การศึกษาเพื่อประเมินค่าความเข้มข้นมาตรฐานของธาตุในโตรเจน ฟอสฟอรัส โพแทสเซียม แคลเซียม แมกนีเซียม เหล็ก ทองแคง แมงกานีส และสังกะสี ที่เพียงพอต่อการเจริญ เติบโตของลิ้นจี่พันธุ์ค่อมในเขตภาคกลางของประเทศไทย ทำโดยเก็บตัวอย่างใบในลำคับคู่ใบที่ 1, 2 และ 3 จากปลายกิ่งของต้นลิ้นจี่พันธุ์ค่อมอายุระหว่าง 10-15 ปี ในช่วงฤดูการผลิตลิ้นจี่ปี 2543/44 และปี 2544/45 จากสวนจังหวัดสมุทรสงคราม 5 สวน และกาญจนบุรี 1 สวน ทั้งหมด 48 ต้น มา วิเคราะห์ธาตุอาหาร เพื่อศึกษาคุณสมบัติของใบที่เหมาะสมต่อการนำมาใช้ในการประเมินค่าความ เข้มข้นของธาตุอาหาร ได้แก่ตำแหน่งของลำคับคู่ใบ อายุใบ และระยะเวลาของการเก็บตัวอย่างใบ แล้วนำมาประเมินพิสัยค่ามาตรฐาน โดยใช้หลักการทางสถิติว่าค้วยการแจกแจงความน่าจะเป็นของ ตัวแปรสุ่มแบบต่อเนื่อง(probability distribution) ที่ระคับความเชื่อมั่น 95% นอกจากนี้ได้สุ่มเก็บตัว อย่างดินจากสวนที่ศึกษาทุกสวนเพื่อวิเคราะห์ทางเคมีและทางกายภาพ

ดินของสวนลิ้นจี่ที่ทำการศึกษามีความเป็นกรดเล็กน้อยถึงเป็นกลาง มีปริมาณอินทรียวัตถุ ปานกลางถึงสูง ฟอสฟอรัสที่เป็นประโยชน์และโพแทสเซียมที่แลกเปลี่ยนใด้สูง สำหรับสวนทั้ง 5 แห่งของจังหวัดสมุทรสงคราม มีแกลเซียมและแมกนีเซียมที่แลกเปลี่ยนในดินอยู่ในระดับปาน กลาง ปริมาณเหล็ก ทองแดง แมงกานีสและสังกะสีมีในปริมาณสูง ส่วนสวนที่ศึกษาในจังหวัด กาญจนบุรี มีปริมาณแกลเซียม แมกนีเซียมและแมงกานีสต่ำ สำหรับเนื้อดินที่ระดับความลึก 0-40 ซม.ของสวนจังหวัดสมุทรสงครามเป็นดินเหนียวปนทรายแป้ง(silty clay) ความพรุนรวมเฉลี่ย 51.6-52.6 % ความหนาแน่นดินเฉลี่ยของดินบนและดินล่าง คือ 1.43-1.45 กรัม/ซม³ และ 1.37-1.45 กรัม/ซม³ ตามลำดับ การระบายน้ำของดินช้ามาก ส่วนสวนศึกษาที่จังหวัดกาญจนบุรีนั้น เนื้อ ดินที่ระดับความลึก 0-40 ซม.เป็นดินร่วนทราย(sandy loam) ความพรุนรวมเฉลี่ย 55.1 % ความ หนาแน่นดินเฉลี่ยดินบนสูงกว่าดินล่างคือ 1.50 กรัม/ซม³ และ 1.43 กรัม/ซม³ ตามลำดับ ไม่พบว่า มีชั้นดินแน่นทีบอันเป็นอุปสรรคต่อการระบายน้ำ

ความเข้มข้นของธาตุอาหารในใบที่แตกใหม่ในลำคับคู่ใบที่ 1 2 และ 3 จากปลายกิ่งไม่พบ ความแตกต่างกันทางสถิติ ความเข้มข้นของในโตรเจน โพแทสเซียม เหล็ก ทองแดงและสังกะสึ ในใบที่แตกใหม่ซึ่งอายุใบแตกต่างกันไม่มีความแตกต่างกันทางสถิติ แต่ความเข้มข้นของ ฟอสฟอรัส แมกนีเซียม แคลเซียม และแมงกานีสในใบที่แตกใหม่ซึ่งอายุใบแตกต่างกันมีความแตก ต่างกันทางสถิติ สำหรับความเข้มข้นของธาตุอาหารในใบที่แตกจากปลายกิ่งในฤดูการผลิตปัจจุบัน มีความแตกต่างกันทางสถิติกับความเข้มข้นของธาตุอาหารในใบที่แตกจากปลายกิ่งก่อนฤดูการผลิต

ค่ามาตรฐานธาตุอาหารในใบที่เสนอแนะสำหรับถิ้นจี่พันธุ์ค่อมในเขตภาคกลางของ ประเทศไทยแบ่งเป็น 3 ชุดตามการพัฒนาของพืช ดังนี้ 1) ระยะเดือนกรกฎาคม-กันยายน : N 1.802.20%, P 0.22-0.27%, K 1.30-1.70%, Ca 0.30-0.40%, Mg 0.20-0.30%, Fe 20-40 มก/กก, Cu 10-15 มก/กก, Mn 15-25 มก/กก, Zn 15-25 มก/กก 2) ระยะเดือนตุลาคม-มกราคม : N 1.50-1.90%, P 0.23-0.29%, K 1.10-1.40%, Ca 0.40-0.50%, Mg 0.20-0.30%, Fe 20-40 มก/กก, Cu 10-20 มก/กก, Mn 20-30 มก/กก, Zn 20-25 มก/กก 3) ระยะเดือนกุมภาพันธ์-เมษายน: N 1.60-2.00%, P 0.21-0.27%, K 0.90-1.10%, Ca 0.70-1.00%, Mg 0.30-0.40%, Fe 40-60 มก/กก, Cu 10-30 มก/กก, Mn 30-50 มก/กก, Zn 20-30 มก/กก

ค่ามาตรฐานทั่วไปสำหรับการเก็บตัวอย่างใบระหว่างเคือนกรกฎาคม-เมษายน คือ N 1.70-2.10%, P 0.22-0.28%, K 1.10-1.50%, Ca 0.40-0.60% Mg 0.20-0.30% Fe 25-40 มก/กก Cu 10-20 มก/กก, Mn 20-30 มก/กก และ Zn 15-25 มก/กก

ข้อกำหนดสำหรับการเก็บตัวอย่างใบจากการวิจัยในครั้งนี้มีดังนี้ คือ ตัวอย่างใบควรเป็นใบ ที่แตกในฤดูการผลิตนั้น ใบที่นำมาวิเคราะห์ต้องเก็บมาจากตำแหน่งคู่ใบที่ 1, 2 และ 3 และมีอายุใบ ตั้งแต่ 45 วันขึ้นไป โดยสุ่มเก็บมาไม่ต่ำกว่า 20 จุดต่อสวน

อย่างไรก็ตาม ค่าความเข้มข้นมาตรฐานของธาตุอาหารในใบลิ้นจี่ที่ได้กำหนดขึ้นจากการ วิเคราะห์ทางสถิติของโครงการวิจัยนี้ควรมีการศึกษาวิจัยต่อไปเพื่อปรับปรุงได้ค่ามาตรฐานที่เหมาะ สมยิ่งขึ้น เนื่องจากประชากรของข้อมูลที่จะนำมาหาค่ามาตรฐานของธาตุอาหารในใบลิ้นจี่ในช่วง การพัฒนาของผลไม่ได้มาจากต้นที่ให้ผลผลิต ด้วยช่วงเวลาของการวิจัยมีปัญหาด้านปัจจัยภูมิ อากาศที่ทำให้ลิ้นจี่ไม่ติดผลในปีแรกและมีผลผลิตน้อยในปีที่สอง

ABSTRACT

The study on establishing leaf nutrient standards of nitrogen, phosphorus, potassium, calcium, magnesium, iron, copper, manganese and zinc for lychee (Khom cultivar) was conducted in Samut Songkhram and Kanchanaburi which are in central plain and western region of Thailand respectively. Leaf sampling was done in 6 high yielding commercial orchards in 2000/2001 and 2001 – 2002 production years. The 10 – 15 year-old, 48 lychee trees were selected from 5 orchards in Samut Songkhram and 1 orchard in Kanchanaburi to evaluate the most suitable leaf position, age and time of sampling for establishing leaf nutrient standards. The probability distribution of leaf nutrient concentrations was studied and the range set was done by constructing 95% confidence interval about the mean for pooled nutrient concentration for Khom cultivar. Beside this, soil samples from each orchard were also collected for chemical and physical analysis.

The results of soil chemical analysis from 6 orchards were found as followed: slightly acid to neutral, medium to high organic matter content, high available phosphorus and exchangeable potassium. For all 5 orchards in Samut Songkhram, the levels of exchangeable calcium and magnesium in soils were found medium with high levels of iron, copper, manganese and zinc. On the other hand, the orchard in Kanchanaburi had low contents of calcium, magnesium and manganese. Results on physical analysis indicated that soil texture within 0-40 cm layer of orchards at Samut Songkhram was silty clay, having soil porosity in the range of 51.6-52.6 %, bulk densities of 1.43-1.45 g/cm³ for topsoils and 1.37-1.45 g/cm³ for subsoils. Profile drainage was found very slow. For the soil in lychee orchard at Kanchanaburi, the texture of 0-40 cm layer was sandy loam, having average porosity of 55.1%;bulk densities of topsoil and subsoil were 1.50 g/cm³ and 1.43 g/cm³, respectively. Retardation layer for soil drainage was not found in the profile.

The differences among nutrient contents in the first, second and third pairs of newly flush leaves on a single shoot were not statistically significant. The concentrations of N, K, Fe, Cu and Zn in newly flush leaves measured at different ages were found not significantly different. But on the other hand, significant differences were found for concentration of P, Mg, Ca and Mn. The nutrient content in newly flush leaves during the year had statistically different as compared to the nutrient content in old flush leaves a year before.

Three sets of standard nutrient concentrations at adequate ranges for lychee cv. Khom could be proposed in 3 stages relevant to physiological development as followed: 1) July – September: N 1.80 – 2.20%, P 0.22 – 0.24%, K 1.30 – 1.70%, Ca 0.30 – 0.40%, Mg 0.20 – 0.30%, Fe 20 – 40 mg/kg, Cu 10 – 15 mg/kg, Mn 15 – 25 mg/kg and Zn 15 – 25 mg/kg. 2) October – January: N 1.5 – 1.90%, P 0.23 – 0.29%, K 1.10 – 1.40%, Ca 0.40 – 0.50%, Mg 0.20 – 0.30%, Fe 20 – 40 mg/kg, Cu 10 – 20 mg/kg, Mn 20 – 30 mg/kg and Zn 20 – 25 mg/kg. 3) February – April: N 1.60 – 2.00%, P 0.21 – 0.27%, K 0.90 – 1.10%, Ca 0.70 – 1.00%, Mg 0.30 – 0.40%, Fe 40 – 60 mg/kg, Cu 10 – 30 mg/kg, Mn 30 – 50 mg/kg and Zn 20 – 30 mg/kg.

The general the standard nutrient concentration in leaves collected during July – April for Khom lychee in the central plain were proposed as followed: N 1.70-2.10%, P 0.22-0.28%, K 1.10-1.50%, Ca 0.40-0.60%, Mg 0.20-0.30%, Fe 25-40 mg/kg, Cu 10-20 mg/kg, Mn 20-30 mg/kg and Zn 15-25 mg/kg.

It is recommended that lychee leaves should be sampled from vegetative flush of that year by taking the first, second or third pairs on each shoot. At least 20 sampling spots of \geq 45 day – old leaves is considered one leaf sample.

The unfavorable climatic conditions during the experimental period, the lychee trees rarely got flowering and produced no fruit in the first year and rarely producing yield in the second year. Under this abnormal situation, the nutrient concentration in leaves can not completely represent nutritional condition of lychee tree under normal production year. Further study is suggested to carry out for improving of this tentative leaf nutrient standard by collecting more data and studying on the population under normal production period of lychee orchards.