

บทคัดย่อ

ในการทดสอบการย้อมฝ้ายด้วยสีธรรมชาตินั้นเท่าที่ผ่านมาพบว่าฝ้ายจะติดสีอ่อนและผลการทดลองในโครงการวิจัยระยะที่ 1 นั้นได้พบว่าการทำ premordant ฝ้ายด้วยปรอตีนจากน้ำถั่วเหลืองก่อนย้อมจะทำให้ฝ้ายย้อมสีติดเข้มและมีความคงทนต่อการซักขัดถูกและแรงอยู่ในระดับดี ดังนั้นก่อนจะทำการขยายการผลิตสีแปรรูปสูตรต่างๆ คงจะต้องได้ทดลองหาปริมาณปรอตีนจากน้ำถั่วเหลืองหรือจากน้ำนมที่เหมาะสมในการทำ premordant ฝ้ายที่ทำการสะอาดแล้วก่อนนำมา.y้อมด้วยสีย้อมธรรมชาติให้ติดสีเข้มขึ้นพบว่าปริมาณปรอตีนตั้งแต่ 1 มิลลิกรัมต่อมิลลิลิตรขึ้นไปก็เพียงพอที่จะนำไปต้มกับฝ้ายในอัตราส่วน 1: 20 (น้ำหนักฝ้ายต่อบริมาณน้ำปรอตีน) แล้วทำให้ฝ้ายติดสีย้อมเข้ม

ขั้น ถ้าเริ่มจากแป้งถั่วเหลืองหรือนมผงอัตราส่วนของผงต่อน้ำที่ใช้ละลายน้ำผลต่อการละลายของปริมาณโปรตีนและอุณหภูมิที่สูงขึ้นและระยะเวลาที่ใช้ต้มจะทำให้โปรตีนละลายออกมากได้มากขึ้นด้วยถ้าใช้ผงถั่วเหลืองหรือนมผงเข้มข้นเกินไปจะมีผลทำให้แป้งที่ป่นอยู่เกาะฝ่าย ทำให้ฝ่ายแข็งและน้ำสีเข้าฝ่ายได้ไม่สม่ำเสมอ นอกจากนี้ยังได้เตรียมน้ำสกัดจากถั่วเหลืองแล้วทำแห้งอัดเป็นเม็ดแกรนูลและนาบปริมาณโปรตีนต่อกรัมของเม็ดแกรนูลต่อน้ำในสัดส่วนที่ทำให้โปรตีนละลายออกมากที่สุดที่อุณหภูมิห้องเพื่อเตรียมไว้เผยแพร่พร้อมกับสีย้อมสำเร็จรูปที่เตรียมขึ้น

ได้ทำการผลิตสีย้อมสำเร็จรูปจากผงสีครั้งและรากยอด ที่ทำแห้งด้วยเครื่อง spray dryer และจากการสกัดด้วยอัลกอฮอลล์แล้วทำเป็นผงสกัดเข้มข้น นำมาทดลองปรุ่งสูตรน้ำสีย้อมสำเร็จรูปแล้วทำแห้งด้วยเครื่องทำแห้งแบบลูกกลิ้งอัดเป็นเม็ดแกรนูลทดสอบการละลาย พิเชชช่องสารละลาย การย้อมและความคงทนของผลิตภัณฑ์ย้อมสีแล้วทำการคัดเลือกสูตรที่ใช้ได้ที่สุดมาทำการขยายขนาดการผลิต สำหรับสีจากรากยอดได้สูตร M1 สีจากครั้งได้สูตร L4 และยังได้ทดลองผงสมน้ำสีย้อมสูตร M1 และ L4 เพื่อให้ได้สีออกสีเดงส้ม ทำแห้งเป็นสูตร ML14 การสกัดและปรุ่งสูตรน้ำสีย้อมสีเหลืองจากขมีนันน์ พบว่าขมีนันมีน้ำมันมากเวลาสกัดนำมาทำแห้งสีเกาะเป็นก้อนแข็ง เข้าเครื่องทำแห้งจะทำยากมากจึงได้สกัดน้ำมันออกก่อนด้วยการกลั่นด้วยไอน้ำแล้วนำน้ำสีที่สกัดน้ำมันออกแล้วมาปรุ่งสูตรทำแห้งแล้วอัดเม็ดแกรนูลพบว่าสามารถทำได้จึงเลือกเป็นวิธีไว้ขยายขนาดการผลิตต่อไป สีจากครามและส้มเริ่มจากการหมักเป็น paste แล้วนำ paste มาผสานสูตรโดยใช้กรดซิตริกหรือกรดทาร์ทาริก หรือครีมอฟทาร์มาร์ชี่ยปรับพีเอชน้ำส้มให้อยู่ในช่วง 10-10.5 ก่อนทำแห้ง ได้เลือกสูตร I₂ สำหรับขยายขนาดการผลิต ผงใบสูตรคัลปัตต์ส นำมาสกัดน้ำมันออกแล้วทำแห้งได้น้ำส้มสีน้ำตาล ออกครีมติดทนและยังใช้เป็นมอร์เดนท์ในการผสานน้ำสีสูตรอื่นๆ ได้ด้วย

ได้นำวัตถุดินที่ให้สารสีชนิดอื่นๆ เพิ่มเติมพบว่า สารสีเหลืองจากผักเชียงดาสามารถนำมาทำแห้งและย้อมฝ่ายได้สีเหลืองสวย น้ำสกัดครั้งแรกสีเขียวออกเหลืองเมื่อเติมด่างปูนขาวได้สีเหลืองเต็มสีติดฝ่ายไม่ทนแสงไม่เหมะใช้ย้อมผ้าอีกทั้งผักเชียงดา มีสารต้านอนุมูลอิสระมากเหมาะสมจะใช้ผสานอาหารมากกว่า สำหรับสารสีเหลืองนั้นยังได้จากเปลือกหอยหัวใหญ่ เปลือกส้มเขียวหวานและผิวเปลือกผลมะกรูดโดยต้องสกัดน้ำมันออกก่อนแล้วจึงนำน้ำสกัดที่เหลือมาเติมด่างผสานสูตรสำหรับทำแห้งเป็นสีย้อมสำเร็จรูปต่อไป สีจากผิวเปลือกผลมะกรูดยังให้น้ำส้มที่มีกลิ่นหอมเฉพาะตัวด้วยมะกรูด (*Citrus hystrix* Linn.) ถูกจัดอยู่ในวงศ์ Rutaceae เมื่อนำผิวเปลือกผลมาสกัดสีออกแล้วแยกบริสุทธิ์นาโครงสร้างพบว่าเป็นสารประกอบ Flavanone ที่มีชื่อว่า Hesperidin สีเหลืองจากมะกรูดนี้ได้ทดลองผสานกับสีอ่อนดิโกลากรามและส้มได้เป็นสีย้อมธรรมชาติสำเร็จรูปสีเขียวอ่อนถึงเข้มกับสัดส่วนการผสานระหว่างสองสีนี้ สูตรที่ใช้ได้ดีที่เหมาะสมสำหรับการขยายขนาดการผลิตคือ สูตร GIF1 นอกจานนี้ยังมีสีจากเปลือกไม้สะนอยหรือไก่แดง (*Terstraenia gymnanthera* Bedd.) ถูกจัดอยู่ในวงศ์

Theraceae เมื่อนำมาสกัดด้วยน้ำด่างได้น้ำย้อมสีน้ำตาลแดงเข้มเติมสารส้มได้น้ำย้อมสีส้ม เมื่อแยกสกัดสารสีจากเปลือกไม้สักนอยพนองค์ประกอบหลัก 2 ชนิด ชนิดแรกเป็นสารประกอบ Triterpenoid ชนิด Lupane-type triterpene และอีกชนิดหนึ่งเป็นสารประกอบจำพวกแทนนินชนิด Condensed tannin ทำการสกัดและผสานสูตรทำแห้งไว้เป็นสีย้อมสูตร B3 และ B4 และไว้เป็นมอร์เดนท์สำหรับสูตรผสานอื่นๆ ต่อไป นอกจากนี้ยังได้ศึกษาสารสีจากดอกทองกวาว (*Butea monosperma* Lamk.) เป็นสารสีกลุ่มฟลาโนนอยด์ให้สีส้มในน้ำด่างปูนใส่สมเป็นสูตรสีย้อมสำเร็จรูปและทำแห้งทดลองย้อมได้สีส้มไม่ครุ่นแสง สีสมระหว่างสีแดงของครั้งหรือเปลือกสักนอยกับอินดิโกจากครามหรือย้อมให้สีย้อมสำเร็จรูปที่เป็นสีม่วงสูตร V1B1, V1B2 และ L142 ซึ่งเป็นโทนสีม่วงต่างๆ กันตั้งแต่ม่วงน้ำตาล ม่วงแดงและม่วงน้ำเงิน

ได้ทำการทดสอบการใช้สีผงสำเร็จรูปสูตรต่างๆ ในการย้อมผ้าย้อม ใหม่ ป่านปอ ไยกันชง และเยื่อกระดาษพนง่าการละลายของสียังไม่ดีเท่าที่ควรสีบางสีมีตะกอนมาก สีบางสีที่ผสมกับสีน้ำเงินของอินดิโกจะย้อมไม่ติดสีอินดิโกและได้ทำการหาปริมาณความเข้มข้นของน้ำย้อมที่เหมาะสมในการย้อมผ้าย้อมของสีย้อมสูตรสำเร็จรูปจากครั้งพบว่า ผงสี 35 กรัมต่อน้ำ 1 ลิตรเป็นปริมาณที่เหมาะสมที่สุดที่จะทำให้ติดสีเข้มและใช้ผงสีอย่างประหยัด

ได้ประชาสัมพันธ์สีผงสูตรสำเร็จรูปแก่ผู้ประกอบการใน 7 จังหวัด ภาคอีสาน และภาคเหนือร่วมแสดงนิทรรศการผงสีย้อมสำเร็จรูปและผลิตภัณฑ์ย้อมสี ณ ศูนย์ประชุมแห่งชาติสิริกิติ์ ในงานครบรอบ 10 ปี สก. เมื่อปลายเดือนกุมภาพันธ์ 2546 และออกรายการคนไทยวันนี้ทางสถานีโทรทัศน์ช่อง 7 สี เมื่อวันที่ 1 พฤษภาคม พ.ศ. 2546 นิทรรศการวันวิทยาศาสตร์ที่คณะวิทยาศาสตร์มหาวิทยาลัยเชียงใหม่ เมื่อเดือนสิงหาคม พ.ศ. 2546 และนิทรรศการ 10 ปี สก. สัญจรวจภาคเหนือที่จังหวัดเชียงใหม่ในเดือนมีนาคม 2546 และให้คำปรึกษาเรื่องการผลิตและใช้สีย้อมธรรมชาติแก่โครงการ “บ้านทอผ้า” ที่อ.สังขละบุรี จังหวัดกาญจนบุรี และผู้ผลิตและผู้ใช้สีธรรมชาติที่สนใจทั่วไป

ได้ศึกษาการเพิ่มผลผลิตสีธรรมชาติโดยการส่งเสริมการปลูกไม้ให้สีที่ใช้มากคือย้อมและคราม การเพาะเลี้ยงกลุ่มเซลล์พืชให้สี เก็บรากยอป่าที่สามารถได้กลุ่มเซลล์ที่ผลิตสารสีเช่นเดียวกับรากของต้นยอป่าและกำลังอยู่ในระหว่างการปรับปูรุ่งให้เซลล์ผลิตสารสีได้มากขึ้นโดยใช้เวลาอย่างลงโดยปรับปรุงอาหารและภาวะการเลี้ยงเช่นการให้แสงและการเพาะในที่มีดี เป็นต้น สำรวจศึกษาสารให้สีจากจุลินทรีย์นั้นได้ศึกษาการผลิต pigment สีแดงจากแบคทีเรีย *Serratia* sp. PB ที่สกัดได้จากเห็ดน้ำมากปรับปรุงภาวะการเลี้ยงและอาหารและพยาบาลให้อาหารที่มีราคาถูกลงและเลี้ยงเซลล์ในถังหมักโดยการตีรังเซลล์ไว้บนฟองน้ำ และวัสดุตีรังเซลล์ต่างๆ พบว่าสามารถผลิตสีได้มากขึ้นกว่าเดิมและแยกเซลล์ออกจากน้ำเลี้ยงง่าย สีที่ได้สกัดออกจากเซลล์ได้ง่ายด้วย acidic ethanol ได้ทดลองนำมา

เตรียมน้ำย้อมและย้อมผ้ายได้สีม่วงที่มีความคงทนขึ้นต่อไปจะทำการผลิตให้มากขึ้นและนำมาแยก
บรรจุหิริ ศึกษาสมบัติและโครงสร้างทางเคมีต่อไป

Abstract

Expanding the production of ready-to-use natural dyes from morinda root, lac dye, *Curcuma longa* Linn., kram (*Indigofera tinctoria* Linn.) and hom (*Baphicacanthus cusia* Brem.) to get enough products for promotion was started by extracting pigments from large amount of natural raw materials to yield large amount of pigmented solution and dried to powder followed by mixing the dye stuff with lactose or tropioca starch for granulation. The amount of pigment per gram of granulated dye was determined. The granulated dyes were tested for dyeing and the quality of the dyed products were determined. The powder of the indigo dye from Kram and Hom was used to find the proper condition for the preparation of ready-to-use dye in granulated form. Using only lactose or starch powder to mix with the dye power, the granulated dye was difficult to disperse in water. The dispersion of the granulated dye was improved by mixing of some materials that always used in the dye bath namely, the potassalum, citric acid, calcium hydroxide and wetting agent with the dye powder before granulation. All granulated dyes dissolved well in water at 60°C but still some residue was left even at higher temperature which had to be filtered out before dyeing. The cotton dyed with the granulated dye containing lactose yielded smoothly pale colour due to low amount of pigment per gram of granulated dye while the granulated dye containing starch gave unevenly dyed product since the heat in the dyeing process led to sticky starch on the surface of the material to be dyed. Two major components were found in the extracted pigment from Kram and Hom, the blue pigment was indigo and the red pigment was indirubin. Indigo had maximum absorption at 611 nm and the amount of indigo in the granulated dye was then determined by uv-visible spectroscopic method using standard indigo as reference. It was found that granulation of indigo dye from indigo paste yielded 2.8 mg of indigo per gram of granules whereas granulated indigo dye from indigo powder gave 66.8 mg of indigo/ g of granule. Therefore, the dry powder of dye stuff should be used for preparation of granulated dye. Unfortunately, the spray dryer was permanently out of order and the amount of granulated dyes prepared by this method were still not enough for distribution to the user. However, we had got useful information to modify the proper formula for preparation of ready-to-use dyes using drum dryer instead.

Normally, cotton dyed with natural dyes gave low intensity of the color and the result obtained from phase 2 of our research project revealed that premordanting of cotton by

protein from soya bean milk before dyeing gave higher color intensity on the cotton. So, we varied the amount of soya bean or milk protein for premordanting cotton and found that the concentration of protein solution from 1 mg/ml for boiling cotton in a ratio of 1:20 (cotton wt/volume of protein solution) was enough to obtain higher color intensity with good wash and light fastness. If soya bean starch or milk powder was used, the ratio of the powder to dissolving water effected the amount of the solubilized protein and at higher temperature with longer boiling period, more protein could be solubilized. If too high concentration of soya bean or milk was used, the starch would coat the cotton and the dye could not bind evenly to the cotton. Moreover. We also prepared the granulated soya bean milk and determined the amount of protein per gram of granule including the amount of soya bean milk granules in proper volume of water that highest amount of protein could solubilize at room temperature. This granulated soya bean milk was plan to promote the same time as the prepared ready-to-use dyes.

Production of ready-to-use natural dye started by using the lac dye and morinda root dye powder obtained from spray dry and from concentrated alcoholic extract. We prepared the dye solution in various formula which ready-to-use in the dye bath dried on drum dryer and granulated in the granulator. The water solubility of the granulated dye and pH of the dye solution were tested. The dye solution was used for dyeing cotton and the fastness of the dyed products were measured. The good formula were selected for the production of the ready-to-use dye in large quantity. The formula M1, L4 and ML14 were good formula from morinda root dye, lac dye and the mixture of the dye formula M1 and L4 in a ratio of 1:1 by volume, respectively. The dye extract from curcumin could not get powder on drying due to too much volatile oil in the extract. The volatile oil could be separated out by steam distillation before formulating the dye solution and drum drying. The granulated dye preparation from kram and hom started with indigo paste. The indigo paste was formulated with citric or tartaric acid or cream of tarta and the pH of the dye solution was adjusted to 10-10.5 before drying. In this case, the formula I2 was selected for large quantity production. The granulated dye from Eucalyptus leaves was also prepared after removing the volatile oil by steam-distillation which gave bage color on dyeing. This dye could also be used as mordant for dyeing and preparing other dye formula.

Some more other raw materials for natural dyes were also explored. It was found that yellow pigment from Pak Chiangda (*Gymnema inodorum* on *S. typhi*), a kind of vegetable could be used for dyeing in alkali condition but the dye gave poor light fastness. This vegetable contained a lot of antioxidant compounds which would be more useful in food than for dyeing. The yellow pigment could be also found in the peels of onion, orange and leech lime (*citrus hystrix* Linn.) in Rutaceae family. These fruits contained a lot of volatile oils which had to be removed before preparation of the ready-to-use dye. The major component of the dye from *citrus hystrix* Linn. was flavanone compounds called hesperidin which gave yellow color in alkali solution. This yellow pigment could be mixed with the blue color of indigo extract and gave yellowish green to bluish green dye solution depending on the ratio of these two pigments. The best formulae was GIF1. Another ready-to-use dye was prepared from the tree's bark called Snoi or Kaidang (*Ternstroemia gymnanthera* Bedd.) in Theraceae family. This formulae gave reddish-brown on dyeing cotton. Two major components could be found in the extract, one was Lupane-type triterpene and the other was condensed tannin. The best formula were B3 and B4 and these could also be used as mordants in natural dye dyeing. Moreover, the orange dye could be prepared from Tongkaow flower (*Butea monosperma* Lamk.), the pigment was flavonoid which gave orange-red color on dyed cotton but it had poor light fastness. The mixture between red color of lac dye or Kaidang bark and blue color of indigo gave various purple color tones from brownish-purple, reddish-purple and bluish purple of the dye formula V1B1, V1B2 and LI42, respectively.

The prepared ready-to-use dyes were used in dyeing cotton, silk and other natural fibres. It was found that solubility of the dyes were not good enough, some dyes left too much residues. Indigo in some mixed dye formula had poor penetration into the fiber and lost of the blue color in the dyed product. The suitable amount of ready-to-use lac dye was 35 g of granulated dye per 1 liter of water for dyeing cotton in a ratio of 1:10 (Weight of cotton : volume of dye solution).

The ready-to-use dyes had been promoted to the user at 7 provinces in the north and northeast region of Thailand. We had also joined the 10th Anniversary of Thailand Research Fund(TRF) exhibition at Sirikit National Meeting Center in February and at Chiang

Mai in December, 2003. The promotion was also in television channel 7 program "Thai people today " in May, 2003. Finally, we gave some advise on preparation of natural dye and dyeing process to the producers and users who showed their interest.

To obtain enough raw material for the production of the modified natural dyes, the common use pigmented plants such as Kram, Hom, Morinda, Curcuma longa etc. should be more cultivated. Another alternatives to increase the pigment productivity were to culture the pigmented plant cells and studied the pigmented microorganisms. We could culture the morinda root cells to produce the same pigments as the morinda plant. We also studied the pigmented bacteria *Serratia* sp. RB isolated from red mushroom and increased production by immobilized cells in polyethylene sheets. The red pigment was easily extracted by acidic ethanol and show the potential of using as natural dye.