้อนชื้นทำให้หญ้าออกดอกช้า หญ้ารูปชื่อออกดอกช้าที่สุดในช่วงปลายฤดูฝนเมื่ออากาศเริ่มแห้ง นี่คือสาเหตุที่ทำให้หญ้าพันธุ์นี้เป็นพันธุ์ที่เก็บเกี่ยวเมล็ดได้ง่ายที่สุดในภาคตะวันออกเฉียงเหนือของประเทศไทย ในขณะที่หญ้าพันธุ์อื่นๆ ออกดอกก่อนในช่วงฤดูฝนที่มีฝนตกหนักซึ่งทำให้มีความยากลำบากในการเก็บเกี่ยวเมล็ด

ตารางที่ 11 วันที่ออกดอกสูงสุดของหญ้า *Brachiaria* จำนวนห้าชนิดที่มหาวิทยาลัยอุบลราชธานี

ชนิดหญ้า	พ.ศ. 2544	พ.ศ. 2545
หญ้ารูปชื่อ	10 ตุลาคม	11 พฤศจิกายน
หญ้าชิกแนล พันธุ์บัวชิลิสก์	30 กรกฎาคม	10 กันยายน
<i>B. decumbens</i> CIAT 26297	27 สิงหาคม	4 ตุลาคม
<i>B. brizantha</i> CIAT 6780	17 กันยายน	12 ตุลาคม
<i>B. brizantha</i> CIAT 6367	8 สิงหาคม	24 กันยายน

ในปี 2544 หญ้าชิกแนลพันธุ์บัวชิลิสก์ผลิตจำนวนช่อดอกสูงสุด รองลงมาคือหญ้าสายพันธุ์ CIAT 6367 และรูปชื่อ (ตารางที่ 12) อย่างไรก็ตาม ในปี 2545 หญ้ารูปชื่อผลิตช่อดอกมากกว่าหญ้าชิกแนล พันธุ์บัวชิลิสก์และ CIAT 6367 อย่างมีนัยสำคัญ การตัดหญ้าในเดือนมิถุนายนปี 2545 อาจทำให้จำนวนช่อดอกของหญ้าชิกแนลพันธุ์บัวชิลิสก์ลดลง เนื่องจากหญ้านิดนึงออกดอกก่อน และทำให้ช่วงออกดอกสูงสุดเลื่อนจากเดือนกรกฎาคม ไปเป็นเดือนกันยายน (ตารางที่ 11) ในปี 2544 หญ้าชิกแนลพันธุ์บัวชิลิสก์ออกดอกสองช่วง โดยที่ในเดือนกรกฎาคมมีจำนวนช่อดอก 331 ช่อ/ตารางเมตร และในเดือนตุลาคมมีจำนวนเพียง 123 ช่อ/ตารางเมตร ในปี 2545 หญ้านิดนึงออกดอกเพียงช่วงเดียวในเดือนกันยายน

ตารางที่ 12 องค์ประกอบการออกดอกของหญ้า *Brachiaria* จำวนห้าชนิด

ชนิดหญ้า	ช่องอก/ตารางเมตร		ช่องจะ/ช่องอก		ช่องอกย่อย/ช่องจะ	
	2544	2545	2544	2545	2544	2545
หญ้ารูซี่	224 b	266 a	4.0 a	4.1 a	34.2 c	30.8 c
หญ้าซิกแนล พันธุ์บราชิลิสต์	331 a	151 b	2.9 cd	2.3 c	40.0 b	43.3 a
<i>B. decumbens</i> CIAT 26297	37 c	23 d	2.7 d	1.5 d	28.0 d	24.8 d
<i>B. brizantha</i> CIAT 6780	34 c	11 d	3.4 b	3.1 b	48.8 a	39.6 b
<i>B. brizantha</i> CIAT 6367	257 b	106 c	3.2 bc	2.3 c	34.3 c	32.0 c

ในคอลัมน์เดียวกัน ค่าเฉลี่ยที่ต่ำด้วยอักษรตัวเดียวกัน ไม่แตกต่างกันที่ระดับ 5% ทดสอบด้วยวิธี Duncan's Multiple Range

สรุป

ผลการศึกษานี้แสดงให้เห็นว่าเหตุใดหญ้ารูซี่จึงยังคงเป็น *Brachiaria* ที่ได้รับความนิยมมากที่สุดในประเทศไทย เนื่องจากหญ้านิดนี้ผลิตช่องอกจำนวนมาก โดยเฉพาะอย่างยิ่ง ถ้าถูกตัดกลางๆ ผ่าน และช่วงออกดอกสูงสุดของหญ้านิดนี้อยู่ในปลายเดือนตุลาคม-ต้นพฤษจิกายนที่มีอากาศแห้ง ปัจจัยเหล่านี้จึงทำให้เก็บเกี่ยวเมล็ดพันธุ์ได้ง่าย หญ้าซิกแนลมีศักยภาพที่จะผลิตเมล็ดพันธุ์ได้ในประเทศไทย แต่เนื่องจากหญ้านิดนี้ออกดอกและติดเมล็ดในช่วงเวลาที่มีฝนตกหนักที่สุดของปี (กรกฎาคม-กันยายน) เกษตรกรจึงเห็นว่าเป็นเรื่องที่ยากลำบากในการเก็บเกี่ยวเมล็ด

แม้ว่าหญ้าสายพันธุ์ CIAT 6780 จะผลิตวัตถุแห้งได้สูงที่สุด (ตารางที่ 9) แต่จำนวนช่องอกที่ต่ำ (ตารางที่ 12) และผลผลิตเมล็ดพันธุ์ที่ต่ำคงจะทำให้เกษตรกรในประเทศไทยไม่ยอมรับ นอกเสียจากว่า จะมีโครงการพิเศษที่ส่งเสริมให้ใช้ท่อนพันธุ์ปลูกคล้ายกับโครงการหญ้านเเปียร์และแพงโกลา

4.12 อิทธิพลของปัจจัยในต่อเรจน โพแทสเซียม และฟอสฟอรัสที่มีต่อผลผลิตและคุณภาพของหญ้าพาส พาลัมอุบล

นางสาวนพมาศ นามแดง คณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี เป็นผู้ทำงานทดลอง ขึ้นนี้เพื่อเป็นวิทยานิพนธ์ระดับปริญญาโทสำหรับเสนอต่อมหาวิทยาลัยเกษตรศาสตร์ เชือทำงานทดลองนี้ในปี 2543 ที่มหาวิทยาลัยอุบลราชธานี และได้รับปริญญาในปี 2545

เรื่องย่อของการศึกษานี้ได้เสนอไว้ในภาคผนวก 9

Namdaeng, N. 2002 Study on nitrogen, phosphorus and potassium fertilizer on growth, yield and quality of Ubon paspalum (*Paspalum atratum* cv. Ubon). Master of Science thesis, Department of Soil Science, Kasetsart University. 241pp.

สรุป

จะต้องใส่หั่งปุ๋ยใน โตรเจนและ โปแตสเซียม ให้กับหญ้าพาลัมอุบลเพื่อให้ได้ผลผลิตวัตถุแห่งที่ดี

4.13 คุณภาพของหญ้าหมักที่ทำจากหญ้าเบต้อน

นางศิริวรรณ นาร์เทนส์ มหาวิทยาลัยแห่ง Rostock ประเทศเยอรมนี ได้ทำงานทดลองนี้ที่มหาวิทยาลัยอุบลราชธานี งานเสร็จสิ้นในปี 2543 และเธอได้รับปริญญาในปี 2544
เรื่องย่อของ การศึกษานี้ได้เสนอไว้ในภาคผนวก 10

Martens, S. 2001 Yield, feed value and ensilability of 4 tropical grasses in northeast Thailand. Diploma thesis. Department of Agroecolgy, University of Rostock, Rostock, Germany. 160pp.

สรุป

ในการทำหญ้าหมัก ควรตัดหญ้าเจริญเติบโตและรู้สึกว่าดีที่อายุ 50 และ 60 วัน ตามลำดับ และไม่จำเป็นต้องใส่สารเสริม ส่วนหญ้ากินนี้สีม่วงและพาลัมอุบล ควรตัดที่อายุ 30 และ 85 วัน ตามลำดับ แต่ต้องใส่สารเสริมเพื่อปรับปรุงคุณภาพของหญ้าหมักให้ดีขึ้น

4.14 ความต้องการพลังงานและโปรตีนของโคนมรุ่นลูกผสม

นางสาวพวน ทักษิณ โครงการพัฒนาอาหารสัตว์ มหาวิทยาลัยอุบลราชธานี ได้ทำงานทดลองนี้ที่มหาวิทยาลัยอุบลราชธานี เพื่อเป็นวิทยานิพนธ์ระดับปริญญาโทสำหรับเสนอต่อมหาวิทยาลัยเทคโนโลยีสุรนารี เธอทำงานทดลองนี้ในปี 2543 และได้รับปริญญาในปี 2544

เรื่องย่อของ การศึกษานี้ได้เสนอไว้ในภาคผนวก 11 และ 12

Tatasapong, P. 2001 A study of energy and protein requirement of crossbred dairy heifers. Master of Science Thesis in Animal Production Technology, Suranaree University of Technology 156 pp.

Tatasapong, P., Suksombat, W., Thummasaeng, K. and Suriyajantratong, W. 2003 A study of energy and protein requirements of crossbred dairy heifers. Proceedings of the

seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 11-21.

สรุป

การตอบสนองของโโคسارรุนลูกผสมโซลสไตน์ฟรีเซียนต่อพลังงานและโปรตีนระดับต่างๆ แสดงให้เห็นว่าโโคมีความต้องพลังงานสูงและโปรตีน helyab สูงกว่าระดับที่ NRC แนะนำไว้ร้อยละ 5 และ 38 ตามลำดับ

4.15 การปลูกสร้างแปลงหญ้าพืชพาลัมอุบลและถั่วอาหารสัตว์แบบเป็นແນບ

นางสาวอินา กรูเบน มหาวิทยาลัยแห่ง Rostock ประเทศเยอรมนี ทำงานทดลองนี้ที่ มหาวิทยาลัยอุบลราชธานี งานเสร็จสิ้นในปี 2544 และเธอได้รับปริญญาในปี 2544

เรื่องย่อของการศึกษานี้ได้เสนอไว้ในภาคผนวก 8 และ 13

Hare, M.D., Gruben, I.E., Tatsapong, P., Lunpha, A., Saengkham, M. and Wongpichet, K. Planting *Paspalum atratum* cv. Ubon and forage legumes in alternate rows to establish pasture swards in north-east Thailand. (submitted February 2003 to *Tropical Grasslands*).

Gruben, I.E. 2001 Management of forage legumes in Ubon paspalum (*Paspalum atratum*). (Strip establishment of Ubon paspalum and forage legumes). Diploma thesis. Department of Agroecology, University of Rostock, Rostock, Germany. 70pp.

สรุป

ไม่แนะนำให้เกยตระรรรายย่อยผู้เลี้ยงโคนมในประเทศไทยนำระบบการจัดการที่ปลูกถั่วแบบเป็นແນບร่วมกับหญ้าพืชพาลัมอุบลไปใช้ เนื่องจากถั่วเจริญเติบโตน้อยมาก จึงทำให้ได้ผลผลิตวัตถุแห้งต่ำ และถั่วหายไปทั้งหมดจากแปลงภายหลังการตัดครั้งที่สี่

ถ้าสีไตรโลคุบล และหญ้าพาสาล้มอุบล ปลูกสลับกันเป็นแถวทึ่มหัววิทยาลัยอุบลราชธานี

5. โครงการวิจัยและพัฒนาในหมู่บ้าน

5.1 โครงการระบบการจัดการพืชอาหารสัตว์สำหรับเกษตรกรผู้เลี้ยงโコンมในหมู่บ้าน

คัดเลือกเกษตรกรผู้เลี้ยงโコンมจำนวน 20 รายในจังหวัดอุบลราชธานีและศรีสะเกษ (จำนวน 10 รายในแต่ละจังหวัด) ในปี 2543 เพื่อร่วมโครงการแปลงหญ้า และรับการฝึกอบรมและคำแนะนำในการปรับปรุงการผลิตพืชอาหารสัตว์ โครงการได้ไปตรวจเยี่ยมเกษตรกรทุก 4-6 สัปดาห์ ในปี 2543-2545

5.1.1 จังหวัดอุบลราชธานี

เกย์ตระกรจำนวนแ penc รายในอำเภอวารินชำราบมีแปลงหญ้าที่ดี เจ็ตรายป่ากุกหญ้าพานา
พาลัมอนล และสามรายป่ากุกหญ้ากินนี เนปีร์ และรูซี่ในพื้นที่เล็กๆ เกย์ตระกรจำนวนหนึ่งราย
ป่ากุกถ้วส ไถโลท่าพระ และหลายรายป่ากุกถ้ววิภาวดีในกุดุฟน พื้นที่แปลงหญ้าต่อเกย์ตระกร
ยังคงน้อยเกินไปในการรักษาการผลิต และโคนมจะต้องได้รับอาหารเสริมพอกฟางข้าวในกุด
แม่สัน

ปัญหาหลักของเกณฑ์กราก็คือขาดตลาดที่ดีสำหรับรับซื้อน้ำนมที่ผลิตได้

5.1.2 จังหวัดศรีสะเกษ

เกย์ตระกรในจังหวัดศรีสะเกษยังคงอาศัยฟางข้าวเพื่อเป็นแหล่งอาหารยานสำหรับโภคภัยตลอดทั้งปี มีเกย์ตระกรเพียงสี่รายในจำนวน 10 รายที่มีแปลงหญ้า (หญ้าพาสพาลัมอุบลและพลีแครทลัม) และเกย์ตระกรเหล่านี้ต้องการปลูกหญ้าพาสพาลัมอุบลมากขึ้นในปีหน้า

ในปี 2543 แมลงที่กินหญ้าได้เข้าทำลายแปลงหญ้าใหม่หลายแปลงที่มีหญ้าพาสพาลัน อุบล แมลงเหล่านี้ได้ทำลายแปลงหญ้าหลายแปลงและได้ทำลายข้าวด้วยเช่นกัน ความเสียหาย ที่เกิดขึ้นนี้ทำให้เกษตรกรหลายรายไม่สูนใจจะปลูกแปลงหญ้าใหม่ในปี 2544 และ 2545

5.2 โครงการใช้ประโยชน์พืชอาหารสัตว์ในรูปหลักและหลักแห้ง

เนื่องจากไม่มีเกย์ตระรรถผลิตหญ้าสุดเพื่อจำหน่ายในปี 2545 โครงการนี้จึงได้ยุติลง อย่างไรก็ตาม โครงการได้พิสูจน์ให้เห็นว่าสามารถปลูกหญ้าเป็นการค้าได้ เพียงแต่ให้มีติดต่อ แรงงานที่จะตัดหญ้า และช่วงเวลาตัดหญ้าไม่ตรงกับการปลูกข้าว (คำนาและเก็บเกี่ยว) ตารางที่ 13 สรุปงานโครงการผลิตหญ้าสุดที่ทำในปี 2541 ถึง 2544 เกย์ตระรรถได้รับรายได้รวมเฉลี่ย 3,235 บาท/ไร่ ซึ่งสูงกว่าที่ได้รับจากการผลิตข้าว โครงการรับซื้อหญ้าสุดในราคากล. 0.75 บาท/กิโลกรัม และได้พิสูจน์ว่ามีความเป็นไปได้ที่เกย์ตระรรถในหมู่บ้านจะผลิตหญ้าสุดในเชิงการค้า ในอนาคต เมื่อตลาดหญ้าสุดขยายตัว โครงการจะสามารถให้ข้อมูลทางเทคนิคเพื่อสนับสนุนการปลูกหญ้าเพื่อจำหน่ายได้

ตารางที่ 13 การผลิตหญ้าพาล์มอุบลสุดโดยเกยตระกรในหมู่บ้าน

ปี	จำนวนเกยตระกร	น้ำหนักส่วนรวมของหญ้าที่รับซื้อ (กิโลกรัม)	รายได้ต่อไร่จากการผลิตหญ้า (เฉลี่ยต่อเกยตระกร - บาท)
2544	2	9,421	2,355
2543	5	38,941	3,538
2542	12	52,122	3,660
2541	9	30,497	3,388
เฉลี่ย			3,235

5.3 โครงการผลิตเมล็ดพันธุ์

5.3.1 งานผลิตเมล็ดพันธุ์หญ้าพาล์มอุบลในหมู่บ้าน

ปริมาณการผลิตเมล็ดพันธุ์หญ้าพาล์มอุบลที่บ้านปากกุดหวานเพิ่มขึ้นจาก 2,000 กิโลกรัมในปี 2543 เป็นเกือบ 6,000 กิโลกรัมในปี 2545 (ตารางที่ 14) และโควตาต่อเกยตระกรได้เพิ่มขึ้นจาก 100 กิโลกรัมเป็น 250 กิโลกรัม แต่ราคารับซื้อต่อกิโลกรัมได้ลดลงจาก 100 บาทเป็น 80 บาท เกยตระกรเหล่านี้สามารถผลิตเมล็ดพันธุ์คุณภาพสูงที่มีความคงทนสูงและน้ำหนักเมล็ดสูง

การจำหน่ายเมล็ดพันธุ์เป็นไปด้วยดี โครงการสามารถจำหน่ายเมล็ดพันธุ์หมดในแต่ละปี (ตารางที่ 15)

ตารางที่ 14 การผลิตเมล็ดพันธุ์หญ้าพาล์มอุบลที่บ้านปากกุดหวาน

ปี	จำนวนเกยตระกร	โควตาต่อเกยตระกร	ผลผลิตรวม (กิโลกรัม)
2543	20	100	2,000
2544	20	100	2,748*
2545	21	250	5,986*

* ผลิตมากกว่าโควตา 748 กิโลกรัมในปี 2544 และ 736 กิโลกรัมในปี 2545

ตารางที่ 15 ปริมาณจำหน่ายเมล็ดพันธุ์หญ้าพาล์มอุบลในปี 2543-2545

ภาค	จำนวนผู้ซื้อ			ปริมาณเมล็ดพันธุ์ (กิโลกรัม)		
	2543	2544	2545	2543	2544	2545
เหนือ	12	5	-	130	111	-
ตะวันออกเฉียงเหนือ	100	290	30	1,240	1,740	1,410

กลาง	37	30	-	187	365	-
ตะวันตก	1	-	-	2	-	-
ตะวันออก	4	9	1*	14	61	1,020
ใต้	8	3	1*	261	173	100
ต่างประเทศ	2	4	-	110	390	-
รวม	164	342	32	1,944	2,840	2,530

* สาหรับขนาดใหญ่ซึ่งเมล็ดพันธุ์สำหรับเกณฑ์ที่เป็นมาตรฐาน

5.3.2 งานผลิตเมล็ดพันธุ์หญ้าชิกแนลในหมู่บ้าน

การผลิตเมล็ดพันธุ์หญ้าชิกแนลมีความยากลำบากมาก ในการผลิตเพื่อให้ได้เมล็ดพันธุ์หญ้าชิกแนลที่ดีจะต้องผลิตในดินที่มีความอุดมสมบูรณ์สูงดังเช่นที่ทำกันในประเทศอสเตรเลียและบรูซิล โครงการสามารถหาพื้นที่ที่มีดินดีและเหมาะสมในอำเภอทั่วประเทศ จังหวัดศรีสะเกษ และอำเภอรายืน จังหวัดอุบลราชธานี เพราะว่ามีดินสีน้ำตาลแดงที่อุดมสมบูรณ์

ปลูกหญ้าชิกแนลเพื่อผลิตเมล็ดพันธุ์จำนวนสองครั้งที่อำเภอทั่วประเทศ (ตารางที่ 16) หญ้าที่ปลูกแสดงศักยภาพให้เห็นว่าสามารถจะให้ผลผลิตที่ดีได้ แต่เกณฑ์กรองผู้ดูแลที่มีอายุถึง 65 ปีและต้องกรีดยางพาราที่เป็นอาชีพหลักทุกวันเห็นว่าการเก็บเกี่ยวเมล็ดพันธุ์หญ้าเป็นเรื่องยาก เขาไม่สามารถจัดการพืชถึงสองชนิดในเวลาเดียวกันได้ และบุตรสาวของเขายังต้องการปลูกข้าวโพดแทนในแปลงหญ้า เนื่องจากเก็บเกี่ยวได้ยากกว่า ดังนั้น โครงการจึงได้ยุติความพยายามที่จะผลิตเมล็ดพันธุ์หญ้าชิกแนลที่นี่

เกณฑ์กรองที่อำเภอรายืนผลิตเมล็ดพันธุ์ที่ดีในปี 2543 แต่ได้ในปริมาณเพียงเล็กน้อย (ตารางที่ 16) เกณฑ์กรองที่นี่ปลูกพืชผัก ข้าวโพด และไม้ผล จึงทำให้หญ้าชิกแนลต้องแข่งขันกับพืชเศรษฐกิจหลักนี้ ในปี 2546 เกณฑ์กรองจำนวนสามรายจะผลิตเมล็ดพันธุ์หญ้าต่อไป

ตารางที่ 16 การผลิตเมล็ดพันธุ์หญ้าชิกแนลในปี 2543-2545 โดยเกณฑ์กรองในหมู่บ้าน

สถานที่	ปี	จำนวน เกณฑ์	พื้นที่ (ไร่)	ปริมาณเมล็ดดี ที่ผลิตได้ (กิโลกรัม)	ปริมาณเมล็ดงาม ที่ผลิตได้ (กิโลกรัม)
อำเภอทั่วประเทศ	2543	1	2	18	26
อำเภอทั่วประเทศ	2544	1	1.5	10	40
อำเภอรายืน	2545	4	3.5	6	3

5.3.3 งานผลิตเมล็ดพันธุ์ถั่วสีตาโอลูบล

เริ่มงานผลิตเมล็ดพันธุ์ถั่วสไตโลที่เป็นพันธุ์ลูกผสมใหม่ (*Stylosanthes guianensis* var. *vulgaris* X var. *pauciflora* ATF 3308) และโครงการเรียกถ่านี้ว่า "สไตโลอุบล" ในปี 2543 โดยปลูกในพื้นที่นาเดิมในมหาวิทยาลัยฯ (ตารางที่ 17) โครงการได้รับเมล็ดพันธุ์ถั่วนิดนี้ ปริมาณ 20 กรัมจากดร.เบร็ท กรอฟ ประเทศอสเตรเลีย ในเดือนพฤษภาคม 2542 แล้วเพาะกล้าในเรือนเพาะชำก่อนที่จะขยับลงปลูกในแปลงในเดือนพฤษภาคม 2543 เกษตรกรที่บ้านปากกุดหวาน จังหวัดอุบลราชธานีได้ผลิตเมล็ดพันธุ์ถั่วนิดนี้ในปี 2544 และ 2545

ตารางที่ 17 การผลิตเมล็ดพันธุ์ถั่วสไตโลอุบล

สถานที่	ปี	จำนวน เกษตรกร	พื้นที่ (ไร่)	ผลผลิตเฉลี่ย ¹ (กิโลกรัม/ไร่)	ผลผลิตรวม (กิโลกรัม)
มหาวิทยาลัยฯ	2543	-	0.3	81	26
บ้านปากกุดหวาน	2544	2	2	87	173
บ้านปากกุดหวาน	2545	4	4	120	480

พบว่า การขัดผิวเมล็ดพันธุ์ถั่วสไตโลอุบลด้วยเครื่องขัดสีข้าวช่วยทำให้เปลือกเมล็ดหลุดออกและยังช่วยเพิ่มความงอกให้สูงกว่าร้อยละ 80 เมล็ดพันธุ์ถั่วสไตโลอุบลนักมีสีดำและมีขนาดเล็กกว่าเมล็ดพันธุ์ถั่วสไตโลท่าพระที่มีสีน้ำตาล

5.3.4 หญ้าบราเคียรียลูกผสม

ในปี 2545 โครงการได้รับเมล็ดพันธุ์หญ้าชนิดใหม่ *Brachiaria ruziziensis* X *Brachiaria brizantha* CIAT 36061 ในปริมาณเล็กน้อยจากประเทศคอสตาริกาและอสเตรเลียนักวิจัยที่ CIAT ได้ทดสอบแล้วพบว่าโโคที่กินหญ้าชนิดนี้ให้ผลผลิตน้ำนมสูงกว่าที่กินหญ้าชิกแนลธรรมชาติ โครงการได้เพาะเมล็ดพันธุ์ในถุงพลาสติกในเรือนเพาะชำ แล้วย้ายต้นกล้าลงปลูกในแปลงที่มหาวิทยาลัยฯ ในฤดูฝน

ในเดือนพฤษภาคม 2545 โครงการได้เก็บเกี่ยวเมล็ดพันธุ์หญ้าบราเคียรียลูกผสมที่มีคุณภาพดีมากปริมาณ 4.2 กิโลกรัม เมล็ดที่เก็บเกี่ยวได้หนักมาก มีน้ำหนัก 1,000 เมล็ด 8.21 กรัม ซึ่งหนักเป็นสองเท่าของเมล็ดพันธุ์หญ้ารูดี โครงการวางแผนที่จะใช้เมล็ดที่เก็บเกี่ยวได้ในงานวิจัยในแปลงขนาดเล็กและงานขยายพันธุ์ในหมู่บ้านปีหน้า หญ้ามูลาโนนีคุณภาพมีน้ำหนักตั้งแต่ 4.2 กิโลกรัม เมล็ดพันธุ์ได้ดี โดยตัวร่างเมล็ดในช่วงปลายฤดูฝนและภายในช่วงเวลาที่ลับมาก หญ้าชนิดนี้สูงกว่าหญ้ารูดีมาก ดังนั้น เกษตรกรจึงน่าจะเก็บเกี่ยวเมล็ดพันธุ์ได้ง่ายขึ้น

6. สรุปงานวิจัยและพัฒนาที่สำคัญของโครงการในรอบสามปีที่ผ่านไป

6.1 บทความวิชาการและหนังสือ

โครงการได้ผลิตบทความวิชาการจำนวน 13 เรื่องและหนังสือคู่มือจำนวนหนึ่งเรื่องในระยะสามปีของโครงการนี้ บทความวิชาการจำนวน 10 เรื่องได้รับการตีพิมพ์เรียบร้อยแล้ว และสามเรื่องได้ส่งให้การสารเพื่อตีพิมพ์ โครงการได้รักภำนาตรฐานของผลงานไว้ในระดับสูง ทั้งระดับชาติและนานาชาติ

1. Hare, M. D., Kaewkunya, C., Tatsapong, P., Wongpichet, K., Thummasaeng, K. and Suriyajantratong, W. 2001 Method and time of establishing *Paspalum atratum* seed crops in Thailand. *Tropical Grasslands*, 35: 19-25. (Appendix 3).
2. Hare, M.D., Wongpichet, K., Saengkham, M., Thummasaeng, K. and Suriyajantratong, W. 2001 Juvenility and long-short day requirement in relation to flowering of *Paspalum atratum* in Thailand. *Tropical Grasslands*, 35: 139-143. (Appendix 4).
3. Hare, M.D., Saengkham, M., Kaewkunya, C., Tudsri, S., Suriyajantratong, W., Thummasaeng, K. and Wongpichet, . 2001 Effect of cutting on yield and quality of *Paspalum atratum* in Thailand. *Tropical Grasslands*, 35: 144-150. (Appendix 2).
4. Hare, M.D., Suriyajantratong, W., Wongpichet, K. and Thummasaeng, K. 2001 *Paspalum atratum* - from a wild native plant in Brazil to commercial forage seed production in Thailand in 10 years. *International Herbage Seed Production Research Group Newsletter*, 33: 5-8. (Appendix 14).
5. Hare, M.D., Kaewkunya, C., Tatsapong, P. and Saengkham, M. 2003 Evaluation of forage legumes and grasses on seasonally waterlogged sites in north-east Thailand. *Tropical Grasslands*, 37: 20-32. (Appendix 1).
6. Hare, M.D., Wongpichet, K., Suriyajantratong, W., Thummasaeng, K., Suwanlee, S., Booncharern, P., Tasapong, P., Lunpha, A., Saipraset, K. and Intisaeng, W. 2003 Ubon paspalum: Management and Utilization. Faculty of Agriculture, Ubon Ratchathani University. 43 pp.
7. Thummasaeng, K., Suwanlee, S., Suriyajantratong, W., Hare, M., Inthisaeng, W., Boonsarn, W. and Lunpha, A. 2003 The study of the energy and protein requirements of

dairy cows fed Ubon paspalum grass silage as basal roughage. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 3-10. (Appendix 16).

8. Tatsapong, P., Suksombat, W., Thummasaeng, K. and Suriyajanratong, W. 2003 A study of energy and protein requirements of crossbred dairy heifers. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 11-21. (Appendix 12).

9. Saengkham, M., Hare, M., Tudsri, S. and Wongpichet, K. 2003 Effects of waterlogging on yield and quality of Ubon paspalum. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 84-91. (Appendix 5).

10. Hare, M.D. 2003 Forage plants for dairy cows in Thailand: Old friends-New faces. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 149-153. (Appendix 15).

11. Suwanlee, S., Thummasaeng, K., Lunpha, A. and Suriyajanratong, W. 2003 *In vitro* study on nutritive value of tropical grasses using nylon bag and gas production techniques. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 187-192. (Appendix 17).

12. Hare, M.D., Saengham, M., Tatsapong, P., Wongpichet, K. and Tudsri, S. Waterlogging tolerance of some tropical pasture grasses. (submitted November 2002 to *Tropical Grasslands*). (Appendix 6).

13. Hare, M.D., Gruben, I.E., Tatsapong, P. Lunpha, A., Saengkham, M. and Wongpichet, K. Planting *Paspalum atratum* cv. Ubon and forage legumes in alternate rows to establish pasture swards in north-east Thailand. (submitted February 2003 to *Tropical Grassland*). (Appendix 8).

14. Hare, M.D., Tatsapong, P. Lunpha, A. and Wongpichet, K. Effect of plant spacing, cutting and nitrogen on production of *Digitaria milanjiana* cv. Jarra in north-east Thailand. (submitted April 2003 to *Tropical Grassland*). (Appendix 7).

6.2 วิทยานิพนธ์บัณฑิตศึกษา

โครงการ ได้สนับสนุนนักวิจัยจำนวนสี่คนในการทำงานวิจัยเพื่อเป็นวิทยานิพนธ์ของเข้า ดังนี้ นางสาวพวน ทัศพงษ์ ซึ่งอยู่ในโครงการ ได้รับเงินสนับสนุนทำงานวิจัยและเงินเดือนจากสำนักงานกองทุนสนับสนุนการวิจัยเพื่อศึกษาในระดับปริญญาโทที่มหาวิทยาลัยเทคโนโลยีสุรนารี เชอทำงานทดลองในแปลงที่มหาวิทยาลัยอุบลราชธานี นางสาวนพมาศ นามแดง นักวิชาการเกษตรของคณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี ได้รับเงินสนับสนุนเพื่อทำงานทดลองในแปลงและงานวิเคราะห์ในห้องปฏิบัติการที่มหาวิทยาลัยอุบลราชธานี เพื่อการศึกษาปริญญาโทของเชอที่มหาวิทยาลัยเกษตรศาสตร์ นางสาวอีน่า กรูเบน และนางศิริวรรณ มาร์เทนส์ ได้รับการสนับสนุนทางการเงินสำหรับการศึกษาในแปลงและสารเคมีที่ใช้ในห้องปฏิบัติการที่มหาวิทยาลัยอุบลราชธานี

บทคัดย่อวิทยานิพนธ์เหล่านี้ได้เสนอไว้ในภาคผนวก

Namdaeng, N. 2002 Study on nitrogen, phosphorus and potassium fertilizer on growth, yield and quality of Ubon paspalum (*Paspalum atratum* cv. Ubon). Master of Science thesis, Department of Soil Science, Kasetsart University. 241 pp (Appendix 9).

Martens, S. 2001 Yield, feed value and ensilability of 4 tropical grasses in northeast Thailand. Diploma thesis. Department of Agroecology, University of Rostock, Rostock, Germany. 160 pp (Appendix 10).

Tatasapong, P. 2001 A study of energy and protein requirement of crossbred dairy heifers. Master of Science Thesis in Animal Production Technology, Suranaree University of Technology 156 pp. (Appendix 11).

Gruben, I.E. 2001 Management of forage legumes in Ubon paspalum (*Paspalum atratum*). (Strip establishment of Ubon paspalum and forage legumes). Diploma thesis. Department of Agroecology, University of Rostock, Rostock, Germany. 70 pp. (Appendix 13).

6.3 งานผลิตน้ำนมจากแปลงหญ้า

โครงการ ได้แสดงให้เห็นว่ามีความเป็นไปได้ที่จะประสบความสำเร็จในการให้โภนน์แทะเลื้ม ในแปลงหญ้าทั้งวันและคืนในประเทศไทย ในฤดูฝนตั้งแต่เดือนกรกฎาคมถึงตุลาคม โดยโภน์ให้น้ำนมเฉลี่ย 17.3 กิโลกรัม/ตัว/วัน ผลผลิตสูงสุดต่อวัน (16.9 กิโลกรัม) ได้จากแปลงหญ้าพาลัมอุบล และในช่วงฤดูฝน สามารถปล่อยสัตว์ในอัตราที่สูงขึ้น ได้ในแปลงหญ้าพาลัมอุบลเมื่อเปรียบเทียบกับหญ้าซิกแนลและจาร์ราดิจิท

6.4 งานผลิตหญ้าสลดสำหรับทำหญ้าหมัก

โครงการได้แสดงให้เห็นว่าหญ้าพาสพาลัมอุบลที่เกษตรกรปลูกเพื่อทำหญ้าหมักสามารถเป็นพืชเศรษฐกิจได้ โดยจะได้ผลตอบแทนรวมเฉลี่ย 3,200 บาท/ไร่ ซึ่งสูงกว่าที่ได้จากการปลูกข้าวอย่างไร ก็ตาม ในปัจจุบันยังไม่มีตลาดสำหรับทั้งหญ้าสลดและหญ้าหมักในจังหวัดอุบลราชธานี เนื่องจากยังไม่มีฟาร์มการค้าขนาดใหญ่ในจำนวนที่มากพอ นอกจากนี้ การตัดหญ้าสลดในช่วงฤดูฝนและช่วงต้นฤดูแล้ง ซึ่งตรงกับเวลาปลูกและเก็บเกี่ยวข้าว จึงเป็นเรื่องยากที่จะหาจ้างแรงงานมาช่วยตัดหญ้า

6.5 โครงการเกษตรผู้เลี้ยงโコンมในหมู่บ้าน

โครงการประสบความสำเร็จบางส่วนในการที่ร้อยละ 50 ของเกษตรกรที่คัดเลือกไว้สามารถปลูกสร้างแปลงหญ้าที่ดีได้ เกษตรกรจำนวนมากยังเห็นว่าเป็นเรื่องยากที่จะปลูก ใส่ปุ๋ย และจัดการแปลงหญ้า และพากษาอย่างพึงพาฟางข้าวเป็นแหล่งอาหารcarib ไปไซเดรทตลอดทั้งปี ปัญหาหลักก็คือ เกษตรกรมีที่ดินน้อยมากเมื่อเทียบกับจำนวนโコンมที่มีอยู่

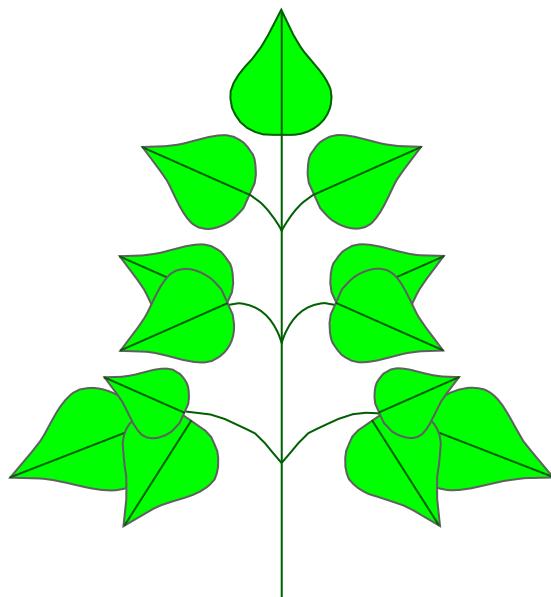
6.6 งานผลิตเมล็ดพันธุ์หญ้าพาสพาลัมอุบล

(1) งานวิจัยพื้นฐานของโครงการได้พิสูจน์ว่า หญ้าพาสพาลัมอุบลตอบสนองต่อวัน夜-สั้นใน การอุดกอด ซึ่งข้อมูลนี้มีประโยชน์ต่อการจัดการหญ้าเพื่อผลิตเมล็ดพันธุ์ ในปีแรกจะต้องปลูกหญ้าก่อนกลางเดือนพฤษภาคม และในปีที่สองจะต้องตัดหญ้าไม้ช้ากว่าต้นเดือนกรกฎาคมเพื่อที่จะผลิตเมล็ดได้

(2) ปริมาณการจำหน่ายเมล็ดพันธุ์หญ้าพาสพาลัมอุบลเพิ่มขึ้นจาก 1,944 กิโลกรัมในปี 2543 เป็น 2,530 กิโลกรัมในปี 2545 โครงการคาดหวังจะจำหน่ายเมล็ดพันธุ์ทั้งหมด 5,986 กิโลกรัม ที่มีอยู่ในปัจจุบันภายในปี 2546 เงินทุนหมุนเวียนสำหรับเมล็ดพันธุ์ประสบความสำเร็จมาก ทำให้งานผลิตเมล็ดพันธุ์สามารถอยู่ได้ด้วยตัวเอง โดยได้จ้างนักวิจัยหนึ่งคน และไม่ต้องร้องขอเงินเพิ่มเติมจากสำนักงานกองทุนสนับสนุนการวิจัย

(3) โปรแกรมการผลิตเมล็ดพันธุ์หญ้าพาสพาลัมอุบลประสบความสำเร็จเป็นอย่างมาก หญ้าพาสพาลัมอุบลเป็นพืชเศรษฐกิจที่มีค่าสำหรับเกษตรกรในหมู่บ้าน โดยสามารถสร้างรายได้มากกว่า 10,000 บาท/ไร่/ปี จากการจำหน่ายเมล็ดพันธุ์ และในบางกรณี จากการจำหน่ายหญ้าสลดและต้นกล้าด้วย เมล็ดพันธุ์หญ้าพาสพาลัมอุบลของโครงการมีชื่อเสียงทั่วประเทศในเรื่องคุณภาพสูง เนื่องจากโครงการจำหน่ายเฉพาะเมล็ดพันธุ์ที่มีน้ำหนักเมล็ดสูง มีความคงทน และมีความบริสุทธิ์สูง

6.7 งานปลูกสร้างถั่วแบบเป็นแบบร่วมกับหญ้าพาสพาลัมอุบล


การปลูกถั่วสีโภแบบเป็นแบบร่วมกับหญ้าพาสพาลัมอุบลสามารถประสบผลสำเร็จได้ในวันที่ไม่มีน้ำท่วมขัง ดังนั้น จึงเป็นการปรับปรุงโปรดีนหมายของแปลงหญ้า

6.8 งานจัดการหญ้าจาร์ราดิจิท

การปลูกหญ้าจาร์ราดิจิทสามารถประสนความสำเร็จได้โดยการใช้ไอลปลูกแบบแครห่าง และการตัดหญ้าทุก 40 วันร่วมกับการใส่ปุ๋ยในโตรเจนอัตรา 40 กิโลกรัม/เฮกเตอร์ทุก 60 วันจะทำให้ได้ผลผลิตที่ดี

6.9 งานประเมินชนิดหญ้า Brachiaria สำหรับเป็นอาหารสัตว์และผลิตเมล็ดพันธุ์

หญ้า *Brachiaria brizantha* จำนวนสองพันธุ์และหญ้าซิกแนลให้ผลผลิตวัตถุแห้งสูงกว่าหญ้ารูซึ่งอย่างมีนัยสำคัญ โดยเฉพาะอย่างยิ่งในช่วงฤดูแล้ง อย่างไรก็ตาม การผลิตเมล็ดพันธุ์ในหญ้ารูซึ่งดีกว่า และง่ายกว่าพันธุ์อื่นๆซึ่งอาจจะให้ผลผลิตเมล็ดพันธุ์ต่ำหรือให้ผลิตเมล็ดในช่วงเวลาที่ยาวนานมากในฤดูฝน หญ้าซิกแนลมีศักยภาพที่จะผลิตเมล็ดพันธุ์ได้ดีในประเทศไทย แต่เนื่องจากช่วงการออกดอกที่ยาวนานจากเดือนกรกฎาคมถึงกันยายนซึ่งเป็นช่วงที่มีฝนตกหนัก เกษตรกรจึงเห็นว่าการผลิตเมล็ดพันธุ์หญ้าชนิดนี้เป็นงานที่ยากมาก

Sustainable forage systems
for dairy farmers in
Northeast Thailand

Final Report
November 1 1999 to April 30 2003

Faculty of Agriculture
Ubon Ratchathani University

Abstract

The **Sustainable Forage Systems for Dairy Farmers in Northeast Thailand project** was conducted at the Faculty of Agriculture, Ubon Ratchathani University from November 1999 to April 30 2003.

Thirteen papers and one manual were written during the project and the project maintained a high scientific output, both nationally and internationally.

The project showed that it is possible to successfully graze dairy cows on pastures in Thailand, all day and all night. Over the dry season on irrigated pastures, cows produced on average, 12.2 kg milk/cow/day in the first dry season and 15.6 kg milk/cow/day in the second dry season with higher production from signal grass pastures. In the wet season, cows averaged 17.3 kg milk/cow/day from July to October with the highest production per rai (16.9 kg/day) from Ubon paspalum pastures. A higher stocking rate can be carried on Ubon paspalum pastures during the wet season compared to signal grass and Jarra digit grass.

The project demonstrated that Ubon paspalum grown by farmers for silage is an economic proposition and will return, on average, a gross income of 3200 baht per rai. This return is higher than that from rice. However, currently in Ubon Ratchathani there is no market for either fresh forage or silage as there are not enough large commercial farms.

The village farm project was partially successful in that only 50% of the selected farmers have good pastures. Many farmers still find it very difficult to grow, fertilise and manage pastures and they rely on rice straw to provide the bulk of roughage feed during the year. A major problem is that farmers have very little land for the number of cows they own.

Basic research by the project proved that Ubon paspalum has a long-short day flowering response that affects agronomic management of seed crops. Seed sales of Ubon paspalum increased from 1944 kg in 2000 to 2530 kg in 2002 and we expect to sell all of the 5986 kg currently in stock in 2003. The rotating seed fund has been very successful, enabling seed production to stand alone, hire one researcher and not to request more seed funds from TRF. Ubon paspalum is a valuable cash crop for village farmers, generating over 10,000 baht/rai/year from seed and in some cases forage and seedlings for sale. Ubon paspalum seed from the project has a reputation throughout Thailand for high quality as only seed of a high seed weight, high seed germination and high seed purity is sold.

On soils that are not waterlogged, stylo cultivars can be successfully planted in strips with Ubon paspalum, thereby improving the crude protein of the pasture sward.

Jarra digit can be successfully planted by stolons in wide rows and optimum forage production is obtained from cutting every 40 days and applying 40 kg/ha N every 60 days.

Two cultivars of *Brachiaria brizantha* and signal grass produced significantly more dry matter than ruzi grass, particularly during the dry season. However, seed production of ruzi grass is better and easier than the other cultivars, which either produced low seed yields or produced seed over a long period of time in the wet season. Potentially signal grass will produce good seed yields in Thailand, but because of the extended period of flowering from July to September, during the period of heavy rainfall, farmers find seed production very difficult.

Final Report to the Thailand Research Fund

1. Project

Sustainable forage systems for dairy farmers in Northeast Thailand

2. Project Leader Dr. Michael Hare

Research Associates Mr. Kungwan Thummasaeng

Dr. Worapong Suriyapat

Dr. Kitti Wongpichet

Mr. Surachai Suwanlee

Mr. Prapon Booncharern

Mr. Wanchai Intisaeng

Mrs. Chaisang Phaikaew

Research Officers Mr. Kittipat Saipraset

Miss Puan Tatsapong

Miss Areerat Lunpha

Miss Sopita Khamhan

3. Period of report

November 1 1999 to April 30 2003

4. Project applied research results

4.1 Milk production grazing trials

Methods

Three milk production grazing trials were conducted on the Faculty of Agriculture, Ubon Ratchathani University farm from 2001 to 2003. Each trial consisted of 3 grass species grazing treatments (Ubon paspalum, signal grass and Jarra digit) and 3-6 cows per treatment. The pastures were fenced into 1 rai paddocks and the cows rotationally grazed around the paddocks every 3-7 days depending on pasture growth. The cows grazed the pastures day and night.

In all trials the cows were fed concentrate at a rate of 1 kg per 2.5 kg milk produced. Milk yields per cow were measured twice a day and samples taken for quality testing.

Before paddocks were grazed, 8 x 0.25 m² quadrats were cut from each paddock, weighed fresh and divided into leaves and stems for dry weight and nutrient analysis. Fertiliser as NPK (15:15:15) was applied at a rate of 25 kg/rai.

For milk data statistical analysis the cows were regarded as replications and for pasture data analysis there were 6-7 replications.

Trial 1

The trial ran for 16 weeks from September 25 2001 to January 14 2002. Cows commenced grazing the pasture treatments in August 2001. Pastures were irrigated weekly from November to January. Each pasture treatment had 5 milking cows rotated around 6 paddocks (Table 1). The grazing interval was 7 days for Ubon paspalum and signal and 4-5 days for Jarra digit.

Trial 2

The trial ran for 14 weeks and commenced on July 21 2002 and finished on October 27 2002. The trial was divided into 2 periods; an early lactation period of 6 weeks (July 28 to September 1) and a mid lactation period of 8 weeks (September 8 to October 27). Before each period there was a one week adaptation period. Data were analysed for 5 weeks in period 1 and 7 weeks in period 2. Each treatment had 3 milking

cows rotated around fields. At the end of period 1 the cows were re-randomised for period 2. Pasture areas varied according to growth of each species (Table 1).

Table 1 Area of each pasture in grazing trials

Pasture	Trial 1	Trial 2		Trial 3
		Period 1	Period 2	
Ubon paspalum	6 rai	3 rai	4 rai	10 rai
Signal grass	6 rai	4 rai	5 rai	10 rai
Jarra digit grass	6 rai	4 rai	6 rai	11 rai

Trial 3

The trial ran for 16 weeks from November 11 2002 to March 3 2003. The 3 grazing treatments varied in area (Table 1). There were 6 cows per treatment.

The trial was divided into two 8 week periods. Data were analysed for 7 weeks in each period, with the first week of each period an adjustment period. At the end of period 1 the cows were re-randomised for period 2.

Pastures were irrigated weekly.

Results

Trial 1

There were no significant differences in milk production from the 3 grass species (Table 2). However, milk yields were between 11 and 16% higher from cows grazing signal grass compared to cows grazing Ubon paspalum and Jarra digit. Milk fat was 5% higher and milk protein levels 5% lower on Ubon paspalum treatments compared to the other two pasture treatments. Milk lactose levels were similar but milk SNF levels were 2% lower on the Ubon paspalum treatments.

Table 2 Effect of grazing 3 pasture grasses on milk yield and milk quality (Trial 1).

Treatment	Milk yield (kg/cow/day)	Milk fat (%)	Milk protein (%)	Milk lactose (%)	Milk SNF (%)
Ubon paspalum	11.96 a	4.33 a	2.98 a	4.85 a	8.58 a
Signal	13.34 a	4.08 a	3.12 a	4.95 a	8.81 a
Jarra digit	11.47 a	4.16 a	3.21 a	4.84 a	8.80 a

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

Table 3 Dry matter yields, stem and leaf levels and crude protein yields in 3 pasture species prior to being grazed by dairy cows (Trial 1).

Treatment	Total dry matter yield (kg/ha)	% stem fresh weight	% leaf fresh weight	CP % stem	CP % leaf	CP yield (kg/ha)
Ubon paspalum	4026 a	24 b	76 a	6.6 b	10.5 c	391 ab
Signal	3496 a	42 a	58 b	10.3 a	14.1 b	438 a
Jarra digit	2205 b	40 a	60 b	10.7 a	16.3 a	302 b

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

The higher milk yields produced by the cows grazing signal grass were probably due to the higher pasture crude protein yields on these pastures compared to Ubon paspalum and Jarra digit pastures (Table 3). Even though signal grass dry matter yields were lower than yields from Ubon paspalum, signal grass had 50% and 38% higher crude protein levels in stems and leaves, respectively, compared to Ubon paspalum. However,

the high crude protein levels in Jarra digit could not compensate for low dry matter production resulting in lower crude protein yields/ha compared to the other two pasture treatments and subsequently lower milk yields. The high leaf percentage and high dry matter yields of Ubon paspalum enabled cows to overcome the low crude protein levels compared to signal and Jarra digit and produce reasonable milk yields.

Trial 2

There were no differences in daily milk yields per cow between the 3 grazing treatments (Table 4). In period 1, both Ubon paspalum and signal grass produced higher fat, lactose, protein and SNF than Jarra digit. In period 2, milk fat was similar between treatments but Ubon paspalum produced lower milk protein, lactose and SNF than the other 2 treatments.

Because of the higher stocking rate on Ubon paspalum, milk production per rai was 35-55% higher than from signal grass and Jarra digit pastures (Table 4). This was because of the higher dry matter production and higher leaf content in the Ubon paspalum pastures (Table 5), which allowed a higher stocking rate to be used (Table 1). Ubon paspalum dry matter yields were 19-30% higher than signal grass yields and 76-80% higher than Jarra digit yields. Even though crude protein levels were higher in the signal grass and Jarra digit pastures, this higher quality could not compensate for the lower dry matter yields and leaf content.

Table 4 Effect of grazing 3 pasture grasses on milk yield and milk quality (Trial 2).

Period 1						
Treatment	Milk yield (kg/cow/day)	Milk yield (kg/rai/day)	Milk fat (%)	Milk protein (%)	Milk lactose (%)	Milk SNF (%)
Ubon paspalum	18.77 a	131	4.38 a	2.84 a	4.99 a	8.56 a
Signal	18.77 a	98	4.17 ab	2.85 a	4.93 a	8.51 a
Jarra digit	18.81 a	99	4.05 b	2.73 b	4.77 b	8.24 b
Period 2						
Ubon paspalum	15.72 a	106	4.12 a	2.81 c	4.64 c	8.21 b
Signal	15.57 a	77	4.35 a	2.93 b	4.87 a	8.54 a
Jarra digit	15.94 a	68	4.10 a	2.99 a	4.73 b	8.47 a

Table 5 Dry matter yields, stem and leaf levels and crude protein yields in 3 pasture species prior to being grazed by dairy cows (Wet season 2002)

Period 1						
Treatment	Total dry matter yield (kg/ha)	% stem fresh weight	% leaf fresh weight	CP % stem	CP % leaf	CP yield (kg/ha)
Ubon paspalum	3772 a	30 b	70 a	6.7 b	9.2 b	318.4 a
Signal	3151 ab	50 a	50 b	10.1 a	11.7 ab	340.6 a
Jarra digit	2133 b	54 a	46 b	8.5 ab	14.9 a	226.8 b
Period 2						
Ubon paspalum	2769 a	32 b	68 a	5.9 b	9.0 c	240.2 a
Signal	2131 b	45 a	55 b	8.9 a	12.3 b	240.6 a
Jarra digit	1525 b	48 a	52 b	9.6 a	14.7 a	198.0 b

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

Trial 3

In period 1, cows grazing signal grass produced 12 and 8% respectively, more milk/cow/day than cows grazing Ubon paspalum and Jarra digit (Table 6). In period 2, cows grazing Ubon paspalum produced 10 and 11% respectively, more milk/cow/day than cows grazing signal grass and Jarra digit. Cows grazing signal grass in both periods produced milk with higher protein and lower lactose than cows grazing Ubon paspalum and Jarra digit (Table 6). Grazing different pastures produced no differences in milk SNF but in period 1, milk fat levels were lower from cows grazing Jarra digit.

Milk production per rai was 11% higher on signal grass pastures compared to the other pastures in period 1 but in period 2, milk production on Ubon paspalum pastures was 9 and 22% higher respectively, compared to milk production from signal and Jarra digit pastures.

Table 6 Effect of grazing 3 pasture grasses on milk yield and milk quality (Trial 3).

Period 1 (18 November 2002-6 January 2003)						
Treatment	Milk yield (kg/cow/day)	Milk yield (kg/rai/week)	Milk fat (%)	Milk protein (%)	Milk lactose (%)	Milk SNF (%)
Ubon paspalum	15.75 c	66	4.41 a	2.84 b	4.92 a	8.50 a
Signal	17.60 a	74	4.27 ab	2.99 a	4.74 b	8.52 a
Jarra digit	16.34 b	66	4.20 b	2.82 b	4.89 a	8.45 a
Period 2 (13 January 2003-3 March 2003)						
Ubon paspalum	15.80 a	66	4.25 a	2.97 c	4.89 a	8.57 a
Signal	14.37 b	60	4.24 a	3.06 a	4.75 b	8.55 a
Jarra digit	14.17 b	54	4.17 a	3.01 b	4.87 a	8.62 a

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

Table 7 Dry matter yields, proportions of stem and leaf and crude protein yields in 3 pasture species prior to being grazed by dairy cows (Trial 3).

Period 1 (18 November 2002-6 January 2003)						
Treatment	Total dry matter yield (kg/ha)	% stem fresh weight	% leaf fresh weight	CP % stem	CP % leaf	CP yield (kg/ha)
Ubon paspalum	3628 a	18 c	82 a	5.9 c	10.4 c	345 a
Signal	2970 a	42 a	58 c	9.4 b	15.0 b	375 a
Jarra digit	1608 b	34 b	66 b	12.9 a	18.4 a	268 b
Period 2 (13 January 2003-3 March 2003)						
Ubon paspalum	2268 a	17 c	83 a	3.9 c	8.2 c	175 b
Signal	2114 a	40 a	60 c	7.5 b	12.7 b	224 a
Jarra digit	1170 b	31 b	69 b	10.3 a	16.4 a	170 b

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

In both periods Jarra digit produced significantly lower pasture dry matter yields than the other 2 species. Crude protein levels in Jarra digit were double the levels in Ubon paspalum (Table 7) and levels in signal grass were intermediate between the 2

species. Ubon paspalum produced significantly higher leaf:stem ratios than the other 2 species in both periods.

High milk production yields from cows grazing signal grass in period 1 were probably due to the higher crude protein yields in the pastures. However, in period 2, despite producing higher crude protein yields, milk production from signal grass was not as high as Ubon paspalum. Ubon paspalum pastures are very leafy (>80%) and even though crude protein levels are low, the high proportion of leaf results in high digestibility. Ubon paspalum compensates for low crude protein levels by producing high yields of digestible leaf. This is in contrast to Jarra digit, which even though produced very high crude protein levels in both stems and leaves, produced significantly lower dry matter yields. Cows grazing Jarra digit had to be rotated every 2-3 days.

Conclusion

The project has demonstrated that it is possible to successfully graze dairy cows on pastures day and night in Thailand. Signal grass and Ubon paspalum are both suitable grass species for dairy production. Ubon paspalum does have low quality but makes up for this by producing high dry matter yields and a high leaf:stem ratio. Signal grass maintains good quality and produces high crude protein yields all year round. Even though Jarra digit is a very high quality grass, the low dry matter production lowered milk production per rai.

Plate 1 Dairy cows grazing Jarra digit (foreground) and signal grass (background) at Ubon Ratchathani University.

4.2 Regional grass and legume evaluation trials

Seven legumes sown in pure swards and 7 grasses sown with legumes and fertilised with N were evaluated in a series of trials at 7 low lowing sites in northeast Thailand over 2-3 years from 1997-2000. The sites were at Ubon Ratchathani University, Ubon Ratchathani Agricultural Technology College Farm, Yasothon Animal Nutrition Station, Yasothon Agricultural Technology College Farm, Mukdahan Animal Nutrition Station, Sisaket Agricultural Technology Farm and a village in Det Udom district of Ubon Ratchathani Province.

Full details of the trials are presented in Appendix 1 in the published paper:

Hare, M.D., Kaewkunya, C., Tatsapong, P. and Saengkham, M. 2003
Evaluation of forage legumes and grasses on seasonally waterlogged sites in north-east Thailand. *Tropical Grasslands*, 37: 20-32.

Conclusion

The highest legume yield in pure swards was in the year of sowing from *Aeschynomene americana* cv. Lee, which produced over 14 t/ha DM at one site. All legumes failed to persist beyond the second wet season under cutting. *Stylosanthes guianensis* cv. Tha Phra (CIAT 184) showed some promise as a legume at some sites that were not deeply waterlogged but only in a few places was it able to persist into the second dry season. No legumes performed well enough to be recommended for such sites under the existing management system.

The best grasses on deeply waterlogged sites were *Paspalum atratum* cv. Ubon, *P. plicatum* (common Thailand type) and *Setaria sphacelata* var. *splendida* cv. Splenda. These 3 grasses performed well at all sites and were the most consistent in terms of persistence and yield. On less waterlogged sites, *Panicum maximum* cv. Purple was very productive, producing in excess of 30 t/ha DM in the second 6-month wet season at 2 sites. *Brachiaria ruziensis* (common Thailand type), *B. decumbens* cv. Basilisk, and *Digitaria milanjiana* cv. Jarra grew well only on sites that did not become inundated with water. No legumes were able to persist in the nitrogen-fertilised (100-120 kg/ha N) grass swards beyond the second wet season.

Plate 2 TRF team
at Mukdahan
Animal Nutrition
Station regional
trial.

4.3 Effect of cutting on yield and quality of Ubon paspalum

Two trials were conducted from 1998-1999 at Ubon Ratchathani University to determine the effect of varying cutting height and interval on growth and forage quality of Ubon paspalum grown on low fertility soils.

Full details of the trials are presented in Appendix 2 in the published paper:

Hare, M.D., Saengkham, M., Kaewkunya, C., Tudsri, S., Suriyajantratong, W., Thummasaeng, K. and Wongpichet, K. 2001 Effect of cutting on yield and quality of *Paspalum atratum* in Thailand. *Tropical Grasslands*, 35: 144-150.

Conclusion

In Trial 1, an increase in cutting height (0 to 20 cm above ground level) increased total DM yield at 20-d cutting intervals, had no effect at 30 days and decreased yields at 60-d cutting intervals. Cutting interval significantly increased DM yields in Trial 1 with the major response between 30- and 60-d intervals. Increasing the interval between harvests reduced concentrations of CP, K and P but increased the concentrations of NDF and ADF. In Trial 1 increases in cutting interval and cutting height increased stubble and root DM per plant.

In Trial 2, Ubon paspalum DM yields generally were significantly different only between 20- and 60-d cutting intervals. Cutting every 20 days over a 240-d period produced 74% (21.6 t/ha) of the total DM yield from cutting every 60 days (28.9 t/ha) but crude protein concentration was nearly twice as high (10.0 vs 5.3%).

Plate 3 Cutting Ubon paspalum in a village in Ubon Ratchathani.

4.4 Ubon paspalum seed production trials

Two field trials were conducted from 1998-1999 at Ubon Ratchathani University to determine which planting methods produce the best seed yields and what is the most suitable time of the year to establish seed crops of Ubon paspalum. In addition, data were collected from the village farmer seed project.

Full details of the trials are presented in Appendix 3 in the published paper:

Hare, M. D., Kaewkunya, C., Tatsapong, P., Wongpichet, K., Thummasaeng, K. and Suriyajantratong, W. 2001 Method and time of establishing *Paspalum atratum* seed crops in Thailand. *Tropical Grasslands*, 35 19-25

Conclusion

Seed crops of *Paspalum atratum* cv. Ubon established by sowing seed produced no seed at all in the first year of establishment in Thailand. By comparison, seed crops planted with tillers at the beginning of the wet season in May, produced 132 kg/ha seed 5 months after planting in one trial and 330 kg/ha seed in a second trial. In the second trial, delay in planting tillers until June and July severely reduced seed yields from a high of 330 kg/ha when planted in early May to a low of 25 kg/ha when planted in mid-July. Inflorescences/m² and seeds/inflorescence had the largest effect on seed yield.

Twenty village farmers in a small seed production project successfully harvested 1834 and 2207 kg of Ubon paspalum seed in 1998 and 1999, respectively. The method of hand knocking mature seed from seed heads into bags every day enabled farmers to harvest mean seed yields of 632 and 651 kg/ha in 1998 and 1999, respectively. This harvesting method, combined with slow drying in the shade and thorough cleaning, produced seed of a very high quality with a thousand-seed weight of 3.1 g, a seed purity of more than 99% and a germination of 81% in 1998 harvested seed and 91% in 1999 harvested seed after 5 months post-harvest storage.

Plate 4 Farmers collecting freshly harvested Ubon paspalum seed at Bark Kud Waay village in Ubon Ratchathani.

4.5 Juvenility and day length requirements for flowering of Ubon paspalum

A study was conducted at Ubon Ratchathani University to examine the flowering behaviour of Ubon paspalum under controlled growth room conditions to determine whether or not a juvenile phase exists and whether or not there is a long-short day requirement for flowering.

Full details of the study are presented in Appendix 4 in the published paper:

Hare, M.D., Wongpichet, K., Saengkham, M., Thummasaeng, K. and Suriyajantratong, W. 2001 Juvenility and long-short day requirement in relation to flowering of *Paspalum atratum* in Thailand. *Tropical Grasslands*, 35: 139-143.

Conclusion

Paspalum atratum cv. Ubon was confirmed as a long-short day plant exhibiting a quantitative response to long days followed by a qualitative response to short days. Plants 20, 40 and 60 days of age exposed to a full period of 60 long days in a plant growth chamber (14 h light) fully flowered after being placed outside in natural shortening day-lengths. Plants that were planted as sprouted seeds in the growth chamber at the beginning of the 60 long day period took 2-3 days for first leaves to appear and incomplete flowering (88%) resulted when they were exposed to natural shortening day-lengths. Plants that received 0, 20 and 40 long days did not flower after being exposed to natural shortening day-lengths. Plants that were not transferred outdoors but remained growing under long-day conditions in the growth chamber also did not flower.

The study also confirmed that no juvenile stage exists in Ubon paspalum because all plants after being exposed to 60 long days in a growth chamber at 20, 40 and 60 days of age flowered following exposure to natural shortening day-lengths.

Plate 5 Ubon paspalum flowering inflorescence with anthers

4.6 Waterlogging tolerance of Ubon paspalum and other tropical grasses

The waterlogging tolerance of 6 tropical grass species were studied under controlled conditions in plastic buckets in a greenhouse at Ubon Ratchathani University, Thailand in 1997 and 1998. In Trial 1 the species were *Paspalum atratum* cv. Ubon, *Brachiaria ruziziensis* (common Thailand type), *Paspalum plicatulum* (common Thailand type), *Digitaria milanjiana* cv. Jarra, *Brachiaria decumbens* cv. Basilisk and *Panicum maximum* cv. Purple. Five plant waterlogging treatments were imposed (Non-waterlogged control plants after 0, 10 and 20 days and waterlogged plants for 10 and 20 days). In Trial 2 effects of waterlogging were examined in detail on Ubon paspalum with 4 waterlogging duration treatments (0, 10, 20 and 30 days waterlogging) and 3 plant ages (30, 60 and 90 days of age).

Full details of the study are presented in Appendix 5 & 6 in 2 papers:


Saengkham, M., Hare, M., Tudsri, S. and Wongpichet, K. 2003 Effects of waterlogging on yield and quality of Ubon paspalum. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 84-91.

Hare, M.D., Saengham, M., Tatsapong, P., Wongpichet, K. and Tudsri, S. Waterlogging tolerance of some tropical pasture grasses. (submitted November 2002 to *Tropical Grasslands*).

Conclusion

In Trial 1 the species most tolerant of waterlogging were plicatulum followed by Ubon paspalum and Jarra digit. Purple guinea showed medium tolerance and ruzi and signal poor tolerance with 50% plant mortality after 20 days waterlogging. Ten days waterlogging reduced plant dry weights of all species compared to non-waterlogged control plants. After 20 days waterlogging there were no significant differences in plant dry weights between waterlogged and control plants of plicatulum, Ubon paspalum and Jarra digit.

In Trial 2 duration of waterlogging significantly reduced plant and tiller dry weights of Ubon paspalum plants, 30 and 90 days of age at the commencement of waterlogging, but had no significant effect on 60 day-old plants. In older plants (60 and 90 days of age) following waterlogging, leaf tips shriveled and turned greenish-red, lower leaves on the plants died and some new leaves developed. Nitrogen levels in Ubon paspalum plants were not significantly affected by waterlogging and phosphorous levels increased in all plants the longer the duration of waterlogging.

Plate 6 Waterlogged Ubon paspalum plants growing well at Ubon Ratchathani University.

4.7 Effect of cutting interval and time of nitrogen application on production and quality of Jarra digit grass.

Two trials were conducted in 2001 and 2002 at Ubon Ratchathani University to determine the effect of varying cutting intervals and rates and time of nitrogen application on growth and forage quality of Jarra digit pastures in order to provide recommendations on cutting and nitrogen management to farmers.

Full details of the study are presented in Appendix 7 in the following paper:

Hare, M.D., Tatsapong, P., Lunpha, A. and Wongpichet, K. Effect of plant spacing, cutting and nitrogen on production of *Digitaria milanjiana* cv. Jarra in north-east Thailand. (submitted April 2003 to *Tropical Grasslands*).

Conclusion

In Trial 1, increasing the cutting interval and increasing the nitrogen rate significantly ($P=0.05$) increased both total DM and stem DM yields. The effect of cutting interval on leaf DM was slight but leaf DM yields significantly increased when nitrogen was applied. Cutting every 20 days over a 240-d period produced 70% (13.2 t/ha) of the total DM yield obtained by cutting every 60 days (18.8 t/ha) but crude protein concentrations were 30-50% higher and fibre concentrations (ADF and NDF) 7-10% lower. 20 kg/ha N applied every 60 days increased Jarra digit total DM yields by 36% above yields in control plots. Applying higher nitrogen rates every 60 days only increased total DM yields by 13% (40 kg/ha N vs 20 kg/ha N) and 7% (80 kg/ha N vs. 40 kg/ha N). The yield response (kg DM/kg N) from applying nitrogen as urea ranged from 23 (320 kg/ha N) up to 52 (80 kg/ha N).

In Trial 2, applying 20 kg/ha N every 30 days, compared to every 60 days, increased dry matter yields of leaves and stems by approximately 16%. Applying 40 kg/ha N every 30 days, compared to every 60 days, increased leaf DM but not stem and total DM yields. Increases in cutting interval (20 vs. 60 days) and time of nitrogen application (30 vs. 60 days) reduced leaf and stem crude protein concentrations by up to 40% and increases in nitrogen rate (20 vs. 40 kg/ha) increased leaf and stem crude protein concentrations by 15%.

Plate 7 Cutting
Jarra digit at
Mukdahan Animal
Nutrition Station.

4.8 Effect of plant spacing on establishment of Jarra digit grass

One trial was conducted from 2000 to 2001 at Ubon Ratchathani University to examine the effect of planting stolons at varying row spacings on sward establishment in order to recommend an optimum stolon planting density for Jarra digit pasture establishment.

Full details of the study are presented in Appendix 7 in the following paper:

Hare, M.D., Tatsapong, P., Lunpha, A. and Wongpichet, K. Effect of plant spacing, cutting and nitrogen on production of *Digitaria milanjiana* cv. Jarra in north-east Thailand. (submitted April 2003 to *Tropical Grasslands*).

Conclusion

At the first cut four months after planting, Jarra digit swards planted in narrow rows (0.5 m) produced over twice the amount of dry matter, were twice as dense and had fewer weeds than swards planted in wide rows (2.0 m) (Table 8). Immediate row spacings (1-1.5 m inter-rows) were not significantly lower in DM but had a higher proportion of weeds than swards planted in 0.5 m inter-rows. By the time of the second cut 6 months after planting, there were no significant differences in Jarra digit dry matter production between swards planted in varying row spacings.

Table 8 Effect of row spacing on Jarra digit dry matter production and botanical composition.

Row spacing	1 st cut 24/10/00	2 nd cut 25/12/00	3 rd cut 25/4/01	4 th cut 26/6/01	5 th cut 27/7/01	6 th cut 5/9/01	7 th cut 22/10/01
Jarra digit DM (kg/ha)							
0.5 m	2536 a ¹	2313 a	753 a	3795 a	2808 a	3918 a	3406 a
1.0 m	2150 a	1669 a	602 a	2858 a	2021 a	3077 a	3199 a
1.5 m	1782 ab	1811 a	572 a	3847 a	3169 a	3647 a	3046 a
2.0 m	1071 b	1553 a	555 a	2506 a	2459 a	4047 a	3254 a
Jarra digit %							
0.5 m	81 a	87 a	53 a	98 a	91 a	96 a	98 a
1.0 m	51 b	66 b	41 a	86 ab	76 a	91 a	95 a
1.5 m	66 ab	79 ab	40 a	95 a	81 a	95 a	95 a
2.0 m	39 b	66 b	44 a	79 b	75 a	93 a	98 a
Weeds %							
0.5 m	19 b	13 b	47 a	2 b	9 a	4 a	2 a
1.0 m	49 a	34 a	59 a	14 ab	34 a	9 a	5 a
1.5 m	34 ab	21 ab	60 a	5 ab	19 a	5 a	5 a
2.0 m	61 a	34 a	56 a	21 a	35 a	7 a	2 a

¹ In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

4.9 Strip establishment of Ubon paspalum and forage legumes

Two field trials on a low fertility upland soil at Ubon Ratchathani University were conducted to find legumes that when planted in alternate 50 cm rows in Ubon paspalum swards would persist and improve the quality of the pasture.

Full details of the study are presented in Appendix 8 in the following paper:

Hare, M.D., Gruben, I.E., Tatsapong, P., Lunpha, A., Saengkham, M. and Wongpichet, K. Planting *Paspalum atratum* cv. Ubon and forage legumes in alternate rows to establish pasture swards in north-east Thailand. (submitted February 2003 to *Tropical Grasslands*).

Conclusion

In Trial 1, annual legumes *Lablab purpureus* cv. Rongai, *Vigna unguiculata* and *Canavalia ensiformis* were dominant at the first cut, 60 days after sowing, but these legumes failed to regrow after the second cut 45 days later. Other legumes *Aeschynomene americana* cv. Lee, *Macroptilium gracile* cv. Maldonado, *Stylosanthes guianensis* cv. Tha Phra (CIAT 184), *Centrosema pascuorum* cv. Cavalcade, *Calopogonium mucunoides* and *Pueraria phaseoloides* were slower to establish but produced consistent yields when cut 4 times during the wet season. The highest cumulative wet season dry matter yields in Trial 1 were produced by the grass only swards, 12.2 t/ha DM, which was 35% higher than the average yields produced by the mixed grass/legume swards. The low average crude protein content of Ubon paspalum (4.5%) lowered the total crude protein yields of the grass only swards by up to 35% compared to the best legume/grass sward of *Centrosema pascuorum* that produced 808 kg/ha crude protein from 4 cuts.

In Trial 2 in the second year, the inter-rows between the existing rows of Ubon paspalum were cultivated at the beginning of the wet season and legumes oversown along the cultivated inter-rows. The best performing legumes in the first wet season in Trial 2 were *S. guianensis* var. *vulgaris* x var. *pauciflora* (ATF 3308, Ubon stylo), *Macroptilium gracile* cv. Maldonado, *S. guianensis* cv. Tha Phra (CIAT 184), *S. hamata* cv. Verano, and *C. mucunoides*. However, total wet season crude protein yields between the best legume mixed grass swards and grass only swards were not significantly different.

In the second wet season in Trial 2, the legumes were not resown in the pasture swards but were allowed to reestablish from fallen seed produced in the preceding dry season. All 3 stylo species, *S. guianensis* var. *vulgaris* x var. *pauciflora*, *S. guianensis* cv. Tha Phra and *S. hamata* cv. Verano, produced significant amounts of dry matter (2.0-2.3 t/ha) and these treatments produced 89% more total wet season crude protein than swards with only Ubon paspalum. Tha Phra stylo mixed grass swards twice the amount of crude protein than grass only swards. *S. hamata* cv. Verano aggressively invaded the inter-rows in the other mixed grass/legume swards where the twining legumes were either very sparse or had disappeared, thereby increasing significantly the crude protein yields of these swards compared to grass only swards.

Management strategies to maintain a strong legume composition in alternate rows in Ubon paspalum swards are discussed and include using high legume seeding rates, selectively cutting only the grass in the early part of the wet season and reducing the amount of fertiliser used. Stylo species were identified as suitable legume companion species to establish in Ubon paspalum pastures on low fertility upland soils in north-east Thailand.

4.10 *Brachiaria* species in northeast Thailand-Dry matter production and forage quality

A field trial at Ubon Ratchathani University compared the yield and quality of the following 5 *Brachiaria* species; *Brachiaria ruziziensis* (ruzi grass), *B. decumbens* (common signal grass variety Basilisk), *B. decumbens* (CIAT 26297), *B. brizantha* (CIAT 6780) and *B. brizantha* (CIAT 6367). The trial was planted in May 2000 and after a general ground level cut on October 25 2000 dry matter sampling cuts (8 x 0.25 m²) were taken from the plots for 3 dry seasons (November-April 2000-2001, 2001-2002, 2002-2003) and 2 wet seasons (May-October 2001, 2002).

Results

Our results show that year-round production of ruzi is much lower than signal grass, particularly in the dry season (Table 9). In the 3 dry seasons ruzi dry matter production was 33, 39 and 22% lower than signal grass. Ruzi grows better in the wet season when dry matter production was only 6% lower than signal grass. In addition, crude protein of ruzi grass was not significantly higher than signal grass and was on occasion lower than *B. decumbens* 26297. This trial demonstrates that there are much better species than ruzi grass for farmers to grow in northeast Thailand.

Table 9 Dry matter production of 5 *Brachiaria* species at Ubon Ratchathani University.

Treatment	Dry matter (kg/ha)				
	Dry 2000-2001	Wet 2001	Dry 2001-2002	Wet 2002	Dry 2002-2003
Ruzi grass	5448 b	13883 bc	2747 b	9295 ab	3346 b
Basilisk signal grass	8126 a	14725 abc	4467 a	9844 a	4277 a
<i>B. decumbens</i> 26297	6580 b	13336 c	2623 b	7776 b	3134 b
<i>B. brizantha</i> 6780	8968 a	15205 ab	4407 a	9918 a	3911 ab
<i>B. brizantha</i> 6367	8541 a	16011 a	3807 ab	9870 a	4162 a

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

Table 10 Crude protein levels of 5 *Brachiaria* species at Ubon Ratchathani University

Treatment	Crude protein (%)									
	Dry 2000-2001		Wet 2001		Dry 2001-2002		Wet 2002		Dry 2002-2003	
	L	S	L	S	L	S	L	S	L	S
Ruzi grass	10.3ab	5.9a	9.4ab	5.9a	13.4b	8.6b	7.4b	5.5ab	12.4a	6.8bc
Basilisk signal grass	9.9bc	5.5ab	8.9ab	5.8a	12.9b	8.4b	7.4b	5.8a	11.5ab	7.7b
<i>B. decumbens</i> 26297	10.9a	5.1bc	9.9a	6.2a	15.2a	9.7a	8.4a	5.6ab	13.1a	9.0a
<i>B. brizantha</i> 6780	9.2c	4.6cd	8.3b	5.5a	10.4c	6.3c	6.6b	5.9a	9.9b	6.2c
<i>B. brizantha</i> 6367	9.2c	4.4d	8.6b	5.2a	13.2b	8.7b	7.1b	4.6b	12.4a	7.7b

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

4.11 *Brachiaria* species in northeast Thailand-Reproductive performance

A field trial at Ubon Ratchathani University compared the reproductive performance of the following 5 *Brachiaria* species *Brachiaria ruziziensis* (ruzi grass), *B.*

decumbens (common signal grass variety Basilisk), *B. decumbens* (CIAT 26297), *B. brizantha* (CIAT 6780) and *B. brizantha* (CIAT 6367). The trial was planted in May 2000 and reproductive components (flowering stems, spikelets and racemes) measured in 2001 and 2002.

Results

Peak flowering of all cultivars was 1-2 months later in 2002 than in 2001 (Table 11). This was because all the plots were cut in June in 2002 whereas in 2001 the plots were cut in April. In addition, in 2002 the weather was very cloudy and overcast which also contributed to late flowering. Ruzi grass was the latest flowering cultivar in the late wet season when the weather is dry, which is why it is the easiest cultivar to harvest in northeast Thailand. The other cultivars flowered earlier during the wet season when heavy rain makes seed harvesting difficult.

Table 11 Date of peak flowering of 5 *Brachiaria* species at Ubon Ratchathani University.

Treatment	2001	2002
Ruzi grass	October 10	November 11
Basilisk signal grass	July 30	September 10
<i>B. decumbens</i> CIAT 26297	August 27	October 4
<i>B. brizantha</i> CIAT 6780	September 17	October 12
<i>B. brizantha</i> CIAT 6367	August 8	September 24

In 2001, Basilisk signal produced the greatest number of inflorescences followed by CIAT 6367 and ruzi (Table 12). However, in 2002, ruzi produced significantly more inflorescences than Basilisk signal and CIAT 6367. Cutting in June in 2002 may have caused the reduction of inflorescences in early flowering Basilisk signal, pushing its peak flowering from July to September (Table 11). In 2001, Basilisk signal produced two flowering flushes of 331 inflorescences/m² in July and 123 inflorescences/m² in October. In 2002, Basilisk signal only produced one flowering flush in September.

Table 12 Flowering components of 5 *Brachiaria* species

Treatment	Inflorescences/m ²		Racemes/inflorescence		Spikelets/raceme	
	2001	2002	2001	2002	2001	2002
Ruzi grass	224 b	266 a	4.0 a	4.1 a	34.2 c	30.8 c
Basilisk signal grass	331 a	151 b	2.9 cd	2.3 c	40.0 b	43.3 a
<i>B. decumbens</i> CIAT 26297	37 c	23 d	2.7 d	1.5 d	28.0 d	24.8 d
<i>B. brizantha</i> CIAT 6780	34 c	11 d	3.4 b	3.1 b	48.8 a	39.6 b
<i>B. brizantha</i> CIAT 6367	257 b	106 c	3.2 bc	2.3 c	34.3 c	32.0 c

In a column, means followed by a common letter are not significantly different at the 5% level by Duncan's Multiple Range Test.

Conclusion

The results of this study show why ruzi remains the most popular *Brachiaria* cultivar in Thailand. It produces a large number of inflorescences, especially if cut in the middle of the wet season, and its peak flowering period is in late October-early

November when the weather is dry. This makes harvesting easy. Signal grass does have the potential to produce seed in Thailand but because it flowers and sets seed at the time of the heaviest rainfall (July-September) farmers find it very difficult to harvest.

Even though CIAT 6780 produces high amounts of dry matter (Table 9), the low number of inflorescences produced (Table 12) and low seed yields makes it unlikely to be used by farmers in Thailand, unless special projects promote vegetative plantings similar to projects with napier grass and pangola grass.

4.12 Effect of nitrogen, potassium and phosphorus on quantity and quality of Ubon paspalum

This study was conducted by Miss Nopamart Namdaeng from the Faculty of Agriculture, Ubon Ratchathani University for her Masters thesis at Kasetsart University. The research was conducted in 2000 at Ubon Ratchathani University and she gained her Masters degree in 2002.

A summary of the study is presented in Appendix 9:

Namdaeng, N. 2002 Study on nitrogen, phosphorus and potassium fertilizer on growth, yield and quality of Ubon paspalum (*Paspalum atratum* cv. Ubon). Master of Science thesis, Department of Soil Science, Kasetsart University. 241pp.

Conclusion

The study concluded that both N and K must be applied to Ubon paspalum for good dry matter production.

4.13 Silage quality of tropical grasses

This study at Ubon Ratchathani University was conducted by Mrs Siriwan Martens from the University of Rostock, Germany and was completed in 2000. She gained her diploma in 2001.

A summary of the study is presented in Appendix 10:

Martens, S. 2001 Yield, feed value and ensilability of 4 tropical grasses in northeast Thailand. Diploma thesis. Department of Agroecology, University of Rostock, Rostock, Germany. 160pp.

Conclusion

The study concluded that Jarra digit and ruzi grasses should be cut for silage between 50 and 60 days of growth without additives and Purple guinea and Ubon paspalum at 30 and 85 days growth, respectively, but additives must be used to improve silage quality.

4.14 Energy and protein requirements of crossbred dairy heifers

This study at Ubon Ratchathani University was conducted by Miss Puan Tatsapong of our TRF project for her Masters thesis at Suranaree University of Technology. The research was conducted in 2000 and she gained her degree in 2001.

A summary of the study is presented in Appendix 11 and 12:

Tatasapong, P. 2001 A study of energy and protein requirement of crossbred dairy heifers. Master of Science Thesis in Animal Production Technology, Suranaree University of Technology 156 pp.

Tatasapong, P., Suksombat, W., Thummasaeng, K. and Suriyajantratong, W. 2003 A study of energy and protein requirements of crossbred dairy heifers.

Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 11-21.

Conclusion

The response of crossbred Holstein Friesian heifers to different levels of energy and protein indicated that the requirement of net energy and crude protein were higher than that recommended by NRC which were 5 and 38% respectively.

4.15 Strip establishment of Ubon paspalum and forage legumes

This study at Ubon Ratchathani University was conducted by Miss Ina Gruben from the University of Rostock, Germany and was completed in 2001. She gained her diploma in 2001.

A summary of the study is presented in Appendix 8 and 13:

Hare, M.D., Gruben, I.E., Tatsapong, P. Lunpha, A., Saengkham, M. and Wongpichet, K. Planting *Paspalum atratum* cv. Ubon and forage legumes in alternate rows to establish pasture swards in north-east Thailand. (submitted February 2003 to *Tropical Grasslands*).

Gruben, I.E. 2001 Management of forage legumes in Ubon paspalum (*Paspalum atratum*). (Strip establishment of Ubon paspalum and forage legumes). Diploma thesis. Department, of Agroecolgy, University of Rostock, Rostock, Germany. 70pp.

Conclusion

It is concluded that this management system of strip sowing legumes with Ubon paspalum is not recommended for smallholder dairy farmers in Thailand since legumes became very sparse, did not produce high dry matter yields and disappeared completely from the plots after the fourth cut.

Plate 8 Ubon stylo and Ubon paspalum growing in rows at Ubon Ratchathani University.

5 Project village research and development

5.1 Village dairy farmer forage systems project

Twenty village dairy farmers in Ubon Rachathani and Sisaket provinces (10 in each province) were selected in 2000 to join the pasture project and to receive training

and advice on improving forage production. The farmers were visited every 4-6 weeks from 2000-2002.

5.1.1 Ubon Ratchathani

Eight farmers in Amphur Warin have good pastures. Seven farmers grow Ubon paspalum and 3 farmers also grow small areas of guinea, napier and ruzi. One farmer grows Tha Phra stylo and several farmers also grew Cavalcade in the wet season. The areas of pasture per farmer are still too small to maintain production and the cows have to be supplemented with rice straw during the dry season.

The main problem the farmers have is a good market for their milk.

5.1.2 Sisaket

The Sisaket farmers rely on rice straw all year round to provide the bulk of roughage feed for their cows. Only 4 out of 10 farmers have grass pastures (Ubon paspalum and plicatulum) and these farmers want to plant more Ubon paspalum next year.

In 2000, many of the farmers' new Ubon paspalum pastures were attacked by grass eating insects. These insects destroyed many new pastures and also destroyed rice crops. This insect damage discouraged many farmers from planting new pastures in 2001 and 2002.

5.2 Forage utilization project for silage and hay

No farmers produced grass for sale in 2002. The project has been terminated due to a lack of interest in Ubon Ratchathani to produce grass as a cash crop. However, the project did prove that grass could be commercially produced provided there is a market, labour to cut the grass and grass cutting does not coincide with rice production (planting and harvesting). Table 13 summarizes the fresh grass project, undertaken as a research project by this project from 1998 to 2001. Farmers received an average gross income per rai of 3235 baht, which is more than what they receive from producing rice. We paid the farmers 0.75 baht/kg grass fresh weight. Our project has proved that fresh grass production is a feasible cash crop for village farmers and when in the future, the market for fresh forage expands, we will be able to provide technical data to support cash cropping of grass.

Table 13 Production of Ubon paspalum fresh grass by village farmers.

Year	No. of farmers	Total fresh weight of grass purchased (kg)	Season income per rai from grass (average/farmer)
2001	2	9421	2355 baht
2000	5	38941	3538 baht
1999	12	52122	3660 baht
1998	9	30497	3388 baht
Average			3235 baht

5.3 Seed production projects

5.3.1 Ubon paspalum village seed production

Ubon paspalum seed production at Bark Kud Waay village increased from 2000 kg in 2000 to nearly 6000 kg in 2002 (Table 14). The quota per farmer has

increased from 100 kg to 250 kg but the price per kg has dropped from 100 baht to 80 baht. The farmers produced high quality seed that has a high germination and a high seed weight.

Seed sales have been good with all seed sold each year (Table 15).

Table 14 Ubon paspalum seed production at Bark Kud Waay

Year	No of farmers	Quota per farmer	Total production (kg)
2000	20	100	2000
2001	20	100	2748*
2002	21	250	5986*

*Above quota 748 kg in 2001 and 736 kg in 2002

Table 15 Amount of Ubon paspalum seed sold from 2000-2002

Region	No. of purchasers			Quantity of seed (kg)		
	2000	2001	2002	2000	2001	2002
North	12	5	-	130	111	-
Northeast	100	290	30	1240	1740	1410
Central	37	30	-	187	365	-
West	1	-	-	2	-	-
East	4	9	1*	14	61	1020
South	8	3	1*	261	173	100
Overseas	2	4	-	110	390	-
Total	164	342	32	1944	2840	2530

* Large cooperatives purchased seed for farmer members

5.3.2 Signal grass village seed production

Signal grass seed production has been very difficult. For good seed production signal grass seed must be produced on fertile loam soils as in Australia and Brazil. The project identified areas in Kantharalak and Nam Yuen as good locations because of the fertile red-brown soils there.

Two good seed crops were produced at Kantharalak (Table 16). The seed crop at Kantharalak potentially was always very productive but the farmer who was 65 years old generally found seed too difficult to harvest. He also had to tap rubber every day and he found that given his age he could not manage two cash crops at the same time. His daughter wanted the signal field to be replanted in corn which they find easier to harvest. We have given up trying to produce signal seed in Kantharalak.

Farmers at Nam Yuen produced good quality seed in 2002 but the volume was very small (Table 16). At Nam Yuen the farmers grow vegetables, corn and fruit crops and signal grass must compete with these cash crops. 3 farmers in 2003 will continue with signal seed production.

Table 16 Signal grass seed production by village farmers, 2000-2002

Location	Year	No of farmers	Area (rai)	Amount of good seed produced (kg)	Amount of light seed produced (kg)
Kantharalak	2000	1	2	18	26
Kantharalak	2001	1	1.5	10	40
Nam Yuen	2002	4	3.5	6	3

5.3.3 Ubon stylo seed production

Seed production of the new hybrid perennial stylo (*Stylosanthes guianensis* var. *vulgaris* X var. *pauciflora* ATF 3308), which we call “Ubon stylo” commenced in 2000 with a small area at the university (Table 17). 20 grams were received from Dr Bert Grof in Australia in November 1999 and grown as seedlings in the nursery before planting at the university in May 2000. In 2001 and 2002 farmers at Bark Kud Waay produced seed.

Table 17 Production of Ubon stylo seed

Location	Year	No of farmers	Area (rai)	Yield per rai (kg/rai)	Total yield (kg)
University	2000	-	0.32	81.2	26
Bark Kud Waay	2001	2	2	86.5	173
Bark Kud Waay	2002	4	4	120.0	480

Research by the project has found that scarifying Ubon stylo seed through a rice polisher removes the seed coat and improves germination to over 80%. Ubon stylo seed is predominantly black and is smaller than brown Tha Phra stylo seed.

5.3.4 Hybrid brachiaria

In 2002, the project obtained small seed samples from Costa Rica and Australia of a new species, *Brachiaria ruziensis* X *Brachiaria brizantha* CIAT 36061 which researchers at CIAT have shown to give higher milk yields than common signal grass. The seed was planted in plastic bags in the nursery and the young seedlings transplanted into the field at the university during the wet season.

In November 2002, the project harvested 4.2 kg of very good seed of hybrid brachiaria. The seed is very heavy, with a 1000 seed weight of 8.21 grams which is twice the weight of ruzi seed. We plan to put the good seed into small plot research and village seed production next year. Mulato appears to be a good seeder, producing heavy seed at the end of the wet season over a very short period of time. It is much taller than ruzi grass and so farmers will find it easy to harvest.

6. Important project research and development conclusions over the last 3 years

6.1 Papers

Thirteen papers and one manual were written during the 3 year phase of the project. Ten papers have been published and 3 have been submitted to a journal. The project has maintained a high scientific output, both nationally and internationally.

1. Hare, M. D., C. Kaewkunya, P. Tatsapong, K. Wongpichet, K. Thummasaeng and W. Suriyajanratong. 2001 Method and time of establishing *Paspalum atratum* seed crops in Thailand. *Tropical Grasslands*, 35: 19-25. (Appendix 3).
2. Hare, M.D., Wongpichet, K., Saengkham, M., Thummasaeng, K. and Suriyajanratong, W. 2001 Juvenility and long-short day requirement in relation to flowering of *Paspalum atratum* in Thailand. *Tropical Grasslands*, 35: 139-143. (Appendix 4).
3. Hare, M.D., M. Saengkham, C. Kaewkunya, S. Tudsri, W. Suriyajanratong, K. Thummasaeng and K. Wongpichet. 2001 Effect of cutting on yield and quality of *Paspalum atratum* in Thailand. *Tropical Grasslands*, 35: 144-150. (Appendix 2).
4. Hare, M.D., Suriyajanratong, W., Wongpichet, K. and Thummasaeng, K. 2001 *Paspalum atratum* - from a wild native plant in Brazil to commercial forage seed production in Thailand in 10 years. *International Herbage Seed Production Research Group Newsletter*, 33: 5-8. (Appendix 14).
5. Hare, M.D., Kaewkunya, C., Tatsapong, P. and Saengkham, M. 2003 Evaluation of forage legumes and grasses on seasonally waterlogged sites in north-east Thailand. *Tropical Grasslands*, 37: 20-32. (Appendix 1).
6. Hare, M.D., Wongpichet, K., Suriyajanyratong, W., Thummasaeng, K. Suwanlee, S., Booncharern, P., Tasapong, P., Lunpha, A., Saiprasert, K. and Intisaeng, W. 2003 Ubon paspalum: Management and Utilization. Faculty of Agriculture, Ubon Ratchathani University. 43pp.
7. Thummasaeng, K., Suwanlee, S., Suriyajanratong, W., Hare, M., Inthisaeng, W., Boonsarn, W. and Lunpha, A. 2003 The study of the energy and protein requirements of dairy cows fed Ubon paspalum grass silage as basal roughage. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 3-10. (Appendix 16).
8. Tatsapong, P., Suksombat, W., Thummasaeng, K. and Suriyajanratong, W. 2003 A study of energy and protein requirements of crossbred dairy heifers. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 11-21. (Appendix 12).
9. Saengkham, M., Hare, M., Tudsri, S. and Wongpichet, K. 2003 Effects of waterlogging on yield and quality of Ubon paspalum. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 84-91. (Appendix 5).
10. Hare, M.D. 2003 Forage plants for dairy cows in Thailand: Old friends-New faces. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 149-153. (Appendix 15).

11. Suwanlee, S., Thummasaeng, K., Lunpha, A. and Suriyajanratong, W. 2003 *In vitro* study on nutritive value of tropical grasses using nylon bag and gas production techniques. Proceedings of the seminars and workshop at the Agricultural Technology Exposition for Indochina. Faculty of Agriculture, Ubon Ratchathani University, Thailand 25-31 May 2001. 187-192. (Appendix 17).
12. Hare, M.D., Saengham, M., Tatsapong, P., Wongpichet, K. and Tudsri, S. Waterlogging tolerance of some tropical pasture grasses. (submitted November 2002 to *Tropical Grasslands*). (Appendix 6).
13. Hare, M.D., Gruben, I.E., Tatsapong, P. Lunpha, A., Saengkham, M. and Wongpichet, K. Planting *Paspalum atratum* cv. Ubon and forage legumes in alternate rows to establish pasture swards in north-east Thailand. (submitted February 2003 to *Tropical Grassland*). (Appendix 8).
14. Hare, M.D., Tatsapong, P. Lunpha, A. and Wongpichet, K. Effect of plant spacing, cutting and nitrogen on production of *Digitaria milanjiana* cv. Jarra in north-east Thailand. (submitted April 2003 to *Tropical Grassland*). (Appendix 7).

6.2 Graduate thesis

The project supported 4 researchers to undertake field research for their thesis. Miss Puan Tatsapong from our project received research funding and salary from TRF for her Masters studies at Suranaree University. Her field research was conducted at Ubon Ratchathani University. Miss Nopamart Namdaeng, an agronomy technician from Ubon Ratchathani University received financial support for her field trials and laboratory analysis at Ubon Ratchathani University. Her Masters was at Kasetsart University. Miss Ina Gruben and Mrs Siriwan Martens received financial support for field studies and laboratory chemicals at Ubon Ratchathani University.

Abstracts of their thesis are included in the appendices.

Namdaeng N 2002 Study on nitrogen, phosphorus and potassium fertilizer on growth, yield and quality of Ubon paspalum (*Paspalum atratum* cv. Ubon). Master of Science thesis, Department of Soil Science, Kasetsart University. 241 pp (Appendix 9).

Martens, S. 2001 Yield, feed value and ensilability of 4 tropical grasses in northeast Thailand. Diploma thesis. Department of Agroecolgy, University of Rostock, Rostock, Germany. 160 pp (Appendix 10).

Tatasapong, P. 2001 A study of energy and protein requirement of crossbred dairy heifers. Master of Science Thesis in Animal Production Technology, Suranaree University of Technology 156 pp. (Appendix 11).

Gruben, I.E. 2001 Management of forage legumes in Ubon paspalum (*Paspalum atratum*). (Strip establishment of Ubon paspalum and forage legumes). Diploma thesis. Department of Agroecolgy, University of Rostock, Rostock, Germany. 70 pp. (Appendix 13).

6.3 Milk production from grazed pastures

The project showed that it is possible to successfully graze dairy cows on pastures in Thailand, all day and all night. In the wet season, cows averaged 17.3 kg milk/cow/day from July to October with the highest production per rai (16.9 kg) from Ubon paspalum pastures. A higher stocking rate can be carried on Ubon paspalum pastures during the wet season compared to signal grass and Jarra digit grass.

6.4 Fresh forage production for silage

The project demonstrated that Ubon paspalum grown by farmers for silage is an economic proposition and will return, on average, a gross income of 3200 baht per rai. This return is higher than that from rice. However, currently in Ubon Ratchathani there is no market for either fresh forage or silage as there are not enough large commercial farms. In addition, cutting fresh grass during the wet and early part of the dry season coincides with rice planting and harvesting. It is difficult to hire labourers to help cut the grass.

6.5 Village dairy farmer project

This project was partially successful in that only 50% of the selected farmers have good pastures. Many farmers still find it very difficult to grow, fertilise and manage pastures and they rely on rice straw to provide the bulk of carbohydrate feed during the year. A major problem is that farmers have very little land for the number of cows they own.

6.6 Ubon paspalum seed production

- (a) Basic research by the project proved that Ubon paspalum has a long-short day flowering response that affects agronomic management of seed crops. First-year seed crops must be sown or planted before the middle of May and second-year crops must be cut no later than the beginning of July to produce seed.
- (b) Seed sales of Ubon paspalum increased from 1944 kg in 2000 to 2530 kg in 2002 and we expect to sell all of the 5986 kg currently in stock in 2003. The rotating seed fund has been very successful, enabling seed production to stand alone, hire one researcher and not to request more seed funds from TRF.
- (c) The Ubon paspalum seed production programme has been very successful. Ubon paspalum is a valuable cash crop for village farmers, generating over 10,000 baht/rai/year from seed and in some cases forage and seedlings for sale. Ubon paspalum seed from the project has a reputation throughout Thailand for high quality as we only sell seed of a high seed weight, high seed germination and high seed purity.

6.7 Strip establishment of legumes with Ubon paspalum

On soils that are not waterlogged, stylo cultivars can be successfully planted in strips with Ubon paspalum, thereby improving the crude protein of the pasture sward.

6.8 Jarra digit grass management

Jarra digit can be successfully planted by stolons in wide rows and optimum forage production is obtained from cutting every 40 days and applying 40 kg/ha N every 60 days.

6.9 Brachiaria species evaluation for forage and seed.

Two cultivars of *Brachiaria brizantha* and signal grass produced significantly more dry matter than ruzi grass, particularly during the dry season. However, seed production of ruzi grass is better and easier than the other cultivars, which either produced low seed yields or produced seed over a long period of time in the wet season. Potentially signal grass will produce good seed yields in Thailand, but because of the extended period of flowering from July to September, during the period of heavy rainfall, farmers find seed production very difficult.

Appendix 1

Tropical Grasslands (2003) Volume 37, 20–32

20

Evaluation of forage legumes and grasses on seasonally waterlogged sites in north-east Thailand

M.D. HARE, C. KAEWKUNYA,
P. TATSAPONG AND M. SAENGKHAM
*Faculty of Agriculture, Ubon Ratchathani
University, Ubon Ratchathani, Thailand*

Abstract

Seven legumes sown in pure swards and 7 grasses sown with legumes and fertilised with N were evaluated in a series of trials at 7 low lying infertile sites in north-east Thailand over 2–3 years from 1997–2000. All sites have an average annual rainfall of 1400 mm.

The highest legume yield in pure swards was in the year of sowing from *Aeschynomene americana* cv. Lee, which produced over 14 t/ha DM at one site. All legumes failed to persist beyond the second wet season under cutting. *Stylosanthes guianensis* cv. Tha Phra (CIAT 184) showed some promise as a legume at some sites that were not deeply waterlogged but only in a few places was it able to persist into the second dry season. No legumes performed well enough to be recommended for such sites under the existing management system.

The best grasses on deeply waterlogged sites were *Paspalum atratum* cv. Ubon, *P. plicatulum* (common Thailand type) and *Setaria sphacelata* var. *splendida* cv. Splenda. These 3 grasses performed well at all sites and were the most consistent in terms of persistence and yield. On less waterlogged sites, *Panicum maximum* cv. Purple was very productive, producing in excess of 30 t/ha DM in the second 6-month wet season at 2 sites. *Brachiaria ruziziensis* (common Thailand type), *B. decumbens* cv. Basilisk, and *Digitaria milanjiana* cv. Jarra grew well only on sites that did not become inundated with water. No

legumes were able to persist in the nitrogen-fertilised (100–120 kg/ha N) grass swards beyond the second wet season.

Introduction

Preliminary evaluation trials were conducted from 1995–1998 on tropical pasture grasses and pasture legumes for seasonally wet and seasonally dry lowland pastures (1500 mm average annual rainfall) on infertile soils in north-east Thailand (Hare *et al.* 1999a). *Paspalum atratum* cv. Ubon was consistently the best grass, producing, on average, more than 20 t/ha DM in a 6-month wet season. *Setaria sphacelata* var. *splendida* cv. Splenda and *P. plicatulum* also grew well and *Digitaria milanjiana* cv. Jarra was very productive on better drained soils.

Legumes, however, did not persist on soils which were waterlogged for 3–5 months and then dry for several months and Hare *et al.* (1999a) were unable to recommend any legumes to farmers. *Stylosanthes guianensis* cv. Graham, *S. hamata* cv. Verano, *Calopogonium mucunoides* (common type) and *Macroptilium gracile* cv. Maldonado (Llanos macro) grew well in the first year but failed to persist after the second wet season. In further experiments, none of the legumes sown with *P. atratum* cv. Ubon or *Brachiaria mutica* persisted after the second wet season on low lying sites (Hare *et al.* 1999b).

As these evaluations were carried out on 3 sites only (Hare *et al.* 1999a; 1999b), we considered it necessary to conduct further small plot trials on several low lying sites to confirm that *P. atratum* cv. Ubon was indeed the best grass and to attempt to identify a suitable legume for these sites. In our first series of trials, Graham stylo showed promise, but in 1997 was devastated with anthracnose. At this time, *S. guianensis* CIAT 184, which was resistant to anthracnose, was growing well on well drained sites in Thailand following its success in South America

Correspondence: M.D. Hare, Faculty of Agriculture, Ubon Ratchathani University, Warin Chamrab, Ubon Ratchathani 34190, Thailand. Email: Michael@agri.ubu.ac.th

(Amezquita *et al.* 1991), China (Guodao and Kerridge 1997) and parts of south-east Asia (Ibrahim *et al.* 1997). The Division of Animal Nutrition, Department of Livestock Development, had renamed CIAT 184 as Tha Phra stylo and were producing seed. However, there had been no evaluation of Tha Phra stylo on low lying sites.

The current research involved the following 3 experiments: evaluation of 7 grasses sown with legumes at 3 sites for productivity and persistence; evaluation of Tha Phra stylo in association with 7 grasses at 5 sites; and evaluation of 7 legumes for productivity and persistence at 3 sites.

Materials and methods

Trial 1 — Evaluation of grasses sown with legumes

This study was conducted at 3 sites in north-east Thailand (15–16°N): on the Ubon Ratchathani University Farm (UBU); at the Mukdahan Animal Nutrition Station (MUK); and in a village in Det Udom district of Ubon Ratchathani Province (DET). All sites are usually very wet from August–October with the site at DET deeply waterlogged during this period. The soils at UBU and DET are classified as sandy low humic gley soils (Roi-et soil series). The soil at MUK is also a low humic gley soil (Renu soil series) but contains less sand than the Roi-et soils. Prior to commencing the study, the site at UBU had been under native grasses (*Eremochloa ciliaris* and *Panicum repens*) for 7 years following long-term paddy rice cultivation. The site at MUK had been planted to various tropical grass pastures for 20 years and the site at DET had been cultivated for annual paddy rice production for generations by village farmers. Soil tests were conducted on samples taken in May 1997 just prior to sowing the experimental pastures. Annual rainfall was recorded 1 km from the UBU site, 500 m from the MUK site and 15 km from the DET site.

Seven grasses [*Paspalum plicatum* (common Thailand type), *P. atratum* cv. Ubon, *Brachiaria ruziziensis* (common Thailand type), *B. decumbens* cv. Basilisk, *Setaria sphacelata* var. *splendida* cv. Splenda, *Digitaria milaniana* cv. Jarra and *Panicum maximum* cv. Purple] were sown at 18 kg/ha in a randomised block design with 4 replications. High sowing rates are commonly used by farmers and researchers in Thailand to ensure an adequate stand as insurance against seed-eating ants, erratic early wet season rainfall

poor soil preparation. Four legumes [*Stylosanthes hamata* cv. Verano, *Macroptilium gracile* cv. Maldonado (Llanos macro), *Aeschynomene americana* cv. Lee (American jointvetch) and *Centrosema pascuorum* cv. Cavalcade] were each sown at 6 kg/ha with each grass species. Each plot measured 10 × 5 m.

The species were hand broadcast into well cultivated seed beds at MUK on May 7, at UBU on May 12 and at DET on May 14, 1997 and the seed lightly surface raked into the soil. The plots were fertilised at sowing with N (20 kg/ha), K (50 kg/ha), P (20 kg/ha) and S (20 kg/ha).

Plant counts were made in five 0.25 m² quadrats per plot, 6 weeks after sowing. Dry matter cuts were taken from five 0.25 m² quadrats per plot cut 5 cm from ground level, 3–4 times each wet season (May–October) and 2–3 times each dry season (November–April). The study was terminated at the end of April 2000.

At each cut, the samples were sorted into grass and legume and a 200 g subsample of each species from each plot was dried at 70°C for 48 hours and dry weight recorded. After sampling, all plots were cut to about 5 cm above ground level, the forage removed and the plots fertilised with N (20 kg/ha), K (50 kg/ha), P (20 kg/ha) and S (20 kg/ha). The amounts applied were based on experience and research (Hare *et al.* 1999c). Lesser amounts can result in plant deficiencies, especially in grasses, due to leaching of elements from these sandy soils. The average CEC on these soils is 2.3 meq/100 g, S 2–5 ppm and K 20–40 ppm.

Trial 2 — Evaluation of grasses sown with Tha Phra stylo

This study was conducted at 5 sites in north-east Thailand (15–16°N): on the Ubon Ratchathani University Farm (UBU); Yasothon Animal Nutrition Station (YNS); Yasothon Agricultural Technology College Farm (YAC); Sisaket Agricultural Technology College Farm (SAC); and the Ubon Ratchathani Agricultural Technology College Farm (UAC). Soils at all sites are classified as sandy low humic gley soils (Roi-et soil series) and are usually very wet from August–October with the site at SAC deeply waterlogged during this period. All sites, at some time in the past, had been used for paddy rice cultivation. Prior to commencing the study, the site at UBU had been under native grasses (*Eremochloa ciliaris* and *Panicum repens*)