

Appendix 10**Diploma Thesis**

YIELD, FEED VALUE AND ENSILABILITY
OF 4 TROPICAL GRASSES
IN NORTHEAST THAILAND

Diploma Thesis submitted by: **Siriwan Martens**
born on: **30.06.1975** in: **Köln-Porz**

1. Expert and Advisor: Dr. Klaus Friedel
Institute of Environmentally Compatible Animal Husbandry

2. Expert: Prof. Dr. Martin Gabel
Institute of Environmentally Compatible Animal Husbandry

Department of Agroecology, University of Rostock
Rostock, 2001

6 SUMMARY AND CONCLUSION

As described in TASK AND AIM one part of this work dealt with the question whether the 4 examined grasses *Panicum maximum*, *Digitaria milanjiana*, *Brachiaria ruziensis* and *Paspalum atratum* are suitable as fodder grasses for dairy cows for this partly waterlogged site in Northeast Thailand. This can be found out by exterior characteristics like plant colour, further field observations, and yield as well as by analysing the feed value.

These parameters were examined based on 8 cuts of each grass variety during 100 days of the wet season from May to August 2000 on the area of the Ubon Ratchathani University.

All of the grasses except Jarra digit became light green quickly which points to diminishing nitrogen concentration in the plant. All 4 varieties had to compete with different kinds of weeds, especially other grasses. On the most waterlogged site of the 4 fields, Ubon paspalum was severely affected by nutrient deficiency, which was expressed in red spots on the leaves. Jarra, Ubon and Ruzi grasses were partly infested by basidiomycetes. Especially with Jarra grass this can be attributed to the dense growth of this stoloniferous grass under humid conditions.

The evaluation of the yield is difficult as there is only one yield in the wet season. It is impossible to compare this value to values given in literature as the authors mostly give yield per year. Thus only a comparison among the 4 examined grass varieties is possible. Of the 8 cuts, Ubon paspalum gave the highest yield with 6.5 t/ha DM, maximum being 10.8 t/ha DM. It was followed by Jarra digit with an average of 5.6 t/ha DM (maximum 8.9 t/ha DM), then Guinea grass with 5.3 t/ha (maximum 9.7 t/ha DM) and last Ruzi with 4.8 t/ha DM (maximum 7.5 t/ha DM).

The analysis of the feed value showed that the crude protein content is quickly diminishing and generally too low for dairy cattle feeding without supplementation. It was lowest in *Paspalum atratum* with 4.8 % CP of DM as average of the 8 cuts, followed by *Brachiaria ruziensis* (5.4 % CP of DM), and *Panicum maximum* and *Digitaria milanjiana* having equal averages (6.3 % CP of DM).

The content of crude fibre is in general adversely high with > 24 % of DM.

The potential OM digestibility of Guinea grass as well as of Jarra digit is sufficiently high in the first 30 days, of Ruzi grass in the first 65 days and of Ubon paspalum almost sufficient during 100 days providing a sufficient nitrogen supply for the ruminants exists.

The average energy supply calculated based on the potential OM digestibility is quite satisfying in common for cows of that place: 4.9 MJ NEL/kg DM of Guinea and Jarra grass, 5.5 MJ NEL/kg DM of Ruzi grass and 5.0 MJ NEL/kg DM of Ubon paspalum.

Recommendation for the practice is a supplementation of nitrogen to meet the ruminants' needs of crude protein and to realise the potential OM digestibility and energetic value. A possibility might be the adequate utilisation of NPN compounds.

The other part of this work dealt with the question of the ensilability of the 4 grass varieties. The aim was to find out the point of time of growth when ensiling is possible and when feed value and yield are acceptable. This is mostly a compromise between the three components.

In consideration of the different methods the following recommendations can be given.

Results of pre-wilted variants and variants in NaCl solution are not taken into account because the transferability to practice in this case is doubtful.

According to the S/BC quotient and the minimal DM content demanded, only the two stoloniferous grasses *Digitaria milanjiana* and *Brachiaria ruziziensis* are suitable for stable silages.

It is recommended to cut Jarra grass between 50 and 60 days of growth during the stage of full ripeness with a fairly high yield of about 6 t/ha DM. The addition of a suitable LAB preparation might improve the quality. A microbial investigation of the epiphytic stocking is highly recommended.

Ruzi grass should be cut after 65 days with a yield of about 5 t/ha DM. No additive is needed.

The S/BC quotient and the DM content of the two bunchgrasses *Panicum maximum* and *Paspalum atratum* are always too low. But a stable silage might nevertheless be possible as the dry matter content still rises during ensiling at high temperatures.

Thus the cutting dates with a relative high S/BC quotient are regarded as follows.

The S/BC quotient of *Panicum maximum* is highest with 30 days (2.8). Then the actual dry matter content is nearly equal to the demanded content. The feed value is satisfactory but the yield is very low at this point of time with about 3 t/ha DM. A compromise at a later point in time cannot be suggested as the feed value decreases significantly.

Paspalum atratum had the lowest S/BC of all 4 grasses. But a cut with 85 days for ensiling seems to be suitable as the yield is high and the feed value is relatively constant during the vegetation period. An addition of sugar, at least 2 % of fresh matter, is useful, that means for example 4 % molasses.

Further trials concerning the cutting frequency could complete the given statements.

Concerning the different methods for determining the ensilability the following annotations are made.

The osmolality of 2.4 osmol of the variants in NaCl solution of the PIEPER test was too high at 50 °C to get any differentiated results. For further investigations a lower osmolality should be tried and the corresponding degree of pre-wilting should be examined.

A further question to investigate in future is whether the results of the potential ensilability of the PIEPER test at high temperatures is realisable in practice (see comparison PIEPER test - bag silages).

How the dry matter content changes during ensiling under practical conditions must also be studied. A possible change may be taken into account when applying the criterion of the minimal dry matter according to WEISSBACH.

Altogether, the experiments showed that the utilisation of the 4 grasses for cattle feeding is possible with certain reservations. A clear limitation was the generally low crude protein content in spite of a relatively high fertilisation in the beginning (300 kg NPK/ha). This fact shows the main deficiency of the site. The paddy soil is not able to hold added nutrients. The soil has degraded after deforestation. Thus it is the opinion of the author that it is doubtful whether the immediate utilisation of this kind of soil for pasture makes lasting sense for the farmers economically and ecologically. A high amount of fertiliser is needed making the cropping unprofitable. Besides the rain-wash leads to a load of the ground water.

In the long run it seems to be more promising to invest first in the improvement of the soil. A suggestion is the creation of an agroforestry system. This ensures the income and is ecologically compatible. Grasses could be sown under timber or fruit trees. Such a system can improve the soil structure, the water balance, and the organic matter situation. In the long run this guarantees a better nutrient supply for the plants.

The submitted paper is only a small fraction of the work to do and could not deal with the whole diversity of the problematic.

For the future, an interdisciplinary corporation is demanded for an efficient agro-ecological utilisation of this special site. The site reconnaissance has to be taken into consideration including especially the soil science..

Appendix 11

การศึกษาความต้องการพลังงานและโปรดีนในโภณมสาขาวุฒิพสม

นางสาวพรม ทัศพงษ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตร์มหาบัณฑิต
สาขาวิชาเทคโนโลยีการผลิตสัตว์
มหาวิทยาลัยเทคโนโลยีสุรนารี
ปีการศึกษา 2543

ISBN 974-7359-86-3

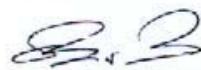
**A STUDY OF ENERGY AND PROTEIN REQUIREMENT OF
CROSSBRED DAIRY HEIFERS**

Miss Puan Tatsapong

A Thesis Submitted in Partial Fulfillment of the Requirement for the Degree

of Master of Science in Animal Production Technology

Suranaree University of Technology


Academic Year 2000

ISBN 974-7359-86-3

หัวข้อวิทยานิพนธ์

การศึกษาความต้องการผลิตงานและโปรดีนในโภคภัณฑ์
พกานมหาวิทยาลัย มหาวิทยาลัยเทคโนโลยีสุรนารี อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วน
หนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

คณะกรรมการสอนวิทยานิพนธ์

(รศ. ดร. พายัชัย พ่วงป่าง)

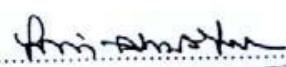
ประธานกรรมการ

(ผศ. ดร. วิชิตรุพงษ์ สุขสมบัติ)

อาจารย์ที่ปรึกษา

(รศ. ดร. วรพงษ์ สุริยชันทร์ทราย)

กรรมการ


(ดร. นัยชาลิต ลิจิตเดชาโรจน์)

กรรมการ

(รศ. ดร. กนก พลารักษ์)

คณะกรรมการด้านวิทยาศาสตร์ในโลหะการเกษตร

(รศ. ดร. เทียร์ยน ปราบปรູกສູງ)

รองอธิการบดีฝ่ายวิชาการ

(รักษาการแทน)

พวณ ทักษิณ : การศึกษาความต้องการพลังงานและโปรตีนในโคนมสาวถูกผสม
 : A STUDY OF ENERGY AND PROTEIN REQUIREMENT OF CROSBRED
 DAIRY HEIFERS.

อาจารย์ที่ปรึกษา : พศ. ดร. วิศิษฐ์พิรุส สุขสมบัติ, 156 หน้า
 ISBN 974-7359-86-3

การทดลองนี้มีวัตถุประสงค์เพื่อหาความต้องการพลังงานและโปรตีนของโคนมสาวถูกผสมโดยเปรียบเทียบกับค่าแนะนำของ National Research Council (NRC, 1988) โดยใช้โคนมสาวถูกถุก (Holstein Friesian) จำนวน 24 ตัว ซึ่งมีระดับเตือดผสมของ Holstein Friesian เฉลี่ยประมาณ 85 ± 7 เปอร์เซ็นต์ มีน้ำหนักตัวเฉลี่ยประมาณ 236 ± 64 กิโลกรัม และมีอายุเฉลี่ยประมาณ 12 ± 5 เดือน โดยวางแผนการทดลองแบบแฟกทอร์ชั้นในบล็อกสมบูรณ์ จัดเรียงเป็น 2×2 Factorial ประกอบด้วย 2 ปัจจัยๆ ละ 2 ระดับ โดยทั้งจัยแรกคือ ระดับของพลังงาน ในหน่วยของไกซันบัฟฟ์ (TDN) เท่ากับ 1.0 และ 1.2 เท่าของ NRC ส่วนปัจจัยที่ 2 คือ ระดับของโปรตีนหนาๆ (CP) เท่ากับ 1.0 และ 1.2 เท่าของ NRC จัดกลุ่ม (Block) ลักษณะตามน้ำหนักของโค และสูงโคให้ได้รับทริมเม้นต์ 1 ใน 4 ทริมเม้นต์ ที่มีสัดส่วนของพลังงานต่อโปรตีน คือ 1.0 : 1.0, 1.0 : 1.2, 1.2 : 1.0 หรือ 1.2 : 1.2 ซึ่งในการทดลองนี้คำนวณสูตรอาหารของโคให้ได้รับอาหารที่ก้าหนนได้มีอัตราการเริบูติบิ่นโดยวันละ 600 กรัม โดยทุกตัวได้รับแร่ธาตุและวิตามินตามค่าแนะนำของ NRC โดยเลือกแบบผูกขั้งเดี่ยวมีน้ำให้กินตลอดเวลา ทั้งนี้ใช้หยาเนแห้งอุบลพาสพาร์มเป็นอาหารหนาๆ ใช้ข้าวโพดในการปรับค่าพลังงาน และใช้กากอั่วเหลืองในการปรับค่าโปรตีน ในการดำเนินการได้แบ่งทำการทดลองออกเป็น 2 ครั้ง ๆ ละ 3 บล็อก และในการทดลองแต่ละครั้งใช้เวลา 45 วัน และซั่งน้ำหนักโดยตลอด 16 ชั่วโมง ทุก 21 วัน เพื่อปรับน้ำหนักและใช้คำนวณทำการคำนวณสูตรอาหารของโคให้ได้รับพลังงานและโปรตีนตามทริมเม้นต์ ที่วางไว้

ผลการทดลองพบว่า ระดับของพลังงาน 1.0 และ 1.2 เท่าของ NRC มีผลทำให้ปริมาณการกินได้ของวัตถุแห้งแตกต่างกัน ($6.31 \text{ vs } 6.98$ กิโลกรัมต่อวัน, $P<0.01$) เปอร์เซ็นต์การกินได้ของวัตถุแห้งต่อน้ำหนักตัวแตกต่างกัน ($2.5 \text{ vs } 2.7$, $P<0.001$) และอัตราการเริบูติบิ่นโดยแตกต่างกัน ($0.81 \text{ vs } 0.93$ กิโลกรัมต่อวัน, $P<0.05$) ส่วนระดับของโปรตีนพบว่าไม่มีผลต่อปริมาณการกินได้ของวัตถุแห้ง เปอร์เซ็นต์การกินได้ของวัตถุแห้งต่อน้ำหนักตัว และ อัตราการเริบูติบิ่นโดยของโค ($P>0.05$) ทั้งนี้ระดับของพลังงานและโปรตีนไม่มีผลต่อประสิทธิภาพการใช้อาหารของโค ($P>0.05$) นอกจากนี้พบว่าไม่มีปฏิสัมพันธ์ (Interaction) ระหว่างระดับพลังงานและโปรตีนต่อปริมาณการกินได้ของวัตถุแห้ง ประสิทธิภาพการใช้อาหาร และอัตราการเริบูติบิ่นโดยของโค ($P>0.05$) และ

จากผลการทดลองการกินได้ของพลังงานและ โปรตีนของ โโคเม่อเบรีบันเทียบกับ NRC พบว่า โโคกิน พลังงานเป็น 1.04 และ 1.18 NRC ส่วนโปรตีนพบว่า โโคกินโปรตีนได้เป็น 1.00 และ 1.18 NRC จากผลการทดลองแสดงให้เห็นว่า โโคจะให้ผลผลิตคิดมีอั้ได้รับพลังงาน 1.18 และได้รับโปรตีน 1.00 หรือ 1.18 เท่าของ NRC

จากการประเมินความต้องการพลังงานสุทธิและ โปรตีนheadline ของ โโคพบว่า มีความต้องการ สูงกว่าที่ NRC (1988) แนะนำประมาณ 5 และ 38 เทอร์เซ็นต์ ตามลำดับ และสามารถปรับค่า Factors สำหรับการคำนวณหาพลังงานเพื่อการคำารงซึ่ง และเพื่อการเจริญเติบโตมีค่าเท่ากับ 0.0904 และ 0.0482 ตามลำดับ

สาขาวิชาเทคโนโลยีการผลิตสัตว์
ปีการศึกษา 2543

ลายมือชื่อนักศึกษา.....
ลายมือชื่ออาจารย์ที่ปรึกษา.....
ลายมือชื่ออาจารย์ที่ปรึกษาawan.....
.....

PUAN TATSAPONG : A STUDY OF ENERGY AND PROTEIN REQUIREMENT OF
CROSSBRED DAIRY HEIFERS.

THESIS ADVISOR : ASSIST. PROF WISITIPORN SUKSOMBAT, Ph.D. 156 pp.

ISBN 974-7359-86-3

The objective of this study was to investigate the energy and protein requirement of crossbred dairy heifers by comparing to the recommendations of National Research Council (NRC, 1988). Twenty-four Holstein Friesian (HF) crossbred heifer, averaging 85 ± 7 %HF, 236 \pm 64 kg empty body weight and 12 \pm 5 months of age were used in this experiment. The experimental design was a randomized complete block in a 2 x 2 factorial arrangement. The factors were two levels of total digestible nutrient (TDN) i.e. 1.0 and 1.2 NRC and two levels of crude protein (CP) i.e. 1.0 and 1.2 NRC. Heifers were assigned to one of four treatments (TDN : CP of 1.0 : 1.0, 1.0 : 1.2, 1.2 : 1.0 or 1.2 : 1.2). All animals were fed to achieve 600 g daily gain and received mineral and vitamin based on NRC recommendations. They were individually fed and free access to water. Ubon paspalum (*Paspalum atratum* cv. Ubon) hay were used as a roughage source. Soybean meal and ground corn were supplemented as protein and energy sources respectively. The experiment was divided into 2 period, each period had 3 block and last for 45 days. Empty body weight was recorded every 21 days and used to adjusted for CP and TDN levels of each treatment.

Heifers receiving 1.2 NRC of TDN had significantly higher dry matter intake (DMI) (6.98 vs 6.31 kg/head/d, $P < 0.01$); % dry matter intake of body weight (%BW) (2.7 vs 2.5, $P < 0.001$) and average daily gain (ADG) (0.93 vs 0.83 kg/head/d, $P < 0.05$) than those receiving 1.0 NRC of TDN. However, the CP level of 1.0 and 1.2 NRC had no effect on DMI, %DMI of BW and ADG ($P > 0.05$). Feed efficiency and body weight did not differ between levels of TDN and CP. No significant interactions occurred between levels of TDN and CP on DMI, feed efficiency and ADG. Actual TDN intakes when compared to NRC recommendation were 1.04 and 1.18 NRC and actual CP intakes when compared to NRC recommendation were 1.00 and 1.18 NRC. These results indicated that crossbred Holstein Friesian heifers consumed 1.18 TDN of NRC together with 1.00 or 1.18 CP of NRC showed reasonably high average daily gain.

The responses of crossbred Holstein Friesian heifers to different levels of energy and protein indicated that the requirement of net energy and CP were higher than that recommended by NRC (1988) which were 5 % and 38 %, respectively. The adjustment factors for calculated NE_M and NE_G were 0.0904 and 0.0482 in this experiment.

สาขาวิชาเทคโนโลยีการผลิตสัตว์
ปีการศึกษา 2543

ลายมือชื่อนักศึกษา.....
ลายมือชื่ออาจารย์ที่ปรึกษา.....
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม *W. Suwignjoatilaya*
จิตา

Appendix 12

การศึกษาความต้องการพลังงานและโปรตีนในโคนมสาวลูกผสม

A Study of Energy and Protein Requirements of Crossbred Dairy Heifers

พวน ทัศพงษ์^{1,2} วิศิษฐ์พิร สุขสมบัติ¹ กั่งวน ธรรมแสง² และวรพงษ์ สุริยจันทร์ทอง²

Puan Tatsapong^{1,2}, Wisitiporn Suksombat¹, Kungwan Thummasaeng² and

Worapong Suriyajanratong²

บทคัดย่อ

การทดลองนี้มีวัตถุประสงค์เพื่อหาความต้องการพลังงานและโปรตีนของโคสาวลูกผสมโดยเปรียบเทียบกับคำแนะนำของ National Research Council (NRC, 1988) โดยใช้โคสาวลูกผสมขาว-ดำ (Holstein Friesian) จำนวน 24 ตัว น้ำหนักตัวเฉลี่ยประมาณ 236 ± 64 กิโลกรัม โดยวางแผนการทดลองแบบแฟกทอเรียลสูงในบล็อกสมบูรณ์ จัดที่รีทเมนต์เป็น 2×2 factorial โดยปัจจัยแรกคือ ระดับของพลังงานโภชนาบ่ออยได้ (TDN) 1.0 และ 1.2 เท่าของ NRC ส่วนปัจจัยที่ 2 คือ ระดับของอาหารโปรตีน (CP) 1.0 และ 1.2 เท่าของ NRC จัดกลุ่มสัตว์ทดลองตามน้ำหนักของโค และสูงโคให้ได้รับรีทเมนต์ 1 ใน 4 รีทเมนต์ ที่มีสัดส่วนของอาหารพลังงานต่ออาหารโปรตีนดังนี้ คือ 1.0: 1.0, 1.0: 1.2, 1.2: 1.0 และ 1.2: 1.2 ช่วงเวลาในการเก็บข้อมูลการกินได้และน้ำหนักสัตว์ทดลองนาน 45 วัน ผลการทดลองพบว่า ระดับของพลังงาน 1.0 และ 1.2 เท่าของ NRC ทำให้ปริมาณการกินได้ของวัตถุแห้ง เปรอร์เซ็นต์การกินได้ต่อน้ำหนักตัว และอัตราการเจริญเติบโตแตกต่างกัน ($P<0.05$) ส่วนระดับของโปรตีนไม่มีผลต่อปริมาณการกินได้ของวัตถุแห้ง เปรอร์เซ็นต์การกินได้ต่อน้ำหนักตัว และ อัตราการเจริญเติบโตของโค ($P>0.05$) ทั้งนี้ระดับของพลังงานและโปรตีนไม่มีผลต่อประสิทธิภาพการใช้อาหาร ($P>0.05$) นอกจากนี้ พบว่าไม่มีปฏิสัมพันธ์ระหว่างระดับพลังงานและโปรตีนต่อปริมาณการกินได้ ประสิทธิภาพการใช้อาหาร และอัตราการเจริญเติบโตของโคทดลอง ($P>0.05$) และจากผลการทดลองการกินได้ของพลังงานของโคเมื่อเปรียบเทียบกับ NRC พบว่า โคกินพลังงานโภชนาบ่ออยได้เป็น 1.04 และ 1.18 NRC ส่วนโปรตีนพบว่า โคกินอาหารโปรตีนได้เป็น 1.00 และ 1.18 NRC จากการประเมินความต้องการพลังงานและโปรตีนของโคพบว่ามีความต้องการสูงกว่าที่ NRC แนะนำประมาณ 5 และ 38 เปรอร์เซ็นต์ ตามลำดับ และสามารถปรับค่า factors สำหรับการคำนวณหาพลังงานเพื่อการคำรชีพ และเพื่อการเจริญเติบโตมีค่าเท่ากับ 0.0904 และ 0.0482 ตามลำดับ

คำสำคัญ: โคนมสาวลูกผสม ความต้องการพลังงานและโปรตีน และในไตรเจนเมทานอลิซึม

Abstract

The objective of this study was to investigate the energy and protein requirement of crossbred dairy heifers by comparing to the recommendations of National Research Council (NRC, 1988). Twenty-four Holstein Friesian (HF) crossbred heifers 236 ± 64 kg empty body weight were used in this experiment. The experimental design was a randomized complete block in a 2×2 factorial arrangement. The factors were two levels

of total digestible nutrient (TDN), i.e. 1.0 and 1.2 NRC and two levels of crude protein (CP), i.e. 1.0 and 1.2 NRC. Heifers were assigned to one of four treatments (TDN: CP of 1.0: 1.0, 1.0: 1.2, 1.2: 1.0 or 1.2: 1.2). The data collected were dry matter intake and weight of heifers within a 45-day period. It was found that heifers receiving 1.2 NRC of TDN had significantly higher dry matter intake (DMI); % dry matter intake of body weight (%BW) and average daily gain (ADG) ($P<0.05$) than those receiving 1.0 NRC of TDN. However, the CP level of 1.0 and 1.2 NRC had no effect on DMI, %DMI of BW and ADG ($P>0.05$). Feed efficiency and body weight did not differ between levels of TDN and CP. No significant interactions occurred between levels of TDN and CP on DMI, body weight, feed efficiency and ADG. Actual TDN intakes compared to NRC recommendation were 1.04 and 1.18 NRC and actual CP intakes compared to NRC recommendation were 1.00 and 1.18 NRC. The responses of crossbred Holstein Friesian heifers to different levels of energy and protein indicated that the requirement of energy and CP were higher than that recommended by NRC (1988) which were 5% and 38% respectively. The adjustment factors for calculated NE_M and NE_G were 0.0904 and 0.0482 in this experiment.

Key word: crossbred dairy heifers, energy and protein requirements, and nitrogen metabolism

คำนำ

หลังจากลูกโภชนาณแล้วเป็นช่วงที่โโคกำลังเจริญเติบโตต้องการอาหารในปริมาณมากขึ้น ความต้องการโภชนาส่วนใหญ่จะเป็นพลังงานและโปรตีน เพื่อที่โโคจะได้นำไปใช้ในการดำรงชีวิต การเจริญเติบโต และการสืบพันธุ์ เป็นด้าน ในช่วงนี้โโคจะมีการเจริญเติบโตสูง เนื่องจากการเพิ่มของโครงสร้างร่างกายและการสะสมของไขมัน พบว่าการให้อาหาร โโคเล็กมากหรือการเร่งการเจริญเติบโตสูงจะทำให้มีการเจริญเติบโตของโครงสร้างร่างกายสูงขึ้น (Lammers *et al.*, 1999a) และเพิ่มการสะสมของไขมัน (Fox *et al.*, 1999; Waldo *et al.*, 1997) การเจริญของโครงสร้างจะเริ่มช้าๆ และสูงสุดเมื่อเป็นโครุ่น จนนั้นจะค่อยๆลดลง โดยทั่วไปเกณฑ์รرمักจะละเอียดไม่ค่อยให้ความสนใจการเลี้ยงดูในช่วงนี้มากนัก ซึ่งตามจริงโคนมช่วงนี้จำเป็นจะต้องได้รับการเลี้ยงดูอย่างดี เพราะว่าโคช่วงอายุนี้ต้องไปเจริญเติบโตเป็นโโคทดแทนโคนมตัวอื่นในฟูงที่จำเป็นต้องคัดทิ้งเนื่องจากสาเหตุต่างๆ ถ้าไม่ได้อาจใส่ร่องของการเลี้ยงดูอย่างดี พอกลัวก็จะได้โคนมทดแทนที่ไม่มีคุณภาพ การอาเจาใส่ในร่องอาหารอย่างถูกต้องและพอเหมาะสมจะทำให้เกิดประโยชน์หลายอย่างดังนี้คือ เป็นการเตรียมโครงสร้างของร่างกายให้พร้อมที่จะเจริญเติบโต ไปเป็นแม่พันธุ์โคนมที่ดีต่อไป อัตราการเจริญเติบโตสูงของลูกโภชนาณ จากช่วงโโคเล็กไปเป็นโครุ่นมีผลทำให้โคนมถึงวัยเจริญพันธุ์เร็วขึ้น (Radcliff *et al.*, 1997; Hoffman *et al.*, 1996) เป็นผลให้สามารถผสมโคนมได้เร็วขึ้น ให้ผลผลิตลูกและน้ำนมเร็ว (Van Amburgh *et al.*, 1998b) ช่วงระยะการผลิตนมและจำนวนลูกมากขึ้น ซึ่งสามารถลดต้นทุนการผลิตโโคขาว ผลผลิตสะสมเฉลี่ยต่อตัวสูงกว่า ช่วงห่างระหว่างลูกแต่ละตัวจะสั้นลง อย่างไรก็ตาม การเร่งให้โโคขาวมีอัตราการเจริญเติบโตสูงหรือเร็วกว่าปกติก็อาจเกิดผลเสียหลายประการ ได้โดยเฉพาะในช่วงท้องแรก เช่นอัตราการผสมติดอาจะต่ำ ได้เพราระบบสืบพันธุ์ยังไม่พัฒนาสมบูรณ์พอ มีโอกาสเกิดการคลอดยาก เพราะกระดูกเข็งกรานยังพัฒนาไม่เต็มที่จนพร้อมที่จะรองรับกระบวนการเกิดของลูกโภชนาณ หรือโโคขาวถ้าอ้วนมากเกินไป จะทำให้อัตราการเป็นสัคคลดลงอาจทำให้อาชญากรรมลูกตัวแรกช้าลงไปได้ ผลผลิตนมจะต่ำในช่วงการให้นมครั้งแรก (Lammers *et al.*, 1999b; Van Amburgh *et al.*, 1998b) แต่

จากการศึกษาของ Waldo *et al.* (1998) พบว่าการให้อาหาร โโครุนให้มีอัตราการเจริญเติบโตวันละ 725 และ 950 กรัม ไม่ทำให้ผลผลิตน้ำนมต่างกัน สาเหตุที่ทำให้โโคساวที่มีอัตราการเจริญเติบโตสูงให้ผลผลิตน้ำนมต่างก้าวจากการที่มีไขมันเจ้าไปแทรกอยู่มากในส่วนของเต้านม ทำให้การสร้างเนื้อเยื่อเด้านมไม่สามารถเจริญเติบโตได้เต็มที่ และการที่เต้านมมีเนื้อเยื่อที่เกี่ยวข้องกับการสร้างน้ำนมน้อยจะทำให้เต้านมไม่สามารถผลิตนมได้มากเท่ากับปกติ โโคساวนี้อัตราการเจริญเติบโตสูงจะทำให้เซลล์ parenchyma DNA และ RNA ของต่อน้ำนมลดลง และสะสมในมันเพิ่มขึ้น (Capuco *et al.*, 1995; Stelwagen and Grieve, 1990) แต่ Radcliff *et al.* (1997) พบว่าอัตราการเจริญเติบโตไม่มีผลต่อ parenchyma DNA และ RNA ซึ่งการเจริญเติบโตของโคนมช่วงหย่านมถึงโโคساวที่เหมาะสมที่สุดสำหรับการให้ผลผลิตน้ำนมปกติ คือระดับ 500-600 กรัมต่อวัน (สมชาย, 2541) นอกจากนี้อยุการใช้งานของโคนมอาจจะสั้นลง เพราะปัญหาดังกล่าว มาแล้ว และต้นทุนการผลิตอาจสูง เพราะการเร่งให้โโคทดแทนเจริญเติบโตเร็วจำเป็นต้องให้อาหารที่มีคุณภาพสูง ซึ่งมีราคาแพง เป็นต้น ความไม่สมดุลของโภชนาณมีผลต่อผลผลิตและระบบสืบพันธุ์ของโโคโดยเฉพาะโคนมหลังคลอด และการเพิ่มพลังงานให้กับโคลังคลอดจะทำให้เพิ่มความสมบูรณ์พันธุ์ (Lalman *et al.*, 2000; Staples *et al.*, 1998) โปรตีนมีความสำคัญพอกับพลังงาน เพราะถ้าขาดโปรตีนจะทำให้อัตราการเจริญเติบโตช้า ผลผลิตน้ำนมน้อย ระบบภูมิคุ้มกันเสื่อม อ่อนแอก และป่วยง่าย อัตราการผสมติดคลอด ถ้าอาหารโปรตีนสูงเกินไป จะมีปัญหาการผสมไม่ดีดี ซึ่งเกี่ยวข้องกับโปรตีนที่ย่อยสลายและไม่ย่อยสลายในกระเพาะหมัก พนว่าโปรตีนที่ย่อยสลายในกระเพาะหมักสูงจะมีส่วนทำให้ระดับของฮอร์โมนโปรเจสตีโรนในเลือดลดต่ำลง (Moorby *et al.*, 2000) จะมีผลต่อการเจริญเติบโตของตัวอ่อน นอกจากนี้ยังทำให้มีการพัฒนาของ follicle ต่ำลง ทำให้หน่วงหนีบการทำงานของ luteal ให้ช้าลง และมีผลต่อการสะสมของน้ำเยื่อ luteal น้อยลง (Garcia-Bojalil *et al.*, 1998) การให้โปรตีนในอาหารระดับสูงทั้ง RDP และ UDP สูงเกินความต้องการจะทำให้เกิดการเปลี่ยนแปลงของญี่เรียในน้ำเลือด (Plasma urea nitrogen, PUN) สูงขึ้น (Westwood *et al.*, 2000) ถ้าความเข้มข้นของญี่เรียพื้นในน้ำเลือดและในน้ำนมสูงเกิน 19 mg/dL จะทำให้ความสมบูรณ์พันธุ์ลดลง ทึ่งนี้อาจเป็นเพราะมีผลทำให้ค่า pH ในน้ำนมต่ำลง ความเป็นกรดที่มากขึ้นในน้ำนมจะทำให้สภาวะแวดล้อมไม่เหมาะสมต่อการผังตัวของตัวอ่อน ค่า PUN ที่เพิ่มขึ้นอาจจะมีผลที่เป็นพิษต่อตัวอ่อนทำให้ตัวอ่อนตาย นอกจากนี้ยังมีผลต่อระดับฮอร์โมน โดยเพิ่มการหลัง prostaglandin F_{2α} และลดการหลัง progesterone (Butler *et al.*, 1998) การเพิ่มปริมาณพลังงานในอาหาร โโคจะเป็นการเพิ่มสมดุลในโตรเจน (Moorby *et al.*, 2000) ถ้าเพิ่มระดับของโปรตีนในอาหาร โโคที่ได้รับพลังงานเท่ากัน จะทำให้เพิ่มประสิทธิภาพการใช้อาหาร เพิ่มการกินได้ และเพิ่มการเจริญเติบโต (Lammers and Heineichs, 2000) อาหารที่มีโปรตีนและพลังงานสูงจะทำให้การกินได้สูงขึ้นและเพิ่มการใช้ประโยชน์ของพลังงานและโปรตีน (Dewhurst *et al.*, 2000) การทดลองนี้มีวัตถุประสงค์เพื่อหาความต้องการพลังงานและโปรตีนของโโคสาวสูกผสมโดยปริยบเทียบกับค่าน้ำหนักของ National Research Council (NRC, 1988)

อุปกรณ์และวิธีการ

โดยใช้โโคสาวสูกผสม (Holstein Friesian) จำนวน 24 ตัว ที่มีระดับเลือดผสมเฉลี่ยประมาณ 87.5 เปอร์เซ็นต์ มีน้ำหนักตัวเฉลี่ยประมาณ 236 ± 64 กิโลกรัม และมีอายุเฉลี่ยประมาณ 12 ± 5 เดือน โดยจัดสิ่งทดลองแบบแฟกторี ยกสูงในบล็อกสมบูรณ์ จัดทวีตเมนต์เป็น 2×2 factorial มีการศึกษา 2 ปัจจัยๆ ละ 2 ระดับ โดยปัจจัยแรกคือ ระดับของพลังงานโภชนาณย่อยได้ (TDN) 1.0 และ 1.2 เท่าของ NRC ส่วนปัจจัยที่ 2 คือ ระดับของอาหารโปรตีน (CP) 1.0

และ 1.2 เท่าของ NRC จัดกลุ่ม (block) สัตว์ทดลองตามน้ำหนักของโคเป็น 6 กลุ่มๆ ละ 4 ตัวตามสิ่งทดลอง และสุ่มโคให้ได้รับทรีเมนต์ 1 ใน 4 ทรีเมนต์ที่มีสัดส่วนของอาหารพลังงานต่ออาหารโปรตีนดังนี้ คือ 1.0: 1.0, 1.0: 1.2, 1.2: 1.0 หรือ 1.2: 1.2 เป็นต้น ซึ่งในการทดลองนี้คำนวณสูตรอาหารของโคโดยใช้โปรแกรม X –ration (สมคิด และคณะ, 2533) ให้โคได้รับอาหารที่กำหนดให้มีอัตราการเจริญเติบโตวันละ 600 กรัม และให้โคทุกตัวได้รับแร่ธาตุและวิตามินตาม NRC แนะนำ โดยเดี่ยวโดยแบบผูกขังเดี่ยว มีน้ำให้กินตลอดเวลา และให้อาหารวันละ 2 ครั้ง เวลา 9.00 และ 14.30 น. ทั้งนี้ ใช้หญ้าแห้งพaspalum อุบลตัดที่อายุประมาณ 45 วัน เป็นอาหารหลัก ใช้ข้าวโพดในการปรับระดับพลังงาน โภชนาะย่อยได้ และใช้กาลตัวเหลืองในการปรับระดับโปรตีน ในการดำเนินการได้แบ่งทำการทดลองออกเป็น 2 ครั้งๆ ละ 3 บล็อก โดยในแต่ละครั้งใช้เวลา 45 วัน เว้นระยะห่าง 2 สัปดาห์ โดยใช้สัตว์ทดลองกลุ่มเดียวกันเนื่องจากมีสัตว์ทดลองจำนวนจำกัด และชั่งน้ำหนักโคต่ออาหาร 16 ชั่วโมง ทุก 21 วัน เพื่อปรับน้ำหนักและใช้ในการคำนวณสูตรอาหารของโคให้ได้รับพลังงานและโปรตีน ตามทรีเมนต์

บันทึกการกิน ได้และสุ่มเก็บตัวอย่างอาหารเหลือไปหัวตقطอย่างทุกวัน เพื่อทำการกินได้ของวัตถุแห้งต่อวัน สุ่มเก็บตัวอย่างอาหารที่ให้และที่เหลือกินทุก 2 สัปดาห์ 3 วันคิดต่อกัน เพื่อวิเคราะห์คุณภาพ เพื่อทำการกินได้ของโภชนาะของสัตว์ทดลอง ตัวอย่างอาหารที่ให้และเหลือ นำไปวิเคราะห์ห้องปฏิบัติการโดยวิธีประมาณ (AOAC, 1990) และวิเคราะห์ส่วนประกอบของเยื่อใยโดยวิธีใช้สารฟอก (Van Soest *et al.*, 1991) นอกจากนี้ วิเคราะห์หาลิกนินโดยวิธี Acid detergent lignin (ADL) ในโตรเจนที่ไม่ละลายในสารฟอกที่เป็นกรด (Acid detergent insoluble nitrogen, ADIN) ในโตรเจนที่ไม่ละลายในสารฟอกที่เป็นกลาง (Neutral detergent insoluble nitrogen, NDIN) เพื่อหาค่าเยื่อใยที่ปราศจากโปรตีน (NDFn) วิเคราะห์ข้อมูลผลการทดลองทางสถิติโดยใช้ General linear model ของโปรแกรม SAS (SAS, 1985)

ผลและวิจารณ์

องค์ประกอบทางเคมีของอาหาร

องค์ประกอบทางเคมีของหญ้าพaspalum อุบลแห้ง ข้าวโพด และกาลตัวเหลือง แสดงใน Table 1 หญ้าพaspalum อุบลแห้ง โปรตีนหมายมีค่าสอดคล้องกับที่ Hare *et al.* (1999) ได้รายงานไว้ (10.6 เทียบกับ 5.0-11.8%) ส่วนผนังเซลล์มีค่าต่ำกว่าที่รายงานโดยเมตตา (2543) ทั้งนี้อาจขึ้นอยู่กับอายุพืช ฤดูกาล การจัดการให้ปุ๋ย น้ำ และความอุดมสมบูรณ์ของดิน

Table 1 Chemical composition of Ubon paspalum grass, ground corn and soybean meal (% DM).

Nutrient (%)	Ubon paspalum grass	Ground corn	Soybean meal
Dry matter (DM)	87.3	87.1	88.4
Crude protein (CP)	10.6	8.8	47
Total fat	1.15	4.2	0.72
Acid detergent fibre (ADF)	28.4	2.9	7.4
Neutral detergent fibre (NDF)	54.1	15.8	9.7
Total digestible nutrient (TDN)	61.9	88.1	80.6

ข้าวโพดมีปริมาณพลังงานโภชนาด้อยได้ โปรตีน และไขมันสอดคล้องกับที่ Cheva-Isarakul and Promma (2541), Promma *et al.* (2541) จินดา และคณะ (2543) รายงานไว้ แต่ปริมาณ ADF มีค่าต่ำกว่า กล่าวคือ มีพลังงานอยู่ในช่วง 79.8-88.7% โปรตีน 8.1-9.7% EE 4.8% และ ADF 4.2-5.4% ทั้งนี้ ขึ้นอยู่กับขบวนการบดและขบวนการแปรรูป การเก็บรักษา อายุการเก็บรักษา สายพันธุ์ สิ่งเจือปน และการปลูกในสภาพแวดล้อมต่างๆ

หากถัวเฉลี่ยมีพลังงานโภชนาด้อยได้สอดคล้องกับที่ จินดา และคณะ (2543) และ Promma *et al.* (2541) รายงานไว้ แต่โปรตีนขยายและ ADF มีค่าต่ำกว่า กล่าวคือ มีพลังงานอยู่ในช่วง 74.6-88.2% โปรตีน 48.1% และ ADF 13.2% โดยคุณภาพของกาถัวเฉลี่ยจะขึ้นอยู่กับกรรมวิธีในการผลิต การเก็บรักษา อายุการเก็บรักษา หรือสภาพแวดล้อมการปลูกการเก็บเกี่ยว และสิ่งเจือปน

องค์ประกอบทางเคมีของอาหารทดลองที่โโคไดรับในแต่ละกลุ่มแสดงไว้ใน Table 2 เมื่อเปรียบเทียบกับที่ NRC (1988) แนะนำให้กับโโคสาวอายุประมาณ 12 เดือน (CP = 12%, TDN = 66%, ME = 2.47 Mcal/kgDM, NDF = 25% และ ADF = 19%) พบว่าโโคไดรับโปรตีนขยายเพียงพอ (12.2, 14.4, 10.71 และ 12.7% ในโโคกลุ่มที่ 1, 2, 3 และ 4 ตามลำดับ) ทั้งนี้โโคกลุ่มที่ 2 และ 3 ไดรับสูงกว่าและต่ำกว่า NRC แนะนำ อาจเป็นเพราะระดับของพลังงานมีผลต่อการกินได้ของโปรตีน และโโคกลุ่มที่ 2 ไดรับอาหารโปรตีนสูง สำหรับพลังงาน และ NDF ไดรับสูงกว่าที่แนะนำโดย NRC ในขณะที่ ADF มีค่าประมาณ 15.8 และ 12.9% ในโโคกลุ่มที่ไดรับอาหารพลังงาน 1.0 และ 1.2 เท่าของ NRC ซึ่งไดรับต่ำกว่า NRC แนะนำ อาจเป็นเพราะ ว่าการทดลองนี้ศึกษาความต้องการพลังงานและโปรตีน ดังนั้นจะต้องปรับค่าทั้ง 2 ให้ได้ตามความต้องการของโโค และต้องใช้ข้าวโพดและการถัวเฉลี่ยในปริมาณสูง ซึ่งมีปริมาณของ ADF ต่ำ ดังจะเห็นได้จากสูตรอาหารที่มีอาหารข้นสูงขึ้นจะทำให้ ADF ค่อนข้างต่ำ อย่างไรก็ตาม ปริมาณของ NDF ที่ได้มีค่าสูงกว่า NRC แนะนำไม่น่าจะกระทบต่อรับนการหนักในกระเพาะหนัก

Table 2 Chemical composition of feed (% DM).

Treatment	1	2	3	4
Energy level (NRC) (E)	1.0	1.0	1.2	1.2
Protein level (NRC) (P)	1.0	1.2	1.0	1.2
Crude protein (CP)	12.2	14.4	10.7	12.7
Ether Extract	2.4	2.2	2.8	2.6
Acid detergent fibre (ADF)	15.8	15.9	13.1	12.7
Neutral detergent fibre (NDF)	34.3	33.7	30.9	29.8
Total digestible nutrient (TDN)	73.1	72.8	76.3	76.5
Metabolisable energy (ME, Mcal/Kg DM) ^{1/}	2.65	2.64	2.76	2.77
Net energy for maintenance (NE _M , Mcal/ kg DM) ^{2/}	1.73	1.74	1.83	1.84
Net energy for gain (NE _G , Mcal/ kg DM) ^{2/}	1.12	1.11	1.20	1.21

^{1/} ME = 0.0362 * (% TDN)

^{2/} Calculated from NRC (1988)

ปริมาณการกินได้

ปริมาณการกินได้ของวัตถุแห้งใน Table 3 พบว่า โภคภูมิที่ได้รับอาหารพลังงาน 1.2 เท่าของ NRC กินวัตถุแห้ง เปอร์เซ็นต์ปริมาณการกินได้ต่อน้ำหนักตัว และปริมาณการกินได้วัตถุแห้งต่อน้ำหนักเมทานอลิกสูงกว่าโภคภูมิที่ได้รับอาหารพลังงาน 1.0 เท่าของ NRC ($P<0.05$) มีค่าเท่ากับ 6.98 ต่อ 6.3 kg/d , 2.7 ต่อ 2.5% และ 109 ต่อ $100 \text{ g/W}^{0.75}$ ตามลำดับ สอดคล้องกับงานทดลองของ Waldo *et al.* (1997) อาจเป็นเพราะมีสัดส่วนของอาหารขั้นต่ออาหารหนานอยู่สูงกว่า จึงทำให้ชุลินทรีย์ย่อยสลายได้ดีกว่าและมีผลต่อการไหลผ่านของอาหาร ส่วน โภคภูมิที่ได้รับอาหารโปรตีนระดับ 1.0 และ 1.2 เท่าของ NRC ทำให้ปริมาณการกินได้วัตถุแห้ง เปอร์เซ็นต์ปริมาณการกินได้ต่อน้ำหนักตัว และปริมาณการกินได้วัตถุแห้งต่อน้ำหนักเมทานอลิกไม่แตกต่างกัน ($P>0.05$) ซึ่งสอดคล้องกับงานทดลองของ Bagg *et al.* (1985) Lana *et al.* (1997) และ Devant *et al.* (2000) ในขณะที่ Lammers and Heinrichs (2000) พบว่าอาหารโปรตีนต่อพลังงานสูงขึ้นทำให้เพิ่มการกินได้ นอกจากนี้ พบว่าไม่มีปฏิสัมพันธ์ของพลังงานและโปรตีนต่อปริมาณการกินได้ของวัตถุแห้ง และเปอร์เซ็นต์การกินได้ต่อน้ำหนักตัวของสัตว์ทดลอง ผลนี้สอดคล้องกับงานของ Amos (1985)

ปริมาณการกินได้ของพลังงานและโปรตีนใน Table 3 พบว่าการกินได้ของพลังงาน โภชนาช่วยอยู่ได้ในโภคภูมิที่ได้รับพลังงาน 1.0 และ 1.2 เท่าของ NRC โดยมีค่าเฉลี่ยเท่ากับ 4.6 และ 5.3 kg/head/d ($P<0.05$) ตามลำดับ ซึ่งระดับของโปรตีนไม่มีผลทำให้การกินได้ของพลังงานแตกต่างกัน ($P>0.05$) สำหรับการกินได้ของโปรตีนในโภคภูมิที่ได้รับอาหารโปรตีน 1.0 และ 1.2 เท่าของ NRC โดยมีค่าเฉลี่ยเท่ากับ 771 และ 895 kg/head/d ($P<0.05$) ตามลำดับ ซึ่งระดับของอาหารพลังงานไม่มีผลทำให้การกินได้ของโปรตีนรวมแตกต่างกัน ($P>0.05$) ในการทดลองครั้งนี้เป็นการให้กินแบบเต็มที่ การกินได้จึงขึ้นอยู่กับความต้องการพลังงานของร่างกาย โดยเฉพาะสัตว์ที่กำลังเจริญเติบโตจะต้องการพลังงานสูงกว่าสัตว์ที่โตเต็มวัยแล้ว (NRC, 1996) สัตว์จะกินอาหารเพื่อปรับสมดุลของพลังงานภายในร่างกายให้สอดคล้องกับสภาพแวดล้อม และความต้องการพลังงานของสัตว์เอง เพราะในสภาพอากาศที่ร้อน สัตว์จะกินอาหารได้ลดลง (Bernabucci *et al.*, 1999) อาจทำให้สัตว์ได้รับพลังงานไม่เพียงพอ ดังนั้น ในสภาพอากาศร้อนอย่างในประเทศไทย การให้อาหารพลังงานสูงจึงทำให้การกินได้สูงด้วย

Table 3 Dry matter TDN and CP intakes of crossbred dairy heifers receiving 1.0 and 1.2 NRC (1988) of TDN and CP

Treatment	1	2	3	4		E	P	E*P
Energy levels (NRC) (E)	1.0	1.0	1.2	1.2	SEM	-----	P	-----
Protein levels (NRC) (P)	1.0	1.2	1.0	1.2				
Dry matter (kg/cow/day)	6.38	6.23	6.98	6.97	0.31	0.008	0.72	0.75
% BW	2.5	2.5	2.7	2.7	0.05	0.000	0.98	0.91
DMI (g/W ^{0.75})	100	99	108	109	2.24	0.000	0.86	0.76
TDN (kg/cow/day)	4.68	4.54	5.33	5.33	0.24	0.001	0.69	0.69
(NRC)	1.04	1.03	1.18	1.18				
CP (g/cow/day)	785	901	756	888	39.84	0.48	0.001	0.78
(NRC)	1.02	1.20	0.97	1.15				
DMI/ADG (kg/kg)	7.7	8.0	8.1	7.0	0.26	0.55	0.39	0.13
ADG/DMI(g/kg)	133	129	127	148	11.72	0.45	0.33	0.15

ประสิทธิภาพการใช้อาหาร (Table 3) พบว่าระดับของอาหารพลังงานและโปรตีนไม่มีผลต่อประสิทธิภาพการใช้อาหาร ซึ่งผลการทดลองนี้สอดคล้องกับงานทดลองของ Bagg *et al.* (1985) Lana *et al.* (1997) และ Devant *et al.* (2000) ที่ว่าระดับของอาหารโปรตีนไม่มีผลต่อประสิทธิภาพการใช้อาหาร แต่ Lammers and Heinrichs (2000) พบว่าการเพิ่มระดับโปรตีนทำให้ประสิทธิภาพการใช้อาหารดีขึ้น

การเจริญเติบโต

ระดับของอาหารพลังงานและโปรตีนไม่มีผลต่อน้ำหนักตัวเฉลี่ยตลอดการทดลองของโโค (Table 4) แต่มีผลต่ออัตราการเจริญเติบโตต่อวัน โดยโโคกลุ่มที่ได้รับอาหารพลังงาน 1.2 และ 1.0 เท่าของ NRC มีอัตราการเจริญเติบโตแตกต่างกัน ($P<0.05$) ที่มีค่าเฉลี่ยเท่ากับ 0.93 และ 0.81 กิโลกรัม/วัน ตามลำดับ ซึ่งสอดคล้องกับรายงานของ Daccarett *et al.* (1993) ส่วนระดับของอาหารโปรตีน 1.0 และ 1.2 เท่าของ NRC มีผลต่ออัตราการเจริญเติบโตของโโคไม่แตกต่างกัน ($P>0.05$) โดยมีค่าเท่ากับ 0.85 และ 0.90 kg/d ตามลำดับ ผลที่ได้สอดคล้องกับงานทดลองของ Devant *et al.* (2000) และ Lana *et al.* (1997) อาจเป็นเพราะว่าถ้าโโคกินพลังงานสูงกว่าการใช้เพื่อค่ารังชีพ จะทำให้มีการสะสมเป็นไขมันในเนื้อเยื่อเพิ่มขึ้น ในขณะที่โปรตีนจะมีการสะสมในสัดส่วนที่คงที่ตามอายุของสัตว์ (Waldo *et al.*, 1997, Van Amburgh *et al.*, 1998a และ Fox *et al.*, 1999) ดังนั้นการกินอาหารพลังงานสูงจึงทำให้อัตราการเจริญเติบโตเพิ่มสูงขึ้น

Table 4 Performances of crossbred dairy heifers fed 1.0 and 1.2 NRC (1988) of TDN and CP.

Treatment	1	2	3	4	E	P	E*P
Energy levels (NRC) (E)	1.0	1.0	1.2	1.2			
Protein levels (NRC) (P)	1.0	1.2	1.0	1.2	SEM	-----	P -----
Initial empty body weight, kg	238	232	239	235	10.53	0.85	0.51
Average empty body weight, kg	257	250	258	257	10.91	0.61	0.62
Average daily gain (kg/cow/day)	0.83	0.79	0.86	1.00	0.06	0.021	0.27
							0.066

ความต้องการพลังงานของโโคสาว

จากผลการทดลอง พบว่าความต้องการพลังงานของโโคทดลองในกลุ่มที่ศึกษานี้สูงกว่า NRC (1988) แนะนำในทุก Treatment ดังแสดงใน Table 5

Table 5 Estimated energy requirement and energy intake of crossbred dairy heifers and adjusted factors for calculation of energy requirement compared with original factors used by NRC (1988).

Treatment	1	2	3	4
Energy levels (NRC) (E)	1.0	1.0	1.2	1.2
Protein levels (NRC) (P)	1.0	1.2	1.0	1.2
Intakes (Mcal/d)				
Net energy for maintenance (NE _M)	5.86	5.74	6.68	5.94
Net energy for gain (NE _G)	3.35	3.23	4.00	4.51
Requirement (Mcal/d)				
Net energy for maintenance (NE _M)	5.81	5.66	5.76	5.79
Net energy for gain (NE _G)	3.33	3.19	3.45	4.39
Factors				
Net energy for maintenance (NE _M)	0.0862	0.0869	0.0997	0.887
Net energy for gain (NE _G)	0.0458	0.0456	0.0543	0.0469

Requirement-Intakes (Mcal/d)

Net energy for maintenance (NE _M)	0.09	0.16	1.74	0.36
Net energy for gain (NE _G)	0.02	0.04	0.55	0.12
Requirement/Intakes	0.99	0.99	0.86	0.97

พลังงานเพื่อ darmชีพที่โภคินได้สูงกว่า NRC อาจเป็นเพราะว่า ในประเทศไทยมีสภาพอากาศที่ร้อน สัตว์จะต้องมีการปรับตัว ปรับอุณหภูมิของร่างกายให้คงที่อยู่สมอ และความร้อนที่เกิดขึ้นจากการกิจกรรมต่างๆ ภายในร่างกายต้องเป็นภาระให้กับร่างกายที่จะต้องกำจัดออกไป และอาจต้องการพลังงานสูงกว่าเพื่อรับน้ำหนักความร้อนออกนอกร่างกายเมื่อสภาพแวดล้อมมีอุณหภูมิสูงอยู่แล้ว นอกจากนี้คุณภาพอาหารสัตว์ โดยเฉพาะพืชอาหารสัตว์ซึ่งมีคุณภาพดีกว่าในเขตตอนอุ่น ทำให้สัตว์ต้องใช้พลังงานในการหมักย่อยสูงกว่า และในกระบวนการหมักย่อยก็จะเกิดความร้อนและก้ามมีเทนสูงกว่า ทำให้มีการสูญเสียพลังงานส่วนนี้ไปด้วย ในส่วนของพลังงานเพื่อการเจริญเติบโตที่ต้องการสูงกว่า NRC นั้น อาจเป็นเพราะโภคิดลองที่ใช้เป็นโภคูอกผสม และมีอัตราการเจริญเสียเบรียบเปรียบเทียบกับโภพันธุ์แท้ที่เลี้ยงในต่างประเทศแล้วมักจะเจริญเติบโตต่างกว่าและน้ำหนักโภตเติมวัยก็น้อยกว่าด้วย จึงทำให้ต้องการพลังงานเพื่อเจริญเติบโตที่สูงกว่า (NRC, 1996) จาก Table 5 พบว่าโภมีความต้องการพลังงานสูงที่เพื่อการเจริญเติบโตและเพื่อการ darmชีพสูงกว่า NRC (1988) แนะนำ นั่นแสดงว่า factor ที่ใช้ในการคำนวณหาค่าพลังงานสูงที่ต้องสูงกว่าด้วย ซึ่งค่า factor ใช้คำนวณหาค่าพลังงานสูงที่เพื่อการ darmชีพที่ NRC แนะนำเป็น 0.086 แต่จากการทดลอง สามารถปรับค่า factor โดยมีค่าเฉลี่ยเท่ากับ 0.0904 ส่วนค่า factor สำหรับคำนวณหาค่าพลังงานสูงที่เพื่อการเจริญเติบโตที่ NRC แนะนำ คือ 0.045 สำหรับโภสวา small breeds แต่จากการทดลองพบว่าสามารถปรับค่า factor โดยมีค่าเฉลี่ยเท่ากับ 0.0482 ซึ่งสอดคล้องกับงานทดลองของ Cheva-Isarakul and Promma (2541) ที่พบว่าโภสวาลูกผสมมีความต้องการพลังงานเพื่อเจริญเติบโตสูงกว่า NRC นอกจากนี้ประสิทธิภาพการใช้พลังงานพบว่า โภกลุ่มที่ได้รับอาหารพลังงาน 1.0 เท่าของ NRC จะมีประสิทธิภาพการใช้พลังงานสูงกว่า (0.99 เทียบกับ 0.92)

Table 6 Estimated Protein requirement and protein intakes of crossbred dairy heifers.

Treatment	1	2	3	4
Energy levels (NRC) (E)	1.0	1.0	1.2	1.2
Protein levels (NRC) (P)	1.0	1.2	1.0	1.2
Intakes (g/d)				
Crude protein (CP)	785	901	756	888
Rumen degradable protein (RDP)	416	475	402	473
Undegradable ruminal protein (UDP)	487	561	467	548
Absorbed protein (AP)	437	535	396	502
Requirement (g/d)				
Crude protein (CP)	616	628	583	575
Rumen degradable protein (RDP)	416	475	402	473
Undegradable ruminal protein (UDP)	292	247	268	188
Absorbed protein (AP)	473	471	446	423
Intake-Requirement (g/d)				
Crude protein (CP)	169	273	173	313
Undegradable ruminal protein (UDP)	195	314	199	360
Absorbed protein (AP)	-36	64	-50	79

ความต้องการโปรตีนของโโคคسا

จากผลการทดลอง (Table 6) พบว่าความต้องการโปรตีนสูงกว่าที่ NRC (1988) แนะนำในทุกกลุ่มทดลอง เพราะโโคกินอาหาร โปรตีนได้สูงกว่าความต้องการของโโคที่คำนวณได้จาก NRC ประมาณ 38.6 เปอร์เซ็นต์ ซึ่งผลอันนี้ สอดคล้องกับงานทดลองของ Cheva-Isarakul and Promma (2541) ในโโคกลุ่มที่ 2 และ 4 กินโปรตีนได้สูงกว่ามาก อาจเป็นเพราะว่าได้รับอาหาร โปรตีนสูง 1.2 เท่าของ NRC แต่จากการทดลองกินได้จริงเพียง 1.18 เท่าของ NRC ทั้งนี้อาจเป็นเพราะเกินความต้องการของโโค และความต้องการของ โปรตีนที่อยู่กับพลังงานด้วย ดังจะเห็นได้จากเมื่อระดับ พลังงานสูงขึ้น การกินได้ของ โปรตีนทุกชนิดมีแนวโน้มลดลง หากพิจารณาความต้องการ โปรตีนรวมและ โปรตีนคุณค่าที่คำนวณตาม NRC พบว่าระดับของพลังงานมีผลต่อความต้องการ โปรตีน โดยที่พลังงาน 1.0 เท่าของ NRC โโค ต้องการ โปรตีนรวมและ โปรตีนคุณค่าที่คำนวณเป็น 843 และ 486 กรัมต่อวัน ถ้าโโคได้รับอาหารพลังงาน 1.2 เท่าของ NRC มีค่าเท่ากับ 822 และ 449 กรัมต่อวัน ตามลำดับ เพราะเมื่อโโคได้รับอาหารพลังงานสูง โโคจะมีการสะสมเป็นไขมันสูงขึ้นด้วย ทำให้การสะสม โปรตีนมีสัดส่วนต่ำลง (Fox *et al.*, 1999) ในขณะเดียวกัน กลุ่มโโคที่ได้รับอาหาร โปรตีนต่ำจะทำให้โโคได้รับ โปรตีนคุณค่าที่ไม่เพียงพอ กับความต้องการซึ่งขาดประมาณ 10.4 เปอร์เซ็นต์ ในขณะที่โโคกลุ่มที่ได้รับอาหาร โปรตีนสูงกลับได้รับ โปรตีนคุณค่าที่เพียงพอ กับความต้องการประมาณ 16.2 เปอร์เซ็นต์ อาจเป็น เพราะว่า โปรตีนคุณค่าของสัตว์ มากจากส่องเหลือง คือ จาก โปรตีนไหล่ผ่าน และจากจุลินทรีย์ที่ผ่านลงไปที่ลำไส้เล็ก และ โโคกลุ่มที่ได้รับอาหาร โปรตีนต่ำ จะมี โปรตีนไหล่ผ่านน้อยกว่า โโคกลุ่มที่ได้รับอาหาร โปรตีนสูง

สรุป

จากผลการทดลองให้อาหารที่มีพลังงานและ โปรตีนเท่าและสูงเกินกว่าที่ NRC แนะนำไว้ คือ 1.0 หรือ 1.2 เท่าของ NRC (1988; 100 หรือ 120% NRC) พบว่า ระดับพลังงานที่ให้มีผลต่อปริมาณการกินได้ของวัตถุแห้งและ อัตราการเจริญเติบโตของโโคทดลอง ส่วนระดับ โปรตีนที่ให้มีผลทำให้ปริมาณการกินได้ของวัตถุแห้งและอัตราการเจริญเติบโตไม่แตกต่างกัน

ความต้องการพลังงานของโโคساลูกผสม พบว่า โโคมีความต้องการพลังงานเพื่อการดำรงชีพและเพื่อการเจริญเติบโตสูงกว่า NRC แนะนำประมาณ 5 เปอร์เซ็นต์ โดยจากการทดลองได้ค่า factor ที่ใช้คำนวณพลังงานเพื่อ ดำรงชีพและเพื่อการเจริญเติบโตมีค่าเท่ากับ 0.0904 และสำหรับพลังงานเพื่อการเจริญเติบโตมีค่าเฉลี่ยเท่ากับ 0.0482

ความต้องการ โปรตีนของโโคสาลูกผสม พบว่า โโคมีความต้องการ โปรตีนรวมและ โปรตีนที่ไม่ย่อยสลายในกระเพาะหม้อจะมีค่าสูงกว่าที่ NRC แนะนำ ประมาณ 38.6 และ 95.0 เปอร์เซ็นต์

ข้อเสนอแนะ

ในการทดลองครั้งนี้ จำเป็นต้องแบ่งการทดลองออกเป็นสองช่วง เพราะเนื่องจากว่า สัตว์ทดลองมีจำนวนจำกัด ฉะนั้น ถ้าหากเป็นไปได้ การทดลองควรที่จะดำเนินการภายใต้สภาพแวดล้อมเดียวกันเพื่อลดความแปรปรวนที่อาจเกิดขึ้นจากสภาพแวดล้อม หากมีการศึกษาครั้งต่อไปในลักษณะนี้อีก ควรที่จะมีการเสริมสารปรับน้ำฟีฟอร์ในสูตรอาหารด้วย เพราะ โโคได้รับอาหารที่คล้ายจ่ายค่อนข้างสูง เนื่องจากว่า กำหนดให้อาหารที่มีโภชนะสูงกว่า NRC แนะนำ ซึ่งอาจจะมีผลต่อกระบวนการการหมักในกระเพาะหมัก

คำขอบคุณ

ขอขอบคุณคณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี ที่ให้ความอนุเคราะห์สถานที่ สัตว์ทดลอง เครื่องมือ และอุปกรณ์ต่างๆในการดำเนินการ ขอขอบคุณเจ้าหน้าที่ที่เกี่ยวข้องทุกๆท่าน และขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัยที่ให้ทุนในการทำการทดลอง

เอกสารอ้างอิง

jinida สนิทวงศ์ฯ, เนลิมพล บุญเจือ และสมจิตร อินทรอมมี. 2543. การใช้กาเกเนื้อในเมล็ดปาล์มเป็นแหล่งโปรตีน ในสูตรอาหารสำหรับโครีดนม. ใน รายงานผลงานวิจัยประจำปี 2543, กองอาหารสัตว์, หน้า 120-129.

เมตตา แสงคำ. 2543. อิทธิพลของน้ำท่วมขัง วิธีการปลูก ความสูง และความถี่ในการตัดต่อผลผลิต และคุณภาพหญ้าอุบลพาสฟาร์ม. วิทยานิพนธ์วิทยาศาสตร์บัณฑิต (เกษตรศาสตร์), มหาวิทยาลัยเกษตรศาสตร์, 120 หน้า.

สมคิด พรหมนา, พัชรินทร์ จีนกล้า และธนชัย อินทรตุล. 2533. การพัฒนาโปรแกรมคอมพิวเตอร์สัดส่วนอาหาร XRATION สำหรับโคนม. รายงานผลงานวิจัยสาขาผลิตปศุสัตว์ประจำปี 2533. กรมปศุสัตว์.

สมชาย จันทร์ผ่องแสง. 2541. การเลี้ยงโคนม. สำนักพิมพ์แห่งจุฬาลงกรณ์มหาวิทยาลัย, กรุงเทพฯ.

Amos, H. E. 1986. Influence of dietary protein degradability and energy concentration on growth of heifers and steers and intraruminal protein metabolism. *Journal of Dairy Science*. 69: 2099-2110.

AOAC. 1990. *Official Methods of Analysis*, 15th Ed. AOAC, Virginia.

Bagg, J. G., Grieve, D. G., Burton, J. H. and Stone, J. B. 1985. Effects of protein on growth of Holstein heifers calves at 2 to 10 months. *Journal of Dairy Science*. 68: 2929-2959.

Bernabucci, U., Bani, P., Ronchi, B., Lacetera, N. and Nardone, A. 1999. Influence of short- and long-term exposure to a hot environment on rumen passage rate and diet digestibility by Friesian heifers. *Journal of Dairy Science*. 82 (5): 967-973.

Butler, W. R. 1998. Effect of protein nutrition on ovarian and uterine physiology in dairy cattle. *Journal of Dairy Science*. 81: 2533-2539.

Capuco, A. V., Smith, J. J., Waldo, D. R. and Rexroad, Jr. C. E. 1995. Influence of prepubertal dietary regimen on mammary growth of Holstein heifers. *Journal of Dairy Science*. 78 (12): 2709-2725.

Cheva-Isarakul, B. and Promma, S. 2541. The use of multinutrient block supplemented to urea-treated rice straw base diet for dairy heifers and the preliminary estimation of nutrient requirements. 1: 27-43. ใน ผลงานวิจัยการหาความต้องการโภชนาชองโคนมไทย. สำนักงานกองทุนสนับสนุนการวิจัย (สกอ.) มหาวิทยาลัยเชียงใหม่.

Daccarett, M. G., Bortone, E. J., Isbell, D. E. and Morrill, J. L. 1993. Performance of Holstein heifers fed 100% or more of National Research Council requirements. *Journal of Dairy Science*. 76: 606-614.

Devant, M., Ferret, A., Gasa, J., Calsamiglia, S. and Casals, R. 2000. Effect of protein concentration and degradability on performance, ruminal fermentation and nitrogen metabolism in rapidly growing heifers fed high-concentrate diets from 100 to 230 kg body weight. *Journal of Animal Science*. 78: 1667-1676.

Dewhurst, R. J., Moorby, J. M., Dhanoa, M. S., Evans, R.T. and Fisher, W.J. 2000. Effects of altering energy and protein supply to dairy cows during the dry period. 1. Intake, body condition and milk production. *Journal of Dairy Science*. 83 (8): 1782-1794.

Fox, D. G., Van Amburgh, M. E. and Tylutki, T. P. 1999. Predicting requirement for growth, maturity, and body reserves in dairy cattle. *Journal of Dairy Science*. 82 (9): 1968-1977.

Garcia-Bojalil, C. M., Staples, C. R., Risco, C.A., Savio, J. D. and Thatcher, W. W. 1998. Protein degradability and calcium salts of long-chain fatty acids in the diets of lactating dairy cows: reproductive responses. *Journal of Dairy Science*. 81: 1385-1395.

Hare, M.D., Suriyajantratong, W., Tatsapong, P., Kaewkunya, C., Wongpichet, K. and Thummasaeng, K. 1999. Effect of nitrogen on production of *Paspalum atratum* on seasonally wet soils in north-east Thailand. *Tropical Grasslands*. 33: 207-213.

Hoffman, P. C., Brehm, N. M., Price, S. G. and Prill-Adams, A. 1996. Effect of accelerated postpubertal growth and early calving on lactation performance of primiparous Holstein heifers. *Journal of Dairy Science*. 79: 2024-2031.

Lalman, D. L., Williams, J. E., Hess, B. W., Thomas, M. G. and Keisler, D. H. 2000. Effect of dietary energy on milk production and metabolic hormones in thin, primiparous beef heifers. *Journal of Animal Science*. 78: 530-538.

Lammers, B. P. and Heinrichs, A. J. 2000. The response of altering the ratio of dietary protein to energy on growth, feed efficiency, and mammary development in rapidly growing prepubertal heifers. *Journal of Dairy Science*. 83(5): 977-983.

Lammers, B. P., Heinrichs, A. J. and Kensinger, R. S. 1999a. The effects of accelerate growth rates and estrogen implants in prepubertal Holstein heifers on growth, feed efficiency, and blood parameters. *Journal of Dairy Science*. 82(8): 1746-1752.

Lammers, B. P., Heinrichs, A. J. and Kensinger, R. S. 1999b. The effects of accelerate growth rates and estrogen implants in prepubertal Holstein heifers on estimates of mammary development and subsequent reproduction and milk production. *Journal of Dairy Science*. 82 (8): 1753-1764.

Lana, R. P., Fox, D. G., Russell, J. B. and Perey, T. C. 1997. Influence of monensin on Holstein steers fed high-concentrate diet containing soybean meal or urea. *Journal of Animal Science*. 75: 2571-2579.

Moorby, J. M., Dewhurst, R. J., Tweed, J. K. S., Dhanoa, M.S. and Beck, N. F. G. 2000. Effects of altering energy and protein supply to dairy cows during the dry period. 2. Method and hormonal responses. *Journal of Dairy Science*. 83(8): 1795-1805.

National Research Council. 1988. Nutrient Requirements of Dairy Cattle. 6th Ed. National Academic Press, Washington DC. 157 p.

National Research Council. (1996). Nutrient Requirement of Beef Cattle. 7th Ed. Update. National Academy, Washington DC.

Promma, S., Jeenklum, P. and Indratula, T. 2541. Production responses of crossbred Holstein milking cows fed urea-treated rice straw at three different fibre levels and the preliminary estimation of nutrient requirements. 1: 43-55. ใน ผลงานวิจัยการหาความต้องการโภชนาะของโคนมไทย. สำนักงานกองทุนสนับสนุนการวิจัย (สกอ.) มหาวิทยาลัยเชียงใหม่.

Radcliff, R. P., Vandehaar, M. J., Skidmore, A. L., Chapin, L. T., Radket, B. R. Lloyd, J. W., Stanisiewsli, E. P. and Tucler, H. A. 1997. Effect of diet ad bovine somatotropin on heifers growth and mammary development. *Journal of Dairy Science*. 80 (9): 1996-2003.

SAS. 1985. SAS User's Guid : statistics. Version 5 edition. SAS institute Inc, Cary, NC.

Staples, C. R., Burke, J. M. and Thatcher, W. W. 1998. Influence of supplemental fats on reproductive tissues and performance of lactating cows. *Journal of Dairy Science*. 81 (3): 856-871.

Stelwagen, K. and Grieve, D. G. 1990. Effect of plane of nutrition on growth and mammary gland development in Holstein heifers. *Journal of Dairy Science*. 73: 2333-2341.

Van Amburgh, M. E., Fox, D. G., Galton, D. M., Bauman, D. E. and Chasel, L. E. 1998a. Evaluation of national research council and cornell net carbohydrate and protein systems for predicting requirement of Holstein heifers. *Journal of Dairy Science*. 81 (2): 509-526.

Van amburgh, M. E., Galton, D. M., Bauman, D. E., Everett, R. W., Fox, Do G., Chase, L. E. and Erb, H. N. 1998b. Effect of three prepubertal body growth rates on performance of Holstein heifers during first lactation. *Journal of Dairy Science*. 81 (2): 527-538.

Van Soest, P. J., Robertson, J. B. and Lewis, B. A. 1991. Methods for dietary fibre, neutral detergent fibre and nonstarch polysaccharide in relation to animal nutrition. *Journal of Dairy Science*. 74 (10): 3583-3597.

Waldo, D. R., Capuco, A. V. and Rexroad, Jr., C. E. 1998. Milk production of Holstein heifers fed either alfalfa or corn silage diets at two rates of daily gain. *Journal of Dairy Science*. 81 (3): 756-764.

Waldo, D. R., Tyrrell, H. F., Capuco, A. V. and Rexroad, Jr, C. E. 1997. Components of growth on Holstein heifers fed either alfalfa or corn silage diets to produce two dairy gains. *Journal of Dairy Science*. 80 (8): 1674 – 1684.

Westwood, C. T., Leant, I. J., Garvin, J. K. and Wynn, P. C. 2000. Effects of genetic merit and varying dietary protein degradability on lactating dairy cows. *Journal of Dairy Science*. 83: 2926-2940.

Appendix 13

Management of forage legumes in Ubon paspalum (*Paspalum atratum*)

(Strip establishment of Ubon paspalum and forage legumes)

Ina Erika Gruben
2001

**Management of forage legumes in Ubon paspalum (*Paspalum atratum*)
(Strip establishment of Ubon paspalum and forage legumes)**

Thesis from:	Ina Erika Gruben 26.06.1972, Leer
1. Expert and adviser: Faculty:	Prof. Dr. agr. habil. Renate Bockholt Institut fuer umweltgerechten Pflanzenbau Fachgebiet Gruenland und Futterbau Justus-von-Liebig-Weg 6 18059 Rostock, Germany
2. Expert and adviser: Faculty:	Dr. Michael Hare Faculty of Agriculture, Ubon Ratchathani University, Warin Chamrab, Ubon Ratchathani 34190 Thailand
3. Expert and adviser: Faculty:	Prof. Dr. agr.habil. Horst Paetzold Institut fuer umweltgerechten Pflanzenbau Fachgebiet Gruenland und Futterbau Justus-von-Liebig-Weg 6 18059 Rostock, Germany

Abstract

Farmers in the Northeast of Thailand are mostly small farmholders and their income is very low. Dairy farming is a good alternative to improve their regular income. Dairying has been expanding in the Northeast and improved pastures are needed for high quality and quantity fodder. Cows are yarded nearly all year round and fed with freshly-cut forage (cut and carry system) and concentrate supplements. Pasture land must be used very efficiently since land for pasture is a limiting factor. Small holder farmers need most of their land for growing rice for self-sufficiency. The soils in the Northeast of Thailand are very poor and waterlogged in the wet season and dry in the dry season and therefore pasture establishment is very difficult and most of the grass species grown are low in quality. Large amounts of money therefore have to be spent on concentrate feeding for milk production. Currently, Ubon paspalum is recommended for growing on these seasonally wet and seasonally dry soils. But the crude protein of Ubon paspalum is lower than other improved grasses. Legumes would be a cheaper alternative to improve the feed value of Ubon paspalum pastures when mixed together, but until now no management system has been found that will maintain legumes in mixtures with Ubon paspalum.

This research was carried out at Ubon Ratchathani University (15°N) in the Northeast of Thailand. Nine different forage legumes, of which three were annual, Cowpea (*Vigna unguiculata*), Jackbean (*Canavalia ensiformis*) and Lablab (*Lablab purpureus*), three bi-annual, Cavalcade (*Centrosema pascuorum*), Llanos macro (*Macroptilium gracile* cv. Maldonado) and Lee joint vetch (*Aeschynomene americana*) and three were perennial, Tha Phra stylo (*Stylosanthes guianensis*, Stylo 184), Puero (*Puero phaseoloides*) and Calopo (*Calopogonium mucunoides*) and 1 control treatment (Ubon paspalum with no legume), were strip sown in alternate rows with Ubon paspalum on infertile soils.

The aims of these studies were to look at which legume is able to improve the protein content of Ubon paspalum if mixed and fed together and which of the legumes tolerates waterlogging best in the first wet season. Furthermore would this management system enable legumes to be fully utilised and persist with Ubon paspalum.

The results from the first wet season indicated that Ubon paspalum produced significantly more dry matter yield in pure swards than in swards strip sown with legumes. Furthermore the crude protein levels in Ubon paspalum were very low due to the poor soils.

Most of the legumes in this study produced acceptable crude protein levels but they did not produce high dry matter yields. Therefore the advantages in producing a high crude protein yield (kg/ha) of legume were not achieved in this study. Cavalcade grown together with Ubon paspalum showed the highest dry matter yield and produced more yields of crude protein (kg/ha) than pure Ubon paspalum plots. Ubon/Puero and Ubon/Tha Phra stylo also produced forage of a high quality, however all the bi-annual and perennial legumes had almost disappeared by the fourth cut and it is not sure if they are going to regrow in the following wet season from fallen seed.

Annual legumes, Lablab, Cowpea and Jackbean, were dominant at the first cut and when strip sown with Ubon paspalum produced the highest, total sward dry matter yield. But after the first cut the annual legumes started to die out and had all disappeared by the third cut.

The results from this study shows that it is still very difficult to maintain tropical legumes in mixtures with tropical grasses. Growth potential is different between grasses

and legumes. Grasses are C₄ plants and therefore grow faster than legumes, which are C₃ plants.

The optimum cutting height and cutting interval of Ubon paspalum and legumes are also different. This was mainly the reason why the legumes disappeared quickly from the plots. The sowing rate in this study was very high and lead to intraspecific plant competition for spacing. The very wet year 2000 was also not favorable for legume growth.

It is concluded, that this management system of strip sowing legumes with Ubon paspalum is not recommended for smallholder dairy farmers in Thailand since legumes became very sparse and did not produce high dry matter yields and disappeared completely from the plots after the fourth cut.

***Paspalum atratum* - from a wild native plant in Brazil to commercial forage seed production in Thailand in 10 years.**

M.D. Hare, W. Suriyajantratong, K. Wongpichet and K. Thummasaeng.

Introduction

In village pasture systems in northeast Thailand, pastures are usually grown on the poorest soils, as more fertile soils are used for growing food and cash crops. Many of these poor soils, especially in the east of this region, become seasonally waterlogged during the wet season and it is extremely difficult to get forages to grow and persist on these soils. The humic gley podzolic soils are largely structureless with low nutrient-holding capacity and high bulk densities. They are also very low in organic matter (0.05-0.07%) and nitrogen (0.02-0.05%) (Hare *et al.*, 1999a).

Recent research has shown that *Paspalum atratum* is well suited to these waterlogged acid soils which become seasonally dry in northeast Thailand (Hare *et al.*, 1999a; 1999b) and in similar soils in Florida (Kalmbacher *et al.*, 1997a; 1997b; 1997c). In a 6-month wet season *P. atratum* produced over 30 t/ha DM when fertilised every 30-40 days (Hare *et al.*, 1999b) and when 20 kg/ha N were applied DM yields increased by more than 100% (Hare *et al.*, 1999d). In comparison to other improved tropical grasses, *P. atratum* has relatively low crude protein content but frequent cutting (Hare *et al.*, 2001b; Kalmbacher *et al.*, 1997a) and frequent nitrogen applications (Hare *et al.*, 1999d; Kalmbacher and Martin, 1999) will maximize forage quality and palatability.

Origin

P. atratum is a wild species native to the states of Mato Grosso do Sul, Goias and Minas Gerais in central-western Brazil (Quarin *et al.*, 1997). An accession of this wild species, BRA 009610, was originally collected near the village of Terenos, Mato Grosso do Sul State, Brazil, by Dr. J. Valls in April 1986 (J. Valls pers. com.). Small amounts of seed were subsequently distributed to research institutions in Brazil, Argentina, Colombia, Florida and the Philippines.

In November 1994 Ubon Ratchathani University received 100 grams of BRA 009610 from Dr. Werner Stur of the Forages for Smallholders Project based at IRRI, Philippines (a project funded by AusAID and managed by CSIRO (Australia) and CIAT (Colombia)). Fifty grams of this seed were used for the initial evaluation research (Hare *et al.*, 1999a) and the other 50 grams were used for seed multiplication (Hare *et al.*, 2001a).

Following 3 years of evaluation work in northeast Thailand, *P. atratum* was consistently found to be the best grass on seasonally wet-seasonally dry soils and in 1997 it was released for forage use by Ubon Ratchathani University as cultivar Ubon (Hare *et al.*, 1999a). It has also been released in Florida as cultivar Suerte at a paspalum (Kalmbacher *et al.*, 1997c), in Australia as cultivar Hi-Gane (Itoch and Ferguson, 1999), in Argentina as cultivar Camba FCA (J. Valls pers. com.) and in the Philippines as cultivar Terenos (Horne and Stur,

Faculty of Agriculture, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
e-mail: Michael@agri.ubu.ac.th

1999).

Morphological description

Ubon paspalum is an apomictic tetraploid that can be grown in close proximity to other accessions for seed production without risk of contamination through pollen (Quarin *et al.*, 1997). It is a large leafy bunch grass and if left uncut, leaf canopies can grow up to one metre high and stems and inflorescences to over two metres high (Hare *et al.*, 1999c). The erect leaf blades can reach 50 cm in length and 3-4 cm in width. The lower leaf margins are slightly hairy and the older leaf margins are very sharp (Hare *et al.*, 1997). Each inflorescence has between 6 and 12 racemes with 100 and 180 spikelets per raceme (Hare *et al.*, 1999c). The seeds are reddish brown and shiny. There are between 200,000 and 350,000 seeds per kg.

It was originally thought that Suerte and Hi-Gane were from a different accession, cultivar Pantaneira, collected by Mr. Rayman (Kalmbacher *et al.*, 1997c) and catalogued as BRA-018996. However, these two cultivars, along with Ubon paspalum, have recently been examined in plots and by pressed leave and stem samples by Dr. Bert Gorf (formerly CIAT plant scientist) and have been identified as all of the same accession, BRA-009610. The leaf blades of Pantaneira are densely pubescent while the leaf blades of all BRA-009610 cultivars are glabrous to only slightly hairy. In addition, Pantaneira is less productive and less palatable than BRA-009610.

Ubon paspalum seed production research

Initial seed production problems

When we started our research in 1995 we found that Ubon paspalum established easily from seed but we knew very little about its seed production performance. In a preliminary observation, a small 1000 m² plot which had been hand planted with seedlings in May 1995 from the original 50 grams of seed, was cut to ground level in early August 1995 when the plants were more than 2 m high and starting to lodge heavily, even though no inflorescences had emerged. Following defoliation, even though the plants grew very well over the next 3 months and received good rainfall and increasing exposure to short day lengths, none of the Ubon paspalum plants produced inflorescences.

In the following year, 1996, we did not defoliate these plots during the wet season and, at the time of inflorescence emergence in September, most plants were lodging heavily. We had to support the plants with wooden stakes and tie the inflorescences to the stakes with wire in order to hand harvest seed.

We also encountered further problems in 1997 when we contracted farmers to produce Ubon paspalum seed. Many farmers delayed planting their fields until later in the wet season, which has been the traditional time to plant *Brachiaria ruziensis* and *Stylosanthes hamata* seed crops (Hare and Phaikaew, 1999). Late sown crops produced very little or no seed at all (Hare *et al.*, 2001a).

Problem solving research studies

Methods of sowing

Seed crops of Ubon paspalum established by sowing seed produced no seed at all in the first year of establishment (Table 1). Planting rooted tillers or transplanting 2 month old seedlings grown in plastic bags, into the field in May produced the highest seed yields of first-year established plants (Hare *et al.*, 2001a), though not as high as 2nd year plants.

Table 1 Effect of methods of sowing on Ubon paspalum seed yields.

Treatment	Seed yield (kg/ha)
Seed sown 1 st year	0
Tillers planted 1 st year	132 a ¹
Plastic bag seedlings 1 st year	91 a
2 nd year plants	171 a

¹ Within columns, means followed by different letters are significantly different ($P<0.05$) by Duncan's Multiple Range Test.

Time of planting

Seed crops planted with rooted tillers at the beginning of May produced 132 kg/ha seed 5 months after sowing in one trial (Table 1) and 331 kg/ha seed in a second trial (Table 2). Planting tillers in June and July severely reduced seed yields (Hare *et al.*, 2001a).

Table 2. Effect of date of planting rooted tillers on Ubon paspalum seed yields in the first year of establishment.

Planting date	Seed yield (kg/ha)
May 7	331 a ¹
May 21	274 a
June 4	115 b
June 18	69 b
July 2	70 b
July 16	25 b

¹ Within columns, means followed by different letters are significantly different ($P<0.05$) by Duncan's Multiple Range Test.

Closing date

Cutting seed crops of Ubon paspalum in August and September produced little or no seed at all (Table 3). Cutting and closing crops in June produced the best seed yields as crops closed in May were more susceptible to lodging (Hare *et al.*, 1999c).

Table 3. Effect of time of final closing cut on seed yield (kg/ha) of Ubon paspalum.

Month of final closing cut	Trial 1	Trial 2
May	65.6	-
June	88.8	127
July	43.4	127
August	13.6	43
September	0	-
LSD ($P<0.05$)	48.0	59.6

Methods of hand harvesting seed

Hand knocking mature Ubon paspalum seed from seed heads into bags every day produced 230 kg/ha, more than twice the amount produced by threshing or sweating seed

heads (Table 4) (Hare *et al.*, 1999c). Farmers using the hand knocking method averaged 600 kg/ha (Hare *et al.*, 2001a) and when seed heads were covered with nylon bags, 1108 kg/ha of seed were produced on a research station (Phaikaew *et al.*, 2001).

Table 4. Effect of different seed harvesting methods on seed yields of Ubon paspalum.

Harvesting methods	Seed yield (kg/ha)
Knocking	230 a ¹
Cut and thresh	104 b
Cut, sweat 2 days, thresh	119 b
Cut, sweat 4 days, thresh	131 b

¹ Within columns, means followed by different letters are significantly different ($P<0.05$) by Duncan's Multiple Range Test.

Site appears to have a significant impact on Ubon paspalum seed production. The university site where Ubon paspalum has been successfully grown for forage (Hare *et al.*, 1999a; 1999b) has consistently produced lower seed yields in trials than yields produced by farmers and at other research stations. Drainage, trees and method of harvesting all appear to influence seed yields (Hare *et al.*, 2001a).

Juvenility and long-short day requirement for flowering

In a plant growth chamber study on flowering, Ubon paspalum was confirmed as a long-short day plant exhibiting a quantitative response to long days followed by a qualitative response to short days (Hare *et al.*, 2001c). Plants must be at least 60 days of age before the summer solstice (June 22) in order to flower in September explaining why crops sown with seed or planted late do not flower profusely in the year of establishment (Tables 1 & 2). Plants cut close to ground level after the summer solstice also do not receive enough long days to flower well and produce good seed yields in the same year (Table 3). The study also confirmed that no juvenile phase exists in Ubon paspalum (Hare *et al.*, 2001c).

Smallholder farmer seed production

Successful forage seed production in Thailand has hinged on smallholder farmers hand-harvesting seed of *B. ruziziensis* and *S. hamata* (Hare, 1993; Hare and Phaikaew, 1999). In 1996, after observing the outstanding growth of Ubon paspalum in initial evaluation trials (Hare *et al.*, 1999a) we realised that there would be a future demand for seed. We contracted one experienced smallholder farmer who had previously grown forage seed crops for the Department of Livestock Development. In May 1996, we gave the farmer rooted tillers of Ubon paspalum dug from one year old plants at the university which she hand planted in a 50 x 50 cm pattern in a 1400 m² field. In September 1996 she harvested 47.5 kg of seed, equivalent to 340 kg/ha.

Neighbouring farmers in the same village saw her success and observed that seed production of Ubon paspalum appeared to be easier than seed production of *B. ruziziensis* and *S. hamata* which they had grown for several years. In March 1997, we contracted 20 farmers, including the first farmer, to grow Ubon paspalum seed. The farmers each received 300 grams of seed in March 1997 and were instructed to plant the seed in nurseries and transplant strong plants to their field in May-June. Each farmer was contracted to grow a field not

exceeding 1600 m². Fields planted in May and June averaged 315 kg/ha and 65 kg/ha, respectively, whereas fields planted in July produced no seed (Hare *et al.*, 2001a). Harvesting from the same fields in 1998 and 1999 produced mean seed yields of 632 kg/ha and 651 kg/ha, respectively (Hare *et al.*, 2001a). The method of hand knocking mature seed from tied seed heads into bags every day produces high seed yields and followed by slow drying in the shade and cleaning and winnowing on cane trays produces seed with a purity of 99% and an average germination of 80%.

Our focus at Ubon Ratchathani University is primarily research and so we have limited our production to what we believe we can sell annually. We have now set a quota of 100 kg per farmer and in 2000 we purchased 2000 kg from 20 farmers. Ubon Ratchathani University is endeavouring to provide a real and sustainable market for Ubon paspalum seed, that does not depend on government funding. We have set up a revolving fund that pays the farmers promptly 100 baht/kg (US\$2.50) on the day of seed purchase. The seed is packaged into attractively labeled 2 kg and 4 kg plastic bags and stored for at least 5 months to break embryo dormancy (Hare *et al.*, 1999c) before being sold for 160 baht/kg (US\$4.00). Following our success, the Department of Livestock Development has rapidly increased Ubon paspalum seed production on research stations and on smallholder farms, and in 1998, 1999 and 2000 produced 21, 28 and 38 tonnes, respectively (C. Phaikaew pers. com.).

Even though Ubon paspalum seed production is well synchronised, with flowering occurring predictably every year in September and hand harvesting taking place over 7-10 days in early October, seed production is not without its difficulties. Heavy thunderstorms frequently occur during the September-October flowering and harvesting period causing seed to shed. Foraging birds may also dramatically reduce seed yields. Farmers have set up nets to capture the birds for sale or installed bird-scaring devices such as scarecrows and tins filled with stones. Some farmers sleep in their fields in order to chase away birds which usually forage in the early morning.

Conclusion

The development of Ubon paspalum from being a wild native plant in Brazil to a commercial forage in Thailand has been rapid. It only took a little over 10 years for this wild accession to become a proven forage crop in Thailand which shows the potential impact forage germplasm collection can have on the future agriculture needs of mankind.

Acknowledgements

We thank the Thailand Research Fund (TRF) for providing financial support for these research programmes and the Faculty of Agriculture, Ubon Ratchathani University for research facilities.

References

Hare, M.D. (1993) Development of tropical pasture seed production in Northeast Thailand - two decades of progress. *Journal of Applied Seed Production*, 11, 93-96.

Hare, M.D., Saengkham, M., Thummasaeng, K., Wongpichet, K., Suriyantrantrong, W., Booncharern, P. and Phaikaew, C. (1997) Ubon paspalum (*Paspalum atratum* Swallen), a new grass for waterlogged soils in Northeast Thailand. *Ubon Ratchathani University Journal*, 1, 1-12.

Hare, M.D. and Phaikaew C. (1999) Forage seed production in Northeast Thailand : A case history. In: Loch, D.S. and Ferguson, J.E. (eds) *Forage Seed Production Volume 2: Tropical and Subtropical Species*. pp. 435-443. (CAB International: Oxon, UK).

Hare, M.D., Thummasaeng, K., Suriyantrantrong, W., Wongpichet, K., Saengkham, M., Tatsapong, P., Kaewkunya, C. and Booncharern, P. (1999a) Pasture grass and legume evaluation on seasonally waterlogged and seasonally dry soils in north-east Thailand. *Tropical Grasslands*, 33, 65-74.

Hare, M.D., Booncharern, P., Tatsapong, P., Wongpichet, K., Kaewkunya, C. and Thummasaeng, K. (1999b) Performance of para grass (*Brachiaria mutica*) and Ubon paspalum (*Paspalum atratum*) on seasonally wet soils in Thailand. *Tropical Grasslands*, 33, 75-81.

Hare, M.D., Wongpichet, K., Tatsapong, P., Narksombat, S. and Saengkham, M. (1999c) Method of seed harvest, closing date and height of closing cut affect seed yield and seed yield components in *Paspalum atratum*. *Tropical Grasslands*, 33, 82-90.

Hare, M.D., Suriyantrantrong, W., Tatsapong, P., Kaewkunya, C., Wongpichet, K. and Thummasaeng, K. (1999d) Effect of nitrogen on production of *Paspalum atratum* on seasonally wet soils in north-east Thailand. *Tropical Grasslands*, 33, 207-213.

Hare, M.D., Kaewkunya, C., Tatsapong, P., Wongpichet, K., Thummasaeng, K. and Suriyantrantrong, W. (2001a) Method and time of establishing *Paspalum atratum* seed crops in Thailand. *Tropical Grasslands*, 35, (in press).

Hare, M.D., Saengkham, M., Kaewkunya, C., Tudsri, S., Suriyantrantrong, W., Thummasaeng, K. and Wongpichet, K. (2001b) Effect of cutting on yield and quality of *Paspalum atratum* in Thailand. *Tropical Grasslands*, 35, (accepted).

Hare, M.D., Wongpichet, K., Saengkham, M., Thummasaeng, K., and Suriyantrantrong, W. (2001c) Juvenility and long-short day requirement in relation to flowering of *Paspalum atratum* in Thailand. *Tropical Grasslands*, 35, (submitted).

Horne, P.M. and Stur, W.W. (1999) Developing forage technologies with smallholder farmers - how to select the best varieties to offer farmers in Southeast Asia. *ACIAR Monograph 62*. (ACIAR Canberra, ACT, Australia).

Kalmbacher, R.S., Mullahey, J.J., Martin, F.G. and Kretschmer, A.E.Jr (1997a) Effect of clipping on yield and nutritive value of 'Suerte' *Paspalum atratum*. *Agronomy Journal*, 89, 476-481.

Kalmbacher, R.S., Pate, F.M., Martin, F.G. and Kretschmer, A.E.Jr (1997b) Supplementation of diets of weaned steers grazing 'Suerte' *Paspalum atratum*. *Sci and Crop Science Society of Florida Proceedings*, 56, 38-40.

Kalmbacher, R.S., Brown, W.F., Colvin, D.L., Dunavin, L.S., Kretschmer, A.E.Jr, Martin, F.G., Mullahey, J.J. and Reebigl, J.E. (1997c) 'Suerte' atr paspalum. Its management and utilization. *University of Florida, Agricultural Experimental Station, Circular S-397*.

Kalmbacher, R.S. and Martin, F.G. (1999) Effect of N rate and time of application on atra paspalum. *Tropical Grasslands*, 33, 214-221.

Loch, D.S. and Ferguson, J.E. (1999) Tropical and subtropical seed production: an overview. In: Loch, D.S. and Ferguson, J.E. (eds) *Forage Seed Production Volume 2: Tropical and Subtropical Species*. pp. 1-40. (CAB International: Oxon, UK).

Phaikaew, C., Pholsen, P., Tudsri, S., Tsuzuki, E., Numaguchi, H. and Ishii, Y. (2001) Maximising seed yield and seed quality of *Paspalum atratum* from different methods of harvesting. *Tropical Grasslands*, 35, (in press).

Quarin, C.L., Valls J.F.M. and Urbani, M.H. (1997) Cytological and reproductive behaviour of *Paspalum atratum*, a promising forage grass for the tropics. *Tropical Grasslands*, 31, 114-116.

Editors Column

Dear Readers,

Apologies for the late arrival of this edition of the newsletter. Deadlines for reports, grant submissions and other bits of administration as well as some research work have delayed the newsletter going to the printer. We are now back on track and I hope the next issue will be ready in October.

This issue of the newsletter includes two papers that were originally submitted to JASP. Refereed papers will not be published in the newsletter in the future. Following the demise of JASP the newsletter may be the only source of communication within the group (other options are being discussed). I would hope that members of the group could send an abstract of any "seedly" paper they publish. This will help to disseminate the information that we are publishing and flag up publications that we do not routinely read.

I would like to ask everyone who reads this newsletter to think about whether they have a report, article, a bit of news or an upcoming event that they would like to publicise and that could that be included in the next or future newsletters. Remember- it is YOUR newsletter.

The demise of JASP means that the newsletter will be self-financing. Please complete the enclosed membership form at the end of the newsletter and send a cheque as soon as possible. The deadline to be included on the mailing list for the next issue of the newsletter will be the end of September.

Please, please subscribe.

PS. We still require a new logo!

5TH INTERNATIONAL HERBAGE SEED CONFERENCE - 2003

The 5th International Herbage Seed Conference will be held on the Gatton Campus of the University of Queensland. This is in the heart of the Lockyer Valley, an intensive farming region a little over an hour's drive from Brisbane International Airport. Gatton is the main centre for the University's seed technology courses, and is strategically located close to most of the subtropical seed houses in Australia. The Conference will start with registration and welcoming activities on Sunday 23 November 2003. Because this is during the University summer vacation, on-Campus accommodation will be available to house Conference delegates, either in single rooms in one of the halls of residence or in a limited number of motel-style units. The morning program over the next 3 days (24-26 November) will be given over to the presentation of delegates' papers either in oral or in poster form. During the afternoon sessions, short trips will be made to a range of field sites through south-east Queensland.

In response to the many requests from North American and European members, the post-Conference tour (27-28 Novem-

ber) highlights the varied production temperate seeds in South Australia. Because Australia is a big country, this will involve travelling more than 1500 km by air to Adelaide and Mt Gambier to begin the tour. Over the next day and a half, delegates will be able to see well-advanced grass seed crops (fescue, ryegrass, etc), lucerne (alfalfa), vegetable and other seed crops (e.g. cauliflower, cabbage, kale, carrot, onion). Visits will also be made to commercial premises and seed cleaning plants. Close by is the famous Coonawarra wine-producing region, and an opportunity for nocturnal sampling of some of their high quality material in replicated group trials.

On 29 November, delegates can continue their travels from Mt Gambier with flights either to Adelaide or to Melbourne, depending on their preference.

DON LOCH & KEVIN BOYCE

Appendix 15

Forage Plants for Dairy Cows in Thailand: Old Friends-New Faces

M. D. Hare

Forage Specialist, Faculty of Agriculture, Ubon Ratchathani University

Abstract

When planting forage plants, it is important to define the environment where the plants are to be sown and to know the range of adaptation of each plant. The environment description should include soil and climatic conditions and also farmer-controlled factors such as fertiliser inputs, grazing pressure (number of cows per rai), system of management (cut and carry or grazing) and the management skills of the farmer. Smallholder dairy farmers in Thailand have a choice of many different grasses and legumes to grow on their farms. Grasses and legumes should be planted separately for ease of management and for maximum production. For farms on acid, upland, well drained soils, the following species are recommended: signal grass, brizantha, Jarra digit, Tha Phra stylo, hamata stylo, siratro and specialist crops of Cavalcade if land is available. On soils that are waterlogged from time to time, Ubon paspalum, Splenda setaria and specialist areas of para grass (ponded areas) and llanos macro are recommended. On fertile, well drained soils, guinea grass, napier grass, ruzi grass and specialist areas of leucaena and lablab are recommended species, and in the future burgundy bean and Endurance lablab if they prove suitable. Signal grass would be the best grass to grow under trees along with small areas of green panic on better soils.

Introduction

This paper is about forage plants to feed dairy cows in Thailand. I want people to start thinking seriously that Thailand can indeed produce milk from forage plants without the need to feed cows extra concentrate supplements. This is the challenge facing dairy farmers and the dairy industry in Thailand. If there is not a serious effort to increase forage production in Thailand and drastically reduce the dairy cow reliance on concentrate supplements, the dairy industry will become less and less profitable and will enter a serious crisis in the next few years.

This is because many other countries can produce milk a lot cheaper than Thailand currently can. For example, New Zealand farmers are paid 6-7 baht per kg of fresh milk and each dairy farmer makes a net profit of 1-1.5 million baht per year after tax. With reduced tariffs, WTO regulations and bilateral trade agreements between Thailand and other countries, milk prices will probably decrease rather than increase. If Thailand wants other countries to reduce tariffs on goods produced here (cars, textiles, electronic goods etc) then those countries will want Thailand to reduce tariffs on agricultural goods like milk powder. Already Australia and New Zealand have asked Thailand about this. Therefore in order for Thai dairy products to compete, the prices paid to farmers may have to come down and the farmers will have to reduce their operating costs to become economically viable. Currently their greatest farm costs are in the purchase of concentrate supplements.

Healthy land-healthy cows

We have an obligation to future generations to keep farm land productive at a level that can be sustained indefinitely. We must pay particular attention to the soil. If we have healthy forage plants growing on top of the soil then the soil profile below should also be healthy.

A problem in Thailand is that many dairy farms are on very, very poor soils. In Australia soil levels of 0.08% for total nitrogen and 10 ppm for available phosphorus represent the minimum levels for dairy farming soils. In northeast Thailand many dairy farms are on soils with soil levels of 0.03% for total nitrogen and 4 ppm for available phosphorus. The best soils in northeast Thailand with levels of 0.1% for total nitrogen and 35 ppm for available phosphorus are used for cropping and horticulture. Nitrogen and phosphorus are the nutrients required in the largest quantities by forage plants and are also critical for animal growth and metabolism. If fertilisers are not applied the forage plants will have very low crude protein levels, <6%, and milk production from dairy cows will be low. At Ubon Ratchathani University our research has shown that nitrogen fertiliser must be applied every 30 days in the wet season to maintain crude protein levels above 7% (Hare *et al.* 1999).

The easiest solution would be to recommend that all dairy farms be only on the good soils where forage plants will be productive and high in crude protein. But this is unrealistic as farmers on poor soils want to milk dairy cows. We therefore must look at which plants can produce large quantities of quality forage on poor soils without a lot of chemical fertiliser. We know that most small holder dairy farmers will not spent a lot of money on chemical fertilisers.

We must plant both grasses and legumes, though I would recommend as monocultures as mixed pastures generally have not been successful in Thailand. Grasses will repair soil structure and legumes will provide free nitrogen. Grasses will provide the carbohydrates and legumes the protein. Dairy cows are like people in that they need a range of different foods in their diet. Dependence on a single species invites risk. In Brazil too much signal grass was grown and large areas were infected with spittle bug. We all know about psyllid and leucaena and anthracnose and stylos.

Healthy cows-healthy milk

The rich countries have invented plant hormones and genetically modified plants (GMO plants) but more and more people in these rich countries will not eat GMO food and they will pay more money to eat organic foods. With the recent mad-cow disease outbreaks, which have probably been caused by animal-protein concentrates, people are also demanding that milk and milk products be produced from cows only feed forage plants. Many Europeans want to buy organic milk and organic yogurt. In Austria, 10% of agriculture is now organic and it is heavily subsidized by the government. Plant-based concentrates may have GMO plants in the mixtures and animal-based concentrates may have a risk of mad-cow disease. In Thailand, even if our cows are not feed animal-based concentrates there is a very good chance that the plant-protein concentrates have GMO plants in the mixtures because of the high importation of soybeans from the USA into Thailand.

Milk also has to be clean and good on all fronts. In the future as consumers get more demanding they will not buy milk contaminated by inappropriate feeding or from cows exposed to chemicals and dirty, unsanitary conditions. We must be kind to our

cows. Too many cows in Thailand are kept in muddy yards under hot iron roofs. Friesian cows are from cool-temperate countries where they are either grazed on clean fresh pastures and if inside, in clean well-washed cool sheds. We can not expect cows to produce quality milk when they are kept under hot, poor conditions.

In Thailand too much attention has been paid on the output of milk per cow and not enough attention has been made to economic dairy farm viability and output per rai. Do we need to have cows producing 20 litres/cow/day when we have to feed them a lot of concentrates? Wouldn't it be better to have cows producing 7-8 litres/cow/day and feed only fresh grass and fresh legumes.

However, another problem in Thailand is that many dairy farmers do not have enough land to grow all the forage for their cows. They have to buy in extra forage, cut it from roadsides or waste areas, or lease extra land for forage production. For these farmers it is easier to buy concentrate supplements even if they are expensive.

Selecting the right forage plants

When planting forage plants, it is important to define the environment where the plants are to be sown and to know the range of adaptation of each plant. The environment description should include soil and climatic conditions and also farmer-controlled factors such as fertiliser inputs, grazing pressure (number of cows per rai), system of management (cut and carry or grazing) and the management skills of the farmer.

In addition, in Thailand it is important to know whether the farmer is a full-time farmer or a businessman who is dairy farming as a kind of hobby with only labourers looking after the cows. The latter usually do not have the skills to manage long-term pastures.

In this paper I will discuss forage plants that have been planted a long time in Thailand as "**Old Friends**" and plants that are only just been introduced or are still in the evaluation stage as "**New Faces**".

"Old Friends"

Grasses

Guinea grass (*Panicum maximum*)

Purple guinea is the most popular guinea grass grown in Thailand but some farmers still grow small areas of Hamil guinea. Common guinea is ingenious in many parts of central and northern Thailand, growing along roadsides and in orchard areas where it is cut and carried to dairy cows.

Purple guinea is a very productive, high quality grass for dairy cows. It is suitable for cut and carry forage and for silage making. However, it requires high soil fertility to be productive and regular applications of fertiliser to maintain good growth. It grows best on well drained fertile soils. It does not tolerate waterlogging, long dry seasons and frequent hard grazing. It is a grass that requires good management skills and high inputs to remain productive in long-term pastures. It is not a grass for poor sandy soils.

Purple guinea can be grown from tillers or seed. Seed is available from the Department of Livestock Development.

Napier grass (*Pennisetum purpureum*)

Common napier and King napier (*P. purpureum x P. glaucum*) are very tall grasses suited to cut and carry production. Mott napier or dwarf napier has many more tillers and is a lot leafier than common napier. It can be both cut and grazed.

Napier grasses are the most productive grasses in Thailand, producing high quality palatable forage. But they only grow well on good soils with fertiliser. They grow very poorly on poor soils without fertiliser and they do not tolerate waterlogging or dry conditions. They require very careful management to maintain long-term production. On good soils with fertiliser in central Thailand, dairy farmers have found napier to be very productive. Napier must be irrigated in the dry season. Napier must be well-managed and cut frequently (every 30-40 days) to produce leafy swards. They can quickly become stemmy and lose quality if left uncut longer than 40 days in the wet season.

Napier grass is nearly always planted by tillers.

Ruzi grass (*Brachiaria ruziziensis*)

Ruzi grass is the most commonly grown grass in Thailand, mainly because seed is readily available from the Department of Livestock Development. It is a nutritious, good quality grass readily eaten by dairy cows.

Ruzi grows best on well-drained, fertile soils in high rainfall areas. It does not grow well on poor soils, waterlogged soils and in areas with a long dry season. Many farmers in northeast Thailand treat ruzi as an annual because it dies over the long dry season. On poor soils without fertiliser it quickly becomes weak and can die out within two years. Smallholder dairy farmers have found it difficult to maintain long-term ruzi pastures in northeast Thailand.

Because of the large quantities of seed produced ruzi grass will continue to be an important forage for dairy farmers in Thailand but it requires careful management to maintain long-term production.

Para grass (*Brachiaria mutica*)

Para grass remains one of the best grasses for waterlogged, ponded areas. It is now indigenous along streams and canals in central Thailand where it is a source of daily cut and carry forage for dairy farmers. The farmers in central Thailand recognize the quality of para grass for their dairy cows even if they do not grow it on their own land.

The limitations of para grass are its low tolerance to dry conditions, dislike of hard grazing or frequent low cutting, and if left uncut for long periods it quickly becomes very stemmy and unpalatable.

However, even though para grass may not be planted by dairy farmers, it will remain an important forage cut from around wet areas, ponds, streams and canals in many parts of Thailand where it has become naturalized.

Green panic (*Panicum maximum* var. *trichoglume*)

Green panic has been forgotten by many dairy farmers in Thailand. It is a very productive grass, producing high quality forage and in northern Queensland and Hawaii is a very important dairy farm forage grass. It grows well on both fertile and poor soils and responds well to fertiliser. It is moderately tolerant of both drought and waterlogging. It is one of the better grasses for growing under trees because of its shade tolerance.

Many smallholder dairy farmers in Thailand have trees or orchard areas on their farms where they also grow grass for their cows as cut and carry forage. Green panic fits into orchard forage production well because of its shade tolerance. For this reason, Green panic production should be encouraged more in Thailand. Seed production is relatively easy with 2-3 harvests in the wet season. Green panic can also be grown from tillers.

Rhodes grass (*Chloris gayana*)

Rhodes grass is another species that seems to have been forgotten by dairy farmers in Thailand. There are several cultivars but Callide or giant rhodes grass, a tetraploid, is the most suitable for dairy farming farmers in Thailand.

Rhodes grass can grow on a range of soils from heavy clays to sandy loams. It will tolerate fire, a long dry season, and some waterlogging. It is also the most tolerant grass to salty soils of the species I will discuss in this paper.

Rhodes grass can be hard grazed and cut frequently to maintain the nutritive value which will decline rapidly if it becomes stemmy or flowers. I believe that rhodes grass should be promoted more among dairy farms which have salty soils.

Callide rhodes grass produces seed at the end of the wet season at a similar time to ruzi grass.

Legumes

Verano stylo (*Stylosanthes hamata* cv. Verano)

Verano stylo or hamata stylo, is still the most persistent forage legume in Thailand. It grows on all kinds of soils and along roadsides and in waste areas. Because of its heavy seed set, hamata stylo regrows each year and contributes greatly to long-term forage production.

It is best grown in pure swards because in mixed grass pastures that are fertilised, the grasses tend to dominate. Hamata stylo is still one of the best legumes to grow on sandy soils. Some dairy farmers find that hamata stylo does not produce enough dry matter when compared to some of the grasses but on sandy, poor soils it produces more dry matter than most species. Hamata stylo is mainly grazed but dairy farmers who know that it is a high protein legume selectively cut it from along roadsides.

Seed is readily available from the Department of Livestock Development (DLD).

Leucaena (*Leucaena leucocephala*)

Leucaena is the most productive legume growing on dairy farms in tropical Australia where nearly 500,000 rai of the subspecies *L. leucocephala* var. *glabrata* cultivar Taramba have been planted. Even though common leucaena (*L. leucocephala* var. *leucocephala*) is found throughout Thailand very little stands of leucaena are planted by dairy farmers. This is surprising as leucaena is one of the highest crude protein forage plants.

The main problem with forage production of leucaena in Thailand is its poor performance on acid, sandy, low fertility soils. It also does not like waterlogging. From seed, leucaena grows very slowly compared to other legumes and grasses. The establishment and management of leucaena for smallholder dairy farmers in Thailand requires more study.

However, if farmers are able to vegetatively hand plant pangola grass tillers and millions of tillers of vetiver grass in Thailand every year, then there should be no reason why a large scale extension programme on planting leucaena plants could not develop. The Department of Land Development use their centres to produce millions of vetiver grass plants every year. The Department of Livestock Development could similarly use the forage centres to produce millions of leucaena plants.

There should be more promotion in planting leucaena for high protein dairy cow forage in Thailand. No other legume currently in use in Thailand has as high a crude protein content as leucaena.

Siratro (*Macroptilium atropurpureum*)

Even though Siratro has become a forgotten legume in Thailand it is still a very useful legume for dairy farmers on upland, well-drained, sandy loam soils. It is a very palatable and nutritious legume and has the ability to fix a lot of nitrogen.

It has a wide area of adaptation and following wide spread oversowing 25 years ago by the DLD, it is now indigenous along roadsides and in many undergrazed areas in Thailand. At Ubon Ratchathani University it is found along roadsides and around buildings.

One of the problems with siratro is that its yield declines quickly under frequent cutting and it does not tolerate long periods of heavy grazing. It is also susceptible to a range of leaf blights, rust, root rot and aphid and insect attacks. Aztec siratro has been bred for rust resistance and seed is available in small amounts from Ubon Ratchathani University.

Under controlled rotational grazing or careful cutting siratro is still a very valuable legume for dairy farmers to grow in Thailand.

Centro (*Centrosema pubescens*)

Centro is another very useful legume that has become forgotten by many dairy farmers in Thailand. It prefers medium to high rainfall areas but we have observed it growing very well over the dry season with little moisture. It also is one of the better legumes for growing under trees because of its shade tolerance. It will tolerate low-fertility acid soils and will grow on much wetter soils than stylos and siratro.

It seems to persist for many years in well-managed grazed pastures but under frequent cut and carry systems it is not very stable. I would recommend centro to dairy farmers whose farms are on wet soils or who have a lot of trees. Centro is a good legume to grow on areas where cow shed effluent is disposed. In Thailand centro seed is available in small quantities from the DLD. New lines of centro are currently being evaluated by the DLD.

“New Faces”

Grasses

Ubon paspalum (*Paspalum atratum*)

Ubon paspalum is the most persistent and productive grass on wet waterlogged soils that dry out during the dry season. This ability to tolerate both wet and dry soil conditions makes it a versatile grass for dairy farms on former rice paddy land. It grows well on acid infertile soils. However, it will die out on very sandy soils that lose moisture quickly during the dry season. It is not recommended for upland sandy soils in low rainfall areas.

Ubon paspalum is well liked by many small holder dairy farmers in northeast Thailand because it is easy to grow from both seed and tillers; easy to cut because it is an upright plant; can be either grazed or cut; regrows very rapidly after each cut and is persistent. Its main draw back is that it is relatively low in crude protein compared to other tropical grasses unless it is grown on fertile soils or is frequently fertilised when grown on poor soils. Dairy farmers growing Ubon paspalum will have to grow plots of forage legumes to mix with the grass to increase the forage quality.

Seed is readily available from Ubon Ratchathani University and the DLD.

Signal grass (*Brachiaria decumbens*)

Signal grass has long been recognised as the best grass for growing in northeast Thailand because of its persistent to heavy grazing and frequent cutting and its tolerance to long dry periods. In most areas it will remain green throughout the dry season. Signal grass grows better than ruzi in dry conditions; it grows better than ruzi in waterlogged areas; it grows better than ruzi under heavy grazing; it grows better than ruzi on poor soils with low rates of fertiliser. It also grows very well under trees.

Seed production has been the major drawback in promoting signal grass in Thailand. Whereas ruzi grass seed is easy to harvest, signal grass seed production is very difficult, producing low seed yields over 3-4 months during the wet season and what seed is harvested is usually very low in germination.

Ubon Ratchathani University has recently made a break through with signal grass seed production and located an area where good yields of high germination seed is possible of an accession called Warin signal grass. Small quantities of Warin signal grass will be available from Ubon Ratchathani University next year.

Brizantha (*Brachiaria brizantha*)

Brizantha is the most widely grown tropical grass in Brazil. It is generally more productive than signal grass and is resistant to diseases and pests. Like signal grass, brizantha is drought tolerant, grows under trees and can be either cut or grazed. It is a very persistent grass and if managed well, pastures should last for decades.

Brizantha has been studied in Thailand in the past but because of poor seed production, pastures have not been established by farmers. However, the pasture research team at Ubon Ratchathani University are now establishing plants of the best seed producing brizantha cultivar from Brazil, CIAT 26110, and if all goes well, seed of this cultivar will be available to Thai dairy farmers in 3 years time.

I believe that both signal grass and brizantha within the next 5 years will become the most important grasses in Thailand for smallholder dairy farmers on poor dry, upland, sandy soils. The challenge to us is to produce enough seed of high quality to meet the demand.

Pangola grass (*Digitaria eriantha*)

Pangola grass is considered one of the higher quality tropical grasses with crude protein levels ranging from 8-14%. It has excellent palatability when young and is well liked by dairy cows in Thailand. Milk yields of 6000 kg/ha/year have been recorded. Pangola grass will tolerate periods of waterlogging but not flooding. In Thailand it is not be very productive during the dry season but it will survive.

Pangola grass will grow on a range of soil types but it performs better on fertile soils. It responses very well to nitrogen fertiliser. Currently pangola grass is being promoted by the DLD and CP company as a grass for sale to dairy farmers by commercial grass farmers. Both fresh grass and hay are produced and sold.

The main problem with pangola grass is its lack of seed production. All pangola grass pastures in Thailand have to be planted vegetatively. This limits its expansion. The two seed producing cultivars in Australia, Advance and Premier, appear to be not as productive and vigorous as the non-seeding genotype used in Thailand. Another problem encountered overseas is the susceptibility of pangola grass to rust, stunt virus and insect attack. I am not sure if the genotype used in Thailand has similar disease and pest problems

Well managed pangola pastures that are fertilised and irrigated can be cut frequently or hard grazed. Pastures will last about 5 years after which the pastures can become very dense and turf-bound and lose productivity. Pangola grass cuttings can be obtained from DLD centres in some provinces and from the CP company.

Jarra digit grass (*Digitaria milanjiana*)

Jarra digit grass is similar to pangola grass but is a species with considerable potential in Thailand because it produces seed. It is a high quality grass with crude protein levels ranging from 9-18% depending on soil type and management. Friesian cows grazing Jarra digit without supplementation have produced milk yields of 16.4 kg/day.

Jarra digit is a very palatable grass and in recent trials in Australia it is grazed in preference to pangola grass. Jarra digit also establishes more rapidly than pangola grass and can be established from either seed or cuttings. Jarra digit will tolerate hard grazing and frequent cutting.

This persistent grass is not susceptible to rust and pests like pangola grass. At Ubon Ratchathani University it will tolerate short periods of waterlogging and will survive long dry periods but will not be as productive as either signal grass or brizantha during the dry season.

Small quantities of rootstock can be obtained from Ubon Ratchathani University and seed may be available in the future.

Splenda setaria (*Setaria sphacelata* var. *splendida*)

Splenda setaria is one of the most palatable tropical grasses in Thailand and in mixed swards, dairy cows graze Splenda setaria first before grazing other species. Splenda setaria is more leafy and less stemmy than the older setaria cultivars used previously in Thailand. Splenda setaria is tolerant to long periods of waterlogging and even short periods of flooding. It has drought tolerance, though not as much as signal grass and brizantha.

At Ubon Ratchathani University Splenda setaria pastures are still productive after 5 years, surviving both waterlogging and drought. Splenda setaria grows better on low lying loam soils than on upland sandy soils and prefers higher rainfall areas.

We have produced good quality seed at the university and small amounts are available for sale.

Legumes

Tha Phra stylo (*Stylosanthes guianensis*)

Tha Phra stylo (CIAT 184) is one of the most productive perennial legumes for upland, sandy, acid soils in Thailand. It is high in crude protein (18-25%) and it stays green throughout the dry season, providing high quality forage in times of dry season forage storage. It is a valuable protein bank.

Tha Phra stylo under intense frequent cutting and hard grazing usually only persists for 2-3 years. Under less frequent cutting and lax grazing Tha Phra stylo pastures will remain productive for up to 10 years. A good management strategy for dairy farmers is to cut Tha Phra stylo lightly in the wet season to keep it leafy rather than stemmy and then use it to feed dairy cows in times of dry season feed storage. It is the best high quality dry season forage for low fertility, acid, sandy soils in Thailand. It grows where leucaena will not grow.

Currently, Tha Phra stylo is resistant to anthracnose but it may one day become susceptible. Ubon Ratchathani University is evaluating another stylo which has greater resistance to anthracnose and small quantities of seed of this cultivar, Ubon stylo, are available for sale.

Cavalcade (*Centrosema pascuorum*)

Cavalcade is an annual twinning legume which is being promoted by the DLD in Thailand for hay production. However, hay production during the growing season (wet season) is difficult and so hay must be produced in November and December. If there is an abrupt early ending of the rains in October some Cavalcade hay fields can very quickly dry off and lose dry matter yields.

Some dairy farmers plant Cavalcade for fresh forage production. Cavalcade, unlike the stylos, retains its leaves following cutting and so maintains its quality even if it has been cut for several days. It grows on a range of soil types but it does not tolerate long periods of waterlogging.

Cavalcade is a specialist forage legume crop that dairy farmers will grow to provide protein rich wet season forage or hay when cut early in the dry season. Seed is available from the DLD.

Llanos macro (*Macroptilium gracile* cv. Maldonado)

Llanos macro is a short-lived (1-3 years), twinning legume that grows very vigorously in the first season. It has been the most productive legume in the first year of establishment on waterlogged soils at Ubon Ratchathani University. A key to its survival from year to year is to stop cutting and grazing from December to February to let it flower and set seed. Following the first rains at the beginning of the wet season it will reestablish from fallen seed.

Llanos macro is suited to wet low lying areas. Dairy farmers who have small areas of such land will find that Llanos macro will grow very well on such sites whereas other legumes will not survive waterlogging. We have also found that Llanos macro grows well together with Tha Phra stylo on more elevated sites. Small quantities of seed are available from Ubon Ratchathani University.

Lablab (*Lablab purpureus*)

Lablab is an annual legume which provides high quality, protein-rich forage. Even though it is an “old friend” I am calling it a “new face” because it still is not used widely by smallholder dairy farmers in Thailand. The main limitations of lablab are that requires good soils to be productive, does not grow well on sandy, acid, low fertility soils, does not always recover well after the first cut, does not tolerate waterlogging and has a short life (4-7 months).

However, dairy farmers on good soils in Thailand may plant small areas of lablab as protein-rich forage for the wet season.

A new perennial lablab cultivar, cv. Endurance, has recently been developed by the CSIRO in Australia. This cultivar is slightly less productive than the annual lablab but it can persist under cutting or grazing for at least 2 years. This is good news for Thai dairy farmers currently growing lablab because now Endurance lablab will produce high quality dry season production especially under irrigation.

Ubon Ratchathani University is starting a small research programme to evaluate cv. Endurance. Seed multiplication will be included in this programme.

Burgundy bean (*Macroptilium bracteatum*)

Burgundy bean is another new perennial legume from Australia that may be suitable for dairy farmers on better soils in Thailand. Burgundy bean has similar flowers to siratro. Burgundy bean is a very palatable legume that is persistent (2-3 years) and produces high seed yields. It has the potential to built up soil fertility.

Ubon Ratchathani University will start evaluating Burgundy bean in small plots this wet season.

Conclusion

Smalholder dairy farmers in Thailand have a choice of many different grasses and legumes to grow on their farms. Grasses and legumes should be planted separately for ease of management and for maximum production. For farms on acid, upland, well drained soils, I would recommend signal grass, brizantha, Jarra digit, Tha Phra stylo, hamata stylo, siratro and specialist crops of Cavalcade if land is available. On soils that are waterlogged from time to time, I would recommend Ubon paspalum, Splenda setaria and specialist areas of para grass (ponded areas) and llanos macro. On fertile, well drained soils, I would recommend guinea grass, napier grass, ruzi grass and specialist areas of leucaena and lablab and in the future burgundy bean and Endurance lablab if they prove suitable. Signal grass would be the best grass to grow under trees with small areas of green panic.

Pasture research generally receives less research money than other agricultural crops and is usually the last to be financed. We therefore must do the best we can within limited budgets. However, we must not stand still. New pests and diseases do not stand still and they can adapt to attack plants we thought were resistant. Tropical forage plants are still in the pioneering experimental stage of development, and it is too early to expect them to be stable against all insects and diseases. That is why we need a greater diversity of forage plants in Thailand.

But we have to be very careful in what we introduce, release and promote to trusting farmers. We do not want more weeds like communism grass.

It is the right time to vigorously promote forage production for dairy farmers in Thailand and to try and reduce their dependence on supplementary concentrate feeding. For healthy cows and clean milk production in Thailand we as forage specialists are in the right place at the right time.

Appendix 16

การศึกษาความต้องการพลังงานและโปรตีนของโคนมที่ได้รับหญ้าพาลัมอุบลหมัก

เป็นอาหารหลัก

The Study of Energy and Protein Requirements of Dairy Cows Fed Ubon Paspalum Grass Silage as a Basal Roughage

กัจวัน ธรรมแสง¹ สุรัช สุวรรณลี¹ วรพงษ์ สุริยจันทร์ทอง¹ ไม่เคิด แซร์¹

วันชัย อินทิแสง¹ วิรัช บุญสาร¹ และอารีรัตน์ ลุนพา¹

Kungwan Thummasaeng¹, Surachai Suwanlee¹, Worapong Suriyajantratong¹, Michael Hare¹,
Wanchai Inthisaeng¹, Wirat Boonsarn¹ and Areerat Lunpha¹

บทคัดย่อ

งานทดลองนี้มีวัตถุประสงค์เพื่อการศึกษาความต้องการพลังงานและโปรตีนของโคนมลูกผสมขาวดำในประเทศไทย โดยมี 2 ปัจจัยหลักที่ทำการศึกษาคือพลังงาน (Total Digestible Nutrient, TDN) และโปรตีน (Crude Protein, CP) แต่ละปัจจัยมี 2 ระดับที่ 1.0 และ 1.2 เท่าของค่าแนะนำจากค่าแนะนำมาตรฐานการให้อาหารโคนมประเทศไทยและอเมริกา Nation Research Council (NRC, 1988) อาหารทดลองมี 4 ทรีทเม้นต์ (TDN : CP) ดังนี้ T1 (1.0:1.0), T2 (1.0:1.2), T3 (1.2:1.0) และ T4 (1.2:1.2) โคนมทดลองใช้โคนมลูกผสมขาวดำที่มีเลือดพันธุ์ขาวดำอยู่ระหว่าง 75-87.5% จำนวนทั้งหมด 16 ตัว สุ่มโคให้ได้รับอาหารทดลองตามแผนการทดลองแบบ 2 x 2 factorial arrangement in a randomized complete block design (RCBD) โดยแต่ละทรีทเม้นต์มีโคนมจำนวน 4 ตัว ทำการทดลอง 2 คาบ (period) ในแต่ละคาบช่วงสัปดาห์แรกเป็นระยะปรับสัตว์ หลังจากนั้นทำการเก็บข้อมูลต่อเนื่องเป็นเวลา 4 สัปดาห์ เมื่อทดลองครบ 1 คาบ ทำการสุ่มโคกลุ่มเดิมให้รับอาหารทดลองทรีทเม้นต์ใหม่ และดำเนินการทดลองซ้ำ เมื่อ้อนความแรก นำข้อมูลที่ได้จากทั้ง 2 คาบมารวมกันเพื่อวิเคราะห์ความแปรปรวน (Analysis of variance) อาหารทดลองใช้หญ้าหมักจากหญ้าอุบล พาลัม (*Paspalum atratum* cv. Ubon) ใช้กากถั่วเหลืองและข้าวโพดบดเป็นตัวปรับโปรตีนและพลังงานตามที่กำหนด ผลการทดลองพบว่าโคกลุ่มที่ได้รับ CP ที่ระดับ 1.2 มีปริมาณการกินได้ของวัตถุแห้งคิดเป็น % ของน้ำหนักตัว และ g DM/W^{0.75} สูงกว่า ($P<0.05$) โคกลุ่มที่ได้รับ CP ที่ระดับ 1.0 (3.75 vs 3.53% และ 168 vs 160 g DM/W^{0.75}) สำหรับการเปลี่ยนแปลงน้ำหนักตัว การให้ผลผลิตนม และองค์ประกอบทางเคมีในน้ำนมไม่มีผล ($P>0.05$) จากการเพิ่มระดับของพลังงานหรือโปรตีน หรือการเพิ่มทั้ง 2 อย่าง ตลอดจนไม่พบว่ามีปฏิสัมพันธ์ระหว่างพลังงานและโปรตีน ค่าเฉลี่ยที่ได้จากทั้ง 4 ทรีทเม้นต์มีดังนี้ ปริมาณการผลิตน้ำนม 12.18, 11.66,

11.79 และ 11.48 ก.ก/ตัว/วัน ไขมันนม 4.38, 4.52, 4.49 และ 4.31% โปรตีนในนม 3.47, 3.59, 3.53 และ 3.48% น้ำตาลแอลกออล 4.99, 4.73, 4.87 และ 4.72 ของแข็งไม่รวมมันเนยเท่ากับ 9.17, 9.09, 9.15 และ 8.98% โภคภูมิกลุ่มนี้การเพิ่มน้ำหนักตัวเฉลี่ยต่อวันเท่ากับ 0.86, 0.91, 1.09 และ 0.55 ก.ก. ในทรีทเม้นต์ที่ 1 ถึง 4 ตามลำดับ จากผลการทดลองในครั้งสรุปได้ในเบื้องต้นว่า การเพิ่มพลังงานหรือโปรตีน หรือการเพิ่มทั้ง 2 อย่างที่ระดับ 1.2 เท่าจากกำหนดของ NRC ไม่เกิดประโยชน์ต่อโภคภูมิกลุ่มนมขาวคำในประเทศไทยแต่อย่างใด นอกจานนี้ในรายงานนี้ได้มีการอภิปรายถึงการจัดสัดส่วนของอาหารหมายต่ออาหารขั้น รวมทั้งระดับเยื่อไขในอาหาร โภคภูมิอีกด้วย

คำสำคัญ: อาหารโภคภูมิ ความต้องการโภชนาของโภคภูมิ การประเมินคุณค่าทางโภชนาของอาหาร

Abstract

The experiment was conducted to examine energy and protein requirements of Thai dairy cattle. There were four treatment combinations of two main factors, energy (Total digestible nutrient, TDN) and crude protein (CP) each of these factors had two levels of 1.0 and 1.2 times the recommended of feeding standard for dairy cattle from the National Research Council (NRC, 1988). The treatments were as follows (TDN:CP); T1 (1.0:1.0), T2 (1.0:1.2), T3 (1.2:1.0) and T4 (1.2:1.2). Sixteen Holstein friesian crossbred (75-87.5 %HF blood) cows were allocated to a 2 x 2 factorial arrangement in a randomized complete block design (RCBD) with 4 animals per treatment. The experiment had two 5-week with each period divided into the 1st week was adjustment and 4 consecutive weeks was collecting time. After the first 5-week period, the same group of animals were randomized again to the new treatment and the 5-week procedure repeated. Cows were received Ubon paspalum (*Paspalum atratum* cv. Ubon) grass silage as basal roughage. Soybean meal and ground corn were supplemented to meet energy and protein requirements. Data from two periods were pooled for analysis of variance. The results showed that dry matter feed intake as % of body weight and g DM/ W^{0.75} was higher (P<0.05) in cows fed 1.2 CP group than 1.0 CP group (3.75 vs 3.53% and 168 vs 160 g DM/W^{0.75}). However body weight change, milk yield and milk composition were not affected (P>0.05) by energy or protein levels. No interaction of energy and protein was found in this study. For the 4 treatments the average milk yields were 12.18, 11.66, 11.79 and 11.48 kg/d., milk fat contents were 4.38, 4.52, 4.49 and 4.31%, milk protein levels were 3.47, 3.59, 3.53 and 3.48%, milk lactose levels were 4.99, 4.73, 4.87 and 4.72% and solid-not fat concentrations were 9.17, 9.09, 9.15 and 8.98%. The average daily liveweights gain were 0.86, 0.91, 1.09 and 0.55 kg/d for treatment 1-4 respectively. The preliminary conclusion from this experiment found that there were no beneficial responses with the additional of 1.2 level of NRC feeding recommendation in either energy or protein or both in Thai dairy cattle. Roughage and concentrate ratios and crude fiber contents in the diets are also discussed.

Key words: dairy feed, nutrient requirements, feed evaluation

คำนำ

การประกอบสูตรอาหารโคนมที่ดีคือ เมื่อโภคินอาหารนั้นเข้าไปในปริมาณที่กำหนด โโคจะได้รับโภชนาต่างๆ ครบถ้วนและเพียงพอ กับความต้องการของร่างกาย ซึ่งนอกจากจะทำให้โคนมให้ผลตอบแทนได้สูงสุดตามศักยภาพทางพันธุกรรมแล้ว ยังเป็นการลดต้นทุนการผลิตอีกด้วย โดยทั่วไปเกษตรกรผู้เลี้ยงโคนมในประเทศไทยจะให้อาหารโโคโดยไม่ได้คำนึงถึงการจัดสัดส่วนอาหารทั้งหมด (complete ration) ในทางปฏิบัติจะให้อาหารขึ้นในอัตรา 1 กิโลกรัมต่อปริมาณการผลิตน้ำนม 2 กิโลกรัม โดยไม่ได้คำนึงถึงปริมาณและคุณภาพของอาหาร hayab ที่โภคิน (สมคิดและคณะ, 2541) ทั้งนี้อาจเนื่องมาจากเกษตรกรไม่ได้ทราบนักถึงความสัมพันธ์ระหว่างการใช้อาหาร hayab และอาหารขึ้น ประกอบกับประเทศไทยเองยังไม่มีคู่มือคำแนะนำตรฐานการให้อาหารโคนมไทย (Recommendation of Feeding Standard for Thai Dairy Cattle) นักวิชาการส่วนใหญ่จึงอ้างอิงหรือใช้ข้อมูลจากต่างประเทศเช่น สถาบันวิจัยประเทศไทย (ARC) และโดยเฉพาะอย่างยิ่งจากสถาบันวิจัยแห่งชาติสหราชอาณาจักร (National Research Council, NRC) ซึ่งในการน้ำนมข้อมูลดังกล่าวมาใช้อ้างมีความคลาดเคลื่อนได้ เนื่องจากสาเหตุที่มีปัจจัยที่แตกต่างกันหลายประการอาทิ พันธุ์โค ระดับการให้ผลผลิต ชนิดและคุณภาพอาหาร และสภาพภูมิอากาศ เมื่อเดือน

งานวิจัยเพื่อประเมินความต้องการโภชนาตของโคนมไทยมีอยู่จำกัด อย่างไรก็ตามจากการรวบรวมรายงานของสมคิด และคณะ (2541) แล้วทำการประเมินขั้นต้นถึงความต้องการโภชนาตของโคนมลูกผสมขาวดำ ที่ให้ผลผลิตนมปานกลาง 10-15 กิโลกรัม/วัน และได้รับอาหาร hayab คุณภาพปานกลาง (50-55% Total Digestible Nutrient, TDN) สรุปว่าโคนมไทยมีความต้องการพลังงานและโปรตีนเพื่อการดำรงชีพ การผลิตนม การสร้างไขมันในน้ำนม และการเพิ่มน้ำหนักตัว เท่ากับระดับที่กำหนดโดย NRC (1988) สำหรับโโคที่เลี้ยงด้วยอาหาร hayab คุณภาพดี พบว่าโโคมีแนวโน้มการให้น้ำนมที่ดีกว่าเมื่อต่อระดับโปรตีนต่ำลงมา

สัดส่วนของอาหาร hayab ต่ออาหารขึ้นก็เป็นอีกปัจจัยหนึ่งที่มีความสำคัญในการจัดการอาหารแม่โครีดนม โดยทั่วไปแล้วพบว่าการลดสัดส่วนของอาหาร hayab ลง หรือการเพิ่มการสัดส่วนของอาหารขึ้น โโคจะให้ผลผลิตนม ไขมัน และโปรตีนเพิ่มขึ้น แต่เมื่ออาหารขึ้นเพิ่มขึ้นเกินกว่า 60% การผลิตไขมันจะลดลง (Aldrich *et al.*, 1993) ทั้งนี้เนื่องจากสารอาหารหลักที่ใช้เป็นสารตั้งต้นในการสังเคราะห์ไขมันในน้ำนมคือ กรดอะซิติก (Acetic acid, C2) ซึ่งเป็นกรดไขมันระเหยง่าย (Volatile fatty acid, VFAs) ที่ได้จากการหมักย่อยอาหาร hayab โดยจุลินทรีย์ในกระเพาะรูเมน NRC (1988) แนะนำว่า เพื่อไม่ให้มีผลกระทบต่อปริมาณไขมันในน้ำนม ควรมีอาหาร hayab อย่างน้อย 40% ในสูตรอาหารทั้งหมด หรือควรมีเยื่อใย hayab (Crude fiber, CF) หรือเยื่อไช Acid detergent fiber (ADF) ไม่น้อยกว่า 17 และ 21% ตามลำดับ ทั้งนี้เพื่อให้ขบวนการหมักของจุลินทรีย์ในกระเพาะรูเมนดำเนินไปได้ตามปกติ และรักษาสภาพความเป็นกรดในกระเพาะรูเมนไม่ให้ต่ำเกินไป นอกจากนี้เยื่อไชในอาหารควรมีคุณสมบัติที่มีความเหมาะสมต่อประสิทธิภาพในขบวนการหมักอย่าง (effective fiber) ของจุลินทรีย์ โดยควรมีลักษณะเป็นเส้นยาว (long form fiber) ซึ่งจะช่วยขบวนการเดี่ยวอึด และการหลังน้ำลายเพื่อปรับสภาพความเป็นกรด-ด่างในกระเพาะให้เหมาะสม (Harris, 2001)

Promma *et al.* (1998) ได้ทำการทดสอบในโคนมลูกผสมขาวดำ ที่ผลผลิตน้ำนมปานกลาง ให้ฟางหมักเยื่อ ปีนอาหาร hayab หลัก โดยกำหนดให้ได้รับเยื่อไช CF ที่ระดับ 17, 22, 24% และโโคอีกกลุ่มหนึ่งให้อาหารขึ้นในอัตรา 1 กิโลกรัม/ผลผลิตน้ำนม 2 กิโลกรัมเหมือนเช่นที่ปฏิบัติกันทั่วไปในฟาร์มเกษตรกร โดยจัดเป็นโโคกลุ่มควบคุม

(control) ผลการทดลองพบว่าระดับของเยื่อไข่ในอาหารไม่มีผลต่อการเปลี่ยนน้ำหนักตัว การให้ผลผลิตนม และโปรตีนในนม แต่โคที่ได้รับเยื่อไข่ CF ที่ระดับ 17% จะมีเปอร์เซ็นต์ไขมันในนมต่ำที่สุด ในขณะที่โคกลุ่มควบคุมจะมีเปอร์เซ็นต์ไขมันในนมสูงที่สุด ค่าผู้วัดสูตรปั่วโคนมลูกผสมขาวดำที่กินฟางหมักญี่รี่เป็นอาหารขยายหลัก ควรได้รับเยื่อไข่ CF ในอาหารมากกว่า 17% ซึ่งค่าที่เหมาะสมควรอยู่ระหว่าง 22 - 24% หรือที่ระดับ 29-30% ADF และแนะนำว่าโคควรได้รับพลังงานในรูป TDN เท่ากับ NRC สำหรับโปรตีนสามารถให้ในระดับ 90-100% ของคำแนะนำจาก NRC

ดังที่ได้กล่าวมาแล้วว่าความต้องการโภชนาชของโคนมจะขึ้นอยู่กับปัจจัยและองค์ประกอบต่างๆ มากมาย จึงมีความจำเป็นในการศึกษาวิจัยเพื่อประเมินถึงความต้องการโภชนาชของโคนมไทยในสภาพแวดล้อมที่หลากหลาย เพื่อสามารถนำข้อมูลมาปรับเปลี่ยนและสนับสนุนซึ่งกันและกันให้มากยิ่งขึ้น ดังนั้นงานวิจัยนี้จึงมีวัตถุประสงค์เพื่อ (1) ศึกษาผลการตอบสนองการให้ผลผลิตน้ำนมและองค์ประกอบทางเคมีในน้ำนมของโคนมที่ได้รับสูตรอาหารผสมครบส่วน (Total mixed ration, TMR) และให้ได้สูตรอาหารผสมครบส่วนที่เหมาะสมสำหรับโคที่กินหญ้าหมักจากหญ้าอุบล พาสฟาลั่มเป็นอาหารขยายหลัก และ (2) เพื่อประเมินความต้องการพลังงานและโปรตีนของโคนมลูกผสมขาวดำที่ให้ในรูปปานกลางในประเทศไทย

อุปกรณ์และวิธีการ

ตั้งทดลอง (treatment) ได้แก่อาหาร 4 สูตรประกอบด้วยพลังงานในรูป TDN 2 ระดับ และโปรตีน (Crude protein, CP) 2 ระดับ (ที่ระดับ 1 และ 1.2 เท่า ตามคำแนะนำของ Recommendation of feeding standard for dairy cattle. ของ National Research Council (NRC, 1988) ประเทศไทย สหรัฐอเมริกา โดยจัด Treatment combination แบบ Factorial ดังนี้

	TDN 1.0	TDN 1.2
Crude Protein 1.0	T 1	T 2
Crude Protein 1.2	T 3	T 4

อาหารทดลอง

อาหารขยาย ใช้ในรูปหญ้าหมักที่ทำจากหญ้าพาสฟาลั่มอุบล ซึ่งเป็นแปลงหญ้าในมหาวิทยาลัยอุบลราชธานี ที่ปลูกมาแล้ว 2 ปี ก่อนทำหญ้าหมักได้ทำการตัดหญ้าเดิมทิ้งเพื่อปิดแปลง แล้วใส่ปุ๋ยญี่รี่ในอัตรา 25 กิโลกรัม/ไร่ 佳กนั้นปล่อยให้หญ้าเจริญเติบโตใหม่จนอายุได้ประมาณ 40-45 วัน (ความชื้นประมาณ 25-30%) จึงใช้เครื่องตัดหญ้า ชนิดมีใบมีดสับ 2 ครั้ง (double chopper) ตัด แล้วนำไปหมักในบ่อคอนกรีต (trench silo) ขนาด $2 \times 3 \times 1.8$ เมตร³ จำนวน 6 บ่อ และถุงพลาสติกขนาดใหญ่สันผ่าสูญญากาศ 1.5 ม. สูง 2 เมตร (บรรจุหญ้าหมักได้ประมาณ 600 กก./ถุง) จำนวน 12 ใบ การหมักจะใช้แรงคนย้ำบดอัดทีละชั้น ชั้นละ 200 กก. และหัวน้ำมันสีน้ำเงินคล่องไบในอัตรา 5% โดยน้ำหนักตัว หมักทิ้งไว้อย่างน้อย 30 วันก่อนนำมาใช้เลี้ยงสัตว์ โดยทำการหมักหญ้าในช่วงวันที่ 5-15 กรกฎาคม 2543

อาหารขัน ใช้ข้าวโพดคัดเป็นแหล่งพลังงาน และกากถั่วเหลืองเป็นแหล่งโปรตีน มีการเสริมวิตามินและแร่ธาตุ (premixes) สำหรับโคที่มีจำนวนน้อยในท้องตลาด โดยเสริมให้ในอัตราที่เพียงพอต่อความต้องการขันต่างของโคนม

วิธีการให้อาหาร จะให้ผสมกันทั้งอาหารหลาย อาหารข้น และวิตามิน-แร่ธาตุ ในรูปแบบที่เรียกว่าอาหารผสมครบส่วน (Total Mixed Ration, TMR) โดยแบ่งให้วันละ 2 มื้อเท่าๆ กัน เช้าและเย็น เวลา 08.00 น. และ 16.00 น. โดยขังโคไว้ในคอกผูกยืนโรง มีร่างน้ำ้และร่างอาหารให้กินเฉพาะตัว

การคำนวณสูตรอาหาร ทำการปรับอาหารให้เป็นรายตัวสัปดาห์ละ 1 ครั้ง ซึ่งคำนวณให้ตามการเปลี่ยนแปลงน้ำหนักตัว ปริมาณน้ำนม และเบอร์เซ็นต์ไขมันนม ทั้งนี้คำนวณให้โดยมีการเพิ่มน้ำหนักตัวในอัตรา 0.25 กิโลกรัม/วัน โดยใช้ข้อมูลของสัปดาห์ที่ผ่านมา การคำนวณใช้โปรแกรมคอมพิวเตอร์สำเร็จรูป XRATION ที่พัฒนาโดยสมคิด (1999)

สัตว์ทดลอง ใช้โคครีดนมพันธุ์ลูกผสมขาวดำ (Holstein Friesian) จำนวน 16 ตัว เป็นโคที่มีระดับเลือดพันธุ์ขาวดำ 75-87.5% อายุเฉลี่ยอยู่ในช่วง 3-4 ปี น้ำหนักตัวเฉลี่ย 410 กิโลกรัม เคยให้นมมาแล้ว (lactation number) 2-3 ครั้ง จำนวนวันหลังคลอดลูกเฉลี่ย 82 วัน ซึ่งผ่านระยะการให้นมสูงสุด (peak of lactation) มาแล้ว ซึ่งโคเหล่านี้ให้ผลผลิตน้ำนมอยู่ในช่วงประมาณ 10-15 กิโลกรัม/วัน

แผนการทดลองและวิธีการเก็บข้อมูล จัดทรีทเม้นต์แบบ Factorial arrangement วางแผนการทดลองแบบ Randomized Complete Block Design (RCBD) แบ่งการทดลองออกเป็น 2 คาบ (period) ในแต่ละคาบสุ่มโคให้ได้รับอาหารทดลองทรีทเม้นต์ละ 4 ตัว ใช้วิภาคละ 5 สัปดาห์ แบ่งเป็นระยะปรับสัตว์ 1 สัปดาห์ และระยะเก็บข้อมูล 4 สัปดาห์ เมื่อทำการทดลองครบ 1 คาบจะสุ่มสัตว์เข้ารับอาหารทดลองใหม่ แล้วดำเนินการทดลองเหมือนเดิมอีกครั้ง นำข้อมูลที่ได้จากทั้ง 2 คาบมารวมกันแล้ววิเคราะห์ความแปรปรวน (Analysis of variance) ของสิ่งทดลอง อิทธิพลของพลังงาน (TDN) อิทธิพลของโปรตีน (CP) และปฏิสัมพันธ์ (Interaction) ระหว่างพลังงานและโปรตีน (E*P) (Morris, 1999) ข้อมูลต่างๆ ที่เก็บในแต่ละคาบประกอบด้วย

- ◆ ปริมาณอาหารที่กินและที่เหลือ (ถ้ามี) ทุกวัน โดยเก็บเป็นรายตัว
- ◆ ปริมาณน้ำนมทุกวัน เช้า-เย็น
- ◆ การเปลี่ยนแปลงน้ำหนักตัวทุกสัปดาห์ โดยชั่งน้ำหนักโคหลังจากครีดนมเช้า-เย็น เป็นเวลา 2 วันติดต่อกัน รวมเป็น 4 ครั้งแล้วนำมาหาค่าเฉลี่ย
- ◆ เก็บตัวอย่างน้ำนมเพื่อวิเคราะห์หาส่วนประกอบทางเคมี โดยเก็บตัวอย่างน้ำนมที่รีดในตอนเช้าและเย็น เป็นเวลา 2 วันติดต่อกัน รวมเป็น 4 ครั้งแล้วนำมาหาค่าเฉลี่ย ส่วนประกอบทางเคมีที่การวิเคราะห์ได้แก่ Fat, Protein, Lactose และ Solid not fat (SNF) ด้วยเครื่อง Near Infrared (Milko Scan)

ผลและวิจารณ์

ข้อมูลที่ใช้ในการคำนวณสูตรอาหาร โคทดลอง และค่าเฉลี่ยของผลการคำนวณปริมาณโภชนาที่กำหนดให้สัตว์ได้รับในแต่ละวัน แสดงใน Table 1

ปริมาณการกินได้ของอาหาร

การนำข้อมูลจาก Table 1 ไปประกอบสูตรอาหาร โดยกำหนดให้โดยปริมาณการกินได้ของวัตถุแห้งเท่ากับที่คำนวณได้นั้น จะเกิดปัญหาที่ต้องใช้อาหารข้นสูงกินไป (มากกว่า 70%) จนไม่สามารถปรับระดับเชื้อไช ADF ได้ ทั้ง

นี้เนื่องอาหารheyab ที่ใช้จัดอยู่ในประเภทคุณภาพปานกลาง ซึ่งต้องใช้อาหารขันในปริมาณมากโคลจึงจะได้รับพลังงานและโปรตีนตามที่ต้องการ ดังนั้นเพื่อรักษาระดับของเยื่อไขในอาหารหรือสัดส่วนของอาหารheyab ไม่ให้ต่ำเกินไป จึงได้เพิ่มสัดส่วนของหญ้าหมักในสูตรอาหารรวม ซึ่งทำให้ปริมาณการกินได้ของวัตถุแห้งสูงกว่าที่คำนวณได้ สัดส่วนระหว่างอาหารheyab ต่ออาหารขันในโคลรีทเมนที่ 1, 2 และ 3 มีอาหารขันอยู่ในสัดส่วน 55 ถึง 62% ซึ่งก็อ่อนอยู่ในเกณฑ์ที่ไม่สูงเกินไป ส่วนโคลโกลุ่มที่ได้รับพลังงาน TDN และ CP ระดับ 1.2 ได้รับอาหารขัน 64% จัดว่าเป็นสัดส่วนที่ค่อนข้างสูง (Table 1) และมีเยื่อไข ADF อยู่ระหว่าง 18-22% ใกล้เคียงกับระดับที่แนะนำโดย NRC ที่กำหนด เปอร์เซ็นต์ ADF ขันต่ำไว้ที่ 22% ในขณะที่สมคิด และคณะ (2541) ที่แนะนำเปอร์เซ็นต์ ADF ขันต่ำสำหรับโคลนลูก ผสมขาวดำในประเทศไทยไว้ที่ 29-30%

จากผลการทดลองนี้ให้เห็นว่า ปริมาณการกินได้ของวัตถุแห้งคิดเป็น กิโลกรัม/ตัว/วัน มีค่าเฉลี่ยอยู่ในช่วง 14-15 กิโลกรัม/วัน โดยไม่มีความแตกต่างอย่างมีนัยสำคัญ (Table 2) แต่เมื่อคิดในรูปเปอร์เซ็นต์ของน้ำหนักตัว และ $gDM/W^{0.75}$ พบว่า การเพิ่มโปรตีนขึ้นอีก 20% จากคำแนะนำของ NRC มีผลทำให้โคลกินอาหารได้เพิ่มขึ้น ($P<0.05$) โดยมีค่าเฉลี่ยของปริมาณการกินได้ในรูปเปอร์เซ็นต์ของน้ำหนักตัว และ $gDM/W^{0.75}$ เท่ากับ 3.75 vs 3.53% และ 168 vs 160 $gDM/W^{0.75}$ ในโคลกลุ่มที่ได้รับอาหาร CP ระดับ 1.2 และ 1.0 ตามลำดับ

Table 1 Feed formulation and daily nutrients determined.

Crude Protein	TDN 1.0		TDN 1.2	
	1.0	1.2	1.0	1.2
Treatment	(1)	(2)	(3)	(4)
Feed Formulation				
Cows weight	427	396	421	411
Milk yield, kg/d	13.57	11.43	12.46	13.07
Milk fat, %	4.29	4.36	4.34	4.24
Nutrient intake				
KgDM	13.01	13.51	12.70	14.24
% of Body weight	3.06	3.51	3.08	3.52
TDN, kg	8.90	9.64	8.63	10.32
Crude protein, kg	1.93	1.75	2.21	2.24
ADF, %	22.00	19.77	21.93	18.63
Silage, kg Fresh	28.59	26.75	26.88	24.41
Soybean meal	2.32	1.67	3.17	2.76
Ground corn	5.76	7.70	4.75	7.75
Roughage: Concentrate Ratio	45: 55	39: 61	43: 57	35: 65

Table 2 Dry matter intake of dairy cows received 1.0 or 1.2 time of energy or protein as NRC (1988) recommendation.

Treatment	TDN 1.0				TDN 1.2				Significant Level			CV (%)	
	CP 1.0		CP 1.2		CP 1.0		CP 1.2						
	(1)	± SD	(2)	± SD	(3)	± SD	(4)	± SD	TDN	CP	E*P		
Dry matter intake													
◆ kg/d	15.37	1.19	15.10	1.89	14.74	1.17	15.37	1.31	ns	ns	ns	9.90	
◆ % of BW	3.55	0.28	3.75	0.44	3.51	0.40	3.74	0.15	ns	0.05	ns	7.09	
◆ gDM/W ^{0.75}	162	11.18	167	15.82	158	12.86	168	5.89	ns	0.05	ns	5.29	
R: C ratio	45: 55		42: 58		38: 62		34: 64						

Table 3 Body weight change of dairy cows received 1.0 or 1.2 time of energy or protein as NRC (1988) recommendation.

Treatment	TDN 1.0				TDN 1.2				Significant Level			CV (%)	
	CP 1.0		CP 1.2		CP 1.0		CP 1.2						
	(1)	± SD	(2)	± SD	(3)	± SD	(4)	± SD	TDN	CP	E*P		
Number of cows	8		8		8		8						
Initial weight, kg	418.5	36.26	407.8	77.96	411.1	77.47	403.3	37.73					
Final weight, kg	442.6	40.56	433.3	74.60	441.8	72.51	418.6	44.30					
Weight gain, kg	24.1	12.29	25.5	14.18	30.6	8.57	15.4	15.24					
Average daily gain, kg	0.86	0.44	0.91	0.51	1.09	0.31	0.55	0.54	ns	ns	ns	59.69	

การเปลี่ยนแปลงน้ำหนักตัว

การเปลี่ยนแปลงน้ำหนักตัวของโคนม จากข้อมูลใน Table 3 พบว่า โคลุกกลุ่มน้ำหนักเริ่มต้นเฉลี่ยใกล้เคียงกัน อย่างไรก็ตามยังมีความแตกต่างกันค่อนข้างมากในกลุ่มเดียวกัน โดยสังเกตได้จากค่าเบี่ยงเบนมาตรฐาน ($\pm SD$) โดยธรรมชาติแล้ว โคลุกสูญเสียน้ำหนักตัวมากในช่วงหลังคลอดใหม่ (0-3 เดือน) หรืออยู่ในช่วงแรกของการให้นม (early lactation) ทั้งนี้เนื่องจากเป็นระยะที่โคลุกต้องให้อาหาร ไนโตรเจนจึงมักจะขาดพลังงานหรือที่เรียกว่า สภาวะความสมดุลของพลังงานเป็นลบ (negative energy balance) ดังนั้น โคลุกต้องลดการกินอาหาร ไนโตรเจนจึงมักจะลดลง ความต้องการพลังงานลดลง (AFRC, 1998) อีกทั้งในระยะนี้ โคลุกต้องกินอาหาร ไนโตรเจนเพิ่มขึ้น จึงทำให้มีพลังงานส่วนเกินมาใช้เพื่อการเพิ่มน้ำหนักตัว ได้อีกครั้ง (body weight regain) ในการทดลองครั้งนี้ ได้คำนวณอาหารให้โคลุกน้ำหนักตัวเพิ่มเฉลี่ยต่อวัน (ADG) ที่ 0.25 กิโลกรัม/วัน จากผลการทดลองพบว่า โคลุกกลุ่มน้ำหนักตัวอยู่ในเกณฑ์ที่

สูงคืออยู่ในช่วง 0.55-1.09 กิโลกรัม/วัน ยกเว้นกลุ่มที่ได้รับพลังงานและโปรตีนระดับ 1.2 เท่าของ NRC จะมีค่าต่ำกว่ากลุ่มอื่นแต่ไม่มีความแตกต่างอย่างมีนัยสำคัญ ($P>0.05$) ทั้งนี้อาจเนื่องมาจากโภคคลองมีอายุที่ยังไม่ถึงวัยโตเด็นที่ร่างกายยังมีการเจริญเติบโตด้านโครงสร้างอยู่ อีกทั้งโโคได้ผ่านช่วงระยะเวลาให้นมสูงสุดมาแล้ว หรืออาจเกี่ยวข้องกับปัจจัยทางด้านพันธุกรรมที่กำหนดความสามารถในการนำโภชนาที่ได้รับไปใช้เพื่อการผลิตน้ำนมมีประสิทธิภาพด้อยกว่าการเพิ่มน้ำหนักตัว (NRC, 1988) นอกจากนี้แล้วการซั่งน้ำหนักโโคที่ไม่ได้อดอาหารอาจเกิดความคลาดเคลื่อนได้ง่าย เนื่องจากความผันแปรของน้ำหนักอาหารที่อยู่ในระบบทางเดินอาหารซึ่งมีสูงถึง 10-20% ของน้ำหนักตัว และการวัดการตอบสนองของน้ำหนักตัวควรใช้เวลาในการทดลองอย่างน้อย 6-8 สัปดาห์ (Roger, 1983)

ผลผลิตน้ำนมและองค์ประกอบในน้ำนม

การเพิ่มระดับพลังงานหรือโปรตีนขึ้นเป็น 1.2 เท่าของคำแนะนำจาก NRC หรือการเพิ่มทั้งสองอย่าง พบว่าไม่มีผลต่อการเปลี่ยนแปลง ปริมาณผลิตน้ำนม และส่วนประกอบทางเคมีในน้ำนม (ทั้งในรูปเปอร์เซ็นต์และน้ำหนัก) ได้แก่ ไขมัน โปรตีน และโตส และของแข็งไม่รวมมันเนย ($P>0.05$, Table 4) อย่างไรก็ตามเมื่อเปรียบเทียบระหว่างปริมาณนมที่รีดได้จริงกับที่คำนวณได้ในTable 1 พบว่าโโคกลุ่มที่ได้รับโภชนาต่ำสุด (T1) และสูงสุด (T4) ให้นมน้อยกว่าที่คำนวณได้ 10-12% ในขณะที่โโคกลุ่มที่เหลือจะใกล้เคียงกับคำนวณ ส่วนเปอร์เซ็นต์ไขมันในน้ำนมจัดว่าอยู่ในเกณฑ์ค่อนข้างสูง ลึ่งแม้ว่าโโคจะได้รับเยื่อไช ADF ที่ระดับ 18-22% ต่ำกว่าที่สมคิดและคณ (2541) แนะนำไว้ที่ 28-30% แต่โโคทุกกลุ่มยังสามารถรักษาะระดับไขมันนมได้ตามปกติ สำหรับองค์ประกอบอื่นๆ มีค่าอยู่ในช่วงปกติของโคนมลูกผสมยุโรป-อินเดีย (Chamberlain, 1993)

Table 4 Milk yield, milk composition and milk constituent of dairy cows received 1.0 or 1.2 time of energy or protein as NRC

(1988) recommendation.

Treatment	TDN 1.0				TDN 1.2				Significant Level			CV (%)	
	CP 1.0		CP 1.2		CP 1.0		CP 1.2						
	(1)	± SD	(2)	± SD	(3)	± SD	(4)	± SD	TDN	CP	E*P		
Milk Yield, kg/d	12.18	2.60	11.66		11.79	1.78	11.48	2.63	ns	ns	ns	13.54	
4 %FCM	12.82		12.61		12.67		11.94						
Milk Composition, %													
- Fat	4.38	0.60	4.52	0.95	4.49	0.70	4.31	0.17	ns	ns	ns	15.25	
- Protein	3.47	0.37	3.59	0.46	3.53	0.30	3.48	0.32	ns	ns	ns	10.60	
- Lactose	4.99	0.38	4.73	0.36	4.87	0.30	4.72	0.47	ns	ns	ns	7.74	
- Solid-not fat	9.17	0.15	9.09	0.65	9.15	0.48	8.98	0.34	ns	ns	ns	4.95	
Milk Constituent, kg/d													
- Fat	0.53	0.11	0.53	0.09	0.53	0.11	0.49	0.07	ns	ns	ns	16.20	

- Protein	0.42	0.42	0.42	0.04	0.42	0.06	0.40	0.05	ns	ns	ns	11.70
- Lactose	0.61	0.14	0.55	0.05	0.57	0.10	0.54	0.17	ns	ns	ns	18.23
- Solid-not fat	1.12	0.21	1.06	0.08	1.08	0.17	1.03	0.15	ns	ns	ns	13.51

สรุป

การเพิ่มโปรตีนขึ้นอีก 20% จากคำแนะนำของ NRC (1988) ทำให้โคกินอาหารได้มากขึ้น แต่อย่างไรก็ตาม การเพิ่มพลังงานหรือโปรตีน หรือการเพิ่มโภชนาดังกล่าวทั้งสองอย่างขึ้นอีก 20% ไม่มีผลต่อการเปลี่ยนแปลงน้ำหนักตัว ผลผลิตน้ำนม และองค์ประกอบทางเคมีในน้ำนมของโคนมลูกผสมขาวดำที่ให้น้ำนมระดับปานกลาง ซึ่งได้รับหญ้าพาสฟาลัมอุบลเป็นอาหารหลัก

คำขอคุณ

คณะผู้วิจัยขอขอบคุณสำนักงานกองทุนสนับสนุนการวิจัยที่ให้ทุนอุดหนุนงานวิจัยในครั้งนี้ และขอขอบคุณคณะเกษตรศาสตร์ มหาวิทยาลัยอุบลราชธานี ที่อำนวยความสะดวกและให้การอนุเคราะห์สถานที่ สัตว์ทดลอง และเครื่องมืออุปกรณ์ในการดำเนินงาน เป็นอย่างดียิ่ง

เอกสารอ้างอิง

สมคิด พรหنمมา วิสุทธิ์ himarattan และบุญล้อม ชีวะอิสระกุล. 2541. การประเมินขั้นต้นถึงความต้องการโภชนาของโคนมไทย.

เอกสารประกอบการประชุมวิชาการโคนมและผลิตภัณฑ์ครั้งที่ 2: เทคโนโลยีการจัดการระบบฐานข้อมูล. วันที่ 3-5 มิถุนายน 2541. คณะสัตวแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.

AFRC. 1998. Response in the yield of milk constituents to the intake of nutrients by dairy cows. CABI publishing, London, UK.

Aldrich, J.M., L.D.Muller, G.Varga and L.C.Griel Jr. 1993. Nonstructural carbohydrate and protein effect on rumen fermentation, nutrient flow, and performance of dairy cows. *J. Dairy Sci.* 76:1091.

Chamberlain A. 1989. Milk production in the tropics. Longman Scientific and Technical, Longman Group UK Limited.

Harris, B. Jr. 2001. Non structural carbohydrate. (On-line, Available: [www.forages.orst.edu.](http://www.forages.orst.edu/)).

Morris, T.R. 1999. Experimental Design and Analysis in Animal Sciences. CABI publishing, London, UK.

NRC. 1988. Nutrient requirement of dairy cattle. 6th revised edition. National Academy Press. Washington DC. USA.

Promma, S. 1999. X-RATION (Computer software, version 1.0). Chiang Mai Animal Breeding Station, Department of Livestock Development, Ministry of Agriculture and Cooperative, Thailand.

Promma S., P. Jeenklum and T. Indratula. 1998. Production responses of crossbred Holstein milking cows fed urea-treated rice straw at three different fiber levels and the preliminary estimation of nutrient requirements. In: Recent research for the development of nutrient requirement of Thai dairy cattle. Office of Thailand Research Fund co-ordinate, Department of Animal Science, Faculty of Agriculture, Chiang Mai University.

Roger B.W. 1983. Feeding experiments with dairy cattle. In Dairy cattle research Techniques. J.H. Ternouth ed. S.R. Government Printer, Queensland, Australia.

Appendix 17

การศึกษาคุณค่าทางอาหารของหญ้าอาหารสัตว์เบตอร์อนในห้องปฏิบัติการ

ด้วยวิธีการย่อยในถุงไนล่อนและการผลิตก๊าซ

In Vitro Study on Nutritive Value of Tropical Grasses

using Nylon Bag and Gas Production Techniques

สุรัชัย สุวรรณ Lee¹, กัจวัน ธรรมแสง¹, อรีรัตน์ ลุนพา¹ และวรพงษ์ สุริยจันทร์ตระกูล¹

Surachai Suwanlee¹, Kungwan Thummasaeng¹, Areerat Lunpha¹ and Worapong Suriyajantratong¹

บทคัดย่อ

การทดลองครั้งนี้มีจุดประสงค์เพื่อศึกษาคุณค่าทางอาหารของหญ้าอาหารสัตว์เบตอร์อนสี่ชนิด คือ พาสพา ลัมอุบล รูซี่ จาราดิกิท และกินนี ที่อายุการตัด 30, 45 และ 60 วัน โดยวิธีใช้ถุงไนล่อนล่อนและจากปริมาณการผลิตก๊าซ ผลการทดลองพบว่า ศักยภาพการย่อยสลายได้สูงสุดของหญ้ารูซี่และกินนีที่อายุ 30 วัน (ร้อยละ 82.07 และ 84.23) มีค่ามากกว่า ($P<0.05$) ที่อายุ 45 วัน (ร้อยละ 73.22 และ 74.99) และ 60 วัน (ร้อยละ 72.14 และ 74.55) ส่วนหญ้าพาสพาลัม อุบลและจาราดิกิท ไม่มีความแตกต่างกัน ($P>0.05$) ในทุกอายุการตัด แต่เมื่อคำนวณค่าทำงานย่อยปริมาณวัตถุแห้งย่อยได้ที่สัตว์ได้รับ (digestible dry matter intake; DDMI) พบว่าโโคกินหญ้าพาสพาลัม อุบลและจาราดิกิทที่ตัด 30 วัน (4.14 และ 4.72 กิโลกรัม/วัน) ได้มากกว่ากินหญ้าอายุ 45 วัน (2.41 และ 2.31 กิโลกรัม/วัน) และ 60 วัน (2.35 และ 2.35 กิโลกรัม/วัน) และเมื่อเฉพาะโโคกินหญ้าพาสพาลัม อุบล อายุตัด 30 วันเท่านั้น ที่มีอัตราการเพิ่มน้ำหนักตัว (0.32 กิโลกรัม/วัน) มากกว่าที่กินหญ้าอายุ 45 วัน (0.17 กิโลกรัม/วัน) และ 60 วัน (0.16 กิโลกรัม/วัน) ในขณะที่เมื่อโโคกินหญ้ารูซี่และกินนี ทั้ง DDMI และอัตราการเพิ่มน้ำหนักตัวไม่มีความแตกต่างกัน ($P>0.05$) ในทุกอายุการตัด ส่วนปริมาณอินทรีย์วัตถุที่ย่อยได้ (organic matter digestibility; OMD) และพลังงานที่ใช้ประโยชน์ได้ (metabolizable energy; ME) พบว่าหญ้าทั้งสี่ชนิดมีค่าอยู่ระหว่างร้อยละ 44.31 - 55.09 และ 6.62 - 8.52 MJ/kg DM ตามลำดับ และอายุการตัดของหญ้าทุกชนิด มีแนวโน้มที่จะไม่มีผลต่อค่าดังกล่าว

คำสำคัญ: หญ้าอาหารสัตว์เบตอร์อน วิธีย่อยในถุงไนล่อน และวิธีผลิตก๊าซ

Abstract

The objective of this study was to determine the nutritive value of four tropical grasses namely; Ubon paspalum, Ruzi, Jarra digit and Guinea at 30, 45 and 60 days cutting age by using the nylon bag and gas production technique. It was found that the potential degradability of Ruzi and Guinea grass at 30 days (82.07 and 84.23%) was higher ($P<0.05$) than 45 days (73.22 and 74.99%) and 60 days (72.14 and 74.55%) cutting age, but there were no significant differences ($P>0.05$) in cutting age on the degradability of Ubon paspalum and Jarra digit. digestible dry

matter intake (DDMI) predicted value of Ubon paspalum and Jarra digit at 30 days (4.14 and 4.72 kg/day) was higher than 45 days (2.41 and 2.31 kg/day) and 60 days (2.35 and 2.35 kg/day) cutting age. The expected growth rate of the animals fed Ubon paspalum at 30 days (0.32 kg/day) was higher than animals fed Ubon paspalum at 45 days (0.17 kg/day) and 60 days cutting age (0.16 kg/day). There were no significant differences in growth rate of animals fed Ruzi and Guinea of different ages. Organic matter digestibility (OMD) and metabolizable energy (ME) of four grasses were in the range of 44.30-55.09% and 6.62 - 8.52 MJ/kg DM, respectively. It appeared that cutting age tended to not affect OMD and ME of all grass species.

Key words: tropical forage grass, nylon bag technique and gas production technique

คำนำ

การประกอบสูตรอาหาร ให้ถูกต้องตามความต้องการของสัตว์จำเป็นต้องรู้ส่วนประกอบทางเคมีและคุณค่าทางโภชนาของวัตถุนิว รวมทั้งอาหารขยายหรือหลู้ที่ใช้เลี้ยงสัตว์ การจะรู้สิ่งเหล่านี้ ต้องทดสอบในตัวสัตว์ (*in vivo*) ซึ่งค่อนข้างยุ่งยาก ต้องใช้แรงงาน เวลา และค่าใช้จ่ายมาก ดังนั้น จึงมีการทดลองนอกตัวสัตว์ (*in vitro*) ที่สะดวกและประหยัดกว่า แล้วสร้าง สมการทำนายหาค่าต่างๆที่บ่งชี้คุณค่าทางโภชนาของอาหารชนิดนั้นๆ วิธีการ *in vitro* ที่ทำนายได้ค่อนข้างดีและเป็นที่นิยมคือการใช้ถุงไนล่อน (nylon bag) และการวัดปริมาณการผลิตก๊าซ (gas test) ดังนั้น การทดลองครั้งนี้จึงมีวัตถุประสงค์เพื่อทดสอบการย่อยได้ของหลู้กินน้ำ พาสพาลัมอุบล รูซิ และเจ้าดิกกิท ที่อายุการตัด 30, 45 และ 60 วัน ด้วยวิธีการย่อยในถุงไนล่อน และประเมินการย่อยได้ของอินทรีย์วัตถุ (organic matter digestibility; OMD) และพลังงานที่ใช้ประโภชน์ได้ (metabolizable energy; ME) โดยการคำนวณจากปริมาณการผลิตก๊าซ

อุปกรณ์และวิธีการ

การทดสอบโดยใช้ถุงไนล่อน

นำตัวอย่างหญ้าที่บดผ่านตะแกรงขนาด 0.5 มิลลิเมตร จำนวน 2.5 กรัม ใส่ในถุงโพลิอีสเทอร์ ขนาด 8.0 x 13.5 ตาราง

เซนติเมตร นำถุงที่มีตัวอย่างไปใส่ในกระเพาะรูเมนของโคที่เจาะกระเพาะสองตัว เป็นเวลา 4, 12, 24, 48 และ 72 ชั่วโมง โดยในแต่ละเวลา

ใช้ถุงต่อตัวอย่าง โดยแบ่งใส่ในสองตัวๆ ละสองถุง เมื่อครบเวลา นำตัวอย่างออกมาน้ำด้วยน้ำอุ่นจะรู้สึกว่าตัวอย่างมีลักษณะใส แล้วนำ

ไปอบที่ 95 องศาเซลเซียส เป็นเวลานาน 48 ชั่วโมง หลังจากนั้นนำออกมาน้ำซึ่งเพื่อทวนตัวอย่างที่เหลือ และคำนวณหาค่าการย่อยได้

โดยโปรแกรมสำเร็จรูป NEWAY ของ Rowett Research Institute โดยใช้ model $P = A + B + (1 - e^{-ct})$ เมื่อ P = ศักยภาพในการย่อยได้,

A = ค่าการละลายได้, B = ส่วนที่ไม่ละลายแต่สามารถย่อยได้, c = อัตราการละลาย, และ t = เวลาที่อุ่นร้อนใน รูเมน

การทดสอบโดยวัดการผลิตก๊าซ

ชั่งตัวอย่างอาหารประมาณ 500 มิลลิกรัมที่บดผ่านตะแกรงขนาด 0.5 มิลลิเมตร ใส่ในหลอดแก้ว (glass syringe) ยาว 200 มิลลิเมตรและมีความจุ 150 มิลลิลิตร มีจีดบอปริมาตรถึง 100 มิลลิลิตร 以便ได้ลดอีกดหนึ่ง มิลลิลิตร ปลายหลอดปิดด้วยยาง และมี คลิปหนีบพลาสติกที่ปิด-เปิดให้ก๊าซออกได้ เก็บน้ำรูเมน (rumen fluid) จากโค ส่องตัวที่เจาะกระเพาะไว้แล้วสมเข้าด้วยกัน โดยล้วงเอาอาหารจากหลากรายๆ ส่วนของกระเพาะรูเมนมีบีบคั้นอาจนำไปในขวดเก็บที่ปราศจากออกซิเจนผ่านผ้ากรอง แล้วนำน้ำรูเมนที่เก็บมาได้ผสมกับสารละลายที่เตรียมไว้ตามวิธีของ Menke and Steingass (1988) เติมสารละลายที่ผสมกับน้ำรูเมนแล้วลงในหลอดแก้วที่ใส่อาหารไว้แล้วจำนวน 40 มิลลิเมตร นำหลอดไปใส่ในจานหมุนที่อยู่ในตู้อบอุณหภูมิ 39 องศาเซลเซียส อ่านค่าก๊าซที่เกิดขึ้นที่เวลา 4, 6, 8, 12 และ 24 ชั่วโมง นำค่าปริมาณก๊าซที่ปรับแล้วไปคำนวณเพื่อทำนายอาหารย่อยได้ของอินทรีย์วัตถุ (OMD) และพลังงานที่ใช้ประโยชน์ได้ (ME) ดังสมการ

$$OMD (\%) = 14.88 + 0.889Gb + 0.045XP + 0.065XA$$

$$ME (MJ/kg DM, อาหารหายาบ) = 2.20 + 0.136Gb + 0.0057XP + 0.00029XL^2$$

เมื่อ Gb , XP , XA และ XL คือ ปริมาณก๊าซที่เกิดจากอาหาร 200 mg DM, ร้อยละโปรตีน เต้า และ ไขมันในวัตถุ-แห้ง ตามลำดับ

วิเคราะห์ความแปรปรวนทางสถิติของข้อมูล โดยใช้โปรแกรม IRRISTAT และหาความแตกต่างของค่าเฉลี่ยโดย Duncan's New Multiple Range Test (DMRT)

ผลและวิจารณ์

ส่วนประกอบทางเคมีของหญ้า

ส่วนประกอบทางเคมีของหญ้าทั้งสี่ชนิด ที่ตัดอายุต่างๆกัน แสดงไว้ใน Table 1 จะเห็นว่าหญ้าทั้งสี่ชนิดมีร้อยละโปรตีนและถ้าลดลงเมื่ออายุหญ้ามากขึ้น ในขณะที่ร้อยละของใยหथาน (crude fiber; CF) และผนังเซลล์ (neutral detergent fiber; NDF) เพิ่มขึ้นตามอายุของหญ้า โดยเฉพาะที่อายุ 30 วัน มี CF และ NDF ต่ำกว่าที่อายุ 60 วันมาก ยกเว้นหญ้าพาสพาลัมอุบล ที่ทุกอายุการตัดมีเมื่อไกลีเคียงกัน อย่างไรก็ตาม ส่วนประกอบต่างๆของหญ้ารูจี้เฉลี่ยทุกอายุการตัดมีค่าก่ออันเข้าต่ำ ยกเว้นโปรตีน เมื่อเปรียบเทียบกับรายงานของ บุญชื่ออมและคณะ (2541) ที่รายงานว่า หญ้ารูจี้ (ไม่ระบุอายุ) มี organic matter (OM), crude protein (CP), ether extract (EE), และ NDF เท่ากับร้อยละ 92.8, 5.2, 3.3, และ 69.6 ตามลำดับ ซึ่งความแตกต่างอาจเกิดขึ้นได้เนื่องจากสภาพดินหรือปริมาณการใส่ปุ๋ยที่แตกต่างกัน ในขณะที่ค่าที่ได้จากการทดลองนี้ไกลีเคียงกับของพิมพารและคณะ (2543) ที่รายงานไว้ว่า ส่วนประกอบของหญ้ารูจี้อายุตัด 45 วัน มี CP, EE, Ash, CF และ NDF เท่ากับร้อยละ 9.97, 1.51, 8.80, 30.14 และ 61.03 ตามลำดับ

Table 1 Chemical composition of Guinea, Ubon paspalum, Ruzi and Jarra digit grasses at 30, 45 and 60 days cutting age.

Grass	Cutting Age	DM	Ash	OM	CP	EE	CF	NFE	ND
		%DM							
Ubon	30	89.81	13.	86.49	10.9	0.78	28.44	41.35	63.8
	45	87.18	10.	89.95	7.24	0.80	28.02	49.21	60.5
	60	87.85	7.7	92.21	6.93	0.67	29.28	50.33	63.6
Ruzi	30	87.61	13.	86.90	15.1	1.35	24.79	43.62	61.9
	45	86.98	9.8	90.14	9.14	1.18	28.30	48.44	68.0
	60	87.72	7.5	92.42	7.93	1.19	28.57	52.46	67.8
Jarra digit	30	91.81	9.7	90.27	14.9	2.09	24.71	46.38	62.2
	45	91.42	8.6	91.34	9.40	2.02	29.64	46.53	63.8
	60	91.68	7.9	92.07	8.09	2.13	29.55	48.87	63.3
Guinea	30	91.97	8.9	91.01	12.7	1.54	28.93	43.58	61.5
	45	91.94	8.5	91.43	7.64	1.42	34.61	44.77	69.4
	60	92.18	7.7	92.22	5.24	1.37	36.92	45.40	70.7

การทดสอบโดยใช้ถุงไนล่อน

ข้อมูลที่ได้จากการศึกษาโดยวิธีใช้ถุงไนล่อน พบว่าช่วงเวลาที่ร่อนจนถูกน้ำรีบบ่อยอาหารหลังจากอาหารเข้าสู่รูเมน (L) ไม่มีความแตกต่างกันในหญ้าทุกชนิดและทุกอายุการตัด (Table 2) สำหรับส่วนที่ไม่ละลายแต่สามารถหมักย่อยได้ (B) ส่วนใหญ่ไม่แตกต่างกันเมื่ออายุต่างกันในหญ้าชนิดเดียวกัน ยกเว้นหญ้ารูจี้ที่การย่อยสลายที่อายุ 30 วัน มีค่าสูงกว่าที่อายุ 60 วัน ซึ่งอาจเนื่องจาก CF และ NDF (Table 1) แตกต่างกันมาก ส่วนศักยภาพการย่อยได้สูง

สูด (A + B) ของหญ้ารูซี่และกินนีลดลง ($P<.05$) เมื่อหญ้ามีอายุมากขึ้น ในขณะที่หญ้าพาสพาลัมอุบลและราดิกิทไม่มีความแตกต่างกัน ($P>.05$) อย่างไรก็ตาม ค่า L และ A + B ของหญ้ารูซี่มีค่าไกล์เคียงกับรายงานของบุญล้อม และคณะ (2541) ที่รายงานว่าค่า L ของหญ้ารูซี่ มีค่าเท่ากับ 3.6 ชั่วโมง และ A + B มีค่าเท่ากับร้อยละ 71.5 และไกล์เคียงกับค่าที่ เสาลักษณ์ (2541) รายงานไว้ว่าค่า L ของหญ้ารูซี่ A + B มีค่าเท่ากับร้อยละ 72.60 ส่วนอัตราการย่อยสลาย (c) ของหญ้าทุกอ่ายุการตัด ของหญ้าแต่ละชนิดไม่แตกต่างกัน และเมื่อนำค่า A, B และ c ของหญ้าทั้งสี่ ชนิดไปคำนวณหาปริมาณวัตถุแห้งที่สัตว์กินได้ (dry matter intake; DMI) ปริมาณวัตถุแห้งย่อยได้ที่สัตว์ได้รับ (digestible dry matter intake; DDMI) และ Growth rate ของ โคครุ่นอายุ 1-1.5 ปี ตามสมการ multiple regression ที่เสนอโดย Shem *et al.* (1995) พบว่า DMI ของ หญ้าพาสพาลัมอุบลอายุ 30 วันมีค่าสูงกว่าอายุ 45 และ 60 วัน และสูงกว่าหญ้าชนิดอื่นๆที่อายุตัดเดียวกัน จึงส่งผลให้ DDMI และ Growth rate สูงกว่าหญ้าชนิดอื่นๆ ด้วย (Table 3) อย่างไรก็ตาม เป็นที่น่าสังเกตว่าค่า DMI และ DDMI ที่ได้จากการทดลองนี้ มีค่าค่อนข้างต่ำ ส่วนค่า Index value ของหญ้าพาสพาลัมอุบลและราดิกิทที่อายุตัด 30 วัน มีค่ามากกว่าที่ 45 และ 60 วัน ในขณะที่หญ้ารูซี่และกินนีไม่มีความแตกต่างกัน ($P>.05$) ในทุกอ่ายุการตัด และค่าเหล่านี้ ไกล์เคียงกับรายงานของบุญล้อม และคณะ (2541) ที่พบว่าหญ้ารูซี่มีค่า DMI, DDMI, Growth rate และ Index value เท่ากับ 3.56, 2.53, 0.25 และ 44.35 ตามลำดับ ซึ่งค่า Growth rate ดังกล่าวมีค่าไกล์เคียงกับที่เสาลักษณ์ (2541) รายงานไว้ว่าคือ 0.2 กิโลกรัม/วัน

Table 2 Dry matter digestibility of Guinea, Ubon paspalum, Ruzi and Jarra digit grasses by using the nylon bag technique.

Grass	Cutting		a Age (d)	b -----%-----	c (fraction)	L(hr)	A -----%-----	B -----%-----	A+B -----%-----
	a	b							
Ubon paspalum	30	15.63 ^{bc}	71.64 ^a	0.030 ^b	3.8 ^a	23.35 ^c	63.92 ^a	87.27 ^a	
	45	23.93 ^a	62.75 ^{ab}	0.033 ^{ab}	3.3 ^a	30.37 ^a	56.31 ^{abcd}	86.68 ^{ab}	
	60	23.84 ^a	61.98 ^{ab}	0.025 ^b	3.0 ^a	28.36 ^b	57.46 ^{abc}	85.82 ^{ab}	
Ruzi	30	19.80	62.27 ^{ab}	0.036 ^{ab}	3.2 ^a	24.38 ^c	57.69 ^{abc}	82.07 ^{abc}	
	45	13.47 ^c	59.75 ^b	0.048 ^a	2.6 ^a	20.88 ^d	52.34 ^{bcd}	73.22 ^d	
	60	18.22	53.93 ^b	0.038 ^{ab}	2.6 ^a	23.47 ^c	48.67 ^d	72.14 ^d	
Jarra digit	30	17.89	63.97 ^{ab}	0.038 ^{ab}	2.1 ^a	23.35 ^c	58.51 ^{abc}	81.86 ^{abc}	
	45	17.17	61.13 ^{ab}	0.038 ^{ab}	2.3 ^a	23.08 ^c	55.22 ^{bcd}	78.30 ^{bcd}	
	60	19.97	62.38 ^{ab}	0.031 ^b	2.9 ^a	23.01 ^c	59.46 ^{ab}	82.46 ^{abc}	
Guinea	30	22.39 ^{ab}	61.84 ^{ab}	0.036 ^{ab}	3.5 ^a	29.74 ^{ab}	54.49 ^{bcd}	84.23 ^{ab}	
	45	18.77	56.22 ^b	0.029 ^b	3.3 ^a	23.84 ^c	51.15 ^{bcd}	74.99 ^{cd}	
	60	19.85	54.70 ^b	0.025 ^b	3.5 ^a	24.38 ^c	50.17 ^{cd}	74.55 ^{cd}	

abcd Values on the same column with different superscripts differed ($P<.05$).

การทดสอบโดยวัดการผลิตก้าช

จากการทดสอบการย่อยสลายของหญ้าทั้งสี่ชนิด โดยวัดปริมาณก้าชที่ผลิตขึ้น (Table 4) พบว่ามีค่าของการผลิตก้าช (GP) ไกล์เคียงกัน เช่นเดียวกับหญ้าทุกชนิดที่อายุตัด 30, 45 และ 60 วัน ที่มีการผลิตก้าชไม่แตกต่างกัน ($P>.05$) และเมื่อนำค่าเหล่านี้ไปคำนวณหาค่า OMD และ ME ที่ได้ค่าในทำนองเดียวกับ GP ซึ่งค่าดังกล่าวมีค่าไกล์เคียงกับที่พิมพาร์ และคณะ (2543) ได้รายงานไว้ว่าหญ้ารูซี่มีค่า OMD และ ME เท่ากับร้อยละ 59.65 และ 8.06 MJ/kg DM ตามลำดับ อย่างไรก็ตาม ค่า ME ของหญ้าทั้งสี่ชนิด มีค่าค่อนข้างต่ำกว่าหญ้านีเปียร์ ซึ่งมีค่าเท่ากับ 8.368

MJ/kg DM และหญ้า *Paspalum dilatatum* ที่มีค่าเท่ากับ 9.9998 MJ/kg DM ตามที่ NRC (1988) และ Kearn (1982) รายงานไว้ ตามลำดับ

Table 3 Predicted value of dry matter intake, digestible dry matter intake, growth rate and index value.

Grass	Cutting	A	B	c	DMI ¹	DDM ²	Growth	Index value ⁴
	Age	%.....	(fracti	(kg/d)	(kg/d)	(kg)	
Ubon	30	23.35 ^c	63.92 ^a	0.030 ^b	5.83 ^a	4.14 ^a	0.32 ^a	52.86 ^a
	45	30.37 ^a	56.31	0.033 ^{ab}	3.78 ^{ef}	2.41 ^d	0.17 ^d	45.19 ^{ef}
	60	28.36 ^b	57.46 ^{abc}	0.025 ^b	3.76 ^{ef}	2.35 ^d	0.16 ^d	45.11 ^{ef}
Ruzi	30	24.38 ^c	57.69 ^{abc}	0.036 ^{ab}	4.98 ^{bc}	3.34 ^{bc}	0.25 ^{bc}	49.64 ^{bc}
	45	20.88 ^d	52.34 ^{bcd}	0.048 ^a	6.11 ^a	4.34 ^a	0.33 ^a	53.94 ^a
	60	23.47 ^c	48.67 ^d	0.038 ^{ab}	5.57 ^{ab}	3.81 ^{ab}	0.28 ^{ab}	51.89 ^{ab}
Jarra digit	30	23.35 ^c	58.51 ^{abc}	0.038 ^{ab}	4.72 ^{cd}	3.22 ^{bc}	0.25 ^{bc}	48.07 ^{cd}
	45	23.08 ^c	55.22 ^{bcd}	0.038 ^{ab}	3.46 ^f	2.31 ^d	0.21 ^{cd}	43.95 ^f
	60	23.01 ^c	59.46 ^{ab}	0.031 ^b	3.60 ^f	2.35 ^d	0.19 ^{cd}	44.52 ^f
Guinea	30	29.74 ^{ab}	54.49 ^{bcd}	0.036 ^{ab}	4.57 ^{cd}	3.11 ^c	0.24 ^{bc}	48.12 ^{cd}
	45	23.84 ^c	51.15 ^{bcd}	0.029 ^b	4.15 ^{def}	2.77 ^{cd}	0.22 ^{bcd}	45.57 ^{def}
	60	24.38 ^c	50.17 ^{cd}	0.025 ^b	4.44 ^{cde}	2.93 ^{cd}	0.22 ^{bcd}	47.64 ^{cde}

^{abcdef} Values on the same column with different superscripts differed (P<.05).

¹ DMI (kg/d) = -8.286 + 0.266A + 0.102B + 17.696c, ²DDMI (kg/d) = -7.609 + 0.219A + 0.080B + 24.191c

³Growth rate = -0.649 + 0.017A + 0.006B + 3.87c, ⁴Index value = A + 0.38B + 66.6c

Table 4 Gas production in 24 hours, OMD and ME predicted value from Guinea, Ubon paspalum, Ruzi and Jarra digit grasses.

Grass	Cutting	GP	CP	Ash	EE	OMD ¹	ME ²
	Age (d)	(ml/200 mgDM)	(%)	(%)	(%)	(%)	(MJ/kgDM)
Ubon paspalum	30	39.62 ^{abcd}	10.91	13.51	0.78	51.47 ^{abcde}	7.65 ^{abcde}
	45	40.15 ^{abcd}	7.24	10.05	0.80	51.55 ^{abcde}	7.70 ^{abcde}
	60	32.18 ^d	6.93	7.79	0.67	44.31 ^e	6.62 ^e
Ruzi	30	34.85 ^{cd}	15.13	13.10	1.35	47.40 ^{bcde}	7.03 ^{bcde}
	45	44.03 ^{ab}	9.41	9.86	1.18	55.09 ^{ab}	8.24 ^{ab}
	60	41.99 ^{abc}	7.93	7.58	1.19	53.06 ^{abc}	7.96 ^{abc}
Jarra digit	30	45.81 ^a	14.90	9.73	2.09	56.91 ^a	8.52 ^a
	45	40.99 ^{abcd}	9.40	8.66	2.02	52.30 ^{abcde}	7.83 ^{abcde}
	60	41.62 ^{abc}	8.09	7.93	2.13	52.76 ^{abcd}	7.91 ^{abcd}
Guinea	30	36.25 ^{bcd}	12.76	8.99	1.54	48.26 ^{bcde}	7.20 ^{bcde}
	45	34.12 ^{cd}	7.64	8.57	1.42	46.11 ^{cde}	6.88 ^{cde}
	60	32.94 ^{cd}	5.24	7.78	1.37	44.90 ^{de}	6.71 ^{de}

^{abcde} Values on the same column with different superscripts differed (P<.05).

¹ OMD (%) = 14.88+0.889Gb+0.045XP+0.065XA

² ME_{roughage} (MJ/kgDM) = 2.20+0.136Gb+0.0057XP+0.00029XL²

สรุป

จากการศึกษาคุณค่าทางโภชนาของหญ้าอาหารสัตว์เขตว่อนสีชนิด คือ พาสพาลัมอุบล รูชี' จา-radikith และกินนี ที่อายุการตัด 30, 45 และ 60 วัน สามารถสรุปได้ว่าร้อยละ โปรดีนของหญ้าทั้งสี่ชนิดลดลง เมื่อหญ้ามีอายุมากขึ้น ในขณะที่ปริมาณของ NDF ของหญ้ารูชี' และกินนีเพิ่มขึ้นตามอายุ ส่วนหญ้าอุบลพาสพาลัมและจา-radikith ไม่เปลี่ยน ศักยภาพการย่อยได้สูงสุดของหญ้า รูชี' และกินนีลดลงเมื่อหญ้ามีอายุมากขึ้น แต่หญ้าพาสพาลัมอุบลและจา-radikith ทั้งสองมีปริมาณของหญ้า รูชี' และกินนีเพิ่มขึ้นตามอายุ 30 วัน นิ่มค่ามากกว่าที่อายุ 45 และ 60 วัน ในขณะที่หญ้ารูชี' และหญ้ากินนีไม่มีความแตกต่างกัน ส่วนค่า growth rate ที่ได้จากการคำนวณมีเฉพาะหญ้าพาสพาลัมอุบลเท่านั้นที่อายุ 30 วัน มีค่ามากกว่า 45 และ 60 วัน ในขณะที่หญ้านิดอื่นๆ มีค่าไม่แตกต่างกันในทุกอายุการตัด และค่า OMD และ ME ที่ประเมินได้จากการผลิตก้าชของหญ้าทั้งสี่ชนิด พบว่าไม่มีความแตกต่างกัน

เอกสารอ้างอิง

พิมพาร พลเสน, รำไพพรรณี ใจที่ยิ่ง, ทีวีทัศน์ ชื่นปรีชา, トイโนมูกิ ดาวเรือง และ วัชรินทร์ บุญรักดี. 2543. การศึกษาคุณค่าทางโภชนาของพืชตระกูลถั่วอีนตัน 3 ชนิดโดยวิธีการต่างๆ กัน. รายงานผลงานวิจัยประจำปี 2543 กองอาหารสัตว์ กรมปศุสัตว์ กระทรวงเกษตรและสหกรณ์. หน้า 167-183.

บุญลือ อรุณ ชีวะอิสระกุล, เสาวลักษณ์ แย้มหนึ่นอжа, ลันนา น่วมนวล และไกรสิทธิ วสุเพ็ญ. 2541. การทำนายคุณค่าทางอาหารของฝางข้าว หญ้ารูชี' และในกระถินที่นิยมใช้เลี้ยงโคนมด้วยวิธีใช้ถุงในล่อน. ผลงานวิจัยการทำความต้องการโภชนาของโคนมไทย โดย ผู้ประสานงานโครงการอาหารและโภชนาศาสตร์สัตว์ สำนักงานกองทุนสนับสนุนการวิจัย(สกอ.) ภาควิชาสัตวศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่. หน้า 1-15.

สาวลักษณ์ แย้มหนึ่นอжа. 2541. การเสริมฝางข้าวและหญ้ารูชี' ด้วยในกระถินที่มีผลต่อการย่อยสลายในกระเพาะรูเมย วัดโดยใช้เทคนิคถุงในล่อน. ปัญหาพิเศษปริญญาโท. ภาควิชาสัตวศาสตร์ คณะเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่. 53 หน้า.

Kearl, L. C. 1982. Nutrient requirements of ruminants in developing countries. Utah state University, Logan, Utah USA. 381 p.

Menke, K. H. and H. Steingass. 1988. Estimation of the energetic feed value obtained from chemical analysis and *in vitro* gas production using rumen fluid. Animal research and development. 28. 7-55.

NRC. 1988. Nutrient requirements of dairy cattle. Sixth Ed. National academy press, Washington, D.C.,USA. 157 p.