รายงานฉบับสมบูรณ์ โครงการพัฒนาองค์ความรู้และศึกษานโยบาย การจัดการทรัพยากรชีวภาพในประเทศไทย ระยะที่ 2

พ.ศ. 2544-2554

เสนอต่อ

สำนักงานกองทุนสนับสนุนการวิจัย ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ

จัดทำโดย

โครงการพัฒนาองค์ความรู้และศึกษานโยบาย การจัดการทรัพยากรชีวภาพในประเทศไทย มิถุนายน 2555

สารบัญ

บทคัดย่อ					
รายงานส่วนที่ 1 : สรุปย่อผลงานและความสำเร็จ (พ.ศ. 2544-2554)					
รายงานส่วนที่ 2 : ผลงานวิจัยเด่น (พ.ศ. 2544-2554)					
รายงานส่วนที่ 3 : ผลการดำเนินงานชุดโครงการหาดขนอม-เขานันระยะที่ 1 โดยความร่วมมือ	156-186				
กับ ปตท. จำกัด (มหาชน)					
โครงการย่อยที่ 1 ซุดโครงการป่าเมฆ-เขานั้น					
โครงการย่อยที่ 2 ชุดโครงการหาดขนอมระยะที่ 1					
รายงานส่วนที่ 4 : ผลการดำเนินงานชุดโครงการหาดขนอม-หมู่เกาะทะเลใต้ โดยความร่วมมือ					
กับโททาล อีแอนด์พี ประเทศไทย และมูลนิธิโททาล ฝรั่งเศส					
รายงานส่วนที่ 5 : ผลการดำเนินงานชุดโครงการหาดขนอมระยะที่ 2 โดยความร่วมมือกับ					
บริษัท ปตท. จำกัด (มหาชน)					
รายงานส่วนที่ 6 : ภาคผนวก					
-รายชื่อโครงการวิจัย					
-รายชื่อโครงการวิทยานิพนธ์					
-รายการผลงานตีพิมพ์ทางวิชาการ					
-รายการสิทธิบัตรและอนุสิทธิบัตร					
-รายการสิ่งมีชีวิตชนิดใหม่ของโลก					
-รายการสิ่งตีพิมพ์ของโครงการ BRT					

รายงานฉบับสมบูรณ์

โครงการพัฒนาองค์ความรู้และศึกษานโยบายการจัดการทรัพยากรชีวภาพในประเทศไทย (BRT) ระยะที่ 2 : 2544-2554

บทคัดย่อ :

โครงการพัฒนาองค์ความรู้และศึกษานโยบายการจัดการทรัพยากรชีวภาพในประเทศไทย หรือ โครงการ BRT (Biodiversity Research and Training Program) จัดตั้งขึ้นในปี พ.ศ. 2539 โดยการสนับสนุนทุน ระหว่างศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (ศช.) สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) และสำนักงานกองทุนสนับสนุนการวิจัย (สกว.) โครงการ BRT มีวัตถุประสงค์หลักเพื่อทำหน้าที่สนับสนุนเงินทุน วิจัยด้านความหลากหลายทางชีวภาพ โดยเน้นการศึกษาองค์ความรู้พื้นฐาน ส่งเสริมการพัฒนาบุคลากร และสนับสนุนการ วิจัยครอบคลุมประเด็นต่างๆ รวมทั้งการศึกษาเชิงนโยบายที่จะนำไปสู่การอนุรักษ์และการจัดการทรัพยากรชีวภาพอย่างมี ประสิทธิภาพ ระยะที่ 1 ตั้งแต่ พ.ศ. 2539-2543 ระยะที่ 2 ตั้งแต่ พ.ศ. 2544-2548 และระยะที่ 2 ช่วงขยายเวลาตั้งแต่ พ.ศ. 2549 – 2554

โครงการ BRT จัดตั้งขึ้นในช่วงที่กระแสความหลากหลายทางชีวภาพกำลังอยู่ในความสนใจ และได้รับการยอมรับ ว่าเป็นฐานสำคัญในการพัฒนาเศรษฐกิจ สังคม และสิ่งแวดล้อมของประเทศ ทำให้งานวิจัยความหลากหลายทางชีวภาพ เกิดกระแสความตื่นตัว มีโครงการวิจัยความหลากหลายทางชีวภาพเกิดขึ้นมากมาย และประมาณร้อยละ 60 ของโครงการ ด้านความหลากหลายทางชีวภาพทั้งหมดของประเทศได้รับการสนับสนุนจากโครงการ BRT ผลการดำเนินงานของ โครงการ BRT ทำให้เกิดกลุ่มนักวิจัยชีววิทยาพื้นฐาน สร้างเครือข่าย ขับเคลื่อนให้เกิดการขยายตัวของความรู้ มีการพัฒนา โครงสร้างพื้นฐาน เกิดนักวิจัยรุ่นใหม่เข้าไปเพิ่มและทดแทนบุคลากรในหน่วยงานภาครัฐและเอกชนอย่างต่อเนื่อง

ผลการดำเนินงานของโครงการ BRT ในช่วงเวลา 16 ปี (พ.ศ. 2539-2554) มีโครงการได้รับการสนับสนุนทั้งสิ้น 1,771 โครงการ ในวงเงินงบประมาณทั้งสิ้น 565 ล้านบาท แบ่งเป็นโครงการวิจัย 545 โครงการ วงเงินงบประมาณ 405 ล้านบาท โครงการวิทยานิพนธ์ 669 โครงการ วงเงินงบประมาณ 88 ล้านบาท และโครงการฝึกอบรมและบริหารจัดการ ข้อมูล 557 โครงการ วงเงินงบประมาณ 72 ล้านบาท โดยสร้างองค์ความรู้จากการวิจัยในวารวิชาการนานาชาติ 853 เรื่อง สร้างนักวิจัยรุ่นใหม่ 669 คน ค้นพบสิ่งมีชีวิตใหม่ของโลก 679 ชนิด สร้างสิทธิบัตรและอนุสิทธิบัตร 12 รายการ มี ตัวอย่างอ้างอิงเพิ่มขึ้น 30,000 รายการ พบสารเคมีใหม่และเอนไซม์จากจุลินทรีย์ 90 ชนิด การค้นพบดังกล่าวเพิ่มโอกาส ให้ประเทศไทยเป็นผู้นำในการวิจัยความหลากหลายทางชีวภาพในเอเชียตะวันออกเฉียงใต้ สามารถพัฒนาเศรษฐกิจและ อุตสาหกรรมได้อย่างเป็นรูปธรรม

นอกเหนือจากการทำหน้าที่ให้ทุนวิจัยและสร้างบุคลากรรุ่นใหม่ การดำเนินงานของโครงการ BRT กระตุ้นให้ เกิดการตื่นตัวในการทำวิจัยด้านความหลากหลายทางชีวภาพในหน่วยงานของรัฐ นำไปสู่การบรรจุความหลากหลายทาง ชีวภาพเข้าเป็นแผนการพัฒนาเศรษฐกิจและสังคมแห่งชาติฉบับที่ 10 อย่างไรก็ตาม โครงการ BRT มีสถานะเป็นโครงการ ซึ่งมีกำหนดสิ้นสุดในปี 2554 การสนับสนุนงานวิจัยวิจัยและพัฒนาบุคลากรด้านความหลากหลายทางชีวภาพของ ประเทศไทยจึงต้องปิดโครงการในที่สุด

รายงานส่วนที่ 1 : สรุปย่อผลงานและความสำเร็จ (พ.ศ. 2544-2554)

ความเป็นมา

โครงการพัฒนาองค์ความรู้และศึกษานโยบายการจัดการทรัพยากรชีวภาพในประเทศไทย (Biodiversity Research and Training Program : BRT) จัดตั้งขึ้นจากความร่วมมือระหว่างสำนักงานกองทุนสนับสนุนการวิจัย (สกว.)

และศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (ศช.) ในสำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ (สวทช.) เพื่อทำหน้าที่สนับสนุนเงินทุนวิจัยด้านความหลากหลายทางชีวภาพ โดยเน้นการศึกษาหาองค์ความรู้พื้นฐานแบบ บูรณาการ และส่งเสริมการพัฒนาและฝึกอบรมบุคลากร รวมถึงส่งเสริมให้มีการศึกษาวิจัยครอบคลุมในประเด็นสำคัญ ต่างๆ ที่จะนำไปสู่การอนุรักษ์และการจัดการทรัพยากรชีวภาพของประเทศไทยอย่างมีประสิทธิภาพ โครงการ BRT ได้เริ่ม ดำเนินงานตั้งแต่ปี พ.ศ. 2539 โดยได้รับอนุมัติให้ดำเนินงานในระยะที่ 2 ช่วงเวลา (พ.ศ. 2544-2548) ในวงเงินงบประมาณ 160 ล้านบาท และได้ขยายเวลาการดำเนินงานออกไปจนถึงปี 2554

วิสัยทัศน์

สนับสนุนการวิจัยความหลากหลายทางชีวภาพที่เป็นทุนทางธรรมชาติเพื่อเป็นฐานการพัฒนาสังคม เศรษฐกิจและการศึกษา (Biodiversity-Based Society, Economy and Education หรือ BB-SEE) ของประเทศ ไทย

วัตถุประสงค์

- เพื่อสนับสนุนงานวิจัยและพัฒนาบุคลากรพื้นฐานด้านความหลากหลายทางชีวภาพ โดยสร้างยุทธศาสตร์การ
 วิจัยที่มีเป้าหมาย เพื่อการอนุรักษ์และใช้ประโยชน์จากทรัพยากรชีวภาพอย่างมีประสิทธิภาพ
- เพื่อการจัดการองค์ความรู้ที่ได้จากงานวิจัยและวิทยานิพนธ์ ให้เป็นระบบและระเบียบที่สามารถสืบค้นและ ให้บริการข้อมูลแก่ผู้ที่สนใจและต้องการใช้ประโยชน์
- เพื่อสนับสนุนให้เกิดการจัดการเก็บรักษาตัวอย่าง (collections) ของสายพันธุ์สิ่งมีชีวิตชนิดต่างๆ และเก็บ รักษาตัวอย่างอ้างอิง (reference collections) ที่ได้รับการสนับสนุนจากโครงการ BRT และแหล่งทุนอื่นให้เป็นระบบ และระเบียบสามารถสืบค้นอ้างอิงและให้บริการแก่นักวิจัยได้สะดวก
- เพื่อเผยแพร่ผลงานวิจัย การอนุรักษ์ และการใช้ประโยชน์จากความหลากหลายทางชีวภาพในช่วง 10 ปีที่ แล้ว ออกสู่แวดวงวิชาการในระดับชาติและระดับสากล ตลอดจนสาธารณชนมากยิ่งขึ้น รวมทั้งสร้างความตระหนักให้กับ ชุมชนและโรงเรียนถึงผลกระทบจากการสูญเสียความหลากหลายทางชีวภาพ
- เพื่อพัฒนานักวิจัยรุ่นใหม่ด้านความหลากหลายทางชีวภาพอย่างต่อเนื่อง รวมทั้งการฝึกอบรมเพื่อสร้างขีด
 ความสามารถของนักวิจัยไทยด้วยการสร้างเครือข่ายระหว่างนักวิจัยทั้งในและต่างประเทศ
- เพื่อสร้างความร่วมมือกับหน่วยงานทั้งภาครัฐและภาคเอกชนที่เกี่ยวข้องกับการบริหารจัดการงานวิจัยความ หลากหลายทางชีวภาพ ให้เกิดความเชื่อมโยงและแลกเปลี่ยนเรียนรู้ข้อมูลระหว่างกันเพื่อการต่อยอดให้เกิดสัมฤทธิ์ผล

นโยบายการบริหารงาน

- เน้นการบริหารจัดการข้อมูลจากงานวิจัยที่ได้รับทุนสนับสนุนจากโครงการ BRT ให้เข้าสู่ระบบฐานข้อมูล ความหลากหลายทางชีวภาพของโครงการ BRT โดยการบันทึกข้อมูลการศึกษาวิจัยในแบบฟอร์ม (data sheet) ที่ กำหนดให้หรือแบบบันทึกข้อมูลที่โครงการ BRT ให้ความเห็นชอบ
- เน้นการมีส่วนร่วมของนักวิจัยและนิสิตนักศึกษาในการจัดการองค์ความรู้จากผลงานวิจัยในรูปแบบต่างๆ ทั้ง การจัดทำฐานข้อมูล เขียนบทความ หนังสือทางวิชาการ และกึ่งวิชาการและการประชุมรวมทั้งจัดนิทรรศการ เพื่อ การเผยแพร่ประชาสัมพันธ์ให้สาธารณชนทราบ
- เน้นการยกมาตรฐานวิธีการวิจัยความหลากหลายทางชีวภาพให้เป็นสากลและสามารถเปรียบเทียบข้อมูลกัน ได้ภายในสาขาวิชาการ
- เน้นการแลกเปลี่ยนความรู้ระหว่างนักวิจัยและสร้างบรรยากาศการทำงานร่วมกันเป็นกลุ่ม เพื่อพัฒนาการ ทำงานวิจัยแบบข้ามสาขาวิชาการ

เน้นการศึกษาวิจัยความหลากหลายทางชีวภาพที่เชื่อมโยงกับองค์ความรู้ภูมิปัญญาท้องถิ่น ทั้งด้าน
 ศิลปวัฒนธรรม สังคม เศรษฐกิจและประวัติศาสตร์ท้องถิ่น เพื่อการนำความรู้คืนสู่ท้องถิ่น

กรอบการดำเนินงาน

โครงการพัฒนาองค์ความรู้และศึกษานโยบายการจัดการทรัพยากรชีวภาพในประเทศไทย หรือ โครงการ BRT มี เป้าหมายหลักเพื่อให้ทุนวิจัยและพัฒนาบุคลากรด้านความหลากหลายทางชีวภาพ สร้างนักวิจัยรุ่นใหม่ในมิติต่างๆ ทางด้านชีววิทยาพื้นฐาน ตลอดจนการวิจัยทางด้านเศรษฐกิจ สังคม และภูมิปัญญาท้องถิ่น โดยแบ่งการดำเนินงาน ออกเป็น 7 โปรแกรม ดังนี้

โปรแกรม 1 การจัดระบบสิ่งมีชีวิต เน้นการศึกษาหาความรู้พื้นฐานด้านชีววิทยาของสิ่งมีชีวิตชนิดต่างๆ ตาม ถิ่นอาศัยที่แตกต่างกันของประเทศไทย ทั้งพื้นที่ป่า บนเขา น้ำจืดและในน้ำทะเล เนื่องจากข้อมูลที่ได้จะเป็นพื้นฐานสำคัญ สำหรับการวิจัยในแนวลึกและต่อยอดการใช้ประโยชน์จากความหลากหลายทางชีวภาพ

โปรแกรม 2 ชีววิทยาเชิงประชากร การเปลี่ยนแปลงวิวัฒนาการ (evolution change) เกิดขึ้นจากการ ปรับเปลี่ยนโครงสร้างทางพันธุกรรมที่สอดคล้องและโยงใยกับสภาวะแวดล้อมทั้งทางกายภาพและชีวภาพ การศึกษาพลวัต ประชากรของสิ่งมีชีวิตที่มีปฏิสัมพันธ์กันและผ่านกระบวนการวิวัฒนาการจะทำให้ได้ข้อมูลพื้นฐานสำหรับการบริหาร จัดการทรัพยากรชีวภาพอย่างมีประสิทธิภาพ โดยไม่มีผลกระทบต่อสิ่งแวดล้อม เช่น การควบคุมแมลงศัตรูพืช แมลงพาหะ นำโรค เป็นต้น

โปรแกรม 3 นิเวศวิทยา เป็นการศึกษาการเปลี่ยนแปลงที่เกิดขึ้นในประชากร หรือในกลุ่มสิ่งมีชีวิตหรือในระบบ นิเวศตามกาลเวลาที่ผ่านไป โดยมุ่งทำความเข้าใจในพลวัตของการเปลี่ยนแปลงที่เกิดขึ้นในประชากรหรือในระบบนิเวศ รวมทั้งตรวจสอบผลกระทบที่เกิดจากการรบกวนโดยกิจกรรมของมนุษย์ ตลอดจนการวิจัยในสถานีทดลองวิจัยทาง นิเวศวิทยาระยะยาว (Long-Tem Ecological Study Sites หรือ LTERS) ที่ปราศจากการรบกวนจากภายนอก เพื่อให้ สามารถวางเครื่องมือที่จะใช้วัดผลได้เป็นระยะเวลายาวนาน

โปรแกรม 4 เศรษฐกิจ สังคม วัฒนธรรม และภูมิปัญญาท้องถิ่น ศึกษาหาข้อมูลเกี่ยวกับคุณค่าทางเศรษฐกิจ ของป่าที่ชาวบ้านอาศัยอยู่ และได้นำเอาทรัพยากรชีวภาพภายในป่ามาใช้ประโยชน์ ทั้งในการค้าขายและในชีวิตประจำวัน บนพื้นฐานของภูมิปัญญาท้องถิ่น รวมทั้งศึกษารูปแบบของภูมิปัญญาท้องถิ่น ประเพณี และวัฒนธรรมของชุมชนที่ เกี่ยวข้องกับทรัพยากรธรรมชาติ ตลอดรูปแบบการอนุรักษ์และการบริหารจัดการทรัพยากรชีวภาพของชุมชนอย่างมี ประสิทธิภาพ เพื่อนำมาเชื่อมโยงกับข้อมูลทางวิทยาศาสตร์ เพื่อการพัฒนาท้องถิ่นและทรัพยากรชีวภาพอย่างยืน

โปรแกรม 5 การบริหารจัดการข้อมูล มุ่งเน้นการวิเคราะห์และสังเคราะห์ข้อมูลพื้นฐานจากการวิจัย เพื่อให้เกิด องค์ความรู้ตามกระบวนการวิทยาศาสตร์ รวมทั้งการนำผลงานวิจัยมาจัดระบบเป็นฐานข้อมูลความหลากหลายทาง ชีวภาพ เพื่อให้เกิดประโยชน์ในการกำหนดนโยบายด้านกฎหมาย ด้านการอนุรักษ์ และด้านการบริหารจัดการทรัพยากร ชีวภาพของประเทศไทย ตลอดจนการเผยแพร่ข้อมูลการวิจัยในรูปแบบหนังสือวิชาการและกึ่งวิชาการ หรือในรูปแบบอื่นๆ เช่น การจัดนิทรรศการ การแถลงข่าว การเขียนบทความกึ่งวิชาการ ที่สามารเผยแพร่ประชาสัมพันธ์ให้สาธารณชนได้รับ ทราบและนำไปอนุรักษ์ตลอดจนใช้ประโยชน์ทั้งด้านเศรษฐกิจ สังคม และสิ่งแวดล้อม สร้างความภาคภูมิใจให้กับคนไทย

โปรแกรม 6 การใช้ประโยชน์จากทรัพยากรชีวภาพ สนับสนุนการศึกษาวิจัยความหลากหลายทาง ชีวภาพเพื่อ ใช้ประโยชน์ด้านเทคโนโลยีชีวภาพ ไม่ว่าจะเป็นการเก็บรวบรวมสายพันธุ์สิ่งมีชีวิต เพื่อการเก็บรักษาและนำไปศึกษาในเชิง ของการใช้ประโยชน์ การสกัดสารออกฤทธิ์ทางชีวภาพ ตลอดจนการทดสอบฤทธิ์ทางชีวภาพ เพื่อนำไปใช้เป็นยารักษาโรค และทำเป็นผลิตภัณฑ์อื่นๆ ที่มีประโยชน์ทางด้านสาธารณสุข การเกษตร การอุตสาหกรรม เป็นต้น

โปรแกรม 7 นโยบายการจัดการวิจัย มุ่งเน้นการประมวลสถานภาพโดยรวมเพื่อจัดทำข้อเสนอแนะเชิงนโยบาย เกี่ยวกับการวิจัยและบริหารจัดการทรัพยากรชีวภาพ เพื่อการอนุรักษ์และบริหารจัดการทรัพยากรชีวภาพอย่างมี ประสิทธิภาพ

นอกจากนั้นโครงการ BRT ยังได้สนับสนุนการจัดการงานวิจัยเป็นชุดโครงการเชิงพื้นที่ (area-based research) และเชิงเนื้อเรื่อง (issue-based research) เพื่อเป็นการสนับสนุนงานวิจัยที่มุ่งเป้าหมาย ตอบโจทย์วิจัยเฉพาะเจาะจง เน้นความสอดคล้องกับความหลากหลายทางชีวภาพของท้องถิ่น ซึ่งเป็นทุนทางธรรมชาติที่สำคัญของประเทศไทย ภายใต้

การบริหารจัดการเป็นกลุ่มที่มีการทำงานร่วมกันของนักวิจัยจากหลากหลายสาขาอย่างบูรณาการ ตัวอย่างชุดโครงการที่ โครงการ BRT ให้การสนับสนุนมีดังนี้

ชุดโครงการทองผาภูมิตะวันตก (West-Thong Pha Phum Project)

มุ่งเน้นการนำฐานความรู้ด้ำนความหลากหลายทางชีวภาพในพื้นที่ตำบลห้วยเขย่ง อ.ทองผาภูมิ จ.กาญจนบุรี ไป สร้างความเข้มแข็งให้กับชุมชนด้วยการสร้างความสมดุลระหว่างเศรษฐกิจ สิ่งแวดล้อม และคุณธรรม โดยความร่วมมือกับ บริษัท ปตท. จำกัด (มหาชน)

ชุดโครงการป่าเมฆ (Cloud Forest)

เป็นการศึกษาความหลากหลายทางชีวภาพในระบบนิเวศป่าเมฆ (cloud forest) ที่อุทยานแห่งชาติเขานั้น จ. นครศรีธรรมราช ซึ่งเป็นระบบนิเวศที่เป็นแหล่งต้นน้ำลำธารที่สำคัญ และเปราะบางต่อการเปลี่ยนแปลงภูมิอากาศท้องถิ่น (local climate change) และภูมิอากาศโลก (global climate change) ระบบนิเวศป่าเมฆมีความสำคัญมากจนได้รับการบรรจุเป็นวาระโลก (world agenda) ที่ต้องอนุรักษ์อย่างเร่งด่วน เนื่องจากกำลังถูกคุกคามจากภาวะโลกร้อน ชุด โครงการนี้ได้รับความร่วมมือจากบริษัท ปตท. จำกัด (มหาชน)

ชุดโครงการความหลากหลายทางชีวภาพทางทะเล (Marine Biodiversity)

สนับส[่]นุนการวิจัยความหลากหลายทางชีวภาพทางทะเลที่เน้นการวิเคราะห์ข้อมูลทั้งทางกายภาพและชีวภาพ เพื่อติดตามตรวจสอบระบบนิเวศทางทะเลในระยะยาว ที่อุทยานแห่งชาติขนอมหมู่เกาะทะเลใต้ จ.นครศรีธรรมราช โดย ความร่วมมือกับมูลนิธิโททาล สหพันธ์สาธารณรัฐฝรั่งเศส และ บริษัทโททาล อีแอนด์พี ไทยแลนด์

ชุดโครงการจัดการทรัพยากรชีวภาพชายฝั่งทะเล (Coastal Biodiversity)

สนับสนุนการวิจัยแบบมีส่วนร่วมกับชุมชนและโรงเรียนในการศึกษาวิจัยความหลากหลายทางชีวภาพและการ จัดการทรัพยากรชีวภาพชายฝั่งทะเลในบริเวณชายหาดขนอม จ.นครศรีธรรมราช เพื่อให้ชุมชนได้ตระหนักถึงมูลค่าของ ทรัพยากรชีวภาพที่ผู้คนได้นำมาใช้ประโยชน์ และร่วมกันดูแลรักษาทรัพยากรชีวภาพดังกล่าวบนฐานของความรู้จากการ วิจัย โดยความร่วมมือกับบริษัท ปตท. จำกัด (มหาชน)

สรุปผลงานและความสำเร็จ (พ.ศ. 2544-2554)

1. ด้านการพัฒนากำลังคน (นักวิจัยรุ่นใหม่)

1.1 ผลิตนักวิจัยรุ่นใหม่

การสร้างนักวิจัยรุ่นใหม่เพื่อทดแทนคนรุ่นเก่าที่ทยอยเกษียณอายุราชการ เพื่อให้เพียงพอกับความต้องการนักวิจัยใน การพัฒนาประเทศ ได้เป็นวาระหรือปัญหาใหญ่สำหรับประเทศไทย ในขณะนี้มีการสร้างนักวิจัยในประเทศไทยทั้งสาย พื้นฐานและสายประยุกต์มาตลอดระยะเวลา 20 ปี ที่ผ่านมา แต่ปริมาณนักวิจัยยังไม่เพียงพอต่ออัตราความก้าวหน้าด้าน วิทยาศาสตร์และเทคโนโลยีของประเทศ

ในช่วง 15 ปีที่ผ่านมา โครงการ BRT ลงทุนไม่น้อยกว่า 70 ล้านบาท สร้างนักศึกษาประมาณ 600 คน ทำให้ บุคลากรนักอนุกรมวิธานในประเทศไทยเพิ่มขึ้นเมื่อเทียบกับเมื่อ 20-30 ปี ที่แล้วที่ประสบปัญหาการขาดแคลนนักวิจัย ชีววิทยาอย่างมาก ในปี พ.ศ. 2545 ประเทศไทยมีนักอนุกรมวิธาน 277 คน ใน 49 หน่วยงาน ในจำนวนนี้เป็นนัก อนุกรมวิธานพืช 82 คน สัตว์ไม่มีกระดูกสันหลัง 70 คน สัตว์มีกระดูกสันหลัง 47 คน จุลินทรีย์ 51 คน แพลงค์ตอน 10 คน สาหร่าย 9 คน ปรสิต 6 คน โปรโตซัว 2 คน ในปี พ.ศ. 2553 จำนวนนักอนุกรมวิธานเพิ่มเป็น 497 คน เมื่อเทียบกับ นักนิเวศวิทยา พบว่ามีอยู่เพียงไม่กี่คนเท่านั้นในประเทศไทย อีกทั้งนักวิชาการที่มีประสบการณ์มีอายุมากขึ้น

สิ่งที่เป็นอุปสรรคสำหรับผู้ที่สำเร็จการศึกษาใหม่/นักวิจัยด้านความหลากหลายทางชีวภาพโดยเฉพาะด้าน นิเวศวิทยาคือการขาดการสนับสนุนเข้าสู่สายอาชีพรวมถึงความก้าวหน้าในสายงาน (career path) ทั้งนี้เนื่องจากไม่มี สถาบันวิจัยรองรับการทำงานเป็นนักวิจัย โดยเฉพาะนักวิจัยนักนิเวศวิทยาระยะยาว

- 1.2 เกิดเครือข่ายนักวิจัย ในด้านต่างๆ ได้แก่ กลุ่มจุลินทรีย์และไลเคน กลุ่มสาหร่ายและแพลงก์ตอน กลุ่มพืช กลุ่มสัตว์ กลุ่มนิเวศวิทยา และกลุ่มภูมิปัญญาท้องถิ่น จนสามารถพัฒนาจัดตั้งเป็นชมรมต่างๆ ได้แก่ ชมรมสาหร่ายและ แพลงก์ตอนแห่งประเทศไทย ชมรมสัตววิทยา ชมรมจุลินทรีย์แห่งประเทศไทย ชมรมพฤกษศาสตร์แห่งประเทศไทย เป็น ต้น
- 1.3 สร้างผู้เชี่ยวชาญระดับสากล บุคลากรนักวิจัยด้านความหลากหลายทางชีวภาพเป็นอีกสาขาหนึ่งที่มีนักวิจัยเพิ่มขึ้น อย่างก้าวกระโดด ในช่วงเวลา 10 ปี จากเดิมที่มีนักวิชาการชีววิทยาในระดับแนวหน้าจำนวนน้อยมากและอยู่ในภาวะขาด แคลนนักวิจัย ปัจจุบันได้มีผู้เชี่ยวชาญด้านความหลากหลายทางชีวภาพสาขาต่างๆ เพิ่มมากขึ้น ถึง 94 คน ในฐานข้อมูล ของโครงการ BRT ในจำนวนนี้เป็นผู้เชี่ยวชาญด้านสัตว์ 30 คน ที่ได้รับการเสนอชื่อให้อยู่ในกลุ่มทำงานเพื่อการอนุรักษ์ ของโลก เช่น เข้าร่วมเป็นคณะกรรมการ IUCN/SSC: Species Survival Commission เป็น President of UNITAS MALACOLOGIA (The World Scientific Society of Malacology) และประเทศไทยได้รับเกียรติเป็นเจ้าภาพจัดการ ประชุม 2010 World Congress on Malacology ซึ่งถือว่าเป็นครั้งแรกของทวีปเอเชียที่ได้รับเกียรตินี้
- **1.4 ยกระดับนักวิจัยชีววิทยาของไทย** จากการสนับสนุนงานวิจัยอย่างต่อเนื่องของโครงการ BRT ทำให้ผลงาน วิชาการด้านความหลากหลายทางชีวภาพของไทยมีความแข็งแกร่งขึ้น จนสามารถยกระดับนักวิจัยชีววิทยาพื้นฐานของ ไทยทึ้นมาดำรงตำแหน่งศาสตราจารย์ถึง 6 ท่านในช่วงที่ผ่านมา

2. ด้านการสร้างองค์ความรู้ในเวทีไทยและเวทีโลก

ตาราง สรุปผลการดำเนินงานโครงการ BRT (พ.ศ. 2539-2554) จำนวน			
1)	การดีพิมพ์บทความในวารสารวิชาการ (เรื่อง)	967	
นาน	853		
ภาย	ในประเทศ	114	
2)	นักศึกษา ป.โท และ ป.เอก (คน)	669	
3)	การดีพิมพ์บทความในการประชุมวิชาการและอื่นๆ (เรื่อง)	253	
4)	หนังสือวิชาการและกึ่งวิชาการ (เรื่อง)	139	
5)	จำนวนสิ่งมีชีวิตชนิดใหม่ของโลก (ชนิด)	679	
6)	จำนวนตัวอย่างดันแบบ (Type Specimens) (ตัวอย่าง)	>3,500	
7.)	จำนวนตัวอย่างอ้างอิง (Reference Collection) (ตัวอย่าง)	>30,000	
8)	สิทธิบัตรและอนุสิทธิบัตร	12	
9)	ถ่ายทอดเทคโนโลยีให้ภาคเอกชน	3	
10)	งานวิจัยที่นำไปใช้เชิงสาธารณะประโยชน์ (เรื่อง)	50	
11)	สารเคมีใหม่และผลิตภัณฑ์จากจุลินทรีย์ (เอมไซม์)	90	
12)	นิทรรศการ (เรื่อง)	100	

^{*} ข้อมูล ณ ธันวาคม 2554

2.1 ผลงานทางวิชาการเป็นที่ยอมรับในระดับสากล นักวิจัยในโครงการ BRT ได้ผลิตผลงานตีพิมพ์ในวารสาร นานาชาติจำนวน 953 เรื่อง ในจำนวนนี้มีอยู่ 4 เรื่องที่ตีพิมพ์ใน "Nature" ที่มีชื่อเสียงของโลก นอกจากนั้นผลงานด้าน สารออกฤทธิ์ทางชีวภาพจากเชื้อราได้รับการตีพิมพ์เป็นบทความปริทรรศน์ (review paper) ในวารสาร Account of Chemical Research (impact factor 15) ซึ่งถือว่าเป็นผลงานทางวิชาการที่น่าภาคภูมิใจของวงการวิจัยชีววิทยา พื้นฐานของไทย

- 2.2 ผลงานทางวิชาการในระดับประเทศ มีผลงานทางวิชาการตีพิมพ์วารสารภายในประเทศจำนวน 114 เรื่อง และเสนอในการประชุมวิชาการต่างๆ จำนวน 253 เรื่อง หนังสือวิชาการและกึ่งวิชาการ 139 เรื่อง บทความวิชาการจาก งานวิจัยและวิทยานิพนธ์ที่ตีพิมพ์เผยแพร่ในหนังสือ "รายงานการวิจัยในโครงการ BRT" จำนวน 350 เรื่อง บทคัดย่อ ผลงานวิจัยและวิทยานิพนธ์ที่ตีพิมพ์เผยแพร่ทั้งภาษาไทยและภาษาอังกฤษประมาณ 500 เรื่อง
- 2.3 สิ่งมีชีวิตชนิดใหม่ของโลก (new species) ผลการสำรวจชนิดพันธุ์สิ่งมีชีวิตทำให้ค้นพบสิ่งมีชีวิตชนิดใหม่ของ โลก ตั้งแต่ปี พ.ศ. 2540 เป็นต้นมา นักวิจัยไทยโดยการสนับสนุนของโครงการ BRT ค้นพบสิ่งมีชีวิตชนิดใหม่ของโลก 679 ชนิด หรือมีอัตราการค้นพบฉลี่ยสัปดาห์ละ 1 ชนิด ชี้ให้เห็นถึงความร่ำรวยทรัพยากรชีวภาพของไทย และโอกาสในการนำทรัพยากร ชีวภาพไปใช้ประโยชน์ ตัวอย่างเช่น ไรน้ำนางฟ้า สิ่งมีชีวิตชนิดใหม่ของโลกที่ค้นพบในปี พ.ศ. 2541 ถูกนำมาใช้ประโยชน์ พัฒนา เป็นสัตว์เศรษฐกิจ สามารถขายไข่และตัวแช่แข็ง ส่งออกนอกประเทศ
- **2.4 จำนวนตัวอย่างต้นแบบ (type specimen) เพิ่มขึ้น** ผลงานวิจัยอนุกรมวิธานทำให้เกิดตัวอย่างต้นแบบ มากกว่า 3,500 ตัวอย่าง และได้ถูกเก็บรวบรวมเป็นหลักฐานไว้ในพิพิธภัณฑสถานธรรมชาติวิทยาในประเทศไทยและที่ เป็นแหล่งอ้างอิงสากลของโลก
- 2.5 เกิดคลังตัวอย่างอ้างอิง (reference collection) สมบัติล้ำค่าของประเทศไทย ผลจากการเก็บตัวอย่าง สิ่งมีชีวิตชนิดต่างๆ ทั้งจุลินทรีย์, สาหร่าย แพลงก์ตอน และไลเคน, พืช, และสัตว์ รวมทั้งฟอสซิล รวมแล้วไม่น้อยกว่า 30,000 ตัวอย่าง บางแห่งถือเป็นคลังเก็บตัวอย่างระดับภูมิภาคและระดับโลก เช่น คลังเก็บตัวอย่างแห้งของรา BIOTEC Bangkok Herbarium (BBH) ซึ่งเป็นสถานที่เก็บตัวอย่างแห้งของราทำลายแมลงมากกว่า 15,000 ตัวอย่าง ที่มีปริมาณ มากที่สุดในประเทศไทยและในโลก คลังสาหร่ายทั้งเพื่อการให้บริการสายพันธุ์ และเพื่อการอ้างอิงที่ มหาวิทยาลัยเกษตรศาสตร์ มหาวิทยาลัยเชียงใหม่ และสถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย จำนวน กว่า 10,000 ตัวอย่าง ซึ่งถือว่าเป็นตัวแทนของภูมิภาคเอเชียตะวันออกเฉียงใต้ เป็นต้น คลังตัวอย่างดังกล่าวได้ให้บริการ แก่นักวิชาการ นักวิจัย และนิสิตนักศึกษา ในการนำตัวอย่างที่เก็บได้ไปเปรียบเทียบ ถือว่าเป็นสมบัติอันล้ำค่าของ ประเทศชาติ
- 2.6 เกิดพิพิธภัณฑ์ธรรมชาติวิทยา จากการสะสมตัวอย่างสิ่งมีชีวิตจากงานอนุกรมวิธานทำให้เกิดพิพิธภัณฑ์ ธรรมชาติวิทยาที่ได้กลายเป็นแหล่งศึกษาหาความรู้ และแหล่งท่องเที่ยวสนองนโยบายรัฐบาล และได้รับการบันทึกใน รายการการท่องเที่ยวของการท่องเที่ยวแห่งประเทศไทย (ททท.) และ guide book หลายภาษา พิพิธภัณฑ์เหล่านั้น ได้แก่
 - พิพิธภัณฑ์หอยทากไทย จุฬาลงกรณ์มหาวิทยาลัย
 - พิพิธภัณฑ์เต่าไทย จุฬาลงกรณ์มหาวิทยาลัย
 - พิพิธภัณฑ์มด มหาวิทยาลัยเกษตรศาสตร์
 - พิพิธภัณฑ์สิรินธร ภูกุ้มข้าว จ.กาฬสินธุ์ ซึ่งเป็นแหล่งรวบรวมฟอสซิลและศึกษาบรรพชีวินที่ใหญ่
 ที่สุดในเอเชียตะวันออกเฉียงใต้
 - พิพิธภัณฑสถานธรรมชาติวิทยา 50 พรรษา สยามบรมราชกุมารี ใน มหาวิทยาลัยสงขลานครินทร์
 - พิพิธภัณฑ์พืชที่เป็นสากล 7 แห่ง
 - พิพิธภัณฑ์เหมืองถ่านหินแม่เมาะ จ.ลำปาง
- 2.7 สามารถจดทะเบียนเป็นพิพิธภัณฑ์พืชในระดับนานาชาติ จากการเก็บตัวอย่างพืชมาอย่างยาวนาน ทำให้ จำนวนพืชที่เก็บรักษาในพิพิธภัณฑ์พืชของแต่ละมหาวิทยาลัยเพิ่มขึ้นถึง 45,000 ตัวอย่าง บางแห่งสามารถขอจดทะเบียน เป็นพิพิธภัณฑ์พืชระดับนานาชาติใน Index Herbarium ซึ่งจะได้รับ Herbarium Code ในการติดต่อสื่อสารและอ้างอิง ตัวอย่างที่ใช้ในการศึกษา เมื่องานวิจัยได้มีการเผยแพร่ในรูปแบบต่างๆ ทำให้พิพิธภัณฑ์พืชในประเทศไทยแต่ละแห่งเป็นที่ รู้จักอย่างกว้างขวางเพิ่มขึ้น โดยแต่ละปีจะมีนักวิจัยจากทั่วโลกเข้ามาศึกษาตัวอย่างจากพิพิธภัณฑ์พืชในประเทศไทย จำนวนมาก
- 2.8 เกิดเครือข่ายฐานข้อมูลความหลากหลายทางชีวภาพ จากการศึกษาและเก็บข้อมูลมาตลอด 15 ปีที่ผ่าน มา ได้เกิดเครือข่ายข้อมูลจุลินทรีย์ระหว่างหน่วยงานที่ทำหน้าที่แลกเปลี่ยนข้อมูลระหว่างกัน นอกจากนั้น ยังเกิด

ฐานข้อมูลของสิ่งมีชีวิตกลุ่มต่างๆ ทั้งพืช สัตว์ จุลินทรีย์ สาหร่ายและแพลงก์ตอน รวมทั้งข้อมูลในชุดโครงการวิจัยของ โครงการ BRT เช่น โครงการทองผาภูมิตะวันตก โครงการป่าเมฆ-เขานั้น และโครงการหาดขนอม-หมู่เกาะทะเลใต้ โครงการวิจัยขนาดใหญ่ เช่น พรรณไม้วงศ์อบเชย และพรรณไม้วงศ์เปล้า เป็นต้น ปัจจุบันนี้มีข้อมูลสิ่งมีชีวิตในประเทศ ไทยประมาณ 25,000 รายการ

2.9 เกิดองค์ความรู้ใหม่ในทุกกลุ่มของสิ่งมีชีวิต

2.9.1 สาขาจุลินทรีย์

- O พบราชนิดใหม่ของโลกกว่า 100 ชนิด ผลงานวิจัยก้าวกระโดดคือเชื้อราก่อโรคในแมลง ซึ่งได้รับการ ยอมรับในระดับสากล โดยมีตัวอย่างที่รวบรวมไว้หลากหลายที่สุดในโลก และมีจำนวนสายพันธุ์ (strains) มากเป็นที่ 2 รองจากสหรัฐอเมริกา-มีการพัฒนาโครงสร้างพื้นฐานด้านจุลินทรีย์ใหญ่ที่สุดใน ประเทศไทยที่ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ
- O มีการวิจัยแลกเปลี่ยนเทคโนโลยีและสร้างความร่วมมือกับเอกชนอย่างสม่ำเสมอและมีการจัดทำ MTA (Material Transfer Agreement)
- O สร้างนักวิจัยรุ่นใหม่ 35 คน ในจำนวนนี้สำเร็จปริญญาเอกถึง 10 คน และเป็นผู้เชี่ยวชาญจำแนก จุลินทรีย์โดยเฉพาะรา
- ได้ตัวอย่างจุลินทรีย์เพิ่มขึ้นมากกว่า 10,000 ตัวอย่าง
- O ค้นพบสารออกฤทธิ์ใช้ยับยั้งโรคต่างๆ เช่น มาลาเรีย วัณโรค เริม และ การเกิดเซลล์มะเร็ง จากเชื้อรา และแบคทีเรีย

2.9.2 สาขาสาหร่าย แพลงก์ตอน และไลเคน

- O ค้นพบสิ่งมีชีวิตชนิดใหม่ของโลกที่ตีพิมพ์แล้วกว่า 20 ชนิด และจดสิทธิบัตรสูตรอาหารเพาะเลี้ยง สาหร่ายเห็ดลาบ รวมทั้งถ่ายทอดเทคโนโลยีการผลิตสาหร่ายเพื่อปรับปรุงดินให้แก่ภาคเอกชน
- O เกิดคลังเก็บรักษาสายพันธุ์สาหร่าย แพลงก์ตอน และไลเคน ในสถาบันการศึกษา 5 แห่ง เก็บรักษา ตัวอย่างมากกว่า 53,000 สายพันธุ์
- O สร้างนักวิจัยรุ่นใหม่ 50 คน และเกิดชมรมสาหร่ายและแพลงก์ตอนแห่งประเทศมีสมาชิกประมาณ 200 คน
- O มีการนำงานวิจัยด้านอนุกรมวิธานไปต่อยอด เช่น การวิจัยสารใหม่ เอนไซม์ จากสาหร่ายและ ไลเคน และการเพาะเลี้ยงไรน้ำนางฟ้าเพื่อทดแทนการนำเข้าของไข่อาร์ทีเมีย

2.9.3 สาขาพืช

- ค้นพบพืชชนิดใหม่ของโลกกว่า 50 ชนิด และชนิดที่พบใหม่ในประเทศไทยกว่า 70 ชนิด
- O ได้ข้อมูลของพืชวงศ์ใหญ่ที่มีความสำคัญทางด้านเศรษฐกิจและการอนุรักษ์ เช่น วงศ์เปล้า วงศ์บุกบอน วงศ์อบเชย วงศ์ก่อ
- O ได้รายชื่อพืชท้องถิ่นที่ชุมชนนำมาใช้ประโยชน์ในด้านอาหาร ยา รวมทั้งเครื่องใช้และสิ่งก่อสร้าง จำนวน มากกว่า 10,000 ชนิด
- O ด้านนิเวศวิทยาได้มีโครงการน่าสนใจและได้รับรางวัล เช่น โครงการฟื้นฟูป่า โดยใช้พรรณไม้โครงสร้าง ท้องถิ่น ได้ถ่ายทอดความรู้แก่ชุมชนด้วยการฝึกอบรมไปแล้ว 43 แห่ง และได้รับรางวัลอนุรักษ์ป่าจาก กรมอุทยานๆ
- O ค้นพบคุณสมบัติทางเคมีและสารออกฤทธิ์ของพืชหลายชนิดซึ่งมีผลงานตีพิมพ์ถึง 32 เรื่อง สร้างนักวิจัยรุ่น ใหม่ 42 คน
- O มีตัวอย่างพืชในพิพิธภัณฑ์เพิ่มขึ้นเกือบ 45,000 ตัวอย่าง และเกิดพิพิธภัณฑ์พืชที่เป็นสากลแห่งใหม่ใน สถาบันการศึกษา
- O สร้างนักวิจัยรุ่นใหม่ได้ถึง 150 คน

2.9.4 สาขาสัตว์

- O ผลิตนักวิจัยระดับผู้เชี่ยวชาญเริ่มต้นกว่า 200 คน ซึ่ง 30 คน เป็นที่ยอมรับในระดับวงการวิชาการของ โลก
- O ผลิตงานวิจัยด้านอนุกรมวิธานและซิสเทมาติกส์ตีพิมพ์ไปแล้ว 169 บทความ จัดจำแนกสัตว์เพิ่มมากขึ้น กว่า 4,000 ชนิด ซึ่งในจำนวนนี้เป็นสัตว์ชนิดใหม่ของโลกถึง 350 ชนิด และเป็นสกุลใหม่ถึง 50 สกุล
- O เกิดคลังตัวอย่างอ้างอิง (Reference Collection) ในสถาบันการศึกษาอย่างน้อย 8 แห่ง และเพิ่ม จำนวนตัวอย่างอ้างอิงในพิพิธภัณฑ์ทั้งตัวอย่างทั่วไปและตัวอย่างที่เป็นตัวอย่างต้นแบบ (type specimens) มากกว่า 20,000 ตัวอย่าง
- O เกิดพิพิธภัณฑ์ขึ้นอีกหลายแห่งในสถาบันการศึกษา เช่น พิพิธภัณฑ์หอยทากไทย, พิพิธภัณฑ์เต่าไทย, พิพิธภัณฑ์มด ซึ่งเป็นแหล่งศึกษาวิจัยและท่องเที่ยวแห่งใหม่ในทะเบียนของ ททท.
- O มีแปลงศึกษาระบบนิเวศระยะยาวเพื่อศึกษาผลกระทบและการเปลี่ยนแปลงของป่าจากสภาวะโลกร้อน เกิดขึ้น 3 แห่ง ได้แก่ แปลงศึกษานิเวศระยะยาวที่มอสิงโต อุทยานแห่งชาติเขาใหญ่, แปลงศึกษานิเวศ ระยะยาวที่ฮาลา บาลา จ.นราธิวาส และแปลงศึกษานิเวศระยะยาวสามหลั่น จ.สระบุรี

2.9.5 สาขาฟอสซิล

- O -มีผลงานตีพิมพ์ทางวิชาการ 25 เรื่อง โดยตีพิมพ์ใน Nature 4 เรื่อง และพบฟอสซิลสัตว์มีกระดูกสัน หลังชนิดใหม่ 20 ชนิด ซึ่งเป็นสกุลใหม่ 10 สกุล นอกจากนี้ยังพบข้อมูลใหม่ที่สนับสนุนความคิดเรื่อง แผ่น ฉาน-ไทย ชนกับแผ่นอินโดจีนและรวมเป็นแผ่นดินใหญ่เอเชียตั้งแต่ยุคมีโสโซอิก และต้นตระกูล สายวิวัฒนาการของมนุษย์ที่เก่าแก่ที่สุดน่าจะเกิดในทวีปเอเชียตะวันออกเฉียงใต้ จากการพบฟอสซิ ลเอพที่บ่อทราย จ.นครราชสีมา
- O เกิดแหล่งท่องเที่ยวทางบรรพชีวิน 3 แห่ง ได้แก่ พิพิธภัณฑ์สิรินธร แหล่งไดโนเสาร์เชียงม่วน และ พิพิธภัณฑ์เหมืองถ่านหินแม่เมาะ
- O ผลิตนักวิจัยรุ่นใหม่ และมีการพัฒนาเครือข่ายระดับท้องถิ่นเพื่อเผยแพร่ข้อมูลไดโนเสาร์ให้ผู้สนใจ
- O เกิดการพัฒนาหลักสูตรสาขาบรรพชีวิน ในคณะวิทยาศาสตร์ มหาวิทยาลัยมหาสารคาม

3.ด้านการใช้ประโยชน์

3.1 ตัวอย่างความสำเร็จของการวิจัยทรัพยากรชีวภาพในเชิงพาณิชย์

- O การจดสิทธิบัตรสูตรเพาะเลี้ยงสาหร่ายเห็ดลาบ
- การจดสิทธิบัตรสูตรกำจัดไรฝุ่นจากสมุนไพรไทย
- การเพาะเลี้ยงไรน้ำนางฟ้าเพื่อทดแทนการนำเข้าไข่อาร์ทีเมีย
- การถ่ายทอดเทคโนโลยีวิจัยและพัฒนาสารปรับปรุงดินจากสาหร่ายอัลจินัวร์
- 3.2 สาหร่ายเห็ดลาบ นักวิจัยจากสถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย โดยการสนับสนุน จากโครงการ BRT ได้วิจัยและพัฒนาสาหร่ายดังกล่าวซึ่งเป็นอาหารของคนในท้องถิ่นให้มีมาตรฐานและผลิตได้มากขึ้นใน ห้องปฏิบัติการ จนสามารถจดสิทธิบัตรสูตรเพาะเลี้ยงสาหร่ายเห็ดลาบได้
- 3.3 "ไรน้ำนางฟ้า" หรือทางภาคอีสานเรียกว่า "แมงอ่อนซ้อย หรือ แมงหางแดง" เริ่มมีการศึกษาในประเทศ ไทยตั้งแต่ปี 2541 และได้เปิดตัวผ่านสื่อต่างๆ จนเป็นที่รู้จักกันโดยทั่วไปในฐานะสิ่งมีชีวิตชนิดใหม่ของโลกและสัตว์ เศรษฐกิจตัวใหม่ สามารถเพาะเลี้ยงเป็นอาหารของสัตว์น้ำที่มีคุณค่า มีโปรตีนสูง อีกทั้งยังช่วยเพิ่มสีให้กับปลาสวยงาม ประเทศไทยเป็นประเทศแรกของโลกที่มีการเพาะเลี้ยงไรน้ำนางฟ้า จึงได้เผยแพร่ความรู้เกี่ยวกับการเพาะเลี้ยงเชิงพาณิชย์ ในหลายประเทศทั้งสหรัฐอเมริกา ออสเตรเลีย ล่าสุดมีการบรรยายในการประชุมวิชาการที่ประเทศอินเดีย ได้มีการตีพิมพ์ ข่าวในหนังสือพิมพ์ท้องถิ่น มีผู้สนใจจำนวนมากติดต่อเพื่อที่จะให้แปลคู่มือและซีดีการเพาะเลี้ยงเป็นภาษาอังกฤษ ถือเป็น ความสำเร็จอย่างยิ่ง ปัจจุบันไรน้ำนางฟ้ามีการทดลองเพาะเลี้ยงจนสามารถผลิตไขในสภาพแห้งซึ่งได้จดสิทธิบัตรการผลิต เป็นที่เรียบร้อยแล้ว ทั้งนี้ยังถ่ายทอดเทคโนโลยีการเพาะเลี้ยงและจำหน่ายไขให้กับเกษตรกรที่สนใจ เนื่องจากเป็นสัตว์ที่ เลี้ยงง่ายและรายได้ดี ประมาณ 8,000 บาท/เดือน กลายเป็นธุรกิจ SME ที่ตลาดทั้งในและต่างประเทศให้ความสนใจเป็น

อย่างมาก ราคาในตลาดตอนนี้ไข่แห้งอยู่ที่ 10,000 ฟอง ต่อ 150 บาท ตัวเต็มวัยอยู่ที่ 15-20 ตัว ต่อหนึ่งบาท งานวิจัยไร น้ำนางฟ้ากำลังมีการพัฒนาการเพาะเลี้ยงเพิ่มเติม จากการเพาะเลี้ยงในโรงเลี้ยงบ่อซีเมนต์เป็นการเพาะเลี้ยงในบ่อดิน ธรรมชาติคล้ายกับการเลี้ยงปลาในกระชัง ซึ่งสามารถเพิ่มผลผลิตได้สูงขึ้น

- 3.4 ผลิตภัณฑ์กำจัดไรฝุ่น จากการวิจัยไรฝุ่นและสารสกัดสมุนไพรกำจัดไรฝุ่นในชุดโครงการทองผาภูมิตะวันตก มาอย่างต่อเนื่องทำให้สามารถพัฒนาผลิตภัณฑ์กำจัดไรฝุ่นพร้อมจดสิทธิบัตร 2 รายการ และถ่ายทอดเทคโนโลยีการผลิต น้ำมันหอมระเหยกำจัดไรฝุ่นให้กับบริษัทเอกชน ผลิตภัณฑ์กำจัดไรฝุ่นนี้ยังได้รับรางวัลผลิตภัณฑ์ต้นแบบดีเด่นจากสถาบัน เทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง และเตรียมพัฒนาสูตรกำจัดไรฝุ่นอีกหลายรายการ
- 3.5 การส่งออกกล้วยไม้กับปัญหาหอยทาก ผลงานวิจัยหอยทากบกในประเทศไทย ได้เข้าไปมีส่วนช่วยแก้ไข ปัญหาให้กับผู้ประกอบการส่งออกกล้วยไม้ที่มีปัญหาเกี่ยวกับการปนเปื้อนจากหอยทาก ทำให้กล้วยไม้ที่ส่งออกถูกตีกลับ สร้างความเสียหายให้กับผู้ประกอบการอย่างมาก โดยได้ถ่ายทอดความรู้ให้กับเกษตรกรในการป้องกันปัญหาดังกล่าว
- 3.6 งานวิจัยสาหร่ายเพื่อฟื้นฟูสภาพดิน ผลจากการวิจัยสายพันธุ์สาหร่ายจากดินทั่วประเทศไทย ได้นำไปสู่การ พัฒนาต่อยอดโดยใช้สาหร่ายในการฟื้นฟูสภาพดิน เพื่อให้ดินมีคุณภาพดีขึ้น โดยได้ถ่ายทอดเทคโนโลยีการผลิตผลิตภัณฑ์ ปรับปรุงดินจากสาหร่ายให้กับบริษัทเอกชน
- 3.7 พบสารเคมีใหม่หลายชนิดจากพืชและจุลินทรีย์ ในโครงการการศึกษาองค์ประกอบทางเคมีและสารออก ฤทธิ์ทางชีวภาพของพืชไทย และโครงการหาสารออกฤทธิ์ทางชีวภาพจากจุลินทรีย์ ซึ่งได้แสดงให้เห็นว่าทรัพยากรชีวภาพ ของประเทศไทย มีคุณค่าทางเคมีมหาศาล โดยได้ตีพิมพ์ผลงานสารใหม่และองค์ประกอบทางเคมีจากพืชและจุลินทรีย์ จำนวนมาก เช่น การตีพิมพ์ผลงานด้านสารออกฤทธิ์ทางชีวภาพจากราแมลง ในวารสาร Account of Chemical Research (impact factor 15) ซึ่งถือว่าเป็นผลงานทางวิชาการที่น่าภาคภูมิใจของวงการวิจัยชีววิทยาพื้นฐานของไทย การค้นพบ antimicrobial peptide (AMP) ที่มีฤทธิ์ฆ่าเชื้อโรคจากผิวหนังของกบ โดย AMP บางชนิดมีศักยภาพเป็นสาร ฆ่ามะเร็งด้วย ซึ่ง AMP ที่ค้นพบเหล่านี้จะเป็นต้นแบบในการสังเคราะห์ทางเคมีเพื่อนำไปใช้ประโยชน์ในเชิงพาณิชย์โดยไม่ ต้องสกัดจากตัวกบโดยตรง นับได้ว่าเป็นแนวทางการใช้ประโยชน์จากความหลากหลายทางชีวภาพควบคู่ไปกับการอนุรักษ์

4. ด้านนิเวศวิทยาและการอนุรักษ์

4.1 การศึกษาสภาวะการเปลี่ยนแปลงภูมิอากาศ (climate change) โครงการ BRT ได้สร้างหุ้นส่วนร่วมกับ บริษัท ปตท. จำกัด (มหาชน) ด้วยการสนับสนุนทุนวิจัยร่วมกับโครงการ BRT ในการค้นหาความรู้เกี่ยวกับป่าเมฆ ซึ่งเป็น ระบบนิเวศที่เปราะบางต่อการเปลี่ยนแปลงภูมิอากาศท้องถิ่น (local climate change) และภูมิอากาศโลก (global climate change) เพื่อเผยแพร่ความรู้ให้กับผู้กำหนดนโยบายในการเฝ้าระวังและวางแนวทางในการบริหารจัดการ สิ่งแวดล้อม

ชุดโครงการดังกล่าวเน้นการศึกษาด้านกายภาพคู่ขนานไปกับด้านชีวภาพ จึงได้ติดตั้งสถานีตรวจวัดอากาศ อัตโนมัติทั่วบริเวณป่าเมฆและเขานัน พร้อมกับวิจัยและติดตามสถานภาพ (monitoring) ของพืชและสัตว์หลายชนิดระยะ ยาว เพื่อศึกษาการเปลี่ยนแปลงด้านชีวภาพและกายภาพตามระดับชั้นความสูงจากระดับ 200 เมตร ไปจนกระทั่งถึง 1,400 เมตร ซึ่งจะทำให้สามารถเข้าใจแถบการเปลี่ยนแปลงระบบนิเวศ (ecotone) ที่ป่าเมฆและเขานันได้ ชุดโครงการป่าเมฆและ เขานันยังได้พบสิ่งมีชีวิตต่างถิ่นหลายชนิด (alien species) เช่น เฟิร์นก้านดำ Adiantum latifolium Lam. ซึ่งเป็นเฟิร์น จากอเมริกากลาง และ มดน้ำผึ้ง (Anoplolepis gracilipes) ซึ่งอยู่ในบัญชีชนิดพันธุ์ต่างถิ่นรุกรานที่ร้ายแรงของโลกจำนวน 100 ชนิด ตามการจัดของ Global Invasive Species ที่ควรเฝ้าระวัง เนื่องจากป่าเมฆเป็นพื้นที่ที่น่าสนใจ เป็นแหล่งต้นน้ำ ที่สำคัญ ชุดโครงการป่าเมฆเขานันได้เป็นชุดโครงการแรกของโครงการ BRT ที่ได้สนับสนุนให้เจ้าหน้าที่อุทยานแห่งชาติเข้า มามีส่วนร่วมในการทำวิจัย ซึ่งเป็นส่วนหนึ่งของการสร้างความเข้มแข็งของบุคลากร

4.2 การฟื้นฟูป่า โครงการ BRT ได้สนับสนุนงานวิจัยการเลื่อกใช้พรรณไม้ท้องถิ่นฟื้นฟูป่า โดยเสริมกับการ กำจัดวัชพืช การใส่ปุ๋ย การคลุมโคนต้นและการตัดกิ่ง จะสามารถเร่งรัดการกลับคืนของต้นกล้าที่งอกเองตามธรรมชาติ

และเพิ่มความหนาแน่นของพรรณไม้ให้มากขึ้น โครงการนี้ได้รับรางวัลรองชนะเลิศกิจกรรมบำรุงรักษาต้นไม้ จากกรมป่า ไม้ รวมทั้งได้ถ่ายทอดความรู้ให้แก่ชุมชน และมีการฝึกอบรมเทคนิคให้แก่บุคลากรในหน่วยงานต่างๆ ถึง 43 แห่ง

4.3 แปลงวิจัยความหลากหลายทางชีวภาพถาวรมอสิงโต ได้รับการยอมรับจากวงวิชาการว่าเป็นแปลงศึกษา นิเวศวิทยาถาวรที่ดีที่สุดแห่งหนึ่งของประเทศไทย งานวิจัยในพื้นที่เริ่มต้นจากการมีนิสิตปริญญาโทและปริญญาเอกทั้งใน และต่างประเทศเข้าไปทำวิจัยจำนวนมาก หลังจากที่เริ่มก่อตั้งโครงการ BRT ในปี 2539 ได้อนุมัติงบประมาณเพื่อทำการ ระบุชนิดพันธุ์ และตำแหน่งของต้นไม้ในพื้นที่ 28.6 แฮกแตร์ จนเสร็จสิ้นในเดือนเมษายน ปี 2541 โดยทำการวัดต้นไม้ทุก ต้นที่มีขนาดเส้นผ่านศูนย์กลางใหญ่กว่า 10 เซนติเมตรที่ระดับอก (DBH) พบว่ามีต้นไม้ในแปลงศึกษา 13,689 ต้น แต่ หลังจากนั้นก็พบว่าจำนวนต้นไม้มีมากทำให้เกิดความผิดพลาดในการนับจำนวน ในปี 2543 จึงเปลี่ยนวิธีเป็นการทำ เครื่องหมายลงบนต้นไม้แทน ซึ่งก็ทำให้พบว่ามีต้นไม้ในแปลงศึกษามากกว่า 15,000 ต้น จนในปี 2545 การนับจำนวน และระบุชนิดต้นไม้ในแปลงสำรวจมีการขยายขนาดพื้นที่ออกไปเป็น 30 แฮกแตร์ รวมทั้งเพิ่มการนับจำนวนของต้นไม้ที่มี ขนาดตั้งแต่ 1 เซนติเมตร และเถาวัลย์เข้าไว้ด้วย ทำให้พบว่ามีพืชที่มีขนาด DBH > 10 เซนติเมตร ทั้งสิ้น 16,375 ต้น รวม 199 ชนิด โดยมีไทรที่เป็นพืชอาหารของชะนี 15 ชนิด และพบพืชชนิดใหม่ 1 ชนิดคือ Pouteria stellibacca Maxw. (Sapotaceae) และพืชชนิดใหม่ของไทยคือ Homalia cochinchinensis (Lour.) Druce (Flacourtiaceae) นอกจากนั้นยังมีการใช้โปรแกรมสำเร็จรูป และระบบเทคโนโลยีภูมิสารสนเทศ (GIS) เข้ามาช่วยเก็บข้อมูลอย่างเป็นระบบ อีกด้วย พร้อมกันนี้ข้อมูลจากการสะสมระยะยาวได้เริ่มเข้ามาบ่งชี้ภาวะโลกร้อนได้ เช่น การเจริญเติบโตของต้นกล้า เจาะป่าที่เปลี่ยนแปลงไป เป็นต้น

ในช่วงที่แปลงวิจัยความหลากหลายทางชีวภาพถาวรมอสิงโต กำลังดำเนินไปได้อย่างมั่นคงนั้น ก็ได้สร้าง งานวิจัยด้านอื่นๆ ที่เริ่มแตกออกจากจุดมุ่งหมายเดิมของพื้นที่ ที่เดิมสนใจแต่เพียงพฤติกรรม นิเวศวิทยาประชากร และ ชีววิทยาของชะนีเป็นหลัก กลายมาเป็นการศึกษาที่หลากหลายมากขึ้น ด้วยการเข้ามาทำงานวิจัยของนิสิตนักศึกษา มี การศึกษานิเวศวิทยานก พืชอาหารนก ทำให้งานวิจัยแตกแขนงออกอย่างรวดเร็ว โดยมีแรงสนับสนุนทั้งทางตรง และ ทางอ้อมจากโครงการ BRT

4.4 ข้อมูลพื้นฐานด้านทรัพยากรชีวภาพช่วยคลี่คลายข้อพิพาทด้านสิ่งแวดล้อมในท้องถิ่น เช่น กรณีที่เกาะ ท่าไร่ อ.ขนอม จ.นครศรีธรรมราช พบหญ้าทะเลขนาดใหญ่ 0.1 ตร.กม. รอบเกาะ ประกอบด้วยหญ้าทะเล 4 ชนิด เป็นที่ อนุบาลลูกกุ้งปูปลา ทำให้มีอาหารของโลมาสีชมพูชุกชุมมากในบริเวณนั้น การอนุรักษ์หญ้าทะเล จะช่วยอนุรักษ์โลมาสี ชมพู่ไปด้วย โครงการ BRT จึงได้นำผลงานวิจัยไปเป็นข้อมูลพื้นฐานให้คณะอนุกรรมการสิทธิในทรัพยากรน้ำ ชายฝั่ง และ แร่ พิจารณากรณีข้อพิพาทระหว่างบริษัทเอกชนกับชาวบ้านในการก่อสร้างท่าเรือน้ำลึกบริเวณดังกล่าว ทำให้การ ก่อสร้างดังกล่าวได้ยุติลง

นอกจากนั้นโครงการ BRT ได้ร่วมกับมูลนิธิ TOTAL (ฝรั่งเศส) และกรมทรัพยากรทางทะเลและชายฝั่งวางทุ่น รอบแนวหญ้าทะเลเพื่อป้องกันไม่ให้เรือหรือสิ่งแปลกปลอมเข้าไปใกล้แนวหญ้าทะเล เพื่อช่วยให้สัตว์ทะเลได้ขยายพันธุ์เอง ตามธรรมชาติ และได้ขยายผลมาเป็นการวางทุ่นกำหนดเขตเพื่ออนุรักษ์โลมาสีชมพูที่กำลังมีจำนวนลดลงอย่างน่าเป็นห่วง นอกจากนั้นกำลังศึกษาวิจัยการเปลี่ยนแปลงสิ่งแวดล้อมที่ส่งผลกระทบต่อสรีระวิทยาและการปรับตัวของหญ้าทะเลอย่าง ต่อเนื่อง

4.5 การพัฒนาชุมชนท้องถิ่นบนฐานชีวภาพ ศูนย์ไบโอเทค ได้จัดตั้งสถานีวิจัยต่างๆ เพื่อทำงานร่วมกับชุมชน ทั่วประเทศ อย่างเช่น ร่วมกับกรมอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืช จัดตั้งหน่วยวิจัยธรรมชาติวิทยาป่าพรุ-ป่าดิบชื้น ที่ ฮาลาบาลา จ.นราธิวาส ได้จัดตั้งหน่วยสมุนไพรเพื่อบริการสาธารณสุขมูลฐาน ที่โรงพยาบาลบางกระทุ่ม จังหวัด พิษณุโลก ซึ่งได้ช่วยเหลือชุมชนให้มีรายได้จากการปลูกและขายสมุนไพรให้กับโรงพยาบาล หรือการวิจัยซักนำให้ขิงปลอด โรคโดยให้สร้างหัวในขวด แล้วค่อยย้ายออกไปปลูกในแปลง ซึ่งปลูกได้แค่ 3 เดือน ก็กลายเป็นท่อนพันธุ์ขิงขนาดเล็กขาย ในตลาดได้ นอกจากนั้น ยังมีโครงการทองผาภูมิตะวันตกที่ใช้ทรัพยากรชีวภาพเป็นฐานในการพัฒนาชุมชนเข้มแข็ง ได้มี การขับเคลื่อนชุมชน 8 หมู่บ้านในตำบลห้วยเขย่ง ให้เป็นตำบลที่เข้มแข็งบนฐานทรัพยากรชีวภาพ โดยได้มีบริษัท ปตท. จำกัด (มหาชน) เป็นแกนนำในการประสานงานระหว่างโครงการ BRT และหน่วยงานราชการต่างๆ รวมทั้งองค์กรพัฒนา เอกชนที่เข้ามาร่วมอีกหลายหน่วยงาน ได้แก่ โครงการหลวง กรมวิชาการเกษตร กรมพัฒนาที่ดิน เป็นต้น ซึ่งประสบ

ความสำเร็จในระดับหนึ่ง จนทำให้บริษัท ปตท. จำกัด (มหาชน) ได้ใช้แนวคิดดังกล่าวขยายงานเป็นชุมชนเศรษฐกิจ พอเพียง 84 ตำบล

- 4.6 การพัฒนาการเรียนการสอนนอกห้องเรียน โครงการ BRT ได้ส่งเสริมและสนับสนุนการเรียนการสอน ชีววิทยานอกห้องเรียน โดยเชื่อมโยงกับภูมิปัญญาท้องถิ่น ผลงานที่สำคัญ คือ การสร้างเครือข่ายสวนไม้ดอกหอมโรงเรียน ซึ่งได้สนับสนุนให้เยาวชนในระดับประถมศึกษาและมัธยมศึกษาศึกษาพรรณไม้ดอกหอมในชุมชนและในโรงเรียน ซึ่ง สามารถสร้างกระแสการอนุรักษ์ในชุมชนได้อย่างดี จนเกิดเป็นหนังสือหอมกลิ่นดอกไม้ในเมืองไทยเพื่อให้ครูและนักเรียน ได้ใช้เป็นคู่มือในการจำแนกชนิดพันธุ์ไม้ นอกจากนั้นยังได้เป็นที่ปรึกษาในการจัดตั้งศูนย์สิ่งแวดล้อมศึกษา 4 ภูมิภาค ภายใต้การสนับสนุนของกรมส่งเสริมคุณภาพสิ่งแวดล้อม เพื่อสนับสนุนการเรียนรู้ความหลากหลายทางชีวภาพและ สิ่งแวดล้อมนอกห้องเรียน ตลอดจนยังเป็นที่ปรึกษาของโครงการมหิงสาสายสืบซึ่งดำเนินการโดยกรมส่งเสริมคุณภาพ สิ่งแวดล้อมอีกด้วย
- 4.7 เศรษฐศาสตร์และภูมิปัญญาท้องถิ่น ด้านการประเมินค่าทางเศรษฐศาสตร์เพื่อศึกษาผลกระทบทางด้าน สิ่งแวดล้อม ถึงแม้จะมีงานวิจัยน้อยแต่มีความสำคัญในระดับนโยบาย เช่น โครงการประเมินค่าทางเศรษฐศาสตร์ของป่าไม้ สักที่ใหญ่ที่สุดในประเทศที่แก่งเสือเต้นอุทยานแห่งชาติแม่ยมและการใช้ทรัพยากรธรรมชาติที่เขตรักษาพันธุ์สัตว์ป่าทุ่งใหญ่ นเรศวร ผลการวิจัยบ่งชี้ว่าผืนป่าดังกล่าวเป็นแหล่งดูดซับคาร์บอน แหล่งท่องเที่ยวเชิงนิเวศ จึงต้องสร้างสมดุลระหว่าง การพัฒนาและการอนุรักษ์ให้เกิดขึ้น ด้านภูมิปัญญาท้องถิ่น มีการศึกษาและรวบรวมข้อมูลพืชที่เกี่ยวกับวิถีความเป็นอยู่ ของชุมชนและชนกลุ่มน้อยเป็นจำนวนเกือบหนึ่งหมื่นชนิด ซึ่งข้อมูลที่ได้สามารถนำไปเป็นแนวทางการส่งเสริมและพัฒนา คุณภาพชีวิตของกลุ่มชนให้สอดคล้องกับสภาพชีวิตและพัฒนาตัวยารักษาโรค อาหาร และเป็นแหล่งพันธุกรรมใหม่ๆ ใน อนาคต

5. ด้านการเผยแพร่ประชาสัมพันธ์

โครงการ BRT มีกิจกรรมด้านการประชาสัมพันธ์ต่างๆ อาทิ การทำสิ่งตีพิมพ์ และการออกสื่อต่างๆ ทั้งสื่อ โทรทัศน์ วิทยุ หัวข้อข่าวในหนังสือพิมพ์ และการแถลงข่าว จำนวนมาก ซึ่งแบ่งเป็นเรื่องของพืช สัตว์ จุลินทรีย์ และระบบนิเวศ การให้ข้อมูลแก่สาธารณะเพื่อหาทางออกที่ดีในการจัดการทรัพยากรชีวภาพ รวมทั้งเรื่องการ เคลื่อนไหวการสร้างเครือข่าย การสร้างหุ้นส่วน หรือการเคลื่อนไหวเชิงนโยบาย เช่น เรื่องแก่งเสือเต้น การจัดการสัตว์ป่า การจัดการทรัพยากรชีวภาพ รวมทั้งทางออกในการหาองค์กรอิสระเพื่อการวิจัยทรัพยากรชีวภาพอย่างยั่งยืน

สื่อที่ออกไปในรายการวิทยุและโทรทัศน์จะมีอายุสั้น หาหลักฐานอ้างอิงยาก ส่วนในรูปหนังสือพิมพ์มีบางส่วน สามารถเข้าถึงได้โดยการหาในเครือข่ายคอมพิวเตอร์ผ่าน Google ประเทศไทย โดยโปรแกรมการหาข้อมูลดังกล่าว สามารถเข้าถึงกิจกรรมต่าง ๆ รวมทั้งข้อมูลที่สาธารณะสามารถเข้าถึง โดยการใช้คำหลักเป็นชื่อคน การค้นหาข้อมูล ดังกล่าวเมื่อนำมาจัดการก็สามารถเข้าใจถึงความรู้และข้อมูลที่โครงการ BRT ได้สื่อต่อสาธารณะ อย่างไรก็ตาม งาน เผยแพร่ประชาสัมพันธ์ที่ผ่านมา มีผลงานที่สำคัญ ดังนี้

- 5.1 มหกรรม "ที่เร็กซ์ "ซู" และไดโนเสาร์ไทย" ซึ่งเป็นการนำซากไดโนเสาร์ที่สมบูรณ์ที่สุดในโลกจาก The Field Museum Chicago, USA มาร่วมจัดแสดงกับไดโนเสาร์ไทยเพื่อเผยแพร่ความรู้เกี่ยวกับซากดึกดำบรรพ์ให้เป็นที่ รู้จัก นิทรรศการเป็นความร่วมมือระหว่างโครงการ BRT กับกระทรวงวิทยาศาสตร์และเทคโนโลยี องค์การพิพิธภัณฑ์ วิทยาศาสตร์แห่งชาติ (อพวช.) กรมทรัพยากรธรณี และบริษัท ปตท. จำกัด (มหาชน) จัดในระหว่างวันที่ 7 กรกฎาคม 2550 13 มกราคม 2551 เป็นเวลา 6 เดือน ที่ อพวช. มีผู้เข้าร่วมชมประมาณ 350,000 คน โดยสามารถระดมทุน องค์กรพันธมิตรได้เกือบถึง 15 ล้านบาท (โครงการ BRT (ศช./สกว.) 2.5 ล้านบาท, บริษัท ปตท. จำกัด (มหาชน) 3.8 ล้านบาท, ปตท. (สผ.) จัดนิทรรศการกำเนิดปิโตรเลียม 4 ล้านบาท, อพวช. 3 ล้านบาท, กรมทรัพยากรธรณีจัดสวน ไดโนเสาร์ไทย 1 ล้านบาท)
- 5.2 ผลงานวิจัยความหลากหลายทางชีวภาพเผยแพร่ออกรายการโทรทัศน์อย่างต่อเนื่อง โดยเฉพาะรายการที่ มีชื่อเสียงและมีเรตติ้งเป็นอันดับหนึ่ง เช่น
 - รายการสยามทูเดย์
 - รักษ์ให้เป็นกับแอ๊ด คาราวบาว

- รายการทุ่งแสงตะวัน
- รายการคลับเซเว่นของไตรภพ ลิมปพัทธ์
- รายการความรู้คือประทีป
- รายการเนเจอร์ฮีโร่ ฯลฯ

ซึ่งทั้งหมดเป็นรายการที่โครงการ BRT ได้รับเชิญให้ไปออกรายการทั้งสิ้น นอกจากนั้น ยังมีงานนิทรรศการทั้งใน ส่วนกลางและส่วนท้องถิ่น โดยเฉพาะอย่างยิ่ง ความร่วมมือกับเดอะมอลล์กรุ๊ป ที่นำผลงานของโครงการ BRT ไปจัด นิทรรศการอยู่หลายครั้ง เช่น กิ้งกือ ใส้เดือน ไรน้ำนางฟ้า กบ เขียด คางคก แย้ พืชมีหัว สะท้อนให้เห็นถึงผลงานวิจัย ความหลากหลายทางชีวภาพของไทยที่ได้เจริญงอกงามและสามารถเก็บเกี่ยวผลผลิตส่งต่อไปถึงผู้ใช้ปลายทางได้อย่างน่า ภาคภูมิใจ นอกจากนั้น งานวิจัยราแมลง และไรน้ำนางฟ้า จากการสนับสนุนของโครงการ BRT ยังได้รับคัดเลือกให้ไปจัด แสดงนิทรรศการในงาน Science News from Asia – Power of Asia, Power of Science" กรุงโตเกียว ประเทศญี่ปุ่น ซึ่งเป็นการนำเสนอความก้าวหน้าทางวิทยาศาสตร์ที่แต่ละประเทศได้คิดค้นหรือพัฒนาขึ้น แสดงถึงความร่ำรวยทรัพยากร ชีวภาพของประเทศไทยที่ได้รับความสนใจและเผยแพร่อย่างกว้างขวางในระดับสากล

5.3 BRT Magazine ผลงานวิจัยความหลากหลายทางชีวภาพสามารถนำมาจัดทำเป็น BRT Magazine ซึ่งเป็น นิตยสารที่รวบรวมผลงานวิจัยด้านความหลากหลายทางชีวภาพที่เป็นมาตรฐานสากล เผยแพร่ตีพิมพ์ไปแล้ว 29 ฉบับ ซึ่ง ได้ส่งองค์ความรู้ไปถึงสาธารณชนรวมทั้งโรงเรียนทั่วประเทศด้วย

6. ด้านโครงสร้างพื้นฐาน

เกิดโครงสร้างพื้นฐานสำหรับการวิจัยการใช้ประโยชน์จากทรัพยากรชีวภาพที่ ศช. โครงสร้างพื้นฐานดังกล่าว ได้แก่ –หน่วยปฏิบัติการราวิทยา -ศูนย์เก็บจุลินทรีย์ –ห้องปฏิบัติการทรัพยากรชีวภาพ ซึ่งเป็นห้องปฏิบัติการที่ศึกษาวิจัย การใช้ประโยชน์จากทรัพยากรชีวภาพที่ใหญ่ที่สุดในประเทศไทย พบสารออกฤทธิ์ทางชีวภาพจากจุลินทรีย์ที่มีประโยชน์ ทางการแพทย์และเภสัชกรรมในการยับยั้งหรือต่อต้านจุลินทรีย์ที่เป็นสาเหตุของการเกิดโรคที่สำคัญหลายชนิด เช่น มาลาเรีย วัณโรค เริม และรา (Candida albicans) นอกจากนี้ยังพบสารที่ยับยั้งการเกิดเซลล์มะเร็งจากเชื้อราและ แบคทีเรีย (actinomycete) พบราที่สร้างสารพิษที่มีศักยภาพนำไปใช้ประโยชน์ทางการเกษตร เช่นการกำจัดหนอนกระทู้ ผัก และการกำจัดราโรคพืชในข้าว เป็นต้น ยังมีราที่สร้างเอนไซม์ที่มีศักยภาพในเชิงพาณิชย์ ด้านอุตสาหกรรมอาหาร สิ่ง ทอ และสิ่งแวดล้อม

7. ด้านความร่วมมือกับภาคเอกชนและหน่วยงานต่างๆ ได้สร้างพันธมิตรกับกับบริษัท ปตท. จำกัด (มหาชน) และบริษัท โททาล อีแอนด์พี ประเทศไทย ซึ่งได้ร่วมสนับสนุนงบประมาณสนับสนุนการวิจัยความหลากหลายทางชีวภาพ เพื่อความ รับผิดชอบด้านสิ่งแวดล้อมต่อสังคม นอกจากนั้นยังได้เป็นที่ปรึกษาให้กับกรมส่งเสริมคุณภาพสิ่งแวดล้อม ในการจัดการ งานด้านสิ่งแวดล้อมศึกษา เช่น "จัดตั้งศูนย์สิ่งแวดล้อมศึกษา" (Environmental Education Center) และโครงการ มหิงสาสายสืบ รวมทั้งเดอะมอลล์กรุ๊ป ซึ่งได้ร่วมกันเผยแพร่ผลงานวิจัยของโครงการ BRT มาโดยตลอด

8. ด้านนโยบาย

8.1 สร้างความเข้มแข็งให้หน่วยงาน

โครงการ BRT ได้สร้างผลกระทบอย่างกว้างขวางทางวิชาการ ทำให้มหาวิทยาลัยหลายแห่งตื่นตัวเช่นกัน และ จัดตั้งโครงการวิจัยความหลากหลายทางชีวภาพ ขนานไปกับการสนับสนุนทุนวิจัยจากโครงการ BRT และจากเงิน งบประมาณประจำปี ทำให้เกิดการจัดตั้งศูนย์วิจัยเพื่อความเป็นเลิศ (Center of Excellence) ในภาควิชาชีววิทยา มหาวิทยาลัยต่างๆ เช่น ศูนย์อนุกรมวิธานประยุกต์ เพื่อสนับสนุนงานวิจัยด้านความหลากหลายทางชีวภาพเชิงการใช้ประโยชน์ อย่างไรก็ตาม ไม่ได้สนับสนุนทุนนักศึกษา ทำให้โครงการ BRT เป็นแหล่งที่สนับสนุนทุนนักศึกษาที่สำคัญ

อีกด้านหนึ่ง สำนักงานคณะกรรมการการอุดมศึกษาจัดตั้งศูนย์ความเป็นเลิศทางวิชาการด้านความหลากหลาย ทางชีวภาพ (Center of Excellence in Biodiversity) ในรูปแบบของภาคีมหาวิทยาลัย 9 แห่ง ได้แก่ จุฬาลงกรณ์ มหาวิทยาลัย มหาวิทยาลัยมหิดล มหาวิทยาลัยเกษตรศาสตร์ มหาวิทยาลัยขอนแก่น มหาวิทยาลัยสงขลานครินทร์ มหาวิทยาลัยเชียงใหม่ มหาวิทยาลัยนเรศวร มหาวิทยาลัยราชภัฏ และมหาวิยาลัยราชมงคล โดยมีจุฬาลงกรณ์ มหาวิทยาลัยเป็นแกนนำ เพื่อทำวิจัยสิ่งมีชีวิต ได้แก่ คลัสเตอร์สัตว์ คลัสเตอร์พืช และคลัสเตอร์จุลินทรีย์ โดย วางเป้าหมายไว้ 5 ปี งบประมาณปีละ 100 ล้านบาท (อย่างไรก็ตามในขณะนี้ยังไม่มีความชัดเจนในด้านงบประมาณ เนื่องมาจากต้องนำงบประมาณไปสนับสนุนบรรเทาด้านอุบัติภัย)

8.2 ผลักดันนโยบายระดับชาติ

ผลงานวิจัยความหลากหลายทางชีวภาพจากโครงการ BRT ทำให้เกิดงานด้านนโยบายที่สำคัญคือ การที่ สำนักงานคณะกรรมการพัฒนาการเศรษฐกิจและสังคมแห่งชาติ จัดทำแผนพัฒนาเศรษฐกิจและสังคมแห่งชาติฉบับที่ 10 (ปี พ.ศ. 2550-2554) เป็นแผนพัฒนาฯ ที่เน้นการพัฒนาประเทศบนฐานความหลากหลายทางชีวภาพเป็นครั้งแรก นอกจากนั้น กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อมได้ตั้งสำนักงานพัฒนาเศรษฐกิจจากฐานชีวภาพ (องค์การ มหาชน) เป็นหน่วยงานหลักในการส่งเสริม สนับสนุน และดำเนินการพัฒนาเศรษฐกิจจากฐานชีวภาพ รวมทั้งเสนอแนะ นโยบายและมาตรการเกี่ยวกับการพัฒนาเศรษฐกิจจากฐานชีวภาพต่อคณะรัฐมนตรี แต่ไม่ได้ให้ทุนวิจัยและพัฒนาคนรุ่น ใหม่

รายงานฉบับสมบูรณ์โครงการ BRT ระยะที่ 2 พ.ศ. 2544-2554

ส่วนที่ 2 : ผลงานวิจัยเด่น

- 1. ด้านสำรวจ อนุกรมวิธาน และชีววิทยาประชากรของสิ่งมีชีวิต
- 2. ด้านระบบนิเวศและสิ่งแวดล้อม
- 3. ด้านการฟื้นฟูระบบนิเวศ
- 4. ด้านชีววิทยาและนิเวศวิทยาของสัตว์ป่า
- 5. ด้านการจัดการทรัพยากรอย่างยั่งยืนและภูมิปัญญาท้องถิ่น
- 6. ด้านการใช้ประโยชน์จากทรัพยากรชีวภาพ
- 7. ด้านการเผยแพร่ประชาสัมพันธ์

1. ด้านสำรวจ อนุกรมวิธาน และชีววิทยาประชากรของสิ่งมีชีวิต

1.1 เร่งรัดงานวิจัย Flora of Thailand

โครงการศึกษาด้านอนุกรมวิธานพืชที่พบในประเทศไทย ภายใต้โครงการที่ชื่อว่า Flora of Thailand เริ่มขึ้น เมื่อ พ.ศ. 2510 โดยความร่วมมือระหว่างนักพฤกษศาสตร์ไทยและต่างประเทศ ได้ตีพิมพ์ผลงานเป็นหนังสือพรรณ พฤกษชาติของประเทศไทย (Flora of Thailand) มาตั้งแต่ปี พ.ศ. 2513 ถึงปัจจุบัน (พ.ศ. 2554) เป็นจำนวนทั้งสิ้น 34 เล่ม เป็นพืช 121 วงศ์ จำนวน 4,261 ชนิด และยังอีกหลายวงศ์ที่อยู่ระหว่างรอดำเนินการตีพิมพ์รวมเป็น 5,860 ชนิด คิดเป็นประมาณร้อยละ 60 ของจำนวนชนิดพรรณไม้ทั้งหมดที่พบในประเทศไทย

จากการรวบรวมจำนวนพืชทั้งหมดที่โครงการ BRT ให้การสนับสนุนตั้งแต่ปี 2540–2554 พบพืชจำนวน 2,113 ชนิด คิดเป็นร้อยละ 21.13 ของจำนวนพืชทั้งหมดที่พบในประเทศไทย ซึ่งก่อนหน้านี้ตั้งแต่ปี พ.ศ. 2510–2540 เป็น เวลา 30 ปี ทำการวิจัยพืชไปได้เพียงร้อยละ 26 ของพรรณไม้ทั้งหมดของประเทศที่มีจำนวน 10,000 ชนิด เมื่อโครงการ ได้รับการสนับสนุนจากโครงการ BRT ตั้งแต่ปี 2540–2554 นับเป็นเวลา 14 ปี งานวิจัยพรรณไม้ได้ถึงร้อยละ 21.13 โดยใช้เวลาเพียงครึ่งหนึ่งเมื่อเทียบกับเวลาที่ผ่านมา พรรณไม้วงศ์ต่างๆ เหล่านี้จะทยอยพิมพ์ในหนังสือ Flora of Thailand เล่มต่างๆ เริ่มตั้งแต่ปีพ.ศ. 2555 เป็นต้นไป มีการสำรวจเก็บตัวอย่างในพื้นที่เพิ่มเติมได้พบพืชชนิดใหม่ของ โลก (new species) ที่พิมพ์เผยแพร่ไปแล้ว 5 ชนิด และอยู่ระหว่างการวิจัยเพื่อยืนยันและตีพิมพ์อีกหลายชนิดในพืช วงศ์ Gesneriaceae ซึ่งเป็นพืชหายากที่ยังตกสำรวจอีกในหลายท้องที่ พบพืชชนิดใหม่ของประเทศไทย (new record) อีกจำนวนหลายชนิด มีการทบทวนชื่อพืชที่สับสนให้มีข้อสรุปที่ถูกต้อง โดยงานวิจัยโครงการ Flora of Thailand ที่ ทำงานวิจัยมาเป็นเวลายาวนาน จะสามารถเสร็จสิ้นการวิจัยได้ภายในไม่เกินห้าปีข้างหน้า

1.2 สถานภาพความหลากหลายของปลิงทะเล

จากการสำรวจปลิงทะเลในน่านน้ำไทย เพื่อศึกษาประชากรและการแพร่กระจายของปลิงทะเล ระหว่าง เดือนพฤษภาคม 2552 ถึงมีนาคม 2553 โดย**ดร.นิลนาจ ชัยธนาวิสุทธิ์ สถาบันวิจัยทรัพยากรทางน้ำ จุฬาลงกรณ์ มหาวิทยาลัย** ได้เลือกสถานที่ศึกษาและเก็บตัวอย่างปลิงทะเลในแหล่งที่อยู่อาศัยประเภทแนวปะการัง หญ้าทะเล

หาดทราย และหาดหิน ในพื้นที่ศึกษา 3 บริเวณคือ <u>บริเวณอ่าวไทย</u> ตอนบน (เกาะสีชัง เกาะร้านดอกไม้ เกาะขามใหญ่ และเกาะไผ่ จังหวัดชลบุรี) อ่าวไทยตอนล่าง (เกาะพงัน เกาะเต่า เกาะสมุย และ เกาะแตน จังหวัดสุราษฎร์ธานี) และ<u>ทะเลอันดามัน</u> (เกาะพระทอง จังหวัดพังงา และเกาะมุกด์ จังหวัดตรัง)

ผลสำเร็จ ฐานข้อมูลปลิงทะเลในประเทศไทย ปลิงทะเล รวม 21 ชนิด (Species) จาก 5 วงศ์ (Family) **สถานภาพของ ปลิงทะเล** โดยแบ่งเป็น *ชนิดเด่น* (Abundant species) พบ

มากกว่า 70% จากพื้นที่สำรวจทั้งหมด พบจำนวน 3 ชนิด ชนิดทั่วไป (Common species) พบระหว่าง 40-70% จากพื้นที่สำรวจทั้งหมด จำนวน 8 ชนิด ชนิดหายาก (Rare species) พบน้อยกว่า 40% จากพื้นที่สำรวจทั้งหมด พบจำนวน 12 ชนิด สถานภาพของปลิงทะเลที่มีความสำคัญทางเศรษฐกิจ เช่น ปลิงขาว Sandfish (Holothuria scabra) อาศัยอยู่ในแนวหญ้าทะเล พบเฉพาะชายฝั่งอันดามัน ปัจจุบันพบว่ามีปริมาณลดลงอย่างเห็นได้ชัด

1.3 "กิ้งกือมังกรชมพู" ติดอันดับ 10 สุดยอดการค้นพบสิ่งมีชีวิตชนิดใหม่ของโลก

เป็นที่น่ายินดีว่า เมื่อวันที่ 23 พฤษภาคม 2551 คณะกรรมการคัดเลือกการค้นพบสิ่งมีชีวิตในโลกของ IISE (International Institute for Species Exploration) ตั้งอยู่ที่ Arizona State University ประเทศสหรัฐอเมริกา ได้ทำการจัดอันดับ "Top 10 new species described in 2007" และคัดเลือกการค้นพบกิ้งกือมังกรสีชมพู หรือ มังกรชมพูของไทยให้อยู่ในอันดับ 3 ของการค้นพบสิ่งมีชีวิตชนิดใหม่ของโลกจากจำนวนหลายพันสปีชีส์

กิ้งกือมังกร (dragon millipede) ชนิดใหม่ของโลก มีชื่อว่า "Shocking Pink Millipede" หรือ "มังกร ชมพู" มีชื่อวิทยาศาสตร์ว่า *Desmoxytes purpurosea* Enghoff, Sutcharit & Panha, 2007 ภายใต้โครงการวิจัย เร่งด่วน "โครงการวิจัยกิ้งกือและไส้เดือนดิน" สนับสนุนโดย ศูนย์ไบโอเทค / สกว. และโครงการ BRT โดย ศ.ดร. สมศักดิ์ ปัญหา จุฬาลงกรณ์มหาวิทยาลัย ซึ่งตีพิมพ์เผยแพร่ในวารสาร *ZOOTAXA* เมื่อปี ค.ศ. 2007

ลักษณะเด่นของกิ้งกือมังกรชมพูที่ทำให้ถูกคัดเลือกคือ **สีสันที่โดดเด่นแบบ shocking pink** . ซึ่งต่างจาก กิ้งกือชนิดอื่นๆ ที่มีสีสันลวดลายตามสิ่งแวดล้อม **ทั้งนี้อาจเนื่องมาจากพฤติกรรมที่ชอบออกหากินตอนกลางวันของ กิ้งกือมังกรชมพู** ทำให้มันต้องปรับตัวให้มีสีสันสดใสแบบ **shocking pink และมีขนออกมารอบตัวเหมือนมังกร**

1.4 หอยทากบกสกุลแอมฟิโดรมัส

หอยทากบกสกุลแอ้มฟิโดรมัส (Amphidromus) มีลักษณะสัณฐานวิทยาของเปลือกมีความหลากหลายทั้ง ขนาด รูปร่าง และสี จากลักษณะดังกล่าวทำให้นักอนุกรมวิธานเกิดความสับสนในการจัดจำแนก ดร. ผ่องพรรณ ประสารกก ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยศรีนครินทรวิโรฒ ได้ทำการศึกษาโครงสร้างทาง พันธุกรรมของหอยทากบก 2 ชนิด คือ หอยนกขมิ้น (Amphidromus atricallosus) และหอยช็อคโกแลต (Amphidromus inversus) เพื่อวิเคราะห์ความหลากหลายทางพันธุกรรม

ผลการศึกษาหอยนกขมิ้น ซึ่งมีการแพร่กระจายกว้างมาก ตั้งแต่ภาคตะวันออกของไทย ลงมาถึง ภาคใต้ พบว่า มีความหลากหลายทางพันธุกรรมสูง และสามารถแยกกลุ่มหอยนกขมิ้นจากระยะห่างทางพันธุกรรมออกเป็น 2 กลุ่ม คือ กลุ่มประชากรภาคตะวันออก และกลุ่มประชากรภาคใต้ อย่างไรก็ตามจากลักษณะที่ใช้ในการจำแนกชนิด ตามหลักอนุกรมวิธาน สามารถพบได้ทั่วทุกการกระจายตัว ดังนั้น จึงยังคงยึดเป็นสปีชีส์เดียวคือ Amphidromus atricallosus แต่พันธุกรรมมีความแตกต่างกัน จึงถูกจัดให้เป็นชนิดพันธุ์ช่อนเร้น (Cryptic specie)

ในขณะที่การศึกษาหอยช็อคโกแลต ซึ่งมี้การแพร่กระจายอยู่บ[้]นเกาะต่างๆ ตามแนวชายผั่งอ่าวไทย ตั้งแต่ เกาะในประเทศมาเลเซีย ขึ้นมาถึงเกาะในประเทศไทย ผลการศึกษา พบว่า หอยกลุ่มนี้มีความหลากหลายทาง พันธุกรรมต่ำมาก ซึ่งเป็นสัญญาณว่ามีโอกาสสูญพันธุ์สูง ทั้งนี้ การศึกษาข้อมูลย้อนกลับไปในอดีตพบว่าการ เปลี่ยนแปลงระดับน้ำทะเลและการเกิดยุคน้ำแข็ง ทำให้ประชากรหอยกลุ่มนี้ลดจำนวนลง ส่งผลถึงความหลากหลาย ทางพันธุกรรมที่ต่ำลงไปด้วย

1.5 พรรณไม้วงศ์กระท้อนของไทย

ไม้วงศ์กระท้อนเป็นพรรณไม้ที่มีการนำไปใช้ประโยชน์หลากหลายด้าน ทั้งการเป็นไม้เศรษฐกิจ ปลูกเพื่อใช้ สอย และปลูกเพื่อการอนุรักษ์พื้นที่ป่า เช่น มะฮอกกานี (Swietenia mahogany) ไม้สกุลสะเดา (Azadirachta indica A.Juss. var. siamensis Valeton) สกุลกระท้อน (Sandoricum koetjape (Burm.f.) Merr.) และ สกุล ลางสาด (Lansium domesticum Corrêa) และยังมีการสร้างสารทุติยภูมิที่มีฤทธิ์ป้องกันแมลงหรือฆ่าแมลงได้อีก ด้วย

การศึกษาอนุกรมวิธานของพรรณไม้วงศ์ไม้กระท้อนของไทย โดยนายธวัชชัย วงศ์ประเสริฐ สำนักหอพรรณ ไม้ กรมอุทยานแห่งชาติ สัตว์ป่าและพันธุ์พืช พบ 18 สกุล จำนวน 84 ชนิด 3 ชนิดย่อย และ 4 สายพันธุ์ ในจำนวนนี้ 11 ชนิดเป็นพรรณไม้ที่ยังไม่เคยยืนยันมาก่อนว่ามีอยู่ในประเทศไทย และเป็นพรรณไม้สกุลที่พบเป็นครั้งแรกของไทย 1 สกุล คือ สกุล Pseudoclausena

1.6 พืชสกุลหางกระรอก (วงศ์ถั่ว) ในประเทศไทย

พืชสกุลหางกระรอก (Uraria Desv.) พบทั้งที่เป็นพืชลุ้มลุกอายุหลายปีหรือไม้พุ่ม มีลักษณะเด่นคือแต่ละข้อ จะพับเข้าหากันเป็นรูปซิกแซก โดยทั่วไปจะมีชื่อพื้นเมืองว่า หางกระรอก หางเสือ หางหมา หรือหางหมาจอก ซึ่งมา จากลักษณะของช่อดอก พืชกลุ่มนี้มีขนปกคลุมแทบทุกส่วน เมื่อสัมผัสจะรู้สึกสากหรือเหนียวติดมือ จาก ลักษณะเฉพาะของขนพืชนี้ ชาวบ้านในภาคอีสานได้นำมาประยุกต์ใช้ในชีวิตประจำวัน ในการบริโภคปลาร้า เป็นภูมิ ปัญญาในการถนอมอาหารแบบหนึ่ง ทำให้สามารถกำจัดหนอนออกจากปลาร้าได้ง่าย

การศึกษาทบทวนพืชสกุลหางกระรอก (*Uraria* Desv.) ในประเทศไทย โดย ศ.ดร.ประนอม จันทร โณทัย ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยขอนแก่น พบจำนวน 13 ชนิด โดยพบพืชชนิดใหม่ 2 ชนิด เป็นพืชรายงานใหม่ของประเทศไทย 1 ชนิด

1.7 พืชสกุลการเวก ในประเทศไทย

การจำแนกพืชสกุลการเวกที่ผ่านมาในประเทศไทย มีการจำแนกที่คลุมเคลือ ทั้งนี้เนื่องมาจากลักษณะทาง สัณฐานวิทยาที่คล้ายคลึงกันมาก และที่ผ่านมายังไม่มีการศึกษาทบทวนพรรไม้สกุลนี้อย่างจริงจัง **นายทวี อินสุระ** ภาควิชาชีววิทยาป่าไม้ คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ จึงได้ทำการศึกษาอนุกรมวิธานและสัณฐาน วิทยาของพืชสกุลการเวกทุกชนิดที่มีการกระจายตัวอยู่ในประเทศไทย รวมไปถึงการจำแนกชนิด และนิเวศวิทยาการ กระจายพันธุ์ด้วย

จากการศึกษาพบพืชสกุลการเวกในประเทศไทยทั้งสิ้น 15 ชนิด สามารถแบ่งได้เป็น 2 กลุ่มหลัก คือ กลุ่มที่มี กลีบดอกกว้าง เช่น นมชะนี นมงัว กระดังงานจีน การเวกใบใหญ่ เป็นต้น และกลุ่มที่มีกลีบดอกแคบ เช่น การเวกช่อ การเวกแดง และการเวกสุมาตรา เป็นต้น

1.8 ความหลากหลายของพืชบนเทือกเขาสันกาลาศีรี

พื้นที่เทือกเขาสันกาลาคีรีในเขตอำเภอเบตง จังหวัดยะลา ตั้งอยู่ตอนใต้สุดของประเทศไทย ทอดเป็นแนว ยาวไปตามแนวพรมแดนไทย-มาเลเซีย สภาพโดยทั่วไปของภูมิประเทศเป็นเทือกเขาสลับซับซ้อน เนื่องจากมีพื้นที่ ตั้งอยู่ใกล้เส้นศูนย์สูตร จึงมีสภาพภูมิอากาศร้อนชื้น ฝนตกชุก มีเมฆหมอกปกคลุมเทือกเขาตลอดทั้งปี นอกจากนี้ สภาพทางธรณีวิทยาซึ่งมีหลายประเภท ปัจจัยต่างๆ เหล่านี้ทำให้บริเวณดังกล่าวมีความหลากหลายทางชีวภาพสูง และยังปรากฏลักษณะพื้นทีที่แตกต่างกัน ทั้งสันเขา หน้าผา และบางแห่งเป็นเขาโดด ส่งผลให้มีพืชพรรณแตกต่าง จากพื้นที่ป่าดิบชื้น

นายเจริญศักดิ์ แซ่ไว่ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ได้เข้าไป ทำการศึกษาความหลากหลายของพืชมีท่อลำเลียงบริเวณหน้าผาและสันเขาหินบนเทือกเขาสันกาลาคีรี ในเขต อำเภอเบตง จังหวัดยะลา ซึ่งนับเป็นครั้งแรกของการศึกษาการสำรวจพรรณไม้บริเวณหน้าผา และสันเขาหิน ประเภทต่างๆ ของภาคใต้ตอนล่างที่อยู่ในบริเวณจำกัด จากสภาพป่าเป็นเอกลักษณ์เฉพาะที่มีความโดดเด่นเสมือน เป็นเกาะ ซึ่งมีความสำคัญต่อการศึกษารูปแบบการกระจายพันธุ์ของพืช รวมถึงสถานภาพของพืช โดยเฉพาะอย่าง ยิ่งพรรณไม้หายาก และพรรณไม้ถิ่นเดียว

การศึกษาตั้งแต่เดือนตุลาคม 2548 ถึงเดือนกุมภาพันธ์ 2550 พบพืชมีท่อลำเลียงจำนวน 223 ชนิด ซึ่ง ประกอบด้วย ไลโคไฟต์ 7 ชนิด เฟิร์น 41 ชนิด พืชเมล็ดเปลื่อย 3 ชนิด พืชใบเลี้ยงคู่ 113 ชนิด และพืชใบเลี้ยงเดี่ยว 59 ชนิด ในกลุ่มของพืชมีท่อลำเลียงทั้งหมดนี้ พืชในวงศ์กล้วยไม้ จัดเป็นกลุ่มที่มีความหลากหลายและมีจำนวนชนิด มากที่สุด คือ 40 ชนิด ในการศึกษานี้พบว่ามีพืชที่คาดว่าอาจจะเป็นชนิดใหม่ของโลก 2 ชนิด ได้แก่ Hoya sp. และ Dendrobium sp. และพบพืชที่ยังไม่เคยมีรายงานในประเทศไทยมาก่อนจำนวน 16 ชนิด

1.9 ความหลากหลายของไรในโรงเก็บ

ไรเป็นสัตว์ขนาดจิ๋วที่ไม่น่าพิศมัยทั้งในด้านของสุขภาพ ได้แก่ ไรฝุ่น และด้านเศรษฐกิจ ได้แก่ ไรในโรงเก็บ ซึ่งเป็นศัตรูพืชที่สร้างความเสียหายให้กับผลผลิตทางการเกษตร และเป็นพาหะนำเชื้อราในผลิตภัณฑ์อาหารแห้งหลาย ชนิด ซึ่งสามารถเชื่อมโยงไปถึงปัญหาสุขภาพ ทำให้เกิดโรคภูมิแพ้ ผื่นคัน หอบ หืด และเยื่อจมูกอักเสบได้อีกด้วย

ผศ.ดร.อำมร อินทรสังข์ คณะเทคโนโลยีการเกษตร สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร ลาดกระบัง ได้ทำการสำรวจและเก็บตัวอย่างไรในโรงเก็บ และไรฝุ่นบ้านในเขตภาคกลางของประเทศไทย จาก การเก็บตัวอย่างผลิตภัณฑ์ทางการเกษตรและอาหารแห้ง จำนวนทั้งสิ้น 243 ตัวอย่าง พบไรทั้งหมด 127 ตัวอย่าง พบว่าเป็นไรศัตรูพืช 78 ตัวอย่าง ผลการศึกษาความหลากหลายของไรฝุ่นจากตัวอย่างฝุ่นบนเครื่องนอน ตาม บ้านเรือนของชาวบ้าน จำนวนทั้งสิ้น 638 ตัวอย่าง พบไรทั้งหมด 1,590 ตัว จาก 222 ตัวอย่าง

การศึกษาความหลากหลายของไรในโรงเก็บ สามารถนำไปใช้ประโยชน์ในการนำเข้าและส่งออกสินค้าเกษตร และยังเป็นการศึกษาแนวทางการป้องกันกำจัดต่อไป อีกทั้งการศึกษาความหลากหลายของไรฝุ่นบ้าน ยังสามารถ นำไปใช้เพื่อคาดการณ์ความเสี่ยงของการเกิดโรคภูมิแพ้ไรฝุ่น เพื่อการวางแผนทางสาธารณสุข รวมไปถึงการต่อยอด การพัฒนาเป็นผลิตภัณฑ์กำจัดไรต่อไป

1.10 สายวิวัฒนาการของมวนจิงโจ้น้ำ

มวนจิงโจ้น้ำเป็นแมลงจัดอยู่ในอันดับ Hemiptera แหล่งน้ำที่อยู่อาศัยมีหลายแบบ ได้แก่ น้ำจืด น้ำกร่อย ริมฝั่งทะเล และทะเลเปิด นอกจากนี้ยังมีลักษณะนิสัยเป็นผู้ล่า โดยเหยื่อของมวนจิงโจ้ คือ ครัสเตเชียน ขนาดเล็กๆ และแมลงที่เป็นศัตรูพืชและพาหะนำโรค จึงมีบทบาทสำคัญเป็นตัวควบคุมโดยชีววิธี โดยเฉพาะในแหล่งน้ำจืด และน้ำ กร่อยใ

นางสาวเอสรา มงคลชัยชนะ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ได้ ทำการศึกษาอนุกรมวิธานและความสัมพันธ์เชิงวิวัฒนาการของมวนจิงโจ้น้ำ ในพื้นที่ลุ่มน้ำแม่กลอง ซึ่งครอบคลุม พื้นที่ 5 กลุ่มลุ่มน้ำสาขา ครอบคลุมพื้นที่ 9 จังหวัด ได้ตัวอย่างทั้งหมด 5,550 ตัวอย่าง จัดจำแนกได้เป็น 7 วงศ์ย่อย 20 สกุล 36 ชนิด และ 4 รูปแบบ ทั้งนี้จากการวิเคราะห์ตัวอย่างที่เก็บจากจังหวัดสมุทรสงคราม พบมวนจิงโจ้น้ำชนิด ที่พบครั้งแรกในประเทศไทย คือ Rheumatometroides insularis (Polhemus & Cheng, 1982)

1.11 ความหลากหลายของยีสต์

ยีสต์สามารถอาศัยอยู่ได้ในหลากหลายระบบนิเวศ และพบได้ทั้งบนบก และในน้ำ จาก**การศึกษาความ** หลากหลายของยีสต์ โดยคณะนักวิจัย จากภาควิชาจุลชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ นำโดย ศ.ดร.สาวิตรี ลิ่มทอง, นายสมจิต อ่ำอินทร์ และนางสาวชนิตา บุญมาก ได้เลือกพื้นที่ศึกษาในป่าชายเลนทั้ง ฝั่งอ่าวไทยและอันดามัน โดยทำการศึกษาทั้งในน้ำ และดินในป่าชายเลน ทั้งนี้ยีสต์ที่อาศัยอยู่ในป่าชายเลนมีบทบาท สำคัญอย่างยิ่งในการหมุนเวียนธาตุอาหารป่าชายเลน และเป็นแหล่งอาหารของสัตว์น้ำและแพลงก์ตอน

การศึกษายีสต์จากตัวอย่างน้ำในป่าชายเลนในจังหวัดพังงาของประเทศไทย พบยีสต์สปีชีส์ใหม่และได้แก่ Candida thaimueangensis sp. nov. (Limtong et al., 2007) และ Candida phangngensis sp. Nov และ การศึกษาความหลากหลายของยีสต์ในน้ำและตะกอนดินใต้น้ำในป่าชายเลนฝั่งอ่าวไทยตอนบน จังหวัดตราด จันทบุรี เพชรบุรีและประจวบคีรีขันธ์ พบยีสต์สปีชีส์ใหม่ 4 สปีชีส์จำนวน 4 สายพันธุ์ ซึ่ง 3 สปีชีส์ในจำนวนนี้ได้ทำการศึกษา

และได้รับการตั้งชื่อตีพิมพ์ในวารสารนานาชาติ ได้แก่ Candida prachuapensis sp. nov., Candida siamensis sp. nov. and Candida suwanaritii sp. nov.

ผลการศึกษาพบว่ายีสต์ที่พบมากที่สุดในน้ำจากป่าชายเลนบริเวณอ่าวไทยตอนบนคือ ยีสต์ในสกุล Candida และ Rhodotorula ซึ่งการที่พบยีสต์ทั้งสองสกุลมากนั้นสอดคล้องกับรายงานที่เคยมีมาแล้วว่า ยีสต์ในสกุล Candida เป็นยีสต์ที่มีรายงานว่าพบเสมอในแหล่งน้ำธรรมชาติรวมทั้งในน้ำที่มีมลภาวะ โดยเฉพาะยีสต์สีแดงนั้นยิ่งจัดเป็นดัชนี สำคัญในการชี้วัดน้ำเสีย แสดงให้เห็นว่าน้ำในป่าชายเลนบริเวณอ่าวไทยมีการปนเปื้อนมลภาวะและมีสารอินทรีย์มาก

1.12 ความหลากหลายของราเอนโดไฟท์และราแซบโพรบที่พบบนปาล์มน้ำกร่อย (ต้นจาก)

การศึกษาราที่พบบนต้นจากซึ่งเป็นปาล์มที่ขึ้นอยู่ในบริเวณน้ำกร่อย จากแหล่งต่างๆ ในประเทศไทย โดย **Dr. Gareth Jones ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ** จากแหล่งเก็บตัวอย่าง ใน 9 จังหวัดทั้งใน ภาคใต้ ภาคกลางและภาคตะวันออกของประเทศ ได้แก่ จังหวัดสุราษฎร์ธานี ตรัง ระนอง นครศรีธรรมราช ชุมพร สตูล สมุทราสาคร สมุทรปราการ และฉะเชิงเทรา ได้จำนวนตัวอย่าง 591 ตัวอย่าง พบรากลุ่มแอสโคมัยซีทมากที่สุด จำนวน 54 ชนิด ราที่ยังไม่พบการสืบพันธุ์แบบอาศัยเพศ 33 ชนิด เบซิดิโอมัยซีท 14 ชนิดและ ราเมือก 1 ชนิด

ราชนิดที่พบบ่อยจากทั้ง 6 แหล่งมีจำนวน 3 ชนิด ได้แก่ Linocarpon appendiculatum (12-47.4%), Astrosphaeriella striatispora (10.3-40%), Trichocladium nypae (8.8-76.3%) ซึ่งราทั้ง 3 ชนิดดังกล่าวยัง พบในทุกแหล่งตัวอย่างที่เก็บอีกด้วย

เชื้อราเมือก 1 ชนิด ได้แก่ *Arcyria* sp. ซึ่งไม่เคยมีรายงานพบบนตัวอย่างปาล์มชนิดอื่นหรือบนต้นจากมา ก่อน ครั้งนี้จึงเป็นรายงานที่พบราเมือกเป็นครั้งแรกบนต้นจาก

ต้นจากมีความหลากหลายของเชื้อราสูง โดยกลุ่มของเชื้อราที่พบจะแตกต่างกันตามความเค็มของน้ำที่แตกต่าง กัน พื้นที่ที่มีความเค็มต่ำ เช่น ตรัง ระนอง และสุราษฎร์ธานี จะพบเชื้อรากลุ่มที่ใกล้เคียงกับเชื้อรากลุ่มน้ำจืด (เช่น Helicosporium Helicoma and Acrogenospora) และพื้นที่ที่มีความเค็มสูง ได้แก่ สมุทรสาคร สตูล สมุทรปราการ นครศรีธรรมราช และฉะเชิงเทรา พบเชื้อรากลุ่มใกล้เคียงกลุ่มราทะเล (เช่น Halosarpheia, Saagaromyces, Lulworthia and Savoryella)

1.13 อนุกรมวิธานของฮาร์แพคทิคอยโคพีพอดในแหล่งสาหร่ายรากไม้ (Neomeris vanbosseae) โดยเน้นศึกษาวงศ์ Ectinosomatidae

ฮาร์แพคทิคอยดาเป็นแพลงก์ตอนสัตว์ กลุ่มใกล้เคียงกับโคพีพอดา อยู่ในกลุ่มย่อยโคพีพอดา พบทั้งในน้ำจืด น้ำกร่อย และน้ำเค็ม โดยเฉพาะบริเวณชายฝั่งทะเลที่มีหญ้าทะเลหรือสาหร่ายทะเล มีขนาดลำตัว 0.2-2.5 มิลลิเมตร

ฮาร์แพคทิคอยดามีบทบาทสำคัญในระบบนิเวศทางทะเล โดยเป็นแหล่งอาหารที่สำคัญของสัตว์น้ำ และช่วย การย่อยสลายในดิน

การศึกษาอนุกรมวิธานของฮาร์แพคทิคอยโคพีพอดในวงศ์ Ectinosomatidae ซึ่งอยู่ร่วมกับสาหร่ายรากไม้ (Neomeris vanbosseae) ปัจจุบันมีรายงานพบ 21 สกุล 233 ชนิด ซึ่งจากการศึกษาเก็บตัวอย่างบริเวณ ศูนย์วิจัย และพัฒนาประมงทะเลอ่าวไทยฝั่งตะวันออก จังหวัดระยอง ในเดือนกันยายน 2549 (ฤดูฝน) และกุมภาพันธ์ 2550 (ฤดูแล้ง) โดย นางสาวภาวนา กังเตีย มหาวิทยาลัยรามคำแหง พบฮาร์แพคทิคอยดา 11 วงศ์ ได้แก่ Ameiridae, Canuellidae, Cletodidae, Ectinosomatidae, Harpacticidae, Laophontidae, Longipediidae, Miraciidae, Tegastidae, Thalestridae, and Tisbidae โดยสามารถพบในฤดูแล้งมากกว่าฤดูฝน

จากการศึกษาพบวงศ์ Ectinosomatidae 4 สกุล 24 ชนิด ได้แก่สกุล *Ectinosoma* 10 ชนิด สกุล *Halectinosoma* 10 ชนิด สกุล *Microsetella* 1 ชนิด สกุล *Pseudobradya* 3 ชนิดโดยสกุล *Halectinosoma* spp. พบเป็นจำนวนมากที่สุด

1.14 ความหลากหลายทางพันธุกรรมและพลวัตการถ่ายเทยีนของไม้เต็ง *Shorea obtusa* Wall.ex. Blume

ไม้เต็ง (Shorea obtuse) เป็นพรรณไม้ดัชนีสำคัญของระบบนิเวศป่าเต็งรั้งในประเทศไทย แต่เนื่องจาก การลดลงของพื้นที่ป่า และพื้นที่ป่าถูกแบ่งแยกเป็นหย่อมป่าขนาดเล็ก อาจส่งผลกระทบต่อความหลากหลายทาง พันธุกรรมของพืชชนิดนี้

งานวิจัยนี้ได้ทำการศึกษาโครงสร้างทางพันธุกรรม ความหลากหลายทาง พันธุกรรม ความสัมพันธ์ทางพันธุกรรม การตรวจสอบความเป็นพ่อ และระบบ ผสมพันธุ์ของเต็ง โดยใช้เครื่องหมายโมเลกุลไมโครแซทเทิลไลท์ดีเอ็นเอ จำนวน 5 ตำแหน่ง และศึกษาเซลล์พันธุศาสตร์ของเต็ง โดยวิธี propionocarmine smear technique

นางชฎาพร เสนาคุณ คณะเทคโนโลยี มหาวิทยาลัยมหาสารคาม ศึกษา พบว่า เต็งเป็นพืชดิพลอยด์ มีจำนวนโครโมโซม 2n = 14 จากการศึกษา กลุ่มตัวอย่างเต็งจำนวน 146 ต้น จาก 5 ประชากร ได้แก่ ประชากรจังหวัดชัยภูมิ จังหวัดเชียงราย จังหวัดมหาสารคาม จังหวัดอุบลราชธานี และจังหวัดอุทัยธานี พบว่า ความหลากหลายทางพันธุกรรมของประชากรเต็งอยู่ในระดับสูง ด้วย ค่าเฉลี่ยเฮเทอโรโชโกตที่คาดหมาย (He) เท่ากับ 0.664 กลุ่มประชากรแต่ละกลุ่ม

้มี**ความแตกต่างทางพันธุกรรมในระดับต่ำ** อาจเป็นเพราะการแบ่งแยกของพื้นที่ป่าเต็งรังเกิดขึ้นไม่นาน

การวิเคราะห์ความสัมพันธ์ทางพันธุกรรม โดยการสร้างแผนภาพต้นไม้วิวัฒนาการ ด้วยวิธี UPGMA โดย การวัดค่าความห่างทางพันธุกรรมตามวิธีของ Nei พบว่าผลจากการสร้างแผนภาพต้นไม้วิวัฒนาการ มีการแบ่ง ประชากรออกเป็น 2 กลุ่ม คือ กลุ่มที่ 1 ได้แก่ ชัยภูมิและเชียงราย และกลุ่มที่ 2 ได้แก่ มหาสารคาม อุบลราชธานี และอุทัยธานี สันนิษฐานว่า ประชากรสองกลุ่มที่มีความแตกต่างทางพันธุกรรมนั้นอาจเกิดจากระดับความสูงจากน้ำ ทะเลที่แตกต่างกันของถิ่นอาศัย จนเป็นสาเหตุทำให้โครงสร้างทางพันธุกรรมของประชากรไม้เต็งเปลี่ยนแปลงระหว่าง สองกลุ่มนี้

การศึกษาความสัมพันธ์ทางพันธุกรรม การตรวจสอบความเป็นพ่อ และรูปแบบของระบบผสมพันธ์ ของเต็ง ในสถาบันวิจัยวลัยรุกขเวช จังหวัดมหาสารคาม โดยการตรวจสอบจิโนไทป์จำนวน 208 ตัวอย่าง ซึ่ง ประกอบด้วยต้นเต็งที่คาดว่าจะเป็นพ่อจำนวน 29 ต้น และต้นกล้าจำนวน 179 ต้น ที่เก็บเมล็ดจากต้นแม่พันธุ์เต็ง จำนวน 5 ต้น พบว่าความสัมพันธ์ระหว่างระยะทางและความสัมพันธ์ทางพันธุกรรมของต้นเต็งที่คาดว่าจะเป็นพ่อ จำนวน 29 ต้น มีความสัมพันธ์ในเชิงลบ ($r=-0.129,\ p<0.05$) ผลการศึกษาระยะห่างทางพันธุกรรมของ 29 ต้น พบว่ามีค่าต่ำ แสดงว่าเกิดการถ่ายเทยีนอย่างมากในประชากรเต็งในรุ่นที่แล้ว และการแพร่กระจายเของมล็ดพันธุ์ ส่งผลกระทบให้โครงสร้างทางพันธกรรมของประชากรเต็งต่ำ

การตรวจสอบความเป็นพ่อของเต็ง พบว่ามีแอลลีลที่อาจจะมาจากต้นเต็งที่มาจากนอกพื้นที่ ประมาณ 10.9% ผลการศึกษาค่าความน่าจะเป็นของความเป็นพ่อ (Pe) พบว่า Pe เท่ากับ 0.567 และมีค่าความถี่นันแอลลีลมา กกว่า 0.05 การวิเคราะห์ค่า effective pollen dispersal distance พบค่าเฉลี่ย 626.7 เมตร และพบความถี่ของ การกระจายของเรณูในประชากรเต็ง ส่วนค่า effective pollen donors per maternal tree เท่ากับ 3 ถึง 12 ด้วย ค่าเฉลี่ยเท่ากับ 6 นั่นคือ การเพิ่มค่าของ effective pollen dispersal distance และ effective pollen donors per maternal tree อาจมีสาเหตุมาจากความหนาแน่นของประชากรต่ำ และมีระยะทางในการถ่ายเรณูมากขึ้น

ผลการวิเคราะห์ระบบผสมพันธุ์ของประชากรเต็ง โดยวิธี MLTR พบว่าอัตราการผสมข้ามลายพันธุ์อยู่ใน ระดับต่ำ ($t_m=0.569$) ค่า biparental inbreeding ($t_m-t_s=0.037$) แสดงว่ามีสัดส่วนของการผสมพันธุ์ระหว่าง ต้นที่บรรพบุรุษร่วมกันต่ำ และค่า correlation of paternity ($r_p=0.34$) แสดงว่ามีจีโนไทป์ต้นพ่ออย่างน้อย 4 ต้น อยู่ในรุ่นลูกของประชากรนี้ จากผลการศึกษาอัตราการผสมข้ามสายพันธุ์อยู่ในระดับต่ำของประชากรเต็ง ใน สถาบันวิจัยวลัยรุกเวช อาจเนื่องมาจากการกระจายของต้นเต็งในป่าแห่งนี้มีความหนาแน่นต่ำ

1.15 ไบรโอไฟต์อิงอาศัยตามแนวความสูงจากระดับน้ำทะเลในบริเวณเทือกเขานครศรีธรรมราช

ไบรโอไฟต์เป็นพืชกลุ่มมีโครงสร้างที่ไม่ซับซ้อน ค่อนข้างบอบบาง จึงไวต่อการเปลี่ยนแปลงของ สภาพแวดล้อมมากกว่าพืชกลุ่มอื่น โดยเฉพาะไบรโอไฟต์อิงอาศัย ไบรโอไฟต์บางชนิดสามารถใช้เป็นดัชนีบ่งชี้สภาพ ป่า ความสูงจากระดับน้ำทะเล และสภาพภูมิอากาศ ปัจจัยที่สำคัญที่ส่งผลต่อการเจริญเติบโตของไบรโอไฟต์ในเขต ร้อน ได้แก่ ความชื้น ปริมาณน้ำฝน ระยะเวลาที่แห้งแล้ง และอุณหภูมิ

การศึกษามวลชีวภาพและปัจจัยทางนิเวศวิทยาบางประการของไบรโอไฟต์อิงอาศัยในภาคใต้ของประเทศไทย ได้แก่ อุทยานแห่งชาติตะรุเตา อุทยานแห่งชาติเขานั้น และอุทยานแห่งชาติเขาหลวง โดย **ดร. สหัช จันทนาอรพินท์ คณะ** วิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ พบว่า ไบรโอไฟต์มีความสามารถกักเก็บน้ำได้ประมาณ 1.2 ถึง 2.4 เท่า ของน้ำหนักแห้ง ซึ่งในบริเวณป่าดิบเขาระดับต่ำมีค่าสูงสุดถึง 1,500 ลิตรต่อเฮกแตร์

การสำรวจความหลากหลายของไบรโอไฟต์ในพื้นที่ศึกษา พบไบรโอไฟต์ทั้งหมด 138 ชนิด : ลิเวอร์เวิร์ต 83 ชนิด และมอสส์ 55 ชนิด โดยลิเวอร์เวิร์ต วงศ์ที่พบได้ทั่วไป มี 3 วงศ์ ได้แก่ Lejeuneaceae, Lepidoziaceae และ Plagiochilaceae ส่วนมอสส์ วงศ์ที่พบได้ทั่วไป มี 3 วงศ์ ได้แก่ Calymperaceae, Neckeraceae และ Sematophyllaceae โดยความหลากชนิด, สัดส่วนของลิเวอร์เวิร์ตต่อมอสส์ และเปอร์เซ็นต์การครอบครองพื้นที่ เพิ่มขึ้นตามความสูงจากระดับน้ำทะเล อุณหภูมิและความชื้นสัมพัทธ์ในอากาศ มีอิทธิพลต่อการความหลากชนิดและ แพร่กระจายของไบรโอไฟต์มากกว่าลักษณะของต้นไม้

1.16 ความหลากหลายทางชนิด และพลวัตประชากรของมอดเอมโบรเซีย

มอดเอมโบรเซีย (ambrosia beetles) เป็นมอดที่จัดอยู่ในกลุ่มแมลงเจาะไม้ อาศัยอยู่ร่วมกับรา ซึ่งราบาง ชนิดเป็นสาเหตุของโรคเหี่ยวในพืช มอดเอมโบรเซียเป็นแมลงศัตรูของพืชเศรษฐกิจที่มีการระบาดและสร้างความ เสียหายให้กับหลายประเทศทั่วโลก สำหรับในประเทศไทย มอดเอมโบรเซียมถือเป็นแมลงศัตรูทุเรียนที่สำคัญ ทำให้ ต้นทุเรียนเกิดความเสียหาย และส่งผลต่อผลผลิต ซึ่งปัจจุบันประเทศไทยเป็นประเทศที่มีการส่งออกเป็นอันดับ 1 ของ โลกในแต่ละปีมีการส่งออกทุเรียนทั้งสดและแช่แข็งประมาณ 3,000 ล้านบาท และรวมมูลค่าการผลิต 10,682 ล้าน บาท (ตัวเลขปี 2550)

การศึกษาความหลากหลายทางชนิด ความหนาแน่นและพลวัตประชากรของมอดเอมโบรเซีย และมอดขึ้ขุยใน สวนทุเรียนเชิงเดี่ยวและเชิงผสมในพื้นที่ปลูกทุเรียนหลักในภาคใต้ จังหวัดชุมพร สุราษฎร์ธานี และนครศรีธรรมราช โดย **นายวิสุทธิ์ สิทธิฉายา คณะทรัพยากรธรรมชาติ มหาวิทยาลัยสงขลานครินทร์** พบมอดเอมโบรเซียจำนวน 86 ชนิด และมอดขึ้ขุย 17 ชนิด โดยพบมอดเอมโบรเซียชนิดเด่น จำนวน 4 ชนิด ในวงศ์ย่อย Scolytinae 3 ชนิด ได้แก่ Xylosandrus mancus, Xyleborus perforans, Xyleborinus exiguous และ วงศ์ย่อย Platypodinae 1 ชนิด Euplatypus parallelus

การศึกษาด้านพลวัตประชากรของแมลงกลุ่มมอด พบว่า มอดเอมโบรเซีย มีพลวัตประชากรแบบมีระดับ ประชากรสูงสุดเพียงครั้งเดียว คือ ปลายฤดูฝนต่อเนื่องถึงกลางฤดูร้อน (พฤศจิกายน-มีนาคม) และมอดขึ้ขุย มีพลวัต ประชากรแบบมีระดับประชากรสูงสุดสองครั้ง คือ ช่วงแรกในต้นฤดูฝน (พฤษภาคม-กรกฎาคม) และช่วงที่สองใน ปลายฤดูฝน (พฤศจิกายน-มกราคม)

้ทั้งนี้ ข้อมูลความหลากหลายและพลวัตประชากรที่ได้นี้ จะมีความสำคัญต่อการป้องกันการเข้าทำลายของ มอดเอมโบรเซียในต้นทุเรียน และยังเป็นฐานข้อมูลที่สำคัญของมอดเอมโบรเซียที่เข้าทำลายไม้ยืนต้นที่สำคัญของ ประเทศไทย

1.17 ความหลากหลายของราทำลายแมลงบนแปลงศึกษาธรรมชาติมอสิงโต เขตอุทยานแห่งชาติเขาใหญ่

ประเทศไทยมีความหลากหลายของราแมลงค่อนข้างสูง ทั่วประเทศพบถึง 400 ชนิด ชี้ให้เห็นถึงความ หลากหลายของราทำลายแมลงในประเทศไทย ซึ่งราทำลายแมลงหลายชนิดเป็นการค้นพบในประเทศไทยเป็นครั้ง แรก ทั้งนี้ นอกจากการศึกษาด้านความหลากหลายของชนิดแล้ว ยังมีการศึกษาเกี่ยวกับระบบนิเวศ และความสัมพันธ์ ของรากับแมลงด้วย

การศึกษาในแปลงศึกษามอสิงโต อุทยานแห่งชาติเขาใหญ่ โดย**นางสุชาดา มงคลสัมฤทธิ์ ศูนย์พันธุ วิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ** พบว่าที่ความสูง 726.52 เมตรจากระดับน้ำทะเล พบราทำลายแมลง 16 สกุล 37 ชนิด ชนิดเด่น คือ Hirsutella formicarum และOphiocordyceps unilateralis ซึ่ง H. formicarum มี การพัฒนารูปแบบราระยะสืบพันธุ์แบบไม่อาศัยเพศ และ O. Unilateralis มีการพัฒนารูปแบบราระยะสืบพันธุ์ แบบอาศัยเพศ โดยราทั้งสองชนิดนี้เป็นราเข้าทำลายและเจริญบนมด ซึ่งจะมีจำนวนมากขึ้นเมื่อปริมาณฝนลดลง

นอกจากนี้ ที่ระดับความสูง 783.10 เมตร และ 806.62 เมตร จากระดับน้ำทะเล พบความหลากหลายของ ราทำลายแมลงได้ 12 สกุล 12 ชนิด และ16 สกุล 35 ชนิด ตามลำดับ โดยมีชนิดเด่น คือ Akanthomyces novoguineensis ราที่เข้าทำลายและเจริญอยู่บนแมงมุม ราชนิดนี้จะมีจำนวนมากขึ้นเมื่อปริมาณฝนเพิ่มขึ้น ระหว่าง พฤษภาคมถึงตุลาคม และราชนิดนี้จะลดลงอย่างชัดเจนเมื่อปริมาณน้ำฝนลดลงในเดือนพฤศจิกายนของทุกปี

ส่วนแมลงที่ถูกราทำลายมากที่สุด คือ มด พบมดที่ถูกราเข้าทำลายจำนวน 37 ชนิด โดยมดมักจะติดเชื้อรา มากในช่วงฤดูฝน (มิถุนายนถึงกรกฎาคม) คาดว่าเป็นช่วงที่ประชากรมดออกหาอาหารเพื่อสะสมเข้ายังรัง และมี ความชื้นเหมาะสมและมีจำนวนสปอร์ราที่ถูกชะด้วยฝนจำนวนมากทำให้ประชากรมดมีโอกาสติดเชื้อได้มาก และช่วง หน้าหนาว (พฤศจิกายน) ซึ่งอุณหภูมิจะลดต่ำลงสุดที่ ประมาณ 11° C อาจเป็นได้ว่ามดได้รับแรงกดดันจาก สภาพแวดล้อมทำให้มดอ่อนแอ มีโอกาสติดเชื้อราได้ง่ายขึ้น

รูปแบบการพัฒนาของราบนมดตาย พบว่าหลังจากที่มดตายแล้วประมาณ 7 วัน ราจะสร้างกิ่งยาวประมาณ 1 ซม. จากบริเวณส่วนหัวและลำตัวมด หลังจากนั้นจะพัฒนาความยาวขึ้นเป็นระยะสืบพันธุ์แบบไม่อาศัยเพศ เรียกว่า Hirsutella formicarum และกิ่งราอาจมีการพัฒนาสร้างตุ่ม perithecia บริเวณกลางก้านรา เป็นระยะสืบพันธุ์แบบ อาศัยเพศ เรียกว่า Ophiocordyceps unilateralis โดยระยะเวลาที่ราใช้มดเป็นแหล่งอาศัยตั้งแต่ 1-18 เดือน ส่วน ใหญ่ใช้เวลา 1 เดือน และค่าเฉลี่ย 4.8 เดือน

1.18 การวิเคราะห์ความหลากหลายของสปีชีส์ของไส้เดือนน้ำจืดสกุล Glyphidrilus Horst, 1889

ไส้เดือนน้ำจืดสกุล *Glyphidrilus* Horst, 1889 เป็นไส้เดือนที่มีลักษณะถิ่นอาศัยอยู่ใกล้กับริมฝั่งแม่น้ำ บริเวณริมน้ำตก ลำธาร และแหล่งน้ำธรรมชาติ โดยเฉพาะบริเวณที่ดินมีลักษณะเป็นดินโคลนปนทราย มีรายงานการ กระจายทั่วโลกเพียง 18 สายพันธุ์ โดยจะพบในทวีปเอเชียใต้และเอเชียตะวันออกเฉียงใต้เท่านั้น และ 1 สายพันธุ์ใน ทวีปแอฟริกา

การศึกษาความหลากหลายของใส้เดือนน้ำจืด สกุล Glyphidrilus ในประเทศไทย โดย **ศ.ดร.สมศักดิ์** ปัญหา คณะวิทยาศาสตร์ จุฬาลงกร์มหาวิทยาลัย สามารถจำแนกใส้เดือนน้ำจืดที่มีลักษณะทางสัณฐานวิทยา แตกต่างกันได้มากกว่า 15 ชนิด ซึ่งทั้งหมดเป็นสปีชีส์ใหม่ที่รายงานเป็นครั้งแรกของโลก (อยู่ระหว่างส่งต้นฉบับ บทความ) พบการแพร่กระจายในประเทศไทยอยู่ทั่วทุกภูมิภาคของประเทศ และอยู่ในถิ่นที่อยู่อาศัยที่มีลักษณะ แตกต่างกัน ได้แก่ น้ำตก แม่น้ำ หนองน้ำ ทุ่งนา ลำห้วย จากการศึกษาขนาดลำตัวของใส้เดือนสามารถแบ่งกลุ่ม ใส้เดือนได้ 3 กลุ่ม ได้แก่ กลุ่มที่มีขนาดเล็ก มีความยาวลำตัวน้อยกว่าหรือเท่ากับ 70 มิลลิเมตร กลุ่มขนาดกลาง มี ความยาวลำตัว 70-140 มิลลิเมตร และกลุ่มขนาดใหญ่ มีความยาวลำตัวมากกว่าหรือเท่ากับ 141 มิลลิเมตร โดย ส่วนใหญ่ใส้เดือนที่จัดจำแนกได้เป็นไส้เดือนขนาดลำตัวยาวปานกลาง ซึ่งพบว่าขนาดของลำตัวไส้เดือนมีความสัมพันธ์ กับขนาดของส่วนที่ยื่นออกข้างลำตัวคล้ายปีก และลักษณะถิ่นที่อยู่อาศัย โดยใส้เดือนกลุ่มที่มีขนาดลำตัวปานกลางนั้น มักจะอยู่ในพื้นที่ที่เป็นทรายปนโคลนและน้ำไหล ส่วนที่มีลำตัวขนาดเล็กจะอยู่ตามดินเหนียวและน้ำนิ่ง ส่วนกลุ่มที่มีขนาดใหญ่จะอยู่ตามชายน้ำที่เป็นดินโคลนปนทราย

การศึกษาความหลากหลายของไส้เดือนน้ำจืดในประเทศไทยครั้งนี้ถือว่าเป็นการศึกษาครั้งแรก ซึ่งเป็น การศึกษาความหลากหลายและการกระจายของชนิดพันธุ์ของไส้เดือน เพื่อใช้เป็นดัชนีชี้วัดความอุดมสมบูรณ์ของ ทรัพยากรธรรมชาติ และเป็นข้อมูลพื้นฐานเป็นแนวทางในเชิงการอนุรักษ์ทรัพยากรชีวภาพ

1.19 การศึกษาทบทวนพืชสกุล Hoya R.Br. ในประเทศไทย

การสำรวจพืชสกุลโฮย่าในประเทศไทย พบว่าในประเทศไทยมีความหลากหลายสูงที่สุด เมื่อเทียบกับ ประเทศเพื่อนบ้านใกล้เคียง มีทั้งชนิดที่พบเฉพาะในประเทศไทยเท่านั้นและชนิดที่พบในประเทศใกล้เคียง โดยมีการ กระจายพันธุ์อยู่ในทุกภาคของประเทศในสภาพแวดล้อมที่แตกต่างกัน เช่น ในป่าชายหาด ป่าชายเลน ป่าเบญจพรรณ ป่าเต็งรัง และป่าดิบชื้น เป็นต้น

จากการสำรวจพืชสกุลโฮย่า โดย ดร.มานิต คิดอยู่ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย พบพืชสกุล Hoya R. Br. ในประเทศไทยทั้งหมด 50 ชนิด โดยเป็นพืชที่มีรายงานเป็นครั้งแรกในประเทศไทย (new records) จำนวน 9 ชนิด (อยู่ระหว่างการตีพิมพ์) ได้แก่ Hoya carnosa, H. thomsonii, H. elliptica, H. vaccinoides, H. globolosa, H. Erythrina, H. forbesii, H. bella และ H. scortechinii นอกจากนี้ ยังพบพืชที่ไม่สามารถระบุชนิด ได้ และคาดว่าจะเป็นพืชชนิดใหม่ของโลก (new species) จำนวน 10 ชนิด (อยู่ระหว่างการเปรียบเทียบตัวอย่างและ การตั้งชื่อวิทยาศาสตร์) มีชนิดที่ตั้งชื่อเรียบร้อยแล้ว 1 ชนิด คือ H. lithophytica Kidyoo sp. nov. พบเฉพาะ จังหวัดตากเท่านั้น และเป็นพืชเฉพาะถิ่นของไทย โดยตั้งชื่อว่า ตามสภาพพื้นที่ที่พืชขึ้นอยู่เฉพาะบนหินเท่านั้น

1.20 สถานภาพของปาล์มพื้นเมืองและการใช้ประโยชน์ในประเทศไทย

การศึกษาความหลากหลายของชนิด สถานภาพของปาล์มพื้นเมืองในแต่ละพื้นที่ของประเทศไทย ศึกษา เทคโนโลยีที่เหมาะสมในการขยายพันธุ์และการปลูกเลี้ยงแต่ละชนิด เพื่อรวบรวมองค์ความรู้ในการอนุรักษ์และศิลปะ ในการใช้ประโยชน์อย่างยั่งยืน รวมทั้งเพื่อเผยแพร่และถ่ายทอดเทคโนโลยีในการอนุรักษ์และใช้ประโยชน์อย่างยั่งยืน โดย ดร. ปิยะ เฉลิมกลิ่น สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย (วว.) พบว่าจากรายงานการ สำรวจและจำแนกพรรณไม้ในวงศ์ปาล์มพื้นเมืองในประเทศไทย มีอยู่จำนวน 33 สกุล รวมทั้งหมด 159 ชนิด 2 ชนิด ย่อยและ 10 พันธุ์ แต่จากการออกสำรวจและเก็บข้อมูลจากพื้นที่อนุรักษ์ทั่วประเทศ พบปาล์มพื้นเมืองจำนวน 30 สกุล รวม 72 ชนิด

การประเมินสถานภาพโดยใช้เกณฑ์ของ IUCN ปี 2001 พบว่าแต่ละสถานภาพมีจำนวนชนิดแตกต่างกัน เป็นชนิดที่ใกล้สูญพันธุ์อย่างยิ่ง (Critically Endangered; CR) จำนวน 5 ชนิด ชนิดที่ใกล้สูญพันธุ์ (Endangered; EN) จำนวน 26 ชนิด ชนิดที่ยังพอหาได้ (Vulnerable; VU) จำนวน 22 ชนิด ชนิดที่เริ่มคุกคาม (Near Threatened; NT) จำนวน 1 ชนิด และชนิดที่เริ่มลดจำนวนลง (Least Concern; LC) จำนวน 18 ชนิด

การศึกษาชนิดและสายพันธุ์ที่หายากและใกล้สูญพันธุ์ในประเทศไทย และศึกษารายละเอียดโดยการสังเกต และเก็บข้อมูลในเรื่องของลักษณะการเจริญเติบโต สภาพการอนุรักษ์ และศึกษาถึงส่วนที่ใช้ในการขยายพันธุ์ เพื่อ ศึกษาเทคโนโลยีที่เหมาะสมในการขยายพันธุ์ ปลูกเลี้ยงและบำรุงรักษา จำนวน 11 ชนิด ได้แก่ Areca tunku J. Dransf. & C.K. Lim (หมากตุงกู) Caryota kiriwongensis Hodel (เต่าร้างยักษ์คีรีวง) Caryota obtusa Griff. (เต่าร้างน่านเจ้า) Iguanura tenuis Hodel var. khaosokensis C.K. Lim (หมากตอกเขาสก) Iguanura wallichiana (Mart.) Becc. (หมากตอกใบใหญ่) Licuala distans Ridl. (กะพ้อสี่สิบ) Maxburretia furtadoana J. Dransf. (หมากพระราหู) Pholidocarpus macrocarpus Becc. (กะเปา) Salacca secunda Griff. (ตอง หนาม) Trachycarpus oreophilus Gibbon & Spanner (ค้อดอย) และ Wallichia disticha T.Anderson (หมากนเรศวร)

1.21 มอสส์สกุล Fissidens

มอสส์เป็นพืชในกลุ่มไบรโอไฟต์ที่มีความสำคัญในระบบนิเวศ โดยเฉพาะในแง่ของการกักเก็บน้ำและช่วยทำ ให้ผืนป่ามีความชุ่มชื้น อีกทั้งยังมีคุณสมบัติทางยาหรือสารออกฤทธิ์ทางชีวภาพ พืชกลุ่มไบรโอไฟต์ที่พบในประเทศ ไทยมีการศึกษาแล้วเพียง 1,000 ชนิดเท่านั้น จากที่พบอยู่ทั่วโลกมากกว่า 23,300 ชนิด

น.ส. กาญจนา วงค์กุณา นักศึกษาปริญญาโท คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ได้ศึกษาทบทวน อนุกรมวิธานของมอสส์สกุล *Fissidens* Hedw. (Fissidentaceae, Bryophyta) ในประเทศไทย ซึ่งสามารถนำไปใช้ ประโยชน์ในธุรกิจตกแต่งสวนและตู้ปลา

จากการศึกษาในช่วงปี พ.ศ. 2549-2552 ทั่วทุกภาคของประเทศไทย พบ *Fissidens* ทั้งหมดจำนวน 39 ชนิด 5 สายพันธุ์ ซึ่งในจำนวนนี้พบ *Fissidens* ที่มีรายงานพบครั้งแรกในประเทศไทย 5 ชนิด (new records) ได้ ตีพิมพ์ลงในวารสาร Crytogamie, Bryologie และ 2 ชนิดใหม่ของโลก (new species) ซึ่งกำลังอยู่ในขั้นตอนของ การส่งตีพิมพ์วารสาร Gardens Bulletin Singapore

1.22 กิ้งกือกระบอกในประเทศไทย

ประเทศไทยมีความหลากหลายของระบบนิเวศและสิ่งมีชีวิต ซึ่งกิ้งกือเป็นสิ่งมีชีวิตอีกประเภทหนึ่งที่พบมาก ในประเทศไทย กิ้งกือที่พบในประเทศไทยมีหลายแบบด้วยกัน เช่น กิ้งกือกระบอก เป็นกิ้งกือที่คนทั่วไปคุ้นเคย และ พบบ่อยที่สุด แต่ละชนิดล้วนมีประโยชน์ต่อระบบนิเวศที่พวกมันอาศัยอยู่ทั้งสิ้น

กิ้งกือจะกินซากพืช และลูกไม้ ผลไม้ที่เน่าเปื่อยเป็นอาหาร ทำหน้าที่เป็นเทศบาลกำจัดขยะ แล้วแปร เปลี่ยนเป็นสารอาหารกลับคืนสู่ระบบนิเวศ ช่วยให้กล้าไม้รวมถึงต้นไม้ในป่าเจริญเติบโตจนสามารถสร้างผลผลิตให้กับ คนไทยมาช้านาน ผลการวิจัยโดย ศ.ดร.สมศักดิ์ ปัญหา และคณะ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย พบกิ้งกือกระบอกชนิดใหม่ของโลก 12 ชนิด ตีพิมพ์ในวารสาร Zootaxa

1.23 ฟอสซิลสกุลใหม่และชนิดใหม่ของโลก

โครงการวิวัฒนาการและความหลากหลายทางชีวภาพช่วงมหายุคมีโสโซอิกในประเทศไทย โดย ดร.วราวุธ สุธีธร กรมทรัพยากรธรณี และคณะ ได้รายงานผลการดำเนินงานด้านการขุดค้นซากฟอสซิลในประเทศไทยมาอย่าง ต่อเนื่อง จนทำให้มีรายงานผลการวิจัยตีพิมพ์ในวารสารนานาชาติไม่ต่ำกว่า 10 ฉบับ ในปี 2552 นี้ได้ค้นพบฟอสซิล สกุลใหม่ ชนิดใหม่ของสัตว์โบราณหลายชนิด ได้แก่ ไดโนเสาร์ กินนรีมิมัส ขอนแก่นเอนซิส (Kinnareemimus khonkaenensis, gen. nov. sp. nov) จากชั้นหินเสาขัว ยุคครีเทเชียสตอนต้น (ประมาณ 130 ล้านปี) จระเข้ชนิด ใหม่ สกุลใหม่ 2 ชนิด คือ สยามโมซูคัส ภูพอกเอนซิส (Siamosuchus phuphokensis, gen. nov. sp. nov) ในหมวดหินเสาขัว ยุคครีเทเชียสตอนต้น (ประมาณ 130 ล้านปี) และ โคราโตซูคัส จินตสกุลไล (Khoratosuchus jintasakuli, gen. nov. sp. nov) ในหมวดหินโคกกรวด ยุคครีเทเชียสตอนต้น (ประมาณ 100 ล้านปี) เต่าสกุลใหม่ ชนิดใหม่ จากชั้นหินภูกระดึง อายุประมาณ 150 ล้านปี ขนาดใหญ่ 1 เมตร จากบ้านคำพอก อำเภอหนองสูง จังหวัดมุกดาหาร ซึ่ง ตั้งชื่อเพื่อเฉลิมพระเกียรติพระบาทสมเด็จพระเจ้าอยู่หัว โดยให้ชื่อว่าบาชิโลเชลิส แมคโครไบออส (Basilochelys macrobios n. gen. and n. sp.) มีความหมายว่า ขอให้พระมหากษัตริย์ไทย ทรงพระชนมายุยิ่งยืนนาน

นอกจากนี้ยังพบแหล่งซากดึกดำบรรพ์ที่มีศักยภาพหลายแหล่ง อาทิเช่น แหล่งไดโนเสาร์โปรซอโรพอด และ ซอโรพอด ในหมวดหินน้ำพอง อำเภอภูกระดึง จังหวัดเลย, แหล่งไดโนเสาร์ในหมวดหินภูกระดึง ที่ภูน้อย อำเภอคำ ม่วง จังหวัดกาฬสินธุ์ และแหล่งไดโนเสาร์บ้านคำพอก จังหวัดมุกดาหาร

1.24 พืชสกุลเปราะ (Kaempferia)

พืชสกุลเปราะ (Kaempferia) เป็นพืชที่สามารถใช้ประโยชน์ได้หลายด้าน ทั้งเป็นสมุนไพรพื้นบ้าน ใช้ ประกอบอาหาร ทำน้ำหอม หรือปลูกเป็นไม้ประดับ ในประเทศไทยพบพืชสกุลนี้มากกว่า 20 ชนิด ชนิดที่รู้จักกัน อย่างแพร่หลายคือ กระชายดำ (K. parviflora) แต่การระบุชนิดของพืชสกุลนี้จากลักษณะภายนอกทำได้ค่อนข้างยาก เนื่องจากมีลักษณะใบ เหง้า ลำต้นเทียม และรากคล้ายคลึงกัน และบางชนิดมีความหลากหลายทางสัณฐานวิทยา

นางจิรนันท์ เตชะประสาน นักวิจัยจากศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ ได้ทำการศึกษา ลำดับเบสดีเอ็นเอจาก *psbA-trnH* และ *petA-psbJ* เพื่อใช้ระบุชนิดพืชสกุลเปราะในประเทศไทย และยังสร้างลาย พิมพ์ AFLP สำหรับเปราะบางชนิดอีกด้วย

ผลจากการวิเคราะห์ลำดับเบสดีเอ็นเอ พบว่าเปราะบางชนิดที่สามารถใช้ลำดับเบสดีเอ็นเอในการระบุชนิดได้ เช่น ดอกดิน (K. candida), ปราบสมุทร (K. angustifolia), เปราะเสือแต้ม (K. pardi sp. nov.) เป็นต้น

ในขณะที่บางชนิดไม่สามารถใช้ลำดับเบสดีเอ็นเอระบุชนิดได้ เนื่องจากมีความแตกต่างของลำดับเบสภายใน ชนิดในระดับประชากร เช่น บานค่ำ (K. fallax), บานค่ำน้อย (K. filifolia), เปราะใหญ่ (K. elegans) เป็นต้น

นอกจากนี้ยังพบว่าเปราะหอม (K. galanga) ซึ่งเป็นพันธุ์ปลูกน่าจะเป็นชนิดเดียวกับตูบหมูบ (K. marginata) ที่พบในป่า ผลงานวิจัยที่ได้สามารถพัฒนาเป็นเทคนิคการจำแนกชนิดพืชสกุลเปราะโดยใช้บาร์โค้ด หรือ ศึกษาลำดับวิวัฒนาการต่อไป

1.25 ราบนซากใบและซากเมล็ด

ซากพืชบนพื้นป่าเป็นแหล่งอาศัยของเชื้อราจำนวนมาก เชื้อราที่เจริญอยู่เหล่านี้มีบทบาทสำคัญในการย่อย สลายซากและหมุนเวียนธาตุอาหารเพื่อดำรงความสมดุลของระบบนิเวศ การศึกษาเชื้อราบนซากเมล็ดในอดีตที่ผ่าน มา พบว่าคล้ายคลึงกับเชื้อราที่พบบนซากใบ

ดร.สายัณห์ สมฤทธิ์ผล และคณะวิจัยจากศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ จึงได้ ทำการศึกษาเปรียบเทียบเชื้อราที่ขึ้นบนซากเมล็ดและใบ โดยได้ทำการเก็บตัวอย่างเชื้อราบนซากเมล็ดและใบในพื้นที่ ป่าอทยานแห่งชาติเขาใหญ่

ผลการศึกษาพบว่าเชื้อราที่พบบนซากเมล็ดส่วนใหญ่พบบนซากใบด้วยเช่นกัน เช่น เชื้อราสกุล Dictyochaeta, Chaetospermum, Dinemasporium และ Thozetella เป็นต้น จากการจำแนกชนิดพบเชื้อรา จำนวน 297 ชนิด เป็นเชื้อราชนิดใหม่ของโลก 4 ชนิด ซึ่งกำลังอยู่ในระหว่างการตั้งชื่อและบรรยายลักษณะ เพื่อ ตีพิมพ์ในวารสารวิชาการนานาชาติต่อไป

นอกจากประโยชน์ในแง่ของการเป็นผู้ย่อยสลายซาก และหมุนเวียนธาตุอาหารแล้ว เชื้อราเหล่านี้ยังสามารถ มาใช้ประโยชน์ในด้านการผลิตเอนไซม์ที่เป็นประโยชน์ในทางอุตสาหกรรม โดยสามารถพบสารใหม่จากเชื้อราบน เมล็ดพันธุ์จำนวน 15 ชนิด

1.26 ความหลากหลายของยุงพาหะนำโรคพยาธิ filaria ในเขตระบาดของโรคเท้าช้าง ชนิด Wuchereria bancrofti ณ เขตติดต่อไทย-พม่า อำเภอทองผาภูมิ จังหวัดกาญจนบุรี

หมู่บ้านใน ต.ห้วยเขย่ง อ.ทองผาภูมิ จ.กาญจนบุรี ถูกจัดเป็นแหล่งระบาดของโรคเท้าช้างชนิด Wuchereria bancrofti และเป็นเขตที่มีการอพยพเข้าและออกของแรงงานจากพม่าเป็นประจำ ประชากรส่วนใหญ่มีอาชีพ เพาะปลูกและทำสวนยางพารา จึงมีอัตราเสี่ยงต่อการติดโรคและแพร่เชื้อสูง

จากการสำรวจความหลากหลายของยุงที่สามารถนำพยาธิโรคเท้าช้างได้ ในหมู่บ้านในป่าสวนยางพารา เขต บ้านแม่น้ำน้อย ตำบลห้วยเขย่ง ท้องที่ชายแดนของอำเภอทองผาภูมิจังหวัดกาญจนบุรี ระหว่างเดือน พฤศจิกายน 2550 ถึงเดือนตุลาคม 2551 โดย **ดร.จินรภา โพธิกสิกร คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล** พบยุงป่า 23 ชนิด พบ**ยุงลายสวน Aedes albopictus** (หรือชื่อใหม่คือ *Stegomyia albopicta*) มากที่สุด ซึ่งพบมากในช่วงปลายฤดู ร้อนตั้งแต่เดือน เมษายน ถึงเดือน กันยายน ยุงชนิดนี้ออกหากินตลอด 24 ชั่วโมง โดยช่วงที่พบมากที่สุดคือเวลา 16.00-18.00 น.

ยุงลายสวนมีความสำคัญทางการแพทย์เป็นอย่างมาก เพราะเป็นพาหะนำโรคไข้เลือดออกและโรคชิคุนกุนย่า นอกจากนี้ ยังพบว่ายุงลายเสือสามารถนำพยาธิ filaria ในระยะติดต่อได้อีกด้วย ถึงแม้ว่าจะเป็นพยาธิ filarial สัตว์ ที่ ก่อโรคพยาธิหัวใจสุนัข แต่ก็สามารถติดต่อสู่คนได้ โดยคนจะเป็นโฮสต์ผิดธรรมชาติ

ยุงที่พบเป็นจำนวนมากรองลงมา คือ**ยุงป่าหญ้าหรือยุงแม่ไก่ Armigeres subalbatus** เป็นยุงที่มีขนาด ใหญ่ที่สุด กัดเจ็บมาก มีชุกชุมแถบชานเมืองที่มีป่าหญ้าหรือต้นไม้ขึ้นรก ช่วงเวลาที่ออกหากินสูงสุดคือช่วงเช้า เวลา 06.00-9.00 น. และช่วงเย็นถึงหัวค่ำ เวลา 17.00-19.00 น. จากงานวิจัยพบว่า สามารถนำพยาธิ filaria ระยะติดต่อ ได้ โดยมีทั้งพยาธิ *Dirofilaria immitis* และพยาธิ filaria ชนิดอื่นที่ยังจำแนกไม่ได้

การศึกษาความสามารถในการนำโรคพยาธิ filaria นั้น พบว่ามียุงถึง 9 ชนิด ที่สามารถยอมให้พยาธิเจริญจน เป็นระยะติดต่อได้ โดยเป็น**พยาธิ filaria สัตว์ (Dirofilaria immitis)** และ**พยาธิ filaria ของคน (Wuchereria** bancrofti)

อันดับ	ชื่อยุง	ชนิดของพยาธิ		
		W. bancrofti	D. immitis	พยาธิอื่นๆ
1	Aedes albopictus	-	นำได้	-
2	Aedes annandalei	นำได้	นำได้	-
3	Aedes desmotes	นำได้	นำได้	นำได้
4	Aedes imitator	นำได้	นำได้	นำได้
5	Aedes mediopunctatus	นำได้	นำได้	-
6	Armigeres (Arm.)subalbatus	-	นำได้	นำได้
7	Armigeres (Lei) dolichocephalus	-	นำได้	นำได้
8	Coquilletidia crassipes	นำได้	-	-
9	Hulecoeteomyia reinerti	-	นำได้	-

ผลงานวิจัยในครั้งนี้จะเป็นประโยชน์สำหรับการเฝ้าระวังโรคเท้าช้าง ชนิด Wuchereria bancrofti ในด้าน ของพาหะ แม้ว่าการเฝ้าระวังโรคด้วยการตรวจเลือดจากคนไทยในท้องที่ระบาดจะไม่พบว่ามีผู้ป่วยมานานหลายปีแล้ว แต่การพบระยะติดต่อของโรคจากยุงในท้องที่ อาจเป็นแนวทางให้เพิ่มการเฝ้าระวัง โดยการเพิ่มภาระการตรวจเลือด แรงงานต่างชาติที่อพยพเข้าออกด้วย หรืออาจเพิ่มมาตรการทำลายยุงพาหะ

1.27 นิเวศวิทยาพันธุศาสตร์และกลไกการแยกสปีชีส์ของแมลงเบียน (ศัตรูแมลงวันผลไม้)

แมลงเบียน (parasitoids) เป็นแมลงที่มีในประโยชน์ในการควบคุมแมลงศัตรูพืช โดยชีววิธี โดยแมลงเบียน ในกลุ่ม Diachasmimorpha longicaudata มีความสามารถในการควบคุมแมลงวันผลไม้ ศัตรูที่ทำความเสียหายต่อ ผลผลิตทางการเกษตร อย่างได้ก็ตามมีการสันนิษฐานว่า แมลงเบียนกลุ่มดังกล่าวมีสายพันธุ์ซับซ้อน จึงมีความ จำเป็นต้องศึกษาความหลากหลายทางพันธุกรรมของประชากรแมลงเบียน เพื่อความชัดเจนของสายพันธุ์ ซึ่งจะส่งผล ต่อการเพาะเลี้ยงแมลงเบียนเพื่อควบคุมศัตรูพืชต่อไป

จากการเก็บตัวอย่างแมลงเบียนในพื้นที่ต่างๆ ทั่วประเทศ ไทย โดย **รศ.ดร.สังวรณ์ กิจทวี คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล** เพื่อศึกษาความผันแปรทางพันธุกรรมของ แมลงเบียน พบความหลากหลายทางสายพันธุ์แมลงเบียน *D. longicaudata* สามารถจัดจำแนกได้ 3 กลุ่ม / สายพันธุ์ คือ DLA, DLB และ DLBB ซึ่งทั้ง 3 สายพันธุ์มีลักษณะทางสัณฐาน วิทยาที่คล้ายกันมาก จากการศึกษาทางอณูพันธุศาสตร์ ด้วย เทคนิค PCR-SSCP จาก nuclear DNA สามารถแยกความ

แตกต่างระหว่างสปีชีส์ และสายพันธุ์ซับซ้อนจากถิ่นต่างๆ ในประเทศไทยได้ โดยพบว่ากลุ่ม DLA จะกระจายอยู่ใน ภาคกลาง และตะวันออกเฉียงเหนือ กลุ่ม DLB พบกระจายอยู่ทั่วไป ส่วน DLBB พบเฉพาะทางภาคใต้ของประเทศ เท่านั้น นอกจากนี้ยังมีการศึกษาทางการสืบพันธุ์ เพื่อเป็นการยืนยันสปีชีส์ที่ต่างกัน การเลี้ยงขยายพันธุ์แมลงเบียนใน ห้องปฏิบัติ พบว่า แมลงเบียนรุ่นลูกหลานเป็นหมัน คือ ไม่พบอสุจิเพศผู้ในถุงเก็บอสุจิในเพศเมีย และไม่ให้ลูกเพศเมีย เลย

สายพันธุ์ของแมลงเบียนมีความจำเพาะกับแมลงศัตรูพืชแต่ละชนิด จากการศึกษาประสิทธิภาพของแมลง เบียน พบว่า แมลงเบียน Diachasmimorpha longicaudata สายพันธุ์ DLA มีความจำเพาะกับแมลงวันผลไม้ชนิด Bactrocera correcta ขณะที่ DLB และ DLBB สามารถวบคุม B. correcta , B. dorsalis และ B. dorsalis complex อื่นๆ ได้ ซึ่งผลการศึกษานี้สามารถนำไปใช้วางแผน และประยุกต์ใช้ในการควบคุมแมลงผลไม้ โดยชีววิธีได้ อย่างมีประสิทธิภาพยิ่งขึ้น

1.28 การเลือกสร้างรังและวงจรชีวิตของผึ้งมิ้ม และผึ้งม้าน

ประเทศไทยพบผึ้งพื้นเมืองทั้ง 4 ชนิด ได้แก่ ผึ้งหลวง ผึ้งโพรง ผึ้งมิ้ม และผึ้งม้าน หากแต่ผึ้งม้านจะพบ เฉพาะบางแห่งเท่านั้น โดยเฉพาะบริเวณที่มีป่าและภูเขา ผึ้งม้านจึงเป็นผึ้งที่มีความเสี่ยงต่อการสูญพันธุ์ มีการลดลง ของจำนวนประชากร เนื่องจากการเปลี่ยนแปลงของสภาพสิ่งแวดล้อม

การศึกษาชีววิทยาของผึ้งมิ้ม และผึ้งม้านในฝืนป่าตะวันตกของกาญจนบุรี โดย **นายสิทธิพงษ์ วงศ์วิลาส** คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ซึ่งเป็นบริเวณที่พบทั้งผึ้งมิ้มและผึ้งม้านในบริเวณเดียวกัน พบรังผึ้งมิ้น จำนวน 159 รัง และรังผึ้งม้านจำนวน 21 รัง บริเวณชายป่าใกล้กับป่าดิบแล้งที่มีความอุดมสมบูรณ์

จากการศึกษาข้อมูลเกี่ยวกับการสร้างรังของผึ้งมิ้มและผึ้งม้าน พบว่าชนิดต้นไม้ที่ผึ้งสร้างรัง ผึ้งมิ้มสร้างรัง จำนวน 60 ชนิด ได้แก่ ต้นมะขาม กระถิน และชงโค ตามลำดับ ส่วนผึ้งม้านสร้างรังบนต้นไม้จำนวน 16 ชนิด ได้แก่ ต้นสัก และต้นรัง โดยมีเปอร์เซ็นต์การซ้อนทับของต้นไม้ที่สร้างรัง 34.77% และขนาดของกิ่งที่ผึ้งสร้างรัง ในฤดูฝนผึ้ง มิ้มจะเลือกกิ่งที่มีขนาดใหญ่กว่าในการสร้างรัง คือ 1.23 ± 0.55 ส่วนผึ้งม้านเลือกกิ่งที่มีขนาด 0.89 ± 0.31 ในขณะที่ ในฤดูแล้งผึ้งทั้งสองมีการเลือกขนาดกิ่งไม้สร้างรังที่ไม่แตกต่างกันนัก

ผลการศึกษาระยะการเจริญของผึ้งมิ้ม และผึ้งม้าน ระหว่างเดือนมีนาคม 2552 – กรกฎาคม 2552 ตั้งแต่ ระยะไข่ หนอน และดักแด้ ของผึ้งงาน ผึ้งนางพญา และผึ้งตัวผู้ พบว่า ผลรวมระยะการเจริญของผึ้งตั้งแต่ระยะไข่จนถึง ดักแด้ของผึ้งงาน และผึ้งตัวผู้ ของ**ผึ้งมิ้มมากกว่าผึ้งม้าน** โดยการศึกษานี้เป็นรายงานครั้งแรกในประเทศไทย กล่าวคือ ระยะไข่ หนอน และดักแด้ของ**ผึ้งงานของผึ้งมิ้ม** มีระยะเวลาเท่ากับ 3.02 ± 0.57, 4.07 ± 0.64 และ 9.57 ± 0.5 วัน และ**ผึ้งงานของผึ้งม้าน** มีระยะเวลาเท่ากับ 2.82 ± 0.38, 3.9 ± 0.3 และ 7.27 ± 0.83 วัน ในขณะที่ระยะไข่ หนอน และดักแด้ของ **ผึ้งตัวผู้ของผึ้งมิ้ม** เท่ากับ 2.99 ± 0.39, 6.72 ± 0.45 และ 12.75 ± 1.03 วัน และ**ผึ้งตัวผู้ของผึ้งม้าน** เท่ากับ 2.99 ± 0.5, 6.63 ± 0.49 และ 12.13 ± 0.97 วัน

1.29 ประชากรต่อมะเดือ *Ceratosolen vetustus* Weibes. ที่พบในมะเดื่อ *Ficus schwarzii* Koord. บริเวณเทือกเขาบรรทัด

ต่อมะเดื่อผสมเกสร (Pollinating fig wasp) เป็นแมลงที่มีวงจรชีวิตเกี่ยวข้องกับพืชในสกุล Ficus (Moraceae) คือพืชในกลุ่มไทรและมะเดื่อ (Figs) และเป็นแมลงชนิดเดียวที่ทำหน้าที่ผสมเกสรให้กับพืชกลุ่มไทรและ มะเดื่อ ทว่าปัจจุบันที่มีการบุกรุกทำลายพื้นที่ป่า ทำให้ระยะทางระหว่างป่าไกลเกินกว่าที่ต่อมะเดื่อผสมเกสรจะบินไป ผสมกับอีกพื้นที่หนึ่งได้ ส่งผลต่อการแลกเปลี่ยนยืน (Gene flow) ภายในและระหว่างประชากร ซึ่งอาจทำให้ต่อ มะเดื่อผสมเกสรสูญพันธ์ไป และไม่เพียงแต่พืชกลุ่มไทรและมะเดื่อเท่านั้นที่ได้รับผลกระทบ แต่บรรดาสัตว์น้อยใหญ่ที่ อยู่ในห่วงโซ่อาหารลำดับขั้นต่อไป

การสำรวจและเก็บตัวอย่างมะเดื่อ F. Schwarzii ในระยะเวลา 12 เดือน บริเวณเขตรักษาพันธุ์สัตว์ป่าโตน งาช้าง ใน 2 พื้นที่ศึกษา โดย **น.ส.จิราพรรณ ยิ้มแก้ว มหาวิทยาลัยสงขลานครินทร์** พบต้นมะเดื่อ F. Schwarzii ในสถานีผาดำ จำนวน 88 ต้น และน้ำตกโตนงาช้าง 75 ต้น และจากการจำแนกชนิดต่อมะเดื่อพบจำนวน 4 ชนิด จาก 4 สกุล 3 วงศ์ โดยสามารถแบ่งได้เป็น 2 กลุ่ม คือ กลุ่มต่อมะเดื่อผสมเกสร 1 ชนิด คือ Ceratosolen vetustus Weibes. พบมากที่สุด และต่อมะเดื่อไม่ผสมเกสร อีก 3 ชนิด คือ Philotrypesis sp., Apocryptophagus sp. และ Apocrypta sp.

บทบาทหน้าที่ในระบบนิเวศของต่อมะเดื่อได้ 3 บทบาท คือ แมลงผสมเกสร, การ galler และแมลงเบียน โดยต่อมะเดื่อส่วนใหญ่จะเป็นต่อมะเดื่อผสมเกสร (83.54%) รองลงมาคือต่อมะเดื่อที่เป็นแมลงเบียน (13.19%) และ ต่อมะเดื่อที่เป็น galler มีน้อยที่สุด (3.27%) สัดส่วนเพศของต่อมะเดื่อ พบว่าสัดส่วนเพศเมียมีมากกว่า โดยเฉพาะ กลุ่มแมลงผสมเกสร จะมีสัดส่วนเพศเมียมากเป็น 2 เท่า

1.30 ชีวนิสัย และแหล่งเพาะพันธุ์ของยุงลายสวน พาหะของโรคชิคุนกุนยา

โรคใช้ปวดข้อยุงลาย หรือโรคชิคุนกุนยา (Chikungunya) เป็นโรคติดเชื้อที่เกิดจากไวรัสชิคุนกุนยา และเป็นโรคติดเชื้ออุบัติใหม่ (Emerging Infectious Disease) มียุงลายบ้าน (Aedes aegypti) และยุงลายสวน (Aedes albopictus) เป็นพาหะนำโรค ประเทศไทยนับเป็นประเทศแรกในทวีปเอเชียที่มีรายงานการพบผู้ป่วยโรค ใช้ปวดข้อยุงลาย (โรคชิคุนกุนยา) เริ่มมีการระบาดในปี พ.ศ. 2501 โดยจะพบการระบาดเป็นช่วงๆ จนกระทั่งในช่วงปี 2551-2554 เริ่มมีการระบาดขึ้นในในประเทศแถบหมู่เกาะในมหาสมุทรอินเดีย อินเดีย สิงคโปร์ อินโดนีเซีย และ มาเลเซีย และระบาดสู่จังหวัดนราธิวาส และจังหวัดใกล้เคียงจนกระทั่งมีการระบาดทั่วประเทศ โดยมีรายงานจำนวน ผู้ป่วยโรคชิคุนกุนยา ใน 7 จังหวัดภาคใต้ ตั้งแต่ปี 2551-54 จำนวน 34,327 ราย

จากการวิเคราะห์ทางระบาดวิทยาของสำนักงานป้องกันควบคุมโรคที่ 12 สงขลา โดย**นายวิรัช วงศ์หิรัญรัชต์** สำนักงานป้องกันควบคุมโรคที่ 12 จังหวัดสงขลา พบว่าผู้ป่วยเป็นประชากรกลุ่มวัยแรงงานที่มีอายุมากกว่า 30 ปี ส่วนใหญ่มีอาชีพการทำสวนยางพารา และ สวนผลไม้ มีการระบาดในหมู่บ้านที่อยู่แถบชานเมืองหรือชนบทคิดเป็นร้อย ละ 85 จากการศึกษาชีวนิสัยของยุงลายสวนในสภาพภูมิศาสตร์ที่แตกต่างกัน ได้แก่ พื้นที่ราบลุ่ม พื้นที่ราบเชิงเขา และพื้นที่ป่าเขา พบว่ายุงลายสวนที่พบบริเวณรอบบ้าน มีอัตราการเข้ากัดสูงในฤดูฝน และมีพฤติกรรมการออกหากิน 2 ช่วงเวลา คือช่วงหลังจากพระอาทิตย์ขึ้นแล้ว 1 ชั่วโมง และก่อนพระอาทิตย์ตก 1 ชั่วโมง ยุงลายสวนในสวนยางพารา พบว่าบริเวณพื้นที่ราบยุงลายสวนตัวเมียมากที่สุด มีอัตราการเข้ากัดในฤดูฝนสูงกว่าฤดูร้อนถึง 8 เท่า ส่วนพฤติกรรมการ ออกหากินไม่มีรูปแบบที่แน่นอน เมื่อเปรียบเทียบอัตราการเข้ากัดในพบว่าสวนยางมีอัตราการเข้ากัดมากกว่าบริเวณรอบ บ้าน

การศึกษา**แหล่งเพาะพันธุ์ของยุงลายสวนในสภาพภูมิศาสตร์ที่แตกต่างกัน** พบว่าแหล่งเพาะพันธุ์ของ ยุงลายสวนบริเวณรอบบ้านที่ตั้งในพื้นที่ราบ, พื้นที่ราบเชิงเขา และพื้นที่ป่าเขา ในฤดูฝน มีสูงกว่าในฤดูร้อน ประมาณ 2-3 เท่า ภาชนะที่พบมากในพื้นที่ราบได้แก่ โอ่ง/ไห ส่วนพื้นที่ราบเชิงเขา และพื้นที่ป่าเขาพบกะลามะพร้าว และ พลาสติก ดังนั้นการควบคุมยุงลายสวนที่ดีที่สุด คือ การควบคุมแหล่งเพาะพันธุ์ โดยในพื้นที่บริเวณบ้านควรมีการ จัดการเศษภาชนะ โดยเฉพาะภาชนะที่เป็นพลาสติกที่มีการระเหยของน้ำได้ช้า ส่วนในพื้นที่สวนยางพารานั้นควรหัน มาใช้จอกยางที่เป็นพลาสติก ซึ่งแตกหักยาก และการจัดการดูแลความสะอาดในพื้นที่สวนยางพารา โดยการทำให้ เตียนโล่ง ปราศจากวัชพืช มีลมพัดโกรกสามารถลดความหนาแน่นของยุงลายได้ ทั้งนี้ การใช้สารเคมีในการควบคุมมี ความยุ่งยาก เพราะมีบริเวณที่กว้าง เป็นป่า และเขา, ควน ซึ่งจะมีความยากในการพ่นสารเคมี

การป้องกันการเกิดโรค โดยการป้องกันตนเองถือเป็นวิธีการที่ดี โดยการสวมเสื้อผ้าที่มิดชิดเมื่อเข้าไปในสวน ยางพารา หรือการใช้สารเคมีชุบเสื้อผ้าด้านนอก (ลักษณะคล้ายกับการสวมเสื้อกั๊ก) เพื่อขับไล่ หรือฆ่ายุง รวมไปถึง การใช้ยาทากันยุง หรือพกธูปไล่ยุง เมื่อเข้าไปในสวนยางพารา

1.31 การเพิ่มประชากรแตนเบียนเพศเมีย

การใช้แมลงควบคุมแมลงที่เป็นศัตรูพืช เป็นหนึ่งทางเลือกของเกษตรกรเพื่อที่จะหลีกเลี่ยงการใช้สารเคมี ซึ่ง แตนเบียนเป็นอีกตัวเลือกหนึ่งของเกษตรแบบชีววิถี แตนเบียนเพศเมียจะมีบทบาทสำคัญยิ่งในการกำจัดแมลงศัตรูพืช ด้วยอวัยวะวางไข่ที่มีความแหลมและยาว คล้ายฉมวกที่สามารถเจาะเข้าไปในตัวหนอนหรือแมลงได้ แต่การวางไข่ แล้วได้ประชากรลูกแตนเบียนเป็นเพศผู้หรือเพศเมีย ยังไม่สามารถกำหนดได้

รศ.ดร.สังวรณ์ กิจทวี ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล จึงได้ทำการศึกษาการเพิ่ม ปริมาณแตนเบียนเพศเมียสายพันธุ์ *Diachasmimorpha longicaudata* (Ashmead) ซึ่งจะวางไข่เฉพาะในแมลงวัน ผลไม้ ผลการวิจัยพบว่าวิธีการควบคุมระบบสืบพันธุ์ให้ไข่ได้รับการผสม หรือได้รับการปฏิสนธิ (fertilized egg) ต้อง อาศัยปัจจัยที่เกี่ยวข้องกับการสื่อสารระหว่างเพศผู้และเพศเมีย

การสื่อสารดังกล่าว ได้แก่ การสื่อสารด้วยเสียง (การขยับปีกของเพศผู้) และกลิ่น (pheromone) ซึ่งมีผลให้ เพศเมียยอมรับการผสมพันธุ์ เพิ่มโอกาสให้ตัวอสุจิผสมกับไข่ได้มากยิ่งขึ้น แตนเบียนเพศเมียจะเลือกวางไข่ที่ได้รับ การผสมลงในตัวอ่อนแมลงวันผลไม้ที่มีขนาดใหญ่หรือสมบูรณ์ และมักจะเลือกวางไข่ที่ไม่ได้รับการผสมในแมลงวันผลไม้ขนาดเล็ก ซึ่งผลงานวิจัยสามารถนำไปฐานในการกำจัดแมลงวันผลไม้โดยชีววิถีได้

1.32 พืชสกุลมะเดื่อกับแมลงผสมเกสร

พืชสกุลมะเดื่อ (*Ficus*) และแมลงผสมเกสร หรือแมลงพาหะถ่ายเรณู (pollinator) มีความสัมพันธ์แนบแน่น ในเชิงวิวัฒนาการมาช้านาน นางเยาวนิตย์ ธาราฉาย นักศึกษาปริญญาเอก ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ จึงได้ทำการศึกษาอนุกรมวิธานและนิเวศวิทยาของพืชสกุลมะเดื่อกับแมลงพาหะถ่ายเรณูบาง ชนิด

ผลการศึกษาพบว่ามะเดื่อแต่ละชนิดมีแมลงเพียงชนิดเดียวที่ทำหน้าที่ช่วยผสมเกสร คือ แมลงในวงศ์แตน มะเดื่อ (Agaonidae) ความสัมพันธ์ของสิ่งมีชีวิตทั้งสองเป็นวิวัฒนาการร่วม (co-evolution) แบบชนิดต่อชนิด ตัวอย่างเช่น ในมะเดื่ออุทุมพร (*Ficus racemosa* L.) ที่มีแตนผสมเกสร คือ *Ceratosolen fusciceps* Mayr พบว่าสัดส่วนของการผลิตเมล็ดและประชากรรุ่นลูกของแตนมะเดื่อจะแปรผกผันกัน

อีกตัวอย่างหนึ่ง คือ มะเดื่อหิน (F. montana Burm.f.) กับแตนมะเดื่อ Liporrhopalum tentacularis (Grandi) พบว่าช่อดอกเพศผู้ (ภายในมีดอกเพศผู้และดอกกอล) ที่มีแตนเพศเมียเข้าไปช่วยผสมเกสร ดอกกอลจะ ผลิตแตนรุ่นลูกได้มากกว่าดอกที่ไม่ได้รับการผสมถึงสองเท่า ในทางตรงข้ามหากแตนเพศเมียที่เข้าไปในช่อดอกแต่ไม่ สามารถวางไข่ได้ ถึงแม้ดอกกอลจะได้รับการผสมแต่ดอกก็ไม่สามารถพัฒนาต่อไปได้ ทำให้ช่อดอกมะเดื่อหลุดร่วงไป

ผลดังกล่าวเชื่อว่าเป็นเงื่อนไขทางวิวัฒนาการที่สิ่งมีชีวิตทั้งคู่สร้างขึ้นเพื่อความอยู่รอดของเผ่าพันธุ์ โดยหาก แตนช่วยผสมเกสร มะเดื่อก็จะเอื้อเฟื้อแหล่งที่อยู่และอาหารแก่ลูกอ่อนของแตน แต่ถ้าแตนไม่สามารถวางไข่ในดอก มะเดื่อได้ กลไกกระตุ้นการเติบโตและพัฒนาของดอกก็อาจถูกระงับไปเช่นกัน

1.33 เชื้อรากับแมลงริ้นดำ

จากการศึกษาเชื้อราในระบบทางเดินอาหารของตัวอ่อนแมลงริ้นดำ 11 ชนิด โดย ดร.เสน่ห์ จิตต์กลาง ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล พบเชื้อราที่อาศัยอยู่ในทางเดินอาหารของตัวอ่อนแมลงริ้นดำ คือ เชื้อราในกลุ่ม Trichomycetes โดยพบ 2 วงศ์ ได้แก่ วงศ์ Harpellaceae พบ 1 ชนิด ซึ่งพบอาศัยอยู่ในทางเดิน อาหารตอนกลางของตัวอ่อนริ้นดำ และวงศ์ Legeriomycetaceae พบ 4 ชนิด ซึ่งพบอาศัยในทางเดินอาหารตอน ปลายของตัวอ่อนริ้นดำ นอกจากเชื้อราแล้ว ยังพบโปรโตซัว อีก 1 ชนิด ซึ่งพบในทางเดินอาหารตอนปลายของตัว อ่อนริ้นดำ

การอาศัยอยู่ร่วมกันของเชื้อราและแมลงริ้นดำ มีรูปแบบความสัมพันธ์ที่ไม่คงที่ สามารถเปลี่ยนแปลงได้ตาม ปัจจัยสิ่งแวดล้อม ถ้าอยู่ในภาวะปกติ คือ มีสภาพอาหารหรือสิ่งแวดล้อมมีความสมบูรณ์ สิ่งมีชีวิตทั้ง 2 ชนิด จะอาศัย อยู่ร่วมกันแบบภาวะอิงอาศัยหรือภาวะเกื้อกูล (commensalism) โดยเชื้อราจะได้รับประโยชน์ คือ ได้ที่อยู่อาศัย และได้อาหารจากริ้นดำ ส่วนริ้นดำจะไม่ได้และไม่เสียประโยชน์อะไร

ถ้าสภาพอาหารหรือสภาพแวดล้อมไม่สมบูรณ์ สิ่งมีชีวิตทั้ง 2 ชนิด จะอาศัยอยู่ร่วมกันในรูปแบบภาวะพึ่งพา (mutualism) คือ ต่างฝ่ายต่างได้ประโยชน์ร่วมกัน โดยเชื้อราได้ที่อยู่อาศัยจากริ้นดำ และเชื้อราจะช่วยเกี่ยวกับระบบ ย่อยอาหารของริ้นดำ หรือบางครั้งการอยู่ร่วมกันในสภาพดังกล่าวอาจจะกลายรูปแบบความสัมพันธ์เป็นภาวะปรสิต เช่น การพบเชื้อราชนิด Smittium sp. สามารถเป็นปรสิตในตัวอ่อนแมลงริ้นดำ ซึ่งจะขัดขวางการเจริญเติบโตของ ตัวอ่อน และอาจจะทำให้ตัวอ่อนนั้นตายไปในที่สุด

2. ด้านระบบนิเวศและสิ่งแวดล้อม

2.1 สาหร่ายผลิตน้ำมัน

การเกิดภาวะโลกร้อนมีปัจจัยหลักมาจากการปล่อยก๊าซเรือนกระจกโดยเฉพาะจากการเผาไหม้พลังงานฟอส ซิล อันประกอบด้วยถ่านหิน น้ำมัน และก๊าซธรรมชาติ แนวทางการใช้พลังงานสะอาดเพื่อทนแทนการใช้พลังงานฟอส ซิลจึงเป็นกระแสหลักของโลกในช่วงไม่กี่ปีที่ผ่านมา ซึ่งพลังงานสะอาดที่ดูจะเป็นมิตรกับสิ่งแวดล้อมมากที่สุด คือ พลังงานที่ได้จากพืช ไม่ว่าจะเป็นอ้อย ข้าวโพด มันสำปะหลัง ปาล์มน้ำมัน และสบู่ดำ เป็นต้น

สาหร่ายผลิตน้ำมัน ยังเป็นอีกทางเลือกหนึ่งของพลังงานสะอาด ที่มีข้อดีคือ สามารถเพาะเลี้ยงได้ทุกฤดูกาล ใช้พื้นที่ในการเพาะเลี้ยงน้อย และใช้เวลาในการเพาะเลี้ยงไม่นานก็สามารถเก็บเกี่ยวได้เมื่อเทียบกับพืชอื่นๆ

สาหร่ายผลิตน้ำมันมีด้วยกันหลายชนิด แต่ชนิดที่มีศักยภาพในการผลิตน้ำมันได้ในปริมาณสูง คือ Botryococcus braunii ซึ่งมีการผลิตและสะสมกรดไขมันและไฮโดรคาร์บอนได้สูงถึง 50 – 70 % ของน้ำหนักแห้ง สาหร่ายชนิดนี้เป็นสาหร่ายสีเขียวขนาดเล็กที่เจริญได้ทั้งในน้ำจืด น้ำกร่อย และน้ำเค็ม หากแต่ปัญหาที่พบจากการ นำไปเพาะเลี้ยง คือ สาหร่ายชนิดนี้มีอัตราการเจริญที่ช้ามากเมื่อนำไปเพาะเลี้ยงให้ห้องปฏิบัติการ

นางสาวทิพวรรณ ประเสริฐสินธุ์ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ จึงได้ศึกษา การติดตามตรวจสอบการเจริญของสาหร่าย Botryococcus braunii ในธรรมชาติ เพื่อหาปัจจัยของคุณภาพ น้ำที่มีผลต่อการเจริญในธรรมชาติได้ดีที่สุด และอาจนำไปปรับใช้กับการเพาะเลี้ยงต่อไปในอนาคต

2.2 พืชพลังงาน สบู่ดำ

การสำรวจความหลากหลายของแมลงผสมเกสรสบู่ดำ ในพื้นที่ 20 จังหวัด ทั่วทุกภาคของประเทศไทย ระหว่างเดือนพฤศจิกายน 2551 ถึง 30 กันยายน 2554 ในโครงการ แมลงผสมเกสรกลุ่มผึ้ง (Order Hymenoptera: Superfamily Apoidea) ของสบู่ดำ (Jatropha curcus L.) ในประเทศไทย โดย น.ส.ชามา อินซอน คณะเกษตรศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ พบแมลงผสมเกสรสบู่ดำ จำนวน 257 ชนิด ใน 8 อันดับ โดยอันดับ ผึ้ง ต่อ และแตน (Hymenoptera) พบมากที่สุด คิดเป็น 42.41% ของแมลงผสมเกสรสบู่ดำทั้งหมด ประชากรแมลงผสมเกสรสบู่ดำทั้งหมด 8 อันดับ ลงดอกสบู่ดำเพศเมียมากกว่าเพศผู้

การศึกษาประสิทธิภาพของแมลงผสมเกสร พบว่า ในฤดูแล้ง ผึ้งพันธุ์ (A. mellifera licustica) เป็นแมลง ผสมเกสรที่มีขนาดใหญ่ที่สุด ช่วยนำพาเรณูได้ปริมาณมากที่สุด เท่ากับ 75.00% และ T. laeviceps เป็นแมลงที่ช่วย การผสมที่ดีรองจาก A. mellifera licustica แต่เป็นแมลงผสมเกสรที่ทำให้เกสรตัวเมียไม่ได้รับการผสมในเกรด A เลย การติดผลของสบู่ดำ (fruit set) ดอกสบู่ดำที่ได้ Apis cerana indica ชวยผสมเกสรมีการติดผล 95.00% ผลผลิตกับชนิดแมลงผสมเกสร เมล็ดจากแปลงเปิด (แมลงผสมเกสรอื่นๆ) มด และ Apis cerana indica มีน้ำหนัก เมล็ดแห้งมากที่สุด และเมล็ดที่ได้รับการผสมเกสรจาก Apis mellifera licustica มีปริมาณน้ำมันสูงสุด ในฤดูฝน ชนิดแมลงผสมเกสรดอกสบู่ดำมีเพียง 8 ชนิด ได้แก่ Apis mellifera, A. florea, Nomia sp., Polites sp., Camponotus sp., Rhingia sp., Eristalis arvorum และ Chysocoris sp.1 และพบว่าดอกเพศผู้มีแมลงผสม เกสรลงมากกว่าเพศเมีย แต่การผสมเกสรในช่วงนี้จะได้ผลขนาดใหญ่ และมีน้ำหนักสดมากที่สุด ทั้งการผสมตาม ธรรมชาติ การผสมมือ และการผสมเกสรตามธรรมชาติร่วมกับการผสมมือ

2.3 ผลงานวิจัยบ่งชี้ว่า สาหร่ายใบมะกรูดดูดซับคาร์บอนไดออกไซด์ได้ดีกว่าต้นไม้ 5 เท่า

สาหร่ายทะเล และหญ้า ไม่ใช่เพียงแค่อาหารของสัตว์น้ำทะเล หรืออาหารของมนุษย์เท่านั้น แต่ยังพบ ศักยภาพในการช่วยลดโลกร้อนได้ โดยสามารถดูดซับคาร์บอนไดออกไซด์ได้ดีกว่าต้นไม้ประมาณ 5 เท่า โดยที่ คาร์บอนไดออกไซด์ที่ถูกดูดซับไว้จะไม่ถูกปล่อยกลับคืนสู่น้ำทะเลหรือบรรยากาศ แต่จะเปลี่ยนสภาพไปเป็นหินปูน และทรายในที่สุด

สาหร่ายสกุล Halimeda เป็นสาหร่ายทะเลขนาดใหญ่ พบ อยู่ตามแนวชายฝั่ง บริเวณน้ำขึ้นน้ำลง ที่มีพื้นเป็นหาดทราย หรือซาก ปะการัง ลักษณะพิเศษของสาหร่ายสกุลดังกล่าวคือ คือ เป็นสาหร่ายสี เขียวที่มีการสะสมแคลเซียมคาร์บอเนตไว้ที่ทัลลัส หรือ ส่วนคล้ายใบ ที่มีลักษณะเป็นแผ่นแบนๆ สีเขียวเรียงต่อกันคล้ายกับใบมะกรูด บริเวณปลายของทัลลัสมีการสร้างทัลลัสอันใหม่ และจะเริ่มมีการ สะสมแคลเซียมคาร์บอเนตภายหลังจากทัลลัสใหม่เจริญอย่างสมบูรณ์ หรือประมาณ 36 ชั่วโมง โดยปกติสาหร่ายสกุล Halimeda จะ

สืบพันธุ์แบบไม่อาศัยเพศ คือการสร้างทัลลัสใหม่ขึ้นไปบนขอบของทัลลัสเดิม และเมื่อสภาพแวดล้อมไม่เหมาะสมจะ เปลี่ยนเป็นการสืบพันธุ์แบบอาศัยเพศ โดยการสร้างเซลล์สืบพันธุ์ขนาดเล็กจำนวนมากที่ปลายทัลลัส เมื่อปล่อยเซลล์ สืบพันธุ์ออกไปหมด สาหร่ายสาหร่ายสกุล Halimeda ต้นนั้นนี้ก็จะตายลงทันที ส่วนของแคลเซียมคาร์บอเนตที่สะสม ไว้จะกลายเป็นเมล็ดทราย

จากการศึกษาวิจัยพบ สาหร่ายสกุล Halimeda 8 ชนิด ชนิดที่น่าสนใจคือ สาหร่ายใบมะกรูด (Halimeda macroloba) กระจายทั่วไปในฝั่งอ่าวไทยและอันดามัน สามารถนำมา**ลดผลกระทบจากสภาวะโลกร้อนได้** เนื่องจากดูดซับก๊าซคาร์บอนไดออกไซด์ ได้ถึง 2,400 ตันต่อเฮคแตร์ต่อปี ดีกว่าต้นไม้ 5 เท่า (ใช้ในการสังเคราะห์แสง 600 ตันต่อเฮคแตร์ต่อปี และที่เหลืออีก 1,800 ตันต่อเฮคแตร์ต่อปีใช้ในการสร้างแคลเซียมคาร์บอเนต) เมื่อสาหร่าย ใบมะกรูดตาย ส่วนของแคลเซียมคาร์บอเนตที่สะสมไว้กลายเป็นเมล็ดทรายประมาณ 109.5 ตันต่อเฮคแตร์ต่อปี จาก การศึกษา Halimeda macroloba ในประเทศไทย พบว่า ค่าเฉลี่ยปริมาณการสะสมแคลเซียมคาร์บอเนตของ Halimeda macroloba บริเวณอ่าวตังเข็น จังหวัดภูเก็ต คิดเป็นร้อยละ 67.87 มิลลิกรัมต่อต้น

2.4 ผลกระทบจากเอเลี่ยนสปีชีส์ ปลาซัคเกอร์แย่งพื้นที่ปลาท้องถิ่นเกือบ 100%

ชนิดพันธุ์ต่างถิ่นเป็นปัญหาที่ส่งผลกระทบต่อความหลากหลายทางชีวภาพอย่างมาก โดยปลากดเกราะ หรือ ปลาซัคเกอร์ (ปลาเทศบาล) เป็นปลาต่างถิ่นที่มีการระบาดในแหล่งน้ำหลายประเทศทั่วโลก เนื่องจากการขยายพันธุ์ที่

รวดเร็ว ปลามีขนาดใหญ่มีเกาะแข็ง จึงไม่มีผู้ล่า ทำให้กลายเป็น ชนิดพันธุ์ต่างถิ่นที่คุกคามและส่งผลกระทบทางลบต่อชนิดพันธุ์ พื้นเมืองและระบบนิเวศ

การศึกษาพบว่าปลากดเกราะสามารถอาศัยอยู่ใน สภาพแวดล้อมที่เสื่อมโทรมได้ โดยสามารถอาศัยอยู่ในน้ำที่มีความ ขุ่นสูง ออกซิเจนละลายต่ำ และมีปริมาณสารอินทรีย์ และธาตุ อาหารพืชสูง การศึกษาบริเวณคลองหนองใหญ่ จ.ชลบุรี ซึ่งเป็น พื้นที่ที่มีรายงานการระบาดของปลากดเกราะ พบว่า สัดส่วนของ

ปลากดเกราะกับปลาชนิดอื่นในแหล่งน้ำมี มากกว่า 70% และมีแนวโน้มจะเพิ่มขึ้นถึง 100% และการศึกษา ผลกระทบทางชีววิทยาต่อปลาดุกอุย ซึ่งเป็นปลาพื้นเมืองของไทย พบว่าปลากดเกราะมีศักยภาพในการกินไข่และตัว อ่อนลูกปลาดุก ส่งผลต่อประชากรปลาดุกอุย

ทั้งนี้ ได้มีแนวทางการลดจำนวนประชากรปลากดเกราะ โดยการแผ่วถางพืชน้ำ และขุดลอกพื้นน้ำ ซึ่งเป็น แหล่งอนุบาลตัวอ่อนของปลากดเกราะ และควรรณรงค์ให้มีการจับปลากดเกราะขนาดใหญ่ออกจากแหล่งน้ำ เพื่อลด จำนวนพ่อแม่พันธุ์ นอกจากนี้ประชาชนที่อยู่สองข้างคลองไม่ควรทิ้งขยะหรือระบายน้ำเสียอันเป็นแหล่งอาหารของ ปลากดเกราะลงสู่คลอง และควรรณรงค์ไม่ให้มีการปล่อยปลาต่างถิ่นชนิดอื่นลงสู่แหล่งน้ำธรรมชาติ เพื่อป้องกันการสร้าง ปัญหาให้แก่ปลาและสัตว์น้ำประจำถิ่น

2.5 ชนิดพันธุ์ต่างถิ่นในทะเลสาบสงขลา: ปลาสอดกระโดง

ปลาสอดกระโดง (Poecilia velifera) มีการแพร่กระจายอยู่เป็นจำนวนมากในลุ่มน้ำทะเลสาบสงขลา มีถิ่น กำเนิดบริเวณตอนเหนือของคาบสมุทรยูคาทาน ประเทศเม็กซิโก ถูกนำเข้ามาในประเทศไทยเพื่อเลี้ยงเป็นปลา สวยงาม หรือใช้เป็นตัวควบคุมปริมาณสิ่งมีชีวิตอื่นๆ ที่ไม่ต้องการ เช่น ลูกน้ำยุง หอย พืชน้ำ สาหร่าย เป็นต้น แต่หลุด ออกไปสู่ธรรมชาติ และสามารถแพร่กระจายพันธุ์ได้ดี เนื่องจากสามารถทนต่อความเค็มได้ในช่วงกว้าง อยู่ได้ตั้งแต่น้ำ จืดถึงน้ำเค็มจัด และทนต่อสภาวะเสียที่มีออกซิเจนต่ำได้

จากการศึกษาจำนวนประชากรของบริเวณทะเลสาบสงขลา และหาดแก้วลากูน จังหวัดสงขลา โดยนายสืบ พงษ์ สงวนศิลป์ นักศึกษาปริญญาโท ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ พบว่า ประชากรเพศเมียมีมากกว่าเพศผู้ ซึ่งสามารถออกลูกได้ทั้งปีและในแต่ละครั้งจะให้ลูกปลาได้ตั้งแต่ 3-252 ตัว ซึ่งว่าให้ ลูกจำนวนมาก ด้านอาหาร ปลาสอดกระโดงจะกินพืชน้ำ สาหร่าย ครัสตาเซีย แมลง หอย ลูกปลา และไข่ของสัตว์น้ำ ประชากรปลาสอดกระโดงที่เพิ่มขึ้นอย่างรวดเร็วนี้ ส่งผลกระทบต่อระบบนิเวศและความหลากหลายของสิ่งมีชีวิตใน ธรรมชาติ อันเนื่องมากจากการใช้ทรัพยากร และการแก่งแย่งอาหาร รวมถึงพื้นที่อาศัย จากการสำรวจการ แพร่กระจายพบว่าในปัจจุบันปลาชนิดแพร่กระจายอยู่เฉพาะในทะเลสาบสงขลาเท่านั้น แต่มีความเป็นไปได้ที่ปลา ชนิดนี้จะแพร่ระบาดต่อไปจนถึงทะเลหลวงและทะเลน้อย

2.6 ชนิดพันธุ์ต่างถิ่นในทะเลสาบสงขลา : หอยกระพงเทศ

หอยกะพงเทศ (Mytilopsis adamsi) เป็นชนิดพันธุ์ต่างถิ่นที่มีการแพร่กระจายอยู่เป็นจำนวนมากใน ทะเลสาบสงขลา มีถิ่นกำเนิดในตอนกลางของทวีปอเมริกาด้านฝั่งมหาสมุทรแปซิฟิค แต่มีการแพร่กระจายข้ามมาใน ฝั่งอินโด-แปซิฟิก ซึ่งคาดว่าน่าจะมาจากตัวอ่อนกระพงเทศที่ติดมากับน้ำในถังอับเฉาเรือถูกปล่อยออกมายังแหล่งน้ำ ธรรมชาติ หรือตัวเต็มวัยเกาะติดมากับตัวเรือ และได้มีการแพร่พันธุ์ในพื้นที่ หอยกลุ่มนี้ทนทานต่อความเค็มและ อุณหภูมิได้ในช่วงกว้าง และยังทนต่อมลภาวะได้ดี

จากการศึกษาความแปรผันของการเข้าสู่พื้นที่บริเวณหาดแก้วลากูน จังหวัดสงขลา โดย นางสาวกริ่งผกา วัง กุลางกูร ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ พบช่วงที่หอยกะพงเทศขยายพันธุ์ และ เพิ่มจำนวนประชากร 2 ช่วงในรอบปี คือ ช่วงเดือนกรกฎาคม และเดือนมกราคม โดยมีความสัมพันธ์กับความเค็มของ น้ำ และความหนาแน่นของแพลงก์ตอนพืชที่เป็นอาหารของหอยกะพงเทศ

หากน้ำมีความเค็มต่ำ และมีแพลงก์ตอนพืชจำนวนมาก หอยกะพงเทศมีขยายพันธุ์และมีความหนาแน่นของ ประชากรหอยมากขึ้น การลงเกาะของหอยกระพงเทศจะเกาะกลุ่มหนาแน่นบนพื้นดิน เลน หรือวัสดุจมน้ำ จึงจำกัด การลงเกาะของสิ่งมีชีวิตเกาะติดชนิดอื่นๆ ก่อให้เกิดปัญหาต่อความหลากหลายทางชีวภาพ ความสมดุลของระบบ นิเวศ

นอกจากนี้ การลงเกาะบนตาข่ายกระชัง และเครื่องมือประมงของชาวบ้าน ยังทำให้เกิดปัญหากระแสน้ำไม่ หมุนเวียนและทำให้ประสิทธิภาพของเครื่องมือประมงลดลง อาจส่งผลถึงปัญหาทางเศรษฐกิจในบริเวณดังกล่าว

2.7 นิเวศวิทยาการสืบพันธุ์แบบอาศัยเพศของหญ้าทะเล

การศึกษาการเจริญเติบโต และการสืบพันธุ์ของหญ้าชะเงาเต่า Thalassia hemprichii ในบริเวณอุทยาน แห่งชาติหาดเจ้าไหม จังหวัดตรัง ระหว่างเดือนกุมภาพันธ์ 2551 – มกราคม 2552 โดย นายปิยะลาภ ตันติประภาส มหาวิทยาสงขลานครินทร์ ทำการหาค่าการเติบโตของใบ (อัตราการยาวของใบ การเพิ่มมวลชีวภาพของใบ และ ช่วงเวลาในการสร้างใบใหม่) การเติบโตของผืนหญ้าทะเล (มวลชีวภาพส่วนบนดิน มวลชีวภาพส่วนใต้ดิน และ น้ำหนักทุกส่วนของหญ้าทะเล) ความหนาแน่นของต้นหญ้าทะเล และติดตามการออกดอก ออกผล ของหญ้าทะเล พบว่าการเติบโตของใบมากที่สุดในช่วงเดือนพฤศจิกายน เนื่องจากเป็นช่วงที่มีปริมาณฟอสเฟตในน้ำทะเลสูงสุด และ น้อยที่สุดในช่วงเดือนกุมภาพันธ์ เนื่องจากมีช่วงเวลาที่โผล่พ้นน้ำนานที่สุดในรอบปี

ปัจจัยทางชีวภาพที่ส่งผลต่อความหนาแน่นของหญ้า ทะเล คือ กุ้งดีดขัน: ความหนาแน่นของหญ้าทะเลจะลดน้อยลง เมื่อความหนาแน่นของกุ้งดีดขันเพิ่มขึ้น ซึ่งจะส่งผลต่อการสร้าง ดอกและผลของหญ้าทะเล

ข้อมูลจากการศึกษาครั้งนี้ สามารถประยุกต์ใช้ในการอนุรักษ์และ ฟื้นฟูแนวหญ้าทะเลได้ กล่าวคือ การย้ายปลูกหญ้าทะเลควร คำนึงถึงปัจจัยแวดล้อมของสภาพพื้นที่ในช่วงเวลาต่างๆ เช่น ควร

หลีกเลี่ยงการย้ายปลูกหญ้าชะเงาเต่าในช่วงเดือนกุมภาพันธ์ ซึ่งเป็นช่วงที่หญ้าทะเลต้องเผชิญกับการโผล่พ้นน้ำ ยาวนานที่สุด และการย้ายปลูกหญ้าทะเลที่ให้ความสำเร็จสูง คือ การย้ายปลูกต้นอ่อนจากการเพาะเมล็ดหญ้าทะเล ซึ่งข้อมูลดังกล่าวจำเป็นต้องมีการศึกษาถึงปัจจัยที่ควบคุมการออกดอกออกผลของหญ้าทะเลก่อน

2.8 ปัจจัยที่มีผลต่อการเจริญเติบโต รงควัตถุการผลิตวุ้น และการสืบพันธุ์ในสาหร่ายผมนาง

ทะเลสาบสงขลาตอนนอก จังหวัดสงขลา เป็นหนึ่งในพื้นที่สำคัญที่พบสาหร่ายผมนาง (*Gracilaria* spp.) ซึ่ง เป็นสาหร่ายทางเศรษฐกิจที่สำคัญที่นิยมนำมาประกอบอาหารและป้อนเข้าสู่ธุรกิจวุ้นในประเทศ แต่ประชากร สาหร่ายผมนางในทะเลสาบสงขลาเริ่มลดลง เนื่องจากการสภาพแวดล้อมที่เสื่อมโทรมและการเปลี่ยนแปลงของ คณภาพน้ำ

ปัจจัย	ค่าเฉลี่ย	ผลที่ได้	ค่าการเจริญ
ความเค็ม	17- 30 ppt	ค่ามวลชีวภาพ	6.85 %WG ต่อวัน
ความเข้มแสง	400 - 700 □ mol photon m ⁻² s ⁻¹	ปริมาณวุ้นเพิ่มขึ้น	24.80 %DW

จากการศึกษาโดย นายเฉลิมพล บุญสม คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ทำให้ทราบปัจจัยที่ มีผลต่อการเจริญเติบโตของสาหร่ายผมนาง ในทะเลสาบสงขลา ข้อมูลดังตาราง ได้องค์ความรู้ที่ช่วยส่งเสริมการ เพาะเลี้ยงสาหร่ายผมนางแบบเปิดในบริเวณทะเลสาบสงขลา เพื่อทดแทนการเก็บเกี่ยวสาหร่ายจากธรรมชาติ และ ช่วงเวลาที่เหมาะสมต่อการเพาะเลี้ยง คือ มกราคม (กลางเดือน) - เมษายน และ กรกฎาคม (กลางเดือน) – กันยายน ทั้งนี้ ข้อมูลที่ได้สามารถนำไปเผยแพร่ให้ผู้ประกอบการและชุมชนเพาะเลี้ยงสาหร่ายในบริเวณทะเลสาบสงขลาเพื่อ การพัฒนาการเพาะเลี้ยงได้

2.9 ปัจจัยที่มีผลกระทบต่อองค์ประกอบทางชีวเคมีของสาหร่ายทะเลสกุล Caulerpa, Ulva และ Gracilaria

การพัฒนาการเลี้ยงสาหร่าย Caulerpa lentilifera หรือสาหร่ายช่อพริกไทย, Ulva rigida หรือสาหร่าย ผักกาดทะเล และ Gracilaria fisheri หรือสาหร่ายผมนาง เพื่อลดการเก็บผลผลิตจากธรรมชาติ และช่วยเพิ่มผลผลิต ของสาหร่ายทะเลเพื่อให้สามารถนำไปใช้ประโยชน์ในด้านต่างๆ ได้อย่างต่อเนื่อง ผลการศึกษาโดย น.ส.เอกธิดา ทอง เด็จ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย พบว่าสาหร่ายทะเลทั้ง 3 ชนิดเติบโตได้ดีในน้ำทะเลที่มีอัตราส่วน โดยโมลของในโตรเจนและฟอสฟอรัสในพิสัย 10:1 ถึง 30:1 และในโตรเจนในรูปของแอมโมเนียมในน้ำทะเล ช่วย ส่งเสริมให้การเติบโตของสาหร่ายเพิ่มสูงขึ้นกว่าการที่น้ำทะเลที่เลี้ยงมีในโตรเจนในรูปของในเตรทเพียงรูปเดียว ทั้งนี้ ความเข้มข้นของในโตรเจนและฟอสฟอรัสที่ทำให้สาหร่ายเติบโตดีที่สุด ขึ้นอยู่กับชนิดและสภาพแวดล้อมที่สาหร่าย เติบโต : สาหร่ายสีแดง G. fisheri ต้องการในโตรเจนและฟอสฟอรัสในปริมาณต่ำกว่าสาหร่ายสีเขียวทั้ง 2 ชนิด และ สาหร่าย C. lentilifera ต้องการธาตุอาหารทั้ง 2 อย่างในปริมาณสูงกว่าสาหร่ายอีกสองชนิด

จากการศึกษารูปแบบที่เหมาะสมต่อการเพาะเลี้ยงสาหร่ายแต่ละชนิด ทำให้ศักยภาพในการใช้ประโยชน์ใน ด้านต่างๆ ของสาหร่ายทั้ง 3 เช่น ได้แก่ ด้านการบำบัดน้ำเสีย (เนื่องจากมีศักยภาพในการใช้ไนเตรทและแอมโมเนียม) ด้านการเป็นอาหาร (มีโปรตีนสูง และมีกรดไขมันไม่อื่มตัวปริมาณสูง) และด้านการเป็นวัตถุดิบในการผลิตพลังงาน โดยเฉพาะสาหร่ายสีเขียวทั้ง 2 ชนิด (มีกรดไขมัน Palmitic acid ในปริมาณสูง เป็นวัตถุดิบในการผลิตไบโอดีเซล)

2.10 ความหลากหลายของปลาระหว่างแหล่งหญ้าทะเล, ป่าชายเลน, หาดโคลน และหาดทราย

การศึกษาโครงสร้างประชาคมปลาในแหล่งที่อยู่อาศัย (habitat) ที่แตกต่างกัน ได้แก่ แนวหญ้าทะเล ป่าชาย เลน หาดโคลนและหาดทราย เพื่อนำไปสู่การวางแผนและจัดการให้เกิดความเหมาะสมในการอนุรักษ์จัดการแต่ละ ระบบนิเวศที่มีความสำคัญ

จากการศึกษาพื้นที่ชายฝั่ง อ.ขนอม จ.นครศรีธรรมราช บริเวณแหล่งหญ้าทะเล (เกาะท่าไร่) หาดโคลน (อ่าว เตล็ดน้อย) หาดทราย (แหลมทาบ) และป่าชายเลน (อ่าวท้องเนียน) โดยนายสุรศักดิ์ สีชุม โปรแกรมนิเวศวิทยาและ ความหลากหลาย มหาวิทยาลัยวลัยลักษณ์พบปลาอย่างน้อย 131 ชนิด ใน 47 วงศ์ โดย ปลาที่จับได้ส่วนใหญ่เป็น ปลาระยะวัยอ่อน (juveniles) และปลาโตเต็มวัยขนาดเล็ก

การศึกษาครั้งนี้พบว่าปลาที่เข้ามาอยู่บริเวณแหล่งหญ้าทะเลและป่าชายเลนมีจำนวนชนิดและความหนาแน่น สูง ซึ่งปลาส่วนใหญ่ยังเป็นปลาขนาดเล็กระยะวัยอ่อน จึงมีความเป็นไปได้ที่**แหล่งหญ้าทะเลและป่าชายเลนบริเวณนี้จะ เป็นแหล่งอนุบาลของปลาวัยอ่อนที่สำคัญ** และ**บริเวณหาดโคลนและหาดทราย**พบปลาเศรษฐกิจหลายชนิดเข้ามาหา อาหารเป็นจำนวนมาก ส่วนมากเป็นปลาที่มีขนาดใหญ่กว่าแหล่งหญ้าทะเลและป่าชายเลน จึง**ถือได้ว่าบริเวณนี้เป็น แหล่งทำประมงพื้นบ้านที่สำคัญ**

2.11 กุ้งเคยสกุล Acetes

กุ้งเคยเป็นวัตถุดิบที่สำคัญในการแปรรูปเป็นกะปิ ซึ่งเป็นสินค้า OTOP ชื่อดังระดับห้าดาวของอำเภอขนอม และยังมีบทบาทสำคัญในห่วงโซ่อาหารอีกด้วย โดยเป็นตัวเชื่อมระหว่างซากสิ่งมีชีวิตและสิ่งมีชีวิตขนาดเล็กกับสัตว์น้ำ ขนาดใหญ่

การศึกษาในบริเวณอ่าวเตล็ดใหญ่ อ.ขนอม จ.นครศรีธรรมราช โดย น.ส.อุษาวดี เดชศรี โปรแกรม นิเวศวิทยาและความหลากหลาย มหาวิทยาลัยวลัยลักษณ์ พบกุ้งเคยสกุล Acetes ทั้งหมด 4 ชนิด ได้แก่ A. erythraeus, A. vulgaris, A. japonicus และ A. indicus จากการศึกษาชีววิทยาเบื้องต้น พบว่ากุ้งเคยเป็นสัตว์น้ำที่ มีขนาดเล็ก มีลำตัวใส ขนาดลำตัวประมาณ 10 – 40 มิลลิเมตร กุ้งเคยจะออกหากินในเวลากลางคืนเพื่อหลบหนีผู้ล่า อาหารของกุ้งเคย ได้แก่ แพลงก์ตอนสัตว์ แพลงก์ตอนพืช ซากพืชซากสัตว์ และตะกอนขนาดเล็ก พบอาศัยชุกชุมตาม บริเวณชายฝั่งซึ่งเป็นบริเวณที่เป็นหาดทรายหรือหาดโคลน ตามลำคลองที่น้ำทะเลขึ้นถึง กุ้งเคยจะเริ่มชุกชุมในเดือน มิถุนายน และค่อยลดปริมาณลงในเดือนกันยายน และจะเริ่มชุมชุมอีกครั้งในเดือนมกราคม จนถึงเดือนพฤษภาคมจะ ลดลงอีกครั้ง โดยที่เดือนเมษายนจะชุกชุมมากที่สุด และกุ้งเคยชนิด A. japonicus พบเป็นชนิดเด่นในทุกถิ่นที่อยู่

ช่วงเวลาที่พบกุ้งเคยชุกชุมคือช่วงเวลากลางคืน บริเวณพื้นที่เป็นทรายหยาบพบมากที่สุด รองลงมาคือบริเวณ ป่าชายเลน กลางอ่าว พื้นที่เป็นทราย และหญ้าทะเล โดยในช่วงเวลากลางวัน พบกุ้งเคยบริเวณหญ้าทะเล 2 ชนิด ได้แก่ A. japonicus และ A. vulgaris บริเวณป่าชายเลน และบริเวณพื้นที่เป็นทราย พบเฉพาะ A. japonicus

2.12 การแข่งขันระหว่างปะการังแข็งต่างชนิด

ปะการังเป็นสิ่งมีชีวิตชนิดหลักในการสร้างแนวปะการัง แต่พื้นที่ในแนวปะการังมีอยู่อย่างจำกัดจึงมีผลต่อ การเจริญเติบโตของปะการังแข็ง การแข่งขันระหว่างชนิดของปะการังแข็งเป็นปัจจัยที่ช่วยสร้างความหลากหลายชนิด ของสิ่งมีชีวิตและสร้างให้ระบบนิเวศแนวปะการังมีความซับซ้อน

จากการศึกษาการแข่งขันระหว่างปะการังแข็งต่างชนิดบริเวณเกาะแตน จังหวัดสุราษฎร์ธานี โดยน.ส.สุปรานี ลิ้มพวง แก้ว สังกัด โปรแกรมนิเวศวิทยาและความหลากหลาย มหาวิทยาลัยวลัยลักษณ์ ชั่วิธีการสำรวจในแถบพื้นที่ศึกษา กว้าง 1 เมตร ยาว 30 เมตร รวมพื้นที่เก็บข้อมูล 90 ตารางเมตรต่อสถานี ทำการศึกษา 5 สถานี รอบเกาะแตน ระหว่างวันที่ 12 – 23 พฤษภาคม พ.ศ. 2552 พบปะการัง 76 ชนิด มีการแข่งขันกันเป็นจำนวนรวมทั้งหมด 2,036 ครั้ง แบ่งรูปแบบในการแข่งขัน 4 รูปแบบ คือ การแข่งขันโดยตรง (พบรอยแผลบนชนิดที่แพ้) การแข่งขันโดยอ้อม

(ชนิดหนึ่งจะเจริญขึ้นคลุมหรืออยู่เหนืออีกชนิดหนึ่ง) **การแข่งขันโดยตรงทั้งสองด้าน** (พบรอยแผลอยู่บนทั้งสองชนิด) และ**การอยู่เฉย** (ไม่มีผู้แพ้หรือชนะ) การแข่งขันโดยตรงเป็นรูปแบบการแข่งขันที่พบมากที่สุด ประมาณ 97.08 % และน้อยที่สุดคือการอยู่เฉย 0.75 %

ความสามารถในการแข่งขันของปะการังแต่ละชนิดถูกจัดระดับจากดัชนีการแข่งขัน เป็น 5 ระดับ คือ ความสามารถสูงสุด ความสามารถค่อนข้างสูง ความสามารถปานกลาง ความสามารถค่อนข้างต่ำ และความสามารถ ต่ำ ปะการังชนิดที่มีความสามารถสูงและอยู่บนสุดของลำดับการแข่งขันคือ Galaxea fascicularis และ Goniopora fruticosa และปะการังชนิดที่มีความสามารถต่ำ คือ Porites lutea ที่อยู่ลำดับล่างสุดของการแข่งขันในทุกสถานี

การทำความเข้าใจความสัมพันธ์ของปะการังให้ดียิ่งขึ้น จำเป็นต้องมีการศึกษาเพิ่มเติมในด้านปัจจัย สิ่งแวดล้อม และผลกระทบที่เกิดจากกิจกรรมของมนุษย์ อีกทั้งยังต้องเป็นการศึกษาที่ต่อเนื่องในระยะยาวอีกด้วย

2.13 การใช้สัตว์เป็นตัวเฝ้าระวังผลกระทบจากการปนเปื้อนของแคดเมียม

ปัญหาการปนเปื้อนโลหะหนักในสิ่งแวดล้อมในประเทศไทยหลายแห่ง แต่ปัญหายังไม่ได้รับการแก้ไขอย่าง ครบถ้วน และยังขาดข้อมูลการศึกษาอีกหลายด้าน โดยเฉพาะการเปลี่ยนแปลงทางชีวภาพของสิ่งมีชีวิตที่อาศัยใน พื้นที่ที่ได้รับผลกระทบ ตลอดจนการประมวลผลเพื่อสร้างระบบเฝ้าระวังภัยที่อาจเกิดขึ้นต่อมนุษย์ที่อาศัยในบริเวณ นั้น ซึ่งการศึกษาสิ่งมีชีวิตที่อยู่ในสิ่งแวดล้อมดังกล่าว สามารถเป็นตัวเฝ้าระวังการปนเปื้อน และเป็นตัวแทนในการ ติดตามผลกระทบที่เกิดขึ้นจากการปนเปื้อนในมนุษย์ได้

การศึกษาผลกระทบจากการปนเปื้อนของแคดเมียมในลุ่มน้ำห้วยแม่ตาว อ.แม่สอด จ.ตาก โดย ดร.นพดล กิตนะ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เลือกตัวแทนสัตว์ไม่มีกระดูกสันหลัง ได้แก่ หอยโข่ง (Pila sp.) และ ปูนา (Sayamia bangkokensis) และตัวแทนสัตว์มีกระดูกสันหลัง ได้แก่ อึ่งน้ำเต้า (Microhyla fissipes) ซึ่ง เป็นสัตว์ที่อาศัยในพื้นที่เสี่ยงต่อผลกระทบจากการปนเปื้อนและพบได้เป็นจำนวนมากในพื้นที่ จากการศึกษาการ ปนเปื้อนแคดเมียมในเนื้อเยื่อสัตว์: พบแนวโน้มการสะสมแคดเมียมในเนื้อเยื่อของสัตว์ไม่มีกระดูกสันหลังและสัตว์มี กระดูกสันหลังที่อาศัยในพื้นที่ศึกษา โดยสัตว์ในพื้นที่ปนเปื้อนมีปริมาณแคดเมียมในเนื้อเยื่อสูงกว่าสัตว์ที่อยู่ในพื้นที่ อ้างอิงอย่างมีนัยสำคัญ และจากการที่สัตว์ที่ศึกษาเป็นสัตว์ที่เป็นอาหารของคนท้องถิ่น การปนเปื้อนแคดเมียมในสัตว์ เหล่านี้จึงมีโอกาสถ่ายทอดมาสู่คนได้

การศึกษาการเปลี่ยนแปลงทางชีวภาพ พบว่าหอยโข่งจากพื้นที่ปนเปื้อนมีระดับการทำงานของเอนไซม์ GST แตกต่างอย่างมีนัยสำคัญจากหอยในพื้นที่อ้างอิงแสดงให้เห็นความสัมพันธ์ระหว่างการปนเปื้อนแคดเมียมใน สิ่งแวดล้อมกับการเปลี่ยนแปลงระดับการทำงานของเอนไซม์กลูตาไทโอนเอสทรานเฟอเรสในหอยโข่ง ซึ่งน่าจะ สามารถนำมาใช้ในการพัฒนาตัวชี้วัดทางชีวภาพสำหรับติดตามการปนเปื้อนแคดเมียมในสภาพแวดล้อมได้ในอนาคต และอื่งน้ำเต้าจากพื้นที่ปนเปื้อนมีน้ำหนักตับและไตมากกว่า แต่มีน้ำหนักอวัยวะสืบพันธุ์ (อัณฑะ/รังไข่) น้อยกว่าอึ่ง น้ำเต้าจากพื้นที่อ้างอิง และอายุขัยของเพศผู้จากพื้นที่ปนเปื้อนน้อยกว่าเพศผู้จากพื้นที่อ้างอิง แสดงให้เห็นว่าการ ปนเปื้อนแคดเมียมในสภาพแวดล้อม สามารถส่งผลกระทบต่อประชากรอึ่งน้ำเต้าที่อาศัยอยู่ในพื้นที่ ทำให้พบการ สะสมแคดเมียมในร่างกาย และมีการเปลี่ยนแปลงขนาดของอวัยวะ คือ ตับ ไต และอวัยวะสืบพันธุ์ และอาจมี ผลกระทบต่อโครงสร้างอายุของประชากรอึ่งน้ำเต้าในพื้นที่ได้

2.14 การย่อยสลายคราบน้ำมัน โดยใช้แบคทีเรียลดแรงตึงผิว

เป็นวิธีการที่ช่วยเพิ่มความสามารถในการละลายและทำให้จุลินทรีย์ในธรรมชาติ หรือ จุลินทรีย์ประจำถิ่น ย่อยสลายได้ดีขึ้น โดยสารลดแรงตึงผิวชีวภาพจากแบคทีเรียจะช่วยให้คราบน้ำมัน หรือ สารประกอบไฮโดรคาร์บอนมี การละลายน้ำได้มากขึ้น ดร.ศุภศิลป์ มณีรัตน์ และคณะนักวิจัย ภาควิชาเทคโนโลยีภาพอุตสาหกรรม คณะ อุตสาหกรรมเกษตร มหาวิทยาลัยสงขลานครินทร์ ได้ทำการศึกษาแยกกลุ่มเชื้อแบคทีเรียที่สามารถผลิตสารลดแรงตึง ผิวชีวภาพจากดินตะกอนป่าชายเลนในภาคใต้ของประเทศไทยโดยใช้วิธี enrichment culture technique พบ แบคทีเรียที่มีศักยภาพในการผลิตสารลดแรงตึงผิวชีวภาพได้ดี 5 ไอโชเลต โดยเป็นเชื้อ Acinetobacter sp.,

Acinetobacter sp., Bacillus subtilis, Klebsiella pneumoniae และ Pseudomonas putida ซึ่งแบคทีเรียที่ แยกได้นี้มีศักยภาพในการนำไปใช้ประโยชน์ในการกำจัดสารโดยวิธีการทางชีวภาพในดินที่มีการปนเปื้อนน้ำมันหรือ สารประกอบไฮโดรคาร์บอนได้ต่อไปในอนาคต

2.15 ใบรโอซัวน้ำจืด

การใช้สิ่งมีชีวิตที่ดำรงชีวิตอยู่จำเพาะในแต่ละระบบนิเวศสามารถใช้เป็นดัชนีชี้วัดคุณภาพสิ่งแวดล้อมได้ ซึ่ง การใช้ตัวตรวจวัดสภาพแวดล้อมทางชีวภาพนี้ได้รับความนิยมมากขึ้นเรื่อยๆ เนื่องจากทำได้ง่าย และประหยัด หากแต่ การใช้ตัวตรวจวัดทางชีวภาพจะต้องมีข้อมูลปัจจัยการดำรงชีวิตของสิ่งมีชีวิตที่จะนำมาใช้ ซึ่งองค์ความรู้เกี่ยวกับการ ดำรงชีวิตของสิ่งมีชีวิตที่มีความสามารถเป็นตัวตรวจวัดสภาพแวดล้อมในประเทศไทยยังมีอยู่ไม่มากนัก จึงทำให้การใช้ การตรวจวัดคุณภาพสิ่งแวดล้อมทางชีวภาพยังไม่เป็นที่แพร่หลาย ทำให้ต้องมีการส่งเสริมให้เกิดการศึกษาองค์ความรู้ เกี่ยวกับสิ่งมีชีวิตเพื่อนำไปใช้เป็นดัชนีบ่งชี้สิ่งแวดล้อมได้ ใบรโอซัวน้ำจืดเป็นสัตว์น้ำขนาดเล็กที่เกาะติดอยู่กับที่ และ ไม่สามารถย้ายถิ่นฐานได้อย่างรวดเร็ว อีกทั้งยังมีความสามารถในการทนต่อการเปลี่ยนแปลงของคุณภาพน้ำได้ต่ำ จึง สามารถใช้เป็นดัชนีชี้วัดแหล่งน้ำที่มีคุณภาพดี จากการศึกษาของนางสาวสุดาทิพย์ แสนสุภา ภาควิชาวิทยาศาสตร์ สิ่งแวดล้อม คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ศึกษาใบรโอซัวน้ำจืดที่พบได้ทั่วไปในแหล่งน้ำ 3 ชนิด คือ Hislopia malayensis, Plumatella casmiana และ Plumatella chulabhornae ทำให้ได้ข้อมูลพื้นฐาน สำหรับการนำใบรโอซัวน้ำจืดไปใช้ในการตรวจวัดคุณภาพน้ำในแหล่งน้ำทั่วไปได้

2.16 การใช้ไลเคนเพื่อเป็นดัชนีชี้วัดมลภาวะทางอากาศ

ในเขตเทศบาลนครนครราชสีมา โดยนางสาวอมรรัตน์ พิทักษ์พงษ์ สาขาวิชาชีววิทยา สำนักวิชาวิทยาศาสตร์ มหาวิทยาลัยเทคโนโลยีสุรนารี จากการสำรวจพบ่ไลเคน 29 ชนิด ได้แก่ Hyperphyscia adglutinata, Pyxine cocoes, Lecanira leprosa และ Opegrapha stirtonii จำแนกเป็นกลุ่มได้สองกลุ่มคือ กลุ่มครัสโตส รองลงมาคือ กลุ่มโฟลิโอส ซึ่งเป็นไลเคนกลุ่มที่มีความทนต่อมลพิษทางอากาศและการเปลี่ยนแปลงสภาพแวดล้อมทางกายภาพได้ดี จากข้อมูลการสำรวจยังสามารถจัดทำแผนที่คุณภาพอากาศในเทศบาลนครนครราชสีมา โดยจัดชั้นคุณภาพอากาศได้ 4 เขต ตามจำนวนชนิด ความถี่ที่พบไลเคน และความหลากหลายของไลเคน นอกจากนี้ ยังมีการศึกษาความ หลากหลายของไลเคนและตรวจวัดปริมาณก๊าซซัลเฟอร์ไดออกไซด์ในบริเวณรอบโรงไฟฟ้าแม่เมาะ อ.แม่เมาะ จ. ลำปาง โดย นางรำพรวน กันเจิม ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ผลการศึกษาพบไล เคน 43 ชนิด เป็นกลุ่มครัสโตส 32 ชนิด และกลุ่มโฟลิโอส 11 ชนิด โดยไลเคนส่วนใหญ่ที่พบอยู่ในสกุล Dirinaria, Pyxine, Chrysothrix, Cryptothecia, Arthonia, Lecanographa, Laurera และ Hyperphyscia ไลเคนชนิด Dirinaria picta และ Pyxine cocoes ซึ่งเป็นกลุ่มที่มีความทนทานต่อมลพิษได้ดี นอกจากนี้ยังพบว่าไลเคนส่วน ใหญ่มีแนวโน้มเจริญอยู่บนลำต้นของต้นมะม่วงในทิศทางที่มักหลีกหนีจากทิศที่หันเข้าสู่โรงไฟฟ้า

2.17 แปลงศึกษานิเวศวิทยามอสิงโต อุทยานแห่งชาติเขาใหญ่

ระบบนิเวศในป่าเป็นการเชื่อมร้อยความสัมพันธ์ ระหว่างต้นไม้กับสัตว์ ต้นไม้ให้ลูกไม้ที่เป็นอาหารให้กับสัตว์ ป่า และสัตว์ป่ามีบทบาทเป็นผู้กระจายเมล็ดพันธุ์

ศ.ดร.วรเวณ บรอคเคลแมน และทีมวิจัย ศูนย์พันธุ
วิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ ได้ดำเนินการ
บริหารจัดการแปลงวิจัยถาวรมอสิงโตมาเป็นระยะเวลา
ยาวนาน เพื่อศึกษาพืชอาหาร และพฤติกรรมการหาอาหาร
ของสัตว์กินผลไม้ โดยเฉพาะชะนี ศึกษาความสามารถใน
การเกิดใหม่ทดแทนของต้นไม้ เถาวัลย์ และศึกษาพลวัต

สังคมป่าในระยะยาว ทั้งนี้ก็เพื่อประเมินความสำคัญของสัตว์ป่าในการทำหน้าที่เป็นผู้กระจายเมล็ดพันธุ์ ซึ่งจะส่งผล กระทบต่อความสมบูรณ์ของป่า

ผลการดำเนินงานได้จัดทำฐานข้อมูลประชากรต้นไม้ พฤติกรรมการหาอาหารและบทบาทในการ แพร่กระจายเมล็ดพันธุ์พืชของชะนี นอกจากนี้ยังพบว่าพืชบางชนิด ยังมีความหนาแน่นของต้นกล้าลดลง ซึ่งอาจเป็น ผลมาจากภาวะโลกร้อน หรือขาดผู้กระจายเมล็ดที่ดี ผลงานวิจัยพอสรุปได้ดังนี้

ฐานข้อมูลประชากรต้นไม้

การทำฐานข้อมูลประชากรต้นไม้ที่สำรวจในช่วงปี 2004-2005 ในพื้นที่แปลงวิจัยขนาด 30 เฮคแตร์ พบต้นไม้ 67 วงศ์ 167 สกุล ชนิดที่มีเส้นผ่าศูนย์กลางลำต้นตั้งแต่ 1 เซนติเมตรขึ้นไป 262 ชนิด จำนวน 131,009 ต้น ต้นที่มีเส้นผ่าศูนย์กลางลำต้นตั้งแต่ 10 เซนติเมตรขึ้นไป 204 ชนิด 15,676 ต้น และ 16 ชนิด มีเส้นผ่าศูนย์กลางลำต้น 100 เซนติเมตรขึ้นไป ปัจจุบันแปลงวิจัยถาวรมอสิงโตได้ร่วมอยู่ในเครือข่ายแปลงศึกษาพลวัตป่าทั่วโลกของ Center for Tropical Forest Science (CTFS) แห่ง Smithsonian Institution

พืชอาหารของชะนี

ผลการศึกษาพบว่า ชะนีมีพฤติกรรมการกินพืชอาหารที่หลากหลาย ประมาณ 105 ชนิด ชะนีจึงมี ความสำคัญต่อการกระจายเมล็ดพันธุ์พืช และการเกิดต้นกล้าทดแทนของต้นไม้และเถาวัลย์ จากการศึกษาเป็นเวลา 3 ปี พบว่าผลไม้ที่ชะนีชอบกิน จะไม่ออกผลทุกปี เป็นการบังคับให้ชะนีต้องเปลี่ยนพืชอาหารในแต่ละปี ในปีถัดไป เถาวัลย์จะกลายเป็นพืชอาหารหลักแทน และในฤดูที่มีผลไม้น้อยที่สุด ชะนีจะเปลี่ยนมากินใบอ่อนแทน

การกระจายและการเกิดกล้าใหม่

ชะนีเป็นผู้กระจายเมล็ดเป็นหลัก ได้แก่ เงาะป่า (Nephelium melliferum) ซึ่งกระจายอยู่ทั่วแปลง แต่การ เกิดกล้าใหม่มักเกิดเฉพาะในบริเวณที่เย็นและชื้น, ต้นพรุน (Prunus javanica) มีความหนาแน่นของพีซลดลงอย่าง ข้าๆ โดยไม่ทราบสาเหตุ, ต้นสีเสียดเทศ (Choerospondias axillaris) เป็นอาหารของชะนีในช่วงเดือนกันยายนพฤศจิกายน แต่แทบไม่มีการเกิดกล้าใหม่, ต้นมังคุดป่า (Garcinia benthamii) เป็นอาหารของชะนีในช่วงเดือน สิงหาคม-กันยายน แต่จะไม่กินผลสุก ทำให้ผลเน่าเสียไป

การศึกษาพลวัตสังคมป่า

การศึกษาชีพลักษณ์การออกผลตั้งแต่ปีพ.ศ. 2546 ทำให้ทราบว่าพืชที่เป็นอาหารชะนีไม่ออกผลทุกปี และ บางชนิดใช้เวลา 4-5 ปี สัตว์กินผลไม้จึงต้องเปลี่ยนอาหารไปทุกๆ ปี ดังนั้นชะนีจึงกินผลไม้ที่นกกินด้วยในบาง ช่วงเวลา

ส่วนการเกิดทดแทนของพืชในแปลงวิจัย พบลักษณะการกระจายขนาดของต้นไม้ไม่สม่ำเสมอ แสดงว่ามีการ ขาดแคลนต้นกล้าเกิดใหม่ และจะส่งผลให้พืชเหล่านี้หมดไปจากป่า ซึ่งครึ่งหนึ่งเป็นไม้สูงใหญ่เหนือเรือนยอดป่า (เส้นผ่าศูนย์กลางลำต้นใหญ่ 1 เมตร) เช่น ต้นสีเสียดเทศ (Choerospondias axillaries) อาจเกิดจากปัจจัยด้าน สภาพอากาศที่อบอุ่นขึ้นอันเนื่องมาจากสภาวะดลกร้อน หรือ การขาดการกระจายเมล็ดที่ดี

2.18 ลักษณะนิเวศทางกายภาพของป่าเมฆแห่งเขานั้น

การศึกษาสภาพแวดล้อมของป่าเมฆเป็นสิ่งจำเป็น เพราะการเปลี่ยนแปลงในบริเวณนี้ มีผลกระทบสูงต่อ สภาพแวดล้อมทางธรรมชาติ ระบบนิเวศ ทำให้เสี่ยงต่อการสูญพันธ์ของสัตว์และพืช**เฉพาะ**ถิ่นที่มีถิ่นกำเนิดและอาศัย ได้เพียงที่เดียวเท่านั้น

จากการศึกษาโดยนายพีระศักดิ์ แสงอรุณ และผศ. ดร.กฤษณะเดช เจริญสุธาสินี มหาวิทยาลัยวลัยลักษณ์ ทำให้ได้องค์ ความรู้ลักษณะนิเวศเฉพาะของป่าเมฆ บริเวณยอดสันเย็น (ระดับ ความสูง 1,276 เมตรจากระดับน้ำทะเล) และยอดเขานม (ระดับ ความสูง 1,270 เมตรจากระดับน้ำทะเล) อุทยานแห่งชาติเขานัน จังหวัดนครศรีธรรมราช ได้แก่ ลักษณะพีช พบว่าพื้นที่ของใบมี ขนาดเล็กลง ความหนาของใบจะหนามากขึ้น และจำนวนพีชอิง อาศัยจะมากขึ้น เมื่อความสูงจากระดับน้ำทะเลเพิ่มขึ้น ต้นไม้ส่วน

ใหญ่จะเตี้ยและแคระแกร็น <u>ลักษณะดิน</u> พบว่าปริมาณสารอินทรีย์และความชื้นในดินเพิ่มขึ้น ตามระดับความสูงจาก น้ำทะเลเพิ่มขึ้น และดินค่อนข้างมีสภาพเป็นกรด มีค่า pH อยู่ระหว่าง 3.6 – 4.3 แต่ไม่มีความแตกต่างกันในแต่ละ ระดับความสูง <u>ลักษณะภูมิอากาศ</u> จากการติดตั้งเครื่องมือวัดอากาศอัตโนมัติ ไว้ที่ยอดเขาเดือนหก ระดับความสูง 1,053 และยอดเขานม พบว่าอุณหภูมิจะลดลง แต่ความชื้นสัมพัทธ์จะสูงขึ้นเมื่อระดับความสูงจากระดับน้ำทะเล เพิ่มขึ้น

จากการจัดกลุ่มประเภทของป่าเมฆ พบว่าลักษณะภูมิอากาศของบริเวณที่ศึกษาในพื้นที่บริเวณอุทยานแห่งชาติ เขานั้น มีความแตกต่างกับป่าเมฆดอยอินทนนท์ ซึ่งเป็นป่าเมฆในภาคเหนือของประเทศไทย โดยป่าเมฆเขานมจัดว่าเป็น ป่าเมฆในระดับพื้นที่ต่ำ และดอยอินทนนท์ถือว่าเป็นป่าเมฆในระดับพื้นที่สูง (ความสูงกว่า 2,000 เมตรเหนือ ระดับน้ำทะเล)

2.19 นิเวศวิทยาการอยู่ร่วมกันของปลาน้ำจืด

ประเทศไทยมีความหลากหลายของปลาน้ำจืดสูง แต่ข้อมูลทางนิเวศวิทยาเกี่ยวกับความชุกชุม การ แพร่กระจาย ชีววิทยาการกินอาหาร รวมถึงรูปแบบการดำรงชีวิตในการอยู่ร่วมกันของสังคมปลาเหล่านั้นกลับมีน้อย มาก โดยข้อมูลทางนิเวศวิทยาของปลาในประเทศไทยตั้งแต่อดีตจนถึงปัจจุบันส่วนใหญ่เป็นการศึกษาชนิดปลาและ การแพร่กระจายบริเวณแหล่งน้ำนิ่ง หรืออ่างเก็บน้ำ และยังไม่มีการศึกษานิเวศวิทยาโดยเฉพาะอย่างยิ่งกลุ่มปลาหน้า ดินบริเวณแหล่งน้ำไหล เช่น วงศ์ปลาค้อและจิ้งจก (Balitoridae), วงศ์ปลาหมู (Cobitidae) วงศ์ปลากระทิง (Mastacembelidae) และวงศ์ปลาแค้ (Siluridae) ซึ่งกลุ่มปลาเหล่านี้สามารถพบได้ในบริเวณคุณภาพน้ำ ดี และอาจ ใช้เป็นตัวบ่งชี้คุณภาพน้ำ ศ.ดร. เฟดเดอริค เอช บีมิช จากมหาวิทยาลัยบูรพาจึงได้ศึกษานิเวศวิทยาของปลาน้ำจืด 3 เรื่องย่อย ได้แก่

- 1. ปฏิสัมพันธ์ของการกินอาหารของกลุ่มประชากรปลาในแหล่งน้ำไหลในภาคตะวันออกของประเทศไทย แก่งแย่ง หรือ แบ่งสรร ผลการศึกษาพบว่า การแบ่งสรรทรัพยากรอาหารและช่วงเวลาในการกินอาหารของปลานั้น เป็นกลวิธีหนึ่งในการคงไว้ซึ่งความอุดมสมบูรณ์ของชนิดของปลาในการอยู่ร่วมกันของปลา ปลามีการเปลี่ยนแปลง ชนิดอาหารตามพื้นที่และสภาพแวดล้อมที่เปลี่ยนไป ทั้งนี้ชนิดอาหารที่ปลากินมีความแตกต่างกันเพียงเล็กน้อย แต่ ช่วงเวลาในการกินอาหารของปลาแตกต่างกันตามชนิดของปลา เป็นกลวิธีหนึ่งในการปรับตัวเพื่อลดการแข่งขัน หรือ แก่งแย่งอาหารและยังเป็นการเพิ่มโอกาสที่ส่งเสริมให้มีความหลายหลายของชนิดปลา เช่น ปลาดักและปลาแค้กินตัว อ่อนหนอนปลอกน้ำเป็นอาหารหลัก แต่ปลาทั้งสองชนิดมีการแบ่งสรรทรัพยากรอาหารกัน เนื่องจากกินอาหารคนละ ช่วงเวลา โดยปลาดักกินอาหารช่วงเช้า ส่วนปลาแค้กินอาหารช่วงกลางคืน นอกจากการแบ่งสรรทางด้านเวลาด้วย ยัง พบว่ามีการแบ่งสรรทางด้านทรัพยากรอาหารอีกด้วย เช่น ปลาจิ้งจกและปลาแค้กินอาหารช่วงเวลาเดียวกัน (ตอนมืด) แต่ปลาทั้งสองชนิดก็กินอาหารแตกต่างกัน โดยอาหารกลุ่มหลักของปลาจิ้งจก คือ ตัวอ่อนแมลงชีปะขาวและตัวอ่อน แมลงสองปิก ส่วนปลาแค้กินตัวอ่อนแมลงหนอนปลอกน้ำเป็นอาหารหลัก รองลงมาคือตัวอ่อนแมลงชีปะขาว
- 2. การศึกษาการแพร่กระจายของปลาวงศ์ปลาจิ้งจกในลำน้ำทางตอนกลางของประเทศไทย และ ความสัมพันธ์ของปัจจัยทางสิ่งแวดล้อมและถิ่นที่อยู่อาศัยของปลาในสกุล *Schistura* ที่พบทางตอนกลางของประเทศ ไทย โดย สำรวจปลาในลำน้ำสาขาทั้งหมด 5 ลำน้ำ ได้แก่ ลำน้ำตะวันออก (Eastern) แม่โขง (Mekong) เจ้าพระยา

(Chao Phraya) ภาคใต้ (Peninsular) และแม่กลอง (Maeklong) พบปลาวงศ์จิ้งจกทั้งหมด 19 ชนิด แพร่กระจาย แตกต่างกันไปในแต่ละลำน้ำ 5 ลำน้ำสาขาในทางตอนกลางของประเทศไทย โดยแม่น้ำที่พบจำนวนชนิดของปลาวงศ์ จิ้งจกมากที่สุด คือ ลุ่มน้ำแม่กลอง พบปลาวงศ์จิ้งจก ทั้งหมด 13 และลุ่มน้ำตะวันออกพบปลาวงศ์จิ้งจกน้อยที่สุด โดย พบเพียง 3 ชนิด จากการศึกษาพบว่า ปลาค้อ H. smithi มีความชุกชุมและการแพร่กระจายมากที่สุด โดยสามารถ พบในทกลำน้ำในตอนกลางของประเทศ และพบปลาชนิดใหม่ของโลก 2 ชนิด คือปลา Schistura aurantiaca และ Schistura cf robertsi จากการศึกษาพบว่าปลาจิ้งจกทั้ง 19 ชนิดนี้มีความสัมพันธ์กับปัจจัยทางสิ่งแวดล้อม 6 ปัจจัย ได้แก่ ความสูงของพื้นที่ (elevation, 237 \pm 124 m., F = 5.42), อุณหภูมิของน้ำ (temperature, 24.5 \pm 3.1 $^{\circ}$ C, F = 3.84), ความเร็วของกระแสน้ำ (velocity, 35 ± 16 cm·s $^{-1}$, F = 2.74), ปริมาณออกซิเจนที่ละลายอยู่ ในน้ำ (oxygen, 7.6 \pm 0.8 mg·1⁻¹, F=2.71), ค่าซิลิก้าที่ละลายอยู่ในน้ำ (silica, 22.0 \pm 8.3 mg SiO₂·1⁻¹, F=2.32), และค่าเป็นกรด-เบส (pH, 7.4 \pm 0.6, F = 2.24) ของน้ำ ตามลำดับ โดยปลาจิ้งจกส่วนใหญ่มีความสัมพันธ์กับ สิ่งแวดล้อมร่วมกันทั้ง 6 ปัจจัย และมีบางปัจจัยที่ปลาจิ้งจกบางชนิดมีความสัมพันธ์กับปัจจัยนั้น ๆ มากกว่าปัจจัยอื่น เช่น พบว่า S. balteata มีความสัมพันธ์กับความสูงของพื้นที่ (Elevation) มากกว่าปลาจิ้งจกชนิดอื่น ซึ่ง ความสัมพันธ์ทางสิ่งแวดล้อมนี้มีความสำคัญต่อการแพร่กระจายของปลาวงศ์จิ้งจก โดยสามารถบอกถึงลักษณะของ แหล่งที่อยู่อาศัยที่พบปลาแต่ละชนิด ซึ่งแหล่งที่อยู่อาศัยมีความสำคัญต่อการดำรงชีวิตของปลา ได้แก่ พื้นที่สำหรับอยู่ อาศัย แหล่งอาหาร และการสืบพันธุ์ เป็นต้น เช่นปลา *S. balteata* ที่พบในบริเวณแหล่งน้ำที่มีความสัมพันธ์กับ ซึ่งเป็นลักษณะของแหล่งที่อยู่อาศัยที่มีความสูงของพื้นที่มากกว่าบริเวณอื่น ความสูงของพื้นที่มากที่สุด ลักษณะของแหล่งต้นน้ำลำธารที่มีพื้นที่สูงชันส่งผลให้แหล่งน้ำมีอัตราไหลสูงและมีปริมาณออกซิเจนที่ละลายอยู่ในน้ำ ต่ำ และปริมาณอาหารน้อยกว่าบริเวณอื่น ทำให้ปลาที่อยู่บริเวณนี้อาจจะมือวัยวะที่รับหรือแลกเปลี่ยน ใช้หรือเก็บกัก ออกซิเจนได้ดีกว่าปลาชนิดอื่น หรือมีการย่อยอาหารได้ช้ากว่าปลาชนิดอื่น ทำให้สามารถดำรงชีวิตและแพร่กระจาย อยู่ในลำน้ำนั้น ๆ ได้ แต่ขณะเดียวกันความเชี่ยวของกระแสน้ำก็สามารถป้องกันปลาชนิดนี้จากผู้ล่าได้เช่นกัน ดังนั้น การศึกษาในครั้งนี้นอกจากจะสามารถทราบถึงการแพร่กระจายของปลาแต่ละชนิดในแต่ละแหล่งน้ำในตอนกลางของ ประเทศแล้ว ยังสามารถบอกถึงความอุดมสมบูรณ์และความหลากหลายของชนิดพันธุ์ปลาและแหล่งต้นน้ำลำธารอัน โดยปลาวงศ์จิ้งจกสามารถใช้เป็นตัวชี้วัดนี้ได้เนื่องจากเป็นปลาที่พบแพร่กระจายในแหล่งน้ำที่ใส เป็นถิ่นที่อยู่อาศัย สะอาด

3. กลยุทธ์ในการสุ่มตัวอย่างเพื่อประเมินค่าจำนวนชนิดและการแพร่กระจายและความสัมพันธ์กับถิ่นที่อยู่ อาศัยของปลาในลุ่มน้ำของประเทศไทย

การประมาณค่าความอุดมสมบูรณ์ของชนิด การแพร่กระจาย โครงสร้างของกล่มประชากร และ ความสัมพันธ์กับถิ่นที่อยู่อาศัยภายในลุ่มน้ำในประเทศไทยที่ถูกต้องแม่นยำมีความสำคัญกับการศึกษาทางด้าน นิเวศวิทยา การประเมินทางระบบนิเวศ และการบริหารจัดการทรัพยากรสัตว์น้ำ บ่อยครั้งที่นักวิจัยต้องการทราบ ข้อมูลปลาทั้งหมดที่อยู่ในลำน้ำ แต่การสุ่มตัวอย่างตลอดทั้งลำน้ำมีขั้นตอนที่ยุ่งยากและเสียเวลา ดังนั้น โครงการนี้จึง ได้พัฒนาเทคนิคในการประมาณค่าจำนวนชนิดของปลาในลำน้ำ และอยู่ภายใต้ขอบเขตที่ยอมรับได้ทางสถิติ และได้ นำวิธีการสุ่มตัวอย่างที่ได้พัฒนาขึ้นไปศึกษาปลาในลำน้ำจำนวน 119 สถานี ใน 9 ลำน้ำ ในภาคตะวันออก ภาค ตะวันตก และภาคใต้ ได้แก่ คลองสะตอ ซึ่งเป็นเขตติดต่อกันระหว่างจังหวัดจันทบุรีและจังหวัดตราด คลองไพบูลย์ คลองตะเคียน ซึ่งอยู่ในจังหวัดจันทบุรี ห้วยเขย่ง ห้วยปากคอก ห้วยบ้านไร่ ห้วยอู่ล่อง ซึ่งอยู่ในจังหวัดกาญจนบุรี คลองขนาน และคลองน้ำพุ ซึ่งอยู่ในจังหวัดประจวบคีรีขันธ์ ผลการศึกษาพบว่า ปลาในคลองสะตอมีจำนวนทั้งหมด 29 ชนิด โดยพื้นที่เก็บตัวอย่างจะต้องมีขนาดประมาณ 7,200 ตร.ม. หรือร้อยละ 5.7 ของพื้นที่ คลองไพบูลย์ พบ ปลาในลำน้ำนี้มีทั้งหมด 24 ชนิด ซึ่งจะต้องเก็บตัวอย่างขนาด 2,646 ตารางเมตร หรือ 9.9% ของพื้นที่ของลำน้ำ ทั้งหมด คลองตะเคียนพบปลาในลำน้ำนี้มีทั้งหมด 16 ชนิด ซึ่งจะต้องเก็บตัวอย่างขนาด 2,555 ตารางเมตร หรือ 8.3% ของพื้นที่ของล้ำน้ำทั้งหมด ห้วยเขย่งพบปลาในลำน้ำนี้มีทั้งหมด 46 ชนิด ซึ่งจะต้องเก็บตัวอย่างขนาด 4,238 ตารางเมตร หรือ 5.3% ของพื้นที่ของลำน้ำทั้งหมด ห้วยปากคอกพบปลาในลำน้ำนี้มีทั้งหมด 38 ชนิด ซึ่งจะต้องเก็บ ตัวอย่างขนาด 4,238 ตารางเมตร หรือ 2.0% ของพื้นที่ของลำน้ำทั้งหมด ห้วยบ้านไร่พบปลาในลำน้ำนี้มีทั้งหมด 40 ชนิด ซึ่งจะต้องเก็บตัวอย่างขนาด 4,240 ตารางเมตร หรือ 7.1% ของพื้นที่ของลำน้ำทั้งหมด ห้วยอู่ล่องพบปลาในลำ น้ำนี้มีทั้งหมด 39 ชนิด ซึ่งจะต้องเก็บตัวอย่างขนาด 10,921 ตารางเมตร หรือ 3.2% ของพื้นที่ของลำน้ำทั้งหมด คลองขนานพบปลาในลำน้ำนี้มีทั้งหมด 24 ชนิด ซึ่งจะต้องเก็บตัวอย่างขนาด 3,055 ตารางเมตร หรือ 2.4% ของ พื้นที่ของลำน้ำทั้งหมด คลองน้ำพุพบปลาในลำน้ำนี้มีทั้งหมด 16 ชนิด ซึ่งจะต้องเก็บตัวอย่างขนาด 3,780 ตาราง เมตร หรือ 8.1% ของพื้นที่ของลำน้ำทั้งหมด ในการศึกษาครั้งนี้ได้พบปลา 16-45 ชนิดใน 9 ลำน้ำ สำหรับลำน้ำที่พบ ปลา 16 ชนิดนั้นตั้งอยู่ในบริเวณที่ทำการเกษตรและมีแหล่งชุมชนตั้งอยู่ ในทางตรงกันข้ามลำน้ำที่พบปลาจำนวน 45 ชนิดนั้นมีความเป็นธรรมชาติสูง ได้รับการรบกวนน้อย สิ่งที่น่าสนใจอีกประการจากการศึกษานี้สำหรับการอนุรักษ์ พันธุ์ปลาในประเทศไทยคือ จำนวนชนิดของปลาทางภาคตะวันตกของประเทศมีจำนวนต่อหน่วยพื้นที่มากกว่าภาค ตะวันออกและภาคใต้ของประเทศไทย พบปลาสองชนิดใหม่ของโลกคือ Schistura tenebrosa เป็นหนึ่งชนิดที่ได้ ทำการอธิบายเรียบร้อยแล้ว Kangrang, P., Page, L. M., & Beamish, F. W. H. (2011). Description of a new species of Schistura (Teleostei: Nemacheilidae) from the Mae Khlong basin, Thailand. อยู่ในระหว่าง การตีพิมพ์ลงในวารสาร Zootaxa และอีกหนึ่งชนิดคือ Garra sp. กำลังอยู่ในระหว่างการอธิบายกับ Professor R. Mayden

3. ด้านการฟื้นฟูระบบนิเวศ

3.1 พรรณไม้โครงสร้าง เพื่อการฟื้นฟูป่าเขตร้อน

หน่วยวิจัยการฟื้นฟูป่า มหาวิทยาลัยเชี้ยงใหม่ (The Forest Restoration Research Unit – FORRU-CMU) ได้จัดตั้งขึ้นในปี 2537 โดยการนำของ ดร. สตีเฟน อีเลียต และ รศ.ดร.วิไลวรรณ อนุสารสุนทร จากภาควิชา ชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ โดยมีเป้าหมายหลักที่จะศึกษาความเป็นไปได้ในการฟื้นฟูป่าด้วย วิธีพรรณไม้โครงสร้างที่ประยุกต์ให้เหมาะสมกับสภาพท้องถิ่นบนพื้นที่ป่าเสื่อมโทรมในภาคเหนือของไทย

งานวิจัยที่เกิดขึ้นเป็นความร่วมมือระหว่าง อุทยานแห่งชาติดอยสุเทพ-ปุย และ หน่วยวิจัยการฟื้นฟูป่า ประกอบไปด้วย เรือนเพาะชำเพื่อการวิจัย ซึ่งตั้งอยู่บริเวณที่ทำการอุทยานแห่งชาติดอยสุเทพ-ปุย เรือนเพาะชำ ชุมชน และ แปลงปลูกป่าสาธิต บริเวณหมู่บ้านม้ง แม่สาใหม่ โดยได้ทุนสนับสนุนการวิจัยจากโครงการ BRT จาก การทำงานอย่างต่อเนื่องเป็นเวลากว่า 10 ปี หน่วยวิจัยการฟื้นฟูป่า ประสบความสำเร็จ ดังนี้

ผลสำเร็จทางวิชาการ

ผลสำเร็จทางวิชาการของการฟื้นฟูป่าโดยใช้พรรณไม้โครงสร้าง สามารถสรุปได้ดังนี้ 1) สามารถคัดเลือก พรรณไม้โครงสร้างเพื่อฟื้นฟูป่าไม่ผลัดใบได้ 2) สามารถกำหนดเกณฑ์มาตรฐานสำหรับการคัดเลือกพรรณไม้ที่ เหมาะสมจะเป็นพรรณไม้โครงสร้างได้ 3) ได้องค์ความรู้เกี่ยวกับการดูแลกล้าไม้ในแปลงปลูก เช่น ระยะเวลาในการ กำจัดวัชพืช ใส่ปุ๋ย เป็นต้น 4) พรรณไม้โครงสร้างสามารถเร่งให้เกิดการฟื้นตัวของความหลากหลายทางชีวภาพในพื้น ที่ได้ภายใน 7 ปี โดยต้นไม้ที่ปลูก 41 ชนิด ได้ออกดอก ติดผลให้สัตว์ป่าเข้ามาใช้ประโยชน์ และมีถึง 14 ชนิดที่ให้ผล ภายในระยะเวลาเพียง 3 ปี 5) ความหลากหลายของนกที่เข้ามากระจายเมล็ดพันธุ์ในแปลงเพิ่มมากขึ้น จากเดิม 30 ชนิด เมื่อเริ่มปลูก เป็น 87 ชนิด ภายในระยะเวลา 6 ปี 6) พบสัตว์เลี้ยงลูกด้วยนมที่ช่วยแพร่เมล็ดพันธุ์จากป่า ใกล้เคียงเข้ามาในแปลงและทำให้มีชนิดของกล้าไม้ธรรมชาติเพิ่มขึ้นในอีกพื้นที่กว่า 60 ชนิด

ประโยชน์จากงานวิจัยฟื้นฟูป่า

ในด้านการใช้ประโยชน์จากงานวิจัยพื้นฟูป่า ได้มีการขยายผลหลายประการ ประการแรกนำพรรณไม้ โครงสร้างมาประยุกต์ใช้กับพื้นที่ที่มีสภาพแวดล้อมแตกต่างไปจากเดิม เช่น ร่วมมือกับเครือข่ายอนุรักษ์ช้าง ที่จังหวัด กาญจนบุรี เพื่อสร้างป่ากันชน โครงการฟื้นฟูป่าดิบที่ราบต่ำในจังหวัดกระบี่ซึ่งเป็นที่อยู่ของนกแต้วแร้วทองดำ ร่วมกับ BTSC และ RSPB ร่วมมือกับ Cambodia Forest Administrator ในโครงการฟื้นฟูป่าในเขตอุทยานแห่งชาติพนมกุ เลน จังหวัดเสียมเรียบ ประเทศกัมพูชา

ประการต่อมา ได้ถ่ายทอดองค์ความรู้ที่ได้จากการศึกษาวิจัยอย่างต่อเนื่องนี้ไปยังกลุ่มบุคคลที่มีความสนใจ โดยได้จัดตั้งฝ่ายการเผยแพร่และบริการการศึกษาขึ้น กิจกรรมเผยแพร่ความรู้ในหลากหลายรูปแบบได้ถูกจัดขึ้นตาม ความต้องการของผู้เข้าร่วมกิจกรรม ตั้งแต่กิจกรรมเสริมหลักสูตรสำหรับนักเรียนทั้งใน และ นอกสถานที่ การจัด อบรมให้แก่ผู้ประกอบการการท่องเที่ยวเชิงนิเวศ ไปจนถึงการจัดการอบรมเชิงปฏิบัติการสำหรับนักวิชาการทั้งใน ประเทศไทย และ ประเทศเพื่อนบ้าน

หน่วยวิจัยการฟื้นฟูป่ายังทำงานร่วมกับชุมชนในจังหวัดต่าง ๆ ทางภาคเหนือ เช่น ชาวบ้านในเขตดอยแม่สล อง องค์กรภาคเอกชน เช่น IUCN WWF FAO RSPB และ Kew Garden ไปจนถึงหน่วยงานราชการ เช่น โครงการ ปลูกป่าของกองบัญชาการทหารสูงสุด

ผลกระทบจากการฟื้นฟูป่า

องค์ความรู้เกี่ยวกับวิธีการพรรณไม้โครงสร้างค่อยๆ แผ่ขยายออกไปเป็นวงกว้าง และ ได้รับการยอมรับทั้ง จาก โครงการปลูกป่าในระดับชุมชน และโครงการปลูกป่าขนาดใหญ่ เช่น โครงการปลูกป่าดอยแม่สลองที่ได้รับการ สนับสนุนจาก IUCN และ กองบัญชาการทหารสูงสุด และ โครงการ Harapan rainforest ซึ่งมีเป้าหมายที่จะฟื้นฟู พื้นที่ป่าฝนเขตร้อนบนพื้นที่กว่า 1,000 ตารางกิโลเมตร

หน่วยวิจัยการฟื้นฟูป่ายังได้จัดทำหนังสือ "ปลูกให้เป็นป่า" และ "งานวิจัยเพื่อการฟื้นฟูระบบนิเวศปาเขต ร้อน: คู่มือดำเนินการ" ซึ่งมีเนื้อหาครอบคลุมวิธีการฟื้นฟูป่าด้วยพรรณไม้โครงสร้างได้รับการตีพิมพ์ในภาษาต่างๆ รวมทั้งภาษาไทย เพื่อเผยแพร่ข้อมูลไปยังประเทศเพื่อนบ้าน ในขณะเดียวกันได้ร่วมกับ Kew Garden กำลังจัดทำ หนังสือคู่มือการฟื้นฟูป่าที่จะตีพิมพ์ในภาษาอังกฤษ ฝรั่งเศส และ สเปน เพื่อให้องค์ความรู้เกี่ยวกับการฟื้นฟูป่าด้วย พรรณไม้โครงสร้างเผยแพร่ในระดับโลก

3.2 ความรู้ในการฟื้นฟูป่าผลัดใบ

จากการศึกษาพรรณไม้โครงสร้างที่ใช้ในการฟื้นฟูระบบนิเวศป่า ทำให้ได้เทคนิค/วิธีการ และองค์ความรู้ใน การฟื้นฟูป่าในระบบนิเวศป่าผลัดใบ ในพื้นที่ฟื้นฟูป่าบ้านห้วยตึงเฒ่า จ.เชียงใหม่ พื้นที่ 8 ไร่

<u>พรรณไม้โครงสร้าง</u>ที่เหมาะสมต่อการฟื้นฟูป่าผลัดใบได้ 43 ชนิด เช่น พรรณไม้ในวงศ์มะเดื่อ (11 ชนิดพันธุ์) และวงศ์ถั่ว (8 ชนิดพันธุ์) เป็นต้น

<u>หลักการปลูกเพื่อฟื้นฟู</u> ควรปลูกไม้ผสมกันอย่างน้อย 20 ชนิด โดยมีไม้ในกลุ่มมะเดื่อไทรและถั่วรวมกันแล้ว ไม่เกิน 10 ชนิด ที่เหลือให้คัดเลือกจากไม้วงศ์อื่นๆ

<u>วิธีการปลูก</u> ควรปลูกกล้าไม้ในหลุมที่มีขนาดใหญ่กว่าภาชนะบรรจุกล้าไม้ประมาณ 2 เท่า รองก้นหลุมด้วย ปุ๋ยหมัก หลังจากปลูกแล้วควรใส่ปุ๋ยมูลวัวแห้งประมาณ 200 กรัมรอบต้น และคลุมโคนต้นด้วยกระดาษลัง กำจัด วัชพืชควรทำด้วยมือ (ไม่ควรใส่สารกำจัดวัชพืช) ตามด้วยการให้ปุ๋ยมูลวัวอย่างน้อย 3 ครั้ง ในแต่ละฤดูฝน ในสองฤดู ฝนแรกหลังปลูก โดยแต่ละครั้งห่างกัน 6 สัปดาห์ (หรือถี่กว่านั้นถ้าหญ้าขึ้นเร็ว) การทำแนวกันไฟและระบบป้องกันไฟ ป่าเป็นสิ่งที่จำเป็นมากสำหรับป่าผลัดใบ

องค์ความรู้ดังกล่าวได้มีการอบรมถ่ายทอดความรู้เกี่ยวกับการฟื้นฟูป่าให้กับนิสิตนักศึกษา องค์กรเอกชน โรงเรียน และภาคเอกชน ตั้งแต่ 1 เมษายน 2008 จนถึง 31 เมษายน 2010 ทั้งสิ้น 1,036 คน

3.3 ปลูกป่าด้วยวิธีหยอดเมล็ด

การปลู^{*}กป่าด้วยวิธีหยอดเมล็ด เป็นหนึ่งทางเลือกสำหรับการฟื้นฟูระบบนิเวศป่าไม้ที่ช่วยประหยัด งบประมาณและขั้นตอนในการปลูก เนื่องจากการปลูกป่าโดยปกติต้องมีการผลิตกล้าไม้ให้ได้ขนาดที่เหมาะสม ซึ่งต้อง ใช้เวลาอย่างน้อย 1 ปี และต้องใช้แรงงานเกือบทุกขั้นตอน **นางสาวพนิตนาถ ทันใจ สาขานิเวศวิทยาและความ หลากหลายทางชีวภาพ สำนักวิชาวิทยาศาสตร์ มหาวิทยาลัยวลัยลักษณ์** ได้ทำการศึกษาแนวทางการปลูกป่าด้วย วิธีหยอดเมล็ดเพื่อฟื้นฟูป่าท้องถิ่นในภาคใต้ของประเทศไทย โดยทำการศึกษาเกี่ยวกับการคัดเลือกชนิดพรรณไม้ ช่วงเวลาหยอด วิธีหยอด และการดูแลที่เหมาะสมกับวิธีการหยอดเมล็ด

การคัดเลือกชนิดที่เหมาะสมเป็นปัจจัยสำคัญส่งผลต่อความสำเร็จของการประยุกต์ใช้วิธีหยอดเมล็ดใน โครงการฟื้นฟูป่า โดยพรรณไม้ที่มีการศึกษาแล้วว่าเหมาะสมต่อการหลอดเมล็ดในภาคใต้ของประเทศไทย ได้แก่ นม หวา Archidendron clyperia (Jack) Niels. (วงศ์ถั่ว) หาด Artocarpus dadah Miq. (วงศ์มะเดื่อ) อบเชย Cinnamomum iners Reinw. ex Bl. และ ทั้ง Litsea grandis (Wall. ex Nees) Hk.f. (วงศ์อบเชย) พะวา Garcinia hombroniana Pierre (วงศ์มังคุด) จิกนม Palaquium obovatum (Griff.) Engl. (วงศ์ละมุด) และ พลอง Scolopia spinosa (Roxb.) Warb. (วงศ์ตะขบ) ช่วงเวลาที่เหมาะสม คือ ช่วงต้นฝน เนื่องจากเมล็ดจะได้รับ ความชื้นเพียงพอสำหรับการงอกและการสร้างระบบรากที่มีคุณภาพเพื่อสามารถอยู่รอดได้ในฤดูแล้ง

3.4 การสำรวจนกที่กระจายเมล็ดพรรณไม้โครงสร้าง กรณีศึกษาเมล็ดตองแตบ

ตองแตบ (Macaranga denticulata (Bl.) M.-A.) (วงศ์เปล้า) เป็นพรรณไม้เบิกนำและพรรณไม้โครงสร้าง ของป่าที่ถูกบุกรุก ลักษณะเป็นไม้ทรงพุ่มขนาดใหญ่และมีผลขนาดเล็กจำนวนมาก จึงเป็นแหล่งอาหารที่สำคัญของนก หลายชนิด จากการสำรวจและรวบรวมได้ฐานข้อมูล โดย **น.ส.บุชจรีย์ สิงคราช** และ**ดร.นริทธิ์ สีตะสุวรรณ คณะ** วิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ พบชนิดของนกที่เข้ามาที่ต้นตองแตบจำนวน 57 ชนิด เป็นนกที่ช่วยเป็นผู้ กระจายเมล็ด 27 ชนิด โดยนกที่ช่วยกระจายเมล็ดตองแตบ มากที่สุด คือ นกกินปลีท้ายทอยน้ำเงิน (Hypogramma hypogrammicum) มากที่สุด รองมาคือ นกแว่นตาขาวสีทอง (Zosterops palpebrosus) และนกมุ่นรกตาขาว (Alcippe poioicephala)

โดยช่วงเวลาที่นกมากินเมล็ดมากที่สุดคือ ช่วงเวลา 09:00 – 12:00 น. และช่วงเดือนที่พบนกมากที่สุด คือ เดือนมิถุนายน ซึ่งเป็นช่วงที่ตองแตบมีผลสุกมากที่สุด

เมล็ดที่ได้จากมูลนกส่งผลต่อร้อยละการงอก เช่น กินปลี่ ท้ายทอยน้ำเงิน นกภูหงอนหัวน้ำตาลแดง (Staphida castaniceps) นกปรอดเหลืองหัวจุก (Pycnonotus flaviventris) นกแว่นตาขาวสีทองมีร้อยละการงอกสูงกว่าเมล็ดตองแตบที่ได้จาก ต้นแม่ และเมล็ดที่ได้จากมูลนกปรอดสวน (Pycnonotus blanfordi) มีร้อยละการงอกต่ำกว่าเมล็ดที่ได้จากต้นแม่

3.5 ความรู้ในการปลูกกล้าไม้

การปลูกกล้าไม้ เป็นวิธีการพื้นฟูป่าที่ใช้กันโดยทั่วไป ซึ่งหัวใจหลักคือการผลิตกล้าไม้ที่มีคุณภาพดี โดยเป็น กล้าของพรรณไม้ท้องถิ่นหลายชนิด แต่พรรณไม้ท้องถิ่นหลายชนิดมีปัญหาการเพาะเมล็ดได้ยาก จึงต้องมีการพัฒนา วิธีการผลิตกล้าไม้โดยวิธีอื่น ด้วยเหตุนี้ นางสาวอนันทิกา รัตน์น้ำหิน สาขาวิชาวิทยาศาสตร์สิ่งแวดล้อม คณะ วิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ จึงได้ใช้วิธีการขยายพันธุ์แบบไม่อาศัยเพศของต้นไม้หายากเพื่อฟื้นฟูป่า โดยใช้ วิธีการตัดชำ ซึ่งมีขั้นตอนที่ง่ายและประหยัดต้นทุน และวิธีการชักนำให้ออกรากของกิ่งตัดชำจากปัจจัยต่างๆ คือ การ ใช้สารเร่งรากและยากำจัดเชื้อรา พื้นที่ใบ วัสดุตัดชำ และตำแหน่งของกิ่งตัดชำ โดยใช้ต้นไม้หายาก 9 ชนิด ได้แก่ กะอาม (Crypteronia paniculata Bl. var. paniculata), ลำบิด (Diospyros coaetanea Flet.), คำมอกหลวง (Gardenia sootepensis Hutch.), ขว้าว (Haldina cordifolia (Roxb.) Rids.), เน่าใน (Ilex umbellulata (Wall.) Loesn.), บุนนาค (Mesua ferrea L.), แสล่งหอมไก๋ (Rothmania sootepensis (Craib) Brem.), รวงผึ้ง (Schoutenia glomerata King ssp. peregrine (Craib) Roekm. & Hart.) และขึ้หนอน (Scleropyrum pentandrum (Dennst.) Mabb.) อย่างไรก็ดี การใช้วิธีการปลูกกล้าด้วยวิธีการนี้อาจต้องใช้ระยะเวลายาวนาน มากกว่า 1 ปี แต่ก็เป็นแนวทางหนึ่งของการปลูกป่า

3.6 การฟื้นฟูป่าโดยการอนุรักษ์ไม้เบิกนำ

เป็นแนวทางการฟื้นฟูป่าที่ถูกรบกวน ถากถางให้กลายเป็นพื้นที่ว่าง โดยต้นเพกา (*Oroxylum indicum* Vent) เป็นพืชเบิกนำชนิดหนึ่งในป่าเบญจพรรณ เป็นพรรณไม้ชนิดแรกที่สามารถเข้ายึดครองพื้นที่ป่าเสื่อมโทรมได้ จึงมีความสำคัญอย่างยิ่งในการฟื้นฟูป่า อีกทั้งยังมีสรรพคุณเป็นยาสมุนไพรที่ชาวบ้านใช้กันมาตั้งแต่โบราณ

การถ่ายละอองเรณูเป็นส่วนสำคัญที่ช่วยให้พืชดอกแต่ละชนิดสามารถดำรงเผ่าพันธุ์ต่อไปได้ นางสาวเตือน จิต ศรีทองช่วย ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ได้ทำการศึกษาสาเหตุและ ผลดีของลักษณะการปิดยอดเกสรตัวเมียของดอกเพกา โดยพบว่าดอกเพกาจะมีพาหะหลักที่ช่วยในการถ่ายละออง เรณูของดอกเพกา คือ ค้างคาวเล็บกุด ทำให้ดอกเพกามีการปรับตัวให้ ดอกบานในเวลากลางคืน ลักษณะดอกเป็นรูป กรวย กลีบดอกด้านในมีสีครีม ดอกใหญ่ แข็งแรง กลิ่นฉุน เพื่อให้เหมาะกับค้างคาว ดอกเพกามีปลายยอดเกสรตัวเมีย แยกเป็นสองแฉก และจะหุบเข้าหากันหลังจากถูกสัมผัส จากการศึกษาพบว่าปัจจัยที่ส่งผลต่อการปิดนั้น ได้แก่ แรง สัมผัส ละอองเรณูดอกเพกา ละอองเรณูจากดอกไม้ต่างชนิด ปลายยอดเกสรตัวเมียจึงจะปิดเข้าหากันอย่างถาวรเมื่อ ถูกสัมผัส แม้ว่าละอองเรณูที่สัมผัสจะมีจำนวนน้อย หรือเป็นละอองเรณูของพืชต่างชนิด ดังนั้นหากปลายยอดเกสรตัว เมียปิดก่อนที่จะได้รับละอองเรณูในอัตราที่ลดลง

อย่างไรก็ตาม เนื่องจากปัจจุบันค้างคาวเล็บกุดมีจำนวนประชากรลดลง เนื่องจากการถูกล่า และพื้นที่อยู่ อาศัยถูกทำลาย ส่งผลต่อการติดผลของเพกา ดังนั้นการอนุรักษ์ประชากรค้างคาวจึงเป็นส่วนสำคัญที่จะช่วยเพิ่ม จำนวนต้นเพกา ซึ่งเท่ากับเป็นการช่วยฟื้นฟูป่าด้วย

3.7 การใช้ใส้เดือนดิน Polypheretima elongata ฟื้นฟูดินเค็มนากุ้งร้าง

ดินนากุ้งร้าง เป็นดินเสื่อมสภาพที่มีความเค็มสูงและมีความหนาแน่นของดินสูง จึงมีการนำใส้เดือนดินมาใช้ ในการปรับปรุงคุณภาพดิน เนื่องจากพบว่ามีใส้เดือนดิน *Polypheretima elongate* ที่สามารถอยู่รอดในดินที่มี ความเค็มสูงได้ **น.ส.จารุพรรณ ชูเนื่อง คณะสิ่งแวดล้อมและทรัพยากรศาสตร์ มหาวิทยาลัยมหิดล** ได้เลือกใช้ดิน นากุ้งร้างจาก ต.ท่าบอน อ.ระโนด จ.สงขลา พบว่า

การใช้ไส้เดือนดิน Polypheretima elongate มีผลต่อคุณสมบัติทางด้านกายภาพ และเคมีบางประการ ของดินเค็มนากุ้งร้าง ซึ่งเป็นชุดดินระโนด มีค่า bulk density $1.58~\mathrm{g/cm}^3$, ECe $1.65~\mathrm{ds/m}$, CEC $17.99~\mathrm{cmol/kg}$, ESP 44.97%, pH 7.76

การเพาะเลี้ยงใส้เดือน *Polypheretima elongate* ที่เก็บจากพื้นที่ศึกษา เลี้ยงจนเป็นตัวเต็มวัย และนำมา ทดลองปรับปรุงคุณสมบัติของดินนากุ้งร้างที่ผ่านการชะดินด้วยน้ำจืดเป็นเวลา 3 เดือน เพื่อศึกษาผลของ 3 ปัจจัย คือ **จำนวนใส้เดือนดิน** (10,20,30 ตัว) **ชนิดของอินทรีวัตถุ** (ฟางข้าวแห้ง/ปุ๋ยหมักฟางข้าว) และ**ปริมาณอินทรียวัตถุ** (5%/10% โดยน้ำหนังดินแห้ง) ทำการทดลอง 20 ชุดการทดลองในโรงเรือน เป็นเวลา 90วัน

การทดลองพบว่า ไส้เดือนดินสามารถมีชีวิตรอดและทนต่อความเค็มของดินในระดับที่มีโซเดียมที่แลกเปลี่ยน ได้ในช่วง 18.25-87.47 cmol/kg ซึ่งเป็นระดับที่วัดได้จากนากุ้งร้างหลังการทดลอง น้ำหนักของไส้เดือนไม่เพิ่มขึ้น ยกเว้น ชุดการทดลองที่ใส่ไส้เดือน 30 ตัว กับปุ๋ยหมักฟางข้าว 10% (SW₃O₂) ที่ไส้เดือนมีอัตราการเจริญเติบโตขึ้น เล็กน้อย (0.01224 กรัม/90วัน)

จำนวนใส้เดือน ชนิดอินทรียวัตถุ และปริมาณอินทรียวัตถุ ส่งผลต่อการเปลี่ยนแปลงคุณสมบัติทางด้านเคมีของ ดินนากุ้งร้าง โดยการใส่ใส้เดือนที่ความหนาแน่น 30 ตัวกับดินเปล่า ทำให้ค่าเฉลี่ยคุณสมบัติทางเคมีของดินนากุ้ง ได้แก่ ค่า CEC, ESP, Na, NH₄-N, NO₃-N, total-N, phosphorus, potassium สูงกว่าการใส่ใส้เดือน 20 และ10 ตัวอย่างมี นัยสำคัญ ซึ่งจัดเป็นคุณภาพดินที่ดีที่สุด

ผลการทดสอบการใส่ไส้เดือน 30 ตัว กับปัจจัยอินทรียวัตถุ พบว่า การใส่ปุ๋ยหมักฟางข้าวทำให้ดินมีคุณภาพ ดีกว่าการใส่ฟาง โดยชุดที่ใส่ปุ๋ยหมักในปริมาณ 10% กับไส้เดือน 30 ตัว ทำให้คุณสมบัติด้านเคมี ได้แก่ pH, ESP, OC, OM, Na, NH₄-N, NO₃-N, total-N, phosphorus, potassium ดีกว่าการใส่ฟาง แต่การใส่ฟางทำให้ดินมีคุณสมบัติ ทางด้านกายภาพดีกว่าการใส่ปุ๋ย โดยในชุดทดลองที่ใส่ฟาง ดินมีค่า bulk density ต่ำ และ porosity สูงกว่าชุดทดลอง ที่ใส่ปุ๋ยหมัก

3.8 สาหร่ายฟื้นฟูสภาพดิน

ศูนย์จุลินทรีย์ (ศจล.) สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย (วว.) ได้ลงนามความร่วมมือ กับบริษัทอัลโกเทค จำกัด ในวันที่ 30 มิถุนายน 2551 เพื่อถ่ายทอดเทคโนโลยีการผลิตสาหร่ายเพื่อการฟื้นฟูสภาพดิน ในเชิงพาณิชย์ให้กับบริษัทอัลโกเทคเป็นระยะเวลา 5 ปี โดยผลงานวิจัยดังกล่าวได้รับทุนอุดหนุนจากโครงการ BRT

ดร.อาภารัตน์ มหาขันธ์ นักวิจัยสาหร่ายจาก วว. ผู้ถ่ายทอดเทคโนโลยี ได้คัดเลือกสายพันธุ์สาหร่าย Nostoc ที่มีศักยภาพสูงในการปรับปรุงดิน 4 สายพันธุ์ และได้ทดสอบในระดับห้องปฏิบัติการกับดินสวนจากสถานี วิจัยพืชลำตะคองและดินนาจากทุ่งกุลาร้องให้ พบว่าสาหร่ายดังกล่าวสามารถปรับปรุงคุณสมบัติของดินด้านต่างๆ ให้ ดีขึ้น เช่น เพิ่มปริมาณอินทรียวัตถุ และกิจกรรมจุลินทรีย์ ความหนาแน่นรวมของดิน รวมทั้งความพรุนทั้งหมดของ ดิน จึงได้วิจัยและพัฒนาผลิตภัณฑ์สาหร่ายต้นแบบ แบบเม็ด โดยใช้วัสดุรองรับ (filler) ซึ่งได้รับรองมาตรฐาน ผลิตภัณฑ์เกษตรอินทรีย์แล้ว

จากผลสำเร็จดังกล่าวบริษัท อัลโกเทค จำกัด จึงให้ความสนใจนำผลจากโครงการนี้ไปผลิตเชิงพาณิชย์ เพื่อ กระจายไปยังลูกค้ากลุ่มเป้าหมาย ตอบสนองต่อนโยบายของภาคเกษตร ที่ลดการใช้ปุ๋ยเคมี และหันไปใช้ปุ๋ยชีวภาพ เพื่อฟื้นฟูสภาพเสื่อมโทรมของดิน

3.9 การอนุรักษ์แหล่งปล่อยไข่ปะการังในธรรมชาติ เป็นอีกทางเลือกหนึ่งของการอนุรักษ์และฟื้นฟูแนว ปะการัง

ข้อมูลการไหลของกระแสน้ำในทะเลขนอม-หมู่เกาะทะเลใต้ เผยให้เห็นความสำคัญของเกาะราบและเกาะ มัดสุ่ม เป็นต้นกำเนิดตัวอ่อนปะการังที่ถูกพัดพาไปยังเกาะต่างๆ ในหมู่เกาะทะเลใต้ ควรมีอนุรักษ์เพื่อรักษาความอุดม สมบูรณ์ของแนวปะการัง และทรัพยากรทางทะเล

การอนุรักษ์แนวปะการัง และเพิ่มแนวเขตปะการังนั้นสามารถทำได้หลายวิธี โดยวิธีที่นิยมทำกันมาก คือ การปลูกปะการัง ด้วยการปักกิ่งปะการังไว้ในแท่นคอนกรีต ทว่าวิธีการดังกล่าวมีข้อเสียคือ ปะการังที่เกิดใหม่จะมี ความอ่อนแอ เนื่องจากกิ่งปะการังที่นำมาปักส่วนใหญ่มาจากปะการังต้นเดียวกันทำให้มีความหลากหลายทาง พันธุกรรมต่ำ จึงไม่สามารถทนต่อการเปลี่ยนแปลงที่เกิดขึ้นในทะเลได้ดีนัก อย่างไรก็ดี ยังมีอีกแนวทางหนึ่งที่คาดว่า จะเป็นการอนุรักษ์แนวปะการังที่ให้ผลยั่งยืน นั่นคือ การอนุรักษ์แหล่งปล่อยไข่อ่อนปะการังในธรรมชาติให้คงอยู่ เพื่อ จะได้สามารถสร้างไข่หรือตัวอ่อนปะการังให้กระจายไปยังเกาะต่างๆ ด้วยเหตุนี้ นายนิคม อ่อนสี ภาควิชา วิทยาศาสตร์ทางทะเล คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย จึงได้ดำเนินการศึกษาเรื่องการไหลเวียนของ กระแสน้ำระหว่างหมู่เกาะทะเลใต้ อำเภอขนอม จังหวัดนครศรีธรรมราช โดยการสนับสนุนของโครงการ BRT และ บริษัท ปตท. จำกัด (มหาชน) ในช่วงเดือนมีนาคม – เดือนเมษายน เพื่อนำข้อมูลมาจำลองการเคลื่อนที่ของไข่ปะการัง บริเวณทะเลขนอม-หมู่เกาะทะเลใต้ และหาแหล่งปล่อยไข่ปะการังในธรรมชาติที่สำคัญ เพื่อจะนำไปสู่การอนุรักษ์ แหล่งปล่อยไข่ปะการังต่อไป

ผลจากการศึกษาพบแหล่งปล่อยใช่ปะการังในธรรมชาติที่สำคัญในหมู่เกาะทะเลใต้ ได้แก่ เกาะราบ เป็น แหล่งปล่อยใช่ปะการังที่สามารถไหลผ่านไปยังเกาะมัดโกง กองหินน้ำลาย และเกาะแตน, เกาะมัดสุ่ม เป็นแหล่ง ปล่อยใช่ปะการังที่สามารถไหลไป เกาะมัดโกง กองหินน้ำลาย และไหลรอบเกาะแตน ซึ่งจากข้อมูลเหล่านี้สามารถ นำไปสู่การวางแผนการอนุรักษ์พื้นที่ต้นกำเนิดไช่ปะการัง และจะนำไปสู่ความอุดมสมบูรณ์ของแนวปะการังในทะเล ขนอม – หมู่เกาะทะเลใต้ โดยเฉพาะเกาะแตน ซึ่งเป็นเกาะที่ได้รับใช่ปะการังจากเกาะอื่น

3.10 รู้จักหญ้าทะเล ก่อนลงมือปลูก

ประโยชน์ของหญ้าทะเลเป็นที่รับรู้กันอย่างแพร่หลาย หลายภาคส่วนจึงมีแนวคิดการปลูกหญ้าทะเลคืนสู่ ชายฝั่ง เพื่อเพิ่มพื้นที่อยู่อาศัย และพื้นที่หากินให้กับสัตว์น้ำ ซึ่งจะเป็นการเพิ่มปริมาณสัตว์น้ำให้กับชาวประมงด้วย โดยในระยะเวลา 3 ปีที่ผ่านมา ได้มีการปลูกหญ้าทะเลโดยวิธีการย้ายปลูก หรือย้ายหญ้าทะเลจากแหล่งหนึ่งมาปลูก อีกแหล่งหนึ่ง จำนวนกว่า 50,000 ต้น โดยทั้งหมดเป็นหญ้าคาทะเล (Enhalus aciroides) ซึ่งพบว่าหลังจากการย้าย ปลูก หญ้าทะเลที่ปลูกมีอัตราการรอดเพียง 30% เท่านั้น ทั้งนี้เนื่องมาจากปัจจัยที่ส่งผลต่อการเจริญเติบโตของหญ้า ทะเลในแต่ละพื้นที่มีความแตกต่างกัน

นายเอกลักษณ์ รัตนโชติ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ศึกษาผล ของความหนาแน่นต่อการเติบโต การทดแทนประชากร และ การสืบพันธุ์ ของหญ้าทะเลชนิด Enhalus acoroides (L.f.) Royle บริเวณอุทยานแห่งชาติหาดเจ้าไหม จังหวัดตรั้ง พบว่าความเข้มแสงเป็นปัจจัยสำคัญต่อ การเติบโต การทดแทนประชากร และการสืบพันธุ์ของหญ้าคาทะเล การปลูกหญ้าคาทะเลที่หนาแน่นเกินไปจะส่งผล ให้เกิดการบดบังแสงกันเองเนื่องจากหญ้าคาทะเลมีขนาดใบที่ใหญ่และยาว ทำให้มีแสงส่องผ่านลงมายังส่วนของ เนื้อเยื่อเจริญน้อย และการปลูกหญ้าคาทะเลควรปลูกที่ความหนาแน่นเริ่มต้นประมาณ 10-25% ของความหนาแน่น จริงในธรรมชาติ เพื่อลดการบดบังแสงกันเอง และช่วยให้หญ้าทะเลมีการเจริญเติบโตที่ดี

อย่างไรก็ตาม การปลูกหญ้าทะเลในแต่ละพื้นที่ ควรมีการศึกษาปัจจัยทางกายภาพของพื้นที่ เช่น ช่วงเวลา น้ำขึ้นน้ำลง เพื่อเป็นข้อมูลในการเลือกชนิดของหญ้าทะเลที่เหมาะสม

3.11 การฟื้นฟูแนวปะการังอย่างยั่งยืน

การฟื้นฟูแนวปะการังที่เสื่อมโทรมในปัจจุบันมีด้วยกันหลายวิธี โดยแบ่งออกเป็นวิธีหลัก 2 วิธี คือ การฟื้นฟู แนวปะการังที่ใช้คุณสมบัติการสืบพันธุ์แบบไม่อาศัยเพศ เช่น การย้ายปลูกปะการัง หรือการนำชิ้นส่วนปะการังปักยึด ไว้กับวัสดุ และการฟื้นฟูแนวปะการังที่ใช้คุณสมบัติการสืบพันธุ์แบบอาศัยเพศ เช่น การสร้างปะการังเทียม เพื่อเพิ่ม พื้นที่ลงเกาะของตัวอ่อนปะการัง นอกจากนี้ยังมีการนำเซลล์สืบพันธุ์หรือตัวอ่อนปะการังที่ได้จากธรรมชาติมาอนุบาล ในระบบเลี้ยง ก่อนย้ายไปปลูกในธรรมชิต ซึ่งวิธีการนี้จะทำให้ปะการังมีความหลากหลายทางพันธุกรรมสูงกว่าการ ย้ายปลูกปะการัง จึงทำให้ปะการังมีอัตรารอดสูงกว่าการลงเกาะตามธรรมชาติ

นางสาวชโลทร รักษาทรัพย์ ภาควิชาวิทยาศาสตร์ทางทะเล คณะวิทยาศาสตร์ จุฬาลงกรณ์ มหาวิทยาลัย ได้ทำการศึกษาอัตรารอดและการเจริญเติบโตของปะการังเขากวาง Acropora spp. เพื่อการ เพาะเลี้ยง พบว่าในแต่ละปีปะการังเขากวาง A. humilis, A. hyacinthus, A. millepora และ A. nasuta มีการ สร้างเซลล์สืบพันธุ์เพียงปีละ 1 ครั้ง ในช่วงเดือนมกราคม – มีนาคม หลังจากการปฏิสนธิและพัฒนาเป็นตัวอ่อนจะใช้ เวลาประมาณ 5 วันในการลงเกาะ จากนั้นจะสร้างโครงร่างหินปูนในเวลาประมาณ 3-4 วัน และเริ่มดึงสาหร่ายซูเซน เทลลีเข้ามาอาศัยในเนื้อเยื่อหลังจากลงเกาะประมาณ 2 สัปดาห์ และอัตราการรอดของตัวอ่อนปะการังจะเพิ่มสูงขึ้น ถึง 42.1% หลังจากอนุบาลตัวอ่อนปะการังเป็นเวลา 5 เดือน และตัวอ่อนปะการังจะเจริญเติบโตได้ดีเมื่อได้รับแสงใน ปริมาณมาก

3.12 อนุรักษ์พื้นที่นาเกลือ เพื่อฟื้นฟูแหล่งพักอาศัยนกชายเลน

ประชากรของนกชายเลนทั่วโลกมีการลดลงอย่างต่อเนื่อง เนื่องจากการสูญเสียและการถูกทำลาย ถิ่นอาศัย สำหรับทำรังวางไข่และถิ่นอาศัยในช่วงฤดูกาลอพยพ นาเกลือเป็นถิ่นอาศัยที่มนุษย์สร้างขึ้น ซึ่งพบว่ามีการใช้ ประโยชน์โดยนกชายเลนเป็นประจำ นาเกลือจึงอาจจะสามารถทดแทนถิ่นอาศัยตามธรรมชาติที่นกต้องการในช่วงฤดู อพยพ

นายศิริยะ ศรีพนมยม ภาควิชาเทคโนโลยีการบริหารสิ่งแวดล้อม คณะสิ่งแวดล้อมและทรัพยากรศาสตร์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี จึงได้มีการศึกษาอิทธิพลของลักษณะทางภูมิศาสตร์ที่มีต่อความหลาก ชนิดและจำนวนของนกชายเลนใน 20 พื้นที่ตลอดแนวชายฝั่งอ่าวไทยตอนใน ซึ่งเป็นบริเวณที่มีการทำนาเกลือมา เป็นเวลานาน จากการศึกษาพบว่าพื้นที่ที่มีการทำนาเกลือจะมีความหลากชนิดและจำนวนของนกชายเลนมากกว่าใน พื้นที่ที่ไม่มีการทำนาเกลือ นกชายเลนมักจะใช้บ่อตากน้ำในนาเกลือที่มีดินเลนโผล่ขึ้นมาเป็นหย่อมๆ ในการเป็นที่รวม ฝูงพักผ่อนและเป็นทั้งพื้นที่หากินรองในช่วงน้ำขึ้นด้วย

ในจำนวนนกชายเลน 35 ชนิด ที่อพยพเข้ามาแวะพักหาอาหารในประเทศไทย พบว่าบางชนิดเป็นชนิดพันธุ์ ที่มีความเสี่ยงเข้าขั้นวิกฤตต่อการสูญพันธุ์ เช่น นกชายเลนปากช้อน ทั่วโลกพบไม่เกิน 800 ตัว และจะแวะมาพักที่ ประเทศไทยปีละ 12 ตัว เท่านั้น นกทะเลขาเขียวลายจุด ทั่วโลกพบไม่เกิน 1,000 ตัว และนกซ่อมทะเลอกแดง ทั่ว โลกพบไม่เกิน 20,000 ตัวเท่านั้น ดังนั้นนาเกลือแบบโบราณจึงมีส่วนสำคัญอย่างมากในการช่วยรักษาจำนวน ประชากรนกชายเลนที่พบในอ่าวไทยตอนใน จึงควรมีการสร้างความเข้าใจกับเจ้าของนาเกลือ เพื่อจัดการพื้นที่ บางส่วนของนาเกลือ เพื่อให้นกชายเลนสามารถใช้เป็นที่พักรวมฝูงได้

4. ด้านชีววิทยาและนิเวศวิทยาของสัตว์ป่า

4.1 สังคมสัตว์ผู้ล่าขนาดเล็ก (Mammalia: Carnivora) ในเขตรักษาพันธุ์สัตว์ป่าทุ่งใหญ่นเรศวร ด้าน ตะวันตก

สัตว์ผู้ล่าขนาดเล็ก มีบทบาทสำคัญต่อการดำรงความ หลากหลายทางชีวภาพในระบบนิเวศป่าอย่างมาก โดยมีหน้าที่ใน การกระจายเมล็ดพันธุ์พืช และควบคุมประชากรของสัตว์เลี้ยงลูก ด้วยนมขนาดเล็กในป่า แต่ขณะนี้กลับมีปัญหาเรื่องการลดจำนวน ลงอย่างรวดเร็ว เนื่องจากปัญหาการล่า และความเสื่อมโทรมของ ถิ่นที่อยู่อาศัย และยังมีการศึกษาเกี่ยวกับสัตว์ผู้ล่าขนาดเล็ก ทั้งใน ด้านขอสถานภาพ และการแพร่กระจายน้อยมาก จึงยังไม่เพียงพอ ต่อการวางแผนการอนุรักษ์

การศึกษาความสัมพันธ์ระหว่างลักษณะทางสังคมพืชที่มี ความแตกต่างกันระหว่างป่าดิบแล้ง และป่าเบญจพรรณ/ทุ่งหญ้า

กับความหลากหลายของชนิดพันธุ์ และความชุกชุมของสัตว์ผู้ล่าขนาดเล็ก ในเขตรักษาพันธุ์สัตว์ป่าทุ่งใหญ่นเรศวร ตั้งแต่ปี 2550 – 2551 โดย นายวัลลภ ชุติพงษ์ คณะทรัพยากรชีวภาพและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระ จอมเกล้าธนบุรี โดยใช้เทคนิคต่างๆ คือ กล้องดักถ่ายภาพอัตโนมัติ, การสำรวจร่องรอย, การพบเห็นโดยตรง, การ เดินส่องไฟในเวลากลางคืน

พบสัตว์ผู้ล่าขนาดเล็ก ทั้งสิ้น 16 ชนิด 5 วงศ์ จากที่มีเคยมีรายงานพบในประเทศไทยทั้งสิ้น 32 ชนิด 5 วงศ์ ซึ่งนับว่ามีความหลากหลายค่อนข้างสูง ทั้งนี้น่าจะมีสาเหตุมาจากความหลากหลายทางด้านสังคมพืช อันเป็น ตัวกำหนดปริมาณอาหาร ภูมิประเทศ สภาพอากาศ ทำให้สัตว์แต่ละชนิดสามารถปรับตัวและมีความต้องการทางด้าน นิเวศที่แตกต่าง หรือแม้แต่เหมือนกัน และอาศัยอยู่ร่วมกันได้

โดยสามารถจัดสถานภาพด้านการอนุรักษ์สัตว์ผู้ล่าขนาดเล็ก ตามสหภาพนานาชาติเพื่อการอนุรักษ์ ธรรมชาติ และทรัพยากรธรรมชาติ (IUCN) ได้ดังนี้

ใกล้สูญพันธุ์	เสี่ยงต่อการสูญพันธุ์	ใกล้ถูกคุกคาม	ไม่น่ากังวล	ข้อมูลไม่เพียงพอ
(EN) – 1 ชนิด	(VU) - 1 ชนิด	(NT) – 4 ชนิด	(LC) - 9 ชนิด	(DD) - 1 ชนิด
หมาใน	หมีขอ	หมูหริ่ง	หมาจิ้งจอก	หมาหริ่ง
		นาก	แมวดาว	
		ชะมดแผงหางปล้อง	หมาไม้	
		เสือไฟ	ชะมดเช็ด	
			ชะมดแปลงลายแถบ	
			อีเห็นเครือ	
			อีเห็นหน้าด่าง	
			อีเห็นธรรมดา	
			พังพอนกินปู	

4.2 ความสัมพันธ์ของขนาดพื้นที่หากินของเสือโคร่งเพศเมียกับความชุกชุมของประชากรเหยื่อในเขต รักษาพันธุ์สัตว์ป่าห้วยขาแข้ง จังหวัดอุทัยธานี

เสือโคร่งเป็นสัตว์ผู้ล่าขนาดใหญ่ที่สุดในระบบนิเวศป่าไม้ของไทย มีบทบาทในการควบคุมและรักษา พันธุกรรมและประชากรของสัตว์กีบที่เป็นเหยื่อ แต่ปัจจุบันเสือโคร่งทั่วโลกมีแนวโน้มประชากรลดลง โดยมีสาเหตุ มากจากพื้นที่อาศัยถูกทำลาย การล่า และประชากรเหยื่อลดลง

เหยื่อของเสือโคร่งเป็นสัตว์เท้ากีบขนาดกลางถึงใหญ่ ได้แก่ วัวแดง กวางป่า หมูป่า เก้ง และกระทิง โดย ขนาดพื้นที่หากินของเสือโคร่งจะมีความสัมพันธ์กับขนาดของประชากรสัตว์เหยื่อ และเสือโคร่งตัวผู้จะมีขนาดพื้นที่หา กินกว้างกว่าตัวเมีย

การศึกษาในพื้นที่เขตรักษาพันธุ์สัตว์ป่าห้วยขาแข้ง-ทุ่งใหญ่นเรศวร ซึ่งเป็นพื้นที่ที่มีประชากรเสือโคร่งกลุ่ม ใหญ่ที่สุดของประเทศไทย โดยมุ่งเน้นการศึกษาไปที่เสือโคร่งเพศเมีย เนื่องจากมีส่วนสำคัญในการเพิ่มพูนประชากร เสือโคร่ง และมีหน้าที่ในการเลี้ยงดูลูก โดยมีรายละเอียดดังนี้

- การศึกษาการใช้พื้นที่อาศัย ใช้วิธีการติดปลอกคอวิทยุสัญญาณดาวเทียม
- การศึกษาความชุกชุมของสัตว์เหยื่อ ใช้วิธีการวางแปลงสำรวจ และสำรวจนับกองมูล
- การศึกษาการใช้พื้นที่และการเคลื่อนที่ที่มีความสัมพันธ์กับสถานะการสืบพันธุ์ ใช้วิธีการติดตามเฝ้าสังเกต เมื่อพบการเคลื่อนที่ผิดปกติ

จากการศึกษาขนาดพื้นที่หากินของเสือโคร่งเพศเมียจำนวน 2 ตัว ที่ถูกติดปลอกคอวิทยุ โดย Dr.Tommaso Savini มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี พบว่าเสือโคร่งที่ยังโตไม่เต็มวัย มีพื้นที่หากินเพียง 29 ตาราง กิโลเมตร และเสือโคร่งโตเต็มวัยมีขนาดพื้นที่หากิน 75 ตารางกิโลเมตร และพบว่าการล่าเหยื่อของเสือโคร่งอยู่ใน บริเวณที่ค่อนข้างราบและอยู่ใกล้แหล่งน้ำ ซึ่งข้อมูลเหล่านี้จะมีประโยชน์ในการจัดการพื้นที่เพื่อการอนุรักษ์เสือโคร่ง ต่อไป

4.3 การเลือกใช้ถิ่นที่อยู่อาศัยและอุปนิสัยการกินของหมีควาย (Ursus thibetanus) และหมีหมา (Ursus malayanus) ในอุทยานแห่งชาติเขาใหญ่

หมีควาย และหมีหมา เป็นหมีเพียง 2 ชนิดที่มีการแพร่กระจายอยู่ในเอเชียตะวันออกเฉียงใต้ ซึ่งทั้งสองชนิด มีประชากรที่น้อยมาก และกำลังเสี่ยงต่อการสูญพันธุ์ ในขณะที่องค์ความรู้พื้นฐานเกี่ยวกับนิเวศวิทยาของหมีทั้งสอง ชนิดมีการศึกษาอยู่น้อยมาก จึงยังมีข้อมูลไม่เพียงพอต่อการอนุรักษ์

งานวิจัยนี้มุ่งหวังที่จะเพิ่มพูนความรู้
ด้านนิเวศวิทยาของหมีในป่าเขตร้อนของ
ประเทศไทย สร้างฐานข้อมูลชีววิทยาเบื้องต้น
ของหมี เพื่อเอื้อประโยชน์ต่อการจัดการสัตว์ป่า
ในอนาคต ผลการสำรวจหมีควาย และหมีหมา
ในเขตอุทยานแห่งชาติเขาใหญ่ ด้วยการสำรวจ
ร่องรอยเล็บที่หมีทิ้งไว้บนต้นไม้ Dr. George A.
Gale มหาวิทยาลัยเทคโนโลยีพระจอมเกล้า
ธนบุรี พบว่าหมีควายมีการกระจายกว้างขวาง
ครอบคลุมพื้นที่เกือบทั้งอุทยานฯ (80%) แต่ถ้า
จำกัดเฉพาะร่องรอยใหม่ไม่เกิน 3 เดือน หมี

ควายมีการแพร่กระจายประมาณ 50% ของพื้นที่อุทยานฯ ทั้งนี้โอกาสที่จะพบเห็นร่องรอยใหม่ของหมีควายในป่ามี เพียง 14% นอกจากนั้นยังพบว่าปัจจัยที่มีผลต่อการเลือกใช้ถิ่นที่อยู่อาศัยมากที่สุดคือความอุดมสมบูรณ์ของผลไม้ป่า โดยพบว่าผลไม้ที่หมีกินมีประมาณ 28 วงค์ 40 สกุล เนื่องจากผลไม้เป็นปัจจัยสำคัญต่อการดำรงชีวิตของหมีควาย ผืนป่าที่มีความอุดมสมบูรณ์ (Primary forest) จึงมีความสำคัญต่อการรองรับประชากรหมีควายในอนาคต การบุกรุก

ป่าและผลกระทบจากความแปรปรวนของสภาพภูมิอากาศที่เปลี่ยนแปลง จึงอาจมีผลกระทบต่อการอยู่รอดของหมี ควายเป็นอย่างมาก

ทั้งนี้ การติดตามร่องรอยของหมีที่ปรากฏอยู่ตามต้นไม้ จะช่วยในการประเมินกลุ่มประชากรของหมีใน อุทยานแห่งชาติเขาใหญ่ได้ ซึ่งองค์ความรู้ในการติดตามประชากรหมีจะได้มีการฝึกอบรมให้แก่เจ้าหน้าที่อุทยาน แห่งชาติ

4.4 พฤติกรรมการหากินและการจัดโครงสร้างทางสังคมของค้างคาวเล็บกุด

ค้างคาวเล็บกุดเป็นสัตว์เลี้ยงลูกด้วยนมที่พบได้ทั่วทุกภาคของประเทศไทย กินผลไม้ขนาดเล็ก และน้ำหวาน จากเกสรดอกไม้เป็นอาหาร ทำให้ขณะที่ค้างคาวเล็บกุดออกหากิน ก็ทำหน้าที่เป็นผู้ถ่ายละอองเรณูของพืชจากที่หนึ่ง ไปสู่ที่หนึ่งในเวลาเดียวกัน จากงานวิจัยเบื้องต้นแสดงให้เห็นว่าค้างคาวเล็บกุดมีส่วนช่วยผสมเกสรทุเรียนและสะตอ มากกว่า 80% และมีพื้นที่หากินไกล จึงจัดได้ว่าค้างคาวเล็บกุดเป็นสัตว์ช่วยผสมเกสรที่มีประสิทธิภาพสูงมาก การศึกษาพฤติกรรมการหากิน ประสิทธิภาพการถ่ายละอองเรณูของทุเรียน โดย ผศ.ดร.สาระ บำรุงศรี คณะ วิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ พบว่า ระยะทางการหากินของค้างคาวมีความผันแปรไปตามแต่ละถ้ำ ตั้งแต่ 1.8 กม. ถึง 20 กม. (หรือมากกว่า) ในแต่ละวันที่ออกหากิน และยังพบอีกว่าค้างคาวมีความมั่นคงต่อพื้นที่หากินเป็นอย่างมาก โดยจะหากินในที่เดิมๆ และมีความกว้างของพื้นที่หากินอยู่ประมาณครึ่งกิโลเมตร ซึ่งค้างคาวมักจะ หากินอยู่ในบริเวณหนึ่งหรือสองที่เท่านั้นในรอบคืน โดยระยะเวลาที่ค้างคาวหากินขึ้นอยู่กับเพศและอายุ ตั้งแต่ 3-10 ชั่วโมงขึ้นไป พฤติกรรมในการหากินของค้างคาว ใช้เวลาเพียง 1-5 วินาทีในการกินน้ำหวาน จากนั้นจะบินเข้าไปพักในพุ่มไม้ที่รกครึ้ม แล้วกลับออกไปหากินอีกครั้ง โดยมีสัดส่วนระหว่างเวลาที่หากินต่อเวลาที่พักในรอบคืนแตกต่างกัน ตามแต่ชนิดของต้นไม้ เช่น ราว 50 ต่อ 50 ในสะตอ และ 75 ต่อ 25 ในทุเรียน

จากงานวิจัยนี้สามารถประยุกต์ได้ว่าหากต้องการให้ผลไม้ เช่น สะตอและทุเรียนติดผลดีควรปลูกต้นไม้ชนิด อื่นที่เป็นอาหารของค้างคาวในบริเวณเดียวกัน เพื่อทำให้ค้างคาวมาหากินอย่างสม่ำเสมอ และเป็นผลให้ต้นไม้ของเรา ได้รับการผสมเกสรไปด้วย

4.5 การศึกษาพฤติกรรมการร้อง และการใช้ต้นร้องของชะนีมงกุฎ (Hylobates pileatus)

ชะนีเป็นสัตว์ที่อาศัยและทำกิจกรรมทุกอย่างบนเรือนยอดของต้นไม่ โดยพฤติกรรมที่เป็นเอกลักษณ์ของชะนี้ คือ การส่งเสียงร้อง นั้นมีวัตถุประสงค์หลายประการ เช่น การประกาศอาณาเขต เรียกร้องความสนใจจากเพศตรง ข้าม และรักษาความสัมพันธุ์ของคู่ ทั้งนี้การศึกษาพฤติกรรมการร้อง และการใช้ต้นร้องของชะนีมงกุฎ (Hylobates pileatus) ในเขตรักษาพันธุ์สัตว์ปาเขาอ่างฤาใน โดย น.ส.รุ้งนภา พูลจำปา WWF Thailand พบว่า ชะนีมงกุฎมีการ ร้องประสานระหว่างเพศเมียและเพศผู้ เริ่มต้นด้วยเพศเมียและโต้ตอบด้วยเพศผู้ โดยเริ่มร้องตั้งแต่ช่วงเช้าจนถึงเที่ยง ซึ่งร้องมากในช่วงเวลา 10.19 น. การร้องของชะนีมีความถี่ถึง 90.6 % ชะนีมงกุฎใช้ต้นร้องทั้งสิ้น 154 ต้น ส่วนใหญ่ มีขนาดใหญ่และมีความสูงเฉลี่ย 32.5 เมตร มีเส้นผ่านศูนย์กลางเฉลี่ย 87.6 เซนติเมตร ชะนีมักจะเคลื่อนที่ไปมา ระหว่างเรือนยอดในขณะที่ร้อง ชะนีเลือกต้นร้องที่มีเรือนยอดระดับเท่ากันหรือต่ำกว่าเรือนยอดข้างเคียงและมักจะใช้ ต้นไม้เพียงต้นเดียวต่อการร้องหนึ่งรอบ ซึ่งสนับสนุนแนวคิดเกี่ยวกับการรักษาความสัมพันธ์ระหว่างคู่ ในขณะที่ แนวคิดของการป้องกันอาณาเขตไม่มีผลกระทบต่อการกระจายของต้นไม้ที่ชะนีใช้ร้อง เนื่องจากต้นร้องของชะนีพบ กระจายในบริเวณใจกลางมากกว่าบริเวณขอบของพื้นที่หากิน นอกจากนี้ยังพบว่าการกระจายของแหล่งอาหารที่ สำคัญก็ไม่มีผลกระทบต่อการเลือกพื้นที่ของต้นร้องด้วยเช่นกัน

การเข้าใจพฤติกรรมการร้องและรูปแบบการใช้ต้นร้องของชะนีมีประโยชน์ต่อรูปแบบของพฤติกรรมด้าน นิเวศวิทยาของสัตว์จำพวกลิง ค่าง ชะนี นอกจากนั้นยังช่วยให้ทราบข้อมูลหรือความต้องการพื้นฐานในด้านสังคม ระหว่างกลุ่มชะนี ซึ่งนับว่ามีความสำคัญต่อการอนุรักษ์ชะนีและถิ่นที่อยู่อาศัยซึ่งในปัจจุบันมีขนาดเล็กลง และกระจัด กระจายเป็นหย่อม ๆ

4.6 การแพร่กระจาย การเลือกใช้พื้นที่ และพฤติกรรมของไก่ฟ้าพญาลอ ในสถานีวิจัยสิ่งแวดล้อม สะแกราช จังหวัดนครราชสีมา

ไก่ฟ้าพญาลอเป็นนกที่จัดอยู่ในสถานภาพใกล้ถูกคุกคาม ปัจจุบันประชากรของไก่ฟ้าพญาลอลดลงเรื่อยๆ เนื่องจากการสูญเสียถิ่นที่อยู่อาศัย และถิ่นที่อยู่เดิมถูกทำให้เสื่อมสภาพลง ซึ่งคาดการณ์ว่ามีประชากรของไก่ฟ้า พญาลอทั่วโลกไม่ถึง 10,000 ตัว การติดตามศึกษาไก่ฟ้าพญาลอ ในสถานีวิจัยสิ่งแวดล้อมสะแกราช จากการติดตั้ง กล้องดักถ่ายภาพสัตว์และการกำหนดแนวเส้นสำรวจ โดย น.ส.จิระภา สุวรรณรัตน์ คณะวิทยาศาสตร์ มหาวิทยาลัย เทคโนดลยีสุรนารี พบไก่ฟ้าพญาลอแพร่กระจายอยู่ทั้งป่าดิบและป่าปลูก ในขณะที่ผลจากการติดตามสัญญาณวิทยุ ของไก่ฟ้าพญาลอเพศเมียตัวที่ติดเครื่องส่งสัญญาณ พบว่ามีความแตกต่างของขนาดพื้นที่อยู่อาศัยในแต่ละช่วงเวลา ของปี กล่าวคือ ขนาดของพื้นที่อยู่อาศัยจะมีขนาดเล็กลงเมื่อไก่ฟ้าตัวเมียแยกออกจากฝูงหลังจากผสมพันธ์ เพื่อ วางไข่/กกไข่ และเลี้ยงลูกตามลำพัง หลังจากนั้นขนาดของพื้นที่อยู่อาศัยจะมีขนาดเล็กล้าเริ่นพื้นที่ที่มีการปกคลุมของพืชพื้นล่างสูง แต่มีความ หนาแน่นของต้นไม้ขนาดเล็กจำนวนน้อย

4.7 การกระจาย นิเวศวิทยา และพฤติกรรมของลิงกัง (Macaca nemestrina) ในประเทศไทย

ลิงกัง (Pigtail macaque, Macaca nemestrina) แบบลิงที่รู้จักในการเก็บมะพร้าวแบบดั้งเดิม แต่ใน ธรรมชาติลิงชนิดนี้เป็นลิงที่ชื่อาย มีขนาดอาณาเขตขนาดใหญ่อยู่ในพื้นที่ป่าที่ไม่ถูกรบกวน แต่ก็ยังมีหลายการศึกษา พบว่าลิงชนิดนี้เป็นสัตว์ที่เข้ามารบกวนหรือทำลายพืชพันธุ์ทางการเกษตร จึงจำเป็นต้องทำการศึกษานิเวศวิทยาและ พฤติกรรมของลิงชนิดนี้ในหลากหลายสภาพแวดล้อม เช่น พื้นที่ป่าที่ถูกมนุษย์รบกวน และ พื้นที่ที่เกี่ยวข้องกับมนุษย์

การศึกษาได้ดำเนินการในอุทยานแห่งชาติเขาใหญ่ ได้แก่ บริเวณที่ทำการอุทยาน, บริเวณป่าไม่ผลัดใบ ที่ ความสูง 700-800 เมตรจากน้ำทะเล โดย Dr. Tommaso Savini มหาวิทยาเทคโนโลยีพระจอมเกล้าธนบุรี จากการ ติดตามฝูงลิงกัง (ฝูง HQ) ที่มีสมาชิก 32-39 ตัว (ตัวผู้เต็มวัย 2-3 ตัว, ตัวเมียเต็มวัย 12-13 ตัว, ตัวผู้วัยรุ่น 1-3 ตัว และลิงเด็ก 17-20 ตัว) พบว่าขนาดพื้นที่อยู่อาศัยอยู่ระหว่าง 5.8-72.4 เฮคแตร์ (ha) โดยในช่วงฤดูแล้ง (ม.ค.) มี ขนาดพื้นที่เล็กที่สุด 5.8 ha และขนาดพื้นที่ใหญ่มี 2 ช่วง คือ ฤดูร้อน (มี.ค.) 67.3 ha และฤดูฝน (ก.ย.) 72.4 ha โดยเป็นพื้นที่หลัก (core area) ระหว่าง 0.5 ha (ม.ค.) ถึง 11 ha (ก.ย.) การเลือกพื้นที่อยู่อาศัยและชนิดของป่า พบว่า 46%ของช่วงเวลาที่ทำการศึกษาลิงกังจะใช้ชีวิตอยู่ในป่า และ54% อยู่ในพื้นที่ที่มีมนุษย์ โดยชนิดของป่าที่อยู่ อาศัยมีหลายชนิด เป็นป่าดั้งเดิม 69% และป่ารุ่นสอง 30% ส่วนอีก 1% จะอยู่ในพื้นที่ที่มีต้นไม้ขนาดเล็ก พุ่มไม้ และ ทุ่งหญ้า

อาหารที่ลิงกังกิน จากส่วนต่างๆของพืช 138 ชนิด เป็นผลไม้ 126 ชนิด นอกจากนี้จะกินอาหารของคน เช่น ข้าว ผลไม้ ขนมปัง รวมทั้งกินเห็ด แมลง เช่น มด ตั๊กแตน ด้วง และแมงมุม เป็นต้น ทั้งนี้ส่วนของการกินผลไม้ พบว่า ลิงกังชอบกินผลไม้ที่สุก 92.1% และผลไม้อ่อน 7.8% และผลแก่ 0.1% โดยเป็นผลไม้จากต้นไม้หลายประเภท ทั้งไม้ ยืนต้น พุ่มไม้ และมีวิธีการกิน 4 แบบ คือ กลืน คายเมล็ด แกะเมล็ดออก และเคี้ยว

จากการศึกษาดังกล่าวพบว่าลิงกังเป็นสัตว์ที่ช่วยกระจายเมล็ดพืชจำนวนมากทั้งทางด้านชนิดและขนาดของ เมล็ด ในทุกประเภทป่า จากป่าดั้งเดิมไปยังป่ารุ่นสอง เมล็ดที่ผ่านระบบย่อยของลิงกังจะได้รับผลกระทบต่อการงอกและ การเจริญเติบโตน้อยมาก จึงสรุปได้ว่า ลิงกังมีบทบาททที่สำคัญอย่างมากในการฟื้นฟูป่าฝนเขตร้อน

4.8 ตรวจดีเอ็นเอ ระบุตัวลูกช้างเลี้ยง ป้องกันการสวมรอยสัตว์ป่า สู่ระบบเศรษฐกิจ

นักวิจัยพัฒนาชุดตรวจสอบดี้เอ็นเอ ระบุตัวลูกช้างเลี้ยงและวิเคราะห์ความสัมพันธ์แม่ลูกช้าง ป้องกันการนำ ลูกช้างป่าหรือแม่ช้างป่าที่กำลังตั้งครรภ์ออกจากป่าสู่ธุรกิจช้างเลี้ยง และเป็นการอนุรักษ์ช้างป่าให้อยู่คู่ผืนป่าเมืองไทย เผยอนาคตอาจต่อยอดการพัฒนาชุดตรวจสอบดีเอ็นเอในสัตว์ป่าเศรษฐกิจชนิดอื่น ป้องกันการลักลอบนำสัตว์ป่าสู่ ระบบธุรกิจ

จากปัญหาการลักลอบนำลูกช้างป่ามาสวมรอยเป็นช้างเลี้ยง ส่งผลต่อจำนวนประชากรช้างป่าที่ลดลง นางสาวชมชื่น ศิริผันแก้ว คณะชีววิทยา มหาวิทยาลัยมหิดล จึงได้ทำการพัฒนาชุดตรวจดีเอ็นเอ เพื่อระบุตัวลูกช้าง เลี้ยงและวิเคราะห์ความสัมพันธ์แม่ลูกช้าง ทั้งนี้ การระบุตัวช้างด้วยเครื่องหมายดีเอ็นเอมีความแม่นยำ 99.99% โอกาสที่ช้างสองเชือกจะมีรหัสดีเอ็นเอเหมือนกันมีเพียง 0.0002% ส่วนการวิเคราะห์ความสัมพันธ์แม่ลูกด้วย เครื่องหมายดีเอ็นเอนั้น ได้รับการพัฒนาจนมีความแม่นยำ 98.80% ซึ่งการพัฒนาชุดตรวจดีเอ็นเอดังกล่าว จึงช่วย ป้องกันการนำช้างป่าและลูกช้างป่ามาสวมรอยเป็นช้างเลี้ยงได้ หากในอนาคตมีการระบุตัวช้างด้วยรหัสดีเอ็นเอที่มี คุณภาพสูง ในกรณีที่มีการส่งช้างไปยังต่างประเทศข้อมูลดีเอ็นเอจะช่วยตรวจสอบประวัติของช้าง และช่วยในการ คัดเลือกช้างที่จะส่งไปต่างประเทศได้ นอกจากนี้ยังมีประโยชน์ในด้านการศึกษานิเวศวิทยาประชากรช้างป่า ความ หลากหลายทางพันธุกรรมของช้างป่า รวมไปถึงการพัฒนาชุดตรวจดีเอ็นเอสำหรับสัตว์ป่าที่ได้รับอนุญาติให้มีการ เพาะพันธุ์และซื้อขายเพื่อเศรษฐกิจ เพื่อป้องกันการลักลอบสัตว์ป่าออกมาขาย

4.9 พื้นที่ชายฝั่งอ่าวไทยตอนใน แหล่งหากินสำคัญของนกชายเลน

จากการสำรวจเส้นทางหากินของนกชายเลน พบพื้นที่ชายฝั่งอ่าวไทยตอนใน ตั้งแต่แหลมผักเบี้ย จังหวัด เพชรบุรี จนถึงชายฝั่งจังหวัดชลบุรี เป็นพื้นที่แวะพัก และหากินที่สำคัญของนกชายเลน ซึ่งส่วนใหญ่เป็นนกอพยพจา กอลาสก้า บางชนิดเป็นชนิดที่มีความเสี่ยงเข้าขั้นวิกฤตต่อการสูญพันธ์ จึงควรอนุรักษ์พื้นที่ดังกล่าวเพื่อคงพื้นที่หากิน ของสิ่งมีชีวิตที่ใกล้สูญพันธุ์ของโลก

นายศิริยะ ศรีพนมยม คณะทรัพยากรชีวภาพและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระนคร เหนือ ผู้ทำการศึกษาและติดตามเส้นทางการหากินของนกชายเลนในประเทศไทย โดยการสนับสนุนของโครงการ BRT พบว่านกชายเลนที่หากินอยู่ตามชายฝั่งของประเทศไทย ส่วนใหญ่ไม่ใช่นกประจำถิ่น แต่เป็นนกอพยพที่บินมาจากอลาสก้า โดยมีเส้นทางอพยพจากเอเชียตะวันออกไปยังออสเตรเลีย ซึ่งประเทศไทยถือเป็นจุดแวะพักที่สำคัญ โดยเฉพาะบริเวณอ่าวไทยตอนใน ซึ่งเป็นพื้นที่ชายเลนที่อุดมสมบูรณ์ ทั้งนี้จากการศึกษาพบว่าปัจจัยที่ทำให้นกชาย เลนเลือกใช้พื้นที่นี้ในการแวะพักและหากินเนื่องจากมีพื้นที่รวมฝูงที่อยู่ใกล้บริเวณหาดเลน โดยนกจะใช้พื้นที่รวมฝูง สำหรับการหากินและรวมฝูง ในขณะที่น้ำทะเลขึ้นสูงจนท่วมบริเวณหาดเลนที่นกใช้หากินในเวลาปกติ พื้นที่รวมฝูงที่ สำคัญได้แก่ บ่อเกลือ (Salt Marsh) พบที่บางปู จังหวัดสมุทรปราการ และนาเกลือ ตั้งแต่จังหวัดสมุทรสาครไปจนถึง จังหวัดเพชรบุรี รวมไปถึงพื้นที่เคยเป็นบ่อเลี้ยงสัตว์น้ำที่แห้งไปแล้ว ที่นกสามารถยืนถึง

ในจำนวนนกชายเลนอพยพ 35 ชนิด ที่เข้ามาแวะพัก หาอาหารในประเทศไทย พบว่าบางชนิดเป็นชนิดพันธุ์ ที่มีความเสี่ยงเข้าขั้นวิกฤตต่อการสูญพันธุ์ เช่น นกชายเลนปากช้อน ทั่วโลกพบไม่เกิน 800 ตัว และจะแวะมาพักที่ ประเทศไทยปีละ 12 ตัว เท่านั้น นกทะเลขาเขียวลายจุด ทั่วโลกพบไม่เกิน 1,000 ตัว และนกช่อมทะเลอกแดง ทั่ว โลกพบไม่เกิน 20,000 ตัวเท่านั้น ดังนั้นการทำลายพื้นที่หากินของนกชายเลนกลุ่มนี้อาจนำไปสู่การสูญพันธุ์ที่รวดเร็ว ของนกดังกล่าว

4.10 ภาวะโลกร้อนกระทบการย้ายถิ่นฐานไก่ฟ้าพญาลอ

ไก่ฟ้าพญาลอย้ายถิ่นที่อยู่อาศัยและที่หากินจากพื้นที่ระดับต่ำ ไปสู่พื้นที่ระดับสูง ซึ่งเป็นถิ่นที่อยู่อาศัยและหา กินของไก่ฟ้าหลังขาว คาดเกิดจากอุณหภูมิที่สูงขึ้น ทำให้พื้นที่ระดับสูงมีความชื้นสูงขึ้นเหมาะแก่การอยู่อาศัยของ ไก่ฟ้าพญาลอ

ในประเทศไทยมีนกที่จัดอยู่ในกลุ่มไก่ฟ้า ทั้งหมด 10 ชนิด ซึ่งแต่ละชนิดก็มีลักษณะถิ่นที่อยู่อาศัยแต่งต่างกัน ออกไป บางชนิดอาศัยอยู่ในบริเวณพื้นที่ระดับต่ำ หรือ low areas เช่น นกแว่นสีน้ำตาล (Polyplectron malacense) ไก่ฟ้าหน้าเขียว (Lophura ignita) และ ไก่ฟ้าพญาลอ (Lophura diardi) เป็นต้น บางชนิดอาศัย อยู่ในบริเวณพื้นที่ระดับ สูง หรือ montane areas เช่น ไก่ฟ้าหางลายขวาง (Syrmaticus humiae) และไก่ฟ้าหลัง ขาว (Lophura nycthemera) เป็นต้น

อย่างไรก็ดี จากการเก็บข้อมูลในช่วงเวลา 20 ปีที่ผ่านมา พบว่าในบริเวณพื้นที่รอบๆ ที่ทำการอุทยาน แห่งชาติเขาใหญ่ และในแปลงศึกษานิเวศระยะยาวมอสิงโต ซึ่งอยู่ในพื้นที่ระดับสูง 740-890 เมตรจากระดับน้ำทะเล

มีการพบเห็นไก่ฟ้าพญาลอ ซึ่งเป็นนกที่อาศัยอยู่ในระดับต่ำ 762 เมตรจาก ระดับน้ำทะเล เพิ่มมากขึ้น คาดว่าน่าจะเกิดจากอุณหภูมิที่สูงขึ้น ทำให้ พื้นที่ระดับต่ำเกิดความแห้งแล้ง ในขณะที่พื้นที่ระดับสูงมีความชื้นใน บรรยากาศสูงกว่า สัตว์ที่อาศัยอยู่ในพื้นที่ระดับต่ำ อย่างไก่ฟ้าพญาลอจึง ขยายขอบเขตการหากินออกไปในพื้นที่ที่สูงขึ้น และมีความชื้นมากกว่า พื้นที่อยู่อาศัยเดิม และจากการศึกษาเบื้องต้นของ นายนิติ สุขุมาลย์ คณะ ทรัพยากรชีวภาพและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าพระ นครเหนือ โดยการสนับสนุนของโครงการ BRT เกี่ยวกับการขยายพื้นที่หากินของไก่ฟ้าพญาลอ พบว่าแม้ไก่ฟ้าพญาลอจะขึ้นมาหากินในพื้นที่ระดับสูง

ขึ้น แต่มันก็ยังเลือกใช้บริเวณที่เป็นพื้นที่ราบ หรือลาดชันน้อย ซึ่งเป็นลักษณะที่พ[้]บได้ในบริเวณพื้นที่ระดับต่ำ ในขณ^ะ ที่ไก่ฟ้าหลังขาว มักจะเลือกใช้พื้นที่ที่มีความลาดชันสูง บริเวณไหล่เขา จึงเห็นได้ว่าแม้จะหากินอยู่ในระดับเดียวกัน แต่ไก่ฟ้าทั้งสองชนิดก็ยังคงเลือกลักษณะพื้นที่หากินที่แตกต่างกัน

4.11 การอนุรักษ์กล้วยไม้สกุลสีรินธรเนีย

กล้วยไม้สกุลสิรินธรเนีย (Sirindhornia) เป็นกล้วยไม้ดินหายากของ โลก และเป็นกล้วยไม้เฉพาะถิ่นที่พบในประเทศไทยเท่านั้น โดยมีสมาชิกจำนวน 3 ชนิด ได้แก่ เอื้องศรีเชียงดาว (S. pulchella H. Æ. Pedersen & Indhamusika) เอื้องศรีประจิม (S. mirabilis H. Æ. Pedersen & Suksathan) และเอื้องศรีอาคเนย์ (S. monophylla (Collett & Hemsl.) H. Æ. Pedersen & Suksathan) ซึ่งมีแนวโน้มการลดจำนวนลงเรื่อยๆ และอยู่ใน สถานภาพที่เสี่ยงต่อการสญพันธ์สูง

นางสาวกนกอร ศรีม่วง ศูนย์วิจัยอนุกรมวิธานประยุกต์ มหาวิทยาลัย แม่ฟ้าหลวง ได้ทำการศึกษาจำนวนประชากรกล้วยไม้สกุลสิรินธรเนียทั้ง 3 ชนิด จากการสำรวจในปี พ.ศ. 2551 พบเอื้องศรีเชียงดาว 1200 ต้น เอื้องศรีประจิม

791 ต้น และเอื้องศรีอาคเนย์ 500 ต้น ในพื้นที่การกระจายพันธุ์รัศมีไม่เกิน 10 ตารางกิโลเมตร จึงทำให้มีความ หลากหลายทางพันธุกรรมค่อนข้างต่ำ ดังนั้นการวางแผนงานเพื่อการอนุรักษ์ต้องศึกษาข้อมูลเพิ่มเติมและติดตามการ เปลี่ยนแปลงของประชากรอย่างต่อเนื่อง ซึ่งสิ่งที่สำคัญที่สุด คือ การปกป้องและรักษาจำนวนต้นมิให้ลดลงในแต่ละ ประชากร เพื่อรักษาพันธุกรรม

การศึกษาข้อมูล เบื้องต้นทางด้านชีววิทยาของกล้วยไม้สกุลสิรินธรเนีย ทำให้ทราบว่ากล้วยไม้ดินกลุ่มนี้แทบ ไม่มีการขยายพันธุ์โดยการแยกหน่อ แต่จะพยายามผลิดอกให้มากที่สุดและให้ดอกบานนานที่สุด เพื่อล่อให้แมลงเข้า มาผสม แต่กลับมีการติดฝักน้อย เนื่องจากมีแมลงช่วยผสมเกสรเพียงชนิดเดียว คือ ผึ้งช่างไม้ ซึ่งแมลงชนิดนี้จะเข้า ผสมเกสรเพียง 2 ครั้งเท่านั้น สำหรับการเพาะเมล็ดแบบกล้วยไม้ทั่วไปก็แทบจะไม่ได้ผล จึงต้องทำการศึกษา ความสัมพันธ์ระหว่างกล้วยไม้และราไมคอร์ไรซาชนิดที่ส่งผลต่อการงอกของเมล็ด เพื่อจะได้นำไปประยุกต์ใช้ในการ ขยายพันธุ์ให้เพิ่มปริมาณให้มากขึ้น และควรให้ความรู้ด้านการอนุรักษ์และใช้ประโยชน์จากทรัพยากรอย่างยั่งยืนแก่ ชุมชน-ชมชื่น

4.12 นกรายงานใหม่ในอุทยานแห่งชาติเขาใหญ่

นกที่พบอาศัยอยู่ในอุทยานแห่งชาติเขาใหญ่มีรายงานเป็นจำนวนมากถึง 340 ชนิด ถือเป็น 1 ใน 3 ของชนิด นกที่พบได้ในเมืองไทย เมื่อเร็วๆ นี้กลุ่มงานนิเวศวิทยาเชิงอนุรักษ์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี และ คณะนักวิจัยจากมหาวิทยาลัยมหิดล ได้ช่วยกันรวบรวมข้อมูลนกชนิดใหม่ๆ ที่ยังไม่เคยพบในพื้นที่มาก่อน เพื่อจัดทำ บัญชีรายชื่อนกของอุทยานแห่งชาติเขาใหญ่ให้มีความสมบูรณ์ยิ่งขึ้น

ผลการรวบรวมข้อมูลทำให้พบนกชนิดใหม่ที่ยังไม่เคยมีรายงานการพบในพื้นที่อุทยานแห่งชาติเขาใหญ่มา ก่อน 4 ชนิด ซึ่งในประเทศไทยนกทั้ง 4 ชนิดนี้ถูกจัดสถานภาพว่าเป็นนกที่พบเห็นได้น้อยมาก (คณะกรรมการ พิจารณาข้อมูลนก, BCSTRC) ได้แก่

นกเดินดงสีคล้ำ (Turdus feae) และนกกระจ้อยเหลืองไพร (Cettia flavolivacea) ซึ่งพบเห็นตัวได้ยาก และปกติมักพบบนภูเขาและดอยสูงทางภาคเหนือในช่วงฤดูหนาวที่นกอพยพเข้ามาอยู่ในประเทศไทย นกคัคคูเหยี่ยวเล็ก (Hierococcyx vagans) ซึ่งปัจจุบันเป็นนกมีสถานภาพใกล้ถูกคุกคาม (Near threatened; Birdlife International, 2000) เนื่องมาจากการสูญเสียป่าในพื้นที่ราบต่ำซึ่งเป็นที่อยู่อาศัยของนกชนิดนี้ และนกแชว สวรรค์หางดำ (Terpsiphone atrocaudata) ซึ่งเป็นนกที่มีแนวโน้มที่จะเข้าสู่สภาวะเสี่ยงต่อการสูญพันธุ์จากพื้นที่ ธรรมชาติในอนาคต (Volunable; Birdlife International, 2000)

4.13 อาหารและฤดูผสมพันธุ์ นกขุนแผนหัวแดงและนกขุนแผนอกส้ม

บ่อยครั้งที่พบความสัมพันธ์ระหว่างปริมาณอาหารกับช่วงเวลาในการผสมพันธุ์และสืบพันธุ์ของนกในเขต อบอุ่น นั่นคือ นกมีแนวโน้มที่จะสืบพันธุ์ในช่วงที่มีปริมาณอาหารมากที่สุด ในการศึกษาอิทธิพลของปริมาณอาหารต่อ นกเขตร้อน ผู้วิจัยได้มุ่งสังเกตนกสองชนิด คือ นกขุนแผนหัวแดง (Harpactes erythrocephalus) และนกขุนแผน อกส้ม (Harpactes oreskios) โดยการเก็บรวบรวมข้อมูลสัดส่วนของปริมาณสัตว์ขาปล้อง (arthropods) ในอาหาร ของนกทั้งสองชนิด เพื่อเปรียบเทียบช่วงเวลาการสืบพันธุ์ของนกกับปริมาณประชากรเหยื่อแมลงที่เป็นอาหารของนก ผลการติดตามนกขุนแผน 2 ชนิด โดย นายเจมส์ สจ๊วต นักศึกษาปริญญาโท ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยมหิดล ในพื้นที่แปลงวิจัยมอสิงโต อุทยานแห่งชาติเขาใหญ่ พบว่า นกขุนแผนหัวแดงผสมพันธุ์ตั้งแต่เดือน กุมภาพันธ์ถึงเดือนเมษายน และนกขุนแผนอกส้มจะเริ่มต้นในเดือนมกราคมถึงเดือนกุมภาพันธ์

ส่วนการบินหาอาหารของนกทั้งสองชนิดอยู่ที่ระดับความสูงต่างกัน โดยนกขุนแผนหัวแดงจะบินที่ความสูง ประมาณ 4-10 เมตร และนกขุนแผนอกส้มบินที่ความสูง 10-15 เมตร แต่ชนิดของอาหารคล้ายกัน ได้แก่ แมลงใน อันดับ Phamatodea (ตั๊กแตนกิ่งไม้) อันดับ Orthoptera, (ตั๊กแตนหนวดยาว) ตัวหนอนของแมลงในอันดับ Lepidoptera (หนอนผีเสื้อ) แมลงในอันดับ Mantodea (ตั๊กแตนตำข้าว) และแมลงในวงศ์ Cicadidae อันดับ Hemiptera (จักจั่น)

แม้ว่านกทั้งสองชนิดจะใช้ทรัพยากรคล้ายกัน แต่เนื่องจากการบินหาอาหารมีระดับความสูงต่างกัน และ ช่วงเวลาการสืบพันธุ์ไม่ตรงกัน จึงไม่ทำให้เกิดการแย่งกันใช้ทรัพยากร

4.14 อัตราการรอดของ นกปรอดโอ่งเมืองเหนือ

การศึกษาประชากร พฤติกรรมการหากิน ชีววิทยาการสืบพันธุ์ ของนกในเขตร้อนรวมทั้งนกอพยพ ใน อุทยานแห่งชาติเขาใหญ่ โดยการทำเครื่องหมายนกแต่ละตัวด้วยการใส่ห่วงขา ได้มีความก้าวหน้าอย่างมาก ปัจจุบัน มีนกที่ได้ใส่ห่วงขาแล้ว (ทั้งนกตัวเต็มวัยและลูกนกในรัง) 99 ชนิด จำนวนกว่า 2,268 ตัว โดยในจำนวนนี้เป็นนกปรอด โอ่งเมืองเหนือ 310 ตัว รองลงมา คือ นกกินแมลงป่าฝน นกปรอดเหลืองหัวจุก นกจับแมลงคอสีน้ำตาลแดง เป็นต้น ผลการติดตามประชากรนกปรอดโอ่งเมืองเหนือ โดย น.ส. วังวร สังฆเมธาวี ภาควิชาทรัพยากรธรรมชาติและ เทคโนโลยี คณะทรัพยากรธรรมชาติและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี พบว่า อัตราการรอด ต่อปีของนกปรอดโอ่งเมืองเหนือสูงกว่านกชนิดอื่นๆ ในเขตอบอุ่น และสูงกว่าค่าเฉลี่ยอัตราการรอดของนกเขตร้อนใน หวีปอเมริกาใต้และแอฟริกา

อย่างไรก็ตามยังจำเป็นต้องเก็บข้อมูลในระยะยาวเพื่อให้ได้ข้อมูลเกี่ยวกับอัตราการประสบสำเร็จในการทำรัง อัตราการรอดของลูกนก ระยะทางการย้ายอาณาเขตของลูกนกที่แม่นยำมากขึ้น รวมทั้งข้อมูลอายุขัยโดยเฉลี่ยของ นกแต่ละชนิดในแปลงศึกษานิเวศระยะยาวมอสิงโตที่อุทยานแห่งชาติเขาใหญ่ ซึ่งจะเป็นชุดข้อมูลด้านประชากรที่ สมบูรณ์ที่สุดแห่งหนึ่งของการศึกษานกในเอเชีย

4.15 ป่าปลูกกับบทบาทในการอนุรักษ์นางอาย

หลายคนได้ให้ความสนใจกับบทบาทของป่าปลูกที่มีต่อการอนุรักษ์สัตว์ป่ามากขึ้นเช่นกัน ทั้งนี้เพราะใน ปัจจุบันป่าปลูกได้มีการขยายเนื้อที่ปกคลุมมากขึ้นอย่างรวดเร็วในหลายพื้นที่ทั่วโลก การศึกษาบทบาทของป่าปลูกใน การเลือกใช้พื้นที่ของนางอายหรือลิงลม ซึ่งเป็นสัตว์ที่หากินตามเรือนยอดในเวลากลางคืน และจะทำให้หลายคนได้ รู้จักสัตว์ลึกลับกลุ่มนี้มากขึ้น

ผลการศึกษาขั้นต้นโดย นายมนูญ ปลิวสูงเนิน นักศึกษาปริญญาโท ภาควิชาทรัพยากรธรรมชาติและ เทคโนโลยี คณะทรัพยากรธรรมชาติและเทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ยืนยันว่านางอาย เลือกใช้พื้นที่ป่าปลูกที่มีการทดแทนของสังคมพืชพอๆ กับที่เลือกใช้พื้นที่ป่าดั้งเดิม ซึ่งอาจเป็นเพราะการทดแทนของ สังคมพืชทำให้โครงสร้างของป่าปลูกใกล้เคียงกับป่าดั้งเดิม

แต่ในกรณีของป่าปลูกที่ยังไม่มีการทดแทนของสังคมพืช พบว่า ความต่อเนื่องของเรือนยอดและโครงสร้าง อื่นๆ ยังแตกต่างจากป่าดั้งเดิม และจึงทำให้พบนางอายในป่าประเภทนี้น้อยกว่าป่าประเภทอื่นที่ศึกษา

4.16 ชะนีมงกุฎช่วยในการปลูกป่า

การศึกษาการแพร่กระจายเมล็ดพันธุ์ไม้ในป่าโดยชะนีมงกุฎ (Hylobates pileatus) ในเขตรักษาพันธุ์สัตว์ป่า เขาอ่างฤาใน โดยการติดตามและเก็บข้อมูลชะนีกลุ่มเป้าหมาย ที่คุ้นเคยกับนักวิจัยตั้งแต่เวลาชะนีตื่นจนถึงเวลาที่ชะนีเข้า นอนเพื่อศึกษานิเวศวิทยาการกินอาหาร พฤติกรรม การเดินทางในรอบวัน ทำการเก็บมูลของชะนีเพื่อนำมาจำแนกว่า ชะนีกินผลไม้ชนิดใดบ้าง นำเมล็ดที่พบในมูลชะนีมาเพาะเพื่อดูอัตราการงอก และการเจริญเติบโต นอกจากนี้ยัง ติดตามอัตราการงอกของเมล็ดไม้ที่เกิดจากมูลชะนี

ผลการวิจัย โดย ดร.โทมัสโซ ซาวินี ภาควิชาทรัพยากรธรรมชาติและเทคโนโลยี คณะทรัพยากรธรรมชาติและ เทคโนโลยี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี พบว่า ชะนีมงกุฎ มีพื้นที่หากิน (home range) 56 เฮกแตร์ เดินทางเฉลี่ย 1,400 เมตรต่อวัน กินผลไม้สุกเป็นอาหารหลัก (78% ของเวลาที่ใช้กินอาหารทั้งหมด) รองลงมาได้แก่ ใบ อ่อน (18%) ดอก (3%) และสัตว์ในกลุ่มแมลงและแมง (1%) ผลไม้ที่ชะนีกินทั้งหมด 62 ชนิด ส่วนใหญ่เป็นผลไม้ที่มี สีสันสดใส มีรสเปรี้ยวหรือหวาน และฉ่ำน้ำ เช่น กระท้อน คอแลน คอเหี้ย หำช้าง และไทร โดย 2 ชนิดหลังจัดเป็น อาหารหลักของชะนีมงกุฎที่เขาอ่างฤาใน เนื่องจากมีผลได้ตลอดปีและมีจำนวนมาก

การที่ชะนีกินผลไม้เป็นอาหารหลัก และเคลื่อนที่ทั่วไปในป่า ชะนีจึงเป็นสัตว์ป่าที่มีบทบาทสำคัญในการช่วย กระจายเมล็ดไม้โดยการนำพาเมล็ดไม้ห่างไกลจากเรือนยอดของต้นแม่ ซึ่งช่วยเพิ่มอัตราการงอกและอัตราการรอด ของเมล็ดไม้ จึงกล่าวได้ว่าชะนีช่วยปลูกป่าไปในตัวนั่นเอง

4.17 ค้างคาวหน้ายักษ์จมูกปุ่ม (Hipposideros halophyllus)

เป็นสัตว์เฉพาะถิ่นของไทย ที่มีจำนวนประชากร 3 แหล่ง คือ ประชากรที่เขาสมอคอน จังหวัดลพบุรี, เขา สิงห์โต จังหวัดสระแก้ว และที่เขตรักษาพันธ์สัตว์ป่าห้วยขาแข้ง จังหวัดอุทัยธานี โดยมีประชากรรวมกันทั้งหมด 800-1,600 ตัว ซึ่งมีจำนวนน้อยมากเมื่อเปรียบเทียบกับสัตว์ที่ใกล้สูญพันธุ์ชนิดอื่นๆ อีกทั้งประชากรทั้ง 3 กลุ่มยังมีแหล่ง อาศัยที่ห่างกัน อาจส่งผลต่อความหลากหลายทางพันธุกรรม ซึ่งอาจเป็นปัจจัยที่เร่งให้เกิดการสูญพันธุ์เร็วขึ้น ผศ.ดร. กนกพร ไตรวิทยากร สถาบันอณูชีววิทยาและพันธุศาสตร์ มหาวิทยาลัยมหิดล ได้ทำการศึกษาความหลากหลายทางพันธุกรรม ที่แตกต่างกัน เนื่องจากแหล่งที่อยู่ห่างกัน และพบว่าค้างคาวจากเขาสงห์โตมีความหลากหลายทางพันธุกรรม ที่แตกต่างกัน เนื่องจากแหล่งที่อยู่ห่างกัน และพบว่าค้างคาวจากเขาสงห์โตมีความหลากหลายทางพันธุกรรม เนื่องจากมีประชากรค้างคาวในบริเวณนี้น้อยมาก อาจทำให้เกิดการผสมพันธุ์เลือดชิดในกลุ่มประชากร ข้อมูลเบื้องต้น

ของความหลากหลายทางพันธุกรรมของค้างคาวชนิดนี้ และจะเป็นประโยชน์ต่อการวางแผนการอนุรักษ์ค้างคาวหน้า ยักษ์จมูกปุ่มต่อไป

4.18 ค้างคาวมงกุฎ (Rhinolophus sp.)

เป็นกลุ่มค้างคาวที่มีความสับสนในด้านอนุกรมวิธาน โดยมีการพบว่า ค้างคาวมงกุฎเล็ก พบเฉพาะเหนือคอ คอดกระขึ้นไป และค้างคาวมงกุฎจมูกแหลมเหนือ (R. Lepidus) พบเฉพาะทางใต้คอคอดกระลงมา ทั้งสองชนิดมี ลักษณะสัณฐานวิทยาที่คล้ายคลึงกันมาก นางสาวอริยา เดชธราดล ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ได้นำวิธีการวิเคราะห์โดยใช้ความถี่คลื่นเสียงของค้างคาวมาใช้ในการศึกษาอนุกรมวิธาน ของค้างคาวมงกุฎเล็กและค้างคาวมงกุฎจมูกแหลมเหนือ ซึ่งผลจากการศึกษาทำให้พบค้างคาวที่มีความแตกต่างกันถึง 4 กลุ่ม คือ ค้างคาวมงกุฎเล็ก (Rhinolophus pusillus) ค้างคาวมงกุฎจมูกแหลมเหนือ (Rhinolophus lepidus) ค้างคาวมงกุฎจมูกแหลมเหนือชนิดย่อย (Rhinolophus lepidus refulgens) และค้างคาวมงกุฎ (Rhinolophus sp.) ทั้งนี้การจำแนกชนิดที่แม่นยำจะช่วยในการศึกษาความหลากหลายทางชีวภาพได้รวดเร็วและถูกต้องมากยิ่งขึ้น นำไปสู่การวางแผนเพื่ออนุรักษ์ที่เหมาะสม

4.19 กลุ่มของเขียดงู (Order Gymnophiona)

มีรูปร่างคล้ายงู และกลุ่มของกะท่าง (Order Caudata) มีรูปร่างคล้ายกับจิ้งจกหรือกิ้งก่า ซึ่งที่พบใน ประเทศไทยเป็นกลุ่มของนิวท์ (newt) ญาติสนิทของซาลาแมนเดอร์ (salamander) ที่สำคัญคือ มี**รายงานพบเพียง ชนิดเดียวเท่านั้น คือ Tylototriton verrucosus** โดยสามารถพบในแหล่งน้ำบริเวณผืนป่าที่มีความอุดมสมบูรณ์ที่ อยู่สูงจากระดับน้ำทะเลปานกลาง 1,000 เมตรขึ้นไปเท่านั้น

จากการศึกษากระท่างน้ำในประเทศไทยที่มีการกระจายอยู่ตามแนวเทือกเขาในภาคเหนือ และภาค ตะวันออกเฉียงเหนือตอนบน พบว่าลักษณะของกระท่างน้ำที่พบทั้ง 2 แห่งมีลักษณะที่แตกต่างกัน โดยกระท่างที่พบ ทางภาคเหนือ มีลำตัวสีส้มถึงเหลือง ส่วนที่พบทางภาคตะวันออกเฉียงเหนือตอนบนจะมีลำตัวสีคล้ำ **นายปรวีร์ พรหมโชติ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย** จึงได้ทำการศึกษาความหลากหลายทาง พันธุกรรมของกระท่างน้ำ โดยการนำเทคนิคด้านชีวโมเลกุลและสัณฐานวิทยาภายในเข้ามาช่วยในการตรวจสอบความ เหมือนและความแตกต่างในประชากร พบว่ากระท่างน้ำมี 2 สายพันธุกรรมแยกกัน และมีความแตกต่างทางด้าน รูปร่างของกระดูกอย่างชัดเจน ซึ่งสัมพันธ์กับการกระจายทางภูมิศาสตร์ของประเทศไทย และรูปแบบของสี ซึ่งผลที่ได้ จากการศึกษาจะช่วยเพิ่มคุณค่าความหลากหลายทางชีวภาพของสัตว์กลุ่มนี้ในประเทศไทย

4.20 นกเค้ากู่

จัดเป็นนกในก^ลุ่มนกเค้าแมว เป็นนกผู้ล่าที่อยู่ในลำดับสูงสุดของห่วงโซ่อาหาร สามารถพบได้ในบริเวณที่อยู่ อาศัยของมนุษย์ และพื้นที่การเกษตร ในอดีตถูกจัดเป็นนกประจำถิ่นที่พบได้บ่อย และกระจายไปเกือบทั่วประเทศ แต่ด้วยความเชื่อ ทัศนคติที่มีต่อนกกลุ่มนกเค้าแมว ทำให้มีการกำจัดนกกลุ่มนี้ อีกทั้งสารเคมีที่ใช้ในการเกษตร ยังเป็น การฆ่านกเค้ากู่ทางอ้อม สาเหตุเหล่านี้ทำให้จำนวนนกเค้ากู่ลดน้อยลง ซึ่งอาจจะส่งผลต่อระบบนิเวศ และจำนวน ประชากรที่เคยเป็นหยื่อของนกเค้ากู่ที่จะเพิ่มมากขึ้น เนื่องจากขาดนักล่าที่จะคอยควบคุมจำนวนประชากร

นายคำรณ เลียดประถม ภ^าควิชาชีววิทยาป่าไม้ คณะวนศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ได้ทำการศึกษา พฤติกรรมการทำรัง และการกินอาหารของนกเค้ากู่ ข้อมูลจากงานวิจัยพบรูปแบบการเลือกบริเวณทำรัง โดยส่วนใหญ่ รังที่ใช้วางไข่จะเลือกใช้ต้นไม้ค่อนข้างสูงใหญ่ อีกทั้งยังได้ศึกษาพฤกติกรรมการกินอาหาร ด้วยวิธีการศึกษาจาก pellet หรือสำรอกของนก ซึ่งเป็นวิธีการศึกษาที่ไม่ต้องฆ่านก จากการศึกษาพบอาหารหลักของนกเค้ากู่คือ สัตว์เลี้ยง ลูกด้วยนมขนาดเล็ก สัตว์สะเทินน้ำสะเทินบก สัตว์เลี้ยงคลาน และแมลง ทั้งนี้ข้อค้นพบจากการศึกษาช่วยให้เห็น ความสำคัญของนกเค้ากู่ในระบบนิเวศ และเป็นข้อมูลพื้นฐานที่จะนำไปใช้ในการอนุรักษ์นกเค้ากู่

4.21 เต่าปูลู (Platysternon megacephalum)

จัดอยู่ในสถานภาพใกล้สูญพันธุ์ (endangered) ตามบัญชีพืชและสัตว์ใกล้สูญพันธุ์ IUCN ปี 2007 นอกจากนี้ยังจัดอยู่ในบัญชี Appendix II ในอนุสัญญาว่าด้วยการค้าสัตว์ป่า และพืชป่าที่ใกล้สูญพันธุ์ (CITES) และเป็น สัตว์ป่าคุ้มครอง ตามพระราชบัญญัติสงวนและคุ้มครองสัตว์ป่า พ.ศ. 2546 (ฉบับที่ 2) เต่าปูลูมีแหล่งกระจายพันธุ์อยู่ใน แถบเอเชีย ตั้งแต่ตอนใต้ของจีน พม่า ไทย ลาว และกัมพูชา โดยในประเทศไทยพบแพร่กระจายอยู่ในจังหวัดเชียงใหม่ แม่ฮ่องสอน แพร่ กาญจนบุรี ตาก เลย เพชรบูรณ์ และชัยภูมิ

การวางแผนการจัดการด้านการอนุรักษ์จำเป็นต้องมีการศึกษาสถานภาพที่แน่นอนของเต่าปูลูในปัจจุบัน จึง มีการศึกษาการแพร่กระจายของเต่าปูลูในประเทศไทย โดยนางเคลือวัลย์ พิพัฒน์สวัสดิกุล สหสาขาวิชาวิทยาศาสตร์ สิ่งแวดล้อม จุฬาลงกรณ์มหาวิทยาลัย พบว่าเต่าปูลูมักอาศัยอยู่เพียงลำพังตามลำธารที่มีน้ำไหลภายในป่าเต็งรัง และ บริเวณเขาในป่าดิบชื้น และพบแหล่งที่อยู่อาศัยใหม่ของเต่าปูลูเพิ่มขึ้น 1 แห่ง จากเดิมในแหล่งน้ำ 9 แห่งในภาค ตะวันออกเฉียงเหนือที่มีรายงานมาก่อน โดยสามารถพบเห็นได้ในเวลากลางคืน ในสภาพแหล่งน้ำที่มีอุณหภูมิอยู่ ระหว่าง 15.5 - 20.3 ℃, pH 5.32 - 8.07, ความลึกของน้ำระหว่าง 14 − 95 เซนติเมตร และพบมากที่ระดับความ สูงเหนือน้ำทะเลระหว่าง 630 − 720 เมตร จากการศึกษาพบว่าเต่าปูลูมีสถานภาพประชากรที่น่าเป็นห่วง เนื่องจากมี พื้นที่อาศัยลดลง อีกทั้งยังถูกจับมาใช้เป็นยาและจำหน่ายเป็นสัตว์เลี้ยง จึงควรมีการจัดการด้านการอนุรักษ์อย่าง เร่งด่วน

5. ด้านการจัดการทรัพยากรอย่างยั่งยืนและภูมิปัญญาท้องถิ่น

5.1 ภูมิปัญญาการจับผึ้งหลวงและแนวทางการอนุรักษ์ของพรานผึ้ง

ชุมชน^{*}บ้านถ้ำพระพุทธ เป็นชุมชนรอยต่อระหว่างจังหวัดตรังและนครศรีธรรมราช ชุมชนนี้มีการจับผึ้งหลวง มาตั้งแต่บรรพบุรุษ โดยถือเป็นอาชีพเสริมของชุมชน เพื่อนำน้ำผึ้งมาบรรจุขวดขาย นอกจากภูมิปัญญาในการจับผึ้ง แล้ว ยังมีแนวทางการอนุรักษ์ผึ้งหลวงผสมผสานอยู่ด้วย

จากการสำรวจ^{*}ข้อมูลวิธีการและขั้นตอนก^{*}ารจับผึ้งของพรานผึ้ง, ความเชื่อกับการอนุรักษ์ผึ้งหลวงอย่างยั่งยืน, และประเมินมูลค่าทางเศรษฐกิจของน้ำผึ้งในชุมชน **โดย น.ส. ทิพย์ทิวา สัมพันธมิตร มหาวิทยาลัยทักษิณ** พบว่า

วิธีการและขั้นตอนการจับผึ้ง เป็นภูมิปัญญาที่ต้องอาศัยความเชี่ยวชาญของพรานผึ้ง เริ่มจากการรู้ฤดูกาลที่ ผึ้งย้ายเข้ามาทำรัง ตำแหน่งของรัง โดยต้องอาศัยความชำนาญในการติดตามค้นหารัง โดยการสังเกตบริเวณที่ผึ้งไปทำ รัง ติดตามพฤติกรรมผึ้ง เมื่อสังเกตพบรังผึ้งแล้วพรานผึ้งจะมีการแสดงความเป็น แล้วจึงเตรียมอุปกรณ์การจับผึ้ง จากนั้นจึงเป็นขั้นตอนการขึ้นจับผึ้งหลวง ซึ่งจะใช้ทีมงาน 3-4 คน

ความเชื่อ กับ การอนุรักษ์ ความเชื่อของพรานผึ้งส่งผลถึงการอนุรักษ์ทั้งทางตรงและทางอ้อม เช่น ความ เชื่อเกี่ยวกับสถานที่ที่พบรังผึ้ง บางแห่งมีความเชื่อว่าเป็นผึ้งดุร้าย รังผึ้งที่มีเจ้าของ พรานผึ้งจะไม่จับผึ้งที่มีรังใน สถานที่เชื่อว่าดุร้าย หรือมีเจ้าของ

มูลค่าทางเศรษฐกิจของน้ำผึ้ง จากการสำรวจพบว่ามูลค่าน้ำผึ้งของกลุ่มพรานผึ้งเท่ากับ 100,000 บาทต่อปี มีต้นทุนในการดำเนินการทั้งหมด 28,083 บาทต่อปี จึงคิดเป็นมูลค่าน้ำผึ้งสุทธิได้เท่ากับ 71,917 บาทต่อปี

ผลการศึกษานี้ชี้ให้เป็นว่าความเชื่อ และภูมิป[ั]ญญาในการเก็บรังผึ้งของพรานผึ้งในชุมชนถ้ำพระพุทธ ก่อให้เกิดการอนุรักษ์ผึ้งหลวงอย่างยั่งยืน ทำให้ยังรักษาความหลากหลายทางชีวภาพที่มีมูลค่าทางเศรษฐกิจให้คงอยู่ กับชุมชน แต่หากชุมชนขาดการอนุรักษ์และสืบต่อภูมิปัญญา รวมถึงไม่อนุรักษ์ความหลากหลายทางชีวภาพรายรอบ หมู่บ้าน ซึ่งเป็นปัจจัยการอยู่อาศัยของผึ้ง จะทำให้ทรัพยากรผึ้งหลวงที่ทรัพยากรสำคัญในท้องถิ่นสูญหายไป

5.2 การอนุรักษ์ทรัพยากรชายฝั่งทะเล โดยการพัฒนาสาระการเรียนรู้ท้องถิ่น

การพัฒนาสาระการเรียนรู้ท้องถิ่น เรื่องการอนุรักษ์ทรัพยากรชายฝั่งทะเล ประกอบด้วย คู่มือการเรียนรู้ ท้องถิ่น และระบบนิเวศชายฝั่ง สำหรับนักเรียนชั้นประถมศึกษาปีที่ 6 โดยใช้กรณีศึกษาจังหวัดระยอง เพื่อใช้เป็น เครื่องมือการเรียนการสอนตามหลักสูตรการศึกษาขั้นพื้นฐาน พ.ศ. 2544 เกี่ยวกับสิ่งแวดล้อมในระดับช่วงชั้นที่ 2 โดย น.ส.อัญชลี มะลิวัลย์ ภาควิชาเทคโนโลยีการบริหารสิ่งแวดล้อม คณะสิ่งแวดล้อมและทรัพยากรศาสตร์ มหาวิทยาลัยมหิดล ประกอบด้วยเนื้อหาสาระ ดังนี้

- 1. ทรัพยากรชายฝั่งทะเล
- 2. ทรัพยากรชายฝั่งทะเลในท้องถิ่น : ทรัพยากรน้ำทะเล, ทรัพยากรปาไม้ชายฝั่งทะเล, ทรัพยากรปะการัง, ทรัพยากรหญ้าทะเล, ทรัพยากรสัตว์ทะเลหายาก
- 3. ระบบนิเวศชายฝั่งทะเลในท้องถิ่น : ปากน้ำประแส, ภาวะโลกร้อนและผลกระทบต่อชายฝั่งทะเล, แนวทางในการอนุรักษ์ระบบนิเวศชายฝั่งทะเล

พร้อมกันนี้ ยังได้คู่มือสำหรับครู ซึ่งประกอบด้วยวิธีการสอน และใบงานที่เหมาะสมกับบทเรียนในสาระการ เรียนรู้ของนักเรียน

5.3 ทรัพยากรธรรมชาติด้านพืชพรรณ ในพื้นที่ศูนย์ภูฟ้าพัฒนาฯ อ.บ่อเกลือ จ.น่าน

ตำบลภูฟ้า เป็นตำบลที่แยกมาจากตำบลบ่อเกลือใต้ อ.บ่อเกลือ จ.น่าน พื้นที่ทางทิศตะวันออกติดกับ สาธารณรัฐประชาธิปไตยประชาชนลาว พื้นที่ส่วนใหญ่เป็นภูเขาสูง 85% และ มีพื้นที่ราบเพียง 15% สภาพป่าเป็นป่า ต้นน้ำน่าน ภูมิอากาศเย็น มี 2 ฤดู คือ ฤดูหนาว และฤดูฝน ประชาชนส่วนใหญ่ประกอบอาชีพทำการเกษตร ปลูกพืช เลี้ยงสัตว์ คนพื้นถิ่นส่วนใหญ่เป็นชนเผ่าลั๊วะ และชนเผ่ามลาบรี (เผ่าตองเหลือง) จำนวนหนึ่ง การสำรวจภูมิปัญญาท้องถิ่นของชนพื้นเมือง เกี่ยวกับการใช้ประโยชน์จากทรัพยากรธรรมชาติด้านพืชพรรณ โดยการสุ่มตัวอย่างสำรวจ โดย **น.ส.จุฑามณี แสงสว่าง สถาบันค้นคว้าและพัฒนาระบบนิเวศเกษตร มหาวิทยาลัยเกษตรศาสตร์** พบพืชพรรณธรรมชาติที่สามารถจำแนกได้ 101 วงศ์ 135 สกุล 168 ชนิด แบ่งเป็น ประเภท ไม้ยืนต้นและลูกไม้ 32 ชนิด, ไม้พุ่ม 20 ชนิด, ไม้เลื้อย 24 ชนิด, ไม้คลุมดิน 29 ชนิด, ไม้ล้มลุก 57 ชนิด และ พืชน้ำ 7 ชนิด พร้อมทั้งได้จัดทำรายชื่อพืชและจำแนกตามลักษณะวิสัยของพืช ทั้ง 168 ชนิด อีกทั้งยังได้จัดจำแนก พืชพรรณตามการใช้ประโยชน์ ดังนี้

- พืชพรรณธรรมชาติเพื่อเป็นสมุนไพรจำนวน 29 ชนิด เช่น มะขามป้อม ขี้เหล็ก เติม เป็นต้น
- พืชพรรณธรรมชาติเพื่อเป็นอาหาร จำนวน 53 ชนิด ได้แก่ เชียด ดีหมี กระตังบาย ต๋าว เป็นต้น
- พืชพรรณธรรมชาติเพื่อเป็นอาหารสัตว์ จำนวน 15 ชนิด ได้แก่ หญ้าขัดใบยาว มะขามป้อม เป็นต้น
- พ**ืชพรรณธรรมชาติเพื่อการใช้สอย** จำนวน 30 ชนิด ได้แก่ หญ้าขัดใบยาว หวายดำ ไผ่ซางดอย เป็นต้น
- พืชพรรณธรรมชาติเพื่อการก่อสร้าง จำนวน 10 ชนิด ได้แก่ ขานาง คิง จิก ช้างล้อม เป็นต้น
- พืชพรรณธรรมชาติเพื่อจำหน่ายเป็นสินค้า จำนวน 14 ชนิด ได้แก่ ไผ่ซางดอย หวายผิวดีด เป็นต้น

การสำรวจการถ่ายทอดความรู้ ภูมิปัญญาด้านการใช้ประโยชน์พืชพรรณธรรมชาติของคนท้องถิ่นภูฟ้า พบว่า มีเพียง 30% ที่มีการถ่ายทอดความรู้ ภูมิปัญญาให้แก่คนในครอบครัว เพื่อนบ้าน เด็กและเยาวชนในโรงเรียน ทั้งนี้ จากข้อมูลดังกล่าวได้มีการจัดทำฐานข้อมูลพรรณพืชและเว็บไซต์เผยแพร่ ได้จัดทำเป็นฐานข้อมูลออนไลน์ และ เผยแพร่ในรูปแบบของเว็บไซต์ ซึ่งมี URL http://www.plantphufa.aerdi.ku.ac.th

5.4 ความสำเร็จของชุมชนในการกำหนดพื้นที่ห้ามจับหอยหลอดเพื่อการอนุรักษ์

การหาหอยหลอดที่เป็นอาชีพหลักของชุมชนดอนหอยหลอดมากว่า 100 ปี แต่ความต้องการหอยหลอดที่ มากขึ้นส่งผลโดยตรงต่อประชากรหอยหลอดที่ลดน้อยลงอย่างเห็นได้ชัด จากปี พ.ศ. 2547 ที่สามารถหาหอยหลอดได้ 3-8 ตัว/ตารางเมตร ปัจจุบันพบเพียงตารางเมตรละ 1 ตัว หรือไม่พบเลย จากการศึกษาแนวทางการจัดการหอย หลอดอย่างยั่งยืน ทำให้ทราบว่าการปิดพื้นที่หาหอยหลอดจะทำให้หอยหลอดเพิ่มจำนวนขึ้นมาได้ แต่การดำเนินการ ปิดพื้นที่ดังกล่าวต้องอาศัยความเข้าใจ และความร่วมมือจากชุมชน ซึ่งในความเป็นจริงดำเนินการได้ยาก

พื้นที่ดอนหอยหลอด ซึ่งเป็นแหล่งที่อยู่อาศัยของหอยหลอดที่ใหญ่ที่สุดในประเทศไทย โดยเฉพาะอย่างยิ่ง บริเวณดอนหน้าศาล ซึ่งเป็นทั้งแหล่งหาหอยหลอดและแหล่งท่องเที่ยวที่สำคัญ ทว่าการส่งเสริมการท่องเที่ยวดอน หอยหลอดส่งผลให้มีความต้องการหอยหลอดในปริมาณที่มากขึ้น การหาหอยหลอดของชาวบ้านจึงเปลี่ยนวิธีการที่ไม่ เหมาะสมและมีจำนวนผู้หาเพิ่มมากขึ้น ทำให้ปริมาณหอยหลอดมีแนวโน้มที่ลดลงทุกปี แต่จากการศึกษาข้อมูล ประชากรหอยหลอด โดยนายกอบชัย วรพิมพงษ์ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย โดย การสนับสนุนของโครงการ BRT พบว่าแม้หอยหลอดจะมีจำนวนน้อยแต่หอยหลอดยังคงสามารถสืบพันธุ์ได้ ซึ่งอาจมี ความเป็นไปได้ที่ความหนาแน่นของหอยหลอดจะกลับมาชุกชุมอีกครั้งหนึ่ง ดังนั้นนโยบายในการใช้ทรัพยากรหอย หลอดในพื้นที่จึงเป็นเรื่องสำคัญที่จะสามารถช่วยแก้ไขปัญหาการลดลงของประชากรหอยหลอดได้

ด้วยเหตุนี้ จึงได้เกิดการประชุมเพื่อทำความเข้าใจ โดยใช้แบบจำลองบนคอมพิวเตอร์ที่พัฒนาขึ้นเพื่อร่วมกัน หาแนวทางการจัดการทรัพยากรหอยหลอด จนในที่สุดสามารถกำหนดพื้นที่ห้ามจับหอยหลอดที่ชุมชนยอมรับได้ ประมาณ 70 ไร่ อย่างไรก็ดี ขณะที่วางแนวกำหนดเขตห้ามจับหอยหลอดดังกล่าว ได้มีกลุ่มชาวประมงที่ไม่ใช่กลุ่มจับ หอยหลอดเข้ามาขัดขวาง จึงทำให้ต้องมีการประชุมเพื่อหารืออีกครั้ง โดยเป็นการหารือร่วมกันระหว่างกลุ่มอนุรักษ์ หอยหลอด และกลุ่มชาวประมงที่หากินในพื้นที่ดอนหอยหลอด ผลจากการเจรจาดังกล่าวทำให้สามารถตกลงกัน และ เลือกพื้นที่ห้ามจับหอยหลอดใหม่ได้ โดยมีเนื้อที่ประมาณ 22 ไร่ ซึ่งผลจากการปิดพื้นที่บริเวณดังกล่าวพบว่า ประชากรหอยหลอดมีแนวโน้มฟื้นคืนสภาพ โดยมีความหนาแน่นเพิ่มขึ้นจาก 1 ตัวต่อตารางเมตรในเดือนสิงหาคม พ.ศ. 2552 เป็น 6-10 ตัวต่อตารางเมตรในเดือนตุลาคม พ.ศ. 2553

ดัชนีชี้วัดความสำเร็จ	ก่อนการดำเนินงาน	หลังการดำเนินงาน	
	(สิงหาคม พ.ศ. 2552)	(ตุลาคม พ.ศ. 2553)	
1. ความหนาแน่น (ตัวต่อตารางเมตร)	1	6-10	
2. จำนวนผู้เก็บหอยหลอด (คนต่อวัน)	20-30	60-100 คนต่อวัน	
3. ราคาขาย (บาทต่อกิโลกรัม)	55-60	55-60	
4. ปริมาณที่จับได้ต่อวัน (กิโลกรัมต่อ	2.5	7-10	
คน)			
5. รายได้เฉลี่ย (บาทต่อคนต่อวัน)	130	500	

5.5 เพิ่มพื้นที่ป่าใต้ทะเล แนวหญ้าทะเลเกาะท่าไร่ ผลสำเร็จจากความร่วมมือของชุมชนในการอนุรักษ์

ความร่วมมือจากชุมชน และคณะวิจัย ในการอนุรักษ์แนวหญ้าทะเล ขนาดใหญ่ของเกาะท่าไร่ ทะเลขนอม-หมู่เกาะทะเลใต้ จังหวัดนครศรีธรรมราช ประสบความสำเร็จ ส่งผลให้แนวหญ้าทะเลที่จากเดิมมีเนื้อที่ 45 ไร่ เพิ่มขึ้นอีก ถึง 10 ไร่ เป็น 55 ไร่ ในระยะเวลา 2 ปี

หญ้าทะเลมีบทบาทสำคัญต่อระบบนิเวศใต้ทะเล เป็นทั้งแหล่งอาหาร แหล่งหลบภัย และแหล่งอนุบาลสัตว์น้ำ ความซับซ้อนของแนวหญ้าทะเลเป็น ปัจจัยสำคัญที่ส่งเสริมให้เกิดความหลากหลายและความอุดมสมบูรณ์ของ สิ่ง มี ชี วิ ๓ ใ ต้ ท ะ เล ทั้ง นี้ จ า ก ก า ร ส ำ ร ว จ วิ จั ย ข อ ง ค ณ ะ วิ จั ย มหาวิทยาลัยสงขลานครินทร์ โดยการสนับสนุนของโครงการ BRT ในบริเวณ ทะเลขนอม-หมู่เกาะทะเลใต้ ตั้งแต่ปี พ.ศ. 2549 พบว่าบริเวณเกาะท่าไร่ มีแนว หญ้าทะเลที่ค่อนข้างสมบูรณ์ ขนาดพื้นที่ประมาณ 45 ไร่ ซึ่งแม้จะเป็นพื้นที่ที่ไม่ ใหญ่มากนัก แต่สามารถพบความหลากหลายของหญ้าทะเลถึง 4 ชนิด ได้แก่

หญ้าชะเงาใบยาว Enhalus acoroides, หญ้าชะเงาเต่า Thalassia hemprichii ,หญ้าเขียวใบแฉก Halodule uninervis และหญ้าใบมะกรูด Halophila ovalis และเป็นแหล่งที่สามารถพบสัตว์น้ำนานาชนิดทั้งกุ้ง หอย ปู และ ปลา จึงนำไปสู่การอนุรักษ์โดยการวางแนวทุ่นรอบเกาะ เพื่อป้องกันการทำลายแนวหญ้าทะเล และคณะวิจัยยังได้มี การอบรมให้ความรู้แก่ชาวบ้านในเขตใกล้เคียง ให้รู้จักประโยชน์ของแนวหญ้าทะเล และช่วยกันอนุรักษ์แนวหญ้า ทะเลให้คงอยู่

ทั้งนี้ จากการลงไปสำรวจแนวหญ้าทะเลที่บริเวณรอบเกาะท่าไร่ครั้งล่าสุด ในช่วงต้นปี พ.ศ. 2553 โดยคณะ นักวิจัยมหาวิทยาลัยสงขลานครินทร์ พบว่าแนวหญ้าทะเลได้เพิ่มขึ้นจากแนวทุ่นที่เคยวางไว้ 10 ไร่ อีกทั้งหญ้าทะเลยัง มีความหนาแน่นและสมบูรณ์เพิ่มมากขึ้น ซึ่งนับว่าการอนุรักษ์แนวหญ้าทะเล ณ เกาะท่าไร่ นี้ ประสบผลสำเร็จ และ เริ่มเห็นว่าความยั่งยืนในการอนุรักษ์แหล่งหญ้าทะเลในพื้นที่ขนอม-หมู่เกาะทะเลใต้ จังหวัดนครศรีธรรมราช

5.6 การอนุรักษ์โลมาสีชมพู ร่วมกับชุมชนท้องถิ่น

โลมาหลังโหนก หรือโลมาสีชมพู (Indo-Pacific humpback dolphins) มีจำนวนเท่าใดกันแน้ในทะเลขน อม จ.นครศรีธรรมราช นายสุวัฒน์ จุฬาพฤกษ์ นักศึกษาปริญญาโท ภาควิชาวิทยาศาสตร์เชิงคำนวณ คณะ วิทยาศาสตร์ มหาวิทยาลัยวลัยลักษณ์ จึงได้วิจัยปริมาณและการแพร่กระจายของโลมาสีชมพู

จากการวิเคราะห์ภาพถ่ายครีบหลังด้วยโปรแกรม DARWIN พบว่าโลมาสีชมพูในทะเลขนอมมีจำนวน 50 ตัว ซึ่งเป็นจำนวนที่น้อยมาก และกำลังอยู่ในภาวะน่าเป็นห่วง โดยบริเวณที่พบโลมาบ่อยครั้ง ได้แก่ บริเวณหาดนางกำ ช่องเขาหลักซอ และอ่าวท้องชิง ซึ่งเป็นบริเวณที่เงียบสงบ ช่วงเวลาที่พบโลมาได้บ่อยที่สุดคือ ระหว่าง 9.01-10.00 น. จากการนั่งเรือสำรวจทำให้ทราบพฤติกรรมของโลมาสีชมพู เช่น การเคลื่อนย้ายฝูง การออกหาอาหาร ปัจจัยที่ทำให้โลมาสีชมพูเสียชีวิต คือ การติดอวนประมง และการเสียชีวิตโดยธรรมชาติ จากรายงานการ เสียชีวิตของโลมาสีชมพูในช่วงที่ผ่านมา พบว่าในปี พ.ศ. 2549 มีโลมาเสียชีวิต 4 ตัว พ.ศ. 2550 เสียชีวิต 8 ตัว และ ในพ.ศ. 2551 ยังไม่พบการเสียชีวิต (ข้อมูลจากสุวัฒน์) ส่วนข้อมูลจากชุมชนแจ้งว่า ตั้งแต่ปี พ.ศ. 2548 จนถึงปัจจุบัน พบโลมาสีชมพูเสียชีวิตทั้งหมด 23 ตัว

ข้อมูลงานวิจัยดังกล่าวได้มีการส่งต่อสู่ชุมชน รวมทั้งการจัดนิทรรศการ อบรมเยาวชน และการประชุมเพื่อ วางแผนกิจกรรมเพื่อการท่องเที่ยวเชิงอนุรักษ์ เช่น การจัดทำคู่มือประกอบการชมโลมาสีชมพู แบบประเมินการ จัดการการท่องเที่ยว รวมไปถึงการร่วมมือกับกรมทรัพยากรทางทะเลและชายฝั่ง เพื่อวางทุ่นตามแนวชายฝั่งทะเลขน อม เพื่อป้องกันเรืออวนรุนอวนลาก และป้องกันเสียชีวิตของโลมาสีชมพูเนื่องจากการติดอวนประมง

5.7 ทุ่นกำหนดเขตทางทะเลเพื่อการอนุรักษ์โลมาสีชมพู

พื้นที่อำเภอขนอม จังหวัดนครศรีธรรมราช เป็นบริเวณที่มีความอุดมสมบูรณ์ของทรัพยากรชีวภาพ และ ระบบนิเวศหลากหลายแบบ ข้อมูลจากการสำรวจทรัพยากรชีวภาพใต้ท้องทะเล ภายใต้ชุดโครงการวิจัยเชิงพื้นที่ขน อม-หมู่เกาะทะเลใต้ ตั้งแต่ปี 2548-2551 พบสิ่งมีชีวิตมากกว่า 700 ชนิด ในระบบนิเวศทางทะเล ตั้งแต่ป่าชายหาด ป่าชายเลน แนวหญ้าทะเล และแนวปะการัง อีกทั้งยังเป็นแหล่งที่อยู่อาศัยแหล่งใหญ่ของโลมาสีชมพู สิ่งมีชีวิตที่อยู่ใน สภาพใกล้ถูกคุกคาม ในบัญชีแดงของสหภาพเพื่อการอนุรักษ์ (IUCN) และถูกจัดให้อยู่ในบัญชีไซเตส บัญชีที่ 1 (Appendix I of Cites)

ความอุดมสมบูรณ์ของทะเลขนอมทำให้โลมาสีชมพู ซึ่งเป็นโลมาประจำถิ่นมาอาศัยหากินอยู่ในบริเวณนี้เป็น จำนวนมากถึง 50 ตัว ดึงดูดให้นักท่องเที่ยวเดินทางมาชมโลมาสีชมพูที่ขนอมเป็นจำนวนมากในแต่ละปี ด้วยเหตุนี้ จึง ได้เกิด**โครงการจัดทำทุ่นกำหนดเขตทางทะเลเพื่อการอนุรักษ์โลมาสีชมพู แนวหญ้าทะเล และปะการังชายฝั่งขึ้น ในพื้นที่ทะเลขนอม** โดยโครงการ BRT ร่วมกับบริษัท โททาล อีแอนด์พี ไทยแลนด์ มูลนิธิโททาล ประเทศฝรั่งเศส และกรมทรัพยากรทางทะเลและชายฝั่ง

การวางแนวทุ่นกำหนดเขตทางทะเลเพื่อการอนุรักษ์ มีระยะทาง 12 กิโลเมตรตลอดแนวชายฝั่งทะเล ตั้งแต่ บริเวณเกาะผี ซึ่งเป็นเขตรอยต่อทะเลจังหวัดสุราษฎร์ธานีและจังหวัดนครศรีธรรมราช ไปจนถึงอ่าวท้องโหนดบริเวณ ที่มีโลมาสีชมพูอาศัยอยู่จำนวนมาก แนวทุ่นจะช่วยในการบอกแนวเขตที่อยู่ และแหล่งหาอาหารของโลมาสีชมพู ซึ่ง เรือนำเที่ยวสามารถมาจอดในบริเวณดังกล่าวเพื่อรอชมโลมาได้ นอกจากนี้ยังเป็นแนวเขตหลักที่กำหนดไว้เพื่อป้องกัน เรือประมง และเรือขนส่งขนาดใหญ่ที่จะเข้ารบกวนในบริเวณที่มีโลมาสีชมพูอาศัยอยู่ โดยชุมชนตำบลท้องเนียน อำเภอขนอม จังหวัดนครศรีธรรมราช มีบทบาทหลักในการดูแลรักษาแนวทุ่นกำหนดเขตเพื่อการอนุรักษ์โลมาสีชมพู

นอกจากความอุดมสมบูรณ์ทางทะเลแล้ว ระบบนิเวศบนบกที่อำเภอขนอมยังประกอบด้วยระบบนิเวศหลาย รูปแบบ เป็นแหล่งรวบรวมทรัพยากรชีวภาพที่มีคุณค่าหลายชนิด

5.8 การใช้ประโยชน์และแนวทางการอนุรักษ์ป่าประ

ป่าประในเขตอุทยานแห่งชาติเขานั้น จังหวัดนครศรีธรรมราช เป็นป่าประผืนใหญ่ที่สุดในประเทศไทย และเป็น แหล่งทรัพยากรประเภทผลผลิตจากป่าที่มิใช่ไม้ (non timber forest products, NTFPs) ที่สำคัญของชุมชม ทั้งใน แง่ของการเป็นแหล่งอาหารและแหล่งรายได้เสริมนอกเหนือจากการทำเกษตรกรรม

นายณัฐดนัย สันธินันทน์ นักศึกษาปริญญาโท ภาควิชาเศรษฐศาสตร์สิ่งแวดล้อม คณะเศรษฐศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ได้ศึกษาการใช้ประโยชน์และมูลค่าด้านเศรษฐกิจจากป่าประในปี พ.ศ. 2550 จากการเก็บ ข้อมูลจากครัวเรือนตัวอย่าง 252 ครัวเรือน ที่เข้าไปใช้ประโยชน์ในป่าประ ใน 4 หมู่บ้าน ตำบลกรุงชิง กิ่งอำเภอนบพิ ตำ จังหวัดนครศรีธรรมราช คือ บ้านปากลง บ้านห้วยตง บ้านทับน้ำเต้า และบ้านห้วยแห้ง

ผลการศึกษาพบว่าผลผลิตหลักที่ได้จากป่าประ คือ ลูกประ รองลงมาคือ น้ำผึ้ง ลูกนาง สะตอ สมุนไพร เห็ดโคน ลูกเตียน ลูกเหรียง ลูกเนียง หน่อไม้ป่า และลูกกำไร ตามลำดับ คิดเป็นมูลค่าทั้งสิ้นกว่า 1,593,581 บาท ซึ่ง มูลค่าการใช้ประโยชน์จากป่าประผืนใหญ่แห่งนี้ เมื่อเปรียบเทียบกับศักยภาพที่ป่าทำประโยชน์ให้แก่ชุมชนนั้นถือได้ว่า เป็นเพียงมูลค่าขั้นต่ำเท่านั้น

นอกจากนี้ ยังได้มีการศึกษาวิเคราะห์หาค่าความเต็มใจจะจ่ายค่าธรรมเนียมจากประชาชนที่จะเข้าไปใช้ ประโยชน์จากป่าประ ผลการศึกษา พบว่าประชาชนเต็มใจจ่ายค่าธรรมเนียมที่ 26 บาทต่อคนต่อวัน เป็น ค่าธรรมเนียมที่สามารถนำมาจัดตั้งกองทุนอนุรักษ์และดูแลรักษาป่า เพื่อสร้างแรงจูงใจทางเศรษฐศาสตร์ให้กับชุมชนใน การจัดการป่าประ และเปลี่ยนแปลงพฤติกรรมของชุมชนในการดำเนินกิจกรรมต่างๆ อันมีผลกระทบกับป่าประ เพื่อให้ผลกระทบที่เกิดกับป่าประลดน้อยลง

5.9 มูลค่าผลผลิตจากป่าบุ่งป่าทาม

"ป่าบุ่งป่าทาม" เป็นพื้นที่ชุ่มน้ำ ที่มีน้ำท่วมถึงในฤดูฝนและน้ำจะแห้งขอดลงในฤดูแล้ง ถือเป็นระบบนิเวศ เฉพาะถิ่นที่มีความเกี่ยวพันกับชุมชนอีสานของไทยมาช้านาน อีกทั้งยังเป็นแหล่งสำคัญที่มีคุณค่าในทางเศรษฐกิจของ ชุมชน เนื่องจากเปรียบเสมือนเป็นตลาดหรือซุปเปอร์มาร์เก็ต ที่มีทุกอย่างคอยให้บริการฟรี! แก่ชุมชนในตลอดทุก ฤดูกาลที่เข้าไปเก็บหาผลผลิตเพื่อนำมาบริโภคและใช้สอย หากคิดเป็นตัวเงินก็นับเป็นมูลค่ามหาศาล

จากการศึกษาประเมินมูลค่าผลผลิตจากป่าบุ่งป่าทาม ในเขตพื้นที่ลุ่มแม่น้ำสงครามตอนล่าง จังหวัด นครพนม โดย นายยงยุทธ ก้อนจันทร์เทศ นักศึกษาปริญญาโท ภาควิชาเทคโนโลยีการบริหารสิ่งแวดล้อม คณะ สิ่งแวดล้อมและทรัพยากร มหาวิทยาลัยมหิดล โดยได้ศึกษาจากตัวอย่าง 261 ครัวเรือน

ผลการศึกษาพบว่ามูลค่ารวมของการใช้สอยผลผลิตจากป่าบุ่งป่าทามมีมากถึง 10,023,276 บาทต่อปี โดย แบ่งออกเป็นมูลค่าของผลผลิตจากป่าที่ไม่ใช้เนื้อไม้มากถึง 5,390,606 บาทต่อปี (พืชอาหาร 354,540 บาทต่อปี, เห็ด ที่กินได้ 1,820,600 บาทต่อปี, หน่อไม้ 421,560 บาทต่อปี, ไม้ฟืน 523,473 บาทต่อปี) และมูลค่าของผลผลิตจาก การประมงพื้นบ้านมากถึง 4,632,670 บาทต่อปี

ปัจจุบันพื้นที่ป่าบุ่งป่าทาม ในเขตลุ่มแม่น้ำสงครามตอนล่าง พบว่ามีปัญหาการบุกรุกพื้นที่เพื่อใช้ในการทำ เกษตรของชุมชนเพิ่มมากขึ้น ดังนั้น ข้อมูลดังกล่าว จึงถือเป็นสิ่งสำคัญที่จะสะท้อนให้เห็นถึงคุณค่าของผลผลิตที่ได้ จากป่าบุ่งป่าทามให้แก่ชุมชนได้รับทราบ รวมทั้งเป็นข้อมูลพื้นฐานให้หน่วยงานในท้องถิ่นได้นำไปใช้ประกอบการ บริหารจัดการพื้นที่ต่อไป

5.10 มูลค่าการใช้ประโยชน์แหล่งหญ้าทะเลเกาะลิบง จังหวัดตรัง

จากการศึกษาการประเมินมูลค่าการใช้ประโยชน์แหล่งหญ้าทะเลด้านการประมงของชุมชนเกาะลิบง จังหวัด ตรัง โดยนางสาวอัญรัตน์ เสียมไหม นักศึกษาปริญญาโท ภาควิชาเศรษฐศาสตร์สิ่งแวดล้อม คณะเศรษฐศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ จากกลุ่มตัวอย่างในพื้นที่เกาะลิบง จำนวน 269 ครัวเรือน ตั้งแต่เดือนมกราคม – ธันวาคม พ.ศ. 2550

ผลการศึกษาพบว่ากลุ่มตัวอย่างเข้าไปใช้ประโยชน์แหล่งหญ้าทะเลเพื่อทำประมงเป็นหลัก โดยใช้วิธีเดินเท้า เข้าไป มีการจับสัตว์น้ำที่สำคัญ คือ หอยชักตีน ปลิงทะเล กุ้ง ปลา ปู และหมึกสาย คิดเป็นมูลค่าสุทธิประมาณ 7,895,620 บาทต่อปี โดยมูลค่าที่เกิดขึ้นเป็นมูลค่าแหล่งหญ้าทะเลจากการใช้ประโยชน์ด้านการประมงของประชาชน บนเกาะลิบงในพ.ศ. 2550 และที่ระดับนัยสำคัญทางสถิติ 0.10

ปัจจัยที่มีอิทธิพลต่อมูลค่าการใช้ประโยชน์ด้านการประมงในทางตรง ได้แก่ รูปแบบการเดินทางในการเข้าไปใช้ ประโยชน์แหล่งหญ้าทะเล รายจ่ายของครัวเรือน การเข้ารับการอบรมเกี่ยวกับทรัพยากรชายฝั่ง และการมีส่วนร่วมต่อ การจัดการแหล่งหญ้าทะเลบริเวณเกาะลิบง

ส่วนปัจจัยที่มีอิทธิพลต่อมูลค่าการใช้ประโยชน์ด้านการประมงในทางอ้อม ได้แก่ การทำประมงเป็นอาชีพ หลัก การทำสวนเป็นอาชีพหลัก จำนวนพื้นที่ทำกิน รายได้จากส่วนอื่นๆ นอกเหนือจากการเก็บหาสัตว์น้ำในแหล่ง หญ้าทะเล และการเป็นเครือข่ายของชมรมหรือองค์กรทางด้านสิ่งแวดล้อม

5.11 การอนุรักษ์พันธุ์ข้าวพื้นเมือง

จากการศึกษาความหลากหลายและการอนุรักษ์พันธุ์ข้าวพื้นเมืองใน 4 พื้นที่ ของภาคตะวันออกเฉียงเหนือ โดย นายเสถียร ฉันทะ นักศึกษาปริญญาเอก มหาวิทยาลัยมหาสารคาม พบพันธุ์ข้าวพื้นเมือง ทั้งสิ้น 57 พันธุ์ เช่น ข้าวมะลิแดง มะลิดำ หอมนางนวล เล้าแตก และโสมาลี เป็นต้น

ข้าวพื้นเมืองดังกล่าวพบในเขตพื้นที่บ้านบัว อำเภอกุดบาก จังหวัดสกลนคร 7 พันธุ์ (ข้าวเหนียวทั้งหมด) เขตพื้นที่ บ้านหนองพรานคาน อำเภอสว่างวีระวงศ์ และบ้านหัวดอน บ้านท่าศาลา อำเภอเชื่องใน จังหวัดอุบลราชธานี 33 พันธุ์ (ข้าวเจ้า 10 พันธุ์ ข้าวเหนียว 23 พันธุ์) เขตพื้นที่บ้านดงน้อย อำเภอพิมาย จังหวัดนครราชสีมา 2 พันธุ์ (ข้าวเจ้า ทั้งหมด) และเขตพื้นที่ทุ่งกุลาร้องให้ ที่บ้านโพนละมั่ง อำเภอเกษตรวิสัย และบ้านนาวี อำเภอเสลาภูมิ จังหวัดร้อยเอ็ด 25 พันธุ์ (ข้าวเจ้า 10 พันธุ์ ข้าวเหนียว 15 พันธุ์)

นอกจากนี้ยังพบว่าชุมชนในทั้ง 4 พื้นที่ มีการอนุรักษ์พันธุ์ข้าวพื้นเมือง โดยการปลูกไว้เพื่อบริโภคใน ครัวเรือน และแบ่งขายบางส่วน นอกจากเพื่อการอนุรักษ์แล้ว ชุมชนยังมีเหตุผลอื่นๆ ในการปลูกพันธุ์ข้าวพื้นเมือง เช่น เพื่อลดต้นทุนการผลิต, พันธุ์ข้าวบางพันธุ์มีความต้านทานโรค, ข้าวแต่ละพันธุ์มีคุณสมบัติแตกต่างกันไม่ว่าจะเป็น ความหอม ความนุ่ม และรสชาติ ทำให้สามารถเลือกบริโภคได้อย่างหลากหลาย เป็นต้น

ชุมชนบางพื้นที่ โดยเฉพาะที่ทุ่งกุลาร้องให้ ได้ร่วมกันอนุรักษ์พันธุ์ข้าวพื้นเมืองและฟื้นฟูผืนแผ่นดิน โดยการ ทำเกษตรอินทรีย์ มีการสร้างเครือข่ายการอนุรักษ์ และมีการจัดตั้งศูนย์ผลิตและขยายเมล็ดพันธุ์ข้าวพื้นเมือง ใน ขณะเดียวกันก็ได้สืบสานวัฒนธรรม และประเพณีต่างๆ ที่เกี่ยวข้องกับข้าวอย่างเหนียวแน่น เช่น ประเพณีการทำบุญ เบิกบ้าน บุญบั้งไฟ บุญข้าวประดับดิน บุญข้าวสาก บุญกุ้มข้าวใหญ่/บุญโฮมข้าวลาน/บุญข้าวจี่ และบุญผเวส

5.12 การพัฒนาเศรษฐกิจกับวิถีชีวิตคนลุ่มน้ำโขง

การพัฒนาเศรษฐกิจการค้าที่ไม่อยู่บนฐานความรู้ ได้ส่งผลกระทบอย่างร้ายแรงต่อความหลากหลายทาง ชีวภาพ เช่นเดียวกับลุ่มน้ำโขง ที่ซึ่งเคยเป็นอู่ข้าว อู่น้ำที่มีความอุดมสมบูรณ์ ศ.ดร.ยศ สันตสมบัติ และคณะวิจัย คณะ สังคมศาสตร์ มหาวิทยาลัยเชียงใหม่ ได้ทำการศึกษาการเปลี่ยนแปลงระบบนิเวศและผลกระทบต่อความหลากหลาย ทางชีวภาพและภูมิปัญญาท้องถิ่นในแถบอนุภูมิภาคลุ่มน้ำโขง ในพื้นที่อำเภอเชียงของ อำเภอขุนตาล อำเภอเทิง จังหวัดเชียงราย

จากการศึกษาพบว่าเศรษฐกิจในอนุภาคลุ่มน้ำโขงเน้นการเติบโตของภาคอุตสาหกรรม และการพัฒนา โครงสร้างพื้นฐานขนาดใหญ่ อาทิ เขื่อนขนาดใหญ่ โครงการขยายถนนเพื่อเชื่อมต่อประเทศต่างๆ โครงการระเบิดแก่ง ในแม่น้ำโขงเพื่อขยายช่องทางเดินเรือ ทำให้เกิดผลกระทบ 3 ประการ

ประการแรก ผลกระทบต่อสภาพแวดล้อม โดยเฉพาะความหลากหลายของสายพันธุ์ปลา และสัตว์น้ำอื่นๆ จากเดิมที่ลุ่มน้ำโขงเคยเป็นที่อาศัยของปลา 1,700 ชนิด แต่การสร้างเขื่อนทำให้รูปแบบการขึ้นลงของน้ำเปลี่ยนแปลง ไป มีผลต่อการวางไข่ ขยายพันธุ์ปลา ทำให้ปริมาณและชนิดของปลาลดล'

ประการต่อมา ผลกระทบต่อเศรษฐกิจระดับรากหญ้า เมื่อสัตว์น้ำมีน้อยลง รายได้หลักจากการจับสัตว์น้ำจึง ลดลงด้วย ตัวอย่างเช่น ในชุมชนปากแม่น้ำอิง อำเภอเชียงของ จังหวัดเชียงราย มีมูลค่าทางเศรษฐกิจจากปลาถึง 3,373,821 บาทต่อปี แต่การสร้างเขื่อน ระเบิดแก่ง ส่งผลให้ปริมาณปลาหายไปถึง 3 เท่า รายได้จากการจับปลาทั้ง ลำน้ำจึงลดลง

ผลกระทบต่อวัฒนธรรมท้องถิ่น วัฒนธรรม ประเพณีส่วนใหญ่ถูกสอดแทรกอยู่ในอาชีพจับปลา เมื่อไม่มี อาชีพจับปลา วัฒนธรรมท้องถิ่นจึงหายได้ด้วย เช่น พิธีบวงสรวงเจ้าพ่อปลาบึก เป็นต้น

5.13 พัฒนาศักยภาพของบุคลากรท้องถิ่นในการจัดการทรัพยากรชีวภาพ

เป้าหมายหนึ่งของโครงการ BRT คือการพัฒนาศักยภาพของชุมชนในการบริหารจัดการทรัพยากรชีวภาพใน ท้องถิ่นอย่างยั่งยืน ผลการดำเนินงานในปี 2552 ได้พัฒนาทักษะการวิจัยท้องถิ่นให้กับมหาวิทยาลัยราชภัฏกาญจนบุรี ในชุดโครงการไผ่ ซึ่งประกอบด้วยชุดโครงการย่อย 8 โครงการ ผลการดำเนินงานได้สร้างนักวิจัยราชภัฏรุ่นใหม่ได้ 13 คน จากภาควิชาและคณะต่างๆ ได้แก่ สาขาวิชา วิทยาศาสตร์สิ่งแวดล้อม สาขาวิชาชีววิทยาประยุกต์ สาขาวิชาเกษตรศาสตร์ คณะวิทยาศาสตร์และเทคโนโลยี, คณะ วิทยาการจัดการ, คณะมนุษยศาสตร์และสังคมศาสตร์ ให้ประสานและร่วมกันทำวิจัยอย่างบูรณาการเพื่อบริหาร จัดการไผ่ในท้องถิ่นอย่างยั่งยืน นอกจากนี้ ยังได้สนับสนุนนักศึกษาราชภัฏให้เข้ามามีส่วนร่วมในการวิจัยอีก 21 คน

ในส่วนของการสร้างศักยภาพให้ครูและนักเรียน ได้มีการอบรมครูต้นแบบวิวัฒนาการ รุ่นที่ 1 จำนวน 30 คน ขึ้นเมื่อวันที่ 9 – 10 กรกฎาคม 2552 ณ บ้านวิทยาศาสตร์สิรินธร โดยมุ่งหวังให้ครูได้แนวคิดในด้านการเรียนการ สอนวิชาวิวัฒนาการ และนำไปถ่ายทอดสู่นักเรียน โดยใช้โจทย์จากทรัพยากรในท้องถิ่น

นอกจากนั้นยังได้สนับสนุนเยาวชนให้ศึกษาวิจัยทรัพยากรชีวภาพในท้องถิ่นในจังหวัดนครศรีธรรมราชและ จังหวัดกาญจนบุรี มีครูเข้าร่วมโครงการ 41 คน นักเรียนกว่า 680 ทำให้เกิดโครงการต่างๆ ต่อเนื่องในโรงเรียน เช่น ชุมชนบ้านเทพราช และชุมชนบ้านชุมโลง อ.ท่าศาลา จ.นครศรีธรรมราช มีโครงการอนุรักษ์ต้นเทียมและอนุรักษ์ผึ้ง โพรงไทย ชุมชนบ้านโรงเหล็ก อ.นบพิตำ จ.นครศรีธรรมราช มีโครงการอนุรักษ์หวายและพันธุ์ปลาพื้นเมือง เป็นต้น

ชุดโครงการวิจัยเชิงพื้นที่ (Area-based Research) 5.14 ชุดโครงการ ป่าเมฆ-เขานั้น โดยความร่วมมือกับ ปตท.

"ป่าเมฆ" หรือ "Cloud Forest" เป็นป่าที่มีเมฆหมอกปกคลุมตลอดทั้งปี ก่อให้เกิดระบบนิเวศที่มีความ พิเศษ พรรณไม้ที่พบจะมีความสูงไม่มากนัก ลำต้นปกคลุมด้วยพรรณไม้ขนาดเล็กที่ต้องการความชุ่มชื้นสูงอย่าง หนาแน่น เช่น มอส เฟิร์น และลิเวอร์เวิร์ต ซึ่งมีความสามารถพิเศษในการดูดซับความชื้น แล้วค่อยๆ ปล่อยสู่ผืนป่าอัน เป็นแหล่งต้นน้ำลำธารของสิ่งมีชีวิตอื่นๆ ด้วยเหตุนี้ "ป่าเมฆ" จึงได้รับการบรรจุเป็นวาระสำคัญระดับโลกหรือ "Cloud Forest Agenda" โดยองค์กรด้านสิ่งแวดล้อมระดับโลกหลายองค์กร เพื่อสนับสนุนการจัดการ การอนุรักษ์ และการฟื้นฟูระบบนิเวศป่าเมฆ ซึ่งไวต่อการเปลี่ยนแปลงทางสภาพแวดล้อม โดยเฉพาะการเกิดสภาวะโลกร้อน (global warming) ที่เป็นปัญหาสำคัญของโลกในปัจจุบัน ป่าเมฆพบทั่วไปในพื้นที่ป่าใกล้แถบศูนย์สูตร ในประเทศ ไทยพบเพียงไม่กี่แห่ง จึงต้องเร่งศึกษาวิจัยเพื่อหาข้อมูลพื้นฐานในการบริหารจัดการและการอนุรักษ์ป่าต้นน้ำลำธาร อย่างยั่งยืน

โครงการ BRT ได้เล็งเห็นถึงความสำคัญของประเด็น ดังกล่าว จึงได้พัฒนาชุดโครงการวิจัยเชิงพื้นที่ขึ้นภายใต้ชื่อ "ชุดโครงการวิจัยปาเมฆ" โดยเลือกพื้นที่อุทยานแห่งชาติเขานัน จังหวัดนครศรีธรรมราช ซึ่งมีระบบนิเวศปาเมฆเป็นพื้นที่ศึกษา ชุดโครงการวิจัยดังกล่าวมีระยะเวลา 3 ปี (พ.ศ 2549-2551) เน้นการวิเคราะห์ข้อมูลอย่างบูรณาการทั้งทางด้านชีวภาพและ กายภาพ เพื่อสำรวจและประมวลองค์ความรู้พื้นฐานในระบบ นิเวศปาเมฆ รวมทั้งปัจจัยทางกายภาพต่างๆ เช่น ข้อมูล อุตุนิยมวิทยา ปริมาณความชื้นสัมพัทธ์ ปริมาณน้ำฝน ข้อมูลดิน

และน้ำ เป็นต้น เพื่ออธิบายการเกิดป่าเมฆและความสัมพันธ์กับสิ่งมีชีวิตในป่าเมฆ

ชุดโครงการดังกล่าวนอกจากมีโครงการ BRT เป็นผู้สนับสนุนงบประมาณส่วนหนึ่งแล้ว ยังได้สร้างหุ้นส่วน ร่วมกับบริษัท ปตท. จำกัด (มหาชน) ซึ่งต้องการแสดงความรับผิดชอบต่อสังคมเชิงบรรษัทหรือของธุรกิจ หรือ Corporate Social Responsibility (CSR) ด้วยการสนับสนุนทุนวิจัยร่วมกับโครงการ BRT ในการค้นหาความรู้ เกี่ยวกับป่าเมฆ ซึ่งเป็นระบบนิเวศที่เปราะบางต่อการเปลี่ยนแปลงภูมิอากาศท้องถิ่น (local climate change) และ ภูมิอากาศโลก (global climate change) เพื่อเผยแพร่ความรู้ให้กับผู้กำหนดนโยบายในการเฝ้าระวังและวาง แนวทางในการบริหารจัดการสิ่งแวดล้อมภายใต้กระแสโลกาภิวัฒน์อย่างยั่งยืน

หลังจากที่โครงการ BRT ได้พัฒนาชุดโครงการวิจัยดังกล่าวขึ้น ก็ได้รับการตอบรับเป็นอย่างดีจากนักวิจัย ทางด้านความหลากหลายทางชีวภาพจากหลายสถาบันเพื่อร่วมศึกษาระบบนิเวศป่าเมฆ โดยโครงการ BRT ได้ สนับสนุนโครงการวิจัยและวิทยานิพนธ์ไปแล้วทั้งสิ้นจำนวน 15 โครงการ งบประมาณรวม 5,224,000 บาท แบ่งเป็น 3 กลุ่มใหญ่ๆ คือ กลุ่มพืช 5 โครงการ ได้แก่ เทอริโดไฟต์, ไบรโอไฟต์, กล้วยไม้, พืชวงศ์ขิง และมะเดื่อ-ไทร กลุ่มสัตว์ 8 โครงการ ได้แก่ สัตว์เลื้อยคลานและสัตว์สะเทินน้ำสะเทินบก, ผีเสื้อกลางวัน, ผีเสื้อกลางคืน, แมงมุม, หอยทากบก, มด, ปลาน้ำจืด และปลาพลวง และกลุ่มฐานข้อมูล 2 โครงการ ได้แก่ ฐานข้อมูลความหลากหลายทางชีวภาพ และ การพัฒนาแบบจำลองการกระจายตัวของสิ่งมีชีวิตในอุทยานแห่งชาติเขานัน

โดยภารกิจในรูปแบบทีมสำรวจป่าเมฆที่ไม่เคยมีมาก่อนใน ผลการดำเนินงานที่มีความก้าวหน้าเป็นลำดับ ประเทศไทย ทำให้ได้ข้อมูลเบื้องต้นของมีสิ่งมีชีวิตเฉพาะถิ่นที่พบเฉพาะปาเมฆ รวมทั้งลักษณะของปาเมฆ-สันเย็น จน เพื่อเผยแพร่ข้อมูลพื้นฐานเกี่ยวกับป่าเมฆครั้งแรกของประเทศไทย ทำให้สามารถจัดทำบทความทางวิชาการ ผลการวิจัยพบชนิดพันธุ์ของสิ่งมีชีวิตทั้งสิ้น 1,587 ชนิด เป็นรายงานการค้นพบสิ่งมีชีวิชนิดใหม่ของโลก สิ่งมีชีวิตชนิด ใหม่ในประเทศไทย และสิ่งมีชีวิตเฉพาะ รวมทั้งที่หากยากและใกล้สูญพันธุ์ ตลอดจนชนิดที่เป็นดัชนีชี้วัดป่าเมฆ นอกจากนั้น ยังได**้ติดตามภาวะ "โลกร้อนกับผลกระทบต่อความหลากหลายทางชีวภาพ"** โดยการศึกษาสภาวะ ภูมิอากาศที่เปลี่ยนแปลงไป (Climate change) อันเป็นผลมาจากการเกิดสภาวะโลกร้อนจึงได้ติดตั้งสถานีตรวจวัด อากาศทั่วเขานั้น พร้อมกันการศึกษาเปลี่ยนแปลงทางด้านชีพลักษณ์ (Phenology) ของต้นประ ได้ข้อบ่งชี้ว่าทิศทาง ลม และปริมาณน้ำฝน ความชื้นสัมพัทธ์ เกี่ยวข้องกับการแตกตาของยอดประ ในด้านการศึกษาวิถีชมชนรายรอบ เขานั้น พบว่าชุมชนดั้งเดิมรายรอบเขานั้นเป็นชุมชนที่ขยายต่อเนื่องมาจากอำเภอท่าศาลา โดยมีอายุของชุมชนไม่ต่ำ กว่า 100 ปี วิถีชุมชนแบบเกษตรและพึ่งพิงป่า ชุมชนมีความความสัมพันธ์กับทรัพยากรชีวภาพในพื้นที่เชิงเศรษฐกิจ เช่น ที่บ้านปากลง ต.กรุงชิง อ.นบพิตำ ชุมชนยังพึ่งพิงและใช้ประโยชน์จากป่ามีมูลค่าถึง 2.6 ล้านบาทต่อปี และพบ ป่าประธรรมชาติ ซึ่งคาวดว่าน่าจะเป็น ป่าประผืนเดียว และผืนสุดท้ายของโลกที่อุทยานแห่งชาติเขานั้น โดยชุมชน รายรอบเขานั้นเก็บหาลูกประที่ทำได้เพียงปีละครั้ง ช่วงเดือนสิงหาคมถึงกันยายนของทุกปี คิดเป็นมูลค่ารวมถึง 1.7 ล้านบาทต่อปี นับว่าเป็นรายได้เสริมที่ดีอย่างหนึ่งของ นอกจากนั้น ผลงานวิจัยยังแสดงให้เห็นว่า ชุมชนห่วงใยใน ทรัพยากรและยินดีที่จะจ่ายค่าเข้าเก็บหาลูกประในพื้นที่ธรรมชาติ หากมีการบริหารจัดการที่ดี ในราคา 29 บาทต่อ คนต่อวัน เพื่อจัดการเป็นกองทุนอนุรักษ์และฟื้นฟูต้นประต่อไป

5.15 ชุดโครงการหาดขนอมระยะที่ 1 โดยความร่วมมือกับ ปตท.

โครงการ BRT และกลุ่ม ปตท. ได้เล็งเห็นถึงความสำคัญด้านการเรียนการสอนสำหรับนักเรียน ที่มุ่งเน้นให้ นักเรียนได้มีโอกาสทำวิจัยด้วยการร่วมสังเกต ตั้งคำถาม ศึกษาทดลอง ไปจนถึงการสรุปและวิเคราะห์ผล เพื่อ เสริมสร้างแนวคิดในเชิงวิทยาศาสตร์ให้กับนักเรียนจากการเรียนรู้ด้านทรัพยากรธรรมชาติในท้องถิ่น โครงการ BRT จึงได้พัฒนาโครงการวิจัยระดับโรงเรียนโดยร่วมกับผศ.มัลลิกา เจริญสุธาสินี จากมหาวิทยาลัยวลัยลักษณ์ และครูใน ชุมชนขนอมอีก 7 โรงเรียน ทำโครงการวิจัยระดับโรงเรียนถึง 16 เรื่อง

นักเรียนที่เข้าร่วมในโครงการวิจัยระดับโรงเรียนนี้ได้เรียกกลุ่มตนเองว่า "เด็กหมวกเขียว" ได้เลือกทำ โครงการวิจัยที่ตอบโจทย์ปัญหาท้องถิ่น ได้ถูกปลูกฝังจิตวิทยาศาสตร์ และจิตอนุรักษ์ โดยมีครูและนักเรียนตั้งโจทย์ วิจัยที่เกิดจากการสังเกตและจากการพบเห็นวิถีชีวิตชุมชนที่เกี่ยวพันกับทรัพยากรธรรมชาติในท้องถิ่น ตัวอย่างเช่น การศึกษาประชากรของหอยกันที่พบมากบริเวณป่าชายเลนและเป็นทรัพยากรทางเศรษฐกิจที่สำคัญของชุมชนบ้านท่า ม่วง นอกจากนี้ยังสร้างจิตสำนึกด้านการอนุรักษ์ทรัพยากรทางทะเลให้กับนักเรียน เช่น โครงการโลมา ที่ทำให้เด็ก รู้จักกับโลมาของพวกเขามากขึ้น

เยาวชนที่ร่วมโครงการได้มีโอกาสนำเสนอผลงานของตนเองมากมาย เช่นออกรายการทีวี รักษ์ให้เป็น ทุ่งแสง ตะวัน รายการวลัยลักษณ์ สู่สังคม เป็นต้น ได้ไปนำเสนอผลงานระดับชาติและนานาชาติ เช่น ได้นำเสนอผลงานใน งาน "Asia-Pacific GLOBE Learning Expedition Thailand 2007" Learning about Climate Change to Inspire the Next Generation of Scientists", The second Thai CloudSat Student Research Conference and Workshop, และ The Young Soil Doctor Student Conference เป็นต้น ได้มีการเผยแพร่ผลงานของชุด โครงการในวารสารScience World จำนวน 6 ตอน ผลงานวิจัยของนักเรียนก็เป็นที่โดดเด่นจนมีนักวิทยาศาสตร์จาก

โครงการ GLOBE ประเทศสหรัฐอเมริกาเดินทางมาเยี่ยมที่โรงเรียน 2 โครงการคือ Prof. Dr. Elena Sparrow, Dr. Leslie Gordon และ Ms. Martha Kopplin จากโครงการ Seasons and Biomes และ Dr. David Brooks จาก โครงการ Pyranometer เป็นต้น

นักเรียนในโครงการศึกษาโลมาได้เข้าร่วมออกบูธในงานวันรักษ์โลมาที่จัดขึ้นที่อำเภอขนอม นักเรียนใน โครงการเด็กหมวกเขียวทุกโครงการได้เข้าค่ายขนอมนิรันดร์ในความทรงจำ ทำให้นักเรียนตระหนักถึงทรัพยากรอันมี ค่าและน่าหวงแหนของอำเภอขนอม จะเห็นได้ว่าโครงการประสานงานวิชาการชุดโครงการงานวิจัยระดับโรงเรียน อำเภอขนอม จ.นครศรีธรรมราช ได้มีผลกระทบต่อเยาวชนขนอม ทำให้เขาเป็นกลุ่มคนที่มีศักยภาพสูง มีจิต วิทยาศาสตร์ รักษ์บ้านเกิด และหวงแหนความหลากหลายทางชีวภาพของอำเภอขนอมอันมีอยู่อย่างมหาศาล

5.16 ชุดโครงการหาดขนอมระยะที่ 2 โดยความร่วมมือกับ ปตท.

โครงการ BRT และกลุ่ม ปตท. เห็นความสำคัญของการศึกษาวิจัยความหลากหลายทางชีวภาพ ได้ร่วมกัน สนับสนุนงานวิจัยเป็นชุดโครงการเชิงพื้นที่ในระบบนิเวศต่างๆ ทั้งที่มีความอุดมสมบูรณ์และที่เปราะบางต่อการ เปลี่ยนแปลงสภาวะแวดล้อม และที่ใช้ประโยชน์โดยชุมชนท้องถิ่น ได้แก่ ชุดโครงการทองผาภูมิตะวันตก (พ.ศ. 2543-2548) ชุดโครงการป่าเมฆเขานันและหาดขนอมระยะที่ 1 (พ.ศ. 2549-2551) และชุดโครงการหาดขนอม ระยะที่ 2 (พ.ศ. 2552-2554) โดยมีวัตถุประสงค์เพื่อสร้างองค์ความรู้พื้นฐาน พัฒนาบุคลากรนักวิจัย และบริหาร จัดการความรู้ให้เกิดการใช้ประโยชน์โดยชุมชนอย่างยั่งยืน

ชุดโครงการหาดขนอมระยะที่ 2 อยู่ระหว่างการดำเนินงานในพื้นที่ทางทะเลและชายฝั่งในบริเวณอ.ขนอม จ. นครศรีธรรมราช ซึ่งเป็นบริเวณที่มีระบบนิเวศหลากหลาย ตั้งแต่ระบบนิเวศป่าไม้ เขาหินปูน ป่าชายหาด หาดหิน หาดเลน ป่าชายเลน ไปจนถึงระบบนิเวศทางทะเล และเกาะแก่งต่างๆ ผลงานวิจัยความหลากหลายทางชีวภาพใน พื้นที่ขนอมระยะที่ 1 ได้เปิดเผยความอุดมสมบูรณ์ในพื้นที่อำเภอขนอม ที่มีสิ่งมีชีวิตใต้ทะเลถึง 719 ชนิด ทั้งชนิดที่หา ยากและใกล้สูญพันธุ์ เช่น โลมาสีชมพู (Sousa chinenesis), ดาวตระกร้าหรือดาวตาข่าย (Euryle aspera) , ดาว เปราะกัลปังหาร่อง (Ophiopsammium semperi) รวมทั้งแหล่งหญ้าทะเลที่ขึ้นอยู่หนาแน่นในพื้นที่ขนาดเล็กเพียง 0.1 ตร.กม. เท่านั้นซึ่งยังคงทำหน้าที่เป็นแหล่งอาหารและอนุบาลสัตว์น้ำที่สำคัญหลายชนิด นอกจากนั้นยังพบ สาหร่ายทะเลมากกว่า 46 ชนิด รวมทั้งสาหร่ายใบมะกรูด (Halimeda macroloba) ที่นำคาร์บอนไดออกไซด์มา เปลี่ยนรูปเป็นหินปูนสะสมไว้ที่ใบ ซึ่งสามารถนำมาศึกษาวิจัยต่อยอดเพื่อช่วยลดภาวะโลกร้อนได้

การดำเนินงานในชุดโครงการหาดขนอมระยะที่ 2 แบ่งออกเป็น 3 กลุ่ม ได้แก่ กลุ่มสร้างองค์ความรู้พื้นฐาน เพื่อการจัดการทรัพยากร กลุ่มสร้างแหล่งเรียนรู้และถ่ายทอดความรู้ให้แก่ชุมชนชน และกลุ่มงานวิจัยเพื่อส่งเสริมการ ท่องเที่ยวเชิงนิเวศ กิจกรรมในแต่ละกลุ่มมีความสัมพันธ์และเชื่อมโยงกัน โดยมีเป้าหมายเพื่อสร้างความเข้มแข็งให้กับ ชุมชนขนอมในการบริหารจัดการทรัพยากรชีวภาพอย่างยั่งยืน โครงการ BRT ได้สนับสนุนกิจกรรมและโครงการวิจัย ภายใต้กลุ่มต่างๆ ไปแล้ว 19 โครงการ อยู่ในระหว่างการพัฒนาโครงการ 4 โครงการ

โครงการในกลุ่มที่ 1 กลุ่มสร้างองค์ความรู้พื้นฐาน มุ่งสร้างความรู้เพื่อส่งเสริมการเรียนรู้ของชุมชนให้รู้จัก ทรัพยากรชีวภาพในท้องถิ่นและส่งเสริมการท่องเที่ยว ในส่วนนี้ได้สนับสนุนการวิจัยในกลุ่มพืชทั้งพืชในระบบ นิเวศป่าไม้ พืชในป่าชายหาด พืชในป่าชายเลน และพืชตามเกาะแก่ง รวมทั้งต้นลานซึ่งเป็นพืชเด่นในพื้นที่ขนอม และ การสำรวจความหลากหลายทางชีวภาพของสัตว์ต่างๆ บนหาดหิน หาดเลน หาดทราย ซึ่งเป็นระบบนิเวศชายฝั่งใน พื้นที่ขนอม ในด้านการศึกษาความอุดมสมบูรณ์ของพื้นที่ขนอม โครงการ BRT ได้สนับสนุนการศึกษาปลาที่อยู่ใน ระบบนิเวศต่างๆ เปรียบเทียบกัน ได้แก่ หญ้าทะเล ป่าชายเลน หาดทราย และหาดโคลน ผลการศึกษาพบว่าระบบ นิเวศหญ้าทะเลเป็นบริเวณปลาที่พบปลาปลาที่อยู่ในระยะวัยรุ่น และเป็นแหล่งที่อยู่อาศัยของปลาชนิดที่ไม่พบใน แหล่งอาศัยอื่นๆ เช่น ม้าน้ำ ปลาจิ้มฟันจระเข้ ปลาวัวหางพัด ปลานกขุนทอง เป็นต้น จึงมีความเป็นไปได้ที่แหล่งหญ้า ทะเลบริเวณนี้จะเป็นแหล่งอนุบาลสัตว์น้ำที่สำคัญ ส่วนป่าชายเลนเป็นแหล่งที่มักพบปลาที่มีความสำคัญทาง เศรษฐกิจ เช่น ปลากระบอก ปลากระพงขาว ปลาดุกทะเล เป็นต้น ซึ่งปลากระบอกที่จับได้บริเวณป่าชายเลนส่วน ใหญ่เป็นระยะวัยรุ่น มีขนาดเล็กและมักจับได้ในปริมาณที่สูง จึงมีความเป็นไปได้ที่ป่าชายเลนจะเป็นแหล่งอนุบาลวัย อ่อนของกลุ่มปลากระบอกที่สำคัญ สำหรับ หาดโคลน หาดทราย พบปลาในกลุ่มปลาแป้นเป็นชนิดเด่น ปลาที่เข้ามา

บริเวณนี้มักเป็นปลาที่อยู่รวมฝูง และมีการเคลื่อนย้ายไปมาตามน้ำขึ้นน้ำลง บริเวณหาดโคลนพบปลาในกลุ่มปลาจวด มากกว่าบริเวณอื่นๆ ส่วนบริเวณหาดทรายพบว่าปลากระบอกมักจะเข้ามาหากินบริเวณนี้ โดยเป็นปลาที่มีขนาดใหญ่ กว่าบริเวณอื่น ซึ่งชาวบ้านมักจะมาวางอวนและลากปลาบริเวณนี้ ดังนั้นบริเวณหาดโคลนและหาดทรายเป็นแหล่งทำ ประมงพื้นบ้านที่สำคัญของชุมชนท้องถิ่น ผลงานวิจัยดังกล่าวทำให้ชุมชนท้องถิ่นตระหนักถึงความสำคัญของระบบ นิเวศต่างๆ และช่วยกันอนุรักษ์

โครงการ BRT ได้สนับสนุนการศึกษากุ้งเคย บริเวณอ่าวเตล็ดใหญ่ เนื่องจากเป็นวัตถุดิบที่สำคัญในการทำ กะปิ ซึ่งเป็นภูมิปัญญาท้องถิ่นในอำเภอขนอม ผลการศึกษาพบกุ้งเคยสกุล Acetes 3 ชนิด ได้แก่ Acetes japonicus, Acetes vulgaris และ Acetes erythraeus โดย A. japonicus พบมากที่สุด มีชื่อสามัญเรียกต่างๆ กัน พบชุกชุมตามชายทะเลที่เป็นหาดทราย กุ้งเคยในสกุลนี้จะนิยมนำมาทำกะปิและกุ้งแห้ง การดำรงชีวิตของกุ้งเคย จะ อยู่ใกล้พื้นทะเลโดยไม่จมตัวลงคลานบนพื้นอย่างกุ้งทั่วไป เมื่อถึงฤดูกาลมักพบอาศัยอยู่รวมกันเป็นฝูง บริเวณชายฝั่ง และลำคลองบริเวณป่าชายเลน เนื่องจากกุ้งเคยเป็นสัตว์น้ำพวกแพลงก์ตอนสัตว์ จึงถูกพัดพาไปตามกระแสน้ำและลม ทำให้ปริมาณการจับขึ้นอยู่กับสภาพคลื่นลม มรสุมและปริมาณฝนในแต่ละปี ตั้งแต่จังหวัดนครศรีธรรมราชจนถึง นราธิวาส กุ้งเคยจะชุกชุมในช่วงเดือนมกราคมถึงมีนาคม ข้อมูลจากกลุ่มชาวบ้านที่แหลมประทับ อำเภอขนอม จังหวัดนครศรีธรรมราช เมื่อถึงฤดูเคยเข้า จะละจากงานสวนมาทำประมงกัน กุ้งเคยจะชอบอาศัยบริเวณที่เป็นกองหิน หรือตามแนวชายฝั่ง โดยเฉพาะบริเวณที่มีสาหร่ายทุ่น (Sargassum sp.)

ปะการังในบริเวณเกาะแก่งต่างๆ ได้รับการศึกษาวิจัยเพื่อการอนุรักษ์ ผลการศึกษาปะการังที่เกาะแตน พบ ปะการังทั้งหมด 87 ชนิดโดยพบว่าจุดสำรวจที่ 4 (ด้านใต้ของเกาะแตน) สภาพแนวปะการังมีความสมบูรณ์ดีมาก แต่ มีจำนวนชนิดและดัชนีความหลากหลายทางชีวภาพต่ำที่สุด ส่วนจุดสำรวจที่ 3 (ด้านตะวันออกเฉียงใต้ของเกาะแตน) มีจำนวนชนิดและดัชนีความหลากหลายทางชีวภาพมีค่าสูงที่สุดและสภาพแนวปะการังสมบูรณ์ดี การอนุรักษ์แนว ปะการัง และเพิ่มแนวเขตปะการังนั้นสามารถทำได้หลายวิธี โดยวิธีที่นิยมทำกันมาก คือ การปลูกปะการัง ด้วยการ ปักกิ่งปะการังไว้ในแท่นคอนกรีต ทว่าวิธีการดังกล่าวมีข้อเสียคือ ปะการังที่เกิดใหม่จะมีความอ่อนแอ เนื่องจากกิ่ง ปะการังที่นำมาปักส่วนใหญ่มาจากปะการังต้นเดียวกันทำให้มีความหลากหลายทางพันธุกรรมต่ำ จึงไม่สามารถทนต่อ การเปลี่ยนแปลงที่เกิดขึ้นในทะเลได้ดีนัก อย่างไรก็ดี ยังมีอีกแนวทางหนึ่งที่คาดว่าจะเป็นการอนุรักษ์แนวปะการังที่ ให้ผลยั่งยืน นั่นคือ การอนุรักษ์แหล่งปล่อยไข่อ่อนปะการังในธรรมชาติให้คงอยู่ เพื่อจะได้สามารถสร้างไข่หรือตัวอ่อน ปะการังให้กระจายไปยังเกาะต่างๆ ด้วยเหตุนี้ จึงได้มีการศึกษาเรื่องการไหลเวียนของกระแสน้ำระหว่างหมู่เกาะทะเลใต้ อำเภอขนอม จังหวัดนครศรีธรรมราช ผลการศึกษาพบว่า แหล่งปล่อยไข่ปะการังในธรรมชาติที่สำคัญในหมู่เกาะ ทะเลใต้ ได้แก่ เกาะราบ เป็นแหล่งปล่อยไข่ปะการังที่สามารถใหล่ไป เกาะมัดโกง กองหินน้ำลาย และไหลรอบเกาะแตน จึงจาก ข้อมูลเหล่านี้สามารถนำไปสู่การวางแผนการอนุรักษ์พื้นที่ตันกำเนิดไข่ปะการัง และจะนำไปสู่ความอุดมสมบูรณ์ของ แนวปะการังในทะเลขนอม – หมู่เกาะทะเลใต้ โดยเฉพาะเกาะแตน ซึ่งเป็นเกาะที่ได้รับไข่ปะการังจากเกาะอื่น

ป่าชายเลนเป็นระบบนิ้เวศที่สำคัญ เป็นแหล่งอนุบาลสัตว์น้ำและแหล่งประกอบอาชีพเสริมของชุมชน ป่า ชายเลนในพื้นที่ขนอมได้เสื่อมโทรมและบางส่วนเป็นโรคโคนเน่า โดยเฉพาะที่เกิดกับต้นตะบูน ผลการศึกษาวิจัยพบว่า ต้นตะบูนขาวมีอาการของโรคโคนเน่ารุนแรง ลำต้นกลวงเป็นโพรง และล้มตายจำนวนมาก มีอัตราการเกิดโรคโคนเน่า ตั้งแต่ 31.8%-88.9% การสำรวจและเก็บตัวอย่างดอกเห็ดที่พบบนต้นตะบูนขาว พบดอกเห็ดที่คาดว่าจะเป็นสาเหตุ ของโรคโคนเน่า เจริญอยู่ที่รอยแผล และบริเวณรากของต้นตะบูนขาวจำนวนมาก ซึ่งจากการศึกษาลักษณะทาง สัณฐานวิทยาและข้อมูลดีเอ็นเอ พบว่าเป็นเห็ดที่อยู่ใน ไฟล้ม Basidiomycota อันดับ Hymenochaetales วงศ์ Hymenochaetaceae อย่างไรก็ตาม การพบข้อมูลเกี่ยวกับเห็ดที่ก่อโรคเพียงอย่างเดียวยังไม่เพียงต่อการป้องกันและ ควบคุมโรค จำเป็นต้องมีการศึกษาเพิ่มเติมเชิงนิเวศวิทยา ความหลากหลายทางพันธุกรรมของเห็ด การระบาดและ การกระจายของโรค อัตราการย่อยสลายพืชเจ้าบ้าน ความสัมพันธ์ระหว่างเห็ดกับพืชเจ้าบ้านและสิ่งมีชีวิตอื่นๆ เมื่อได้ ข้อมูลพื้นฐานเหล่านี้ จึงจะสามารถหาแนวทางการป้องกันและควบคุมโรคต่อไปได้ ซึ่งกำลังอยู่ในระหว่างการ สนับสนุนงานวิจัยต่อไป

กลุ่มงานที่ 2 งานวิจัยเพื่อส่งเสริมการท่องเที่ยวเชิงนิเวศ เน้นไปที่การศึกษาต่อยอดโลมาสีชมพู ตั้งแต่ปี พ.ศ. 2549 เป็นต้นมา งานวิจัยในชุดโครงการหาดขนอมระยะที่ 1 สร้างความตื่นตัวให้ชุมชนและประชาชนในการ ท่องเที่ยวชมโลมาสีชมพู สร้างอาชีพในการนำเที่ยวโลมาสีชมพูแก่กลุ่มท่องเที่ยวเชิงอนุรักษ์โลมาบ้านแหลมประทับ อ. ขนอม จ.นครศรีธรรมราช ดังนั้น การศึกษาโลมาสีชมพู และการสร้างความตระหนักแก่ชุมชนจึงได้ดำเนินการต่อเนื่อง ในระยะที่ 2 โดยได้สนับสนุนให้มีการสร้างความเข้มแข็งให้ชุมชนในการนับจำนวนโลกมาตามแนวชายฝั่งขนอมด้วย ตนเอง เพื่อสร้างความยั่งยืน รวมทั้งสนับสนุนให้มีการประเมินมูลค่าทางเศรษฐศาสตร์ของโลมาสีชมพูด้วย

กลุ่มงานที่ 3 การสร้างแหล่งเรียนรู้และถ่ายทอดความรู้สู่ชุมชน การดำเนินงานระยะสั้น ได้มีการจัดค่าย เยาวชน จัด roadshow ให้ความรู้ และจัดนิทรรศการชุดต่างๆ สำหรับการถ่ายทอดความรู้ระยะยาว ได้ตั้งเป้าในการ นำความรู้ไปสู่หลักสูตรการเรียนการสอนในโรงเรียน และการทำแหล่งเรียนรู้ในบริเวณพื้นที่ธรรมชาติต่างๆ ซึ่งกำลัง อยู่ในระหว่างการพัฒนางานต่อไป

ผลกระทบจากการดำเนินงานของโครงการในเชิงเศรษฐกิจและสิ่งแวดล้อม ที่เห็นได้อย่างชัดเจน คือ ความ ตื่นตัวและความตระหนักของชุมชนท้องถิ่นในการร่วมกันอนุรักษ์พื้นที่ และทรัพยากรทางทะเลและชายฝั่งที่สำคัญ เช่น ผลการศึกษาเรื่องหญ้าทะเลทำให้ชุมชนหันมาอนุรักษ์หญ้าทะเลทำให้พื้นที่หญ้าทะเลเพิ่มขึ้นจากเดิม 45 ไร่ เป็น 65 ไร่ ภายในระยะเวลา 2 ปี โดยเป็นการเพิ่มคุณภาพทั้งในเชิงปริมาณและเชิงคุณภาพ หญ้าทะเลให้บริการทาง ดอลลาร์ต่อแฮกแตร์ต่อปี การศึกษาหญ้าทะเลที่เกาะท่าไร่ อ.ขนอม จ. ระบบนิเวศปีละประมาณ 19,000 นครศรีธรรมราช คิดเป็นบริการทางระบบนิเวศของหญ้าทะเลจำนวน 7.9 ล้านบาทต่อปีต่อพื้นที่หญ้าทะเล 65 ไร่ พืชน้ำ/สาหร่ายทะเล เป็นแหล่งกักเก็บคาร์บอนที่สำคัญแหล่งหนึ่ง จากการค้นพบสาหร่ายใบมะกรูด ทำให้ประเทศ ไทย มีศักยภาพในการลดปริมาณคาร์บอนไดออกไซด์ เนื่องจากสาหร่ายใบมะกรูดดูดซับก๊าซคาร์บอนไดออกไซด์ได้ถึง ประเทศไทยมีพื้นที่สาหร่ายใบมะกรูดประมาณ ตันต่อเฮคแตร์ต่อปี 2,400 93,750 ทำให้ดูดซับ คาร์บอนไดออกไซด์ได้ถึง 36 ล้านตันต่อปี การวิจัยพื้นที่สาหร่ายใบมะกรุดในทะเลขนอม จ.นครศรีธรรมราช พื้นที่ 137.5 ไร่ ช่วยดูดซับคาร์บอนไดออกไซด์ 52,800 ตันต่อปี การพบโลมาสีชมพู ทำให้เกิดกลุ่มท่องเที่ยวเชิงอนุรักษ์ โลมา บ้านแหลมประทับ อ.ขนอม จ.นครศรีธรรมราช ระหว่างปี พ.ศ. 2549-2552 มีจำนวนเที่ยวเรือที่ออกพา นักท่องเที่ยวไปชมโลมาสีชมพูถึง 1,927 เที่ยว ราคาเที่ยวละ 800 บาท สร้างรายได้ให้ชุมชน 1,541,600 บาท

5.17 ชุดโครงการหาดขนอม-หมู่เกาะทะเลใต้ โดยความร่วมมือกับมูลนิธิโททาล และโททาลอีแอนด์พี ประเทศไทย

ประเทศไทยมีแนวชายฝั่งยาวประมาณ 2,600 กม.โดยมีพื้นที่ทางทะเลทั้งฝั่งตะวันออก คือ อ่าวไทยด้าน ทะเลจีนและฝั่งตะวันตกด้านทะเลอันดามันรวมกันประมาณ 420,000 ตร.กม. ก่อให้เกิดความหลากหลายทางชีวภาพ ทางทะเล และผลผลิตทางการประมงสูง อีกทั้งยังมีชายหาดที่ขาวสะอาด รวมทั้งแนวปะการังที่สวยสดงดงาม ซึ่งเป็น แหล่งดึงดูดการท่องเที่ยวทางทะเลได้เป็นอย่างดี อย่างไรก็ตามประเทศไทยยังขาดความรู้และข้อมูลชีววิทยาพื้นฐาน ตามแนวชายฝั่งทะเลดังกล่าว การศึกษาวิจัยความหลากหลายทางชีวภาพภาพทางทะเลจะทำให้ได้ข้อมูลพื้นฐานทาง ชีววิทยา เพื่อการวางแผนการบริหารจัดการทรัพยากรชีวภาพทางทะเลอย่างยั่งยืน

ดังนั้นโครงการ BRT จึงได้พัฒนาชุดโครงการเชิงพื้นที่ (area-based research) "ความหลากหลายทาง ชีวภาพทางทะเล: ขนอม-หมู่เกาะทะเลใต้" โดยได้เลือกพื้นที่บริเวณหมู่เกาะทะเลใต้ อ่าวไทย (เกาะแตน, เกาะราบ, เกาะวังนอก, เกาะวังใน และเกาะมัดสุ่ม) ในอำเภอขนอม จังหวัดนครศรีธรรมราช รวมทั้งบริเวณพื้นที่ทะเลโดยรอบ เพื่อสนับสนุนงานวิจัยและฝึกอบรมความหลากหลายทางชีวภาพของท้องทะเลไทย ชุดโครงการนี้อยู่ภายใต้การบริหาร จัดการโดยกลุ่มนักวิจัยจากหลากหลายสาขาวิชาการ มีระยะเวลา 3 ปี (พ.ศ 2549-2551) เน้นการวิเคราะห์ข้อมูล อย่างบูรณาการทั้งทางด้านชีวภาพและกายภาพ เพื่อสำรวจและประมวลองค์ความรู้พื้นฐานทางด้านทะเลไทย โดยเฉพาะอย่างยิ่งการติดตามตรวจสอบระบบนิเวศทางทะเลในระยะยาว เพื่อศึกษาปัจจัยการเปลี่ยนแปลงทาง กายภาพ โดยเฉพาะอุณหภูมิของน้ำทะเลที่สูงขึ้น ซึ่งจะผลต่อการเปลี่ยนแปลงความหลากหลายทางชีวภาพของ สิ่งมีชีวิตในทะเล

ชุดโครงการดังกล่าวนอกจากมีโครงการ BRT เป็นผู้สนับสนุนทุนวิจัยแล้ว ยังได้สร้างหุ้นส่วนร่วมกับมูลนิธิโท ทาล (TOTAL FOUNDATION) สาธารณรัฐฝรั่งเศส และบริษัทโททาล อีแอนด์พี ไทยแลนด์ (TOTAL E&P THAILAND) ซึ่งประกอบธุรกิจด้านพลังงาน และเป็นผู้ร่วมลงทุนสำรวจและผลิตก๊าซธรรมชาติในอ่าวไทย โดยบริษัท ต้องการแสดงความรับผิดชอบต่อสังคมเชิงบรรษัทหรือของธุรกิจ หรือ Corporate Social Responsibility (CSR) ด้วยการสนับสนุนทุนวิจัยร่วมกับโครงการ BRT ในการอนุรักษ์ทรัพยากรชีวภาพของประเทศไทย

ผลการวิจัยมีความก้าวหน้าเป็นลำดับ และได้เปิดโลกใต้ทะเลขนอม บริเวณอ่าวไทย ที่มีความหลากหลาย ทางชีวภาพสูงโดยสำรวจพบสิ่งมีชีวิตใต้ทะเลทั้งหมด 719 ชนิด ทั้งชนิดที่หายาก อาทิ ดาวตะกร้าหรือตาข่าย ดาว เปราะกัลปังหาร่อง และชนิดที่เป็นสัตว์ประจำถิ่นบริเวณทะเลขนอมที่ดึงดูดการท่องเที่ยว เช่น โลมาสีชมพู นอกจากนี้ยังมีแหล่งหญ้าทะเลแหล่งสุดท้ายพื้นที่ขนาด 0.1 ตร.กม. ที่ยังคงทำหน้าที่เป็นแหล่งอนุบาลสัตว์น้ำที่สำคัญ ที่เกาะท่าไร่ และพบสาหร่ายทะเลหลากหลายชนิดรวมทั้งสาหร่ายใบมะกรูดที่นำคาร์บอนไดออกไซด์มาเปลี่ยนรูปเป็น หินปูนสะสมไว้ที่ใบ ซึ่งสามารถนำมาศึกษาวิจัยต่อยอดเพื่อช่วยลดภาวะโลกร้อนได้ ในขณะเดียวกันผลงานวิจัยใน โครงการนี้ยังได้เปิดเผยสิ่งมีชีวิตชนิดต่างๆ ที่อยู่ใต้ทะเลที่มีความสัมพันธ์เกื้อกูลกันอย่างสมดุล ทำให้หมู่เกาะทะเลที่ ขนอมยังคงความอุดมสมบูรณ์มาจนถึงปัจจุบัน

อาจกล่าวได้ว่าชุดโครงการวิจัยความหลากหลายทางชีวภาพทางทะเลนี้ได้จุดประกายและสร้างองค์ความรู้ ใหม่ด้วยการตีพิมพ์ผลงานทางวิชาการทางทะเลบริเวณชายทะเลภาคใต้ฝั่งตะวันออก (ฝั่งอ่าวไทย) ที่เป็นรากฐาน สำคัญในการศึกษาต่อยอด พร้อมกันนั้นยังได้เชื่อมโยงความรู้ไปสู่ท้องถิ่น โดยการจัดเวทีนำความรู้สู่ชุมชน เพื่อการ บริหารจัดการและการอนุรักษ์โลมาสีชมพู สัตว์ประจำถิ่นในพื้นที่ทะเลขนอม ที่กำลังอยู่ในภาวะที่กำลังจะสูญพันธุ์ โดยชุมชนเป็นผู้สืบทอดเจตนารมณ์ของการอนุรักษ์ พร้อมกันนั้นยังได้จัดค่ายและฝึกอบรมเยาวชนให้เข้าใจและรู้จัก ทรัพยากรชีวภาพทางทะเล เพื่อจิตสำนึกรักบ้านเกิด ตลอดจนได้สร้างผลกระทบด้านนโยบาย โดยลดข้อขัดแย้งและ คลี่คลายปัญหาด้านสิ่งแวดล้อมที่เกิดขึ้นในพื้นที่ระหว่างชุมชนกับภาคเอกชน และยังได้นำไปสู่การผลักดันด้าน นโยบายในการยกระดับพื้นที่ทะเลขนอมและหมู่เกาะทะเลใต้ให้เป็นพื้นที่คุ้มครองทางทะเลอีกด้วย

ชุดโครงการวิจัยเชิงเนื้อเรื่อง (Issue-based Research) 5.18 ชุดโครงการวิจัยไผ่ โดยความร่วมมือกับมหาวิทยาลัยราชภัฏกาญจนบุรี

จากการศึกษาไผ่โดยคณะนักวิจัยจากมหาวิทยาลัยราชภัฏกาญจนบุรี พบว่าพื้นที่ตำบลท่าเสา อำเภอไทรโยค จังหวัดกาญจนบุรี เป็นพื้นที่ที่มีความหลากหลายของไผ่สูง พบไผ่ทั้งหมด 16 ชนิด เช่น ไผ่รวก ไผ่ข้าวหลาม และไผ่ มันหมู เป็นต้น ชาวบ้านมีการใช้ประโยชน์และยังคงมีการถ่ายทอดภูมิปัญญาเกี่ยวกับไผ่อย่างแพร่หลาย เช่น ภูมิ ปัญญาการสานเข่ง การทำข้าวหลาม และการทำอาหารจากหน่อไม้ เป็นต้น

ที่สำคัญพบว่าไผ่เป็นทรัพยากรหลักที่สร้างมูลค่าทางเศรษฐกิจให้กับชุมชมตำบลท่าเสา โดยชุมชนมีการทำ ผลิตภัณฑ์ไผ่เพื่อการค้าในหลายด้าน ซึ่งสร้างรายได้ให้กับชุมชนเป็นจำนวนมาก เช่น มูลค่าจากผลิตภัณฑ์เช่ง ใน 3 หมู่บ้าน จากผู้สานเช่ง 77 ราย ผู้รับซื้อเช่ง 4 ราย คิดเป็นเงินประมาณ 15,420,000 บาทต่อปี

มูลค่าจากผลิตภัณฑ์หน่อไม้ต้มส่งโรงงาน ใน 4 หมู่บ้าน จากจำนวนผู้ผลิต 7 ราย คิดเป็นเงินประมาณ 945,000 บาทต่อปี มูลค่าผลิตภัณฑ์หน่อไม้ต้มบรรจุปิ๊บ ใน 1 หมู่บ้าน จากผู้ผลิต 1 ราย คิดเป็นเงินประมาณ 75,000 บาทต่อปี มูลค่าจากผลิตภัณฑ์หน่อไม้นึ่งบรรจุถุงพลาสติก ใน 1 หมู่บ้าน จากผู้ผลิต 1 ราย คิดเป็นเงินประมาณ 4,500 บาทต่อปี

นอกจากนั้นยังมีเกษตรกร 12 ราย ปลูกไผ่ไว้เป็นรายได้เสริม รวมพื้นที่ปลูกประมาณ 81 ไร่ ไผ่ส่วนใหญ่ที่ ปลูกเป็น "ไผ่รวก" ซึ่งไผ่เหล่านี้จะถูกนำไปหมุนเวียนใช้ในการทำผลิตภัณฑ์ไผ่เพื่อการค้าของชุมชนต่อไป

ส่วนการศึกษาที่นำไปสู่การแก้ปัญหาและพัฒนาคุณภาพผลิตภัณฑ์ไผ่ให้แก่ชุมชน ได้มีการค้นพบวิธีการช่วย ลดสารปนเปื้อนในการผลิตหน่อไม้ไผ่รวกนึ่ง และพบวิธีการช่วยยืดอายุการเก็บรักษาผลิตภัณฑ์หน่อไม้ไผ่รวกนึ่งให้อยู่ ได้นานเกินกว่า 120 วัน โดยที่ยังคงคุณภาพตามเกณฑ์มาตรฐานของการผลิต

5.19 การจัดการทรัพยากร กรณีศึกษาอึ่งอ่างก้นขีด ที่จังหวัดตาก

สินค้ายอดนิยมของชาวบ้าน อำเภอบ้านตาก และอำเภอสามเงา จังหวัดตาก ในช่วงปลายเดือนมีนาคม – พฤษภาคม ของทุกปี คือ อึ่งอ่างก้นขีด (Kaloula mediolineata) โดยชาวบ้านจับมาขายกันวันละ 20-80 กิโลกรัม ต่อวัน จำนวนอึ่ง 30-40 ตัวต่อกิโลกรัม ดังนั้นในแต่ละฤดูกาลจึงมีการจับอึ่งอ่างก้นขีดมาขายหลายแสนตัว แม้ว่า ชาวบ้านจะยืนยันว่าปริมาณอึ่งอ่างก้นขีดที่จับได้ไม่เคยลดลง แต่ไม่อาจยืนยันได้แน่นอนว่าอึ่งอ่างก้นขีดจะไม่หมดไป ในอนาคต ซึ่งหากมีปริมาณลดลงย่อมมีผลกระทบต่อรายได้ของชาวบ้าน

นายกันย์ นิติโรจน์ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย จึงได้ทำการศึกษาการ กระจายตัวในแนวดิ่งของอึ่งอ่างก้นขีด และปัจจัยทางกายภายที่มีผลต่อการกระจายตัว จากการศึกษาในพื้นที่ป่าเบญจ พรรณในตำบลวังจันทร์ อำเภอสามเงา จังหวัดตาก พบว่าระดับความลึกที่อึ่งอ่างก้นขีดอาศัยอยู่มีความสัมพันธ์กับ ปริมาณน้ำฝน ในช่วงที่ฝนตกมากอึ่งจะอาศัยอยู่ตื้นกว่าช่วงเดือนฝนแล้ง โดยอาศัยอยู่ลึกที่สุดมากกว่า 1 เมตร ในส่วน ของความชื้น และความเป็นกรด-ด่างของดิน บริเวณที่อึ่งอาศัยอยู่จะมีความชื้น และความเป็นกรด-ด่างสูงกว่าบริเวณ ผิวดิน ส่วนชนิดของดินจะมีอนุภาคดินทรายเป็นส่วนประกอบของเนื้อดินมากกว่า 80 เปอร์เซ็นต์ ข้อมูลเหล่านี้จะ เป็นพื้นฐานสำหรับการเพาะเลี้ยงในอนาคต หากมีความจำเป็นต้องเพิ่มประชากรอึ่งอ่างก้นขีด

5.20 วิถีชีวิตชาวกะหร่าง ต้นแบบการอยู่กับธรรมชาติอย่างพึ่งพา

ชาวกะหร่างเป็นชนเผ่าที่มีถิ่นฐานในบริเวณต้นแม่น้ำเพชรบุรี ในพื้นที่อุทยานแห่งชาติแก่งกระจาน จังหวัด เพชรบุรี โดยการดำรงชีวิตอยู่ร่วมกับป่ามาตั้งแต่บรรพบุรุษ การหากินหาอยู่ของชาวกะหร่างมาจากการทำการ เพาะปลูก ซึ่งมีทั้งนำพันธุ์พืชจากป่ามาปลูก หรือ นำพันธุ์พืชไปแลกเปลี่ยนกับชุมชนอื่น โดยจะปลูกไว้ในพื้นที่สวน รอบบ้าน ทำให้เกิดความหลากหลายทางพันธุกรรมของพืชในพท้นที่ป่าและแปลงเพาะปลูก

นางสาวอรวรรณ บุญทัน ภาควิชาเทคโนโลยีการบริหารสิ่งแวดล้อม คณะสิ่งแวดล้อมและทรัพยากร ศาสตร์ มหาวิทยาลัยมหิดล ได้เข้าไปทำการศึกษาวิถีชีวิตและภูมิปัญญาของชาวกะหร่าง พบว่ามีพืชที่นำมาปลูกรอบ บ้านเพื่อการใช้ประโยชน์ทั้งสิ้นถึง 219 ชนิด โดยในไปใช้ประโยชน์ในแง่อาหาร ยาสมุนไพร ปลูกเพื่อใช้สอยใน ครัวเรือน และปลูกเพื่อใช้ประดับตกต่าง เป็นรั้วกั้นอาณาเขตรอบบ้าน

การนำพื้ชพันธุ์หลากหลายชนิดมาปลูกรอบๆ บริเวณบ้าน ถือเป็นวิธีการหนึ่งที่สามารถนำไปใช้ในการจัดการ พื้นที่อนุรักษ์ได้อย่างมีประสิทธิภาพ ภายใต้ความเข้าใจ การยอมรับ และสนับสนุนให้มีการอนุรักษ์ ทั้งนี้จากความเชื่อ ของชาวกะหร่างที่มีความผูกพันกับธรรมชาติ โดยมีการจัดวางความสัมพันธ์ให้ตนเองเป็นส่วนหนึ่งของธรรมชาติ มอง ว่ารรมชาติเป็นผู้ให้ชีวิต ให้ที่อยู่อาศัย ให้อาหาร และการดำรงเผ่าพันธุ์ ด้วยเหตุนี้ธรรมชาติจึงไม่ถูกเบียดเบียน และ มนุษย์เองก็สามารถใช้ประโยชน์จากธรรมชาติได้อย่างยั่งยืน

6. ด้านการใช้ประโยชน์จากทรัพยากรชีวภาพ

6.1 ความหลากหลายทางชีวภาพของเชื้อที่ผลิตเอนไซม์คอลลาจิเนสจากดิน

เอนไซม์คอลลาจิเนสเป็นเอนไซม์ชนิดหนึ่งที่สามารถสกัดและย่อยสลายคอลลาเจนได้ จึงมีความสำคัญใน อุตสาหกรรมเคมี อาหาร และยา เพื่อสร้างคอลลาเจนที่เป็นส่วนผสมอยู่ในผลิตภัณฑ์ต่างๆ เช่น ผลิตภัณฑ์เสริมความ งาม ผสมในอาหารบำรุงสุขภาพ ยารักษาโรค ผศ. ดร. เบญจมาส เชียรศิลป์ และนางสาว วริญดา สุภัทรประทีป คณะอุตสาหกรรมเกษตร มหาวิทยาลัยสงขลานครินทร์ จึงได้ศึกษาเอนไซม์คอลลาจิเนสจากจุลินทรีย์ ซึ่งมี ความสามารถในการสกัดคอลลาเจนได้ปริมาณมากกว่าเอนไซม์จากกระเพาะของสิ่งมีชีวิต

จากการเก็บตัวอย่างดินที่มีการปนเปื้อนของเศษเหลือจากปลาในภาคใต้ พบเชื้อที่สามารถผลิตเอนไซม์คอลลา จิเนสได้ทั้งหมด 11 ไอโซเลต โดยให้ค่า degree of hydrolysis สูงกว่า 3.0 โดยพบว่ากิจกรรมของเอนไซม์คอลลาจิเนส ที่ผลิตได้มีความคงตัวสูงในช่วง pH ที่เป็นกลาง คือ 6-8 และช่วงอุณหภูมิ 40 องศาสเซลเซียส และจากการศึกษา คุณสมบัติบางประการของเอนไซม์คอลลาจิเนสที่ผลิตจากเชื้อแบคทีเรียที่แยกได้ พบว่าเอนไซม์มีศักยภาพในการนำไป ประยุกต์ใช้ต่อได้ และสามารถนำไปใช้ในอุตสาหกรรมสกัดคอลลาเจนจากปลาได้ ทั้งนี้เชื้อดังกล่าวได้จัดเก็บใน BCC ของไบโอเทค เรียบร้อยแล้ว

6.2 การเก็บรักษาสปอร์ราทำลายแมลงแบบต่างๆ ด้วยวิธี L-Drying

ราทำลายแมลงเป็นจุลินทรีย์กลุ่มที่มีประโยชน์หลายด้าน ทั้งด้านการแพทย์ อาหาร และเกษตร โดยสามารถ ประยุกต์ใช้ในการควบคุมแมลงศัตรูพืช และการสร้างสารออกฤทธิ์ทางชีวภาพที่นำไปสู่การผลิตยารักษาโรค ดังนั้น การเก็บรักษาตัวอย่างราแมลงจึงมีความสำคัญอย่างยิ่ง เพื่อให้ราแมลงที่เก็บรักษาไว้ยังคงคุณสมบัติที่มีค่าไว้ในระยะ ยาว

ผศ.ดร.ศันสนลักษณ์ รัชฎาวงศ์ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ได้เปรียบเทียบการเก็บ รักษาราทำลายแมลงโดยใช้บลาสโตสปอร์และโคนิเดียด้วยวิธี L-drying และ freeze-drying เพื่อพัฒนาเป็นวิธีที่ เหมาะสมสำหรับการเก็บรักษาราทำลายแมลงในระยะยาว

เชื้อราที่ใช้ในการทดลอง เป็นเชื้อราที่มีอัตราการเจริญเติบโตช้าและมีความสามารถในการสร้าง bioactive compounds ซึ่งมีปัญหาในการเก็บรักษา ได้แก่ Ophiocordyceps, Cordyceps, Torrubiella, Hirsutella, Metarhizium, Paecilomyces, Akanthomyces, Beauveria, Nomuraea และ Verticillium โดยทั้งหมดเป็น เชื้อราในห้องเก็บรักษาจุลินทรีย์ ไบโอเทค โดยผลจากการศึกษามี ดังนี้

- 1. การเก็บรักษาเบื้องต้นมี 2 วิธี คือ **แบบเยือกแข็งที่ -80°C** และ**บนอาหารวุ้นเอียง PDA ที่ 25°C** เมื่อ ตรวจสอบการเจริญของราหลังการเก็บรักษาเป็นเวลา 1 2 ปี ไม่พบความแตกต่างอย่างมีนัยสำคัญของ การฟื้นตัวของเชื้อจากทั้ง 2 สภาวะ
- 2. การศึกษาพัฒนาการทางสัณฐานวิทยาและการกระตุ้นการสร้างบลาสโตสปอร์ของราทั้ง 10 กลุ่ม ใน อาหารเหลว GICM ผสม 10% FBS และ 3% glucose พบว่า ลักษณะทั่วไปของบลาโตสปอร์ของราทำลายแมลงเป็น สปอร์เซลล์เดียวที่มีผนังบาง สร้างผ่าน slit บนเส้นใยของราแมลง มีรูปร่างหลากหลาย
- 3. การศึกษาสภาวะที่เหมาะสมต่อการสร้างบลาสโตสปอร์ของราแมลง โดยควบคุมการให้อากาศ พบว่า การ เลี้ยงแบบไม่เขย่าเหมาะสมต่อการสร้างบลาสโตสปอร์ของ Ophiocordyceps, Cordyceps และ Akanthomyces ซึ่งให้ปริมาณการสร้างบลาสโตสปอร์สูงสุดที่ 9.8 \times 106, 1.2 \times 107 และ 2.0 \times 106 สปอร์/มล. ตามลำดับ และการ เลี้ยงแบบเขย่าเหมาะสมต่อ Metarhizium, Torrubiella, Hirsutella, Paecilomyces , Beauveria, Nomuraea และ Verticillium ซึ่งให้ปริมาณการสร้างบลาสโตสปอร์สูงสุดที่ 4.3 \times 105, 2.9 \times 107, 1.2 \times 107, 1.4 \times 107, 1.3 \times 107, 2.0 \times 104 และ 2.3 \times 107 สปอร์/มล.ตามลำดับ
- 4. การเปรียบเทียบประสิทธิภาพของวิธีการเก็บรักษาบลาสโตสปอร์และโคนิเดียในระยะยาวระหว่าง freeze drying และ L- drying พบว่า *L- drying* สามารถคงอัตราการรอดชีวิตของทั้งบลาสโตสปอร์และโคนิเดียได้ ดีกว่า เมื่อนำมาเก็บรักษาในระยะยาวด้วยวิธี Liquid-drying พบว่า จากบลาสโตสปอร์ 22 ตัวอย่าง มี 16 ตัวอย่างที่

สามารถรอดชีวิตได้ถึง 1 ปี *การเก็บด้วย freeze drying* พบ10 ตัวอย่างที่สามารถรอดชีวิตได้ถึง 1 ปี ซึ่งโดยเฉลี่ย แล้วมีอัตราการรอดชีวิตสูง คือ มากกว่า 10 % ยกเว้น *Metarhizium* และ *Paecilomyces* ที่ไม่สามารถเก็บรักษา ได้ดีโดยวิธีการนี้ อายุการเก็บรักษาเฉลี่ยของโคนิเดียหลังจากการทำ L-drying จะไม่เกิน 1 เดือน ยกเว้น *Metarhizium* ที่มีอัตราการรอดชีวิตถึง 1 ปี (<1% survival)

ผลการศึกษานี้สามารถนำไปประยุกต์ใช้ในการผลิตและเพิ่มอายุการเก็บรักษา biopesticide สำหรับแมลง ศัตรูพืชที่เป็นเจ้าบ้านของราแมลงโดยการใช้ บลาสโตสปอร์ ได้ โดยโครงการฯ ได้จัดส่งรายงานฉบับสมบูรณ์ไปให้กับ ห้องปฏิบัติการ BCC เพื่อเป็นประโยชน์ต่อการประยุกต์ใช้ต่อไปในอนาคต

6.3 การควบคุมไรในโรงเก็บ Suidasia pontifica Oudemans โดยใช้น้ำมันหอมระเหยจากพืช

ไรในโรงเก็บผลผลิตทางการเกษตร เป็นปัญหาที่ทำให้ผลผลิตสูญเสียทั้งคุณภาพและปริมาณ แต่การควบคุม ไรในโรงเก็บด้วยสารเคมีทำได้ยาก เนื่องจากไรในโรงเก็บจะมีความต้านทานต่อสารเคมีทำจัดแมลงและไรศัตรูพืช มากกว่าศัตรูพืชชนิดอื่นๆ อีกทั้งการใช้สารเคมียังจะส่งผลกระทบต่อผู้บริโภค ผู้อยู่อาศัย และส่งผลกระทบต่อ สิ่งแวดล้อม

ผศ.ดร.อำมร อินทร์สังข์ คณะเทคโนโลยีการเกษตร สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหาร ลาดกระบัง จึงได้ทดลองใช้แนวคิดเรื่องการใช้น้ำมันหอมระเหยในการกำจัดไรในโรงเก็บ โดยได้ทำการทดลองน้ำมัน หอมระเหยจากพืช 28 ชนิด โดยวิธีการรมและวิธีการสัมผัส พบว่า น้ำมันหอมระเหยจากพืช 5 ชนิด ได้แก่ กานพลู อบเชย ว่านน้ำ พลู และตะไคร้หอม มีประสิทธิภาพในการฆ่าไรในโรงเก็บได้มากกว่า 70% ที่ 24 ชั่วโมง โดยน้ำมัน หอมระเหยจากกานพลูแห้งมีประสิทธิภาพในการฆ่าไรฝุ่นได้ถึง 100% ที่ความเข้มข้น 1.2 และ 1.8 µg/cm3

การทดสอบควบคุมไรในโรงเก็บ ได้ใช้น้ำมันหอมระเหยจากกานพลูที่ความเข้มข้น 2% และน้ำมันหอมระเหย จากกานพลู (1.6%) และอบเชย (0.4%) รวมเป็นความเข้มข้น 2% ไปใช้ในโรงเก็บผลิตภัณฑ์อาหารสัตว์ พบว่าน้ำมัน หอมระเหยทั้ง 2 สูตร สามารถฆ่าไร Dermatophagoides pteronyssinus ในโรงเก็บได้ 100% และฉีดพ่นในโรง เก็บที่มี Suidasia pontifica รวมกับไรชนิดอื่นๆ พบว่าหลังจากฉีดพ่นไป 1-3 สัปดาห์ ไม่พบไรชนิดต่างๆ และไรจะ เริ่มกลับมาในสัปดาห์ที่ 4 จึงจำเป็นต้องมีการฉีดพ่นน้ำมันหอมระเหยในโรงเก็บผลิตภัณฑ์เกษตร อาหารแห้ง ทุกๆ เดือน

ทั้งนี้ ได้มีการให้คำปรึกษากับบริษัทเบทาโกรจำกัด และบริษัทเอกชนอื่นๆ ในเรื่องไรในโรงเก็บและการ ป้องกันกำจัดโดยใช้น้ำมันหอมระเหยจากพืชสมุนไพร รวมไปถึงแนะนำภาคเอกชนด้านการป้องกันกำจัดไรในรังนก นางแอ่น ซึ่งเป็นปัญหาใหม่ของเกษตรกรผลิตรังนกนางแอ่น

6.4 วิวัฒนาการร่วมของยีนโทโพไอโซเมอเรส 1 กับการสร้างแคมป์โทเธซินในพืชสกุล Ophiorrhiza

การศึกษาความสัมพันธ์ระหว่างสายวิวัฒนาการทางพันธุกรรมของยีนโทโพไอโซเมอเรส I กับการสร้างแคมป์ โทเธซินในพืชสกุล Ophiorrhiza โดย **นางสาววราลี วิราพร คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย** แบ่ง ออกเป็น 3 ส่วน คือ **การจำแนกชนิด** จากตัวอย่างที่เก็บจากหลายภูมิภาคของประเทศไทย จำแนกได้ 8 ชนิด จากที่ เคยมีรายงานพบ 30-35 ชนิด ในประเทศไทย **การศึกษาความสามารถในการสร้างแคมป์โทเธซิน**ของพืชสกุล Ophiorrhiza แต่ละชนิด พบว่ามี 5 ชนิด สามารถผลิตสารแคมป์โทเธซิน ซึ่งเป็นสารต้านมะเร็ง และ**การศึกษาความ หลากหลายทางพันธุกรรมของพืชสกุล** Ophiorrhiza พบว่าปัจจัยทางพันธุกรรมมีบทบาทสำคัญในการกำหนด

ความสามารถในการสร้างสารต้านมะเร็งในพืชสกุลนี้ ดังนั้น จึงสามารถใช้วงศ์วานวิวัฒนาการเชิงโมเลกุลเพื่อช่วยระบุ การสร้างสารต้านมะเร็งของพืชสกุลนี้ได้

ผลจากการศึกษาดังกล่าว จะช่วยให้การตรวจ วิเคราะห์เพื่อหาสารต้านมะเร็งในพืชสกุล Ophiorrhiza ทำ ได้ง่ายขึ้น เนื่องจากการสามารถตรวจหาสารได้จากทุกส่วน

ของพืช และการเก็บตัวอย่างพืชเพื่อหาสารต้านมะเร็งจึงไม่ขึ้นอยู่กับฤดูกาล ช่วงอายุของพืช

นอกจากนี้ การศึกษาการกลายพันธุ์ของเอนไซม์โทโพไอโซเมอเรส1 (เอนไซม์ที่จำเป็นต่อการแบ่งตัวของ เซลล์สิ่งมีชีวิต) ซึ่งพืชสร้างขึ้นเพื่อป้องกันตัวเองจากพิษของแคมป์โทเธซิน พบว่าการกลายพันธุ์ดังกล่าวเกิดขึ้นใน ตำแหน่งเดียวกับเซลล์มะเร็งที่มีการดื้อยา ซึ่งข้อมูลที่ได้นี้อาจนำไปสู่การศึกษาวิจัยต่อเนื่อง เกี่ยวกับตำแหน่งกรดอะมิ โนที่มีผลต่อโครงสร้างของเอนโซม์โทโพไอโซเมอเรส1 ในพืชที่สร้างสารต้านมะเร็ง ที่จะเป็นข้อมูลพื้นฐานในการ ทำนายการดื้อยาของผู้ป่วยโรคมะเร็ง เพื่อช่วยออกแบบยาต้านมะเร็งสำหรับผู้ป่วยที่ดื้อยา และอีกแง่หนึ่งคือการ นำเอาศักยภาพในการสร้างสารต้านมะเร็งของพืชสมุนไพรไทยมาใช้ประโยชน์ต่อไป

6.5 การควบคุมเพลี้ยแป้งมะละกอ *Paracocus marginatus* Williams & Granara de Willink (Homoptera : Pseudococcididae) โดยชีววิธีในประเทศไทย

เพลี้ยแป้งมะละกอ *P. marginatus* (Papaya mealybug) เป็นแมลงต่างถิ่นที่เข้ามาแพร่ระบาดในประเทศ ไทยตั้งแต่ปี 2551 มีถิ่นกำเนิดในประเทศเม็กซิโก และคอสตาริกา และได้แพร่สู่ประเทศไทยตั้งแต่ พ.ศ. 2551 ใน หลายจังหวัด เช่น เชียงราย พะเยา เชียงใหม่ ลำพูน ลำปาง พิษณุโลก นครสวรรค์ ลพบุรี สิงห์บุรี อยุธยา กรุงเทพฯ นครปฐม ฉะเชิงเทรา และเพชรบุรี

วิธีการควบคุมเพลี้ยแป้งมะละกอโดยชีววิธีแบบคลาสสิค คือ ใช้แมลงควบคุมศัตรูพืชในท้องถิ่นเดิม ประสบ ความสำเร็จในการควบคุมในหลายๆ ประเทศ แต่สำหรับประเทศไทย การนำเข้าแมลงเบียนของเพลี้ยแป้งมะละกอ ซึ่งเป็นแมลงต่างถิ่น ประสบปัญหาเรื่องการนำเข้าที่ต้องใช้เวลาและงบประมาณค่อนข้างสูง จึงจำเป็นต้อง ทำการศึกษาศัตรูธรรมชาติของเพลี้ยงแป้งมะละกอที่พบในประเทศไทย ที่มีศักยภาพในการควบคุมเพลี้ยแป้งมะละกอ โดยชีววิธี

การสำรวจแมลงศัตรูธรรมชาติที่ทำลายเพลี้ยแป้งมะละกอในประเทศไทย โดย **น.ส.ศมาพร แสงยศ** ภาควิชากีฏวิทยา คณะเกษตร มหาวิทยาลัยเกษตรศาสตร์ พบจำนวน 12 ชนิด ได้แก่ แตนเบียน 3 ชนิด, ด้วงเต่า ตัวห้ำ 5 ชนิด, ผีเสื้อดักแด้หัวลิง, แมลงช้างปีกใส 2 ชนิด และแมลงวันดอกไม้ ซึ่งได้ทำการศึกษาแมลงตัวห้ำสองชนิด คือ ด้วงเต่าตัวห้ำ *S. quinquepunctatus* และ ผีเสื้อดักแด้หัวลิง *S. epius*

การศึกษาศักยภาพของด้วงเต่าตัวห้ำ *S. quinquepunctatus* พบว่าหนอนวัยที่ 1-4 และตัวเต็มวัยสามารถ กินเพลี้ยแป้งได้ทั้งหมด 879-1,091 ฟอง และศักยภาพของผีเสื้อดักแด้หัวลิง *S. epius* พบว่า ตัวเต็มวัยเป็นผีเสื้อบิน เร็ว วางไข่ตามโคโลนีของเพลี้ยแป้งมะละกอโดยเฉพาะกลุ่มไข่ของเพลี้ยแป้ง และศักยภาพของการเป็นตัวห้ำ พบว่าใน เวลา 12 วัน ระยะตัวหนอนสามารถกินเพลี้ยแป้งมะละกอระยะไข่ ได้ถึงวันละ 4,115.75±553.28 ฟอง กินตัวอ่อน 281.25±45.08 ตัวต่อวัน และตัวเต็มวัย 77.50±16.25 ตัวต่อวัน

6.6 การศึกษายีสต์ในลำไส้แมลงปีกแข็งและความสามารถในการหมักเอทานอลจากไซโลส

การเก็บตัวอย่างแมลงปีกแข็งที่กินเห็ดและไม้เป็นอาหารจากแหล่งธรรมชาติต่างๆ ในภาคกลาง, ภาคเหนือ และภาคตะวันออกเฉียงเหนือ โดย ดร.ศศิธร จินดามรกฎ ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ ได้ คัดแยกยีสต์จากลำไส้แมลง และได้ยีสต์บริสุทธิ์ 118 ไอโซเลท จากการทดสอบความสามารถในการหมักเอทานอล จากไซโลส พบว่ายีสต์จำนวน 23 ไอโซเลทสามารถผลิตเอทานอลจากไซโลสได้ เป็นยีสต์ที่สปีชีส์ที่รู้จักแล้ว 3 สปีชีส์ ได้แก่ Candida lignicola, Candida saopaulonensis และ Scheffersomyces stipitis ,สปีชีส์ที่ยังไม่มีการ อธิบาย คือ Candida sp. CBS 10852 และยีสต์สปีชีส์ใหม่ที่ใกล้เคียงที่สุดกับ Candida sp. ST-431, Candida sp. CBS 10852 และ Candida coipomoensis

ความเข้มข้นของเอทานอลที่หมักได้อยู่ในช่วง 0.06% – 0.81% (w/v) โดยเมื่อบ่มนาน 48 ชั่วโมง ยีสต์ Scheffersomyces stipitis สายพันธุ์ MS100/3.3 สามารถผลิตเอทานอลสูงสุด คือ 0.81% (w/v) เมื่อบ่มนาน 48 ชั่วโมง แต่พบว่ายังให้ความเข้มข้นเอทานอลต่ำกว่า Positive control คือ Scheffersomyces stipitis เล็กน้อย และ เมื่อบ่มสายพันธุ์ MS100/3.3 นาน 72 ชั่วโมง ความเข้มข้นเอทานอลมีแนวโน้มลดลง ขณะนี้จึงยังไม่พบสายพันธุ์ที่มี ศักยภาพในการผลิตเอทานอลจากไซโลส จึงต้องทำการคัดแยกจากแมลงต่างชนิด ต่างสถานที่ และศึกษาการหมักเอ

ทานอลสำหรับสายพันธุ์ที่คัดแยกได้ใหม่ต่อไป

การศึกษาชนิดของยีสต์ในลำไส้แมลงปีกแข็งที่กินเห็ดและไม้เป็นอาหาร โดยใช้อนุกรมวิธานระดับโมเลกุล และทดสอบความสามารถในการหมักเอทานอลจากไซโลสของยีสต์ที่แยกได้ เพื่อส่งเสริมการใช้วัสดุเหลือทิ้งทาง การเกษตรซึ่งเป็นแหล่งของไซโลสให้เกิดประโยชน์ในด้านพลังงานทดแทนในอนาคต

6.7 ความหลากหลายของสาหร่ายทะเลสีแดง และความสามารถในการออกฤทธิ์ทางชีวภาพ

สาหร่ายสีแดงเป็นกลุ่มสาหร่ายที่มีคุณค่าสามารถนำไปประยุกต์ใช้ได้ทั้งในด้านการผลิตเป็นอาหาร อาหาร เสริม ยาหรือเวชสำอางในระดับอุตสาหกรรม ซึ่งจะเป็นการเพิ่มมูลค่าทางเศรษฐกิจของสาหร่ายทะเลได้อีกทางหนึ่ง

การศึกษาความหลากหลายของสาหร่ายทะเลสีแดง บริเวณชายฝั่งทะเลจังหวัดพังงา ภูเก็ตและกระบี่ โดย **น.ส.จันทนา แสงแก้ว คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่** พบสาหร่าย 42 สกุล 82 ชนิด 20 วงศ์ โดย จังหวัดพังงามีความหลากหลายของสาหร่ายทะเลสีแดงสูงสุด 56 ชนิด รองลงมาคือ ภูเก็ต 44 ชนิด และกระบี่ 20 ชนิด

การศึกษาความสามารถในการมีฤทธิ์ต้านอนุมูลอิสระด้วยวิธี DPPH• radical scavenging พบว่าสาหร่าย ชนิดเด่น 2 ชนิดคือ *Gracilaria* sp.1 และ*Gracilaria* sp.2 มีฤทธิ์ต้านอนุมูลอิสระ ซึ่งสารสกัดด้วยน้ำจากสาหร่าย *Gracilaria* sp. 2 มีค่า การยับยั้ง DPPH• radical มากกว่า *Gracilaria* sp. 1

การศึกษาปริมาณสารประกอบฟินอลิก พบว่าสารสกัดด้วยเอทานอลให้ปริมาณสารประกอบฟินอลิกมากกว่า สารสกัดด้วยน้ำ โดยสาหร่าย *Gracilaria* sp. 2 มีปริมารสารประกอบฟินอลิกมากกว่า *Gracilaria* sp. 1 และ การศึกษาปริมาณรงควัตถุ ได้แก่ คลอโรฟิลล์ *เอ*, ไฟโคไซยานินและไฟโคเออริทริน พบว่า *Gracilaria* sp. 2 มีปริมาณรงควัตถุดังกล่าวมากกว่า *Gracilaria* sp. 1 รวมทั้งการศึกษาปริมาณโพลีแซคคาไรค์ก็ได้ผลเช่นเดียวกัน

จากรายงานวิจัยนี้พบสาหร่าย *Gracilaria* sp. 1 และ *Gracilaria* sp. 2 มีความเหมาะสมในการนำไป พัฒนาเพื่อใช้ในอุตสาหกรรมอาหาร ยา และเครื่องสำอางต่อไป

6.8 องค์ประกอบทางเคมีของฟองน้ำ Pachastrissa nux

สัตว์ทะเลที่ไม่มีกระดูกสันหลัง โดยเฉพาะกลุ่มที่ดำรงชีพโดยการเกาะติดกับที่ เช่น ฟองน้ำ เพรียงหัวหอม และปะการังอ่อน เป็นแหล่งผลิตภัณฑ์ธรรมชาติที่มีฤทธิ์ทางชีวภาพ (Blunt et al., 2003) จนถึงปัจจุบันมีการนำ อนุพันธ์ของผลิตภัณฑ์ธรรมชาติทางทะเลมาใช้ในการรักษาโรคระดับคลินิคแล้วหลายรายการ เช่น vidarabine (ara-A, vira-A[®]) และ cytarabine (ara-C, cytosar-U[®]) ซึ่งใช้เป็นยาต้านเชื้อไวรัสและต้านมะเร็งตามลำดับ ยาทั้งสอง ชนิดเป็นอนุพันธ์กลุ่ม arabinonucleosides ซึ่งสกัดแยกได้ครั้งแรกจากฟองน้ำ *Cryptotethya crypta* (Bergmann and Feeney, 1951)

น.ส.ธันย์ชนก ศิริรักษ์ คณะเภสัชศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ได้สกัดแยกสารที่มีฤทธิ์ทาง ชีวภาพจากฟองน้ำ *P. nux* โดยติดตามฤทธิ์ต้านมาลาเรียและความเป็นพิษต่อเซลล์ สามารถแยกสารบริสุทธิ์ใน อนุพันธ์กลุ่ม trisoxazole macrolides ได้ 6 ชนิด โดยเป็นสารชนิดใหม่ที่ยังไม่เคยมีรายงาน 2 ชนิด ได้แก่ kabiramides J (1) และ K (2) พร้อมทั้งสารที่มีรายงานแล้วได้แก่ kabiramides B, C, D และ G โดยสารชนิดใหม่ทั้ง สองชนิดนั้นเป็นอนุพันธ์ที่มีหมู่อีโนนตำแหน่งที่ 30 ซึ่งลักษณะโครงสร้างเช่นนี้จนถึงปัจจุบันรายงานเพียง 3 ชนิด ได้แก่ kabiramides G, J และ K ซึ่งล้วนแต่สกัดแยกได้จากฟองน้ำ *P. nux* เท่านั้น

ด้านฤทธิ์ทางชีวภาพสารทั้ง 6 ชนิดมีฤทธิ์ต้านเชื้อมาลาเรียในระดับปานกลางโดยมีค่า IC₅₀s ช่วง 0.31-4.79 µM ยกเว้น kabiramide G ที่ไม่มีฤทธิ์ต้านมาลาเรียที่ความเข้มข้น 10 mg/mL สารทั้ง 6 ชนิดมีฤทธิ์ความเป็นพิษต่อ เซลล์มะเร็ง และเซลล์ปกติในระดับที่ดีมาก ทั้งนี้เป็นไปตามกลไกการยังยั้งการทำงานของ actin ของสารกลุ่ม trisoxazole macrolides

6.9 การโคลนยีนที่กำหนดการสร้างเปปไทด์ต้านจุลินทรีย์จากกบบางชนิดในวงศ์ Ranidae ที่พบใน ประเทศไทย

ยีนที่กำหนดการสร้างเปปไทด์ต้านจุลินทรีย์ หรือ Antimicrobial peptides (AMPs) พบได้เป็นจำนวนมาก ในธรรมชาติ โดยสิ่งมีชีวิตหลายเซลล์สามารถสังเคราะห์เปปไทด์ต้านจุลินทรีย์ เพื่อการป้องกันตัวจากการรุกรานของ เชื้อโรคต่างๆ กลไกการทำงานเช่นนี้เป็นกลไกที่ไม่จำเพาะ (low specificity) ดังนั้น AMP ชนิดหนึ่งๆ จึงมีผลต่อจุลิ นทรีย์หลายชนิด (broad spectrum effect) ซึ่งสามารถนำมาประยุกต์ใช้แก้ไขปัญหาการดื้อยาปฏิชีวนะได้

จากการเก็บตัวอย่างสัตว์สะเทินน้ำสะเทินบกในประเทศไทย โดย **ดร.ภัทรดร ภิญโญพิชญ์ คณะ** วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ได้คัดเลือกสัตว์สะเทินน้ำสะเทินบกจำนวน 6 ชนิด ประกอบด้วย กบสาม ชนิดและปาดสามชนิด ได้แก่ กบอ่องเล็ก (Rana nigrovittata) กบหลังไพล (Rana lateralis) กบหูดำ (Rana cubitalis) ปาดดอยอินทนนท์ (Rhacophorus feae) ปาดยักษ์ (Rhacophorus maximus) และปาดตีนเหลือง (Rhacophorus bipunctatus) และได้เลือกทดสอบฤทธิ์ของ AMP ได้เลือกเปปไทด์จากปาดเป็นหลัก เนื่องจากยังไม่ เคยมีการศึกษา AMP ในปาดมาก่อน พบว่า ปาดดอยอินทนนท์ (Rhacophorin-2) มีพิษต่อแบคทีเรียทั้งแกรมบวก และลบสูงแต่มีความเป็นต่อพิษเซลล์สัตว์เลี้ยงลูกด้วยน้ำนมต่ำ มีศักยภาพสามารถพัฒนาไปใช้ทดแทนหรือเป็น ทางเลือกของยาปฏิชีวนะ และปาดยักษ์ (Rhacophorin-3) มีพิษต่อแบคทีเรียแกรมลบเท่านั้น และมีความเป็นพิษต่อ เม็ดเลือดแดงต่ำ สามารถพัฒนาเป็นยาต้านแบคทีเรียแกรมลบได้ ส่วนปาดตีเหลือง และ ปาดดอยอินทนนท์ (Rhacophorin-1) มีความเป็นพิษต่อเซลล์แบคทีเรียทุกชนิด รวมทั้งเซลล์เม็ดเลือด ไม่เหมาะกับการใช้เป็นยา

ทั้งการพัฒนาเป็นยาที่ใช้ในการรักษาโรคมะเร็งมีความเป็นไปได้ต่ำ เนื่องจากความเข้มข้นที่จะสามารถฆ่า เซลล์มะเร็งได้จะเกิดความเป็นพิษต่อเซลล์ปกติของร่างกาย จึงจำเป็นต้องมีการดัดแปลงลำดับกรมอะมิโนให้เหมาะสม เช่น การเปลี่ยนลำดับกรดอะมิโนเพื่อลด %hydrophobicity ซึ่งเชื่อว่าจะเปลี่ยน selectivity ของเปปไทด์ให้มี ความจำเพาะต่อเซลล์มะเร็งมากขึ้น

6.10 ยืนความหอมในข้าวป่า

ความหอมของข้าวถูกกำหนดโดยยืน Betaine aldehyde dehydrogenase 2 (BADH2) มีตำแหน่งบน โครโมโซมคู่ที่ 8 ซึ่งเมื่อยืนนี้เกิดการกลาย (mutation) จะกลายเป็นยืนด้อยและกำหนดการสร้างสารหอมระเหยชนิด 2AP (2-acetyl-1-pyrroline) ที่พบในข้าวหอมมะลิของไทยและข้าวบัสมาติของอินเดีย สารหอม 2AP นี้ สามารถ ตรวจสอบได้โดยวิธีการทางเคมี การค้นพบและสามารถแยกยืนที่กำหนดความหอมจากข้าวพันธุ์ปลูกนั้นเป็นแนวทาง สำคัญที่จะย้อนรอยสู่การเริ่มต้นปรากฏขึ้นของยืนนี้ในบรรพบุรุษข้าวปลูก

จากข้อสังเกตนี้เอง ทำให้ รศ.ดร.ปรีชา ประเทพา ภาควิชาเทคโนโลยีชีวภาพ คณะเทคโนโลยี มหาวิทยาลัย มหาสารคาม ได้ศึกษายีนที่กำหนดการสร้างสารหอมในข้าวป่าชนิด *O. rufipogon* ซึ่งมีการกระจายพันธุ์ในประเทศ ไทยและประเทศข้างเคียงคือลาวและกัมพูชา

ผลการวิเคราะห์ตัวอย่างดีเอ็นเอ[®] พบว่า ข้าวป่ามียีโนไทป์ของยีนที่กำหนดความหอม 3 แบบ คือ ข้าวไม่สร้าง สารหอมมียีโนไทป์ NN (homozygous non-fragrant) ร้อยละ 77 ข้าวสร้างสารหอมมียีโนไทป์แบบ ND (heterozygote) ร้อยละ 31 และ ข้าวที่สร้างสารหอมมียีโนไทป์ DD (homozygous fragrant) ร้อยละ 23

ยีโนไทป์แบบ DD พบในประชากรข้าวป่าที่เก็บมาจากหนองน้ำธรรมชาติในป่าเต็งรังของ สปป. ลาว ซึ่งข้าว ป่าแหล่งนี้แยกจากข้าวปลูกอย่างเด็ดขาด ยีโนไทป์แบบ DD นี้ไม่พบในข้าวป่าจากตัวอย่างที่เก็บจากประเทศไทยเลย ซึ่งอาจเป็นไปได้ว่า ตัวอย่างที่มียีโนไทป์ DD นี้ไม่ได้เก็บตัวอย่างในกลุ่มตัวอย่างครั้งนี้ หรืออาจเป็นเพราะข้าวป่าที่มียี โนไทป์ DD อาจสูญพันธุ์ไปจากประเทศไทยแล้ว

จากหลักฐานที่พบดังกล่าวนี้ ได้สนับสนุนสมมติฐานที่กล่าวว่า ข้าวป่าเป็นบรรพบุรุษของข้าวปลูก เพราะพบ ยีนหอมในข้าวป่า หรืออาจกล่าวได้ว่า ข้าวปลูกที่มีความหอมปัจจุบันนี้เกิดจากการที่ชาวนาในสมัยโบราณได้นำข้าวป่า ที่มียีโนไทป์ที่มีความหอมมาปลูกและคัดเลือกจนได้ลักษณะทางการเกษตรที่ดีแล้วยังมีการคัดเลือกลักษณะที่เป็น ความหอมอีกด้วย

6.11 สเปรย์น้ำมันหอมระเหยกำจัดไรฝุ่น MiteFear

จากจุดเริ่มต้นงานวิจัยไรฝุ่นในทองผาภูมิ ได้ต่อยอดขึ้นมาเป็นการวิจัยเพื่อสกัดสารจากพืชที่นำมากำจัดไรฝุ่น และในที่สุดได้พัฒนาเป็นผลิตภัณฑ์สเปรย์น้ำมันหอมระเหยกำจัดไรฝุ่น

ตลอดระยะเวลากว่า 7 ปี ที่ทีมวิจัยนำโดย ดร.อำมร อินทร์สังข์ และดร.จรงค์ศักดิ์ พุมนวน คณะ เทคโนโลยีการเกษตร สถาบันเทคโนโลยีพระจอมเกล้าเจ้าคุณทหารลาดกระบัง ได้ทำการวิจัยเกี่ยวกับไรฝุ่น ตั้งแต่การ เก็บตัวอย่างไรฝุ่นตามบ้านเรือน การพัฒนาอุปกรณ์ดักจับไรฝุ่น การคิดค้นหาสารสกัดจากพืชเพื่อกำจัดไรฝุ่น จนได้ พบว่ากานพลู และอบเชยมีประสิทธิภาพในการกำจัดไรฝุ่นได้ดีที่สุด ไม่เป็นพิษกับผู้ใช้ และได้ยื่นจดสิทธิบัตรสูตร น้ำมันหอมระเหยจากพืชสมุนไพรในการควบคุมไรฝุ่น

จากผลสำเร็จดังกล่าวจึงทำให้ภาคเอกชนสนใจที่จะเข้ามาต่อยอดงานวิจัย ให้กลายเป็นผลิตภัณฑ์ที่ช่วยลด ปัญหาโรคภูมิแพ้ไรฝุ่น ที่เป็นปัญหาสุขภาพอันดับต้นๆ ให้กับคนไทย ในที่สุดคณะนักวิจัยและโครงการ BRT โดยศูนย์ พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ ได้ลงนามในสัญญาอนุญาตให้ใช้สิทธิสเปรย์น้ำมันหอมระเหยจากพืช กำจัดไรฝุ่น กับบริษัท ไทยเฮิร์บเทค จำกัด และบริษัท คนดีกรุ๊ป จำกัด เมื่อวันที่ 27 กุมภาพันธ์ 2552

ล่าสุดบริษัท ไทยเฮิร์บเทค จำกัด ได้พัฒนาผลิตภัณฑ์สเปรย์สมุนไพรกำจัดไรฝุ่น ในชื่อ "Mite Fear" ซึ่ง กำลังเริ่มทดลองวางตลาดแล้ว

6.12 ผลิตภัณฑ์สาหร่ายอัดเม็ด สู่แปลงเกษตรกร

หลังจากการพัฒนาผลิตภัณฑ์สาหร่ายฟื้นฟูสภาพดินให้อยู่ในรูปแบบผลิตภัณฑ์แบบเม็ด โดยความร่วมมือ ระหว่าง ดร.อาภารัตน์ มหาขันธ์ สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย กับ บริษัท อัลโกเทค จึงได้ มีการทดสอบประสิทธิภาพของผลิตภัณฑ์ปรับปรุงดินแบบเม็ดจากสาหร่ายสกุล Nostoc 4 สายพันธุ์ ที่สามารถหลั่ง สารพอลิแซ็กคาไรด์ออกมาในปริมาณมาก ในระดับแปลงทดสอบที่สถานีวิจัยลำตะคอง โดยทดสอบกับผักสวนครัว (ผักกวางตุ้งใบและกะหล่ำปลี)

ผลการทดสอบพบว่าผลิตภัณฑ์ผสมแบบเม็ดเล็กในอัตรา 500 กิโลกรัมต่อไร่ร่วมกับปุ๋ยเคมีสูตร 13-13-21 ในอัตรา 50 กิโลกรัมต่อไร่ ช่วยให้ผลผลิตผักกวางตุ้งดีที่สุด และคุณสมบัติของดินในแปลงดีขึ้น ในขณะที่ผลิตภัณฑ์ ผสมแบบเม็ดเล็กในอัตรา 1,000 กิโลกรัมต่อไร่ ช่วยเพิ่ม ผลผลิตกะหล่ำปลี และทำให้ดินในแปลงปลูกกะหล่ำปลีมีคุณสมบัติดีขึ้น

สูตรผลิตภัณฑ์ที่ดีที่สุดได้นำไปทดลองต่อในแปลงเพาะปลูกมันสำปะหลัง ข้าว และไม้ผล ของเกษตรกรใน พื้นที่จังหวัดนครราชสีมา และจะมีการเก็บข้อมูลต่อไป

6.13 สารออกฤทธิ์ทางชีวภาพจากราทะเล

โครงการวิจัยราทะเลที่สัมพันธ์กับหญ้าทะเล สาหร่ายทะเล และปะการัง บริเวณอุทยานแห่งชาติหาดขนอมหมู่เกาะทะเลใต้ โดย ดร.จริยา สากยโรจน์ ศูนย์พันธุวิศวกรรมและ เทคโนโลยีชีวภาพแห่งชาติ พบว่าเฉพาะบริเวณอุทยานแห่งชาติหาดขนอม-หมู่เกาะทะเลใต้มีความหลากหลายของ ชนิดพันธุ์ราทะเลถึง 174 ชนิด ซึ่งถือว่าประเทศไทยยังมีความหลากหลายของราทะเลถึง 174 ชนิด ซึ่งถือว่าประเทศไทยยังมีความหลากหลายของราทะเลถึง 174 ชนิด ซึ่งถือว่าประเทศไทยยังมีความหลากหลายของราทะเลถ็ง 174 ชนิด ซึ่งถือว่าประเทศไทยยังมีความหลากหลายของราทะเลในระดับที่ดี

จากตัวอย่างราทะเลที่พบในบริเวณดังกล่าว ได้มีการคัดเลือกราทะเลบางส่วนมาตรวจสอบเบื้องต้นเพื่อ ค้นหาฤทธิ์ต้านจุลินทรีย์ก่อโรค ได้แก่ แบคทีเรียแกรมบวก แบคทีเรียแกรมลบ และยีสต์ก่อโรค ผลการทดสอบ เบื้องต้นปรากฏว่า ราทะเลที่เลือกมาทดสอบ 132 สายพันธุ์ มีฤทธิ์ต้านจุลินทรีย์ก่อโรคทั้งสิ้นประมาณ 19%

ทั้งนี้ราที่คัดแยกได้ทั้งหมดได้เก็บรักษาไว้ที่ห้องปฏิบัติการเก็บรักษาสายพันธุ์จุลินทรีย์ หรือธนาคารจุลินทรีย์ ของศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ และยังส่งตัวอย่างราทะเลไปสกัดด้วยตัวทำละลายชนิดต่างๆ เพื่อทดสอบหาสารออกฤทธิ์ทางชีวภาพเชิงลึกในห้องปฏิบัติการอื่นๆ ต่อไป

6.14 การพัฒนายาต้านวัณโรค จากฟองน้ำทะเล

นอกเหนือไปจากมูลค่าในฐานะแหล่งที่มาของอาหาร และวัตถุดิบเพื่อการเกษตร อุตสาหกรรม และสันทนา การแล้ว ทรัพยากรชีวภาพทางทะเลยังมีศักยภาพช่อนเร้นที่รอให้มีการนำสร้างประโยชน์ด้านอื่นๆ ที่หลายคนอาจ คาดไม่ถึง เช่น การใช้ประโยชน์ในทางการแพทย์และเภสัชกรรม ซึ่งเห็นได้จากการที่มีตัวยาชนิดใหม่หลายชนิดที่มีการ ใช้ในทางคลินิกในปัจจุบันที่ได้จากการพัฒนาสูตรโครงสร้างของสารเคมีที่ได้จากสัตว์ไม่มีกระดูกสันหลังและสิ่งมีชีวิต อื่นๆ ในทะเล

สืบเนื่องจากการวิจัยโดย นส. แสงงาม วงษ์อนุชิตเมธา ซึ่งได้รับทุนสนับสนุนจากโครงการ BRT เมื่อปี 2545-2546 ซึ่งทำให้สามารถค้นพบสารในกลุ่มเทอร์ปีนอยด์หลายชนิดที่มีฤทธิ์ต้านวัณโรคจากฟองน้ำจากทะเลไทยชนิด หนึ่งในสกุล *Hyrtios* (เช่น heteronemin)

การศึกษาวิจัยต่อยอดโดยนายสุนันต์ ใจสมุทร ในปี 2550-2551 ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ มหาวิทยาลัยสงขลานครินทร์ เป็นการค้นหาสารอนุพันธ์อื่นๆ เพิ่มเติมจากฟองน้ำชนิดเดียวกัน รวมถึง การดัดแปลงสูตรโครงสร้างทางเคมีของสารตัวอย่างจากสารกลุ่มเทอร์ปืนอยด์ที่ได้มาก่อนนี้ เพื่อศึกษาว่าหมู่ แทนที่ในโครงสร้างทางเคมีส่วนใดที่มีผลต่อการออกฤทธิ์ต้านวัณโรคและทำให้ความเป็นพิษของสารตัวอย่างลดลง และมีความเหมาะสมในการนำมาพัฒนาต่อเนื่องเพื่อใช้เป็นยาได้

ผลการศึกษาทำให้ได้สารอนุพันธ์ในกลุ่มเดียวกันเพิ่มขึ้นหลายชนิด และพบว่าสารตัวอย่างมีแนวโน้มที่ดีที่จะ นำมาดัดแปลงสูตรโครงสร้างทางเคมี จนได้สารที่นำไปเป็นสารกลุ่มนำสำหรับการพัฒนายาต้านวัณโรคชนิดใหม่ได้

6.15 สารใหม่จากฟองน้ำทะเล

ฟองน้ำทะเลนับเป็นอีกสิ่งมีชีวิตที่อาศัยอยู่ในทะเล จากการศึกษาสารที่ผลิตจากฟองน้ำทะเล พบว่าสารที่ได้ มีความหลากหลายของฤทธิ์ทางชีวภาพ ทั้งฤทธิ์ต้านจุลชีพ ฤทธิ์ต้านเซลล์มะเร็ง และรวมถึงฤทธิ์ต้าน เชื้อมาลาเรีย ฟองน้ำทะเล *Ciocalapata* sp. เป็นฟองน้ำทะเลในชั้น (class) Demospongiae อันดับ (order) Halichondrida สกุล (family) Halichondriidae

จากการแยกสารจากฟองน้ำชนิดนี้ด้วยเทคนิคทางโครมาโตกราฟฟีต่างๆ โดยนางสาว นภัสสร ฉันทธำรงศิริ นักศึกษาปริญญาโท ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ได้สาร ชนิดใหม่ คือ 8-isocyano-amphilecta-11(20),15-diene (1) ซึ่งชนิดเป็นสารในกลุ่มไอโซไนไทรล์ ไดเทอร์ปืน

ผลการทดสอบฤทธิ์ทางชีวภาพ พบว่าสาร 1 มีฤทธิ์ต้านมาลาเรียต่อเชื้อ Plasmodium falciparum K1 strain โดยแสดงค่า IC₅₀ เท่ากับ 0.98 µM การค้นพบสารชนิดใหม่ที่มีฤทธิ์ทางชีวภาพที่น่าสนใจไม่เพียงแต่แก้ปัญหา การดื้อยาของเชื้อก่อโรค ซึ่งเป็นปัญหาที่ทวีความรุนแรงมากขึ้นในปัจจุบันและในอนาคต อีกทั้งยังทำให้มนุษย์ได้ ตระหนักถึงความสำคัญ และประโยชน์ของทรัพยากรธรรมชาติ ซึ่งจะนำไปสู่การหันกลับมาดูแล รักษา และอนุรักษ์ให้ คงอยู่สืบไป

6.16 ต้นแบบภูมิทัศน์สวนสุคนธบำบัด

โครงการพัฒนารูปแบบของไม้ดอกหอมในด้านไม้ดอกไม้ประดับและน้ำมันหอมระเหย ได้ดำเนินการมาอย่าง ต่อเนื่องตั้งแต่ปี 2548 โดย ดร.ปิยะ เฉลิมกลิ่น สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศ ได้พัฒนารูปแบบ ของไม้ดอกหอมในด้านไม้ดอกไม้ประดับที่ใช้ประโยชน์ในด้านสุคนธบำบัดในสถานที่ประกอบการ 4 แห่ง ได้แก่

สวนรอบห้องน้ำในปั้มน้ำมัน สวนบริเวณศาลานวดแผนโบราณ สวนบริเวณศาลาอบสมุนไพร และภูมิทัศน์ บริเวณสวนสุขภาพ โดยการคัดเลือกสถานประกอบการเหล่านี้ได้มาจากการสำรวจความคิดเห็นของประชาชน หลากหลายอาชีพ ทั้งในกรุงเทพมหานครและปริมณฑล จำนวน 150 คน ซึ่งเห็นว่าสถานที่เหล่านี้ต้องการกลิ่นหอม หรือปรับแต่งกลิ่น หรือเพื่อบดบังกลิ่นที่ไม่พึงประสงค์

ผู้วิจัยสามารถคัดเลือกไม้ดอกหอมได้ทั้งสิ้น 46 ชนิด จากนั้นจึงนำพรรณไม้มาจัดลงในพื้นที่ตามหลักการจัด ภูมิทัศน์ มีการทดสอบ ปรับปรุงข้อมูลให้มีความเหมาะสมต่อการใช้งานของสถานที่ ให้เป็นไปตามปัจจัยที่ควบคุมการ เจริญเติบโตที่สัมพันธ์กับคุณสมบัติเฉพาะตัวของพรรณไม้ดอกหอมแต่ละชนิด และมีการประเมินความเหมาะสมใน การใช้ประโยชน์ตามต้นแบบภูมิทัศน์ เพื่อปรับแต่งให้เป็นต้นแบบที่สามารถนำไปใช้ประโยชน์ได้จริง

6.17 สารออกฤทธิ์ทางชีวภาพจากพืชสกุลปาหนัน

การศึกษาวิจัยเพื่อหาสารที่มีฤทธิ์ยับยั้งเชลล์มะเร็ง พบว่าพืชหลายชนิดสามารถผลิตสารที่ออกฤทธิ์ต่อ เชลล์มะเร็ง เช่น พืชสกุลปาหนัน (Goniothalamus) มีรายงานการศึกษาสารออกฤทธิ์ต้านเนื้องอกและเชลล์มะเร็ง ซึ่งจากการศึกษาความหลากหลายของพืชสกุลปาหนันในประเทศไทย โดย รศ. ดร.วิไลวรรณ อนุสารสุนทร ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ดร. ปิยะ เฉลิมกลิ่น ฝ่ายเทคโนโลยีการเกษตร สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย และดร. ยุธยา อยู่เย็น คณะวิทยาศาสตร์และเทคโนโลยี มหาวิทยาลัยราชภัฏสวนดุสิต พบพืชสกุลปาหนันในประเทศไทยถึง 20 ชนิด ในจำนวนนี้มีถึง 4 ชนิดที่มีรายงานพบ สารออกฤทธิ์ทางชีวภาพได้แก่ ปาหนันช้าง (G. giganteus), ปาหนันผอม (G. umbrosus), ปาหนันยักษ์ (G. cheliensis) และสบันงาป่า (G. griffithii) ซึ่งแสดงให้เห็นว่าในประเทศไทยยังมีทรัพยากรชีวิตอีกหลายชนิดที่มีฤทธิ์ทางยาและยังรอการค้นพบและนำไปใช้ประโยชน์

6.18 สารออกฤทธิ์ทางชีวภาพจากต้นสันโสก

นางสาวถวนันท์ ศรีพิสุทธิ์ สำนักวิชาวิทยาศาสตร์ มหาวิทยาลัยแม่ฟ้าหลวง ได้ศึกษาการแยกและการ พิสูจน์เอกลักษณ์ของสารออกฤทธิ์ทางชีวภาพจากต้นสันโสก(Clausena excavata) ซึ่งแต่เดิมชาวบ้านใช้ในการ รักษาอาการใช้ ปวดหัว โรคผิวหนัง แก้อักเสบ รวมถึงการนำรากมาแช่กับเหล้าเพื่อรักษาโรค AIDS ในระยะเริ่มต้น จากการนำส่วนต่างๆของพืชมาใช้ในการ จากการศึกษาองค์ประกอบทางเคมีของส่วนผลและลำต้นสันโสกสามารถ แยกสารบริสุทธิ์ได้ 19 สาร โดยพบว่ามีสารบริสุทธิ์ 7 สารที่มีฤทธิ์ความเป็นพิษต่อเซลล์มะเร็งทรวงอก ได้แก่ สาร nordentatin, mukonine, O-methylmukonal, sansoakamine, clauszoline I, O-demethylmurrayanine และ clausine Z อีกทั้งยังมีฤทธิ์ความเป็นพิษต่อเซลล์มะเร็งปอด และมะเร็งในช่องปาก (ยกเว้นสาร mukonineX นอกจากนี้ยังพบสารประกอบที่สามารถต้านเชื้อมาลาเรียได้อีกด้วย

6.19 สารออกฤทธิ์ทางชีวภาพจากเพรียงหัวหอม

นอกจากพืชแล้ว ยังมีการค้นพบสารออกฤทธิ์ทางชีวภาพที่มีฤทธิ์ต้านเซลล์มะเร็งในสัตว์ด้วย ที่ผ่านมามี การศึกษาอย่างแพร่หลายเกี่ยวกับการสร้างสารต้านมะเร็งใน "เพรียงหัวหอม" และได้มีการรับรองให้เป็นยาต้าน มะเร็งชนิดใหม่ สารที่ผลิตได้จากเพรียงหัวหอมจึงเป็นที่ต้องการในทางการแพทย์จึงมีราคาค่อนข้างสูง จากการศึกษา ในประเทศไทยพบเพรียงหัวหอม Ecteinascidia thurstoni ซึ่งมีความสามารถสร้างสารต้านมะเร็งชนิดเดียวกัน คือ สาร Ecteinascidin อีกทั้งยังพบว่าเพรียงหัวหอมที่พบในประเทศไทยสามารถผลิตสารต้านมะเร็งได้ในปริมาณสูงกว่า หลายเท่า สามารถสกัดแยกให้เป็นสารบริสุทธิ์ได้ง่าย และเพรียงหัวหอมยังมีช่วงอายุที่ค่อนข้างสั้น จึงเป็นโอกาสดีที่จะ ใช้เพรียงหัวหอมของไทยชนิดนี้เป็นวัตถุดิบในการผลิตสาร Ecteinascidin

นายชาตรี ชำนาญรักษา สาขาวิชาเทคโนโลยีชีวภาพ และนางสาวจิตติมา อุ้มอารีย์ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ได้ทำการศึกษาปัจจัยที่ส่งผลต่อการเติบโตและการผลิต Ecteinascidins ของเพรียงหัวหอม Ecteinascidia thurstoni โดยได้ทำการศึกษาทั้งปัจจัยทางกายภาพ และ ชีวภาพ ได้แก่ อาหาร แสง และความเค็ม ซึ่งจะนำไปใช้ในการเพาะเลี้ยงและขยายพันธุ์เพรียงหัวหอมชนิดนี้ ให้สร้าง ตัวยาในปริมาณที่สูงและพัฒนาในเชิงพาณิชย์ต่อไป

6.20 คลังยาต้านวัณโรค

วัณโรคเป็นอีกโรคหนึ่งที่พบปัญหาผู้ป่วยดื้อยา จึงจำเป็นต้องมีการพัฒนายาชนิดใหม่แทนยาชนิดเดิมที่ไม่ สามารถรักษาผู้ป่วยได้ จึงมีการศึกษาหาสารออกฤทธิ์ทางชีวภาพจากสิ่งมีชีวิตที่มีการสร้างสารต้านวัณโรค จาก การศึกษาสิ่งมีชีวิตในประเทศไทย พบว่าฟองน้ำจากทะเลไทย สกุล Hyrtios มีความสามารถในการสร้างสารกลุ่มเทอร์ ปีนอยด์หลายชนิดที่มีฤทธิ์ต้านวัณโรคได้

นายสุนันต์ ใจสมุทร ภาควิชาภาสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ มหาวิทยาลัยสงขลานครินทร์ ได้ทำการวิจัยเพื่อค้นหาสารอนุพันธ์อื่นๆ ในฟองน้ำสกุล Hyrtios และนำมาดัดแปลง สูตรโครงสร้างทางเคมีของสารตัวอย่างจากสารกลุ่มเทอร์ปืนอยด์เพื่อลดความเป็นพิษในสารตัวอย่าง จนได้สารที่มี ศักยภาพสำหรับการพัฒนายาต้านวัณโรคชนิดใหม่ได้ ผลการวิจัยดังกล่าวเป็นข้อยืนยันที่ดีถึงศักยภาพของทรัพยากร ชีวภาพในทะเลไทย ในการใช้ประโยชน์ไม่เพียงแต่การใช้เป็นอาหาร หรือเพื่อสันทนาการเท่านั้น แต่ยังอาจจะนำไปสู่ การพัฒนาอุตสาหกรรมทางด้านยาได้ต่อไปในอนาคต

6.21 การเข้าถึงและการแบ่งปั่นผลประโยชน์จากการใช้ทรัพยากรชีวภาพ

การพัฒนากฎระเบียบเรื่องการเข้าถึงและการแบ่งปันผลประโยชน์ขึ้นมารองรับการนำทรัพยากรชีวภาพของ ประเทศไปใช้ประโยชน์ โดยกฎระเบียบที่พัฒนาขึ้นมานั้นอยู่ภายใต้การดูแลของหน่วยงานที่แตกต่างกัน กฎระเบียบ เหล่านี้กำหนดให้ผู้ที่นำทรัพยากรชีวภาพไปใช้ประโยชน์จะต้องทำการแจ้งต่อหน่วยงานผู้ดูแลก่อนการนำทรัพยากร ชีวภาพไปใช้ และในกรณีที่มีการนำไปใช้ประโยชน์ในเชิงพาณิชย์ ผู้นำทรัพยากรชีวภาพไปใช้ประโยชน์จะต้องทำการ แบ่งปันผลประโยชน์ให้กับหน่วยงานที่ดูแลกฎระเบียบนั้นๆ ด้วย

สัญญาหรือข้อตกลงได้รับการยอมรับว่าเป็นเครื่องมือที่เหมาะสมในการอนุวัตการเรื่องการเข้าถึงและการ แบ่งปันผลประโยชน์จากการใช้ทรัพยากรชีวภาพภายใต้หลักการของอนุสัญญาความหลากหลายทางชีวภาพ (Access and Benefit Sharing; ABS)

ดร.บุปผา เตชะภัทรพร ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งประเทศไทย ได้ทำการศึกษา **ข้อตกลงการเข้าถึงและการแบ่งปันผลประโยชน์จากการใช้ทรัพยากรชีวภาพในองค์กรวิจัยและพัฒนา** พบว่า องค์กรวิจัยและพัฒนาส่วนใหญ่ขาดความตระหนักในเรื่อง ABS ส่งผลให้องค์กรส่วนใหญ่มิได้ให้ความสนใจต่อการ ปฏิบัติตามหลักการ ABS ของอนุสัญญาฯ ในองค์กรที่บุคลากรบางท่านมีความตระหนักในเรื่อง ABS บุคลากรนั้นจะ ทำการพัฒนาข้อตกลงการถ่ายโอนวัสดุชีวภาพขึ้นมาใช้ในหน่วยงานเมื่อหน่วยงานมีการส่งถ่ายวัสดุชีวภาพแก่ บุคคลภายนอกหน่วยงาน นอกจากนั้นยังพบว่าข้อตกลงบางข้อตกลงในองค์กรวิจัยมีลักษณะจัดได้ว่าเป็นข้อตกลง ABS ตามที่โครงการนี้กำหนด ถึงแม้ว่าขณะที่จัดทำข้อตกลงดังกล่าวผู้จัดทำไม่ได้ตระหนักหรือมีความรู้ความเข้าใจใน เรื่อง ABS หากแต่ว่าการเจรจาต่อรองข้อตกลงนั้นเป็นไปตามประสบการณ์ของผู้เจรจา ซึ่งข้อตกลงเหล่านี้จะอยู่ใน รูปแบบข้อตกลงร่วมวิจัยและข้อตกลงการอนุญาตให้ใช้สิทธิ

ผลจากการวิจัยนี้เสนอให้องค์กรวิจัยและพัฒนาเร่งสร้างความตระหนักและอบรมให้ความรู้เรื่อง ABS แก่ นักวิจัย หรือบุคลากรขององค์กรเพื่อภาพลักษณ์ที่ดีขององค์กร และเพื่อให้การทำงานวิจัยและพัฒนาขององค์กร เป็นไปอย่างราบรื่นและสามารถนำงานวิจัยที่พัฒนามาใช้ได้อย่างมีประสิทธิภาพ

ดร.ธนิต ซังถาวร ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งประเทศไทย มีการศึกษาสถานภาพการ จัดการการเข้าถึงและแบ่งปันผลประโยชน์จากการใช้ทรัพยากรชีวภาพในองค์กรวิจัยและพัฒนาในประเทศไทย : กรณีศึกษาทรัพยากรชีวภาพพืช โดยทำการวิจัยความสัมพันธ์ระหว่างนักวิจัยกับการนำทรัพยากรชีวภาพพืชในการ หาสารออกฤทธิ์ เกี่ยวกับการเข้าถึงและการแบ่งปันผลประโยชน์ของนักวิจัย และผลกระทบระหว่างกฎระเบียบกับ นักวิจัย ซึ่งพบว่านักวิจัยมีความตระหนักในเรื่องกฎระเบียบการเข้าถึงทรัพยากรชีวภาพอยู่อย่างจำกัด และส่วนใหญ่ ไม่ได้ปฏิบัติตามกฎระเบียบที่มีอยู่ โดยสาเหตุหนึ่งมาจากการที่ผู้ดูแลกฎระเบียบไม่ทำการประชาสัมพันธ์ และความ ล่าช้าในการอนุวัติการตามกฎหมาย

จากการศึกษามีข้อเสนอว่าเพื่อเป็นการช่วยให้การทำงานวิจัยเป็นไปอย่างมีประสิทธิภาพ องค์กรวิจัยและ พัฒนาควรจัดทำนโยบายเรื่องการบริหารจัดการการใช้ทรัพยากรชีวภาพภายในองค์กรอย่างชัดเจน และมีการออก กฎระเบียบ หรือแนวปฏิบัติในการรองรับนโยบายนั้น อีกทั้งควรมีการจัดตั้งหน่วยประสานงานวิจัยที่ทำหน้าที่ ดำเนินการเรื่องการขออนุญาตเข้าถึงทรัพยากรชีวภาพให้แก่นักวิจัยขององค์กร และควรมีการสร้างความตระหนักให้ นักวิจัยปฏิบัติตามกฎระเบียบการเข้าถึงและการแบ่งปันผลประโยชน์จากการใช้ทรัพยากรชีวภาพของทั้งในและ

ต่างประเทศ ทั้งนี้เพื่อเป็นการป้องกันผลเสียที่จะเกิดขึ้นกับนักวิจัย หรือต่อองค์กรจากการไม่ปฏิบัติตามกฎระเบียบ การเข้าถึงและแบ่งปันผลประโยชน์ เช่น การเสื่อมเสียชื่อเสียงขององค์กร เป็นต้น

7. ด้านการเผยแพร่ประชาสัมพันธ์

7.1 การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 14 ฉลองปีสากลแห่งความหลากหลายทางชีวภาพ

วันที่ 10-12 ตุลาคม 2554 ณ โรงแรมสุนีย์แกรนด์ แอนด์ คอนเวนชั่นเซนเตอร์ จ.อุบลราชธานี

เมื่อวันที่ 10-12 ตุลาคม 2554 ณ โรงแรมสุนีย์แกรนด์ แอนด์ คอนเวนชั่นเซนเตอร์ จ.อุบลราชธานี เนื่องใน โอกาสครบรอบ 15 ปี โครงการ BRT และฉลองปีสากลแห่งความหลากหลายทางชีวภาพ ภายใต้หัวข้อ "ความ หลากหลายทางชีวภาพของประเทศไทย ประกาศไว้ให้โลกรู้" มีผู้เข้าร่วม 467 คน ประกอบด้วยนักวิจัย อาจารย์ และนักศึกษาจากมหาวิทยาลัย หน่วยงานภาครัฐ และภาคเอกชน ร่วมไปถึงชุมชนที่มีการดำเนินงานด้านการอนุรักษ์ และฟื้นฟู

ภายในงานมีการนำเสนอผลงานวิจัยด้านการบริหารจัดการทรัพยากรชีวภาพ โดยเฉพาะในท้องถิ่นอีสาน บทบาทหน้าที่ของสิ่งมีชีวิตในระบบนิเวศ รวมไปถึงการเปลี่ยนแปลงของสิ่งมีชีวิตจากปัจจัยต่างๆ ดังนี้

- การบรรยายพิเศษ 2 เรื่อง
- การเสนอผลงานวิจัย 15 เรื่อง
- การเสวนา 2 เรื่อง
- การนำเสนอผลงานในรูปแบบสื่อ/โมเดล 8 เรื่อง
- การนำเสนอผลงานในรูปแบบโปสเตอร์จำนวน 79 เรื่อง
- การนำเสนอผลงานในรูปแบบนิทรรศการ 5 เรื่อง
- การนำเสนอผลงานภาพถ่าย "สุดยอดช็อตเด็ดความหลากหลายทางชีวภาพในประเทศไทย" นอกจากนี้ยังมี การประชุมกลุ่มย่อยการประชุมเสนอผลงานวิจัย ภายใต้โครงการเครือข่ายการวิจัยสารออก ฤทธิ์ทางชีวภาพจากทรัพยากรชีวภาพ (Bioresources Research Network, BRN)

การนำเสนอผลงานในรูปแบบสื่อการเรียนการสอนความหลากหลายทางชีวภาพ 8 ชิ้นงาน ดังนี้

1) Seed dispersal in climate change โดย นางชฎา พร เสนาคุณ และ นายอารยะ เสนาคุณ มหาวิทยาลัยมหาสารคาม

การ์ตูนแอนนิเมชั่น และเกม : สื่อสารถึงการแพร่กระจาย ของเมล็ดพันธุ์พืช โดยกระบวนการทางธรรมชาติรูปแบบต่างๆ และผล ของภาวะโลกร้อนที่ทำให้การกระจายของเมล็ดเปลี่ยนแปลงไปจาก เดิม

การขยายผล : ดาวน์โหลดขึ้นเว็บไซต์ และฝากข้อมูลที่ STKS

- 2) Claymation..สาหร่ายทะเลลดโลกร้อน โดย น.ส.จารุวรรณ มะยะกูล และน.ส.สุภัทรา พงศ์ภราดร มหาวิทยาลัยสงขลานครินทร์
- **การ์ตูนแอนนิเมชั่นดินน้ำมัน** : การถ่ายทอดเรื่องราวประโยชน์ของสาหร่ายทะเลที่มีส่วนช่วยในการดูดซับ คาร์บอนไดออกไซด์และช่วยลดโลกร้อน

การขยายผล : ดาวน์โหลดขึ้นเว็บไซต์ และฝากข้อมูลที่ STKS

3) ฉันอยู่นี่...ศัตรูที่รัก โดย นายดุสิต งอประเสริฐ และคณะ มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี สารคดี : จากภาพถ่ายที่ได้จากการทำวิจัยสู่การร้อยเรียงเป็นเรื่องราวของการดิ้นรนเพื่อความอยู่รอดทั้ง สัตว์ผู้ล่าและเหยื่อ ความสัมพันธ์บนสายใยแห่งชีวิตที่ซึ่งธรรมชาติควบคุมธรรมชาติ

การขยายผล : ดาวน์โหลดขึ้นเว็บไซต์ และฝากข้อมูลที่ STKS

4) ไทรโต้รุ่ง-ชีวิตสัมพันธ์ 24 ชั่วโมงโดย นายดุสิต งอประเสริฐ และคณะ มหาวิทยาลัยเทคโนโลยีพระจอม เกล้าธนบุรี

สารคดี: วัฏจักรของป่าดำเนินไปแบบไม่เคยหลับไหล เช่นเดียวกับความสัมพันธ์ของต้นไทรและสัตว์ป่า นานาชนิด ที่มีการเกื้อกูลและพึ่งพาอาศัยกันตามวิถีแห่งธรรมชาติ ไทรเปรียบเหมือนกับตลาดโต้รุ่งในป่าที่เปิด ให้บริการ 24 ชั่วโมง ซึ่งสัตว์ป่าได้เข้ามาใช้ประโยชน์โดยจ่ายค่าบริการเป็นการช่วยกระจายเมล็ด ขณะที่ความสัมพันธ์ ในรูปแบบของการไล่ล่าและการตกเป็นเหยื่อของสัตว์ที่เข้ามาใช้ต้นไทรก็ได้ดำเนินควบคู่กัน

การขยายผล : ดาวน์โหลดขึ้นเว็บไซต์ และฝากข้อมูลที่ STKS

5) Once upon a time in Isan โดย ดร.คมศร เลาห์ประเสริฐ และคณะ มหาวิทยาลัยมหาสารคาม แอนนิเมชั่น : แผ่นดินภาคอีสานของไทยในอดีตเป็นแหล่งที่มีความอุดมสมบูรณ์ของสิ่งมีชีวิต เมื่อเวลาผ่าน ไปหลายร้อยล้านปี นักธรณีวิทยาได้ค้นพบความยิ่งใหญ่ผ่านซากฟอสซิลของสิ่งมีชีวิตดึกดำบรรพ์จำนวนมาก

การขยายผล : ดาวน์โหลดขึ้นเว็บไซต์ และฝากข้อมูลที่ STKS

6) Crab delight..โมเดลสายพันธุ์ปู สวยหรูที่สุดในประเทศไทย โดย ดร.ธรณ์ ธำรงนาวาสวัสดิ์ และ นาย วชิระ ใจงาม มหาวิทยาลัยเกษตรศาสตร์

โมเดล ตัวอย่างปูชนิดต่างๆ : โมเดลที่แสดงถึงความหลากหลายของปูทะเลในระบบนิเวศต่างๆ ตั้งแต่ระบบ นิเวศชายหาด ป่าชายเลน หาดหิน และแนวปะการัง

การขยายผล: จัดแสดงในนิทรรศการ และศูนย์เรียนรู้ต่างๆ

7) อัดไว้ในเรซิ่น? พีชวงศ์ส้มกุ้ง โดย นายธรรมรัตน์ พุทธไทย และ รศ.ดร.กิติเชษฐ์ ศรีดิษฐ์ มหาวิทยาลัยสงขลานครินทร์

โมเดล ตัวอย่างพืช : วิธีการเก็บรักษาตัวอย่างพืชรูปแบบใหม่ โดยการอัดไว้ในเรซิ่น ซึ่งจะทำให้ตัวอย่าง พรรณไม้คงความงดงามของรูปร่างและสีสัน โดยใช้พืชวงศ์ส้มกุ้งที่พบในภาคใต้ของประเทศไทย

การขยายผล: จัดแสดงในนิทรรศการ และศูนย์เรียนรู้ต่างๆ

8) ปฏิทินกาลเวลาความหลากหลายทางชีวภาพ โดย นายพฤกษ์ จิรสัตยาภรณ์ มหาวิทยาลัยมหิดล

โมเดล : เครื่องมือในการช่วยเก็บข้อมูลความหลากหลายทางชีวภาพในท้องถิ่นที่คิดค้นขึ้นใหม่ โดยการเก็บ ข้อมูลตลอด 12 เดือนในรอบหนึ่งปี

การขยายผล: จัดแสดงในนิทรรศการ และศูนย์เรียนรู้ต่างๆ

5.2 นิทรรศการ **"นกชายเลนกับการอนุรักษ์พื้นที่ชาย**ผ**ื่งอ่าวไทยตอนใน**"

หน่วยงานรับผิดชอบ: สมาคมอนุรักษ์นกและธรรมชาติแห่งประเทศไทย

เนื่องในเทศกาลดูนกแห่งประเทศไทย ครั้งที่ 10

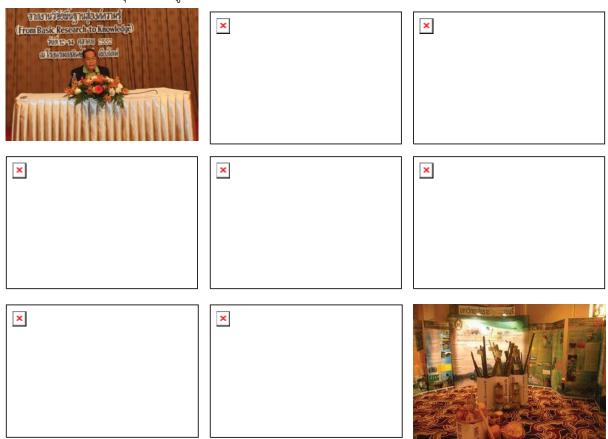
ระยะเวลา / สถานที่ : วันที่ 20-21 พฤศจิกายน 2553 ณ สถานตากอากาศบางปู ข้อมูลที่นำไปจัดแสดง :

- งานวิจัยเรื่องการใช้พื้นที่ของนกชายเลน ในนาเกลือบริเวณที่อ่าวไทยตอนใน
- สถานภาพของนกชายเลนปากช้อน นกชายเลนที่อยู่ในภาวะวิกฤตใกล้สูญพันธุ์
- ภาพถ่ายนกหลากหลายชนิดที่ได้รับรางวัลจากการประกวดภาพถ่ายสุดยอดซ็อตเด็ด ของโครงการ BRT

จำนวนผู้เข้าชม : 1,000 คน ได้แก่ กลุ่มชมรมดูนกทั่วประเทศ นักดูนกชาวต่างชาติ นักเรียน

นักศึกษา และประชาชนทั่วไป

7.2 การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 13 จากงานวิจัยพื้นฐานสู่องค์ความรู้ (From Basic Research to Knowledge) วันที่ 12-14 ตลาคม 2552 ณ โรงแรมฮอลิเดย์ อินน์ เชียงใหม่ จังหวัดเชียงใหม่


โครงการ BRT ร่วมกับมหาวิทยาลัยเชียงใหม่ และองค์การสวนพฤกศาสตร์สมเด็จพระนางเจ้าสิริกิติ์ ได้ จัดการประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 13 ระหว่างวันที่ 12-14 ตุลาคม 2552 ณ โรงแรมฮอลิเดย์ อินน์ เชียงใหม่ จังหวัดเชียงใหม่ ภายใต้หัวข้อ "จากงานวิจัยพื้นฐานสู่องค์ความรู้ (From Basic Research to Knowledge)" เพื่อเผยแพร่งานวิจัยของผู้รับทุนโครงการ BRT โดยเฉพาะงานวิจัยที่ได้รับการต่อยอดนำไปใช้ ประโยชน์ในแขนงต่างๆ ทั้งนี้ มีผู้เข้าร่วมการประชุมและผู้สังเกตการณ์รวมทั้งสิ้น 450 คน โดยมีการบรรยายพิเศษ 6 เรื่อง การเสนอผลงานในรูปแบบสิ่งประดิษฐ์ 13 เรื่อง การ นำเสนอผลงานในรูปแบบนิทรรศการ 5 เรื่อง

การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 13 ได้ริเริ่มให้มีการประกวดผลงานสิ่งประดิษฐ์สร้างสรรค์ เชิงวิชาการขึ้นเป็นครั้งแรก เพื่อเปิดโอกาสให้นักวิจัยได้นำข้อมูลทางวิชาการ หรือผลงานวิจัยมาสื่อสารให้สาธารณชน บุคคลทั่วไป นักเรียน นักศึกษาได้รับทราบ และเข้าใจได้โดยง่ายผ่านผลงานสิ่งประดิษฐ์ โดยครั้งนี้ได้มีสิ่งประดิษฐ์ร่วม ประกวดทั้งสิ้น 13 ผลงาน ได้แก่ ปั้นดินให้เป็นดาว (สาหร่ายฟื้นฟูดิน), พันขามหาสมบัติ (ปุ๋ยมูลกึ้งกือ), กลเกมแห่ง ความรัก (ละอองเรณูแบบต่างๆ), หนึ่งบันทึกร้อยความสัมพันธ์ (สมุดภาพ pop-up ขนาดใหญ่ เรื่องไบรโอไฟต์ เฟิร์น กล้วยไม้), ใครเกิดก่อนใคร (สายวิวัฒนาการของสัตว์มีกระดูกสันหลัง), จุลินทรีย์ช่วยชาติ (แบคทีเรีย), 7,000 ปีก่อน คริสตกาล (ยีสต์ และการใช้ประโยชน์จากยีสต์), โลกใบจิ๋ว...นิวสปีชีส์ มีประโยชน์ (เชื้อราชนิดใหม่), กุ้งเดินขบวน, เปิดโลกใต้ทะเล (ระบบนิเวศหญ้าทะเล), แบบจำลองวงจรชีวิตของพืชไบรโอไฟต์กลุ่มมอส, อะไรกัน แมลงอย่างผึ้ง มี ภาษาด้วยหรือ และเถาวัลย์หลงกับว่านจักจั่น (เห็ด Maramius และราแมลง) ซึ่งสิ่งประดิษฐ์ทั้งหมดได้สะท้อนความรู้ ด้านความหลากหลายทางชีวภาพที่หลากหลาย ทั้งพืช สัตว์ และจุลินทรีย์ได้อย่างครบถ้วน สามารถนำไปใช้ประโยชน์ ในการเรียนการสอนได้

อีกทั้งยังเป็นปีแรกอีกเช่นเดียวกันที่จัดให้มีการประกวด "นักศึกษารุ่นใหม่บีอาร์ที่ดีเด่น – BRT the Star" รุ่นที่ 1 เพื่อเฟ้นหานักวิจัยรุ่นใหม่ เก่งวิชาการ มองกว้างไกล ใส่ใจเชื่อมโยง โดยมีนักศึกษาร่วมประกวดทั้งสิ้น 5 คน การประกวดครั้งนี้ถือเป็นเวทีฝึกฝนการนำเสนอผลงาน ในระดับมหาบัณฑิตและดุษฎีบัณฑิต ทำให้นักวิจัยรุ่นใหม่ได้ รู้จักการเชื่อมโยงงานวิจัยกันต่อไป กลายเป็นงานวิจัยที่ ครอบคลุมและสามารถแก้ปัญหาได้อย่างครบวงจร

การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 13 ยังได้จัดให้มี 1) การประชุมกลุ่มย่อยการประชุมเสนอ ผลงานวิจัย ภายใต้โครงการเครือข่ายการวิจัยสารออกฤทธิ์ทางชีวภาพจากทรัพยากรชีวภาพ (Bioresources Research Network, BRN) ซึ่งได้มุ่งเน้นให้นักวิจัยรุ่นใหม่ และนิสิตนักศึกษาในสถาบันการศึกษาทั้งในส่วนกลางและ ส่วนภูมิภาค ได้เผยแพร่ผลงานการวิจัยสารออกฤทธิ์ทางชีวภาพ โดยมี ศ.ดร.ยอดหทัย เทพธรานนท์ หัวหน้าโครงการ เป็นเจ้าภาพในการจัดประชุม 2) การเสวนาเรื่อง "จากงานวิจัยพื้นฐานสู่การใช้ประโยชน์ในเชิงพาณิชย์" โดยได้นำ

ผลงานวิจัยได้รับการต่อยอดไปใช้ประโยชน์จริงในเชิงพาณิชย์มานำเสนอ อาทิ ผลิตภัณฑ์สเปรย์สมุนไพรกำจัดไรฝุ่น, ผลิตภัณฑ์สาหร่ายปรับปรุงและฟื้นฟูดินเสื่อมสภาพ และผลิตภัณฑ์มอสเพื่อการตกแต่งและการส่งออก

7.3 การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 12 ความหลากหลายทางชีวภาพและการไขปริศนาของสิ่งมีชีวิต (Biodiversity and Solved Mystery of Life)

10-13 ตุลาคม 2551 ไดมอนด์พลาซ่า จ.สุราษฎร์ธานี

โครงการ BRT ร่วมกับมหาวิทยาลัยราชภัฏสุราษฎร์ธานี ได้จัดการประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 12 ระหว่างวันที่ 10-13 ตุลาคม 2551 ณ โรงแรมไดมอนด์พลาซ่า จังหวัดสุราษฎร์ธานีภายใต้หัวข้อ "ความ หลากหลายทางชีวภาพและการใชปริศนาของสิ่งมีชีวิต (Biodiversity and Solved Mystery of Life)" เพื่อ เผยแพร่ผลงานวิจัยของผู้รับทุนโครงการ BRT โดยเฉพาะด้านการวิจัยชีววิทยา วิวัฒนาการ และนิเวศวิทยา ซึ่งเป็น สาขาวิชาที่มีองค์ความรู้ค่อนข้างน้อย และยังขาดแคลนนักวิจัยรุ่นใหม่ มีผู้เข้าร่วมการประชุมและผู้สังเกตการณ์รวม ทั้งสิ้น 470 คน ประกอบด้วยกรรมการนโยบาย กรรมการบริหาร คณาจารย์ นักวิชาการ นักวิจัย นิสิตนักศึกษาจาก สถาบันการศึกษาต่างๆ โดยมีการบรรยายพิเศษ 9 เรื่อง การเสนอผลงานวิจัย 29 เรื่อง และการนำเสนอผลงานใน รูปแบบโปสเตอร์จำนวน 95 เรื่อง โครงการ BRT ได้เชิญนักวิจัยระดับแนวหน้า อาทิ Prof. Henric Enghoff จาก Natural History Museum of Denmark, มาบรรยายเกี่ยวกับกิ้งกือและวิวัฒนาการ, Dr. Samuel James จาก University of Kansas, USA บรรยายเกี่ยวกับไส้เดือนและการใช้ประโยชน์ และ ศ.ดร.มรกต ตันติเจริญ ที่ปรึกษา ศช. บรรยายพิเศษ "เตรียมเข้าสู่ปีแห่งวิวัฒนาการของสิ่งมีชีวิต ครบรอบ 200 ปี ชาร์ลส์ ดาร์วิน ในปี 2009" เป็นต้น เพื่อให้นิสิตนักศึกษาใดเห็นตัวอย่างการวิจัยที่เป็นที่ยอมรับในระดับสากล และเลือกศึกษาในด้านดังกล่าวมากขึ้น

การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 12 ยังได้จัดให้มีการประชุมกลุ่มย่อย ได้แก่ การประชุม เสนอผลงานวิจัยในเครือข่ายการวิจัยทรัพยากรชีวภาพ หรือ โครงการ BRN (Bioresource Research Network) ซึ่ง ได้มุ่งเน้นให้นักวิจัยและนิสิตนักศึกษาในสถาบันการศึกษาทั้งในส่วนกลางและส่วนภูมิภาค ได้เผยแพร่ผลงานการวิจัย สารออกฤทธิ์ทางชีวภาพ โดยมี ศ.ดร.ยอดหทัย เทพธรานนท์ หัวหน้าโครงการ และดร.กัญญวิมว์ กีรติกร ผู้อำนวยการ ศช. ได้เป็นเจ้าภาพในการจัดประชุม กลุ่มถัดมาเป็นการประชุมกลุ่มย่อยในชุดโครงการของโครงการ BRT ได้แก่ชุด โครงการป่าเมฆ-เขานั้น เพื่อรายงานผลการวิจัยความหลากหลายทางชีวภาพที่เกี่ยวข้องกับการเปลี่ยนแปลงสภาวะ ภูมิอากาศ และชุดโครงการหาดขนอม-หมู่เกาะทะเลใต้ที่ได้นำเสนอชุดข้อมูลวิจัยพื้นฐานจากชุดโครงการ ที่ได้ เชื่อมโยงไปถึงผลกระทบกับการพัฒนาด้านการท่องเที่ยวในอนาคตที่จะมากขึ้นเรื่อยๆ ส่งผลกระทบต่อการ เปลี่ยนแปลงความหลากหลายทางชีวภาพในทะเลในอนาคต

กลุ่มสุดท้ายเป็นการนำเสนอผลงานด้านนิเวศวิทยา ซึ่งเป็นสาขาวิชาการที่ขาดแคลน แต่สำคัญต่อการ อนุรักษ์ทรัพยากรชีวภาพและสิ่งแวดล้อม จึงได้จัดให้นิสิตนักศึกษารุ่นใหม่ได้มานำเสนอผลงาน และเพื่อเป็นเวที ฝึกฝนการนำเสนอผลงานทางวิชการและเป็นการพบปะกันของนักวิจัยรุ่นใหม่ด้วย ซึ่งนักศึกษาได้ร่วมแรงร่วมใจ ดำเนินรายการเป็น 2 ภาษา ทั้งภาษาไทยและภาษาอังกฤษ เป็นที่น่ายินดีที่เห็นนักวิจัยรุ่นใหม่มีความรู้ความสามารถ ในระดับสากล

7.4 การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 11"ภาวะโลกร้อนกับผลกระทบต่อความหลากหลายทางชีวภาพของไทย"15 - 18 ตุลาคม 2550 โรงแรมนภาลัย จังหวัดอุดรธานี

ผ่านไปอีกครั้งสำหรับการประชุมวิชาการประจำปีโครงการ BRT ครั้งนี้เป็นครั้งที่ 11 แล้ว ซึ่งทาง BRT ใช้โรงแรมนภาลัย จ.อุดรธานี เป็น สถานที่จัดประชุม โดยมีหัวข้อ "ภาวะโลกร้อนกับผลกระทบต่อความ หลากหลายทางชีวภาพของไทย" เป็นประเด็นสำหรับการประชุม สอดคล้องกับกระแสสังคมโลกที่กำลังตื่นตัวเกี่ยวกับสภาวะโลกร้อนที่ทำให้ ภูมิอากาศ ฤดูกาล รวมถึงภัยทางธรรมชาติต่างๆ เกิดความแปรปรวนไป ในทางที่แย่ลง ซึ่งผลต่อการเปลี่ยนแปลงนี้ย่อมกระทบกับความ หลากหลายทางชีวภาพทั้งทางตรงและทางอ้อมอย่างหลีกเลี่ยงไม่ได้

BRT เปิดบ้านต้อนรับผู้ร่วมประชุมกันตั้งแต่วันที่ 14 ตุลาคม 2550 มีนักวิจัยทยอยเดินทางมาลงทะเบียนและติดโปสเตอร์ ผลงานวิจัยกันในช่วงเย็น ตามมาด้วยผู้เข้าร่วมประชุมและแขกผู้มี เกียรติที่มาถึงโรงแรมในช่วงหัวค่ำ คืนนี้จบด้วยการเอนกายพักผ่อน หลังจากเดินทางกันมายาวไกลออมแรงไว้สำหรับการประชุมที่จะมีใน วันรุ่งขึ้น

เช้าวันแรกของการประชุม ฝ่ายเลขานุการโครงการ BRT ยืน ต้อนรับผู้เข้าร่วมประชุมและรอลงทะเบียนอยู่หน้าห้องประชุมใหญ่

บรรยากาศเต็มไปด้วยการทักทายและไต่ถามทุกข์สุขของผู้เข้าร่วมประชุมที่มาพบปะกันปีละครั้ง พอได้เวลาประชุม การพูดคุยของพันธมิตร BRT ที่ยืนอยู่บริเวณหน้าห้องก็หยุดลง ต่างทยอยเดินตามกันเข้าไปในห้องประชุม

การประชุมเริ่มขึ้นโดยได้รับเกียรติจาก พณฯ อำพล เสนาณรงค์ องคมนตรี เป็นประธานทำพิธีเปิด มี ศ.ดร. วิสุทธิ์ ใบไม้ ผู้อำนวยการโครงการ BRT กล่าวรายงาน และ รศ.ดร.กฤตติกา แสนโภชน์ ผู้แทนอธิการบดีมหาวิทยาลัย ราชภัฏอุดรธานี ในฐานะเจ้าภาพร่วม กล่าวต้อนรับผู้เข้าร่วมประชุม จากนั้น พณฯ อำพล เสนาณรงค์ ขึ้นบรรยาย พิเศษถึงสภาวะการโลกร้อนที่เกี่ยวพันกับการเปลี่ยนแปลงของภูมิอากาศโลกและผลกระทบที่มีต่อประเทศไทย ปิด เบรคในช่วงแรกด้วยการแสดงศิลปวัตณธรรมพื้นบ้านภาคอีสานของหมอลำทองเจริญ ดาหลา ที่มาขับกล่อมลำกลอน ความหลากหลายทางชีวภาพด้วยการด้นกลอนสดโดยมีเสียงแคนของหมอลำบุญช่วง เด่นดวง คลอประกอบ ได้ อรรถรสของท้องถิ่นแดนที่ราบสูงเป็นอย่างยิ่ง ตามด้วยการแสดงรำเทิดพระเกียรติ "รวมใจไทยสี่ภาค" อันงดงามจาก ภาควิชานาฎศิลป์และดนตรี ของมหาวิทยาลัยราชภัฏอุดรธานี

จากนั้นเป็นการบรรยายพิเศษโดย ศ.ยศ สันตสมบัติ ศูนย์ ศึกษาความหลากหลายทางชีวภาพ มหาวิทยาลัยเชียงใหม่ ที่พูดถึง โครงการสร้างเขื่อนขนาดใหญ่ในประเทศจีนและการระเบิดเกาะ แก่งเพื่อการขนส่งทางเรือในแม่น้ำโขง ทำให้เกิดผลกระทบต่อความ หลากหลายทางชีวภาพ ภูมิปัญญาท้องถิ่น และชีวิตความเป็นอยู่ ของผู้คนในอนุภูมิภาคภาคลุ่มน้ำโขง ตามด้วยการบรรยายพิเศษ ของ ศ.วิสุทธิ์ ใบไม้ ถึงทิศทางการดำเนินงานของโครงการ BRT ที่ เน้นการวิจัยแบบบูรณาการในหลายมิติ การจัดการความรู้ให้เป็น องค์ความรู้เพื่อนำไปใช้ประโยชน์ ซึ่งในสภาวะการเปลี่ยนแปลงของ สิ่งแวดล้อม ข้อมูลและองค์ความรู้จะเป็นตัวชี้ให้เห็นสิ่งที่ เปลี่ยนแปลงไป ซึ่งต้องอาศัยความร่วมมือจากนักวิจัยทุกคน

หลังพักรับประทานอาหารกลางวันเป็นการบรรยายต่อใน ประเด็นที่เกี่ยวเนื่องกับภาวะโลกร้อน นำโดย ดร.วีระชัย ณ นคร ผู้อำนวยการองค์การสวนพฤกษศาสตร์สมเด็จพระนางเจ้าสิริกิติ์ ที่ พูดถึงการเปลี่ยนแปลงของภูมิประเทศและป่าไม้ในต่างประเทศ และของประเทศไทย ซึ่งป่าดงดิบในเขตศูนย์สูตรของโลกจะทวี ความสำคัญในฐานะพื้นที่ฟอกก๊าซคาร์บอนและความร้อน ต่อด้วย การชมวีดีโอ "ป่าเมฆ ภาวะคุกคาม และโลกร้อน" ที่ทางโครงการ BRT จัดทำขึ้น ตามด้วยการบรรยายของ ผศ.ดร.มัลลิกา เจริญ สุธาสินี มหาวิทยาลัยวลัยลักษณ์ พูดถึงการวิจัยป่าเมฆที่ได้ขึ้นไปติด อุปกรณ์เก็บข้อมูลทางกายภาพในพื้นที่เขานันเพื่อดูผลกระทบต่อ ภาวะโลกร้อนและมีนักวิจัยได้ลงพื้นที่แล้ว และการบรรยายของคุณ อนุตรา ณ ถลาง ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ พูดถึงงานวิจัยบนเขาใหญ่ที่ทำในแปลงถาวรแล้วพบว่าพืชชนิด ต่างๆ มีกระจายตัวสัมพันธ์กับภูมิอากาศที่เปลี่ยนแปลง

จากนั้นหลังพักเบรคเป็นการเสวนา "ภาวะโลกร้อนกับ ผลกระทบต่อความหลากหลายทางชีวภาพในท้องถิ่น" โดย รศ.ดร. สมศักดิ์ สุขวงศ์ RECOFTC, คุณนิคม พุทธา และคุณกัลกีย์ เมฆ ตันตคุปต์ โครงการจัดการลุ่มแม่น้ำปิงตอนบน, คุณสอิ้ง ประสงค์ ศิลป์ ผู้ใหญ่บ้าน จังหวัดระยอง และคุณพิศิษฐ์ ชาญเสนาะ สมาคม หยาดฝน จังหวัดตรัง ดำเนินรายการโดย คุณประพจน์ ภู่ทองคำ บริษัทว็อชด็อก จำกัด พูดถึงความเปลี่ยนแปลงของทรัพยากรใน ท้องถิ่น เช่นเรื่องของน้ำทะเลที่หนุนเข้ามาลึกขึ้น ปาสาคูที่กำลัง ลดลง สิ่งมีชีวิตที่กำลังหายไปจากดอยเชียงดาว ซึ่งอาจเป็นผลพวง จากภาวะโลกร้อน

เสวนา "ภาวะโลกร้อนกับผลกระทบต่อความ หลากหลายทางชีวภาพในท้องถิ่น" โดย ตัวแทนชุมชนจากทุกภาค

การประชุมกลุ่มย่อยที่มีผู้เข้าร่วมประชุมให้ ความสนใจเข้าฟังกันอย่างคับดั่ง

ชมวีดีโอ "ป่าเมฆ ภาวะคุกคาม และภาวะ โลกร้อน" ที่ทางโครงการ BRT จัดทำขึ้น

ดร.มาลี สุวรรณอัตถ์ และรศ.สุชาตา ชินะ จิตร ผู้ทรงคุณวุฒิที่ติดตามงานของโครงการ BRT มาโดยตลอด

การแสดงศิลปวัฒนธรรมภาคอีสาน สีสันที่ขาด ไม่ได้ของการประชุม

ทิ้งท้ายการประชุมวันแรกด้วยการชมโปสเตอร์ผลงานวิจัยที่มี ทั้งแบบติดบอร์ดและแบบโรลสกรีนที่มาเป็นชุดโครงการ ในงานยังมีซุ้ม นิทรรศการฟอสซิลไดโนเสาร์จากกรมทรัพยากรธรณี ซุ้มนิทรรศการ ผลงานวิจัยของมหาวิทยาลัยราชภัฏอุดรธานี และซุ้มนิทรรศการภูมิ ปัญญาไม้วงศ์ก่อ รวมถึงโต๊ะแนะนำการใช้ฐานข้อมูล NBIDS จาก มหาวิทยาลัยวลัยลักษณ์

ปิดค่ำคืนแรกของการประชุมด้วยงานเลี้ยงรับรอง "ม่วนชื่น โฮ แซว จ้ำแจ่ว โฮมแลง" ในบรรยากาศอีสานๆ ด้วยอาหารพื้นบ้าน และ การแสดงขบวนแห่บายศรีสู่ขวัญ ขบวนแห่บุญบ้องไฟ รำเรียกขวัญ รำ เพลินนกยูงลำแพน เซิ้งเจ้าทุย และรำของดีศรีอุดร จากคณาจารย์และ นิสิตนักศึกษา มหาวิทยาลัยราชภัฏอุดรธานี โดยมี ผศ.ดร.วิเชฏฐ์ คนชื่อ และคุณณัฐฐา วัฒนรัชกิจ เป็นพิธีกรให้ความสนุกสนานบนเวที

วันที่สองของการประชุมในภาคเช้าเป็นการบรรยายหลากหลาย เรื่องราวจากนักวิจัยแถวหน้าของไทย เริ่มด้วย Mr. Philip D. Round มหาวิทยาลัยมหิดล บรรยายถึงความหลากหลายของนกในประเทศไทยที่ มีรายงานการพบถึง 980 ชนิด ในหลากหลายถิ่นอาศัย ซึ่งการเก็บข้อมูล ระยะยาวจะช่วยเรื่องการประเมินประชากร สถานะภาพ และการ อนุรักษ์ ศ.ละออศรี เสนาะเมือง มหาวิทยาลัยขอนแก่น พูดถึงงานวิจัย "ไรน้ำนางฟ้า" ที่โด่งดังจนได้รับเชิญไปบรรยายในหลายประเทศ และ ผลงานการเพาะเลี้ยงยังกลายเป็นธุรกิจ SME เสริมรายได้ให้แก่เกษตรกร ดร.วราวุธ สุธีธร กรมทรัพยากรธรณี พูดถึงการสำรวจซากดึกดำบรรพ์ใน ภาคอีสานที่ทำต่อเนื่องมาถึงปัจจุบัน ซึ่งพบแหล่งฟอสซิลไดโนเสาร์ที่ น่าสนใจใหม่ๆ หลายแห่ง ผศ.อัญชนา ประเทพ มหาวิทยาลัยสงขลานครินทร์ พูดถึงงานวิจัยทางทะเลในพื้นที่ขนอม ได้ ผลงานเบื้องต้นเป็นหนังสือความหลากหลายของสิ่งมีชีวิต ส่วนงานช่วง ต่อไปจะเน้นการศึกษาติดตามการเปลี่ยนแปลงระบบนิเวศทางทะเลของ ขนอม ปิดการบรรยายช่วงเช้าโดย Prof. Warren Y. Brockelman ที่พูด ถึงวิกฤตของการวิจัยด้านความหลากหลายทางชีวภาพในประเทศไทย ซึ่ง เรายังไม่รู้ทั้งหมดว่าเรามีอะไร การตีพิมพ์เผยแพร่ผลงานยังมีน้อย ซึ่ง สถาบันการศึกษาต่างๆ ต้องร่วมมือกันทำงาน

หลังพักรับประทานอาหารกลางวันเป็นการประชุมกลุ่มย่อย ทั้งหมด 5 กลุ่ม ได้แก่ กลุ่มจุลินทรีย์และการใช้ประโยชน์ กลุ่มสัตว์ กลุ่ม พืช กลุ่มระบบนิเวศป่าและทะเล และกลุ่มเศรษฐกิจ สังคม และภูมิ ปัญญาท้องถิ่น ที่มีผู้เข้าร่วมประชุมให้ความสนใจเข้าฟังกันอย่างคับคั่งทุก ห้อง จนบางห้องนั่งประชุมกันไปจนพลบค่ำ

วันที่สามของการประชุมเป็นการบรรยายที่หลากหลายสาขาทั้ง ด้านประวิติศาสตร์ซึ่งมีการบรรยายเรื่อง ประวัติศาสตร์ความร่วมมือ การศึกษาความหลากหลายทางชีวภาพ ไทย-เดนมาร์ก โดย ดร.จำลอง เพ็งคล้าย กรมอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืช ด้านภูมิปัญญา ท้องถิ่นมี ดร.ก่องกานดา ชยามฤต กรมอุทยานแห่งชาติ สัตว์ป่า และ พันธุ์พืช บรรยาย "ไม้รัก : ภูมิปัญญา ภาวะคุกคาม และการอนุรักษ์" และด้านการใช้ประโยชน์มีการบรรยายที่ค่อนข้างหลากหลายทั้งเรื่อง

ศักยภาพและการใช้ประโยชน์ของมะลิพื้นเมืองในประเทศไทย โดย ดร.ปิยะ เฉลิมกลิ่น สถาบันวิจัยวิทยาศาสตร์และ เทคโนโลยีแห่งประเทศไทย, สาหร่าย : ขุมทรัพย์ของประเทศไทย โดย ดร.อาภารัตน์ มหาขันธ์ สถาบันวิจัย วิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย, เหมืองแร่เกลือหินกับความพยายามของบริษัทพิมายในการฟื้นฟูพื้น ที่ดินเค็ม โดย ดร.เฉลิมพล เกิดมณี ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ นอกจากนี้ยังมีองค์ความรู้ ใหม่ๆ จากการบรรยายเรื่อง ไส้เดือนและกิ้งกือ : เพื่อนผู้สร้างทรัพย์ในดิน โดย ศ.ดร.สมศักดิ์ ปัญหา จุฬาลงกรณ์ มหาวิทยาลัย, สังคมเชื้อรา โดย ดร.สายัณห์ สัมฤทธิ์ผล ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ และปิด ท้ายรายการด้วยการบรรยาย การศึกษาความหลากหลายทางชีวภาพขั้นพื้นฐานนอกห้องเรียน : กรณีศึกษาจาก WWF Conservation Program โดย รศ.ดร.ปรีชา ประเทพา สถาบันวิจัยวลัยรุกขเวช มหาวิทยาลัยมหาสารคาม

จากนั้นเป็นการแจกรางวัลโปสเตอร์ดีเด่นโดยมี ศ.ดร.วิสุทธิ์ ใบไม้ เป[็]นผู้มอบรางวัล และเป็นผู้กล่าวปิดการ ประชุม ซึ่งท่านได้ฝากถึงผู้ที่สนใจให้มาร่วมกันทำวิจัยเพื่อสร้างองค์ความรู้แก่ประเทศชาติ

วันที่สี่ วันสุดท้ายของการประชุมในปีนี้เป็นรายการทัศนศึกษาที่ทางมหาวิทยาลัยราชภัฏอุดรธานีได้จัด โปรแกรมมา ซึ่งผู้เข้าร่วมประชุมได้เทคะแนนไปเที่ยวชมศิลปวัฒนธรรมท้องถิ่นของชาวลาวกันอย่างล้นหลามจน โปรแกรมอื่นๆ ต้องยกเลิกไป โดยคณะทัวร์ได้พาไปนมัสการพระบรมสารีริกธาตุ ณ วัดธาตุหลวง ชมอนุสาวรีย์ ประตูชัย ชมพิพิธภัณฑ์หอพระแก้ว ช้อปปิ้งตลาดเช้าเมืองลาวและตลาดสินค้าปลอดภาษีบริเวณด่านชายแดนไทยลาว

กิจกรรมในการประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 11 จบลงด้วยความร่วมมือเป็นอย่างดียิ่งจาก วิทยากร นักวิจัย และผู้ที่สนใจ รวมถึงความอนุเคราะห์จากมหาวิทยาลัยราชภัฏอุดรธานีที่ให้ความเอื้อเฟื้อตลอดการ ประชุม ทางโครงการ BRT ต้องขออภัยและขอน้อมรับข้อบกพร่องต่างๆ ที่เกิดขึ้นและสัญญาจะทำให้การจัดประชุมใน ปีหน้าดียิ่งขึ้น แล้วพบกันปี 2551

7.5 การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 10 "ทุนทางธรรมชาติเพื่อการพัฒนาประเทศไทย"

8-11 ตุลาคม 2549 มาริไทม์ ปาร์ค แอนด์ สปา รีสอร์ท จ.กระบี่

"ประเทศไทยมี "ทุนทางธรรมชาติ" ไม่น้อยไปกว่าชาติไหนในโลก บรรพบุรุษของเราสามารถดำรงอยู่และสร้าง ความเจริญรุ่งเรื่องให้กับประเทศมาจนถึงปัจจุบันด้วยความหลากหลายของทรัพยากรธรรมชาติในแผ่นดิน แต่ต้นทุน เป็นสิ่งที่สามารถหมดไปถ้ารู้จักใช้แต่ไม่รักษาหรือทำให้เพิ่มพูน ความเชื่อในอดีตมีส่วนช่วยให้ธรรมชาติหลายอย่าง ยังคงอยู่เป็นต้นทุนถึงลูกหลาน มาบัดนี้ความเจริญทางวิทยาการเข้ามาแทนที่ความเชื่อเหล่านั้น คำถามที่จะต้องเร่ง หาคำตอบก็คือเราจะใช้ประโยชน์จากต้นทุนที่มีอยู่อย่างไร และจะรักษาต้นทุนอย่างไรเพื่อให้คงอยู่ต่อไปถึงรุ่นลูกรุ่น หลานของเรา"

วันที่ 8-11 ตุลาคม 2549 โครงการ BRT จัดการประชุมวิชาการประจำปี ครั้งที่ 10 ที่มาริ ไทม์ ปาร์ค แอนด์ สปา รีสอร์ท จังหวัดกระบี่ ภายใต้หัวข้อ "ทุนทางธรรมชาติเพื่อการ พัฒนาประเทศ" มีผู้เข้าร่วมประชุมทั้งนักวิจัย อาจารย์ นิสิตนักศึกษา ครู ชาวบ้าน และ ภาคเอกชน กว่า 350 คน โดยมี ฯพณฯ อำพล เสนาณรงค์ องคมนตรี ได้ให้เกียรติเป็น ประธานเปิดการประชุม และกล่าวต้อนรับโดย นายสำคัญ เพชรทอง รองอธิการบดี สถาบันการพลศึกษาประจำวิทยาเขตกระบี่ มีการนำเสนอหัวข้อการบรรยายพิเศษ เสวนา และการเสนอผลงานวิจัย พอสรุปสาระสำคัญได้ดังนี้

นโยบาย : คุณสันติ บางอ้อ ผู้ทรงคุณวุฒิ และอดีตรองเลขาธิการ สภาพัฒน์ ขรรยายพิเศษเรื่อง "การพัฒนาประเทศบนฐานความ หลากหลายทางชีวภาพ ตามแผนพัฒนาเศรษฐกิจและสังคมแห่งชาติ ฉบับ ที่ 10" " เพื่อผู้เข้าร่วมประชุมได้รับทราบแผนงานของยุทธศาสตร์ความ หลากหลายทางชีวภาพที่ดำเนินการโดยสภาพัฒน์ ๆ โดยเฉพาะการพัฒนา ในช่วง 5 ปี (2550-2554) ต่อจากนี้ไปที่เน้นการสร้างสมดุลระหว่าง เศรษฐกิจกับทรัพยากรธรรมชาติ เพื่อการสร้างสังคมพอเพียง การเสวนา "BRT เปิดบ้าน...สู่สังคม" โดย รศ.สมศักดิ์ ปัญหา และดร.นิพาดา เรือน

แก้ว จากจุฬาลงกรณ์มหาวิทยาลัย ดำเนินรายการโดย คุณประพจน์ ภู่

ทองคำ บริษัทว็อชด็อก จำกัด มานำเสนอนโยบายการ บริหารงานของโครงการ BRT

ด้านประวัติศาสตร์และศิลปวัฒนธรรม:
อาจารย์กลิ่น คงเหมือนเพชร ผู้เชี่ยวชาญด้าน
ประวัติศาสตร์เมืองกระบี่ บรรยายพิเศษ
"ประวัติศาสตร์ท้องถิ่นเมืองกระบี่" ในอดีตกระบี่เคย
เป็น

เมืองท่าที่รุ่งเรือง นอกจากนี้ในหลายๆ พื้นที่ของจังหวัดกระบี่ยังมีหลักฐานทางโบราณกดีหลายชิ้นที่ทำให้ นักโบราณกดีสันนิษฐานว่าที่นี่น่าจะเป็นแหล่งกำเนิดมนุษย์โบราณอีกแห่งหนึ่ง การบรรยายด้านประวัติศาสตร์อีก เรื่องหนึ่งที่มีความสำคัญไม่ยิ่งหย่อนกว่ากัน คือ การนำประวัติของนักวิจัยความหลากหลายทางชีวภาพที่ยิ่งใหญ่ใน อดีต มาเปิดเผย ใน "ย้อนรอยนักสำรวจยุคบุกเบิกของไทย ร่วมจารึกไว้ในแผ่นดิน" โดย ดร.จำลอง เพ็งคล้าย ราช บัณฑิต ซึ่งทำให้คนรุ่นหลังได้รู้การทำงานที่ยากลำบากและอดทนของนักวิจัยรุ่นก่อน ซึ่งเป็นสิ่งที่นักวิจัยรุ่นหลัง ควรยึดถือเป็นแบบอย่าง ด้านศิลปวัฒนธรรมได้นำคณะ "บันเทิงรวมมิตร" แสดงรำมโนห์รา และลิเกป่า

ด้านวิชาการ: บรรยายพิเศษ "ความหลากหลายทางชีวภาพในระบบนิเวศเกษตร" โดยคุณ Kevin Kamp จากโครงการ SAFE ได้เปิดประเด็นให้ผู้เข้าร่วมประชุมเข้าใจความสำคัญของพื้นที่เกษตรกรรม ซึ่งเป็นอีกระบบ นิเวศหนึ่งที่มีความหลากหลายทางชีวภาพที่เอื้อต่อวิถีชีวิตของเกษตรกรไทย โดยพื้นที่ธรรมชาติรอบๆ นาข้าว ไม่ ว่าจะต้นไม้ใหญ่ ป่าละเมาะ ขอบแปลงขอบถนน พื้นที่ชุ่มน้ำ คูน้ำ ฯลฯ ล้วนแต่เป็นแหล่งพึ่งพิงอาศัยของสิ่งมีชีวิต หลากหลายชนิดที่ให้บริการทางระบบนิเวศ และการเสวนา "การบริหารจัดการงานวิจัยแบบมุ่งเป้าหมาย :

กรณีศึกษาชุดโครงการวิจัย "ป่าเมฆ" อุทยานแห่งชาติเขานั้น จ.นครศรีธรรมราช และชุดโครงการวิจัย "ความ หลากหลายทางชีวภาพทางทะเล" อุทยานแห่งชาติขนอม-หมู่เกาะทะเลใต้ จ.นครศรีธรรมราช" โดย ผศ.ปิติวงษ์ ตันติโชคก มหาวิทยาลัยวลัยลักษณ์, ผศ.มัลลิกา เจริญสุธาสินี มหาวิทยาลัยวลัยลักษณ์, ผศ.กฤษณะเดช เจริญ สุธาสินี มหาวิทยาลัยวลัยลักษณ์ ดำเนินรายการโดยนายประพจน์ ภู่ทองคำ บริษัทว็อชด็อก จำกัด ถือเป็นการเปิดตัว ชุดโครงการใหม่ของโครงการ BRT นั่นคือชุดโครงการวิจัยป่าเมฆ อุทยานแห่งชาติเขานั้น จ.นครศรีธรรมราช ที่ได้ พันธมิตรเก่าที่เหนียวแน่นอย่างบริษัท ปตท. จำกัด (มหาชน) มาร่วมสนับสนุนทุน และชุดโครงการวิจัยความ

หลากหลายทางชีวภาพทางทะเล อุทยานแห่งชาติหาด ขนอม-หมู่เกาะทะเลใต้ จ.นครศรีธรรมราช ที่มีพันธมิตร ใหม่อย่างบริษัทโททาล อีแอนด์พี ประเทศไทยและ มูลนิธิโททาล ประเทศฝรั่งเศส มาร่วมสนับสนุนทุนวิจัย ที่ให้ความสำคัญกับสิ่งแวดล้อมของไทย นอกจากนี้ชุด โครงการทั้งสามข้างต้นยังมีการประชุมกลุ่มย่อยที่ได้รับ ความสนใจเป็นอย่างดีอีกด้วย การบรรยาย ชนิดพันธุ์ ต่างถิ่น (alien species) และการจัดการน้ำอับเฉา (ballast management) โดย อาจารย์นนทิวิชญ ตัณฑวณิช จากจุฬาลงกรณ์มหาวิทยาลัย นับเป็น

ประเด็นที่ได้รับความสนใจและมีความสำคัญในการจัดการความหลากหลายทางชิ่วภาพทั้งในระดับประเทศและระดับ โลก

การเสนอผลงานวิจัย: มีเรื่อง "พีชวงศ์ชาฤาษีที่มีความสวยงามและมีศักยภาพในการพัฒนาเป็นไม้ เศรษฐกิจของไทยในอนาคต" โดย ดร.ปราณี ปาลี จากมหาวิทยาลัยเชียงใหม่ "ภูมิปัญญาท้องถิ่นกับการจัดการ ทรัพยากรชีวภาพ: มองผ่านเรื่องข้าวและไม้วงศ์ก่อของชุมชนทางภาคเหนือตอนบน" โดยคุณเสถียร ฉันทะ นักวิชาการโรงพยาบาลเวียงแก่น "ประเทศไทยไม่มีซาลาแมนเดอร์มีแต่นิวท์" โดย ผศ.วิเชฏฐ์ คนชื่อ จุฬาลงกรณ์ มหาวิทยาลัย "ค้างคาวหน้ายักษ์จมูกปุ่ม" โดยคุณสุรชิต แวงโสธรณ์ จากสถาบันวิจัยวิทยาศาสตร์และเทคโนโลยี แห่งประเทศไทย และ "การศึกษาพฤติกรรมของชะนี" โดย โทมัสโซ ซาวินี มหาวิทยาลัยเทคโนโลยีพระจอมเกล้า ธนบุรี พร้อมกันนี้ได้เปิดตัว "ฐานข้อมูลสืบค้นการบริหารจัดการโครงการวิจัยและวิทยานิพนธ์ของโครงการ BRT" โดย ผศ.ภัทรสินี ภัทรโกศล จุฬาลงกรณ์มหาวิทยาลัย ผู้ที่สนใจสามารถเข้าชมได้ที่ http://brt.biotec.or.th

ด้านการศึกษา: มีการบรรยายพิเศษ "บทบาทของปตท.กับการพัฒนาการศึกษา" โดย ดร.ส่งเกียรติ ทาน สัมฤทธิ์ ผู้บริหารจากบริษัท ปตท. จำกัด (มหาชน) พันธมิตรของโครงการ BRT ที่ได้ให้เกียรติมาบรรยายบทบาทของ การวิจัยความหลากหลายทางชีวภาพที่มีอิทธิพลต่อการพัฒนาท้องถิ่นและเยาวชน ในมุมมองของ ปตท. ซึ่งเป็นภาค ธุรกิจเอกชนที่ได้คืนกำไรให้กับสังคม ต่อจากนั้นได้มีการบรรยายพิเศษจากคุณมารุต จาติเกตุ มูลนิธิการศึกษาไทย ผู้ที่ มีประสบการณ์ใน "การส่งเสริมการเรียนรู้ของเยาวชน" ในภาคปฏิบัติโดยเฉพาะระบบนิเวศย่อยในพื้นที่เกษตรกรรม ซึ่งเป็นประเด็นที่ควรส่งเสริมให้เยาวชนเรียนรู้มากยิ่งขึ้นท่ามกลางกระแสโลกาภิวัตน์ นอกจากนี้ โครงการ BRT ยังได้ เชิญ คุณ Richard Dawson, Field Study Council (FSC) และ British Council ผู้เชี่ยวชาญด้านการพัฒนาศูนย์ สิ่งแวดล้อมศึกษาของ FSC ประเทศอังกฤษ มาถ่ายทอด "ประสบการณ์และแนวทางการพัฒนาศูนย์สิ่งแวดล้อม ศึกษาในประเทศไทย"

ปิดท้ายด้วยเสวนา "บทบาทนักวิจัยท้องถิ่นต่อการพัฒนาศูนย์สิ่งแวดล้อมศึกษา" โดย อจ.ปิยะพร พิทักษ์ตัน สกุล มหาวิทยาลัยราชภัฏกาญจนบุรี นางสุนีย์ ศรีชัย โรงเรียนบ้านพุเตย และนายบุญมา พันธุ์แสน ผู้แทนชุมชนบ้าน พุเตย ดำเนินรายการโดยนายประพจน์ ภู่ทองคำ บริษัทว็อชด็อก จำกัด รายการนี้เป็นจุดเด่นหนึ่งของการประชุม เนื่องจากเป็นการรายงานผลการทำงานร่วมกันระหว่าง อาจารย์จากมหาวิทยาลัยท้องถิ่น ครู และปราชญ์ชาวบ้าน ที่ ได้สวมบทบาทเป็นนักวิจัยท้องถิ่นเก็บข้อมูลโดยใช้องค์ความรู้ของปราชญ์ชาวบ้านเป็นตัวนำ ซึ่งเต็มไปด้วย ประสบการณ์ที่มีคุณค่า

สุดท้ายสรุปและกล่าวปิดการประชุมโดย ศ. วิสุทธิ์ ใบไม้ ผู้อำนวยการ โครงการ BRT พร้อมกับขอบคุณ ผู้เข้าร่วมประชุมทุกท่านและสถาบันการพลศึกษา วิทยาเขตกระบี่ ในฐานะเจ้าภาพร่วม

7.6 การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 9 "10 ปี BRT ก้าวไกล มีขุมทรัพย์และภูมิปัญยาไทยมาแสดง" 10-14 ตุลาคม 2548 โรงแรมโซฟิเทล ราชาออคิด ขอนก่น

กิจกรรมทางวิชาการในวันแรกเริ่มต้นด้วยการบรรยายพิเศษเรื่อง "สร้างคุณค่าความหลากหลายทางชีวภาพ ยุคใหม่" โดย ศ.มรกต ตันติเจริญ ผู้อำนวยการศูนย์พันธุวิศวกรรมและเทศโนโลยีชีวภาพแห่งชาติ และการบรรยาย เรื่อง "การวิจัยท้องถิ่นกับความหลากหลายทางชีวภาพ" โดย รศ.สุชาตา ชินจิตร ผู้อำนวยการฝ่าย 3 สำนักงาน กองทุนสนับสนุนการวิจัย ปิดท้ายด้วยการเสวนาเรื่อง "การประมวลผลการดำเนินงานสนับสนุนโครงการวิจัยและ วิทยานิพนธ์ในรอบ 10 ปีที่ผ่านมาก ของโครงการ BRT" ซึ่งดำเนินรายการโดย ดร.มาลี สุวรรณอัตถ์ ศูนย์พันธุ วิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ และคณะ

จากนั้นเป็นพิธีเปิดนิทรรศการ "ปฏิบัติการท่ามกลางธรรมชาติ" ที่นักวิจัยระดับแนวหน้าของเมืองไทย นำ ความรู้ที่ได้จากงานวิจัยมาช่วยกันสร้างสรรค์จัดแสดงเป็นชุดนิทรรศการที่น่าตื่นตาตื่นใจให้ผู้มาร่วมงานได้รับชมกัน

เริ่มต้นเปิดประตูสู่ความหลากหลายทางชีวภาพกันด้วย "พิศวงในดงเฟิร์น และกล้วยไม้มหัศจรรย์แห่งความ งาม" ซึ่ง รศ.ดร.ทวีศักดิ์ บุญเกิด และคณะจากจุฬาลงกรณ์มหาวิทยาลัย ได้ช่วยกันนำความงามจากพืชพรรณ ธรรมชาติทั้งกล้วยไม้และเฟิร์นที่สวยงามและหาชมได้ยาก มาจัดเป็นสวนหย่อมที่ตระการตาน่าชมเป็นอย่างยิ่ง ถัดมา เป็นนิทรรศการชุด "สาหร่ายเห็ดลาบรสเด็ด" โดย ดร.อาภารัตน์ มหาขันธ์ สถาบันวิจัยวิทยาศาตร์และเทคโนโลยีแห่ง ประเทศไทย เป็นการแปรรูปผลิตภัณฑ์สร้างมูลค่าให้ทรัพยากร และสร้างรายได้ให้กับท้องถิ่นได้เป็นอย่างดี

นิทรรศการ "ไรน้ำนางฟ้า...จิ๋วแต่แจ๋ว" เป็นนิทรรศการอีกชุดหนึ่งที่ได้รับความสนใจไม่แพ้กัน โดย ศ.ดร. ละออศรี เสนาะเมือง มหาวิทยาลัยขอนแก่น ที่สามารถพัฒนา "แมงอ่อนช้อย"ธรรมดาในวันวานให้กลายเป็น new product อย่างสมบูรณ์แบบ อันเป็นผลพวงมาจากการพัฒนาวิทยาศาสตร์ขั้นพื้นฐานนี่เอง "หอยครบวงจร" นิทรรศการชุดนี้นำเสนอโดย รศ.สมศักดิ์ ปัญหา จุฬาลงกรณ์มหาวิทยาลัย ใครจะรู้บ้างว่าหอยตัวเล็กๆ ที่คลาน ตัวมเตี้ยมจะกลายเป็นสิ่งมีชีวิตชนิดใหม่ที่มีความสำคัญระดับโลกได้ นอกจากนี้ยังได้ตื่นเต้นไปกับโครงสร้างภายใน ของเปลือกหอยทากจิ๋ว ที่ศึกษาด้วยลำแสงซินโครตรอน

นิทรรศการที่มีความโดดเด่นไม่แพ้ใครอีกชุดหนึ่งคือ "ตามล่าชีวิตดึกดำบรรพ์" ที่ ดร.วราวุธ สุธีธร กรม ทรัพยากรธรณี ได้ยกซากดึกดำบรรพ์ ทั้งปลา เต่า กระดูกไดโนเสาร์ ที่มีอายุมากกว่า 150 ล้านปี มาแสดงให้ชมอย่าง เต็มตา มาดูสิ่งมีชีวิตที่เล็กมากจนมองด้วยตาเปล่าไม่เห็นในกลุ่มจุลินทรีย์ที่ ดร.สมศักดิ์ ศิวิชัย ศูนย์พันธุวิศวกรรมและ เทคโนโลยีชีวภาพแห่งชาติ ตั้งใจจัดในชุดนิทรรศการ "ครบเครื่องเรื่องจุลินทรีย์" โดยนำตัวอย่างสิ่งมีชีวิตของจริงมา จัดแสดงให้รับชมกันทั้ง เห็ดหน้าตาแปลกๆ เชื้อราที่งอกออกมาจากปากของแมลงที่เรียกกันว่า "ราแมลง" ไปจนถึงจุ ลินทรีย์ตัวน้อยๆ ที่นำมาให้ลองส่องกล้องดู

"หอมหวนชวนดม" นิทรรศการชุดนี้นำเสนอโดย ดร.ปิยะ เฉลิมกลิ่น สถาบันวิจัยวิทยาศาสตร์และ เทคโนโลยีแห่งประเทศไทย ที่ได้นำพรรณไม้ดอกหอมที่หายากและรวบรวมจากทั่วประเทศมาจำหน่ายในราคา ย่อมเยา จากนั้นเป็นชุดนิทรรศการความรู้เกี่ยวกับ "งู" ซึ่งในสายตาของนักวิจัยแล้วกลับกลายเป็นสัตว์ที่น่าสนใจ ศึกษา ในนิทรรศการชุด "อสรพิษผู้น่ารัก" นำเสนอโดยผู้เชี่ยวชาญคนสำคัญอย่าง ดร.จารุจินต์ นภีตะภัฏ องค์การ พิพิธภัณฑ์วิทยาศาสตร์แห่งประเทศไทย และชุดนิทรรศการสุดท้ายแต่ใม่ใช่ท้ายที่สุดของงานที่จำลองระบบนิเวศของ หิ่งห้อยพร้อมโชว์การกระพริบในยามค่ำคืนโดยนักวิจัยรุ่นใหม่ไทพิน และที่ขาดไม่ได้ก็คือนิทรรศการ "วิถีชีวิตไทย

อีสาน" โดย สถาบันวิจัยวลัยรุกขเวช ที่นำเสนอเรื่องราวชีวิตและภูมิปัญญาไทยอีสานในการคิดประดิษฐ์เครื่องใช้ไม้ สอยจากทรัพยากรที่มีอยู่ในพื้นที่ให้เกิดประโยชน์ได้อย่างลงตัว

วันที่สองของการประชุมเริ่มต้นด้วยการบรรยายพิเศษ "The impact of paleoclimate change on present-day patterns of biodiversity among Southeast Asian: amphibians and reptiles" โดย Prof. Harold K. Voris, Division of Amphibians and Reptiles Field Museum of Natural History, USA ตามมา ด้วยการนำเสนอผลงานวิจัยเริ่มตั้งแต่กลุ่มกลุ่มงานวิจัยด้านทะเลและศักยภาพการใช้ประโยชน์ โดย ดร.คณิต สุวรรณ บริรักษ์ จุฬาลงกรณ์มหาวิทยาลัย และดร.อัญชนา ประเทพ ภาควิชาชีววิทยา มหาวิทยาลัยสงขลานครินทร์ "กลุ่ม งานอนุกรมวิธานและการถ่ายทอดความรู้สู่ชุมชน" โดย ผศ.สมศักดิ์ สุขวงศ์ RECOFTC, ศ.ละออศรี เสนาะเมือง มหาวิทยาลัยขอนแก่น, รศ.ยุวดี พีรพรพิศาล มหาวิทยาลัยเชียงใหม่ และ ดร.ปิยะ เฉลิมกลิ่น สถาบันวิจัย วิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย "กลุ่มงานวิจัยนิเวศวิทยาและการจัดการความรู้ในพื้นที่เขาใหญ่สู่การ เป็นมรดกโลก" โดยคุณ สุรพล ดวงแข มูลนิธิคุ้มครองสัตว์ป่าและพรรณพืชแห่งประเทศไทย, ศ.วรเรณ บรอคเคลแมน มหาวิทยาลัยมหิดล, อจ.Phillip D Round มหาวิทยาลัยมหิดล, ดร.อนรรฆ พัฒนวิบูลย์ สมาคมอนุรักษ์สัตว์ป่า (WCS) ประเทศไทย "กลุ่มงานอนุกรมวิธานเพื่อการอนุรักษ์และการจัดทำฐานข้อมูลความหลากหลายทางชีวภาพใน ประเทศไทย" โดยนักอนุกรมวิธานอันดับต้นๆ ของเมืองไทย ได้แก่ ดร.ก่องกานดา ชยามฤต กรมอุทยานแห่งชาติ สัตว์ป่าและพันธุ์พืช ดร.จำลอง เพ็งคล้าย กรมอุทยานแห่งชาติสัตว์ป่า และพันธุ์พืช และ อาจารย์จารุจินต์ นะ ภีตะภัฏ องค์การพิพิธภัณฑ์วิทยาศาสตร์แห่งประเทศไทย และรศ.สมโภชน์ ศรีโกสามาตร มหาวิทยาลัยมหิดล ปิดท้าย รายการกันด้วยการเสวนาของกลุ่มนักวิจัยรุ่นใหม่ที่เรียกตัวเองว่า "ไทพิน" ในหัวข้อเสวนาเรื่อง "TYPIN-บ่มเพาะ ความคิด สร้างพันธมิตรนักวิจัยไทยรุ่นใหม่"

วันสุดท้ายของการประชุมเป็นการเสนาเรื่อง "งานอนุกรมวิธานกับการใช้ประโยชน์" โดย รศ.สมศักดิ์ ปัญหา จุฬาลงกรณ์มหาวิทยาลัย ดร.อาภารัตน์ มหาขันธ์ สถาบันวิจัยวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย รศ.เสาวภา อังสุภานิช มหาวิทยาลัยสงขลานครินทร์ และตัวแทนจากภาคเอกชน คุณดำรงฤทธิ์ มาณวพัฒน์ ผู้จัดการ บริษัท West Field Manufacture of Quality Jewelry หลังจากนั้นป็นการ บรรยายพิเศษ "New Frontier on Genetics and Biodiversity" โดย Prof David Woodruff, University of California, San Diago, USA ต่อด้วย การเสวนา "นโยบายการจัดการทรัพยากรชีวภาพกับการมีส่วนร่วมของชุมชนในการจัดทำฐานข้อมูลทรัพยากร ชีวภาพระดับชุมชน (LBI : Local Biodiversity Information)" โดย ดร.สมศักดิ์ สุขวงศ์ RECOFTC, และ รศ.ปรีชา ประเทพา สถาบันวิจัยวลัยรุกขเวช และการนำเสนอศูนย์ธรรมชาติศึกษา ป่าชุมชนบ้านร่องบอน โดย อจ.รณิดา ปิง เมือง ม.ราชภัฏเชียงราย

ปิดท้ายการประชุมในครั้งนี้ด้วยการบรรยายพิเศษ "อดีต ปัจจุบัน และอนาคต" พร้อมกับคำกล่าวปิด โดย ศ.วิสุทธิ์ ใบไม้ ผู้อำนวยการโครงการ BRT และทั้งหมดนี้ก็คือ หนึ่งในความพยายามที่จะสร้างสรรค์ผลงาน ให้ทุกคน ได้เล็งเห็นถึงความสำคัญของความหลากหลายทางชีวภาพในบ้านเรา เพื่อการอนุรักษ์และการใช้ประโยชน์อย่างคุ้มค่า และยั่งยืนสืบไป

7.7 การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 8 วันที่ 14-17 ตุลาคม 2547 โรงแรมไดมอนด์พลาซ่า จ.สุราษร์ธานี

"เมืองร้อยเกาะ เงาะอร่อยหอยใหญ่ ไข่แดง แหล่งธรรมะ" คือคำขวัญประจำจังหวัดสุราษฎ์ธานี จังหวัดที่ โครงการ BRT ได้จัดการประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 8 วันที่ 14-16 ตุลาคม 2547 ที่โรงแรมได มอนด์ พลาซ่า โดยปีนี้มีประชาคม BRT จากทั่วทุกสารทิศไปกันอย่างเนืองแน่นกว่า 500 คน จนทำให้สถานที่จัด ประชุมฯ ดูคับแคบไปถนัดตาทีเดียว กิจกรรมในการประชุมครั้งนี้มีความหลากหลายเหมือนเช่นเคย ทั้งการยรรยายพิเศษ การเสวนา การ อภิปรายทางวิชาการ และที่เป็นเรื่องเด่นในปีนี้คือ การเสนอผลงานวิจัยโดยกลุ่มนักวิจัยไทยและฝรั่งเศสเกี่ยวกับซาก ดึกดำบรรพ์และวิวัฒนาการร่วมระหว่างสิ่งมีชีวิต นอกจากนั้นยังมีกิจกรรมการจัดแสดงโปสเตอร์ของนักศึกษาและ นักวิจัยจำนวน 157 บอร์ด ประกอบด้วย ผลงานวิจัยด้านพืช สัตว์ จุลินทรียี สาหร่ายและแพลงก์ตอน ด้านนิเวศวิทยา และด้านการใช้ประโยชน์ซึ่งเป็นโซนความรู้ที่ช่วยสร้างสีสันให้กับการประชุมครั้งนี้ได้ไม่น้อยทีเดียว นอกจากนี้ โครงการ BRT ยังจัดกิจกรรมพิเศษในช่วงเย็นให้กับคนที่มีไฟในการทำงานด้านความหลากหลายทางชีวภาพมาร่วมกัน แสดงความคิดเห็น ไม่ว่าจะเป็นเรื่องการวิจัยเชิงพื้นที่ในอุทยานแห่งชาติเขาหลวงที่มีผู้เข้าร่วมประชุมเป็นจำนวนมาก การสร้างเครือข่ายการเรียนรู้และศึกษาทรัพยากรชีวภาพในท้องถิ่น และห้องสำหรับนักวิทย์แต่มีหัวใจศิลป์ที่ได้ อาจารย์จากมหาวิทยาลัยมหิดล มาช่วยแนะนำเทคนิคต่างๆ ในการเขียนภาพสิ่งมีชีวิตให้เหมือนจริง

พิธีเปิดอย่างเป็นทางการเริ่มขึ้นโดย ฯพณฯ อำพล เสนาณรงค์ ที่ให้เกียรติมาเป็นประธานในพิธีเปิด เหมือนเช่นทุกปี พร้อมกันนี้ท่านได้ให้ความรู้ทั้งเรื่องของความหลากหลายทางชีวภาพและวิถีของคนจังหวัดสุราษฎร์ ธานีที่ใช้ชีวิตได้อย่างสอดคล้องทรัพยากรธรรมชาติ ต่อจากนั้นจึงเป็นการแสดงต้อนรับจากน้องๆ โรงเรียนศึกษา สงเคราะห์ จังหวัดสุราษฎร์ธานี ที่ขึ้นมารำโนราดัดตัว ศิลปวัฒนธรรมประจำภาคใต้ที่หาชมได้ยากในปัจจุบัน

จากนั้นเวทีการแสดงก็กลายเป็นเวทีทางวิชาการเริ่มต้นด้วยการบรรยายพิเศษด้วยเรื่อง "มองอนาคต ความหลากหลายทางชีวภาพในประเทศไทย" โดย รศ.สมโภชน์ ศรีโกสามาตร มหาวิทยาลัยมหิดล ที่ได้รับข้อมูลทาง สถิติเกี่ยวกับประเด็นปัญหา จุดอ่อน จุดแข็ง และแนวทางการพัฒนาการวิจัยความหลากหลายทางชีวภาพของ ประเทศไทย ตามมาด้วยการเสนอผลงานวิจัยเด่น เรื่อง "การฟื้นฟูป่า" โดย Dr. Stephen Elliott หน่วยวิจัยการ ฟื้นฟูป่า มหาวิทยาลัยเชียงใหม่ และในวันนี้ยังได้รับเกียรติจากศิลปินดีเด่นภาคใต้อย่าง คุณปรีดา แก้วเจือ มาบรรยาย ประกอบการร่ายรำโนรา เรื่อง "ท่วงท่าโนรากับการสื่อความหมายจากธรรมชาติ" ซึ่งได้ให้ความรู้ความเข้าใจเกี่ยวกับ ท่ารำโนราที่ได้ดัดแปลงมาจากความสวยสดงดงามของธรรมชาติ จากนั้นกลุ่มชุมชนคนสุราษฎร์ได้มาสะท้อน ความรู้สึกนึกคิดในการอนุรักษ์ความหลากหลายทางชีวภาพของท้องถิ่น ปิดท้ายด้วยผลสรุปการประชุมระดับ นานาชาติ อย่างการประชุม CITES โดย ดร.ฉวีวรรณ หุตะเจริญ กรมอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืช รศ. สมโภชน์ ศรีโกสามาตร มหาวิทยาลัยมหิดล และคุณสุรพล ดวงแข เลขาธิการมูลนิธิคุ้มครองสัตว์ป่าและพรรณพืช ที่ได้มาร่วมกันเปิดประเด็นเสวนากันอย่างกว้างขวางอีกด้วย

การประชุมในวันที่สองเริ่มต้นด้วยการพาผู้เข้าร่วมประชุมย้อนรอยประวัติศาสตร์ด้วยการชมวิดีโอมัลติ
วิชั่นเกี่ยวกับการศึกษาซากฟอสซิลของสิ่งมีชีวิตตั้งแต่สมัยโลกยุคเก่า โลกยุคกลาง จนมาถึงโลกยุคใหม่ ซึ่งเป็นส่วน หนึ่งของการนำเสนอผลงานวิจัยจากนักวิจัยในชุดโครงการ CNRS โครงการความร่วมมือระหว่างนักวิจัยไทยและ ฝรั่งเศสด้านความหลากหลายทางชีวภาพ พร้อมกับการนำเสนอผลงานวิจัยที่ได้มีการค้นพบซากฟอสซิลในประเทศ ไทย เริ่มตั้งแต่โลกยุคเก่าที่เรียกว่ามหายุคพีโอโสอิก ที่มีการขุดพบซากฟอสซิลของออสตราคอด นำเสนอโดย ดร.จง พันธ์ จงลักษณมณี มหาวิทยาลัยเทคโนโลยีสุรนารี ตามมาด้วยการศึกษาฟอสซิลในโลกยุคกลางหรือมหายุคมีโสโซอิก ซึ่งเป็นยุคไดโนเสาร์ครองเมือง โดย ดร.วราวุธ สุธีธร กรมทรัพยากรธรณี และ Prof. Eric Buffetaut, Centre National de la Recherche Scientifique France ที่ได้พบว่ามีฟอสซิลไดโนเสาร์ในประเทศไทยเป็นจำนวนมาก โดยเฉพาะแถบภาคอีสาน จนมาถึงยุคใหม่หรือมหายุคซีโนโสอิก โดย ดร.สมศักดิ์ ปัญหา จุฬาลงกรณ์มหาวิทยาลัย ดร. เยาวลักษณ์ ซัยมณี กรมทรัพยากรธรณี มาพร้อมกับ Prof. Jean Jacques Jaeger, CNRS University Montepellier France นำเสนอเรื่องราวของฟอสซิลสัตว์เลี้ยงลูกด้วยนมที่ขุดพบในหลายจังหวัดตั้งแต่ภาคเหนือ ได้แก่ จังหวัดพะเยา มาจนถึงภาคใต้ ที่จังหวัดนครศรีธรรมราชและจังหวัดกระบี่

การนำเสนอผลงานวิจัยซึ่งจะขาดเสียไม่ได้นั้น ในปีนี้ได้แบ่งออเป็นสองกลุ่มตามความสนใจ คือ งานวิจัย ความหลากหลายทางชีวภาพที่นำเสนอโดยกลุ่มนักวิจัยผู้รับทุน BRT เช่น งานวิจัยเกี่ยวกับราน้ำ โดย Prof. Gareth Jones ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ การศึกษาพฤติกรรมของค้างคาว โดย ดร.สาระ บำรุงศรี มหาวิทยาลัยสงขลานครินทร์ การศึกษาพฤกษศาสตร์พื้นบ้านของชนเผ่าซาไก โดย น.ส.เกศริน มณีนูน มหาวิทยาลัยสงขลานครินทร์ การวิจัยสัตว์สะเทินน้ำสะเทินบก โดย ดร.วิเชฏฐ์ คนซื่อ จุฬาลงกรณ์มหาวิทยาลัย ลิง

วอกฝูงสุดท้ายของไทย โดย ดร.สุจินดา มาลัยวิจิตรนนท์ จุฬาลงกรณ์มหาวิทยาลัย และการศึกษาสัตว์หน้าดินใน ทะเลสาบสงขลา โดย รศ เสาวภา อังสุภานิช จากมหาวิทยาลัยสงขลานครินทร์

อีกกลุ่มหนึ่งเป็นกลุ่มการนำไปใช้ประโยชน์ หรือโครงการ BUP (Bioresource Utilization Program) มี การนำเสนอผลงานวิจัยที่น่าสนใจ เช่น การใช้ประโยชน์จากเพรียงหัวหอมในการนำมาทำยารักษาโรค โดย ดร. คณิต สุวรรณบริรักษ์ จากจุฬาลงกรณ์มหาวิทยาลัย "การตรวจสอบเบื้องต้นของสารออกฤทธิ์ทางชีวภาพจากสาหร่ายสี เขียวแกมน้ำเงินที่พบในจังหวัดเชียงใหม่ และจังหวัดน่าน" โดย นางสาว พิษณุ วรรณธง มหาวิทยาลัยแม่โจ้ เป็นต้น

วันสุดท้ายของงงานเป็นการนำเสนอผลงานการไขปริศนาวิวัฒนาการร่วมระหว่างสิ่งมีชีวิตด้วยเทคนิคชีว โมเลกุลเพื่อให้ผู้เข้าประชุมได้ทำความเข้าใจกับโลกของสิ่งมีชีวิตที่มีวิวัฒนาการร่วมกัน มีทั้งกรณีศึกษาจากแบคทีเรีย "Walbachia" และการแปลงเพศไรน้ำ โดย ศ. ละออศรี เสนาะเมือง มหาวิทยาลัยขอนแก่น รศ.ปัทมาภรณ์ กฤตย พงษ์ มหาวิทยาลัยมหิดล และ Prof. Didier Bouchon, University de Poitiers France การนำเสนอผลงานด้าน ชีววิทยาเชิงประชากรของเชื้อมาลาเรีย Plasmodium falciparum และ P. vivax โดย Dr. Francois Renaud CNRS-IRD France และวิวัฒนาการระดับโมเลกุลของยุงกันปล่องพาหะ โดย ดร.พรพิมล รงค์นพรัตน์ มหาวิทยาลัยมหิดล ซึ่งทำให้ผู้เข้าร่วมประชุม ได้รับความรู้เป็นอย่างมาก

ต่อมาเป็นการเสวนาที่ได้รับความสนใจเพราะเป็นการเสวนาโดยสามหนุ่มสามวัย (เก๋า กลาง ใหม่) คือ ผศ. สมศักดิ์ สุขวงศ์ ที่ปรึกษา RECOFTC รศ.สมศักดิ์ ปัญหา จุฬาลงกรณ์มหาวิทยาลัย และนายสิทธิพงศ์ วงษ์วิลาส ผู้ช่วยนักวิจัยโครงการ BRT ที่มาพูดถึงมุมมองการเป็นนักวิจัยความหลากหลายทางชีวภาพในแต่ละยุคแต่ละสมัยที่ แตกต่างกันออกไป

การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 8 จบลงพร้อมกับการกล่าวปิดประชุมจากผู้อำนวยการ โครงการ BRT ศ.วิสุทธิ์ ใบไม้ ที่ขึ้นมากล่าวขอบคุณผู้เข้าร่วมการประชุมทุกท่านที่ช่วยกันทำให้การประชุมในครั้งนี้มี บรรยากาศของงานวิชาการ มีบรรยากาศของความเป็นมิตร และมีบรรยากาศของการผูกมิตรใหม่และมิตรเก่า โดย หวังเป็นอย่างยิ่งว่าในโอกาสของการประชุมครั้งต่อไปคือการประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 9 คงจะ เป็นการจัดงานที่ยิ่งใหญ่กว่าทุกๆ ปี เพราะเป็นการครบรอบการดำเนินงาน 10 ปี ของโครงการ BRT

จะเห็นได้ว่าสีสันการประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 8 นี้ มีกิจกรรมและรูปแบบที่ หลากหลายและเข้มข้นมากขึ้นเป็นลำดับ เป็นความเข้มข้นทางวิชาการที่เกิดท่ามกลางบรรยากาศระหว่างนักวิชาการ ที่เป็นกันเอง นอกจากความหลากหลายของกิจกรรมและผลงานวิจัยที่นำมาเสนอมากมายแล้ว นักวิจัยและผู้ที่สนใจยัง ขยายวงกว้างมากขึ้นอีกด้วย ทำให้เกิดความเข้มข้นทางวิชาการและมิตรภาพระหว่างนักวิจัยตลอดการประชุม โครงการ BRT มีความภาคภูมิใจและหวังเป็นอย่างยิ่งว่าผู้เข้าร่วมประชุมจะร่วมกันสานฝันให้การวิจัยความ หลากหลายทางชีวภาพขยายวงให้กว้างขวางขึ้น

อย่างไรก็ตาม ทางโครงการ BRT ต้องขอขอบคุณเจ้าภาพร่วมซึ่งได้แก่ มหาวิทยาลัยราชภัฏสุราษฎร์ธานี มหาวิทยาลัยสงขลานครินทร์ วิทยาเขตสุราษฎร์ธานี และสถาบันเทคโนโลยีราชมงคล วิทยาเขตนครศรีธรรมราช รวมทั้งผู้เข้าประชุมทุกท่าน ที่ร่วมกันสร้างสีสันให้กับการประชุมวิชาการประจำปี โครงการ BRT ในครั้งนี้

7.8 การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 7 โลกที่แตกต่าง เครือข่ายเพื่ออนาคต

13-17 ตุลาคม 2546 โรงแรมโลตัส ปางสวนแก้ว จ. เชียงใหม่

"โลกที่แตกต่าง เครือข่ายเพื่ออนาคต" เป็นเสมือนบทสรุปของการประชุมประจำปีโครงการ BRT ครั้งที่ 7 ที่ จัดขึ้นที่โรงแรมโลตัส ปางสวนแก้ว จ. เชียงใหม่ เมื่อวันที่ 13-17 ตุลาคม 2546 ที่ผ่านมา และสำหรับปีนี้ดูเหมือนว่า เครือข่ายในอนาคตของโครงการ BRT จะแน่นแฟ้นมากขึ้นเพราะมีผู้ร่วมประชุมถึง 800 คน นับเป็นขวัญกำลังใจ ให้กับโครงการ BRT ที่เห็นผู้ที่สนใจและหวงแหนในความหลากหลายทางชีวภาพเพิ่มมากขึ้นเป็นลำดับทุกปี

กิจกรรมทางวิชาการในปีนี้แบ่งออกเป็นการบรรยายพิเศษ อภิปราย เสวนา และเสนอผลงานวิจัยเด่น ซึ่งจัด ขึ้นภายในห้องประชุมขนาดใหญ่ และอีกส่วนหนึ่งคือนำเสนอผลงานวิจัยภาคโปสเตอร์ซึ่งจัดแสดงอยู่บริเวณด้านนอก ห้องประชุมจำนวน 127 บอร์ด นอกจากนี้ยังมีกิจกรรมพิเศษที่จัดขึ้นในตอนค่ำของวันที่ 14 ตุลาคม ประกอบด้วยการ ประชุม 4 กลุ่ม ได้แก่ กลุ่มจุลินทรีย์ กลุ่มนิเวศวิทยา กลุ่มเครือข่าย และกลุ่มนักศึกษาศิษย์เก่า/ใหม่ BRT โดยได้แยก เป็นห้องเล็กๆ ให้ผู้เข้าประชุมเลือกเข้าร่วมแสดงความคิดเห็นตามความถนัด

การประชุมฯ ในวันแรกเริ่มต้นอย่างเป็นทางการด้วยพิธีเปิด โดย ฯพณฯ อำพล เสนาณรงค์ ซึ่งท่านได้เล่าถึง ลักษณะภูมิประเทศและภูมิอากาศในเขตภาคเหนือที่ประกอบด้วยไปด้วยภูเขาสลับซับซ้อน ส่งผลให้ภูมิภาคนี้มีความ หลากหลายทางชีวภาพค่อนข้างสูง โดยเฉพาะในเรื่องของพรรณไม้พื้นเมืองที่หลายชนิดได้กลายเป็นพืชที่นิยมนำมา ปลูกและรู้จักกันเป็นอย่างดี เช่น กวาวเครือ งิ้วป่า มะเกี๋ยง เสี้ยวดอกขาว ตาว ก่อ เป็นต้น นอกจากนี้ยังมีหน่วยงานที่ เกี่ยวข้องความหลากหลายทางชีวภาพตั้งอยู่หลายหน่วยงาน โดยเฉพาะในจังหวัดเชียงใหม่ เช่น อุทยานแห่งชาติที่มี มากถึง 18 แห่ง สวนพฤกษศาสตร์สมเด็จพระนางเจ้าสิริกิติ์ โครงการหลวง ฯลฯ ซึ่งในอนาคตควรมีการวางแผนและมี การประสานงานจากทุกหน่วยงานที่เกี่ยวข้อง เพื่อเชื่อมโยงและสามารถขยายงานด้านความหลากหลายทางชีวภาพ ออกไปได้กว้างขวางมากยิ่งขึ้น ต่อจากนั้นผู้เข้าร่วมประชุมทุกท่านก็ได้ชมการแสดงพื้นเมืองภาคเหนือ "แห่ครัวทาน ล้านนา" จากมหาวิทยาลัยเชียงใหม่ ที่ได้สะท้อนความเชื่อมโยงระหว่างธรรมชาติกับศิลปวัฒนธรรมของคนใน ภาคเหนืออย่างแน่นแฟ้น

กิจกรรมทางวิชาการเริ่มต้นด้วยการบรรยายพิเศษ เรื่อง การวิจัยนิเวศวิทยาชาติพันธุ์ ทรัพยากรธรรมชาติ และสิทธิชุมชน โดย ศ.ยศ สันตสมบัติ ผู้ที่มีประสบการณ์ทำงานวิจัยด้านนี้มาอย่างต่อเนื่องจึงได้ถ่ายทอด ประสบการณ์และนำเสนอประเด็นต่างๆ ที่น่าสนใจจากการศึกษากลุ่มชาติพันธุ์ทางภาคเหนือตอนบน ได้แก่ ม้ง ลีซอ เมี่ยน ปกากะญอ อาข่า ลัวะ ขมุ ไทลื้อ ไทยวน โดยเฉพาะประเด็นที่เกี่ยวกับการจัดการความหลากหลายทางชีวภาพ ที่ชาวบ้านพยายามรวมตัวกันเพื่อดูแลทรัพยากรชีวภาพด้วยองค์ความรู้ ภูมิปัญญาท้องถิ่น ความเชื่อ และประเพณี แต่ การจัดการทรัพยากรชีวภาพก็ไม่สามารถทำได้เพียงลำพังโดยคนกลุ่มใดกลุ่มหนึ่งหรือองค์กรใดองค์กรหนึ่งเท่านั้น แนวทางที่ดีควรเป็นการจัดการที่เรียกว่า การจัดการร่วม หรือ Co-management เพราะฉะนั้นภาครัฐจึงควร สนับสนุนและส่งเสริมให้ชาวบ้านเข้ามามีส่วนร่วมในการจัดการทรัพยากรชีวภาพ รวมทั้งระบบกฎหมายก็ควรจะต้อง ให้ความเคารพต่อจารีตประเพณีของพวกเขาด้วย

ความพร้อมทางด้านกฎหมายคุ้มครองทรัพยากรชีวภาพของชาติ จึงเป็นประเด็นต่อมาที่มีการบรรยายโดย ดร.เจษฎ์ โทณะวณิก ผู้เข้าร่วมประชุมทุกท่านจึงได้เข้าใจเกี่ยวกับตัวบทกฎหมายที่เกี่ยวข้องกับความหลากหลายทาง ชีวภาพมากขึ้น ว่ากฎหมายคุ้มครองทรัพยากรชีวภาพของชาตินั้นเป็นสิ่งที่สำคัญและจะต้องมีความละเอียดรอบคอบ อย่างมากในการออกกฎหมายทางด้านนี้ เนื่องจากกฎหมายจะเป็นตัวช่วยไม่ให้มีการฉกฉวยทรัพยากรชีวภาพและยัง สามารถช่วยติดตามผลสืบเนื่องจากการใช้ประโยชน์จากทรัพยากรได้อีกด้วย

หลังจากนั้นเป็นการเปิดเวทีเสวนา เรื่อง การจัดการองค์ความรู้พื้นบ้าน : กรณีศึกษาวิจัยโดยกลุ่มชาวบ้าน ภาคเหนือ โดยตัวแทนหมู่บ้านภาคเหนือที่ได้ทำการวิจัยศึกษาอย่างเป็นระบบ ได้แก่ คุณภาคี วรรณสัก จากบ้านทุ่ง ยาว คุณทวีศิลป์ ศรีเรื่อง จากบ้านห้วยแก้ว คุณเสกศิลป์ เสนาะพรไพร และคุณวราลักษณ์ ไชยทัพเป็นผู้ดำเนินการ เสวนา เวทีนี้เป็นเวทีชาวบ้านอย่างแท้จริงแต่เป็นชาวบ้านที่สามารถอธิบายองค์ความรู้ของตนเองได้เป็นอย่างดี ไม่ว่า จะการฟื้นตัวของป่าธรรมชาติ การจัดการน้ำ การจัดการเศรษฐศาสตร์ในครัวเรือน หรือการจัดการสัตว์ป่า ซึ่งองค์ ความรู้เหล่านี้ทำให้พวกเขาสามารถบริหารจัดการทรัพยากรชีวภาพได้อย่างยั่งยืน

หัวข้อในเวทีเสวนาต่อมาก็คือ ภาพฉายอนาคตการวิจัยความหลากหลายทางชีวภาพในประเทศไทย ที่มี นักวิชาการเฉพาะด้านทั้ง พืช สัตว์ จุลินทรีย์ สาหร่าย แพลงก์ตอนและไลเคน แมลง นิเวศวิทยา และภูมิปัญญา ท้องถิ่น ขึ้นมานำเสนอภาพฉายอนาคตด้านการวิจัยความหลากหลายทางชีวภาพ โดยมี ดร.มาลี สุวรรณอัตถ์ เป็น ผู้ดำเนินการ เป็นเวทีที่ได้รับความสนใจเป็นอย่างดีเพราะนอกจากจะทำให้ทราบถึงสถานภาพการวิจัยในด้านต่างๆ แล้ว ยังเห็นภาพรวม ทิศทาง กลยุทธิ์ และเป้าหมายในการบริหารจัดการงานวิจัยด้านความหลากหลายชีวภาพของ ชาติในอนาคตอีกด้วย

วันที่สองเริ่มต้นด้วยจากการนำเสนอผลงานวิจัยด้านความหลากหลายทางชีวภาพหลายเรื่อง เช่น การวิจัย สารออกฤทธิ์ทางชีวภาพ กรณีศึกษาจุลินทรีย์และเชื้อรา โดย ดร.สมศักดิ์ ศิวิชัย จากศูนย์พันธุวิศวกรรมและ เทคโนโลยีชีวภาพแห่งชาติ, การศึกษาวิจัยปลากัดป่าไทย โดย ดร. มัลลิกา เจริญสุทธาสินี จากมหาวิทยาลัยวลัย ลักษณ์, การติดตามตรวจสอบระบบนิเวศระยะยาวในการฟื้นฟูความหลากหลายทางชีวภาพในภาคเหนือ โดย ดร. ประสิทธิ์ วังภคพัฒนาวงศ์ มหาวิทยาลัยเชียงใหม่, การศึกษาสัตว์เลี้ยงลูกด้วยนมในพื้นที่ป่าอนุรักษ์ โดยคุณบุษบง กาญจนสาขา จากอุทยานแห่งชาติ สัตว์ป่า และพันธุ์พืช, และการศึกษาวิจัยความหลากหลายทางชีภาพเชิงพื้นที่ (area-based) บทเรียนบูรณาการในพื้นที่ทองผาภูมิตะวันตก โดย รศ.สมโภชน์ ศรีโกสามาตร มหาวิทยาลัยมหิดล เป็นต้น

จนมาถึงวันสุดท้ายของการประชุมฯ ที่เริ่มต้นรายการด้วยเสียงเพลงอุทยานดอกไม้จากผู้เข้าร่วมประชุมทุก ท่าน เพื่อให้เข้ากับการบรรยายพิเศษ เรื่องพรรณไม้ดอกหอม พืชทรงคุณค่าทางเศรษฐกิจ สังคม และวัฒนธรรม โดย ดร.ปิยะ เฉลิ่มกลิ่น ผู้เชี่ยวชาญด้านพรรณไม้ดอกหอม ซึ่งนอกจากจะได้เห็นภาพสวยๆ ของไม้ดอกหอม แล้วทุกท่าน ยังได้รับความรู้และข้อมูลพื้นฐานด้านชีวภาพเกี่ยวกับพรรณไม้ดอกหอมด้วย

หัวข้อเสวนา เรื่อง ถักทอสายใยเครือข่าย BRT : งานวิจัยพื้นฐานกับการวิจัยท้องถิ่นและวิทยาศาสตร์ ท้องถิ่น" เป็นหัวข้อสุดท้ายของการประชุม โดยแกนนำเครือข่ายของโครงการ BRT ทั้งจากภาคเหนือ คือ อาจารย์ ศรีวรรณ ไชยสุข จากสภาบันราชภัฏเชียงราย และแกนนำเครือข่ายจากภาคใต้ คือ ดร.ดิเรก ศรีณพงษ์ จากสถาบัน ราชภัฎนครศรีธรรมราช พร้อมด้วยลูกทีม มาร่วมแลกเปลี่ยนประสบการณ์การสร้างเครือข่ายงานวิจัยท้องถิ่นบนฐาน ทรัพยากรชีวภาพที่มีอยู่ในชุมชนท้องถิ่น ซึ่งแต่ละท่านได้พูดถึงหัวใจสำคัญของการถักทอเครือข่ายให้เข้มแข้งก็คือ ผู้ร่วมงานหรือทีมเวิร์ก เพราะทุกคนจะต้องมีอุดมการณ์และความคิดที่สอดคล้องกัน มีใจให้กันก่อนเป็นอันดับแรก ส่วนชุมชนหรือเด็กๆ จะทำวิจัยเรื่องอะไรนั้นให้อยู่บนพื้นฐานความชอบความสนใจของแต่ละคน เพราะฉะนั้นโจทย์ วิจัยจึงมาจากชุมชน เมื่อคิดแล้วจึงลงมือทำการวิจัยด้วยตนเอง โดยนักวิชาการ หรือคุณครูจะคอยเป็นเพียงพี่เลี้ยง ซึ่ง สิ่งต่างๆ เหล่านี้จะทำให้เกิดกระบวนการเรียนรู้ขึ้นในชุมชน เพราะฉะนั้นจริงๆ แล้วเครือข่ายก็คือผู้ประสานงาน หรือ ตัว catalyst หรือเอนไซม์ที่พยายามจะทำให้เกิดการเรียนรู้และนำไปสู่การวิจัยท้องถิ่นและวิทยาศาสตร์ท้องถิ่น มีการ เชื่อมโยงและปฏิสัมพันธ์กันเป็นลูกโซ่นั่นเอง

หลังจากเสร็จสิ้นจากกิจกรรมทางวิชาการแล้ว ศ.วิสุทธิ์ ใบไม้ ผู้อำนวยการโครงการ BRT มอบรางวัล โปสเตอร์ดีเด่น พร้อมกับกล่าวปิดการประชุมว่า ฐานทรัพยากรที่เข้มแข็งที่สุดของประเทศไทยก็คือฐานทรัพยากร ชีวภาพ เพราะฉะนั้นการอนุรักษ์ทรัพยากรชีวภาพจึงไม่ใช้ภารกิจของฝ่ายใดฝ่ายหนึ่ง หากแต่เป็นภารกิจของ ประชาชนทั้งชาติ ซึ่งจำเป็นอย่างยิ่งที่จะต้องมีเครือข่าย เพราะฉะนั้นผู้ที่เข้าร่วมประชุมทุกท่านแม้ว่าจะมีความ แตกต่างกันทั้งทางความคิดและทัศนคติ แต่ต่างก็มีเป้าหมายหลักเดียวกัน นั่นก็คือ การเป็นหุ้นส่วนด้านความ หลากหลายทางชีวภาพเพื่ออนาคตของชาติไทย ดังคำกล่าวที่ว่า "โลกที่แตกต่าง หุ้นส่วนเพื่ออนาคต (A World of Difference Partnership for the further)" เพราะฉะนั้นโครงการ BRT หวังเป็นอย่างยิ่งว่าผู้ที่มาเข้าร่วมประชุมที่มี ทั้งชาวบ้าน นักวิจัย อาจารย์จากสถาบันราชภัฏ ราชมงคล รวมทั้งครูในระดับมัธยมและประถม ซึ่งเปรียบเสมือนโลก ที่แตกต่างจะสามารถนำไปสู่การสร้างเครือข่ายในอนาคตได้ไม่ยาก หากทุกคนต่างมีอุดมคติและมีความห่วงใยความ หลากหลายทางชีวภาพเช่นเดียวกัน

7.9 การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 69-12 ตุลาคม 2545 โรงแรมทวินโลตัส จังหวัดนครศรีธรรมราช

การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 6 ได้ไปจัดที่โรงแรมทวินโลตัส จังหวัดนครศรีธรรมราช ตั้งแต่วันที่ 9-12 ตุลาคม 2545 เพื่อเป็นเวทีแลกเปลี่ยนความคิดเห็นและผลผลิตทางวิชาการของนักวิจัยและนิสิต นักศึกษาในโครงการ BRT ด้วยการนำเสนอผลงานวิจัยทั้งภาคบรรยายและภาคโปสเตอร์รวม 92 เรื่อง นอกจากนี้ยัง เป็นเวทีอภิปราย เสวนา และการบรรยายพิเศษในหัวข้อที่น่าสนใจมากมายรวมทั้งหมด 6 เรื่อง เพื่อให้ผู้เข้าร่วมการ ประชุมทั้งหมด 639 คน ซึ่งประกอบด้วยนิสิต นักศึกษา คณาจารย์ นักวิจัย นักวิชาการ องค์กรเอกชน และผู้สนใจ ทั่วไปที่มาจากทั่วทุกสารทิศ ได้มีโอกาสพูดคุยและแลกเปลี่ยนความคิดเห็นซึ่งกันและกัน อันจะเป็นนิมิตหมายที่ดีที่จะ นำไปสู่การพัฒนางานวิจัยด้านความหลากหลายทางชีวภาพต่อไป

การประชุมฯ ในวันแรกเริ่มขึ้นโดย ฯพณฯ อำพล เสนาณรงค์ องคมนตรี มาเป็นประธานในพิธี ท่านได้เล่าถึง สภาพความอุดมสมบูรณ์ของทรัพยากรธรรมชาติในจังหวัดนครศรีธรรมราชและภาคใต้ที่มีทั้งภูเขา น้ำตก ทะเล ป่า ชายเลน ที่ราบ และป่าพรุ แต่ปัจจุบันได้ถูกพัฒนาปรับเปลี่ยนให้เป็นพื้นที่เพื่อเกษตรกรรมและที่อยู่อาศัยจนทำให้ ความหลากหลายทางชีวภาพลดลงเรื่อยๆ นอกจากนี้จังหวัดนครศรีธรรมราชยังมีพืชพื้นเมืองที่น่าสนใจคือ สาคูและ เขาคัน ที่น่าศึกษาและพัฒนาให้เป็นพืชเศรษฐกิจที่สำคัญอันจะเป็นเอกลักษณ์ประจำจังหวัดได้ต่อไป เช่นเดียวกับการ แสดงศิลปวัฒนธรรมพื้นบ้านในท่ารำโนราห์ของอ. จิณต์ ฉิมพงษ์ ที่งดงามและอ่อนซ้อยอันแสดงถึงเอกลักษณ์ของ ภาคใต้ได้เป็นอย่างดี ซึ่งบทกลอนประกอบการแสดงยังได้บรรยายถึงความอุดมสมบูรณ์ทางธรรมชาติของท้องถิ่น ภาคใต้ได้อย่างชัดเจนอีกด้วย

...ยามรุ่ง สุริยา ดาดฟ้าเริก
ส่องไปทั่วจบนพนภาลัย
ฝันเห็นเมฆฉาย พระพายพัดเลื่อน
เป็นเพิง เป็นพุ่ม คลุมย่านลงมา
บรรพตาเป็นเพิง พันธุ์ไม้งอกข้างใต้
เพิงตรันโดหักกิ่งมันยักมาใน
บรรพตาสองแถว พันธุ์ไม้แก้วงอกซ้อน
รากไปรัดเหลี่ยม งอนเป็นก้อนกลม
ทำทรุดโทรม ลงไปซ้อน เป็นก้อนกอง
ก้อนหนึ่งกระเด็น ไปตั้งเป็นไคล
หลายหลันพันธุ์ไม้ งอกชายบรรพตา
รากแยงแทงหินปืนขึ้นก้อน
ต้นหนึ่งเอนอิงพิงเพื่อนอยู่

วิรุฬห์เบิกยังไม่กระจ่างสว่างใส
ฝันไปพินิจ ทิศบูรพา
ดูกลับเกลื่อน ซับซ้อน บนชะง่อนผา
บ้างห้อยระย้า ลดาวัลย์ พันขึ้นไป
เพิงตรันเอาไว้ ปลายโย่งไขว่
ใบมันห้อยลงหมด ยอดมันพดกลม
เงามันย้อน แลดูงามงอนสม
ซั่งน่าชม ระรื่น แสนชื่นใจ
เป็นเชิงซอง หินแยก น้ำแตกไหล
หญ้ารังไก่ขึ้นปรก ก้อนรก งูเลื้อยเข้าไปนอน
เป็นสาขาก้านกิ่งริมสิงขร
รากข้อนหินหดแลกคดคู้
กิ่งหนึ่งคู้ กิ่งหนึ่งยาวราด ใบพาดกัน

กิจกรรมทางวิชาการเริ่มต้นด้วยการบรรยายพิเศษของ ศ.เอกวิทย์ ณ ถลาง ผู้ที่ถือได้ว่าคลุกคลีอยู่กับท้องถิ่น ภาคใต้โดยเฉพาะ จ. นครศรีธรรมราช มาตั้งแต่สมัยเด็กจนเกิดความผูกพันกับภูมิปัญญาท้องถิ่นปักษ์ใต้ที่ท่านเกรงว่า จะถูกเทคโนโลยีสมัยใหม่เข้ามาแทรกแซงจนทำให้ภูมิปัญญาท้องถิ่นหมดความสำคัญลง จึงได้บรรยายถึงความสำคัญของภูมิปัญญาท้องถิ่นที่จะเป็นฐานในการพัฒนาสังคมและชุมชนท้องถิ่น สามารถเป็นปราการป้องกันไม่ให้ต่างชาติเข้า มาฉกฉวยขุมทรัพย์ทางธรรมชาติของเราไปได้ ทำให้เราสามารถอยู่ได้ด้วยตัวเองตลอดไป

หลังจากนั้นได้มีเวทีการอภิปรายในประเด็นแรกเรื่อง "ความหลากหลายทางชีวภาพ: ภูมิปัญญาท้องถิ่นกับ ผลกระทบจากการจัดระเบียบใหม่ของโลก" โดย คุณบัณฑูร เศรษฐ์ศิโรตม์ อนุกรรมการเรื่องป่าเขตร้อนและความ หลากหลายทางชีวภาพ ดร.เลิศชาย ศิริชัย จากมหาวิทยาลัยวลัยลักษณ์ และ รศ. โอภาส ปัญญา จาก มหาวิทยาลัยมหิดล เป็นผู้ดำเนินการอภิปราย เวทีนี้ได้รับความสนใจอย่างมากเพราะเป็นความรู้ใหม่ที่เกี่ยวกับ กฎระเบียบหรือข้อกำหนดโลกที่ว่าด้วยความหลากหลายทางชีวภาพ ลิขสิทธิ์ และสิทธิบัตร ในสิ่งมีชีวิตต่างๆ ที่มีการ ปรับเปลี่ยนเพื่อเอื้อประโยชน์ต่อกลุ่มประเทศที่เป็นแกนนำโดยเฉพาะประเทศที่พัฒนาแล้ว ในขณะที่ประเทศสมาชิก ซึ่งส่วนใหญ่เป็นประเทศกำลังพัฒนาอย่างประเทศไทยจะต้องปฏิบัติตามข้อตกลงทำให้ต้องเสียเปรียบในหลายๆ เรื่อง ดังนั้นจึงควรสร้างความเข้มแข็งให้เกิดขึ้นภายในประเทศด้วยการใช้เทคโนโลยีมาพัฒนาภูมิปัญญาท้องถิ่นที่เรามีอยู่ให้ ขึ้นสู่ระดับที่เข้าเกณฑ์การขอรับการคุ้มครองภายใต้ระบบทรัพย์สินทางปัญญาได้ รวมทั้งต้องอนุรักษ์ไว้ซึ่งความ หลากหลายทางชีวภาพและวัฒนธรรมให้คงอยู่สืบไป

เมื่อกฎระเบียบของโลกหมุนเปลี่ยนไปตามกระแสของการพัฒนา ประเทศไทยก็ต้องมีการปรับเปลี่ยน นโยบายและทิศทางเพื่อให้สอดคล้องกับกระแสโลกด้วยเช่นกัน ดังนั้น ศ.วิสุทธิ์ ใบไม้ ผู้อำนวยการโครงการ BRT จึง ได้เปิดหัวข้อการเสวนา "นโยบายและทิศทางการศึกษาวิจัยความหลากหลายทางชีวภาพภายใต้กรอบกระทรวงใหม่" โดยได้พูดถึงการปรับเปลี่ยนโยกย้ายกรมกองต่างๆ มากมายภายใต้การจัดตั้งกระทรวงใหม่คือกระทรวง ทรัพยากรธรรมชาติและสิ่งแวดล้อม ซึ่งเปรียบเสมือนการบรรเลงดนตรีโดยไม่มีผู้ควบคุม คณะทำงานเชิงวิชาการของ กระทรวงๆ จึงได้เสนอให้มีการจัดตั้งองค์กรช่วยกำกับดูแลด้านการศึกษาวิจัยและการบริหารจัดการ ทรัพยากรธรรมชาติ ซึ่งจะเกิดขึ้นได้ต้องอาศัยกลยุทธ์สามเหลี่ยมเขยื้อนภูเขาของ ศ.นพ. ประเวศ วะสี คือการใช้ งานวิจัย ผนวกกับพลังภาคประชาชน และสุดท้ายคือภาครัฐ เพื่อขับเคลื่อนงานให้ประสบความสำเร็จ

วันที่สองของการประชุมฯ ได้เปิดโอกาสให้ผู้เข้าร่วมประชุมทุกท่านเลือกเข้าร่วมประชุมในด้านที่ตนเองสนใจ หรือถนัด เนื่องจากวันนี้เป็นการประชุมกลุ่มย่อยโครงการ BRT ซึ่งแบ่งออกเป็น 6 กลุ่ม คือ สัตว์ พืช จุลินทรีย์ สาหร่ายและแพลงก์ตอน นิเวศวิทยา และภูมิปัญญาท้องถิ่น แต่ละกลุ่มมีกิจกรรมทางวิชาการทั้งการนำเสนอ ผลงานวิจัยที่น่าสนใจและการเปิดประเด็นอภิปรายเพื่อปรึกษาหารือร่วมกันในการดำเนินงานของแต่ละกลุ่มในอนาคต รวมถึงการจัดตั้งเป็นชมรมเพื่อให้เกิดการสร้างเครือข่ายที่ครอบคลุมทั่วประเทศนับตั้งแต่นักศึกษา นักวิจัย อาจารย์ จากมหาวิทยาลัย สถาบันราชภัฏ เทคโนโลยีราชมงคล ครูในทุกระดับการศึกษา รวมทั้งผู้ที่สนใจทุกท่าน และจากการ ประชุมกลุ่มย่อยในครั้งนี้ทำให้แต่ละกลุ่มได้สมาชิกเพิ่มขึ้นอีกหลายท่านที่พร้อมจะช่วยกันทำงานด้านความ หลากหลายทางชีวภาพกันต่อไป

วันที่ 11 ตุลาคม 2545 วันสุดท้ายของกิจกรรมทางวิชาการ ได้เน้นประเด็นไปที่การวิจัยท้องถิ่นหรือ วิทยาศาสตร์ท้องถิ่น ด้วยการบรรยายพิเศษจากคุณพิศิษฐ์ ชาญเสนาะ จากสมาคมหยาดฝน ผู้ที่ทำงานกับชุมชน ชาวประมงและผลักดันให้ชุมชนทำงานวิจัยด้วยตัวเองเพื่อให้เข้าใจถึงปัญหาที่เกิดขึ้นและสามารถร่วมมือกันแก้ไข ปัญหาภายในชุมชนท้องถิ่นของตนเอง โดยมีภาครัฐคอยแนะนำหรือให้การสนับสนุนข้อมูลทางวิชาการ นอกจากนี้ยัง ได้ยกตัวอย่างการพัฒนาของภาครัฐที่ส่งผลกระทบต่อระบบนิเวศและการทำมาหากินของชาวบ้าน เช่น การขุดคลอง ชลประทาน การสร้างเขื่อน ถนนต่างๆ เป็นต้น เพราะฉะนั้นภาครัฐจึงควรศึกษาวิจัยโดยให้ชาวบ้านซึ่งเป็นทั้งผู้ได้และ ผู้เสียประโยชน์เข้ามามีส่วนร่วมในการตัดสินใจในโครงการพัฒนาต่างๆ ด้วย หลังจากนั้นจึงตามด้วยการอภิปรายใน หัวข้อ "การฟื้นฟูความหลากหลายทางชีวภาพ : ยุทธศาสตร์ใหม่ของการฟื้นฟูชาติ" โดยมีตัวแทนจากชาวบ้านอย่าง พ่อหลวงจอนิ โอ่โดเซา คุณมิยะ หะหวา และคุณมาร์ติน วีลเลอร์ มาร่วมเสวนา โดยมี อจ.โสหส ศิริไสย์ เป็น ผู้ดำเนินการ แต่ละท่านได้พูดถึงการทำงานวิจัยของชาวบ้านและกระบวนการต่างๆ ที่ชาวบ้านได้ร่วมมือกันทำขึ้นมา เพื่อแก้ปัญหาและเป็นการอนุรักษ์ทรัพยากรธรรมชาติในท้องถิ่นของตนเองอย่างได้ผลเป็นที่น่าพอใจเ พราะใช้เงิน ลงทุนต่ำแต่สามารถอนุรักษ์ทรัพยากรธรรมชาติในท้องถิ่นได้อย่างยั่งยืน ทั้งนี้เป็นเพราะชาวบ้านเข้าใจและเห็น ความสำคัญของทรัพยากรท้องถิ่น เห็นความสัมพันธ์ที่เชื่อมโยงกันภายในระบบนิเวศ และมีการแลกเปลี่ยนความ คิดเห็นและร่วมมือกันทำอย่างจริงๆ จังๆ ส่วนการจะทำให้ความหลากหลายทางชีวภาพของไทยกลับคืนมาสู่สภาพ เดิมให้ได้มากที่สุดนั้นก็ขึ้นอยู่กับการศึกษา การปลุกจิตสำนึกให้ลูกหลานของเรารักและภูมิใจในท้องถิ่นและประเทศ ไทย บนฐานของการดำเนินวิถีชีวิตด้วยเศรษฐกิจแบบพอเพียงตามพระราชดำรัสของพระบาทสมเด็จพระเจ้าอยู่หัว

จากนั้นจึงเป็นการสรุปผลการประชุมกลุ่มย่อย โดยตัวแทนแต่ละกลุ่มจะขึ้นมารายงานผลสรุปจากม[ิ]ติในที่ ประชุมกลุ่มย่อยที่ได้ประชุมกันไป ซึ่งนอกจากมีการการนำเสนอผลงานวิจัยภายในกลุ่มแล้วยังได้วางแผนการ ดำเนินงานในอนาคตร่วมกันทั้งในเรื่องของการหาแนวทางงานวิจัย การจัดทำฐานข้อมูลในด้านต่างๆ รวมถึงการจัดตั้ง เครือข่ายหรือชมรม เช่น กลุ่มสัตว์จะตั้งเป็นชมรมนักสัตววิทยา กลุ่มสาหร่ายและแพลงก์ตอนจะตั้งชมรมสาหร่ายและ แพลงก์ตอนแห่งประเทศไทย กลุ่มจุลินทรีย์ได้ตั้งชื่อชมรมว่าชมรมทรัพยากรจุลินทรีย์แห่งประเทศไทย ส่วนกลุ่มย่อย อื่นๆ ยังอยู่ระหว่างการตกลงเรื่องชื่อ นอกจากนี้แต่ละกลุ่มย่อยยังจะจัดประชุมเพื่อปรึกษาหารือร่วมกันเป็นระยะๆ ภายในปีนี้ด้วย

หลังจากเสร็จสิ้นการสรุปผลการประชุมกลุ่มย่อยแล้ว ศ.วิสุทธิ์ ใบไม้ ผู้อำนวยการโครงการ BRT ได้แจก รางวัลโปสเตอร์ดีเด่น และกล่าวบทสรุปที่น่าสนใจตอนหนึ่งว่า "...ผมเชื่อว่าครูจะเป็นรากฝอยที่สำคัญในการ เผยแพร่ความรู้ไปสู่เยาวชนซึ่งจะนำไปสู่การปลูกจิตสำนึกการอนุรักษ์ทรัพยากรธรรมชาติอย่างมีประสิทธิภาพ ใน ขณะเดียวกันก็จะเกิดเครือข่ายการวิจัยท้องถิ่นของประเทศไทยอย่างทั่วถึงอีกด้วย ซึ่งเป็นนโยบายหลักของ โครงการ BRT ที่อยากเห็นการวิจัยท้องถิ่นเกิดขึ้นเพื่อให้เรามีความรู้ทุกตารางนิ้วของประเทศไทย..." พร้อมกับ กล่าวขอบคุณผู้เข้าร่วมการประชุมทุกท่าน และฝากแนวคิดสามเหลี่ยมเขยื้อนภูเขาของ ศ.นพ. ประเวศ วะสี ที่จะใช้ เป็นกลยุทธิในการก่อตั้งองค์กรมหาชนด้านความหลากหลายทางชีวภาพที่มั่นคงและยั่งยืนได้ในอนาคต

7.10 สรุปผลการประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 5

8 - 11 ตุลาคม 2544

ห้องฟ้าหลวง โรงแรมนภาลัย จ.อุดรธานี

การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 5 จัดขึ้นในระหว่างวันที่ 8 – 11 ตุลาคม 2544 ที่ ห้องฟ้า หลวง โรงแรมนภาลัย จังหวัดอุดรธานี เพื่อนำเสนอผลงานวิจัยด้านความหลากหลายทางชีวภาพของโครงการ BRT ในระยะแรก (พ.ศ. 2539 - 2543) และประชาสัมพันธ์นโยบายและกรอบการดำเนินงานของโครงการในระยะที่ 2 ผู้เข้าร่วมการประชุมในปีนี้ประกอบด้วยกรรมการนโยบาย กรรมการบริหาร ครูแกนนำ นักวิชาการ นักวิจัย และนิสิต นักศึกษาจากสถาบันการวิจัยและสถาบันการศึกษาต่างๆ ตลอดจนองค์กรเอกชนและผู้สังเกตการณ์จากทั่วประเทศที่ รักและห่วงใยในทรัพยากรชีวภาพและภูมิปัญญาท้องถิ่นของชาติ รวมทั้งสิ้น 643 คน จากข้อมูลข้างต้นเป็นที่น่ายินดี อย่างยิ่งว่ามีผู้สนใจเข้าร่วมประชุมประจำปีกับโครงการ BRT ที่หลากหลายและจำนวนเพิ่มสูงขึ้นทุกปี ซึ่งแสดงให้เห็น ถึงความตื่นตัวอย่างต่อเนื่องของนักวิชาการและนิสิตนักศึกษาในการศึกษาวิจัยความหลากหลายทางชีวภาพใน ประเทศไทย

กิจกรรมการประชุมในครั้งนี้ยังคงมีความหลากหลายดังเช่นทุกปีที่ผ่านมา ประกอบด้วยการบรรยายพิเศษ และการอภิปราย/เสวนาทางวิชาการรวม 6 เรื่อง การจัดโปสเตอร์เสนอผลงานวิจัย/วิทยานิพนธ์จำนวน 115 เรื่อง การประชุมวิชาการกลุ่มย่อย 6 กลุ่ม และกิจกรรมสันทนาการต่างๆ เพื่อสร้างบรรยากาศความเป็นกัลยาณมิตร ระหว่างผู้เข้าร่วมประชุม นอกจากนั้น ผู้เข้าร่วมประชุมยังได้รับเอกสารทางวิชาการที่จัดทำโดยโครงการ BRT ในปี 2544 รวม 4 เรื่อง ได้แก่ รายงานประจำปีโครงการ BRT, รายงานการวิจัยในโครงการ BRT, หนังสือรวมบทคัดย่อของ โครงการ BRT และบันทึกการประชุมวิชาการประจำปีโครงการ BRT ปี 2543 สำหรับหนังสือเล่มสุดท้ายเป็นการ รวบรวมบทบรรยาย เสวนาและอภิปรายทางวิชาการ และข้อคิดเห็นข้อเสนอแนะต่างๆ จากการประชุมวิชาการ ประจำปีโครงการ BRT ครั้งที่ 4 ที่ จ.พิษณุโลก เพื่อบันทึกไว้เป็นประวัติศาสตร์สำหรับวงการวิจัยความหลากหลาย ทางชีวภาพในประเทศไทย โดยเฉพาะอย่างยิ่งเพื่อเป็นข้อเตือนใจสำหรับผู้เข้าร่วมประชุมทุกท่านในการร่วมแรงร่วม ใจกันทำงานอย่างต่อเนื่อง

การประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 5 เริ่มต้น โดย ฯพณฯ อำพล เสนาณรงค์ องคมนตรี ให้ เกียรติเป็นประธานในพิธีเปิดการประชุม ท่านได้เล่าถึงสภาพความหลากหลายทางชีวภาพและภูมิปัญญาท้องถิ่นใน ภาคอีสานจากเหตุการณ์จริงเมื่อ 40 – 50 ปีก่อน หลังจากนั้นเป็นการขับกลอนหมอลำ โดย ครูฉวีวรรณ พันธุ ศิลปิน แห่งชาติ งานนี้ไม่เสียชื่อศิลปินแห่งชาติจริงๆ เป็นการลำกลอนสดๆ ที่มีเนื้อหาสะท้อนถึงความร่ำรวยทรัพยากร ชีวภาพและภูมิปัญญาท้องถิ่นของคนไทยในอดีตที่กำลังถูกทำลายจากการพัฒนาอย่างไม่ยั่งยืน

"ทรัพย์ในดินสินในน้ำเรามีกันอยู่ดาษดื่น นับกันมาเป็นร้อยๆหรือว่าพันปี ได้สื่อสารกันมาเรื่อยได้นำมาถ่ายทอด การเกษตรกรรมนี้ก็ปลูกพืชธัญญาหาร ตลอดยาสมุนไพรมากมายหาได้ เฮาบ่ได้เดือดฮ้อนถือว่าได้อยู่สบาย เกิดสับสนทางสังคมเพราะเฮานำเอาแผนพัฒนา พร้อมยังได้ขยายงานทางด้านอุตสาหกรรมที่มีค่า เราจึงได้เดือดฮ้อนทุกมื้อนี้ดังที่เห็น...

น้ำมาใช้ได้ทุกเมื่อคงได้อยู่สบาย จนกลายมาเป็นเทคโนโลยีหมู่เฮาชาวบ้าน ภูมิปัญญาอันยอดเยี่ยมของแท้พ่อแม่เฮา การเลี้ยงสัตว์ การประมง และการหาอาหาร ล้วนแต่มีคุณค่าต่อสังคมชุมชนเก่า หลายสิบปีมานี้ถือว่าบ่ทันโดน แนวของตะวันตกได้ยกเอามาใช้ เพราะขาดความระมัดระวัง

กิจกรรมทางวิชาการในวันแรกเริ่มต้นด้วยการบรรยายพิเศษของ ศ.ประเวศ วะสี ประธานกรรมการนโยบาย โครงการ BRT เรื่อง "ธรรมะแห่งความหลากหลาย" ท่านได้ให้ข้อคิดว่า ความหลากหลายทำให้เกิดความงามและ ความยั่งยืน ดังนั้นการเข้าถึงความหลากหลายก็คือการเข้าถึงธรรมะ การปฏิบัติให้ถูกต้องตามกฎของความหลากหลาย จะทำให้เกิดดุลยภาพ ความเป็นปรกติ ความมีสุขภาพดี และความยั่งยืน แต่ในขณะนี้โลกกำลังเดินไปในทางตรงกัน ข้าม ให้ความสำคัญกับอำนาจและเงินตรา ซึ่งเป็นสาเหตุสำคัญในการทำลายความหลากหลายทางชีวภาพ

ถัดมาเป็นการบรรยายพิเศษในหัวข้อเรื่อง "ความหลากหลายทางวัฒนธรรมกับความหลากหลายทาง ชีวภาพ" โดย รศ. ศรีศักร วัลลิโภดม ที่ปรึกษามูลนิธิ ประไพ วิริยะพันธ์ เมืองโบราณ ท่านได้ชี้ให้เห็นว่า คนส่วนใหญ่ ยังไม่เข้าใจความหมายที่แท้จริงของคำว่า วัฒนธรรม หรือที่เข้าใจก็เข้าใจในเชิงแคบๆ ว่าวัฒนธรรม คือ การร้องรำทำ เพลง คือ ศิลปะวัตถุ แต่ที่จริงแล้ววัฒนธรรมมีความหมายกว้างและลึกซึ้งกว่านั้น เพราะวัฒนธรรม คือ วิถีชีวิตร่วมกัน ของกลุ่มชนในสิ่งแวดล้อมหนึ่งๆ ซึ่งสิ่งแวดล้อมแต่ละแห่งจะมีลักษณะเฉพาะไม่เหมือนกัน วัฒนธรรมของแต่ละที่จึง หลากหลายแตกต่างกันไป ตามมาด้วย Prof. F. William H. Beamish ผู้เชี่ยวชาญด้านนิเวศวิทยาจากประเทศ แคนาดาที่มาเป็นอาจารย์พิเศษที่มหาวิทยาลัยบูรพา บรรยายพิเศษเรื่อง "Systematics and Ecology" ท่านได้ ชี้แนะว่า การศึกษาความหลากหลายทางชีวภาพในประเทศไทยควรเชื่อมโยงองค์ความรู้ตั้งแต่ระดับชนิดพันธุ์ไปจนถึง ระดับนิเวศ เพื่อจะได้นำผลการวิจัยไปใช้ประโยชน์ในเชิงของการบริหารจัดการทรัพยากรชีวภาพและการอนุรักษ์ได้ อย่างเป็นรูปธรรม

ประเด็นอภิปรายที่ผู้เข้าร่วมประชุมให้ความสนใจเป็นพิเศษเนื่องจากมีความสำคัญต่อทั้งโครงการ BRT และ นักวิจัย คือ เรื่อง "นโยบายสนับสนุนงานวิจัยด้านความหลากหลายทางชีวภาพ" โดยผู้บริหารจากหน่วยงานที่ให้ ทุน ได้แก่ ศ. มรกต ตันติเจริญ ผู้อำนวยการศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ (ศช.) ศ. ปิยะวัติ บุญหลง ผู้อำนวยการสำนักงานกองทุนสนับสนุการวิจัย (สกว.) ผู้ดำเนินการอภิปราย คือ ดร.มาลี สุวรรณอัตถ์ ที่ปรึกษา ศูนย์ความหลากหลายทางชีวภาพ สรุปสาระสำคัญของการอภิปรายได้ว่า สิ่งที่ สกว. และ ศช.ต้องการเห็นต่อไปใน การดำเนินงานของโครงการ BRT ในระยะที่ 2 คือ การศึกษาวิจัยความหลากหลายทางชีวภาพอย่างมีทิศทางและเป็น ระบบ เน้นการนำผลงานวิจัยไปเชื่อมโยงหรือเป็นรากฐานสำหรับการใช้ประโยชน์ทั้งในเชิงของการอนุรักษ์ การนำ ความรู้กลับไปสู่ชุมชน การใช้ประโยชน์ในเชิงพาณิชย์ ปิดท้ายของการประชุมในวันแรกด้วยการเสวนาของ ศ.วิสุทธิ์ ใบไม้ เรื่อง "นโยบายและเป้าหมายของโครงการ BRT ระยะที่ 2" ที่ทำให้ผู้เข้าร่วมการประชุมเข้าใจในบทบาท ทิศทาง และโปรแกรมการสนับสนุนทุนของโครงการ BRT ได้ดียิ่งขึ้น

หลังจากที่ผู้เข้าร่วมประชุมได้รับฟังเรื่องราวเกี่ยวกับความหลากหลายทางชีวภาพในภาพกว้างแล้ว กิจกรรม การประชุมในวันที่สองจึงได้เน้นการบรรยาย เสวนา และอภิปรายทางวิชาการที่เจาะลึกให้ผู้เข้าประชุมเข้าใจถึง เป้าหมายหลักของการดำเนินงานของโครงการ BRT ในระยะที่ 2 โดยเริ่มต้นด้วยการอภิปรายเกี่ยวกับ "สถานภาพ การวิจัยความหลากหลายทางชีวภาพทางดินของประเทศไทย" โดย ผศ.เกษม กุลประดิษฐ์ ผศ.ชาลี นาวานุเคราะห์ Mr. Ian Grange จากมหาวิทยาลัยมหิดล ดร.ออมทรัพย์ นพอมรบดี จากกรมวิชาการเกษตร ผู้อภิปรายทั้งหมดเป็น ทีมงานที่ศึกษารวบรวมข้อมูลงานวิจัยความหลากหลายทางชีวภาพทั้งหมดทางด้านดินตั้งแต่ปีพ.ศ. 2518 ถึงปัจจุบัน ซึ่งให้ข้อคิดเห็นที่น่าสนใจว่า ถึงแม้ว่าประเทศไทยจะมีความอุดมสมบูรณ์ของดินที่เหมาะสมต่อการเกษตรกรรมและมี สิ่งมีชีวิตต่างๆ ที่มีคุณค่าอาศัยอยู่มากมาย แต่งานวิจัยด้านนี้กลับมีอยู่น้อยมาก และยังมีปัญหาอุปสรรคอยู่ที่วิธีการ ทำงานของนักวิจัยไทยส่วนใหญ่ที่ยังเป็นแบบแยกส่วน ซ้ำซ้อน และกระจุกตัว จึงทำให้ไม่สามารถพัฒนาให้เกิดองค์ ความรู้ที่สมบูรณ์ได้ จากนั้นเป็นรายการเสวนาทางด้านภูมิปัญญาท้องถิ่นที่น่าสนใจ เรื่อง "ประชาชนมองบทบาท นักวิทยาศาสตร์ต่อการจัดการความหลากหลายทางชีวภาพอย่างไร" โดย คุณพ่อเล็ก กุดวงศ์แก้ว ปราชญ์ชาวบ้าน นายวิทูรย์ เลี่ยนจำรูญ จากเครือข่ายสิทธิภูมิปัญญาไทย และ ดร.สรยุทธ รัตนพจนารถ จากมหาวิทยาลัยมหิดล เป็นผู้ ดำเนินรายการ ผู้ร่วมอภิปรายได้สะท้อนความต้องการและมุมมองของชาวบ้านที่มีต่อการวิจัยวิทยาศาสตร์ โดยเฉพาะ อย่างยิ่งความต้องการให้นักวิจัยเชื่อมโยงวิถีชีวิตของชาวบ้านกับงานวิจัยด้วย

จากนั้นเป็นการนำเสนอแนวความคิดของการวิจัยเชิงสหวิทยาการ (multi-discliplinary research) ใน พื้นที่เป้าหมาย (area-based) ที่คาดว่าจะเป็นยุทธศาสตร์หลักในการดำเนินงานของโครงการ BRT ในระยะที่ 2 โดย เริ่มต้นด้วยการบรรยายพิเศษของ ศ.สนิท อักษรแก้ว จากมหาวิทยาลัยเกษตรศาสตร์ เรื่อง "การศึกษาเชิงพื้นที่ (area-based) และกรณีศึกษา" ซึ่งสรุปความได้ว่า การศึกษาวิจัยในเชิงพื้นที่เริ่มเป็นที่ประยุกต์ใช้กันอย่าง กว้างขวางในหลายหน่วยงานและบรรจุอยู่ในแผนยุทธศาสตร์ของการพัฒนาของประเทศด้วย เนื่องจากสามารถ นำไปสู่การพัฒนาประเทศอย่างยั่งยืนได้ ตามมาด้วยการอภิปรายที่ถือได้ว่าเป็นจุดเด่นของการประชุมครั้งนี้ เรื่อง "การวิจัยเชิงสหวิทยาการ (multi-discliplinary research) ในชุดโครงการทองผาภูมิตะวันตก" ซึ่งเน้นการ นำเสนอกระบวนการพัฒนางานวิจัยด้านความหลากหลายทางชีวภาพโดยใช้อาณาบริเวณเชิงนิเวศหรือ ecoregion

โดยการเชื่อมโยงองค์ความรู้ในหลากหลายมิติให้เป็นองค์รวมภายใต้กระบวนการเรียนรู้ร่วมกันของทีมนักวิจัยและ ชุมชนท้องถิ่น ลักษณะของงานวิจัยอยู่ภายใต้กรอบที่เรียกว่า area-based research รูปแบบของการอภิปรายจึงได้ รวบรวมนักวิชาการจากหลากหลายสาขาวิชาการมาพูดคุยกันในประเด็นที่แตกต่างกันออกไปภายใต้จุดมุ่งหมาย เดียวกัน ได้แก่ เรื่อง "การจัดการระบบสิ่งมีชีวิตและนิเวศวิทยา" โดย รศ.สมศักดิ์ ปัญหา จากจุฬาลงกรณ์ มหาวิทยาลัย "เศรษฐกิจ สังคม และ ภูมิปัญญาท้องถิ่น" โดย รศ.อนุชาติ พวงสำลี และ อ.โสฬส ศิริไสย์ จาก มหาวิทยาลัยมหิดล และ "ทรัพยากรพันธุกรรมและการใช้ประโยชน์" โดย รศ.วันชัย ดีเอกนามกูล และ รศ.วรวุฒิ จุฬาลักษณานุกูล จากจุฬาลงกรณ์มหาวิทยาลัย ดำเนินรายการโดย รศ.สมโภชน์ ศรีโกสามาตร นักวิชาการที่คุ้นเคย กับแนวความคิดของการทำงานแบบสหวิทยาการเป็นอย่างดี

ในช่วงเย็นของการประชุมในวันที่สอง ผู้เข้าร่วมประชุมยังได้ร่วมกันทำกิจกรรมทางวิชาการในบรรยากาศ แบบเป็นกันเองอีก 3 เรื่อง ได้แก่ การประชุมระหว่างนักศึกษาที่ได้รับทุนจากโครงการ BRT, สานสัมพันธ์ชมรม สาหร่ายและแพลงก์ตอน และการประชุม "สวนไม้หอม" แต่เป็นที่น่าเสียดายที่เกิดอุปสรรคไฟฟ้าดับทั้งโรงแรม แม้ กระนั้นก็ตามผู้เข้าร่วมประชุมยังไม่ย่อท้อต่อปัญหา ได้จุดเทียนและระดมความคิดกันภายใต้แสงเทียน ซึ่งเป็น บรรยากาศที่น่าประทับใจเป็นอย่างยิ่ง

การประชุมในวันสุดท้ายเป็นเป็นการระดมความคิดเห็นเพื่อพัฒนางานวิจัยด้านความหลากหลายทางชีวภาพ ตามความสนใจของผู้เข้าร่วมประชุมเป็น 6 กลุ่มย่อย ได้แก่ กลุ่มจุลินทรีย์และไลเคน กลุ่มสาหร่ายและแพลงก์ตอน กลุ่มพืชและภูมิปัญญาท้องถิ่น กลุ่มสัตว์และนิเวศวิทยา กลุ่มทรัพยากรพันธุกรรมและการใช้ประโยชน์ และกลุ่ม การอนุรักษ์และจัดการทรัพยากรชีวภาพ ในแต่ละกลุ่มได้มีข้อคิดเห็นและข้อเสนอแนะที่หลากหลายแตกต่างกันไป โดยมีข้อสังเกตที่น่าสนใจคือ แต่ละกลุ่มพยายามจะสร้างเครือข่ายหรือชมรมนักวิจัยเพื่อร่วมแรงร่วมใจกันทำกิจกรรม ตามที่เสนอแนะไว้ในที่ประชุมๆ

ในช่วงท้ายของการประชุมเป็นการแจกรางวัลโปสเตอร์ดีเด่น และ ศ.ดร.วิสุทธิ์ ใบไม้ ผู้อำนวยการโครงการ BRT ได้มาสรุปภาพรวมของการประชุมที่ผ่านมาตั้งแต่วันแรก พร้อมกับได้ให้แนวความคิดแก่ผู้เข้าร่วมประชุมทุกท่าน ว่า ความเจริญก้าวหน้าของงานวิจัยด้านความหลากหลายทางชีวภาพในประเทศไทยคงไม่ได้อยู่ที่โครงการ BRT แต่จะขึ้นอยู่กับการร่วมแรงร่วมใจ ความมุ่งมั่น และการเสียสละของทุกท่านในที่ประชุมแห่งนี้

การประชุมจบลงด้วยความสำเร็จและความประทับใจ พร้อมกับข้อคิดเห็นและข้อเสนอแนะต่างๆ ที่ทุกๆ ฝ่ายจะต้องช่วยกันนำไปปฏิบัติเพื่อความฝันของทุกคนจะได้กลายเป็นความจริง ผลงานและความสำเร็จต่างๆ ของ โครงการ BRT คงจะไม่เกิดขึ้นหากไม่มีท่านคณะกรรมการนโยบาย คณะกรรมการบริหาร และผู้บริหารจากแหล่งทุนที่ ได้ให้ข้อคิดเห็นและข้อเสนอแนะที่เป็นประโยชน์ต่อการประชุม ผู้บรรยายทางวิชาการและผู้ประสานการประชุมทุก ท่านที่ได้สละเวลาอันมีค่ามาให้ความคิดและวิสัยทัศน์ในเชิงสร้างสรรค์แก่ผู้เข้าร่วมประชุม และที่ขาดเสียมิได้คือ ผู้บริหารและเจ้าหน้าที่ของสถาบันราชภัฏอุดรธานีที่ให้การสนับสนุนบุคลากร อุปกรณ์ และช่วยบริหารจัดการประชุม อย่างไม่เหน็ดเหนื่อย นอกจากนี้ ต้องขอขอบคุณผู้เข้าร่วมประชุมทุกท่านที่ได้ให้ความสนใจในกิจกรรมของโครงการ BRT มาด้วยดีเสมอมา พลังความคิดและแรงกายแรงใจของท่านที่มุ่งมั่นจะนำพาการวิจัยความหลากหลายทางชีวภาพ ในประเทศไทยไปสู่ความความงดงามและความยั่งยืน ตามที่ ศ.ประเวศ วะสี ได้บรรยายฝากไว้ในตอนต้น

7.11 นิทรรศการ "ความหลากหลายทางชีวภาพ ขุมทรัพย์ในท้องถิ่นไทย"

หน่วยงานรับผิดชอบ : โครงการ BRT ร่วมกับ บริษัท ปตท. จำกัด (มหาชน)

ระยะเวลา / สถานที่ : วันที่ 22-26 พฤศจิกายน 2553 ณ ปตท.สำนักงานใหญ่ และอาคารเอเนอ

ยี่ คอมเพล็กซ์

วัตถุประสงค์ : เผยแพร่องค์ความรู้ด้านความหลากหลายทางชีวภาพ ซึ่งโครงการ BRT ได้

ดำเนินการวิจัยร่วมกับ ปตท. ในหลายพื้นที่มาเป็นเวลาเกือบ 10 ปี และเพื่อร่วม

ฉลองปีสากลแห่งความหลากหลายทางชีวภาพ

ข้อมูลที่นำไปจัดแสดง :

- องค์ความรู้จากการศึกษาในพื้นที่ area-based 3 แห่ง ได้แก่ ทองผาภูมิตะวันตก ป่าเมฆ-เขานั้น และ ท้องทะเลขนอม โดยการจำลองพื้นที่ศึกษาให้ผู้เข้าชมนิทรรศการสามารถสัมผัสถึงความอัศจรรย์ของ สิ่งมีชีวิตและระบบนิเวศเหล่านี้
- สื่อเผยแพร่ที่นักวิจัยโครงการ BRT ได้จัดทำขึ้น ได้แก่ โมเดลสายพันธุ์ปูทะเล แอนนิเมชั่นการ แพร่กระจายของเมล็ดพืช แอนนิเมชั่นสาหร่ายทะเลลดโลกร้อน สารคดีฉันอยู่นี่ศัตรูที่รัก และหนังสือ Pop-up วิวัฒนาการพืช
- สัมมนาวิชาการความหลากหลายทางชีวภาพ ขุมทรัพย์ในท้องถิ่นไทย มีการบรรยาย ถ่ายทอด ประสบการณ์การทำวิจัย และองค์ความรู้ที่ได้จากการทำวิจัยในพื้นที่จากนักวิจัยที่มีส่วนร่วมทำงานวิจัย ได้พื้นที่

จำนวนผู้เข้าชม : 10,000 คน ได้แก่ ประชาชนทั่วไป ชุมชนที่ดำเนินการด้านการอนุรักษ์ นักเรียน นักศึกษา เด็ก และเยาวชน

7.12 นิทรรศการ ฟื้นฟูป่าเขตร้อน เนื่องในงานประชุมวิชาการประจำปี สวทช. NAC2011

หน่วยงานรับผิดชอบ : สวทช. งานประชุมประจำปี สวทช. (NEC 2011)

ระยะเวลา / สถานที่ : วันที่ 23-25 มีนาคม 2554 ณ อุทยานวิทยาศาสตร์ประเทศไทย

วัตถุประสงค์ : เผยแพร่งานวิจัยการฟื้นฟูป่าเขตร้อน ของหน่วยวิจัยการฟื้นฟูป่า (Forest Restoration Research Unit – FORRU) ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ ร่วมกับ โปรแกรมทรัพยากรชีวภาพ นำเสนอรูปแบบการฟื้นฟูระบบนิเวศป่าเขตร้อน เพื่อการอนุรักษ์ความหลากหลายทาง ชีวภาพ โดยพรรณไม้โครงสร้าง ซึ่งเป็นพรรณไม้ที่พบในท้องถิ่น

ข้อมูลที่นำไปจัดแสดง :

เทคนิคการฟื้นฟูป่า โดยใช้ปลูกต้นไม้ท้องถิ่นเพียง 20 ชนิด ในเวลา 2 ปี สามารถคืนความหลากหลายทาง ชีวภาพ ดึงดูดนกให้เข้ามาอาศัยและช่วยกระจายเมล็ดพันธุ์ได้ นอกจากนี้ยังมีตัวอย่างของวิธีการเร่งการงอกของเมล็ด, ลักษณะของเมล็ดพันธุ์ชนิดต่างๆ ตัวอย่างกล้าไม้ที่ใช้ในการฟื้นฟูป่า เช่น นางพญาเสือโคร่ง มะค่าโมง หมอนหิน มะเกลือ มะกอกห้ารู และอบเชย เป็นต้น

7.13 นิทรรศการ เทิดพระเกียรติสมเด็จพระนางเจ้าสิริกิติ์ พระบรมราชินีนาถพระมารดาแห่งการคุ้มครอง ความหลากหลายทางชีวภาพ

หน่วยงานรับผิดชอบ : สำนักงานนโยบายและ

แผนทรัพยากรธรรมชาติและสิ่งแวดล้อม

ระยะเวลา / สถานที่ : วัน ที่ วัน ที่ 6 -8

พฤษภาคม 2554 ณ อาคารจามจุรีสแควร์

วัตถุประสงค์ : เผยแพร่ผลการ

ดำเนินงานด้านความหลากหลายทางชีวภาพ

ข้อมูลที่นำไปจัดแสดง :

ราทำลายแมลงที่เจริญอยู่บนแมลงชนิดต่างๆ เช่น
 จักจั่น มวน ผีเสื้อกลางคืน และมด ซึ่งน้องๆ ที่ได้

เข้ามาชมนิทรรศการได้รับทราบข้อมูลเกี่ยวกับชีววิทยาของราแมลง และประโยชน์จากราแมลง นอกจากนี้ ในส่วนของนิทรรศการไรฝุ่น ผู้เข้าชมต่างได้รับความรู้เกี่ยวกับการป้องกันไรฝุ่นด้วยวิธีที่สามารถทำได้เอง และผลิตภัณฑ์สเปรย์สมุนไพรกำจัดไรฝุ่น ซึ่งเป็นผลผลิตจากงานวิจัยความหลากหลายทางชีวภาพของ ประเทศไทย

7.14 นิทรรศการสัปดาห์วิทยาศาสตร์ ณ ศูนย์วิทยาศาสตร์เพื่อการศึกษารังสิต

หน่วยงานรับผิดชอบ : ศูนย์วิทยาศาสตร์เพื่อการศึกษารังสิต

ระยะเวลา / สถานที่ : วั้นที่ 2-7 สิงหาคม 2554 ณ ศูนย์วิทยาศาสตร์เพื่อการศึกษารังสิต วัตถุประสงค์ : เผยแพร่องค์ความรู้วิทยาศาสตร์ ด้านความหลากหลายทางชีวภาพ

ข้อมูลที่นำไปจัดแสดง :

- 1. องค์ความรู้เกี่ยวกับการกระจายเมล็ดพันธุ์ของพืชชนิดต่างๆ โดยนำเสนอผ่านชุดนิทรรศการ Seed dispersal in Climate Change
- 2. องค์ความรู้เกี่ยวกับสาหร่ายลดโลกร้อน ผ่านชุดนิทรรศการสาหร่ายใบมะกรูด ลดโลกร้อน
- 3. องค์ความรู้เกี่ยวกับระบบนิเวศวิทยาสัตว์ป่า โดยนำเสนอผ่านสารคดีชุด "ฉันอยู่นี่ศัตรูที่รัก" และ "ไทร โต้รุ่ง ความสัมพันธ์ 24 ชั่วโมง"

7.15 นิทรรศการสัปดาห์วิทยาศาสตร์ ณ โรงเรียนอัสสัมชัญศรีราชา

หน่วยงานรับผิดชอบ : โรงเรียนอัสสัมชัญศรีราชา

ระยะเวลา / สถานที่ : วันที่ 21 - 22 สิงหาคม 2554 ณ โรงเรียนอัสสัมชัญศรีราชา

วัตถุประสงค์ : เผยแพร่องค์ความรู้วิทยาศาสตร์ ด้านความหลากหลายทางชีวภาพ เนื่องในงาน สัปดาห์วิทยาศาสตร์ ประจำปี 2554

ข้อมูลที่นำไปจัดแสดง :ชุดนิทรรศการและสารคดีเกี่ยวกับระบบนิเวศสัตว์ป่า 2 เรื่อง คือ "ฉันอยู่นี่ศัตรูที่รัก" และ "ไทรโต้รุ่ง ความสัมพันธ์ 24 ชั่วโมง"

7.16 นิทรรศการทรัพยากรชีวภาพและภูมิปัญญาท้องถิ่น

หน่วยงานรับผิดชอบ : สำนักงานพัฒนาเศรษฐกิจจากฐานชีวภาพ (สพภ.)

ระยะเวลา / สถานที่ : วันที่ 2-3 กันยายน 2554 ณ ศูนย์ราชการเฉลิมพระเกียรติ 80 พรรษา 5

ธันวาคม 2550

วัตถุประสงค์ : เผยแพร่ผลงานวิจัยด้านความหลากหลายทางชีวภาพ ที่ช่วยในการพัฒนา

เศรษฐกิจจากฐานชีวภาพ

ข้อมูลที่นำไปจัดแสดง : การแพร่กระจายของเมล็ดพันธุ์พืชชนิดต่างๆ, ความหลากหลายของราทำลายแมลงใน ประเทศไทย, การพัฒนาการเลี้ยงไส้เดือนดิน และผลิตภัณฑ์ทางการเกษตรหลายชนิด เช่น แมคคาเดเมีย เป็นต้น

7.17 นิทรรศการ "สิ่งมีชีวิตชนิดใหม่ของโลก" แสดง ที่สวนสัตว์เปิดเขาเขียว

โครงการ BRT นำสิ่งมีชีวิตสิ่งมีชีวิตชนิดใหม่ของโลก ที่ ค้นพบโดยนักวิจัยโครงการ BRT ไปจัดแสดงในงานความ หลากหลายทางชีวภาพคือชีวิต คือชีวิตของเราทุกคน ซึ่งจัดโดย สำนักงานนโยบายและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อม ณ สวนสัตว์เปิดเขาเขียว เมื่อวันที่ 9-10 กรกฎาคม 2553 ที่ผ่าน มา

การจัดแสดงตัวอย่างสิ่งมีชีวิตชนิดใหม่ของโลกที่ค้นพบ

โดยนักวิจัยของโครงการ BRT เช่น กิ้งก่าหัวยาวเขานั้น มหาพรหมราชินี หอยลายตอง และหอยทากจิ๋วบีอาร์ที ซึ่งเป็น การแสดงความหลากหลายทางชีวภาพที่ยังมีการค้นพบอย่างต่อเนื่องในประเทศไทย นอกจากนี้ยังได้นำเสนอข้อมูล เรื่องวิวัฒนาการของพืช ผ่านหนังสือป๊อบอัพขนาดยักษ์ ผลงานการประดิษฐ์ของคณาจารย์ภาควิชาพฤกศาสตร์ คณะ วิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย และเยาวชนที่เข้าร่วมงานยังตื่นตะลึงกับ กิ้งกือยักษ์ โรงงานผลิตปุ๋ยเคลื่อนที่ และได้รับรู้ถึงประโยชน์ของกิ้งกือ ซึ่งข้อมูลเหล่านี้จะช่วยสร้างความเข้าใจที่ถูกต้องเกี่ยวกับกิ้งกือได้

7.18 ไขความลับว่านจักจั่น-เถาวัลย์หลง ใน นิทรรศการ "เห็ด-ราผู้ย่อยสลาย"

เมื่อวันที่ 21-22 กรกฎาคม 2553 โครงการ BRT ได้นำ ผลงานที่เกี่ยวกับเห็ด และราผู้ย่อยสลายในระบบนิเวศ ไปจัด แสดงภายในนิทรรศการความหลากหลายทางชีวภาพกู้วิกฤตชีวิต โลก เนื่องในงานประชุมวิชาการกระทรวงทรัพยากรธรรมชาติและ สิ่งแวดล้อมครั้งที่ 3 จัดโดยกระทรวงทรัพยากรธรรมชาติและ สิ่งแวดล้อม ณ อิมแพ็ค เมืองทองธานี

ชุดนิทรรศการว่านจักจั่น และราแมลง ได้ถูกนำไป เผยแพร่เพื่อสร้างความเข้าใจเกี่ยวกับว่านจักจั่น และเชื้อรา ทำลายแมลง ที่มีความหลากหลายทางชีวภาพสูง แต่มีน้อยคนนัก

ที่จะรู้จักเชื้อรากลุ่มนี้ นิทรรศการในครั้งนี้ได้นำตัวอย่างของราแมลงที่เจริญอยู่บนแมลงชนิดต่างๆ ไปจัดแสดง ร่วมกับ โมเดลราแมลงขยายส่วนที่เผยให้เห็นลักษณะโครงสร้างของสปอร์รา และเส้นใยที่เชื้อราสร้างขึ้นมาปกคลุมตัวแมลง อีกทั้งยังมีโมเดลจำลองระบบนิเวศที่สามารถพบราแมลง และว่านจักจั่นได้ นอกจากนี้ ยังได้นำผลงานการ์ตูนเรื่อง "ศึกวันศาสตร์ชัย" ซึ่งเป็นการ์ตูนที่จัดทำโดยพิพิธภัณฑ์เห็ด ศูนย์พันธุวิศวกรรมและเทคโนโลยีชีวภาพแห่งชาติ ซึ่ง เป็นการไขความลับเครื่องรางของขลัง ทั้ง "ว่านจักจั่น" และ "เถาวัลย์หลง" ซึ่งเป็นชิ้นส่วนจากเชื้อราแมลง และเห็ด บางชนิดเท่านั้น

7.19 ประกาศความยิ่งใหญ่ของความหลากหลายทางชีวภาพไทยในนิทรรศการ "เปิดโลกสิ่งมีชีวิต"

โครงการ BRT ประกาศความยิ่งใหญ่ของความหลากหลายทางชีวภาพไทย โดยการนำเสนอแง่มุมความ หลากหลายของสิ่งมีชีวิต ทั้งพืช สัตว์ และจุลินทรีย์ ในนิทรรศการ "เปิดโลกสิ่งมีชีวิต" ซึ่งเป็นส่วนหนึ่งในงานสัปดาห์ วิทยาศาสตร์แห่งประเทศไทย ประจำปี 2553 ณ วิทยาศาสตร์เพื่อการศึกษารังสิต กระทรวงศึกษาธิการ ระหว่างวันที่ 3-7 สิงหาคม 2553

โครงการ BRT ได้ทำความร่วมมือทางด้านวิชาการกับศูนย์วิทยาศาสตร์เพื่อการศึกษารังสิต ในการเผยแพร่ ความรู้เกี่ยวกับสิ่งมีชีวิตและความหลากหลายทางชีวภาพให้แก่เด็กและเยาวชน โดยได้รวบรวมผลงานสิ่งประดิษฐ์และ ชุดนิทรรศการของโครงการ BRT ไปจัดแสดงเป็นห้องนิทรรศการเฉพาะที่เกี่ยวกับสิ่งมีชีวิตและระบบนิเวศ โดย ประกอบด้วย ส่วนนิทรรศการจุลินทรีย์ จัดแสดงโมเดลแบคทีเรีย ยีสต์ และเชื้อราที่มีประโยชน์กับมนุษย์ รวมไปถึง ชุดนิทรรศการเชื้อราและความเชื่อ ส่วนนิทรรศการพืช โดยนำเสนอเรื่องราวของพืชตั้งแต่พืชไม่มีท่อทำเลียง ไปจนถึง พืชดอก การปรับตัวของพืชกินแมลง การวิวัฒนาการร่วมกันของพืชกับสัตว์ และพืชที่อาศัยอยู่ในทะเล ได้แก่ หญ้า ทะเล และสาหร่ายทะเล ส่วนนิทรรศการสัตว์ จัดแสดงความหลากหลายของแมลง สัตว์ที่มีความหลากหลายสูงมาก และความหลากหลายของหอยทากบก สิ่งประดิษฐ์กุ้งเดินขบวน และสิ่งประดิษฐ์ภาษาการสื่อสารของผึ้ง และส่วน สิ่งมีชีวิตชนิดใหม่ เป็นการให้ความรู้เกี่ยวกับกระบวนการเกิดสิ่งมีชีวิตชนิดใหม่ และตัวอย่างการเกิดสิ่งมีชีวิตชนิดใหม่องประเทศไทย ได้แก่ หอยมรกต และตัวอย่างสิ่งมีชีวิตชนิดใหม่ของโลกอื่นๆ ที่ค้นพบโดยนักวิจัยโครงการ BRT

ส่วนนิทรรศการพืช

ส่วนนิทรรศการสัตว์

ส่วนนิทรรศการจุลินทรีย์

7.20 ไส้เดือนน้ำ ไส้เดือนยักษ์ ปรากฏตัวใน มหกรรมวิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย

วันที่ 8-22 สิงหาคม 2553 โครงการ BRT ได้นำตัวอย่าง ไส้เดือนน้ำ และไส้เดือนยักษ์ ไปจัดแสดงภายในงานมหกรรม วิทยาศาสตร์และเทคโนโลยีแห่งประเทศไทย ประจำปี 2553 โดย กระทรวงวิทยาศาสตร์และเทคโนโลยี ณ ไบเทค บางนา

ใส้เดือนเป็นสัตว์อีกชนิดหนึ่งที่มีความหลากหลายทางชีวภาพ สูง หลายชนิดมีขนาดและรูปร่างหน้าตาแตกต่างไปจากไส้เดือนที่เห็น โดยทั่วไป ศ.ดร.สมศักดิ์ ปัญหา ภาควิชาชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัยได้นำเรื่องราวความหลากหลายทางชีวภาพ

ไส้เดือนมาจัดแสดงในส่วนนิทรรศการเทคโนโลยีเพื่อการเษตร โดยสำนักงานพัฒนาเทคโนโลยีและวิทยาศาสตร์ แห่งชาติ ซึ่งตัวอย่างของไส้เดือนน้ำ ซึ่งเป็นไส้เดือนที่มีส่วนยื่นออกมาคล้ายปีก และไส้เดือนยักษ์แม่น้ำโขงที่มีความ ยาวเกือบ 2 เมตรได้รับความสนใจจากผู้เข้าชมงานเป็นอย่างยิ่ง นอกจากนี้ยังมีข้อมูลเกี่ยวกับชนิดของไส้เดือนอื่นๆ และประโยชน์ด้านการเกษตร และเศรษฐกิจจากไส้เดือนอีกด้วย

7.21 นิทรรศการ "สาหร่ายทะเลลดโลกร้อน"

ชุดนิทรรศการสาหร่ายทะเลลดโลกร้อน ได้ไปจัดแสดงใน งานสัปดาห์วิทยาศาสตร์ ประจำปี 2553 ณ มหาวิทยาลัยเทคโนโลยี ราชมงคลสุวรรณภูมิ ศูนย์หันตรา จังหวัดพระนครศรีอยุธยา วันที่ 11 สิ่งหาคม 2553

ประเด็นเรื่องภาวะโลกร้อน และความหลากหลายทาง ชีวภาพยังอยู่ในความสนใจของสังคม โครงการ BRT จึงได้มีโอกาส นำชุดนิทรรศการสาหร่ายลดโลกร้อน และทรัพยากรชีวภาพทาง ทะเลไปเผยแพร่ในงานสัปดาห์วิทยาศาสตร์ ซึ่งจัดโดยคณะ

วิทยาศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ โดยภายในงานมีนักเรียนและนักศึกษาเข้าชมเป็นจำนวน มาก จึงนับเป็นการเปิดโลกการเรียนรู้ทรัพยากรทางทะเลให้กับเยาวชนได้รับรู้ ทั้งด้านทรัยพากรชีวภาพที่มี ความสามารถในการช่วยลดโลกร้อน นั่นคือ สาหร่ายใบมะกรูด และระบบนิเวศหญ้าทะเล ซึ่งเป็นแหล่งอาหารและ แหล่งอาศัยที่สำคัญของสัตว์น้ำหลายชนิด นับเป็นความรู้ใหม่ที่นักเรียน นักศึกษาที่เข้าชมงานได้เรียนรู้

7.22 อลังการความหลากหลายทางชีวภาพทางทะเล ในนิทรรศการ "ความหลากหลายทางชีวภาพใน พื้นที่ อ.ขนอม จ.นครศรีธรรมราช"

โครงการ BRT ร่วมกับบริษัท ปตท. จำกัด (มหาชน) เดินทางไกลไปจัดนิทรรศการถึงพื้นที่ อ.ขนอม จ. นครศรีธรรมราช เพื่อแสดงผลงานวิจัยความหลากหลายทางชีวภาพในพื้นที่ อ.ขนอม จ.นครศรีธรรม เมื่อวันที่ 17-18 สิงหาคม 2553 ที่ผ่านมา

เนื่องในพิธีเปิดโครงการวางแนวปะการังเที่ยมเฉลิมพระเกียรติฯ ประจำปี 2553 โดย บริษัท ปตท. จำกัด (มหาชน) ณ อำเภอขนอม จังหวัดนครศรีธรรมราช โครงการ BRT พร้อมกับ บริษัท ปตท. จำกัด (มหาชน) ได้นำเสนอ นิทรรศการทรัพยากรชีวภาพใต้ทะเลขนอม-หมู่เกาะทะเลใต้ และชุดตู้ระบบนิเวศหญ้าทะเล และโมเดลสาหร่ายใบ มะกรูดลดโลกร้อน ไปจัดแสดงภายในงานดังกล่าว เพื่อให้ชาวชุมชนท้องเนียน อำเภอขนอมได้รู้จักทรัพยากรชีวภาพที่ มีอยู่ในพื้นที่ของตน เป็นการช่วยกระตุ้นให้เกิดความตระหนักถึงคุณค่าของทรัพยากรที่มีอยู่

7.23 นิทรรศการ "เปิดโลกพรรณไม้และหมู่แมลง"

เด็กๆ ให้ความสนใจหนังสือป็อปอัพวิวัฒนาการพืช ตัวอย่างพืชยุคดึกดำบรรพ์ และตัวอย่างแมลงนับร้อย ชนิด ซึ่งโครงการ BRT ได้นำไปจัดในสัปดาห์วิทยาศาสตร์ ประจำปี 2553 ณ ศูนย์วิทยาศาสตร์เพื่อการศึกษา (ท้องฟ้า จำลอง)

เมื่อวันที่ 18-24 สิงหาคม 2553 ที่ผ่านมา โครงการ BRT ได้เข้าร่วมจัดนิทรรศการเนื่องในสัปดาห์ วิทยาศาสตร์ ประจำปี 2553 ณ ศูนย์วิทยาศาสตร์เพื่อการศึกษา (ท้องฟ้าจำลอง) โดยได้นำสิ่งประดิษฐ์ หนังสือป็อบ อัพแสดงวิวัฒนาการของพรรณพืช พร้อมกับตัวอย่างพืชยุคดึกดำบรรพ์ ได้แก่ มอส หญ้าถอดปล้อง กนกนารี ตีนตุ๊กแก ช้องนางคลี่ เป็นต้น ไปจัดแสดงในงานดังกล่าว นอกจากนี้ยังได้จัดแสดงตัวอย่างความหลากหลายของแมลง ที่พบในประเทศไทย โดยเฉพาะแมลงกลุ่มหลักๆ ที่มักพบเห็นบ่อยๆ เช่น ผึ้ง ต่อ แตน ตั๊กแตน ด้วง มด ผีเสื้อกลางวัน แมลงปอ เป็นต้น

7.24 นิทรรศการ "สาหร่ายทะเลลดโลกร้อน และทรัพยากรชีวภาพทางทะเลขนอม - หมู่เกาะทะเลใต้"

เนื่องในงานประชุมประจำปีสำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ ปี 2553 หรือ NAC 2010 ในวันที่ 29-31 มีนาคม 2553 ภายใต้หัวข้อ "วิทยาศาสตร์และเทคโนโลยีเพื่อสังคมและโลก" โครงการ BRT ได้จัดทำ นิทรรศการ**สาหร่ายทะเลลดโลกร้อน และทรัพยากรชีวภาพทางทะเลขนอม – หมู่เกาะทะเลใต้** จากผลการศึกษา ภายใต้ชุดโครงการวิจัยเชิงพื้นที่ (area-based research) เรื่อง "ความหลากหลายทางชีวภาพทางทะเล : ขนอม-หมู่ เกาะทะเลใต้" โดยมีผู้เข้าชมงานกว่า 800 คน ซึ่งประกอบด้วย นักวิชาการ นักเรียน นักศึกษา และประชาชนทั่วไป

ในการนี้ สมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราชกุมารี ทรงเสด็จทอดพระเนตรนิทรรศการ อัน ประกอบด้วย โซนประโยชน์จากสาหร่ายทะเล สาหร่ายทะเลลดโลกร้อน หรือ สาหร่ายใบมะกรูด ที่มีศักยภาพในการ ดูดซับคาร์บอนไดออกไซด์จากน้ำทะเล และโซนนิทรรศการภาพถ่ายทรัพยากรชีวภาพทางทะเล ซึ่งเป็นภาพที่ถ่ายจาก ทะเลขนอม - หมู่เกาะทะเลใต้ ประกอบด้วยเกาะที่สำคัญ 5 เกาะ คือ เกาะแตน, เกาะราบ, เกาะวังนอก, เกาะวังใน และเกาะมัดสุ่ม ซึ่งอยู่ในเขตอำเภอขนอม จังหวัดนครศรีธรรมราช

7.25 ผลงานวิจัยหญ้าทะเลเผยแพร่ในงานวันสิ่งแวดล้อมโลก

เมื่อวันที่ 4-5 มิถุนายน 2553 ที่ผ่านมา โครงการ BRT ได้นำผลงานวิจัยระบบนิเวศหญ้าทะเลไปเผยแพร่ ผ่านตู้จำลองระบบนิเวศหญ้าทะเล ในกิจกรรมวันสิ่งแวดล้อมโลก ซึ่งจัดขึ้นโดยกรมส่งเสริมคุณภาพสิ่งแวดล้อม กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม ณ คอนเวนชั่นเซนเตอร์ อิมแพ็ค เมืองทองธานี

ตู้จำลองระบบนิเวศหญ้าทะเล ได้ใช้ฐานข้อมูลการวิจัยในระบบนิเวศหญ้าทะเล โดย นายปิยะลาภ ตันติ ประภาส และนายเอกลักษณ์ รัตนโชติ มหาวิทยาลัยสงขลานครินทร์ โดยได้แสดงตัวอย่างหญ้าทะเล 4 ชนิดที่พบใน ประเทศไทย ซึ่งโมเดลหญ้าทะเลนี้มีความละเอียดอ่อนและสามารถแสดงลักษณะของหญ้าทะเลในทุกๆ ส่วน ทั้งส่วน ของราก ลำต้น ใบ และดอก นอกจากนี้ ยังได้นำเสนอประโยชน์ต่างๆ ของระบบนิเวศหญ้าทะเล เช่น เป็นทั้งแหล่งที่ อยู่อาศัย และแหล่งหากินของสัตว์น้ำนานาชนิด รวมถึงพะยูน และเต่าทะเล ซึ่งเป็นสัตว์น้ำใกล้สูญพันธุ์ และยังมีส่วน ราก เหง้าของหญ้าทะเลที่ช่วยยึดหน้าดิน ป้องกันการกัดเซาะชายฝั่ง ซึ่งผู้ที่เข้าชมนิทรรศการครั้งนี้ต่างได้รับความรู้ เพิ่มเติมเกี่ยวกับระบบนิเวศหญ้าทะเล และประโยชน์ของหญ้าทะเลที่เป็นมากกว่าอาหารจานหลักของพะยูน ซึ่งจะ นำไปสู่การสร้างความตระหนักในการอนุรักษ์แหล่งหญ้าทะเลต่อไป

7.26 เฉลิมฉลอง 200 ปี ชาร์ลส์ ดาร์วิน นิทรรศการ เปิดโลกมหัศจรรย์แห่งวิวัฒนาการ

ปี ค.ศ.2009 เป็นปีครบรอบอายุ 200 ปี ชาร์ลส์ ดาร์วิน ผู้บุกเบิกวงการวิวัฒนาการชื่อก้องโลก และเป็นปี ครอบรอบ 150 ปี ทฤษฎีวิวัฒนาการ โครงการ BRT จึงร่วมกับ สวทช. เป็นส่วนหนึ่งในการเฉลิมฉลองให้กับชาร์ลส์ ดาร์วิน โดยการจัดนิทรรศการ "เปิดโลกมหัศจรรย์แห่งวิวัฒนาการ" ณ บ้านวิทยาศาสตร์สิรินทร อุทยานวิทยาศาสตร์ แห่งประเทศไทย ซึ่งได้นำเสนอชีวประวัติของชาร์ลส์ ดาร์วิน และเรื่องราวที่เกี่ยวกับทฤษฎีวิวัฒนาการผ่านสิ่งมีชีวิตที่ พบในประเทศไทย เปิดให้เข้าชมตั้งแต่วันที่13 มีนาคม 2552 ถึง มีนาคม 2553 ประกอบด้วยนิทรรศการย่อยจำนวน 15 ชุด ดังนี้

ชุดชีวประวัติ และการเดินทางของชาร์ลส์ ดาร์วิน

เป็นการนำเสนอเรื่องราวชีวิต และการทำงานของดาร์วิน จัดแสดงสื่อวีดิทัศน์ แสดงให้เห็นว่ากว่าที่จะค้นพบทฤษฎี วิวัฒนาการ ต้องผ่านการเดินทางรอบโลก รวบรวมตัวอย่างสิ่งมีชีวิตมากมายหลายชิ้น ใช้เวลาหลายสิบปีเพื่อ ตกตะกอนทางความคิดสู่ทฤษฎีวิวัฒนาการ

ชุดเด็กช่างสังเกต

ได้รวบรวมความแตกต่างของสิ่งมีชีวิตในแต่ละชุดนิทรรศการมาตั้งคำถาม เพื่อกระตุ้นความสนใจ พฤติกรรมช่าง สังเกต และให้เยาวชนที่เข้าชมได้ร่วมกันหาคำตอบจากชุดนิทรรศการทั้งหมดที่จัดแสดงภายในนิทรรศการ เช่น ให้ สังเกตผีเสื้อที่เกาะอยู่บนต้นไม้ว่ามีความแตกต่างกันอย่างไร เป็นต้น

ชุดความแปรผัน (Variation) ของหอยทากบก

ได้เปิดเผยเรื่องราวของหอยทากบกสกุล*แอมฟิโดรมัส (Amphidromus*) ที่มีความแตกต่างแปรผันของเปลือกและสี ของเปลือก ตัวอย่างเปลือกหอยที่นำมาจัดแสดง ทำให้เห็นถึงลวดลายและสีสันที่แตกต่างกันของหอยชนิดนี้ใน ธรรมชาติ รวมทั้งการจำลองลักษณะที่อยู่อาศัยของหอยทากบก ทำให้ทราบว่าหอยทากสกุลนี้มีที่อยู่อาศัยที่จำเพาะ เจาะจงบนต้นไม้เท่านั้น

ชุดความแปรผัน (Variation) ของนมพิจิตร

นมพิจิตร หรือ Hoya parasitica complex มีความแปรผันของลักษณะใบ และลักษณะดอก แม้จะเป็นพืชชนิด เดียวกัน ได้มีการนำเสนอตัวอย่างของใบ และดอกที่เก็บจากทั่วทุกภาคของประเทศไทย

ชุดการปรับตัว (Adaptation) ของสิ่งมีชีวิต

นำเสนอการปรับตัวของพืชกินแมลง เช่น หม้อข้าวหม้อแกงลิง กาบหอยแครง หยาดน้ำค้าง และสาหร่ายข้าวเหนียว เป็นต้น โดยตัวอย่างจัดแสดงมีทั้งโมเดลหม้อข้าวหม้อแกงลิงชนิดต่างๆ โปสเตอร์อธิบายกลไกการจับแมลงซึ่งถือเป็น การปรับตัวอันชาญฉลาดของพืช นอกจากนี้ยังมีโมเดลแสดงกลไกการจับแมลงของกาบหอยแครง ที่สามารถขยับงับ แมลงได้จริง

ชุดการปรับตัวจากน้ำสู่บก

นำเสนอความรู้เกี่ยวกับวิวัฒนาการของสัตว์มีกระดูกสันหลัง จากที่เคยอาศัยอยู่ในน้ำ และพัฒนาขึ้นมาสู่บกได้อย่างไร มีการปรับเปลี่ยนรูปแบบให้เข้ากับสภาพแวดล้อมบนบกอย่างไรบ้าง

ชุดวิวัฒนาการร่วม (Co-evolution) ของพืชกับมด

นำเสนอตัวอย่าง หัวร้อยรู เถาพุงปลา และเฟิร์นตานมังกร พืชที่ได้ปรับเปลี่ยนโครงสร้างภายในให้เหมาะกับการอยู่ อาศัยของมด โดยนอกจากตัวอย่างจริงของพืชทั้ง 3 ชนิดแล้ว ยังมีโมเดลที่แสดงถึงลักษณะภายในของหัวร้อยรู ซึ่ง ขยายขนาดให้ใหญ่ขึ้นและสามารถเห็นโครงสร้างภายในที่เป็นโพรงสลับซับซ้อนได้อย่างชัดเจน

ชุดการพรางตัว (Camouflage) ของแมลง

จัดแสดงตัวอย่าง ตั๊กแตนใบไม้ และตั๊กแตนกิ่งไม้ ซึ่งเป็นแมลงที่เป็นนักพรางตัวที่ยอดเยี่ยม สามารถลบเค้าโครง เพื่อให้กลมกลืนกับสิ่งแวดล้อมทำให้มองเห็นได้ยาก เพื่อให้ผู้เข้าชมนิทรรศการได้สังเกตลักษณะการพรางตัวของ ตั๊กแตนทั้งสองชนิดนี้

ชุดการเลียนแบบ (Mimicry) ของผีเสื้อ

นำเสนอทฤษฎีการเลียนแบบของผีเสื้อ ซึ่งเป็นพฤติกรรมที่เกิดขึ้นเพื่อหลีกเลี่ยงการถูกล่าจากผู้ล่า โดยได้แสดง ตัวอย่างของผีเสื้อ 3 ชนิด ซึ่งมีลักษณะคล้ายกันมาก โดยเฉพาะสีและลวดลายที่ปรากฏบนปีก

ชุดกระบวนการเกิดสปีชีส์ใหม่ (Speciation)

น้ำเสนอเรื่องราวการเกิดสปีชีส์ใหม่ที่เกิดขึ้นในประเทศไทย กรณีตัวอย่างของหอยมรกตแห่งเกาะตาชัย ซึ่งผ่านการ วิวัฒนาการจนกลายเป็นชนิดใหม่ ใช้เวลาหลายล้านปี ทั้งนี้ได้มีการจัดแสดงเปลือกจริงของหอยมรกตและโมเดล เปลือกหอยขนาดใหญ่ เพื่อเปรียบเทียบให้เห็นความแตกต่างของหอยทากบกชนิดดั้งเดิมและหอยมรกตซึ่งเป็นสปีชีส์ ใหม่

ชุดดีเอ็นเอกับการศึกษาสปีชีส์ซ่อนเร้น

เป็นการนำเสนอความรู้เกี่ยวกับวิวัฒนาการยุคหลังดาร์วิน (Neo-Dawinian) โดยเฉพาะการค้นพบดีเอ็นเอ ซึ่งทำให้ การศึกษาสิ่งมีชีวิตเปลี่ยนไป โดยตัวอย่างของกบหนอง ซึ่งถูกระบุให้เป็นชนิดเดียวกัน แต่มีลักษณะทางพันธุกรรม แตกต่างกัน หรือเป็นสปีชีส์ซ่อนเร้น การศึกษาโดยดีเอ็นเอได้ช่วยไขความลับของสปีชีส์ซ่อนเร้นให้กระจ่างขึ้นได้

ชุดหลักฐานทางวิวัฒนาการ

ได้จำลองหลุมขุดค้นซึ่งมีชากฟอสซิลของสิ่งมีชีวิตซ่อนอยู่ ซึ่งซากฟอสซิลดังกล่าวจะช่วยบอกเล่าเรื่องราวในอดีตของ สิ่งมีชีวิต เช่น ฟอสซิลใบแป๊ะก๊วย ที่สามารถนำมาเปรียบเทียบกับแป๊ะก๊วยที่ยังมีชีวิตอยู่ในปัจจุบัน ทำให้สามารถสรุป ได้ว่าพืชชนิดดั้งกล่าวมีวิวัฒนาการน้อยมากจากอดีตจนถึงปัจจุบัน ฟอสซิลหอยกาบคู่ และฟอสซิลไดโนเสาร์ชิ้นส่วน ต่างๆ ซึ่งล้วนแต่เป็นชิ้นส่วนที่พบในประเทศไทยทั้งสิ้น

ชุดเทคโนโลยีซินโครตรอน

นำเสนอการศึกษาสิ่งมีชีวิตอีกรูปแบบหนึ่ง ที่มีความทันสมัย โดยใช้ลำแสงซินโครตรอนในการศึกษารายละเอียดของ สิ่งมีชีวิต ผู้เข้าชมจะได้สัมผัสกับภาพ 3 มิติ ของหอยทากจิ๋ว ซึ่งเป็นภาพจากการใช้เทคนิคซินโครตรอนในการศึกษา

ชุดความหลากหลายทางชีวภาพ

นำเสนอความสำคัญของความหลากหลายทางชีวภาพ ซึ่งมีอยู่อย่างล้นเหลือในประเทศไทย และมีการแสดงตัวอย่าง สิ่งมีชีวิตชนิดใหม่ที่พบในประเทศไทย ได้แก่ กิ้งก่าหัวยาวเขานั้น กิ้งกือมังกรสีชมพู หอยลายตอง มหาพรหมราชินี เป็นต้น

ชุดการใช้ประโยชน์จากเห็ดรา

เป็นการเปิดโลกเห็ดราที่มีขนาดเล็กจิ๋วให้ใหญ่ขึ้น ผู้เข้าชมสามารถเห็นลักษณะสังคมของเห็ดราอย่างชัดเจน และยังได้ ทำความรู้จักกับราแมลง หรือที่หลายคนรู้จักในชื่อของ "ว่านจักจั่น" ซึ่งโด่งดังเป็นข่าวในหน้าหนังสือพิมพ์ เมื่อ ชาวบ้านคิดว่าเป็นสิ่งมหัศจรรย์เหนือธรรมชาติ และพากันกราบไหว้ขอหวย ในนิทรรศการได้จำลองลักษณะว่านจักจั่น หรือราแมลงในธรรมชาติ รวมไปถึงทำความรู้จักเห็ดชนิดต่างๆ ที่มีรูปร่างและสีสันสวยงาม

7.27 นิทรรศการ สิ่งมีชีวิตในพระนาม สมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราชกุมารี

โครงการ BRT ได้จัดทำนิทรรศการภาพถ่ายสิ่งมีชีวิตในพระนามสมเด็จพระเทพรัตนราชสุดาฯ สยามบรม ราชกุมารี นำเสนอสิ่งมีชีวิตชนิดที่ค้นพบใหม่ในโลกที่ตั้งชื่อตามพระนามาธิไธยของสมเด็จพระเทพฯ จำนวน 15 ชนิด ได้แก่ กุหลาบพระนามสิรินธร, เครือเทพรัตน์, จำปีสิรินธร, สิรินธรวัลลี เอื้องศรีประจิม, เอื้องศรีเชียงดาว, เอื้อง ศรีอาคเนย์ ชันโรงสิรินธร, สิรินธรมีเสื้อกลางคืน, นกเจ้าฟ้าหญิงสิรินธร, ภูเวียงโกชอรัส สิรินธรเน่ ปูเจ้าฟ้า, กั้งเจ้าฟ้า, กุ้งเจ้าฟ้า, ไรน้ำนางฟ้าสิรินธร จัดแสดงเนื่องในงานประชุมประจำปีสำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยี แห่งชาติ ปี 2552 หรือ NAC 2009 ในระหว่างวันที่ 12-14 มีนาคม 2552

7.28 นิทรรศการ หึ่งห้อย

โครงการ BRT ได้นำหึ่งห้อยกระพริบแสงที่ได้จากการเพาะเลี้ยงในห้องปฏิบัติการ โดย ดร.อัญชนา ท่าน เจริญ ภาควิชากีฏวิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ไปจัดแสดงนิทรรศการในงาน Flora & Fauna Exotica : The Lost World อัศจรรย์สวรรค์โลกล้านปี ระหว่างวันที่ 2-12 ตุลาคม 2551 ณ ห้างสรรพสินค้าเอ็มโพเรี่ยม เพื่อให้ความรู้เกี่ยวกับหิ่งห้อยแก่ประชาชน และให้เกิดความตระหนักในด้านการอนุรักษ์ ซึ่งงานนี้ได้รับความสนใจอย่างมากจากประชาชนทั้งเด็ก และผู้ปกครอง

7.29 นิทรรศการ ค้นพบใหม่ มหัศจรรย์แห่งชีวิต

อุทยานการเรียนรู้ (TK park) ร่วมมือกับโครงการ BRT นำผลงานวิจัยการค้นพบสิ่งมีชีวิตชนิดใหม่ และชุด โครงการต่างๆ ของโครงการ BRT ไปจัดแสดงในนิทรรศการ "ค้นพบใหม่ มหัศจรรย์แห่งชีวิต" ตลอดทั้งเดือน มิถุนายน 2552 ณ อุทยานการเรียนรู้ ห้างสรรพสินค้าเซนทรัลเวิลด์ นอกจากนี้ยงมีกิจกรรมเรียนรู้สิ่งมีชีวิต และเสริม ทักษะการเป็นเด็กช่างสังเกต และนักสำรวจน้อยให้กับเยาวชน

7.30 มหกรรมวิทยาศาสตร์และเทคโนโลยีแห่งชาติประจำปี 2552

องค์ความรู้ด้านความหลากหลายทางชีวภาพ เช่น สิ่งมีชีวิตชนิดใหม่ของโลกที่ค้นพบโดยนักวิจัยโครงการ BRT สิ่งมีชีวิตในพระนามสมเด็จพระเทพฯ ได้ถูกนำไปจัดแสดงในโซน Biodiversity Pavilion ซึ่งเป็นส่วนหนึ่งในงาน มหกรรมวิทยาศาสตร์และเทคโนโลยีแห่งชาติประจำปี 2552 ระหว่างวันที่ 8-23 สิงหาคม 2552 ณ อิมแพค เมืองทอง ธานี

7.31 เผยความอัศจรรย์ของสิ่งมีชีวิต ผ่านนิทรรศการ "อัจฉริยะธรรมชาติ..สร้างสรรค์เทคโนโลยี

บ้านวิทยาศาสตร์สิรินธรจัดกิจกรรมเชื่อมร้อยความรู้ด้านชีววิทยาของสิ่งมีชีวิตต่างๆ สู่การพัฒนาเทคโนโลยี โดยใช้ฐานจากธรรมชาติ ในนิทรรศการ "อัจฉริยะธรรมชาติ...สร้างสรรค์เทคโนโลยี" โดยได้นำเสนอความอัศจรรย์ ของสิ่งมีชีวิตที่ธรรมชาติได้รังสรรค์ขึ้นเป็นพิเศษ โดยนิทรรศการดังกล่าวมีวัตถุประสงค์ให้เยาวชนได้เห็นตัวอย่างความ อัศจรรย์ของสิ่งมีชีวิต ซึ่งจะช่วยจุดประกายการสร้างสรรค์เทคโนโลยีที่มีประโยชน์ต่อมนุษยชาติต่อไป

ในการนี้ โครงการ BRT ได้มีส่วนสนับสนุนข้อมูลจากงานวิจัยเพื่อนำเสนอในแง่มุมความ "อัจฉริยะของ ธรรมชาติ" ได้แก่

1) เมือกกบ น้ำยาฆ่าเชื้อโรค

เคยสงสัยหรือไม่ว่า?? กบ เขียด คางคก อึ่งอ่าง หรือพวกสัตว์สะเทินน้ำสะเทินบกที่ต้องอาศัยอยู่ใน สภาพแวดล้อมที่เฉอะแฉะ บางครั้งก็เป็นโคลนเลน ที่เต็มไปด้วยเชื้อแบคทีเรีย เชื้อโรคมากมายหลายชนิด แต่ทำไม สัตว์เหล่านี้จึงไม่ติดเชื้อโรค แถมยังส่งเสียงร้อง อ๊บ อ๊บ ก้องกังวาลทุกครั้งที่มีฝน หรือ ได้สัมผัสกับแหล่งน้ำที่เย็นสด ชื่น

นั่นเป็นเพราะตระกูลสะเทินน้ำสะเทินบก ทั้งกบ เขียด คางคก และอึ่งอ่าง มีต่อมพิเศษที่สามารถผลิตเมือก ออกมาเคลือบผิวหนัง ต่อมเมือกเหล่านี้มีความสามารถในการดักจับเชื้อโรคต่างๆ และยังเป็นแหล่งสังเคราะห์สารเคมี หลายชนิดไว้ต่อสู้กับการติดเชื้อแบคทีเรียและเชื้อราที่อยู่ในธรรมชาติ เจ้าอ๊บ อ๊บ ทั้งหลายจึงสามารถดำรงชีวิตอยู่ใน แหล่งน้ำที่สกปรกและเต็มไปด้วยเชื้อโรคโดยไม่ได้รับอันตราย

ความสามารถของการสร้างสารเคมีที่ต่อมเมือกมีหลากหลายชนิด ขึ้นอยู่กับสภาพแวดล้อมที่เหล่าสัตว์สะเทิน บกสะเทินน้ำอาศัยอยู่ เช่น ในน้ำ ในดิน บนบก และบนต้นไม้ ซึ่งแต่ละสภาพแวดล้อมก็จะมีสิ่งแปลกปลอมหรือเชื้อ โรคที่แตกต่างกัน

ปัจจุบันนักวิทยาศาสตร์ได้นำเมือกกบไปทำการศึกษาวิเคราะห์ จึงได้พบว่าเมือกที่เคลือบอยู่บนหนังกบบาง ชนิดมีเป็นสารต่อต้านจุลินทรีย์ และเมือกกบบางชนิดยังมีความสามารถในการทำลายเซลล์มะเร็งได้อีกด้วย จึงเป็น เรื่องที่น่าตื่นเต้นว่า ในอนาคตมนุษย์เราอาจรอดชีวิตได้ด้วยเมือกเหนียวๆ ที่เคลือบอยู่บนตัวกบนี่เอง

2) ใยหอยแมลงภู่ ต้นแบบซุปเปอร์กาวกันน้ำ

หอยแมลงภู่เป็นหอยที่ขึ้นชื่อเรื่องความสามารถในการยึดเกาะอยู่กับหินในทะเล โดยอาศัยเส้นใยจำนวนมาก ที่เรียกว่า เกสรหอย เป็นตัวช่วยในการยึดเกาะหอยแมลงภู่ ที่อยู่อาศัยในเขตน้ำขึ้นน้ำลง ทำให้ต้องปรับตัวให้ทนต่อ แรงกระแทกของคลื่น และสภาพที่จมอยู่ใต้น้ำ โดยการพัฒนาระบบการยึดเกาะให้แข็งแรงทนทาน เกสรหอย หรือ กลุ่มเส้นใยที่ว่านี้จะช่วยยึดตัวหอยให้ติดแน่นอยุ่กับที่ป้องกันไม่ให้ตัวมันถูกพัดไปพร้อมกับคลื่นและกระแสน้ำ

ด้วยความสามารถการเกาะติดใต้น้ำของเส้นใยหอยแมลงภู่ นักวิทยาศาสตร์จึงได้นำเส้นใยไปศึกษาคุณสมบัติ พบว่าเป็นองค์ประกอบของโพลิเมอร์ที่คล้ายกับกาวและพัฒนาเป็นกาวจากธรรมชาติที่มีคุณสมบัติติดแน่นใช้ ประโยชน์ได้หลายอย่าง เช่น กาวติดใต้น้ำ ติดแน่นทั้งที่แห้งและเปียก, ไหมเย็บแผลผ่าตัด ช่วยให้เนื้อเยื่อฟื้นตัวได้เร็ว และลดรอยแผลเป็นได้ดี

3) ขนเล็กๆ กับร่องนาโนเคล็บลับการลอยน้ำของจิงโจ้น้ำ

เป็นเรื่องน่าทึ่งที่แมลงตัวเล็กๆ อย่าง จิงโจ้น้ำ สามารถดำรงชีวิตอยู่บนผิวน้ำเกือบทั้งชีวิต เจ้าจิงโจ้น้ำใช้ เทคนิคอะไรกันจึงสามารถลอยอยู่บนน้ำได้

จิงโจ้น้ำไม่ได้อาศัยแค่น้ำหนักเบาเท่านั้น ลักษณะของขา 2 คู่หลังที่กางออกยังช่วยในการกระจายน้ำหนักตัว ได้ดีขึ้น และจะใช้เฉพาะส่วนเท้าเท่านั้นที่สัมผัสกับผิวน้ำ ซึ่งบริเวณเท้านี้จะปกคลุมไปด้วยขนเล็กๆ เรียงตัวกันแน่น ทำให้ยากต่อการเปียกน้ำ และบริเวณขนเล็กๆ ยังมีร่องขนาดเล็กมาก ใช้ในการดักจับฟองอากาศ ทำให้จิงโจ้น้ำ ลอยตัวอยู่บนน้ำ และวิ่งบนน้ำได้ 100 เท่าของความยาวร่างกายต่อวินาที หรือเทียบกับคนก็ประมาณ 650 กิโลเมตร ต่อชั่วโมง

การลอยตัวและเคลื่อนที่บนผิวน้ำของจิงโจ้น้ำเป็นแรงบันดาลใจให้นักวิทยาศาสตร์สร้างหุ่นยนต์จิงโจ้น้ำ ขนาดจิ๋วขึ้น โดยหวังให้หุ่นยนต์สามารถเดินหรือกระโดดบนผิวน้ำ เพื่อทำหน้าที่เกี่ยวกับการจัดการคุณภาพน้ำหรือใช้ เป็นหุ่นยนต์สอดแนม

4) ตั๊กแตน นักกระโดดไกล

ตั้กแตน (Grasshoppers) หรือนักกระโดดแห่งทุ่งหญ้า เป็นแมลงที่มีความสามารถโดดเด่นในด้านการ กระโดดไกล สามารถกระโดดได้ไกลถึง 20 เท่าของความยาวตัว หรือหากมันมีขนาดเท่ามนุษย์ จะเท่ากับการกระโดด ข้ามสนามบาสเก็ตบอลเลยทีเดียว

ขาคู่หลังของตั๊กแตนมีความยาว และมีมัดกล้ามเนื้อที่ใหญ่และแข็งแรงเหมาะกับการกระโดด หรือเรียกว่า เป็นขาแบบกระโดด ซึ่งจะพบเฉพาะในกลุ่มตั๊กแตนหนวดสั้น ตั๊กแตนหนวดยาว ตั๊กแตนแคระ และจิ้งหวีดเท่านั้น และเหตุผลว่าทำไมตั๊กแตนต้องกระโดดไกล ก็เนื่องมาจากตั๊กแตนไม่มีอาวุธป้องกันตัวจากศัตรู เหมือนกับแมลงชนิด อื่นๆ ที่อาจจะมีการปล่อยสารขับไล่ศัตรู การสร้างสารพิษ หรือการทำเสียงเพื่อข่มขู่ศัตรู ตั๊กแตนจึงต้องกระโดดให้ไกล ที่สุด เพื่อจะเอาชีวิตรอด นอกจากนี้ ตั๊กแตนยังใช้การกระโดดเพื่อช่วยยกตัวขึ้นก่อนจะกางปีกบิน โดยจะใช้เทคนิคนี้ ในการบินเพื่ออพยพถิ่นที่หากินหรือที่อยู่อาศัย

โครงสร้างของขาหลังที่ทำให้ตั้กแตนมีความสามารถในการกระโดด ถูกนำมาพัฒนาเป็นหุ่นยนต์กระโดดสูงที่ มีความสามารถในการกระโดดได้ถึง 27 เท่าของความสูงของตัวมันเอง โดยภารกิจหลักของหุ่นยนต์ตั๊กแตนก็เพื่อใช้ใน การสำรวจพื้นที่ที่มนุษย์เข้าถึงได้ยาก เช่น พื้นที่เสียหาย หรือพื้นผิวบนดาวเคราะห์ในจักรวาล

5) ข้าวตอกฤาษี ฟองน้ำธรรมชาติ

มอส เปรียบเสมือนฟองน้ำของป่า ที่มีหน้าที่ดูดซับน้ำและความชื้นเอาไว้ แล้วปลดปล่อยความชุ่มชื้น คืนกลับมาให้ผืนป่า ด้วยโครงสร้างเก็บกักน้ำที่พัฒนาขึ้นมาโดยเฉพาะสำหรับพืชในกลุ่มนี้ จึงทำให้สามารถเก็บน้ำไว้ได้ มากกว่าน้ำหนักตัวหลายเท่า

ข้าวตอกฤาษี (Sphagnum moss) ราชาแห่งมอส พบ มากในบริเวณที่มีความชื้นสูง เช่น เส้นทางศึกษาธรรมชาติอ่างกา ดอยอินทนนท์ นอกจากขนาดที่ใหญ่กว่ามอสทั่วไปแล้ว ยังมี ความสามารถในการเก็บกักน้ำได้มากกว่ามอสชนิดอื่นด้วย เนื่องจาก มีโครงสร้างพิเศษที่สร้างขึ้นเพื่อเก็บกักน้ำโดยเฉพาะ เป็นเซลล์แบบ พิเศษที่เรียงตัวกันแน่นอยู่ภายในโครงสร้างใบ ลักษณะคล้ายถุงหรือ ลูกโป่งหลายๆ ใบเรียงต่อกัน มีช่องเปิด 1 ช่องเป็นทางให้น้ำเข้าออก ในยามที่ไม่มีน้ำ เซลล์ลูกโป่งจะแห้ง แต่หากมีน้ำ เซลล์ลูกโป่งจะพอง ออกคล้ายกับลูกโป่งที่ใส่น้ำ ในแต่ละใบเล็กๆ ของข้าวตอกฤาษีมีเซลล์

พิเศษนี้จำนวนมหาศาล และในหนึ่งต้นของข้าวตอกฤาษีมีใบเล็กๆ อยู่มากมายหลายใบ นี่จึงทำให้ข้าวตอกฤ่าษีมีพื้นที่ กักเก็บน้ำจำนวนมาก โดยเก็บสามารถเก็บได้มากกว่าน้ำหนักตัวถึง 20 เท่า คุณสมบัติการเก็บกักน้ำที่ดีของข้าวตอกฤาษีทำให้ถูกนำไปใช้ประโยชน์มากมาย โดยเฉพาะเป็นวัสดุกักเก็บ ความชื้น ที่ใช้กันอย่างแพร่หลายในอุตสาหกรรมส่งออกไม้ดอกสวยงาม โดยจะใช้ข้าวตอกฤาษีเป็นวัสดุคลุมหน้าดิน เพื่อป้องกันการสูญเสียความชื้นจากหน้าดินระหว่างการส่งออก ซึ่งจะช่วยเก็บกักความชื้นไว้ได้นานหลายวัน

6) ประติมากรรมที่เรียกว่าละอองเรณู

"ละอองเรณู" หรือ Pollen ที่พืชแต่ละชนิดสร้างขึ้น จะมีลักษณะรูปทรง และลวดลายแตกต่างกันไป บาง ชนิดกลม บางชนิดเหลี่ยม บางชนิดก็มีขน ทั้งนี้ก็เนื่องมาจากพันธุกรรมและวิวัฒนาการของพืชแต่ละชนิด

การพัฒนารูปแบบของละอองเรณู คล้ายการพัฒนาการในการสร้างบ้านของคน ต้องเริ่มจากง่ายๆ ก่อน แล้ว จนพัฒนาฝีมือขึ้นไปให้ซับซ้อนขึ้น ตัวอย่างเช่น พืชชั้นต่ำจำพวกมอส มีรูปทรงของละอองเรณูที่ไม่ซับซ้อน แบ่งรูปร่าง เป็น 4 เซลล์อย่างชัดเจน ลวดลายก็เป็นเพียงก้อนกลมๆ ส่วนพืชกลุ่มเฟิร์นที่มีวิวัฒนาการสูงขึ้น จะมีลวดลายที่ ซับซ้อนมากขึ้น รูปทรงของละอองเรณูมักจะยาวรี สำหรับกลุ่มพืชดอก ซึ่งเป็นพืชที่มีวิวัฒนาการสูงที่สุด โครงสร้าง ละอองเรณูจะสลับซับซ้อนมาก มีรูปทรงหลากหลายแบบ

รูปทรง และลวดลายที่แตกต่างกันของละอองเรณูแต่ละชนิด มีผลต่อการขยายพันธุ์ของพืชอย่างไม่น่าเชื่อ พืชบางชนิดมีละอองเรณูขนาดเล็กน้ำหนักเบา สามารถพัดลอยไปกับลมได้ แต่บางชนิดก็มีน้ำหนักมาก จะลอยก็ลอย ไม่ได้ จึงต้องสร้างลวดลายขึ้นเป็นหนามแหลมหรือตะขอ เพื่อจะได้สามารถเกี่ยวติดไปกับขาแมลงที่มาเกาะอยู่ตาม ดอกไม้ได้ บางชนิดต้องไปอยู่ในที่แห้งแล้ง หรือที่ที่ไม่เหมาะสำหรับการเจริญเติบโต ก็จะสร้างผลังเซลล์หนาแข็งแรง เพื่อให้ละอองเรณูคงทนและมีระยะการดำรงชีวิตอยู่ได้นานขึ้น

7) ชุดเกราะพิเศษจากกิ้งกือ

ธรรมชาติได้สร้างให้สิ่งมีชีวิตเกือบทุกชนิดมีเทคนิคการป้องกันตัว หรือต่อสู้กับสิ่งที่จะมาทำอันตราย เหมือนกับมีอาวุธติดตัว แต่สิ่งมีชีวิตที่ไร้พิษสง ไม่มีอาวุธติดตัวและยังเคลื่อนที่ช้าอย่างกิ้งกือ ธรรมชาติได้มอบเสื้อ เกราะแข็งมาให้ เป็นเสื้อเกราะพิเศษที่มีลักษณะเป็นปล้องๆ คลุมตลอดทั้งตัว พร้อมกับเทคนิคการม้วนตัวเพื่อซ่อน อวัยวะสำคัญให้ปลอดภัยภายใต้ชุดเกราะ

กิ้งกือกระสุน

เมื่อมีศัตรูมารบกวนหรือรู้สึกไม่ปลอดภัย กิ้งกือที่มีขา จำนวนมากกว่าสัตว์ทุกชนิดแต่ไม่สามารถวิ่งหนีศัตรูได้ ธรรมชาติจึง ได้สร้างสรรค์ให้กิ้งกือใช้การม้วนตัวเพื่อป้องกันตัวเองจากอันตราย สร้างผิวภายนอกให้มีลักษณะเป็นเปลือกแข็ง โดยกิ้งกือจะป้องกัน จุดอ่อนด้วยการม้วนเอาส่วนหัวที่มีอวัยวะที่สำคัญเข้าด้านใน และ ผิวชั้นนอกที่เป็นปล้องๆ ซ้อนกัน ยืดหดได้ ยังช่วยให้สะดวกในการ ม้วนตัว เปรียบเหมือนเสื้อเกราะพิเศษของอัศวินที่ออกรบกับข้าศึก แต่เสื้อเกราะของกิ้งกือพิเศษกว่า เพราะเป็นเสื้อเกราะที่ม้วนได้ด้วย

8) ปีกของไส้เดือนน้ำ การปรับตัวอันน่าทึ่ง

ไส้เดือนที่ชอนไชอยู่ในดิน ไม่ได้มีเฉพาะบนบกเท่านั้น ยังมีไส้เดือนน้ำจืด (Aquatic freshwater earthworms) ซึ่งอาศัยอยู่ตามชายตลิ่ง ด้วยสภาพแวดล้อมที่อยู่อาศัยที่แตกต่างกัน ทำให้ไส้เดือนน้ำมีลักษณะ บางอย่างที่แตกต่างจากไส้เดือนดิน นั่นคือ **ปีก** ที่มีลักษณะเป็นเนื้องอกออกมาจากปล้องต้นๆ ของลำตัว

ธรรมชาติได้สร้างสรรค์เรื่องเหล่านี้ผ่านวิวัฒนาการมาอย่างยาวนาน ผู้ที่แข็งแรงกว่าเท่านั้นที่จะอยู่รอดได้ เพราะไส้เดือนน้ำจืดต้องมีชีวิตอยู่ในน้ำ และเกาะชายขอบตลิ่ง ไม่ได้ตั้งหน้าตั้งตาเจาะดินเหมือนกับไส้เดือนดิน จึงมี การพัฒนาปีกให้งอกออกมาเพื่อให้ไส้เดือนดำรงชีวิตอยู่ในน้ำได้ ข้อได้เปรียบของการมีปีก คือ ช่วยในการเคลื่อนที่ในน้ำ, ช่วยเพิ่มพื้นที่ผิวในการหายใจ และช่วยยึดเกาะได้ดี ในการจับคู่ผสมพันธุ์

9) แสงเรื่องๆ จากออสตราคอด...หิ่งห้อยแห่งท้องทะเล

มีสิ่งมีชีวิตไม่กี่ชนิดเท่านั้นที่สามารถผลิตแสงสว่างได้ด้วยตัวเอง นอกจากหิ่งห้อยที่อยู่บนบกแล้ว ยังมี สิ่งมีชีวิตตัวเล็กๆ ใต้ท้องทะเลอีกชนิดหนึ่งที่สามารถเรืองแสงได้ จนเรียกได้ว่าเป็น **หิ่งห้อยแห่งท้องทะเล** สิ่งมีชีวิตนั้น คือ **ออสตราคอด**

ออสตราคอด (Ostracods) เป็นสิ่งมีชีวิตพวกเดียวกับ กุ้ง กั้ง ปู หรือ คราสเตเชี่ยน (Crustaceans) แต่หน้าตาของออสตราคอดไม่ เหมือนกับกุ้ง กั้ง หรือปูเลยแม้แต่น้อย โดยเจ้าออสตราคอดตัวจิ๋วนี้มี ลักษณะคล้ายเมล็ดถั่ว เป็นเปลือกแข็ง 2 เปลือกประกบกัน มีขนาด เล็กที่สุดไม่ถึง 1 เซนติเมตร และใหญ่ที่สุดแค่ 3 เซนติเมตร และมี เพียงชนิดเดียวเท่านั้นที่สามารถเรืองแสงได้ ชื่อว่า Vargula hilgendorfii เป็นออสตราคอดที่อาศัยอยู่ในทะเลรอบประเทศญี่ปุ่น

การเรื่องแสงของออสตราคอด เกิดจากปฏิกิริยาทางเคมี ระหว่างสาร Vargla luciferase และ Vargla luciferin ที่ออสตรา

คอดปล่อยออกมา เมื่อทำปฏิกิริยากับออกซิเจนในน้ำ จะเกิดเป็นแสงสว่างขึ้น

ออสตราคอดใช้แสงสว่างในการจูโจมจับเหยื่อ หรือที่เรียกว่า ระเบิดแสง (light bomb) ใช้เพื่อตอบสนองต่อ การเปลี่ยนแปลงของสิ่งแวดล้อมที่เกิดขึ้นอย่างกระทันหัน เช่น การเปลี่ยนแปลงความเค็ม หรืออุณหภูมิของน้ำ นอกจากนี้ออสตราคอดหนุ่มยังใช้ประโยชน์จากการเรืองแสงในการจีบสาวอีกด้วย

ชาวญี่ปุ่นรู้จักการใช้ประโยชน์จากออสตราคอดมาตั้งแต่สมัยสงครามโลกครั้งที่ 2 โดยใช้เป็นผงกำเนิดไฟเพื่อ ส่องแผนที่ หรืออ่านคำสั่งบนเรือรบ เมื่อนำผงกำเนิดไฟที่ได้จากออสตราคอดบดละเอียดมาหยดน้ำลงไป จะเกิดแสง ไฟน้อยๆ ที่ข้าศึกไม่สามารถมองเห็นได้

นอกจากนี้ ยังได้นำนิทรรศการภาพถ่ายใต้น้ำ ซึ่งเป็นผลจากงานวิจัยในชุดโครงการ ขนอม-หมู่เกาะทะเลใต้ ไปจัดแสดงในนิทรรศการครั้งนี้ด้วย ทั้งนี้ นิทรรศการอัจฉริยะธรรมชาติ...สร้างสรรค์เทคโนโลยี จะจัดขึ้นตั้งแต่วันที่ 21 เมษายน 2553 ไปจนถึงเดือนธันวาคม 2553 ณ บ้านวิทยาศาสตร์สิรินธร อุทยานวิทยาศาสตร์ประเทศไทย

7.32 นิทรรศการ "สาหร่ายทะเลลดโลกร้อน และทรัพยากรชีวภาพทางทะเลขนอม - หมู่เกาะทะเลใต้" เนื่องในงานประชุมประจำปีสำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยีแห่งชาติ ปี 2553 หรือ NAC 2010 ในวันที่ 29-31 มีนาคม 2553 โดยการจัดแสดงผลการศึกษาภายใต้ชุดโครงการวิจัยเชิงพื้นที่ (area-based research) เรื่อง "ความหลากหลายทางชีวภาพทางทะเล : ขนอม-หมู่เกาะทะเลใต้" อันประกอบด้วย โซนประโยชน์จากสาหร่ายทะเล สาหร่ายทะเลลดโลกร้อน หรือ สาหร่ายใบมะกรูด ที่มีศักยภาพในการดูดซับคาร์บอนไดออกไซด์จากน้ำทะเล และโซน นิทรรศการภาพถ่ายทรัพยากรชีวภาพทางทะเล ซึ่งเป็นภาพที่ถ่ายจากทะเลขนอม - หมู่เกาะทะเลใต้ ประกอบด้วย เกาะที่สำคัญ 5 เกาะ คือ เกาะแตน, เกาะราบ, เกาะวังนอก, เกาะวังใน และเกาะมัดสุ่ม ซึ่งอยู่ในเขตอำเภอขนอม จังหวัดนครศรีธรรมราช

- 7.33 นิทรรศการ "หญ้าทะเล และทรัพยากรชีวภาพทางทะเล" เนื่องในกิจกรรมวันสิ่งแวดล้อมโลก โดย กรมส่งเสริมคุณภาพสิ่งแวดล้อม ณ อิมแพ็ค เมืองทองธานี วันที่ 4-5 มิถุนายน 2553 ได้นำผลงานวิจัยระบบนิเวศ หญ้าทะเลไปเผยแพร่ ผ่านตู้จำลองระบบนิเวศหญ้าทะเล ซึ่งเป็นผลงานการประดิษฐ์ของนักศึกษาจาก มหาวิทยาลัยสงขลานครินทร์เพื่อให้ความรู้แก่ผู้เข้าร่วมงานเกี่ยวกับประโยชน์ต่างๆ ของระบบนิเวศหญ้าทะเล เช่น เป็นทั้งแหล่งที่อยู่อาศัย และแหล่งหากินของสัตว์น้ำนานาชนิด รวมถึงพะยูน และเต่าทะเล ซึ่งเป็นสัตว์น้ำใกล้สูญพันธุ์ และยังมีส่วนราก เหง้าของหญ้าทะเลที่ช่วยยึดหน้าดิน ป้องกันการกัดเซาะชายฝั่ง ซึ่งจะนำไปสู่การสร้างความ ตระหนักในการอนุรักษ์แหล่งหญ้าทะเลต่อไป
- 7.34 นิทรรศการ "สิ่งมีชีวิตชนิดใหม่ของโลก" ภายในนิทรรศการความหลากหลายทางชีวภาพคือชีวิต คือ ชีวิตของเราทุกคน โดย สำนักงานนโยบายและแผนทรัพยากรธรรมชาติและสิ่งแวดล้อม ณ สวนสัตว์เปิดเขาเขียว วันที่ 9-10 กรกฎาคม 2553 เป็นการจัดแสดงตัวอย่างสิ่งมีชีวิตชนิดใหม่ของโลกที่ค้นพบโดยนักวิจัยของโครงการ BRT เช่น กิ้งก่าหัวยาวเขานัน มหาพรหมราชินี หอยลายตอง และหอยทากจิ๋วบีอาร์ที นอกจากนี้ยังได้นำเสนอวิวัฒนาการ ของพืช ผ่านหนังสือป๊อบอัพขนาดยักษ์ ผลงานการประดิษฐ์ของคณาจารย์ภาควิชาพฤกศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย และประโยชน์จากกิ้งกือ หรือพันขามหาสมบัติ ซึ่งเยาวชนที่เข้าร่วมให้ความสนใจเป็นอย่าง ยิ่ง
- 7.35 นิทรรศการ "เห็ด-ราผู้ย่อยสลาย" ภายในนิทรรศการความหลากหลายทางชีวภาพกู้วิกฤตชีวิตโลก เนื่องในงานประชุมวิชาการกระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อมครั้งที่ 3 จัดโดยกระทรวงทรัพยากรธรรมชาติ และสิ่งแวดล้อม ณ อิมแพ็ค เมืองทองธานี วันที่ 21-22 กรกฎาคม 2553 โดยการนำเสนอคุณประโยชน์ของเห็ดรา ใน แง่ของการเป็นผู้ย่อยสลายในระบบนิเวศ เช่น เห็ดหิ้ง เห็ดขอนที่ขึ้นอยู่ตามต้นไม้ นอกจากนี้ยังได้เผยแพร่ข้อมูลเกี่ยว ราแมลง ซึ่งคนทั่วไปรู้จักในนามของ "ว่านจักจั่น" โดยได้จัดจำลองระบบนิเวศที่สามารถพบราแมลง หรือ ว่านจักจั่น และราแมลงที่ขึ้นพบแมลงชนิดอื่นๆ รวมไปถึงการไขปริศนาความเชื่อเครื่องรางของขลัง ทั้ง "ว่านจักจั่น" และ "เถาวัลย์หลง" ซึ่งเป็นชิ้นส่วนจากเชื้อราแมลง และเห็ดบางชนิดเท่านั้น
- 7.36 นิทรรศการ "เปิดโลกสิ่งมีชีวิต" เนื่องในสัปดาห์วิทยาศาสตร์แห่งประเทศไทย ประจำปี 2553 ศูนย์ วิทยาศาสตร์เพื่อการศึกษารังสิต กระทรวงศึกษาธิการ ระหว่างวันที่ 3-7 สิงหาคม 2553 โดยเป็นความร่วมมือ ทางด้านวิชาการระหว่างโครงการ BRT กับศูนย์วิทยาศาสตร์เพื่อการศึกษารังสิต ซึ่งโครงการ BRT ได้นำชุด นิทรรศการหลากหลายเรื่องไปจัดแสดงเป็นห้องนิทรรศการเฉพาะที่เกี่ยวกับสิ่งมีชีวิตและระบบนิเวศ โดย ประกอบด้วย ส่วนนิทรรศการจุลินทรีย์ จัดแสดงโมเดลแบคทีเรีย ยีสต์ และเชื้อราที่มีประโยชน์กับมนุษย์ รวมไปถึง ชุดนิทรรศการเชื้อราและความเชื่อ ส่วนนิทรรศการพืช โดยนำเสนอเรื่องราวของพืชตั้งแต่พืชไม่มีท่อทำเลียง ไปจนถึง พืชดอก การปรับตัวของพืชกินแมลง การวิวัฒนาการร่วมกันของพืชกับสัตว์ และพืชที่อาศัยอยู่ในทะเล ได้แก่ หญ้า ทะเล และสาหร่ายทะเล ส่วนนิทรรศการสัตว์ จัดแสดงความหลากหลายของแมลง สัตว์ที่มีความหลากหลายสูงมาก และความหลากหลายของหอยทากบก สิ่งประดิษฐ์กุ้งเดินขบวน และสิ่งประดิษฐ์ภาษาการสื่อสารของผึ้ง และส่วน สิ่งมีชีวิตชนิดใหม่ เป็นการให้ความรู้เกี่ยวกับกระบวนการเกิดสิ่งมีชีวิตชนิดใหม่ และตัวอย่างการเกิดสิ่งมีชีวิตชนิดใหม่ เดินทับโดยนักวิจัยโครงการ BRT
- 7.37 นิทรรศการ "อัศจรรย์ใส้เดือนน้ำ ไส้เดือนยักษ์" ภายในงานมหกรรมวิทยาศาสตร์และเทคโนโลยีแห่ง ประเทศไทย ประจำปี 2553 โดยกระทรวงวิทยาศาสตร์และเทคโนโลยี ณ ไบเทค บางนา วันที่ 8-22 สิงหาคม 2553 โครงการ BRT ได้นำเรื่องราวความหลากหลายทางชีวภาพของไส้เดือน ซึ่งนำมาซึ่งรูปแบบอันน่าอัศจรรย์ของไส้เดือน น้ำ ซึ่งมีลักษณะยื่นออกมาด้านข้างลำตัวคล้ายปีก โดยเป็นส่วนที่ไส้เดือนน้ำใช้ในการแลกเปลี่ยนออกซิเจน และช่วย เพิ่มพื้นที่ในการยื่นเกาะ และไส้เดือนยักษ์ หรือ ไส้เดือนแม่น้ำโขงที่มีความยาวเกือบ 2 เมตร ที่โดยปกติจะชอนไชอยู่

ริมตลิ่งแม่น้ำโขง ซึ่งไม่เพียงตัวอย่างไส้เดือนทั้งสองชนิดนี้เท่านั้น แต่ยังมีข้อมูลเกี่ยวกับชนิดของไส้เดือนอื่นๆ และ ประโยชน์ด้านการเกษตร และเศรษฐกิจจากไส้เดือนอีกด้วย

- 7.38 นิทรรศการ "สาหร่ายพะเลลดโลกร้อน" เนื่องในสัปดาห์วิทยาศาสตร์ ประจำปี 2553 คณะ วิทยาศาสตร์ มหาวิทยาลัยเทคโนโลยีราชมงคลสุวรรณภูมิ ศูนย์หันตรา จังหวัดพระนครศรีอยุธยา วันที่ 11 สิ่งหาคม 2553 เป็นการเปิดโลกการเรียนรู้ทรัพยากรทางทะเลที่มีความสามารถในการช่วยลดโลกร้อน นั่นคือ สาหร่ายใบ มะกรูด ซึ่งนับเป็นความรู้ใหม่ที่นักเรียน นักศึกษาที่เข้าชมงานได้รับทราบ และสร้างความสนใจให้กับผู้เข้าชม นิทรรศการเป็นอย่างมาก
- 7.39 นิทรรศการ "ความหลากหลายทางชีวภาพในพื้นที่ อ.ขนอม จ.นครศรีธรรมราช" เนื่องในพิธีเปิด โครงการวางแนวปะการังเทียมเฉลิมพระเกียรติฯ ประจำปี 2553 โดย บริษัท ปตท. จำกัด (มหาชน) ณ อำเภอขนอม จังหวัดนครศรีธรรมราช ระหว่างวันที่ 17-18 สิงหาคม 2553 โดยได้นำเสนอนิทรรศการทรัพยากรชีวภาพใต้ทะเลขน อม-หมู่เกาะทะเลใต้ และชุดตู้ระบบนิเวศหญ้าทะเล และโมเดลสาหร่ายใบมะกรูดลดโลกร้อน เพื่อให้ชาวชุมชนท้อง เนียน อำเภอขนอมได้รู้จักทรัพยากรชีวภาพที่มีอยู่ในพื้นที่ของตน เป็นการช่วยกระตุ้นให้เกิดความตระหนักถึงคุณค่า ของทรัพยากรที่มีอยู่
- 7.40 นิทรรศการ "เปิดโลกพรรณไม้และหมู่แมลง" เนื่องในสัปดาห์วิทยาศาสตร์ ประจำปี 2553 โดย ศูนย์ วิทยาศาสตร์เพื่อการศึกษา (ท้องฟ้าจำลอง) ระหว่างวันที่ 18-24 สิงหาคม 2553 โดยได้จัดแสดงวิวัฒนาการของ พรรณพืช และแสดงตัวอย่างพืชยุคดึกดำบรรพ์ ได้แก่ มอส หญ้าถอดปล้อง กนกนารี ตีนตุ๊กแก ช้องนางคลี่ เป็นต้น นอกจากนี้ยังได้จัดแสดงตัวอย่างความหลากหลายของแมลงที่พบในประเทศไทย และความรู้เกี่ยวกับโครงการ BRT
- 7.41 นิทรรศการ "อัจฉริยะธรรมชาติ...สร้างสรรค์เทคโนโลยี โดยบ้านวิทยาศาสตร์สิรินธร นิทรรศการ ถาวรตลอดปี 2553 โดยโครงการ BRT ได้สนับสนุนข้อมูลในส่วนของความอัศจรรย์ของสิ่งมีชีวิตที่ธรรมชาติได้รังสรรค์ ขึ้นเป็นพิเศษ เพื่อให้เยาวชนได้เห็นตัวอย่างความอัศจรรย์ของสิ่งมีชีวิต ซึ่งจะช่วยจุดประกายการสร้างสรรค์เทคโนโลยี ที่มีประโยชน์ต่อมนุษยชาติต่อไป โดยความรู้ในส่วนของ "อัจฉริยะของธรรมชาติ" ได้แก่ เมือกกบ น้ำยาฆ่าเชื้อโรค, ใยหอยแมลงภู่ ต้นแบบซุปเปอร์กาวกันน้ำ, ขนเล็กๆ กับร่องนาโนเคล็บลับการลอยน้ำของจิงโจ้น้ำ, ตั๊กแตน นัก กระโดดไกล, ข้าวตอกฤาษี ฟองน้ำธรรมชาติ, ประติมากรรมที่เรียกว่าละอองเรณู, ชุดเกราะพิเศษจากกิ้งกือ, ปีก ของไส้เดือนน้ำ การปรับตัวอันน่าทึ่ง และแสงเรืองๆ จากออสตราคอด...หิ่งห้อยแห่งท้องทะเล

7.42 นิทรรศการกิ้งกือ-ไส้เดือนยักษ์ งานพฤกษาสยาม ครั้งที่ 5

โครงการ BRT ร่วมกับ ศ.ดร. สมศักดิ์ ปัญหา จุฬาลงกรณ์วิทยาลัย ได้นำกิ้งกือยักษ์และใส้เดือนยักษ์ ไปจัดแสดงใน งานพฤกษาสยามครั้งที่ 5 จัดโดยเดอะมอลล์ บางกะปิ ในระหว่างวันที่ 17-26 พฤษภาคม 2551 เพื่อให้คนได้ใกล้ชิด กิ้งกือไส้เดือน ได้รับความสนใจจากเด็ก ผู้ใหญ่ที่เดินผ่านไปมาจำนวนมาก

7.43 นิทรรศการป่าเมฆ-เขานั้น ธรรมชาติกับภาวะโลกร้อน งานประชุมประจำปี NAC

โครงการ BRT ได้ร่วมจัดนิทรรศการ "ป่าเมฆ-เขานัน" ในงานประชุมวิชาการประจำปี 2551 สำนักงานพัฒนา วิทยาศาสตร์และเทคโนโลยีแห่งชาติ (NSTDA Annual Conference : NAC 2008) ระหว่างวันที่ 24-26 มีนาคม 2551 ที่ศูนย์ประชุมอุทยานวิทยาศาสตร์ประเทศไทย ปทุมธานี โดยมีสมเด็จพระเทพรัตนราชสุดาฯ สยามบรมราช กุมารี เสด็จพระราชดำเนินทรงเปิดนิทรรศการและการประชุมในครั้งนี้ด้วย

7.44 นิทรรศการ หิ่งห้อย และกิ้งกือ

ในมหกรรมวิทยาศาสตร์และเทคโนโลยีแห่งชาติประจำปี 2551

โครงการ BRT ได้นำหิ่งห้อยและกิ้งกือหลายหลากหลายสายพันธุ์ไปจัดแสดงในงานมหกรรมวิทยาศาสตร์และ เทคโนโลยีแห่งชาติ ปี 2551 ซึ่งจัดระหว่างวันที่ 8-22 สิงหาคม 2551 โดยเป็นการแสดงกิ้งกือมังกรสีชมพูที่ติดอันดับ หนึ่งในสิบสุดยอดสิ่งมีชีวิตชนิดใหม่ของโลก และเป็นการนำหิ่งห้อยที่เพาะเลี้ยงได้ในห้องปฏิบัติการครั้งแรกของ ประเทศไทยพันธุ์ Luciola aquatilis และเป็นชนิดพันธุ์ใหม่ของโลก โดย ดร.อัญชนา ท่านเจริญ จาก มหาวิทยาลัยเกษตรศาสตร์ ไปจัดแสดง

7.45 นิทรรศการ หอยทากในงานพฤกษาสยามครั้งที่ 6

โครงการ BRT ได้รับเชิญจากบริษัทเดอะมอลล์ กรุ๊ป จำกัด ให้ไปจัดแสดงความหลากหลายทางชีวภาพใน งานพฤกษาสยามครั้งที่ 6 ในระหว่างวันที่ 12-21 กันยายน 2551 ที่เดอะมอลล์ บางแค จึงได้นำหอยทาก ซึ่งมีองค์ ความรู้ที่ได้รับการตีพิมพ์แล้วมากมาย โดย ศ.ดร.สมศักดิ์ ปัญหา และคณะ จากจุฬาลงกรณ์มหาวิทยาลัยไปจัดแสดง ทั้งหอยทากสวยงาม หอยทากจิ๋ว หอยนักล่า หอยทากยักษ์ ซึ่งเป็นชนิดพันธุ์ต่างถิ่น และหอยเล็บ ซึ่งเป็นศัตรูที่สำคัญ ของเกษตรกรผู้ปลูกกล้วยไม้ เพื่อให้ความรู้ การป้องกันการระบาดของหอยเล็บ และการอนุรักษ์หอยพันธุ์อื่นๆ ที่เป็น ประโยชน์กับระบบนิเวศอีกด้วย

7.46 ค่ายเยาวชนรักษ์ทะเลไทย ครั้งที่ 5

หน่วยงานรับผิดชอบ : โครงการ BRT ร่วมกับ บริษัท ปตท. จำกัด (มหาชน)

ระยะเวลา / สถานที่ : วันที่ 7-10 ธันวาคม 2553 ณ จ.นครศรีธรรมราช และ จ.สงขลา

วัตถุประสงค์ เพื่อส่งเสริมให้เยาวชน ได้ตระหนักถึงคุณค่าของทรัพยากรธรรมชาติทางทะเลที่สำคัญใน ท้องถิ่น

เนื้อหาสำคัญในค่าย ประกอบด้วย

- องค์ความรู้จากการดำเนินโครงการวิจัยด้านความหลากหลายทางชีวภาพในท้องทะเลขนอม ที่ ปตท.ร่วมกับโครงการ BRT ในชุดโครงการหาดขนอม
- การบรรยายเกี่ยวกับโลมาสีชมพู และโลมาอิรวดี
- ระบบนิเวศชายฝั่ง และวิถีชุมชนประมงชายฝั่งทะเลขนอม บริเวณอ่าวท้องชิง
- ทัศนศึกษายังสงขลา อะควาเรียม

กิจกรรมครั้งนี้ มีนักเรียนมัธยมศึกษาตอนปลาย 60 คน จาก 22 โรงเรียน ใน 5 จังหวัด ได้แก่ จ. นครศรีธรรมราช จ.สุราษฎร์ธานี จ.สงขลา จ.ภูเก็ต และจ.ระนอง

7.47 ค่ายเยาวชนขนอมรักษ์บ้านเกิด ครั้งที่ 1

หน่วยงานรับผิดชอบ : โครงการ BRT ร่วมกับ บริษัท ปตท. จำกัด (มหาชน)

ระยะเวลา / สถานที่ : วันที่ 29 มิถุนายน – 1 กรกฎาคม 2554 ณ จ.นครศรีธรรมราช วัตถุประสงค์ คืนความรู้ให้กับชุมชน และปลูกฝังจิตสำนึกการอนุรักษ์และรู้จักคุณค่าของทรัพยากรธรรมชาติทางทะเลที่สำคัญใน ท้องถิ่น

เนื้อหาสำคัญในค่าย ประกอบด้วย

- ฐานการเรียนรู้ในพื้นที่วิจัยต่างๆ จำนวน 5 ฐาน คือ ฐานโลมา สีชมพู, ฐานต้นลาน พืชดึกดำบรรพ์, ฐานทรัพยากรทางทะเล ประมงชายฝั่ง, ฐานป่าชายเลน และฐานระบบนิเวศป่า ชายหาด โดยเยาวชนได้ทำการเก็บข้อมูล รวบรวมความรู้ที่ได้ มาจัดทำข้อมูลนำเสนอผลงานกลุ่มและสรุปสาระสำคัญเพื่อ แลกเปลี่ยนความรู้ซึ่งกันและกัน
- ประวัติท้องถิ่นขนอม และการปลูกฝังจิตสำนึกรักษ์บ้านเกิด โดยปราชญ์ชุมชน ซึ่งเป็นบุคคลสำคัญในท้องถิ่น ขนอม เป็น การสร้างแรงบันดาลใจให้เยาวชนคนรุ่นใหม่ตระหนักถึง ความสำคัญของทรัพยากรทางทะเลที่มีค่าในท้องถิ่นจากรุ่นสู่ รุ่น เพื่อให้ทรัพยากรชีวภาพอันมีค่า คงอยู่คู่กับอำเภอขนอม จังหวัดนครศรีธรรมราชและประเทศไทยต่อไปอย่างยั่งยืน กิจกรรมครั้งนี้ มีนักเรียนระดับชั้น ประถมศึกษา ปีที่ 4-6

และมัธยมศึกษาปีที่ 1-3 จำนวน 40 คน และ ครูผู้สอนสาระการ เรียนรู้วิทยาศาสตร์ จำนวน 10 คนใน 10 โรงเรียนในพื้นที่อ.ขนอม จ. นครศรีธรรมราช

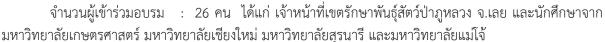
7.48 ค่ายเยาวชน ปตท. รักษ์ทะเลไทย ครั้งที่ 6 "ปฏิบัติการกู้ภัยปะการังฟอกขาว"

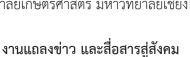
หน่วยงานรับผิดชอบ : โครงการ BRT ร่วมกับ บริษัท ปตท. จำกัด (มหาชน) ระยะเวลา / สถานที่ : วันที่ 15-18 กันยายน 2554 ณ จ.นครศรีธรรมราช

วัตถุประสงค์ เพื่อส่งเสริมให้เยาวชน ได้ตระหนักถึงคุณค่าของทรัพยากรธรรมชาติทางทะเลที่สำคัญใน ท้องถิ่น และเกิดความเข้าใจเกี่ยวกับการเกิดปรากฏการณ์ปะการังฟอกขาว

เนื้อหาสำคัญในค่าย ประกอบด้วย การบรรยายให้ความรู้เกี่ยวกับทรัพยากรเด่นในอำเภอขนอม ได้แก่ โลมา สีชมพู และสาหร่ายใบมะกรูด รวมทั้งการบรรยายเรื่องการเกิดปรากฏการณ์ปะการังฟอกขาว / การล่องเรือศึกษา ทรัพยากรชีวภาพตามเกาะแก่งต่างๆ และการดำน้ำศึกษาทรัพยากรชีวภาพใต้ทะเล / การระดมสมองเพื่อจัดทำ โครงงานวิทยาศาสตร์เกี่ยวกับปะการังฟอกขาว

กิจกรรมครั้งนี้ มีนักเรียนมัธยมศึกษาตอนปลาย เข้าร่วม 65 คน จาก 11 โรงเรียน ใน 5 จังหวัดภาคใต้ ได้แก่ จ.นครศรีธรรมราช จ.สุราษฎร์ธานี จ.สงขลา จ.ภูเก็ต และจ.ระนอง




7.49 การฝึกอบรมเชิงปฏิบัติการ เรื่อง การค้นหารังนกและการติดตามประชากรนก nest finding and monitor

ความสำคัญ : นกเป็นสัตว์ผู้แพร่กระจายเมล็ดพันธุ์ที่ สำคัญ จึงเป็นคีย์สปีชีส์ในการขยายตัวของป่า การศึกษาวิจัยนก ในประเทศไทยในขณะนี้มีเพียงการศึกษาวิจัยนกเงือก และ การศึกษาวิจัยนกบางชนิดในอุทยานแห่งชาติเขาใหญ่เท่านั้น

วัตถุประสงค์การฝึกอบรม : เพื่อให้เจ้าหน้าที่อุทยานได้ เรียนรู้เทคนิคการค้นหารังนกและการติดตามประชากร ซึ่งจะทำ ให้ได้ข้อมูลเกี่ยวกับนก โดยเฉพาะด้านชีววิทยา และด้าน นิเวศวิทยา อันจะเป็นข้อมูลพื้นฐานที่สำคัญสำหรับการศึกษาวิจัย นก ที่ยังขาดแคลนอยู่มากในประเทศไทย

สถานที่อบรม : เขตรักษาพันธุ์สัตว์ป่าภูหลวง จ.เลย ระยะเวลา : เดือนมีนาคม 2553 จำนวน 5 วัน

7.50 งานวิจัยกิ้งกือออกรายการคลับเซเว่นของไตรภพ ลิมปพัทธ์

รายการใหม่แกะกล่องของไตรภพ ลิมปพัทธ์ ที่ชื่อว่า "Club 7" ทางช่อง 7 สี ทีวีเพื่อคุณ ได้เชิญ ศาสตราจารย์ ดร. สมศักดิ์ ปัญหา แห่งภาควิชาชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ผู้เชี่ยวชาญ กิ้งกือของไทยที่ค้นพบ "กิ้งกือมังกรสีชมพู" "Shocking Pink Millipede" ที่อยู่ในลำดับ 3 ของ Top 10 new species exploration ของโลก มาพร้อมกับกิ้งกือหลากหลายสายพันธุ์ เป็นการแสดงถึงความอุดมสมบูรณ์ของ ทรัพยากรความหลากหลายทางชีวภาพของประเทสไทย ตลอดจนบทบาทที่สำคัญคือการสร้างปุ๋ยธรรมชาติให้กับป่า ไม้ และที่สำคัญคือคุณไตรภพได้เปลี่ยนทัศนคติผู้คนให้เห็นประโยชน์ของกิ้งกือ ที่ถือว่ากิ้งกือคือทรัพย์ในดินของไทยที่ จะช่วยคนไทยกู้วิกฤต ได้ออกอากาศไปเมื่อคืนวันที่ 8 กรกฎาคม 2551 เวลาประมาณ 22.20 น.

7.51 งานวิจัยทองผาภูมิตะวันตกออกรายการสยามทูเดย์

โครงการ BRT ร่วมกับบริษัท ปตท. จำกัด (มหาชน) นำข้อมูลโครงการทองผาภูมิตะวันตกออกรายการ "สยามทูเดย์" โดยการถ่ายทำสารคดีสั้นเชิงอนุรักษ์ ในพื้นที่ชุดโครงการทองผาภูมิตะวันตก ต.ห้วยเขย่ง อ.ทองผาภูมิ จ.กาญจนบุรี เช่น พุ ปูราชินี เป็นต้น รายการดังกล่าวได้ออกอากาศไปแล้วทุกวันจันทร์ - ศุกร์ เวลา 18.00 - 18.55 น. ทางสถานีวิทยุโทรทัศน์กองทัพบกช่อง 5 (ททบ.5)

7.52 งานวิจัยบีอาร์ที่ออกรายการรักษ์ให้เป็นกับแอ๊ด คาราวบาว

บริษัท วอร์เนอร์ มิวสิค จำกัด เจ้าของรายการสารคดีเชิงดนตรี "รักษ์...ให้เป็น" นำโดย แอ็ด คาราบาว และ ทีมงาน ร่วมกับกลุ่ม ปตท. ได้เข้ามาถ่ายทำรายการในพื้นที่ตำบลห้วยเขย่ง อำเภอทองผาภูมิ จังหวัดกาญจนบุรี และ พื้นที่อำเภอขนอม จ.นครศรีธรรมราช ซึ่งเป็นพื้นที่ในชุดโครงการทองผาภูมิตะวันตก และชุดโครงการหาดขนอม-หมู่ เกาะทะเลใต้ โดยได้เน้นการฟื้นฟูตามแนวท่อก๊าซธรรมชาติไทย-พม่า การทำวิจัยในระดับโรงเรียน และการสนับสนุน งานวิจัยความหลากหลายทางชีวภาพในพื้นที่ดังกล่าว ออกอากาศแล้วทางสถานีโทรทัศน์สีช่อง 9 อสมท.

7.53 งานวิจัยบีอาร์ที่ออกรายการทุ่งแสงตะวัน

งานวิจัยในโครงการเด็กหมวกเขียว ซึ่งส่งเสริมเยาวชนทำวิจัยในท้องถิ่นในพื้นที่ อ.ขนอม จ.นครศรีธรรมราช ได้ถ่ายทอดออกสู่สาธารณชนในรายการทุ่งแสงตะวัน ตอน ปริศนาแห่ง "หอยกัน" และตอน "งานวิจัยเมฆ" ออกอากาศในวันเสาร์ที่ 10 พฤษภาคม 2551 เวลา 06.25 - 06.50 น.และในวันเสาร์ที่ 17 พฤษภาคม 2551 เวลา เดียวกัน ทางโมเดิร์น 9 โครงการเด็กหมวกเขียวนี้มุ่งสร้างทักษะการสังเกต การเก็บข้อมูล และการบันทึกข้อมูลใน ท้องถิ่นให้กับเยาวชน

7.54 เวทีเสวนา"เอเลี่ยนสปีชีส์"...ภัยร้ายความหลากหลายทางชีวภาพ

โครงการ BRT ร่วมกับศูนย์สื่อสารวิทยาศาสตร์ไทย จัดงานเสวนา **"เอเลี่ยนสปีชีส์"...ภัยร้ายความ หลากหลายทางชีวภาพ** เมื่อวันที่ 7 กรกฎาคม 2553 ณ อาคารสวทช. ถ.พระราม 6 โดยได้เชิญนักวิชาการที่ ทำการศึกษาเกี่ยวกับสิ่งมีชีวิตต่างถิ่นมาให้ความรู้เกี่ยวกับสิ่งมีชีวิตต่างถิ่น

การแพร่กระจายและระบาดอยู่ในระบบนิเวศต่างๆ ในประเทศไทย อาจนำไปสู่การสูญเสียความหลากหลาย ทางชีวภาพของประเทศ และยังสร้างความเสียหายในแง่เศรษฐกิจ และสุขภาพพลานามัยของคนไทยด้วย จึงได้มีการ จัดเวทีเสวนาครั้งนี้ขึ้น โดยในครั้งนี้ ดร.รัฐชา ชัยชนะ คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ ได้นำผลการ ศึกษาวิจัยเกี่ยวกับปลาซัคเกอร์ ซึ่งได้รับการสนับสนุนจากโครงการ BRT มานำเสนอและให้ความรู้แก่สื่อมวลชน เกี่ยวกับชีววิทยาของปลาซัคเกอร์ ปัจจัยการแพร่กระจาย และภัยซึ่งจะเกิดขึ้นจากการแพร่กระจายของปลาซัคเกอร์ นอกจากนี้ยังได้มีการนำเสนอเกี่ยวกับสิ่งมีชีวิตต่างถิ่นๆ ที่กำลังรุกรานในประเทศไทย เช่น จอกหูหนูยักษ์ การ เสวนาครั้งนี้เพื่อต้องการสร้างความตระหนักถึงปัญหาการรุกรานของสิ่งมีชีวิตต่างถิ่น รวมไปถึงการสร้างความเข้าใจ และแนวทางการปฏิบัติเพื่อไม่ให้เกิดการนำเข้า และปล่อยสิ่งมีชีวิตต่างถิ่นออกสู่สิ่งแวดล้อม

7.55 งานแถลงข่าว "องค์ความรู้กับการอนุรักษ์ความหลากหลายทางชีวภาพ"

โครงการ BRT แถลงข่าวความสำเร็จจากงานวิจัยด้านการอนุรักษ์ที่ได้รับการสนับสนุนจากโครงการ BRT เมื่อวันที่ 21 กันยายน 2553 ณ อาคาร สวทช. ถ.พระราม 6 โดยได้นำเสนอผลงานวิจัย 2 เรื่อง ได้แก่ เรื่อง การ ตรวจดีเอ็นเอ ระบุตัวลูกช้างเลี้ยง ป้องกันการสวมรอยสัตว์ป่า สู่ระบบเศรษฐกิจ โดย น.ส.ชมชื่น ศิริผันแก้ว มหาวิทยาลัยมหิดล ร่วมกับ น.สพ.อลงกรณ์ มหรรณพ สัตวแพทย์ผู้เชี่ยวชาญด้านการรักษาช้าง มาให้ความรู้เกี่ยวกับ วงจรธุรกิจท่องเที่ยว และการส่งออกช้างไทยไปต่างประเทศ ซึ่งบางครั้งอาจมีการลักลอบนำลูกช้างป่ามาสวมรอยเป็น ลูกช้างเลี้ยง ทั้งนี้งานวิจัยและพัฒนาชุดตรวจดีเอ็นเอเพื่อระบุตัวลูกช้างเลี้ยง จะช่วยตัดวงจรดังกล่าวได้ เพื่อป้องกัน การลดลงของประชากรช้างป่าในประเทศไทย และ เรื่องนาเกลืออ่าวไทย อนุรักษ์ไว้ให้นกชายเลน บทบาทของไทย กับการอนุรักษ์ระดับนานาชาติ โดย นายศิริยะ ศรีพนมยม มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี ได้ นำเสนอการศึกษาลักษณะสภาพภูมิประเทศของอ่าวไทยตอนในที่มีผลต่อความหลากหลายและความชุกชุมของนก ชายเลน ซึ่งพบว่านาเกลือเป็นพื้นที่รวมฝูงที่สำคัญ และเป็นปัจจัยสำหรับการพิจารณาเลือกพื้นที่หากินของนกชายเลน การอนุรักษ์นักช้ารอนุรักษ์พื้นที่หากินของนกชายเลนเท่ากับการอนุรักษ์นกชายเลนหลายชนิดที่กำลังอยู่ในสถานะใกล้สูญพันธุ์ และ สถานะใกล้สูญพันธุ์อย่างยิ่ง เช่น นกชายเลนปากซ้อน ที่ทั่วโลกพบไม่เกิน 120-220 คู่

7.56 พิธีส่งมอบทุ่นกำหนดเขตเพื่อการอนุรักษ์โลมาสีชมพู อ.ขนอม จ.นครศรีธรรมราช

เมื่อวันที่ 18 ธันวาคม 2552 โครงการ BRT ร่วมกับ บริษัท โททาล อีแอนด์พี ไทยแลนด์ มูลนิธิ โททาล สาธารณรัฐฝรั่งเศส และกรมทรัพยากรทางทะเลและชายฝั่ง กระทรวงทรัพยากรธรรมชาติและสิ่งแวดล้อม ได้มีพิธีส่ง มอบทุ่นกำหนดเขตทางทะเลเพื่อการอนุรักษ์โลมาสีชมพู แนวหญ้าทะเล และปะการังชายฝั่ง ตามโครงการจัดทำทุ่น กำหนดเขตทางทะเลเพื่อการอนุรักษ์โลมาสีชมพู แนวหญ้าทะเล และปะการังชายฝั่งขึ้นในพื้นที่ทะเลขนอม ให้แก่ ชุมชนชาวขนอม จังหวัดนครศรีธรรมราช เพื่อใช้กำหนดอาณาเขตแหล่งที่อยู่อาศัยของโลมาสีชมพู ซึ่งเป็นแหล่งที่ใหญ่ ที่สุดในประเทศไทย และเป็นจุดเริ่มต้นของการอนุรักษ์โลมาสีชมพู และทรัพยากรทางทะเลในบริเวณอำเภอขนอม จังหวัดนครศรีธรรมราช โดยร่วมกับชุมชนอย่างเป็นทางการ ณ โรงแรมราชาคีรี รีสอร์ทแอนด์สปา จังหวัด นครศรีธรรมราช

ทั้งนี้ การวางแนวทุ่นกำหนดเขตทางทะเลเพื่อ การอนุรักษ์ในครั้งนี้ ใช้ทุ่นทั้งหมด 30 ลูก ระยะทาง 12 กิโลเมตร ตลอดแนวชายฝั่งทะเล ตั้งแต่บริเวณเกาะผี ซึ่งเป็นเขตรอยต่อทะเลจังหวัดสุราษฎร์ธานีและจังหวัด นครศรีธรรมราช ไปจนถึงอ่าวท้องโหนดบริเวณที่มีโลมา สีชมพูอาศัยอยู่จำนวนมาก โดยชุมชนตำบลท้องเนียน อำเภอขนอม จังหวัดนครศรีธรรมราช มีบทบาทหลักใน การดูแลรักษาแนวทุ่นกำหนดเขตเพื่อการอนุรักษ์โลมาสี ชมพู แนวทุ่นดังกล่าวจะช่วยในการบอกแนวเขตที่อยู่ และแหล่งหาอาหารของโลมาสีชมพู ซึ่งเรือนำเที่ยว

สามารถมาจอดในบริเวณดังกล่าวเพื่อรอชมโลมาได้ นอกจากนี้ยังเป็นแนวเขตหลักที่กำหนดไว้เพื่อป้องกันเรือประมง และเรือขนส่งขนาดใหญ่ที่จะเข้ารบกวนในบริเวณที่มีโลมาสีชมพูอาศัยอยู่ โดยเฉพาะอย่างยิ่งเรือประมงขนาดใหญ่ที่ เป็นเรือประมงอวนรุน อวนลาก นอกจากจะรบกวน กีดขวางเส้นทางของโลมาสีชมพูจนเป็นสาเหตุหลักของการตาย ของโลมาแล้ว การใช้อวนลาก หรือรุนไปตามพื้นท้องทะเลเพื่อกวาดเอาทรัพยากรใต้ทะเล ยังส่งผลให้ความ หลากหลายทางชีวภาพใต้ทะเลลดลงอย่างรวดเร็วอีกด้วย

7.57 เส้นทางศึกษาธรรมชาติพุหนองปลิง

เพื่อใช้เป็นแหล่งเรียนรู้ของเยาวชน และชุมชน ต.ห้วยเขย่ง อ.ทองผาภูมิ จ.กาญจนบุรี

จากการดำเนินงานวิจัยภายใต้ชุดโครงการทองผาภูมิตะวันตก ได้ก่อให้เกิดองค์ความรู้เกี่ยวกับทรัพยากร ชีวภาพในพื้นที่ ต.ห้วยเขย่ง อ.ทองผาภูมิ จ.กาญจนบุรี อย่างมากมาย ดังนั้น เพื่อให้เกิดการอนุรักษ์และใช้ประโยชน์ จากองค์ความรู้ดังกล่าวอย่างต่อเนื่อง โครงการ BRT, บริษัท ปตท. จำกัด (มหาชน), องค์การอุตสาหกรรมป่าไม้ (ออป.) และ ชุมชน ต.ห้วยเขย่ง จึงได้ร่วมกันจัดทำเส้นทางศึกษาธรรมชาติพุหนองปลิง เพื่อใช้เป็นแหล่งเรียนรู้ทางธรรมชาติของเยาวชนและชุมชนในท้องถิ่น โดย โครงการ BRT และ บริษัท ปตท. จำกัด (มหาชน) ได้ให้การสนับสนุนในส่วนของ งบประมาณและองค์ความรู้ทางวิชาการ และมี ออป. เป็นผู้รับผิดชอบในการดำเนินงานก่อสร้างโดยมีชุมชนได้เข้ามามี ส่วนร่วมและสร้างกฎระเบียบในการดูแลรักษาเส้นทางศึกษาธรรมชาติและพื้นที่พุหนองปลิง

เส้นทางศึกษาธรรมชาติพุหนองปลิง มีความยาวประมาณ 600 กว่าเมตร ตัดผ่านจุดศึกษาธรรมชาติที่น่าสนใจ หลากหลายจุด อาทิ ดงห้อมช้าง ดงเฟิร์น ดงเตย ดงพืชอิงอาศัย และบริเวณบึงน้ำใหญ่ซึ่งเป็นจุดที่มีทัศนียภาพสวยงาม และมีชั้นซากของสิ่งมีชีวิตทับถมกันเป็นชั้นหนา เหมาะสำหรับการเรียนรู้เรื่องการย่อยสลาย เป็นต้น การจัดทำเส้นทาง ศึกษาธรรมชาติดังกล่าว ได้เริ่มดำเนินการตั้งแต่เดือนพฤษภาคม 2551 ปัจจุบันดำเนินการจัดทำเสร็จแล้วประมาณ 200 เมตร คาดว่าภายในเดือนสิงหาคม 2551 การดำเนินงานก่อสร้างเส้นทางศึกษาธรรมชาติดังกล่าวจะเสร็จสิ้นและพร้อม สำหรับการทดลองใช้เป็นแหล่งเรียนรู้ของเยาวชนและชุมชน ต.ห้วยเขย่ง

7.58 การพัฒนาเส้นทางศึกษาธรรมชาติ ระบบนิเวศ "พุ"

โครงการ BRT ร่วมกับบริษัท ปตท. จำกัด (มหาชน) พัฒนาแหล่งเรียนรู้ระบบนิเวศพุ ซึ่งเป็นระบบนิเวศ เฉพาะถิ่นในจังหวัดกาญจนบุรี โดยการสร้างเส้นทางศึกษาธรรมชาติพุหนองปลิง มาตั้งแต่ปี 2550 และได้มีการจัด กิจกรรมเพื่อให้เกิดการเรียนรู้แก่เยาวชนที่อยู่ชุมชนบ้านห้วยเขย่ง และเยาวชนจากที่อื่นๆ รวมไปถึงนักท่องเที่ยวที่มี ความสนใจการศึกษาธรรมชาติ

จุดเรียนรู้ระบบนิเวศ และป้ายชื่อสิ่งมีชีวิตที่สำคัญ การนำข้อมูลวิจัยและข้อมูลทรัพยากรชีวภาพที่เป็น จุดเด่นของระบบนิเวศพุ มากำหนดจุดเรียนรู้ เช่น จุดเรียนรู้สังคมพืชในพุ ที่สะท้อนให้เห็นถึงการปรับตัวของพืชในพุ จุดเรียนรู้พืชอิงอาศัย บ่งบอกถึงความสัมพันธ์และการพึ่งพาอาศัยกันของสิ่งมีชีวิตในพุ และจุดเรียนรู้เห็ด รา ซึ่งสะ ท้องถึงระบบย่อยสลายที่ช่วยสร้างความสมดุลให้แก่ระบบนิเวศพุ นอกจากนี้ยังมีป้ายชื่อพันธุ์พืช และพันธุ์สัตว์ที่ สำคัญในพุ เช่น ต้นเตยใหญ่ ไคร้ย้อย ห้อมช้าง เฟิร์นใบบาง และปูราชินี เป็นต้น การสร้างจุดเรียนรู้และป้ายชื่อนี้จะ ช่วยเพิ่มการทำความรู้จักและเรียนรู้บนเส้นทางศึกษาธรรมชาติได้มากขึ้น จากการสังเกตตามจุดที่ได้กำหนดไว้ให้

ค่ายนักพฤกษศาสตร์น้อย จากความร่วมมือด้านข้อมูลวิชาการเกี่ยวกับพรรณไม้ในพุหนองปลิง ทำให้ คณาจารย์จากภาควิชาพฤกษศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย เกิดความสนใจในพรรณไม้และ ระบบนิเวศที่มีความเฉพาะตัวแห่งนี้ จึงได้จัดให้มีค่ายนักพฤกษศาสตร์น้อย โดยได้นำนักเรียนจากโรงเรียนสาธิตแห่ง จุฬาลงกรณ์มหาวิทยาลัย จำนวน 50 คน เข้ามาศึกษาระบบนิเวศพุ บนเส้นทางศึกษาธรรมชาติพุหนองปลิงแห่งนี้ ซึ่ง เป็นการเปิดโลกการเรียนรู้ระบบนิเวศแหล่งใหม่ๆ และสิ่งมีชีวิตบางชนิดที่เยาวชนในกรุงเทพฯ ไม่เคยรู้จักหรือพบเห็น

อบรมมัคคุเทศก์น้อยพุหนองปลิง เพื่อให้เยาวชนในตำบลห้วยเขย่ง ได้รู้จักระบบนิเวศที่มีอยู่ในบ้านเกิด และสร้างสามารถเป็นมัคคุเทศก์น้อยนำชมระบบนิเวศพุ บนเส้นทางศึกษาธรรมชาติพุหนองปลิงได้ จึงได้มีการจัด กิจกรรมอบรมมัคคุเทศก์น้องพุหนองปลิงขึ้น โดยมี่เยาวชน 48 คน จาก 8 โรงเรียนในห้วยเขย่งเข้าร่วม ในการนี้ นอกจากจะให้เยาวชนได้รู้จักชื่อสิ่งมีชีวิตเด่นๆ ในพุหนองปลิง รวมทั้งจุดเรียนรู้ในพุหนองปลิงแล้ว ยังได้มีการฝึกฝน ทักษะการพูด การเรียนรู้บทบาทการทำหน้าที่มัคคุเทศก์ด้วย ซึ่งผลที่ได้รับนอกจากการพัฒนาตนเองแล้ว ยังเป็นการ ปลูกฝังสำนึกรักษ์บ้านเกิด และการรู้รักษาทรัพยากรชีวภาพอีกด้วย

7.59 พัฒนาจุดเรียนรู้บนเส้นทางศึกษาธรรมชาติพุหนองปลิง

เส้นทางศึกษาธรรมชาติพุหนองปลิง ในพื้นที่ ต. ห้วยเขย่ง อ.ทองผาภูมิ จ.กาญจนบุรี จากความร่วมมือ ระหว่างโครงการ BRT และ บริษัท ปตท. จำกัด (มหาชน) มีการก่อสร้างแล้วเสร็จตั้งแต่เดือนสิงหาคม 2551 มีผู้สนใจ เข้าเยี่ยมชมกว่าพันคน ประกอบด้วยคณะครูและนักเรียนจากโรงเรียนในพื้นที่ใกล้เคียง สถาบันการศึกษาต่างๆ และ ผู้สนใจทั่วไป ที่สนใจในการท่องเที่ยวเชิงนิเวศวิทยา

โครงการ BRT ได้เริ่มพัฒนาจุดเรียนรู้บนเส้นทางศึกษาธรรมชาติพุนองปลิง เพื่อให้ผู้เยี่ยมชมเส้นทางฯ ได้รับ ความรู้เกี่ยวกับระบบนิเวศพุ และสิ่งมีชีวิตที่อาศัยอยู่ในระบบนิเวศดังกล่าว โดยได้ดำเนินการติดป้ายจุดเรียนรู้ ข้อมูล สิ่งมีชีวิต และชื่อพรรณไม้ พรรณสัตว์ บนเส้นทางฯ แล้วเสร็จเมื่อเดือนมกราคม 2553

ทั้งนี้ การติดป้ายจุดเรียนรู้ ก่อให้เกิดกิจกรรมฝึกอบรมเยาวชนเพื่อศึกษาระบบนิเวศพุขึ้นหลายโครงการ เช่น กิจกรรมค่ายนักพฤกษศาสตร์น้อย จากโรงเรียนสาธิตแห่งจุฬาลงกรณ์มหาวิทยาลัย และกิจกรรมฝึกอบรมมัคคุเทศก์ น้อยพุหนองปลิง เป็นต้น

นักพฤกษศาสตร์น้อย จากโรงเรียนสาธิตแห่งจุฬาลงกรณ์มหาวิทยาลัย

7.60 เวทีชุมชน : การรวบรวมองค์ความรู้ด้านทรัพยากรทางทะเลและชายฝั่ง และภูมิปัญญาท้องถิ่น ชุมชนขนอม

ความหลากหลายทางชีวภาพที่พบค่อนข้างสูงในอำเภอขนอม จังหวัดนครศรีธรรมราช ที่มีมาตั้งแต่อดีตได้ ผสมผสานกับวิถีชีวิตความเป็นอยู่ของชาวบ้าน ชุมชนประมง จนกลายเป็นวิถีวัฒนธรรมที่ทรงคุณค่า เพื่อเก็บรวบรวม ภูมิปัญญาของผู้คนในชุมชนไม่ให้สูญหายไปกับปราชญ์รุ่นเก่า ด้วยเหตุนี้ โครงการ BRT จึงได้จัดทำเวทีชุมชน : การรวบรวมองค์ความรู้ด้านทรัพยากรทางทะเลและชายฝั่ง และภูมิปัญญาท้องถิ่นชุมชนขนอม อ.ขนอม จ.นครศรีธรรมราช ขึ้น เมื่อวันที่ 26 มีนาคม 2553 โดยร่วมมือกับกรม ทรัพยากรทางทะเลและชายฝั่ง โดยมีวัตถุประสงค์เพื่อให้ชุมชนขนอมและภาคส่วนอื่นๆ ที่เกี่ยวข้องในพื้นที่ ได้เข้ามามี ส่วนร่วมและเห็นความสำคัญในการเก็บรวบรวมองค์ความรู้ด้านดังกล่าว ซึ่งจะใช้เป็นฐานข้อมูลในการนำไปใช้ ประโยชน์และวิจัยด้านต่างๆ ต่อไป

ทั้งนี้ จากเวทีดังกล่าว สามารถเก็บข้อมูลทรัพยากรชีวภาพและภูมิปัญญาเบื้องต้น อาทิ นกที่พบในท้องถิ่น นกกระสาใหญ่ นกออก นกกวัก นกเป็ดน้ำ พืชสมุนไพรชนิดต่างๆ ต้นตายปลายเป็น เถามันเปรียง เถากำแพงเจ็ดชั้น ผักลาดหัวแหวน เป็นต้น พร้อมกันนี้ยังได้ข้อมูลเกี่ยวกับสถานที่ท่องเที่ยวทางธรรมชาติที่มีลักษณะเฉพาะตัวและคาด ว่าอาจสามารถพัฒนาเป็นแหล่งท่องเที่ยวเชิงนิเวศแหล่งใหม่ได้

การจัดเวที่ชุมชนครั้งนี้ มีชุมชนเข้าร่วมประมาณ 85 คน

7.61 การจัดประชุมเสนอผลงานกลุ่มงานวิจัยด้านนิเวศวิทยา

เมื่อวันที่ 31 มีนาคม 2553 ที่ผ่านมา โครงการ BRT ได้เชิญคณะนักวิจัยที่ได้รับทุนจากโครงการ BRT ที่ ดำเนินงานวิจัยด้านนิเวศวิทยามานำเสนอความก้าวหน้าของงานวิจัยด้านนิเวศวิทยา โดย Prof. Warren Y. Brockelman BIOTEC ที่ทำงานวิจัยเรื่องชะนีในพื้นที่แปลงศึกษาระยะยาวมอสิงโต อุทยานแห่งชาติเขาใหญ่มาอย่าง ต่อเนื่องเป็นระยะเวลายาวนานกว่า 12 ปี ได้มาเล่าให้ฟังถึงความสำเร็จของงานวิจัยที่มีผลกระทบต่อแวดวง นิเวศวิทยาเป็นอย่างมาก โดยเฉพาะในประเด็นเรื่องโลกร้อน นอกจากนี้ยังมี Dr. Philip D. Round ผู้เชี่ยวชาญเรื่อง นกจากมหาวิทยาลัยมหิดล Dr. George A. Gale และ Dr. Tommaso Savini จากมหาวิทยาลัยเทคโนโลยีพระจอม เกล้าธนบุรี นายวิรง จันทร จากมหาวิทยาลัยเกษตรศาสตร์ซึ่งศึกษาเรื่องอบเชยป่าและราที่เป็นปรสิตจำเพาะในพื้นที่ อุทยานแห่งชาติเขาใหญ่ และนางสาวรุ้งนภา พูลจำปา จาก WWF Thailand ศึกษาพฤติกรรมของชะนีและการเลือก ต้นไม้สำหรับใช้ร้องเพื่อการวางแผนอนุรักษ์ชะนีในอนาคต

นอกจากนี้ ยังได้เชิญผู้แทนจากสำนักวิจัยการอนุรักษ์ป่าไม้และพันธุ์พืช กรมอุทยานแห่งชาติ สัตว์ป่า และ พันธุ์พืช เข้ามาร่วมรับฟัง และให้ข้อเสนอแนะที่เป็นประโยชน์ด้วย

จากเวทีดังกล่าว ได้ข้อสรุปว่า งานวิจัยด้านนิเวศวิทยามีความสำคัญอย่างยิ่ง แต่ยังไม่เข้าถึงบุคคลทั่วไป เท่าที่ควร ดังนั้นจึงควรมีการประชาสัมพันธ์เผยแพร่ให้เป็นที่รับรู้ในวงกว้างมากยิ่งขึ้น

7.62 โครงการ BRT จัดประกวดภาพถ่ายความหลากหลายทางชีวภาพ

เนื่องในปีสากลแห่งความหลากหลายทางชีวภาพ และครบรอบ 15 ปี ของการดำเนินงานโครงการ BRT ในปี 2553 โครงการ BRT จึงได้จัดกิจกรรมการประกวดภาพถ่าย "สุดยอดช็อตเด็ด: ความหลากหลายทางชีวภาพใน ประเทศไทย" เพื่อกระตุ้นให้ประชาชนได้ตระหนักถึงความหลากหลายทางชีวภาพที่มีอยู่มากมายในประเทศไทยใน แง่มุมต่างๆ อาทิ ความหลากหลายของทรัพยากรชีวภาพ พืช สัตว์ จุลินทรีย์ ความหลากหลายของระบบนิเวศ และ ความหลากหลายทางชีวภาพที่เชื่อมโยงกับวิถีชีวิต เป็นต้น โดยการถ่ายทอดมุมมองด้านความหลากหลายทางชีวภาพ ผ่านเลนส์ และภาพถ่าย เพื่อถ่ายทอดความงดงามและคุณค่าของความหลากหลายทางชีวภาพไปสู่สังคมได้ง่ายและ

กว้างขวาง ซึ่งจะเป็นการช่วยเผยแพร่ให้ประชาชนทั่วไปได้มีโอกาสสัมผัสและเห็นความงดงามของสิ่งมีชีวิต ระบบ นิเวศ และวิถีชีวิต ที่รวมกันเป็นความหลากหลายทางชีวภาพที่มีอยู่ในประเทศไทย

ทั้งนี้ ผลงานภาพถ่ายที่ได้รับรางวัลสุดยอดช็อตเด็ด : ความหลากหลายทางชีวภาพในประเทศไทย จะถูก นำไปจัดแสดงเป็นนิทรรศการภาพ และเผยแพร่สู่ประชาชนทั่วไปผ่านช่องทางต่างๆ เพื่อให้สังคมได้สัมผัสมุมมองอัน งดงามของความหลากหลายทางชีวภาพ และหันมาตระหนักและเกิดจิตสำนึกการอนุรักษ์ความหลากหลายทาง ชีวภาพในประเทศไทย โดยขณะนี้ได้เปิดรับสมัครแล้วตั้งแต่วันที่ 1 มีนาคม ที่ผ่านมา ที่ http://www.brtprogram.com/contest/ มีผู้สนใจสมัครเข้าร่วมประกวดเป็นจำนวนมาก และจะประกาศผล ภาพถ่ายที่ได้รับรางวัลชนะเลิศในวันที่ 31 กรกฎาคม 2553

7.63 โครงการ BRT เชิญชวนผู้มีจินตนาการเข้าร่วมกิจกรรมประกวดสื่อเผยแพร่ "ความหลากหลาย ทางชีวภาพในประเทศไทย : ประกาศไว้ให้โลกรู้"

เนื่องในปีสากลแห่งความหลากหลายทางชีวภาพ และครบรอบ 15 ปี ของการดำเนินงานโครงการ BRT ในปี 2553 โครงการ BRT จึงได้จัดกิจกรรมการประกวดสื่อเผยแพร่ "ความหลากหลายทางชีวภาพในประเทศไทย ประกาศไว้ให้โลกรู้" เพื่อกระตุ้นให้ประชาชนได้ตระหนักถึงความหลากหลายทางชีวภาพที่มีอยู่มากมายในประเทศ ไทย โดยการเปิดโอกาสให้บุคคลทั่วไป ทั้งผู้ที่อยู่ในแวดวงความหลากหลายทางชีวภาพ และนิสิต/นักศึกษาด้าน วิศวกรรมศาสตร์ ศิลปกรรมศาสตร์ที่มีความรู้ด้านกลไก และการผลิตสื่อ ได้นำความรู้มาปรับใช้ในการสื่อสารองค์ ความรู้ด้านความหลากหลายทางชีวภาพในรูปแบบของสื่อชนิดต่างๆ อาทิ สิ่งประดิษฐ์ หุ่นยนต์ แอนนิเมชั่น สารคดี หนังสั้น มัลติมีเดีย และชุด interactive เป็นต้น ซึ่งการผสมผสานองค์ความรู้ด้านความหลากหลายทางชีวภาพ กับ การนำเสนอรูปแบบใหม่ๆ หรือกลไกแสง สี เสียง จะช่วยให้สามารถเผยแพร่ความรู้ความเข้าใจด้านความหลากหลาย ทางชีวภาพไปยังเยาวชน และประชาชนทั่วไปได้กว้างขวางมากขึ้น

ทั้งนี้ ผลงานสื่อเผยแพร่รูปแบบใหม่ที่ผ่านการประกวดทุกชิ้น จะถูกนำไปจัดแสดงในนิทรรศการต่างๆ ของ โครงการ BRT และเป็นสื่อการเรียนการสอนตามโรงเรียน และมหาวิทยาลัยต่างๆ เพื่อให้เยาวชน นิสิต นักศึกษา ได้ เรียนรู้องค์ความรู้ด้านความหลากหลายทางชีวภาพที่สนุกสนานและเข้าใจง่าย และเป็นแรงบันดาลใจในการศึกษา และอนุรักษ์ความหลากหลายทางชีวภาพในประเทศไทยต่อไป

โครงการประกวดสื่อฯ ได้เปิดรับสมัครแล้วตั้งแต่วันที่ 1 มีนาคม ที่ผ่านมา โดยผู้สมัครส่งรายละเอียด เกี่ยวกับชิ้นงานที่จะทำ ซึ่งคณะกรรมการดำเนินการจะคัดเลือกแนวคิดที่น่าสนใจ แนวคิดที่ผ่านการคัดเลือกจะได้รับ การสนับสนุนงบประมาณในการจัดทำ จากนั้นคณะกรรมการฯ จะตรวจเยี่ยมชิ้นงานที่ทำเสร็จแล้ว และจะประกาศ ผลชิ้นงานที่ได้รับรางวัลชนะเลิศในงานประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 14 ที่จะจัดขึ้นในเดือนตุลาคมนี้

7.64 โครงการ BRT จัดประกวด BRT the Star รุ่นที่ 2 "นักวิจัยรุ่นใหม่ เก่งวิชาการ มองกว้างไกล และใส่ใจเชื่อมโยง"

จากความสำเร็จและเสียงตอบรับเมื่อปีที่ผ่านมา โครงการ BRT จึงได้จัดโครงการประกวด BRT the Star เป็นปีที่ 2 ภายใต้คอนเซ็ปต์ "นักวิจัยรุ่นใหม่ เก่งวิชาการ มองกว้างไกล และใส่ใจเชื่อมโยง" โครงการนี้มี วัตถุประสงค์เพื่อสนับสนุนนักศึกษาที่ได้รับทุนทำวิทยานิพนธ์จากโครงการ BRT ให้มีโอกาสนำเสนอผลงานวิจัยในเวที ระดับชาติ เพื่อฝึกฝนทักษะ มุมมอง และการนำเสนอผลกระทบของงานวิจัยที่เกี่ยวข้องทั้งในและต่างประเทศ ในด้านต่างๆ ทั้งด้านเศรษฐกิจ สังคม และวิชาการ ตลอดจนงานวิจัยที่เกี่ยวข้องทั้งในและต่างประเทศ

ผู้ที่ได้การคัดเลือกเป็น BRT the Star นอกจากจะได้รับเงินรางวัลและโล่เชิดชูเกียรติแล้ว ยังจะได้รับการ สนับสนุนทุนการศึกษาในระดับที่สูงขึ้นหรือการทำวิจัยต่อเนื่องในสาขาที่ตนเองถนัด

7.65 แถลงข่าว กิ้งกือกระบอก 12 ชนิดใหม่ของโลก

วันที่ 11 กรกฎาคม 2552 โครงการ BRT ร่วมกับ อุทยานการเรียนรู้ (TK Park) เปิดตัวกิ้งกือกระบอก 12 ชนิดใหม่ของโลก โดย ศ.ดร.สมศักดิ์ ปัญหา และคณะ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ได้นำเสนอกิ้งกือกระบอกชนิดใหม่ของโลก 12 ชนิด เปิดเผยงานวิจัยด้านกิ้งกือ และการใช้ประโยชน์จากปุ๋ยมูลกิ้งกือ รวมถึงกิ้งกือไม่ใช่สัตว์ดุร้าย และไม่กัดคน

7.66 เสวนา น้ำลด ปลาหาย ตั้งรับอย่างไรกับสภาพเศรษฐกิจถดถอย

วันที่ 18 มีนาคม 2552 โครงการ BRT ร่วมกับ ศ.ดร.ยศ สันตสมบัติ คณะสังคมศาสตร์ มหาวิทยาลัยเชียงใหม่ หยิบยกข้อมูลจากการวิจัยการเปลี่ยนแปลงระบบนิเวศ และผลกระทบต่อความหลากหลาย ทางชีวภาพและภูมิปัญญาท้องถิ่นในแถบอนุภูมิภาคลุ่มน้ำโขง ขึ้นมาเป็นตัวอย่างของการพัฒนาเศรษฐกิจที่ขาดความรู้ ที่ได้ทำให้ผลกระทบต่ออู่ข้าวอู่น้ำของคนไทย และคนในลุ่มน้ำโขง

7.67 เสวนา มอสจิ๋ว คุณค่าไม่จิ๋ว

วันที่ 21 พฤษภาคม 2552 โครงการ BRT นำเสนอหลากประโยชน์ของพืชจิ๋ว หรือพืชกลุ่มไบรโอไฟต์ ทั้งมอส ลิ เวอร์เวิร์ต และฮอร์นเวิร์ต ที่มีประโยชน์ทางด้านสิ่งแวดล้อม วงการยา และในเชิงธุรกิจการส่งออก นำทีมเสวนาโดย ผศ. ดร.รสริน พลวัฒน์ ภาควิชาพฤกษศาสตร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย นางสาวกาญจนา วงค์กุณา และ นางสาวสุนทรี กรโอชาเลิศ นักศึกษาด้านไบรโอไฟต์ ภาควิชาชีววิทยา คณะวิทยาศาสตร์ มหาวิทยาลัยเชียงใหม่ พร้อมกับ ตัวอย่างผลิตภัณฑ์มอสประดับบ้านส่งออก โดยฝีมือเอกชนไทย

7.68 ป้ายสื่อความหมาย เส้นทางศึกษาธรรมชาติพุหนองปลิง

หลังจากได้ดำเนินการก่อสร้างเส้นทางศึกษาธรรมชาติพุหนองปลิงเสร็จในช่วงเดือนสิงหาคม 2551 รวม ระยะทาง 530 เมตร ใช้งบประมาณ 610,000 บาท โดยความร่วมมือระหว่างโครงการ BRT บริษัท ปตท. จำกัด (มหาชน) องค์การอุตสาหกรรมป่าไม้ และชุมชมบ้านท่ามะเดื่อ ทั้งนี้ เพื่อใช้เป็นแหล่งเรียนรู้ทางธรรมชาติของเยาวชน และชุมชนในตำบลหัวยเขย่ง อำเภทองผาภูมิ จังหวัดกาญจนบุรี

โครงการ BRT ได้นำข้อมูลวิจัยและข้อมูลทรัพยากรชีวภาพที่เป็นจุดเด่นของ "พุ" มากำหนดจุดเรียนรู้ เช่น จุดเรียนรู้สังคมพืชในพุ ที่สะท้อนถึงการปรับตัวของพืชในพุ จุดเรียนรู้พืชอิงอาศัย ที่บ่งบอกถึงความสัมพันธ์และการ พึ่งพาอาศัยกันของสิ่งมีชีวิตในพุ และจุดเรียนรู้เห็ดและรา ซึ่งสะท้อนถึงระบบย่อยสลายที่ช่วยสร้างความสมดุลให้แก่ ระบบนิเวศพุ

นอกจากนั้นยังได้จัดทำป้ายสื่อความหมายพันธุ์ไม้และพันธุ์สัตว์ที่สำคัญ ประมาณ 40 ป้าย เช่น ต้นเตยใหญ่ ไคร้ย้อย ชมพู่ป่า ปูราชินี อึ่งกรายหมอสมิท และกบอ่อง เป็นต้น ซึ่งมีรายละเอียดข้อมูลชื่อไทย ชื่อวิทยาศาสตร์ และ ข้อมูลเด่นเกี่ยวกับทรัพยากรแต่ละชนิด

แม้ว่าจะยังไม่ได้เปิดเส้นทางๆ ใช้อย่างเป็นทางการ แต่จนถึงปัจจุบันมีผู้สนใจเข้าเยี่ยมชมเส้นทางๆ แล้ว กว่า 1,000 คน ประกอบด้วย คณะครูและนักเรียน จากสถาบันการศึกษาต่างๆ และผู้สนใจทั่วไป

7.69 กิจกรรมการมีส่วนร่วมกับภาคประชาชน ด้านความหลากหลายทางชีวภาพ

เนื่องในปีสากลแห่งความหลากหลายทางชีวภาพ และครบรอบ 15 ปี ของการดำเนินงานโครงการ BRT ในปี 2553 โครงการ BRT จึงได้จัดกิจกรรมเพื่อกระตุ้นความตระหนักรู้เกี่ยวกับความหลากหลายทางชีวภาพ ในมุมมองของ ประชาชนทั่วไป รวมไปถึงนักวิชาการที่มีความสนใจในการสื่อสารมุมมองความหลากหลายทางชีวภาพสู่สาธารณชน

กิจกรรมประกวดภาพถ่าย "สุดยอดช็อตเด็ด: ความหลากหลายทางชีวภาพในประเทศไทย" เพื่อกระตุ้น ให้ประชาชนได้ตระหนักถึงความหลากหลายทางชีวภาพที่มีอยู่มากมายในประเทศไทยในแง่มุมต่างๆ อาทิ ความ หลากหลายของทรัพยากรชีวภาพ พืช สัตว์ จุลินทรีย์ ความหลากหลายของระบบนิเวศ และความหลากหลายทาง ชีวภาพที่เชื่อมโยงกับวิถีชีวิต เป็นต้น โดยการถ่ายทอดมุมมองด้านความหลากหลายทางชีวภาพผ่านเลนส์ และ ภาพถ่าย เพื่อถ่ายทอดความงดงามและคุณค่าของความหลากหลายทางชีวภาพไปสู่สังคมได้ง่ายและกว้างขวาง ซึ่งจะ เป็นการช่วยเผยแพรให้ประชาชนทั่วไปได้มีโอกาสสัมผัสและเห็นความงดงามของสิ่งมีชีวิต ระบบนิเวศ และวิถีชีวิต ที่ รวมกันเป็นความหลากหลายทางชีวภาพที่มีอยู่ในประเทศไทย ทั้งนี้จากภาพถ่ายที่ส่งประกวดกว่า 400 ภาพ ได้ผ่าน

การคัดเลือกตัดสินจากคณะกรรมการผู้ทรงคุณวุฒิ ทั้งด้านภาพถ่าย และด้านวิชาการ จนเหลือภาพที่ได้รับรางวัล ทั้งสิ้น 27 ภาพ และ**ภาพที่ได้รับรางวัลสุดยอดช็อตเด็ด ประจำปี 2553 ได้แก่ ภาพแถวหน้ากระดาน โดย** ดร.สุเมตต์ ปุจฉาการ

7.70 กิจกรรมประกวดสื่อเผยแพร่ "ความหลากหลายทางชีวภาพในประเทศไทย ประกาศไว้ให้โลกรู้" เปิดโอกาสให้บุคคลทั่วไป ทั้งผู้ที่อยู่ในแวดวงความหลากหลายทางชีวภาพ และนิสิต/นักศึกษา ได้นำความรู้มาปรับใช้ ในการสื่อสารองค์ความรู้ด้านความหลากหลายทางชีวภาพในรูปแบบของสื่อชนิดต่างๆ อาทิ สิ่งประดิษฐ์ แอนนิเมชั่น สารคดี หนังสั้น มัลติมีเดีย และชุด interactive เป็นต้น ซึ่งการผสมผสานองค์ความรู้ด้านความหลากหลายทาง ชีวภาพ กับการนำเสนอรูปแบบใหม่ๆ หรือกลไกแสง สี เสียง จะช่วยให้สามารถเผยแพร่ความรู้ความเข้าใจด้านความ หลากหลายทางชีวภาพไปยังเยาวชน และประชาชนทั่วไปได้กว้างขวางมากขึ้น โดยผลงานที่ส่งเข้าประกวดทั้งสิ้น 8 ชิ้นงาน ได้แก่

ผลงานที่ 1 Seed dispersal in climate change สื่อสารถึงการแพร่กระจายของเมล็ดพันธุ์พืช โดย กระบวนการทางธรรมชาติรูปแบบต่างๆ และผลของภาวะโลกร้อนที่ทำให้การกระจายของเมล็ดเปลี่ยนแปลงไปจาก เดิม

ผลงานที่ 2 ความหลากหลายของปูในท้องทะเลไทย ผลงานโมเดลที่แสดงถึงความหลากหลายของปูทะเล ในระบบนิเวศต่างๆ ตั้งแต่ระบบนิเวศชายหาด ป่าชายเลน หาดหิน และแนวปะการัง

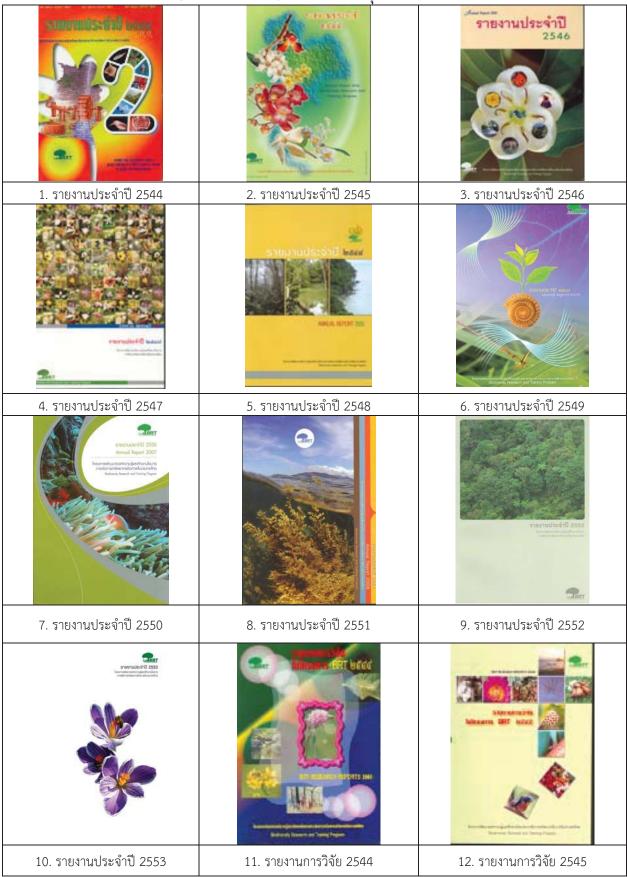
ผลงานที่ 3 อัดไว้ในเรซิ่น? พีชวงศ์ส้มกุ้ง จัดแสดงวิธีการเก็บรักษาตัวอย่างพืชโดยการอัดไว้ในเรซิ่น ซึ่งจะ ทำให้ตัวอย่างพรรณไม้คงความงดงามของรูปร่างและสีสัน โดยใช้พืชวงศ์ส้มกุ้งที่พบในภาคใต้ของประเทศไทย

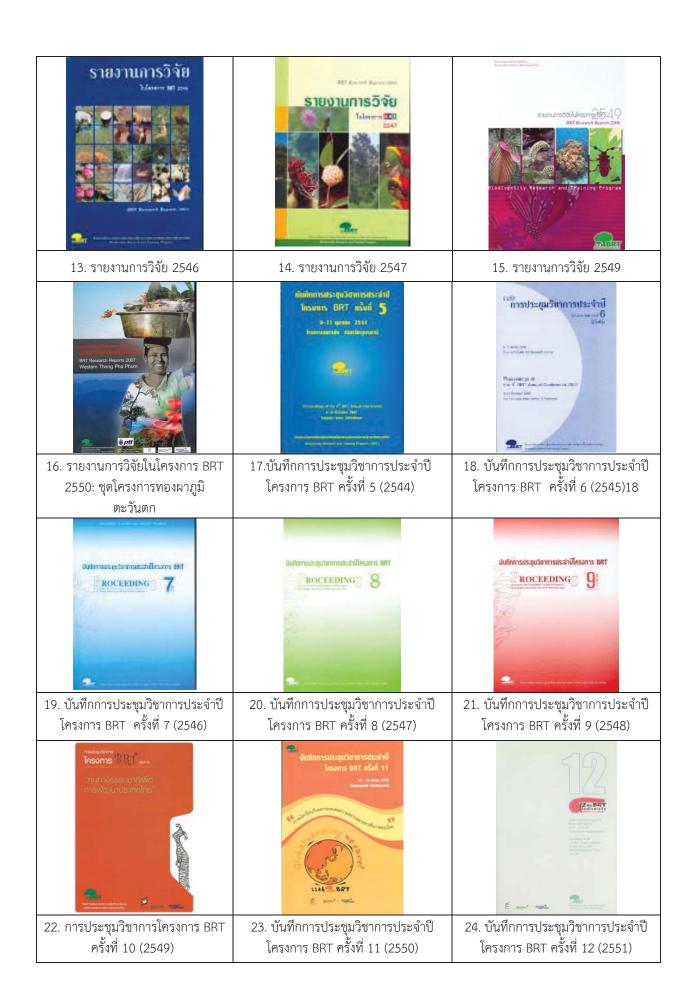
ผลงานที่ 4 Craymation สาหร่ายลดโลกร้อน การถ่ายทอดเรื่องราวประโยชน์ของสาหร่ายทะเลที่มีส่วน ช่วยในการดูดซับคาร์บอนไดออกไซด์และช่วยลดโลกร้อน ผ่านแอนนิเมชั่นที่สร้างสรรค์ตัวละครด้วยดินน้ำมัน

ผลงานที่ 5 One upon a time in Isan แผ่นดินภาคอีสานของไทยในอดีตเป็นแหล่งที่มีความอุดม สมบูรณ์ของสิ่งมีชีวิต เมื่อเวลาผ่านไปหลายร้อยล้านปี นักธรณีวิทยาได้ค้นพบความยิ่งใหญ่ผ่านซากฟอสซิลของ สิ่งมีชีวิตดึกดำบรรพ์จำนวนมาก

ผลงานที่ 6 ปฏิทินกาลเวลาความหลากหลายทางชีวภาพเครื่องมือในการช่วยเก็บข้อมูลความหลากหลาย ทางชีวภาพในท้องถิ่น

ผลงานที่ 7 ฉันอยู่นี่...ศัตรูที่รัก ด้วยความสัมพันธ์บนสายใยแห่งชีวิตที่ซึ่งธรรมชาติควบคุมธรรมชาติ การ รบกวนสมดุลแห่งชีวิตไม่ว่าทางใดก็ตามอาจส่งผลให้ระบบนิเวศเกิดความเปลี่ยนแปลงอย่างที่เราคาดไม่ถึง


ผลงานที่ 8 ไทรโต้รุ่ง-ชีวิตสัมพันธ์ 24 ชั่วโมง ความสัมพันธ์ของต้นไทรและสัตว์ป่านานาชนิด ที่ได้มีการ เกื้อกูลและพึ่งพาอาศัยกันตามวิถีแห่งธรรมชาติ ไทรเปรียบเหมือนกับตลาดโต้รุ่งในป่าที่เปิดให้บริการ 24 ชั่วโมง


โดยผลงานสื่อเผยแพร่ทั้ง 8 ชิ้นจะมีการพิจารณาตัดสินโดยกรรมการผู้ทรงคุณวุฒิ ในเดือนตุลาคม 2553 และผลงานทั้งหมดจะถูกนำไปจัดแสดงภายในงานประชุมวิชาการประจำปีโครงการ BRT ครั้งที่ 14 ณ จังหวัด อุบลราชธานี ระหว่างวันที่ 10-12 ตุลาคม 2553

7.71 โครงการเครือข่ายข้อมูลความหลากหลายทางชีวภาพโครงการ BRT

โครงการเครือข่ายข้อมูลความหลากหลายทางชีวภาพโครงการ BRT มีวัตถุประสงค์เพื่อรวบรวมข้อมูลชนิดพันธุ์ สิ่งมีชีวิตจากงานวิจัยและวิทยานิพนธ์ของโครงการ BRT ให้เป็นระบบ สืบค้นได้จากผู้สนใจ นิสิตนักศึกษา และ ผู้บริหาร สิ่งที่ได้ดำเนินการไปแล้วคือ ได้จัดจ้างบริษัทปรับปรุงระบบฐานข้อมูล ทำหน้าเว็บไซต์ และทำระบบสืบค้น ใหม่ให้เป็นมาตรฐานสากลมากยิ่งกว่าเดิม ที่สำคัญคือ ได้เพิ่มระบบการสืบค้นแบบ Advance Search ซึ่งจะช่วยให้ผู้ สืบค้นเข้าถึงข้อมูลได้ง่ายกว่าระบบเดิมที่ใช้การสืบค้นโดยใช้ชื่อของสิ่งมีชีวิตเพียงอย่างเดียว ปัจจุบันได้นำเข้าชนิด พันธุ์สิ่งมีชีวิตในฐานข้อมูลแล้วทั้งสิ้น 506 รายการ เผยแพร่แล้วใน http://www.brtprogram.com/tnbi และมี จำนวนชนิดพันธุ์ที่อยู่ระหว่างการปรับข้อมูลเพื่อนำเข้าฐานข้อมูลอีก 1,924 รายการ (ข้อมูล ณ มิถุนายน 2553)

7.72 รายงานประจำปี /รายงานการวิจัย / บันทึกการประชุมวิชาการประจำปี

7.73 บทคัดย่อโครงการวิจัยและวิทยานิพนธ์

7.74 BRT Magazine

45. BRT Newsletter ฉบับที่ 19 สิงหาคม 2549 "เปิดโลกสีคราม"

46. BRT Newsletter ฉบับที่ 20 ตุลาคม 2549 "ทุนทางธรรมชาติเพื่อ การพัฒนาประเทศไทย".

47. BRT Newsletter ฉบับที่ 21 ธันวาคม 2549 "หลากหลายเรื่องราวใน การประชุมวิชาการ ประจำปีโครงการ BRT ครั้งที่ 10"

48. BRT Newsletter ฉบับที่ 21 ฉบับ พิเศษ กุมภาพันธ์ 2551 "ขุมทรัพย์ทอง ผาภูมิ มรดกโลกผืนป่าตะวันตก"

49. BRT MAGAZINE ฉบับที่ 22 มีนาคม 2550 "เปิดประตูแห่งกาลเวลา ไขปริศนาแห่งชีวิต"

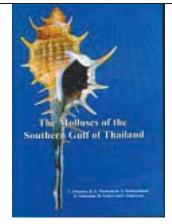
50. BRT MAGAZINE ฉบับที่ 23 กุมภาพันธ์ 2551 "ธรรมชาติกับภาวะ โลกร้อน"

51. BRT MAGAZINE ฉบับที่ 24 ตุลาคม 2551 "บนเส้นทางสู่ป่าเมฆ"

52. BRT MAGAZINE ฉบับที่ 25 พฤศจิกายน 2551 ชาร์ลส์ ดาร์วิน ชีวิต ที่อุทิศให้กับทฤษฎีวิวัฒนาการ

53. BRT MAGAZINE ฉบับที่ 26 ธันวาคม 2551 "ชีวิตและวิวัฒนาการ กับความหลากหลายทางชีวภาพใน ประเทศไทย"

54. BRT MAGAZINE ฉบับที่ 27ตุลาคม 2552-มีนาคม 2553"พุ พลอยเม็ดงามแห่งทองผาภูมิ ตะวันตก"



55. BRT MAGAZINE ฉบับที่ 28 เมษายน-กันยายน 2553 "สุดยอดซ็อต เด็ดความหลากหลายทางชีวภาพใน ประเทศไทย"

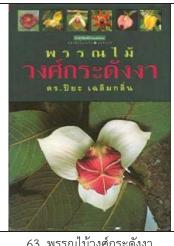
56. BRT MAGAZINE ฉบับที่ 29 กันยายน 2554 "ฟื้นฟูป่าคืนความ หลากหลาย ด้วยเทคนิคพรรณไม้ โครงสร้าง"

7.75 หนังสือ

57. The Molluscs of the Southern
Gulf of Thailand

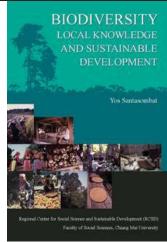
58. เห็ดและราในประเทศไทย.

59. การท่องเที่ยวเชิงนิเวศความ หลากหลายทางวัฒนธรรม และการ จัดการทรัพยากร

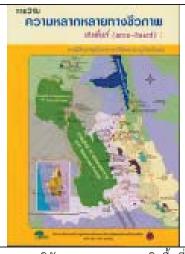

60. วิวัฒนาการ มนุษย์ และความ หลากหลายทางชีวภาพ

61. Forest for the future: Growing and Planting Native Trees for Restoring Forest Ecosystems

62. รายงานการวิจัยเชิงปฏิบัติการ การ จัดการป่าและทรัพยากรชีวภาพโดย ชุมชน: กระบวนการ กลไกการตัดสินใจ และระบบข้อมูล

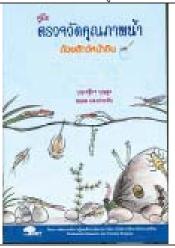

63. พรรณไม้วงศ์กระดังงา

64. บันทึกการประชุมแปลงศึกษา นิเวศวิทยาระยะยาว (LTERS) สำหรับ ติดตามตรวจสอบระบบนิเวศ

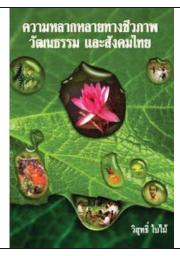

65. หอมกลิ่นดอกไม้ในเมืองไทย

66. Biodiversity: Local Knowledge and Sustainable Development

67. ซาไก ชนกลุ่มน้อยภาคใต้ของไทย

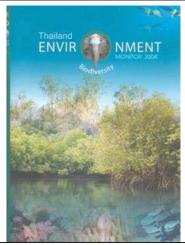

68. การวิจัยความหลากหลายเชิงพื้นที่ (area-based) กรณีศึกษาชุด โครงการวิจัยทองผาภูมิตะวันตก.

69. มองอนาคตความหลากหลายทาง ชีวภาพในประเทศไทย

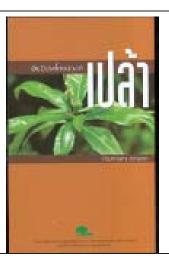


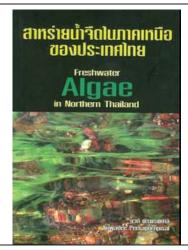
70. สัตว์ป่าไม่ใช่เครื่องประดับป่า

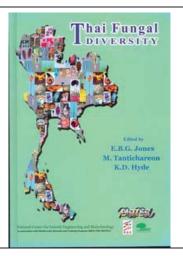
71. คู่มือตรวจวัดคุณภาพน้ำด้วยสัตว์ หน้าดิน.

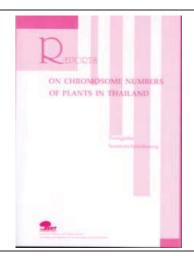


73. ความหลากหลายทางชีวภาพ วัฒนธรรม และสังคมไทย


74. สามสี:เรื่องของฉันที่เกี่ยวพันกับพุ




76. สถานการณ์สิ่งแวดล้อมไทย 2547

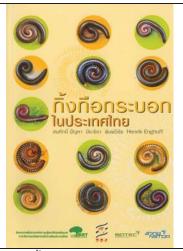

77. พืชมีประโยชน์วงศ์เปล้า

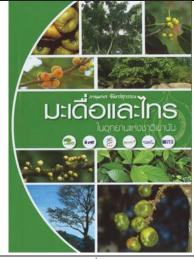

78. สาหร่ายน้ำจืดในภาคเหนือของ ประเทศไทย



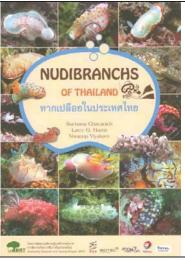
79. Thai Fungal Diversity

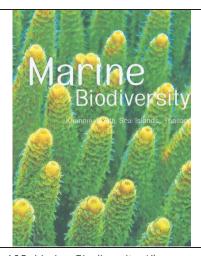
80. Reports on chromosome Numbers of Plants in Thailand

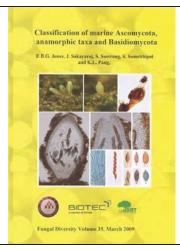


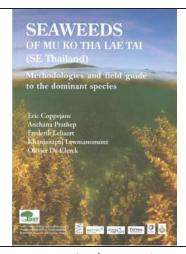

99. พรรณไม้ที่พบครั้งแรกของโลกใน เมืองไทย


 หอยทากบกในอุทยานแห่งชาติเขา นั้น


101. กิ้งกือกระบอกในประเทศไทย


102. มะเดื่อและไทร


103. แม่น้ำแห่งชีวิต


104. ทากเปลือยในประเทศไทย

105. Marine Biodiversity: Khanom-South Sea Island



106. Classification of marine Ascomycota, anamorphic taxa and Basidiomycota

107. Seaweeds of Mu Ko Tha Lae Tai (SE Thailand): Methodologies and field guide to the dominant species

112. ราก่อโรคในแมลงของประเทศไทย

รายงานผลการดำเนินงานส่วนที่ 3 การวิจัยเชิงพื้นที่ (Area-based research) ผลการดำเนินงานชุดโครงการหาดขนอม-เขานันระยะที่ 1 โดยความร่วมมือกับ ปตท. จำกัด (มหาชน) โครงการย่อยที่ 2 ชุดโครงการ หาดขนอมระยะที่ 1 มกราคม 2549-กรกฎาคม 2552

บทสรุปสำหรับผู้บริหาร

โครงการ BRT และกลุ่ม ปตท. ได้เล็งเห็นถึงความสำคัญด้านการเรียนการสอนสำหรับนักเรียน ที่มุ่งเน้นให้ นักเรียนได้มีโอกาสทำวิจัยด้วยการร่วมสังเกต ตั้งคำถาม ศึกษาทดลอง ไปจนถึงการสรุปและวิเคราะห์ผล เพื่อ เสริมสร้างแนวคิดในเชิงวิทยาศาสตร์ให้กับนักเรียนจากการเรียนรู้ด้านทรัพยากรธรรมชาติในท้องถิ่น โครงการ BRT จึงได้พัฒนาโครงการวิจัยระดับโรงเรียนโดยร่วมกับผศ.มัลลิกา เจริญสุธาสินี จากมหาวิทยาลัยวลัยลักษณ์ และครูใน ชุมชนขนอมอีก 7 โรงเรียน ทำโครงการวิจัยระดับโรงเรียนถึง 16 เรื่อง

นักเรียนที่เข้าร่วมในโครงการวิจัยระดับโรงเรียนนี้ได้เรียกกลุ่มตนเองว่า "เด็กหมวกเขียว" ได้เลือกทำโครงการวิจัยที่ตอบโจทย์ปัญหาท้องถิ่น ได้ถูกปลูกฝังจิตวิทยาศาสตร์ และจิตอนุรักษ์ โดยมีครูและนักเรียนตั้งโจทย์ วิจัยที่เกิดจากการสังเกตและจากการพบเห็นวิถีชีวิตชุมชนที่เกี่ยวพันกับทรัพยากรธรรมชาติในท้องถิ่น ตัวอย่างเช่น การศึกษาประชากรของหอยกันที่พบมากบริเวณป่าชายเลนและเป็นทรัพยากรทางเศรษฐกิจที่สำคัญของชุมชนบ้านท่า ม่วง นอกจากนี้ยังสร้างจิตสำนึกด้านการอนุรักษ์ทรัพยากรทางทะเลให้กับนักเรียน เช่น โครงการโลมา ที่ทำให้เด็ก รู้จักกับโลมาของพวกเขามากขึ้น

เยาวชนที่ร่วมโครงการได้มีโอกาสนำเสนอผลงานของตนเองมากมาย เช่นออกรายการทีวี รักษ์ให้เป็น ทุ่งแสง ตะวัน รายการวลัยลักษณ์ สู่สังคม เป็นต้น ได้ไปนำเสนอผลงานระดับชาติและนานาชาติ เช่น ได้นำเสนอผลงานใน งาน "Asia-Pacific GLOBE Learning Expedition Thailand 2007" Learning about Climate Change to Inspire the Next Generation of Scientists", The second Thai CloudSat Student Research Conference and Workshop, และ The Young Soil Doctor Student Conference เป็นต้น ได้มีการเผยแพร่ผลงานของชุด โครงการในวารสารScience World จำนวน 6 ตอน ผลงานวิจัยของนักเรียนก็เป็นที่โดดเด่นจนมีนักวิทยาศาสตร์จาก โครงการ GLOBE ประเทศสหรัฐอเมริกาเดินทางมาเยี่ยมที่โรงเรียน 2 โครงการคือ Prof. Dr. Elena Sparrow, Dr. Leslie Gordon และ Ms. Martha Kopplin จากโครงการ Seasons and Biomes และ Dr. David Brooks จาก โครงการ Pyranometer เป็นต้น

นักเรียนในโครงการศึกษาโลมาได้เข้าร่วมออกบูธในงานวันรักษ์โลมาที่จัดขึ้นที่อำเภอขนอม นักเรียนใน โครงการเด็กหมวกเขียวทุกโครงการได้เข้าค่ายขนอมนิรันดร์ในความทรงจำ ทำให้นักเรียนตระหนักถึงทรัพยากรอันมี ค่าและน่าหวงแหนของอำเภอขนอม จะเห็นได้ว่าโครงการประสานงานวิชาการชุดโครงการงานวิจัยระดับโรงเรียน อำเภอขนอม จ.นครศรีธรรมราช ได้มีผลกระทบต่อเยาวชนขนอม ทำให้เขาเป็นกลุ่มคนที่มีศักยภาพสูง มีจิต วิทยาศาสตร์ รักษ์บ้านเกิด และหวงแหนความหลากหลายทางชีวภาพของอำเภอขนอมอันมีอยู่อย่างมหาศาล

ผลการดำเนินงาน

โครงการย่อยที่ 2 ชุดโครงการวิจัยหาดขนอม จ. นครศรีธรรมราช เพื่อศึกษาความหลากหลายทางชีวภาพและและการจัดการทรัพยากรชีวภาพโดยชุมชน

ก. งานวิจัยระดับโรงเรียน

โครงการ BRT ได้สนับสนุนโครงการวิจัยระดับโรงเรียนโดยใช้โจทย์จากท้องถิ่นเป็นฐาน รวมทั้งสิ้น 16 โครงการมีผล การดำเนินงานทางวิชาการดังนี้

1. โครงการระบบนิเวศป่าไม้บริเวณเขาดาดฟ้า อ.ขนอม จ.นครศรีธรรมราช

นายเฉลิมชาติ เมฆแดง โรงเรียนอุดมปัญญาจารย์ อ.ขนอม จ.นครศรีธรรมราช

การศึกษานี้เป็นการศึกษาระบบนิเวศของป่าไม้บริเวณเขาดาดฟ้า อ.ขนอม จ.นครศรีธรรมราช ประกอบด้วยการศึกษาลักษณะ สภาพภูมิอากาศ ลักษณะทางกายภาพของดิน และไลเคนส์ที่พบ ได้ทำการติดตั้งสถานีตรวจัดอากาศอัตโนมัติ (Davis Vantage Pro II Weather Station) บริเวณยอดเขาดาดฟ้า ที่ระดับความสูง 690 เมตรจากระดับน้ำทะเล พบว่า อุณหภูมิ ต่ำสุดและสูงสุดบริเวณยอดเขาดาดฟ้ามีค่าเฉลี่ยเท่ากับ 21.0 °C และ 25.5 °C ซึ่งเป็นอุณหภูมิค่อนข้างต่ำมากเมื่อเทียบกับ อุณหภูมิที่อำเภอขนอม ได้ทำการเก็บตัวอย่างดินบริเวณเขาดาดฟ้าที่ระดับความสูงต่าง ๆ กัน 3 จุดได้แก่ที่ระดับความสูง 228 เมตร 469 เมตร และ 693 เมตรจากระดับน้ำทะเล พบว่า pH ในดินเป็นกรด (pH 4.5) ค่าการนำไฟฟ้าในดินเฉลี่ยเท่ากับ 150 µS/cm, ความชื้นในดิน 17% ปริมาณฟอสฟอรัสในดินปานกลาง (10 มก. P/ กก. ดิน) ปริมาณโพแทสเซียมในดินปานกลาง (100-300 มก. K/ กก. ดิน) ได้ทำการศึกษาไลเคนส์ พบไลเคนส์ทั้ง 3 แบบคือ crustose, foliose และ fruticose lichens

2. การติดตามและประมาณประชากรโลมาหลังโหนกที่ทะเลขนอม.

นายเกรียงศักดิ์ ประสิทธิ์ โรงเรียนชุมชนบ้านบางโหนด อ.ขนอม จ.นครศรีธรรมราช

โลมาหลังโหนก (Indo-Pacific Humpback dolphin, Sausa chinensis) เป็นโลมาที่หากินบริเวณอ่าวขนอม, เขาหลักซอ แหลมประทับ การหากินของโลมาบริเวณใกล้ฝั่งนี้เองทำให้โลมาติดอวนประมงชายฝั่งและทำให้จำนวนประชากรโลมาน้อยลง พวกเราจึงศึกษาประชากรโลมาที่อำเภอขนอม ผลจากการศึกษาจะช่วยสร้างจิตอนุรักษ์โลมาให้กับเราและชุมชนในพื้นที่ เราได้ ดำเนินการสำรวจโลมาระหว่างเดือน มีนาคม – พฤษภาคม ณ บริเวณปากน้ำขนอมและเขาหลักซอ โดยวิธีการกวาดตามมอง ไปในท้องทะเลจากทิศเหนือ ไปยังทิศใต้เป็นเวลา 10 นาทีแล้วพักจดบันทึก วันที่ เวลา รหัสแผนที่ เราพบโลมาหลังโหนก จำนวน 6-8 ตัว/ฝูงต่อการสำรวจ 1 ครั้ง จากสำรวจทำให้ทราบว่าหากน้ำลดต่ำมากจะไม่พบฝูงโลมา โดยเฉพาะในช่วงฤดูร้อน และโลมาหลังโหนกมีทั้งสีชมพูและสีเทาที่น่าสังเกตก็คือพบลูกโลมาในช่วงเดือนมีนาคม ซึ่งปลากระบอกมีจำนวนมาก

3. ความหลากหลายชนิดของไส้เดือนดิน กิ้งกือ และหอยทากตามความระดับความสูงจากระดับน้ำทะเล ในพื้นที่ บ้าน เปร็ต อ.ขนอม จังหวัดนครศรีธรรมราช

นางเกษร ก๋งอุบล นางฌาณิกา ซึ้งสุนทร และ นางโสภาภรณ์ นิตยาวงศ์ โรงเรียนบ้านเปร็ต อ.ขนอม จ.นครศรีธรรมราช

พื้นที่บ้านเปร็ต อ.ขนอม จังหวัดนครศรีธรรมราช มีลักษณะทางภูมิศาสตร์ประกอบไปด้วยเขาสูงไปถึงชายหาด ลักษณะป่าเป็น ป่าดิบแล้ง มีความหลากหลายของพืชพรรณมาก เป็นถิ่นที่อยู่อาศัยให้กับสัตว์นานาชนิด การวิจัยในปัจจุบันยังไม่มีการระบุแน่ ชัดในเรื่องความหลายหลายของสปีชีส์ของไส้เดือน กิ้งกือและหอยทากในพื้นที่ภาคใต้ ดังนั้นการศึกษาครั้งนี้ได้ทำการศึกษา วิจัยจำนวนไส้เดือน กิ้งกือ และ หอยทากในพื้นที่บ้านเปร็ตในระดับความสูงที่ต่าง ๆ กัน 4 จุดศึกษาคือ 46, 60, 85 และ 105 เมตรจากระดับน้ำทะเล ในเดือนมีนาคมและเดือนเมษายน พบว่า ในเดือนมีนาคมมีจำนวนไส้เดือน กิ้งกือและหอยทากอาศัย อยู่บริเวณ105 เมตรจากระดับน้ำทะเลมากที่สุด ในทางกลับกันในเดือนเมษายน เราพบจำนวนไส้เดือน กิ้งกือและหอยทากอาศัยอยู่ที่ 46 เมตรจากระดับน้ำทะเลจำนวนมากที่สุด จำนวนไส้เดือน กิ้งกือและหอยทากในเดือนเมษายนมีมากกว่าเดือน มีนาคม อาจจะเป็นเพราะว่าในช่วงเดือนเมษายนมีฝนตกบ่อย ทำให้อาหารอุดมสมบูรณ์ในระบบนิเวศ

4. การศึกษาความสัมพันธ์ภายในระบบนิเวศสวนยางพารา อ. ขนอม จ.นครศรีธรรมราช

นางเสาวลักษณ์ ก๋งอุบล โรงเรียนอุดมปัญญาจารย์ อ.ขนอม จ.นครศรีธรรมราช

ยางพาราเป็นพืชเศรษฐกิจที่นิยมปลูกกันมากในพื้นที่ทางภาคใต้ของประเทศไทยโดยเฉพาะอำเภอขนอม จ. นครศรีธรรมราช การศึกษาวิจัยความหลากหลายทางชีวภาพในระบบนิเวศของสวนยางพาราจึงเป็นงานที่มีความสำคัญ งานวิจัยนี้มุ่งศึกษาความหลากหลายของพืช สัตว์หน้าดิน แมลง และมด ในสวนยางพาราที่มีช่วงอายุของยางพาราแตกต่างกัน 3 ช่วงอายุคือ ช่วงอายุ 7-10 ปี, 10-15 ปี และ 15 ปีขึ้นไป ช่วงอายุละ 3 สวน ในระหว่างเดือนมีนาคม-พฤษภาคม 2551 พบว่า เราพบจำนวนชนิดมดและแมลงเยอะที่สุดในสวนยางพารา 7-10 ปี แต่พบจำนวนตัวของมดและแมลงเยอะที่สุดในสวนยาง 10-15 ปี ส่วนพืชนั้นเราพบจำนวนชนิดพืชเยอะที่สุดในสวนยางพารา 10-15 ปี แต่พบจำนวนต้นพืชเยอะที่สุดในสวนยาง

15 ปีขึ้นไป นี่แสดงว่าเมื่อสวนยางพาราเริ่มปลูกก็มีมดและแมลงย้ายเข้ามาอาศัย แต่เมื่ออายุของสวนยางพาราสูงมากๆ (15 ปีขึ้นไป) ก็จะมีเฉพาะมดและแมลงที่ปรับตัวเข้ากับสวนยางพาราเท่านั้น ที่อาศัยอยู่ ลักษณะดังกล่าวก็เกิดขึ้นกับพืช เพียงแต่พืช ใช้เวลาในการเกิดลักษณะดังกล่าวที่ช้ากว่ามดและแมลง

5. กะปิภูมิปัญญาท้องถิ่นของขนอม

นางกาญจนา พรหมคีรี โรงเรียนท้องเนียนคณาภิบาล ต.ท้องเนียน อ.ขนอม จ.นครศรีธรรมราช

กะปิเป็นเครื่องปรุงรสอย่างหนึ่งในชีวิตประจำวันของคนไทยทั่วทุกภาค คุณภาพกะปิของแต่ละแห่งจะมีความแตกต่างกันตาม คุณภาพของวัตถุดิบฤดูและกรรมวิธีในการผลิตกะปิ ใน การศึกษาครั้งนี้เน้นการศึกษาฤดูกาลที่จับกุ้งเคยมาทำกะปิ ซึ่งเป็นที่ทราบกันดีอยู่แล้วว่า กะปิเป็นสินค้า OTOP ที่มีชื่อเสียง ของอำเภอขนอม กรรมวิธีในการผลิตกุ้งเคยในแต่ละร้านค้าที่มีชื่อเสียงในอำเภอขนอมซึ่งแต่ละร้านที่มีชื่อเสียงอาจมีภูมิปัญญา ในการหมักกะปิไม่เหมือนกัน การนำเอากะปิมาแปรรูปและสูตรในการนำมาทำอาหารท้องถิ่นในเขตอำเภอขนอม พบว่า ชาวบ้านจับกุ้งเคยได้ในเดือนธันวาคม-กุมภาพันธ์ จากการไปสัมภาษณ์ชาวบ้านอำเภอขนอม พบว่า ที่บ้านแหลมประทับสูตร ในการทำกะปิคือ กุ้ง 1 ครกต่อเกลือเกล็ด 3 กำ ที่บ้านแขวงเภา มีสูตรในการทำกะปิ โดยใช้กุ้ง 3 กิโลกรัมต่อเกลือ 1 กิโลกรัม

6. การจัดทำระบบฐานข้อมูลความหลากหลายระดับชุมชนของโครงการวิจัยระดับโรงเรียนในเขต อ.ขนอม นายวิระ กระจาย โรงเรียนขนอมพิทยา อำเภอขนอม จ.นครศรีธรรมราช

นักเรียนได้ทำการพัฒนาระบบฐานข้อมูลงานวิจัยระดับโรงเรียนในเขตอำเภอขนอม โดยมีครูและผู้เชี่ยวชาญเฉพาะด้านคอยให้ คำปรึกษาแนะนำ นักเรียนจะได้รับการพัฒนาทักษะทางด้านการออกแบบและจัดทำระบบฐานข้อมูลจากการปฏิบัติจริงนอก ห้องเรียน และทำให้ข้อมูลที่ได้จากโครงการวิจัยต่างๆ ได้รับการบริหารจัดการที่มีประสิทธิภาพ แต่ละโครงการวิจัยมีหน้า เว็บไซต์สำหรับแสดงรายงานข้อมูลของแต่ละโครงการ ซึ่งจะประกอบไปด้วยกราฟ และ ตารางข้อมูลที่มีการเก็บทั้งหมด ซึ่ง นักวิจัย ครู นักเรียนที่เข้าร่วมโครงการสามารถเข้ามาบันทึกข้อมูลผ่านเว็บไซต์ สร้างกราฟได้ทันที และข้อมูลสรุปแบบ ออนไลน์ได้จากหน้าเว็บไซต์นี้ ปัจจุบันนี้มีโครงการวิจัยของนักเรียนอำเภอ ขนอมจำนวน 15 โครงการ

7. ชนิดและความหวานของแก้วมังกรที่อำเภอขนอม จังหวัดนครศรีธรรมราช

นางศิริจันทร์ ประสิทธิ์ โรงเรียนชุมชนบ้านบางโหนด ตำบลขนอม อำเภอขนอม จังหวัดนครศรีธรรมราช

ปัจจุบันชาวบ้านในอำเภอขนอมมีการปลูกแก้วมังกรกันอย่างแพร่หลาย ขนาดกล่าวกันว่าแก้วมังกรนี้อาจจะเป็นสินค้า OTOP ตัวใหม่ของอำเภอขนอมก็ว่าได้ เราจึงมีความสนใจที่จะศึกษาชนิดของแก้วมังกรในอำเภอขนอม ความหวานและความสัมพันธ์ ระหว่างชนิด ขนาดผลและความหวานเราพบว่าที่อำเภอขนอมมีแก้วมังกร 3 ชนิด คือ เนื้อสีขาว เนื้อสีแดง และเนื้อสีขมพู ทำ การเก็บผลแก้วมังกรได้ 3 สวนคือ สวนป้ายา สวนคุณพิทักษ์ และสวนป้าศรี แก้วมังกรเนื้อสีขาวมีความหวานมากที่สุด สวน คุณพิทักษ์แก้วมังกรหวานมากขึ้นเมื่อผลแก้วมังกรมีขนาด ใหญ่เกละน้ำหนักผลมากขึ้น

8. ความหลากหลายของหิ่งห้อยในสกุล Pteroptyx ณ คลองบางแพง อ.ขนอม จ.นครศรีธรรมราช

นายเกรียงศักดิ์ ปรีชา โรงเรียนท้องเนียนคณาภิบาล อ.ขนอม จ.นครศรีธรรมราช

การกระพริบแสงที่เป็นจังหวะพร้อมกันของหิ่งห้อยทำให้เกิดความประทับใจของผู้ที่พบเห็น ปัจจุบันมีนักท่องเที่ยวจำนวนมาก ให้ความสนใจหิ่งห้อยในแง่ของการท่องเที่ยวเชิงนิเวศ ดังนั้น การพัฒนาแหล่งท่องเที่ยว ในส่วนที่เป็นที่อยู่ของหิ่งห้อยใน หลายๆ พื้นที่ เช่น ทางภาคใต้ ที่จังหวัดนครศรีธรรมราช บริเวณคลองบางแพง อำเภอขนอมเป็นป่าชายเลนที่อุดมสมบูรณ์มี ความหลากหลายของพันธุ์ไม้ป่าชายเลน สัตว์ในป่าชายเลนหลายชนิด การวิจัยความรู้พื้นฐานของหิ่งห้อยในพื้นที่คลองบาง แพงเช่น การสำรวจการกระจายและติดตามการเปลี่ยนแปลงประชากรหิ่งห้อย จะเป็นประโยชน์ต่อการพัฒนาพื้นที่ดังกล่าว เป็นสถานที่ท่องเที่ยวอย่างยั่งยืนต่อไป ผลการศึกษาเบื้องต้นพบว่า หิ่งห้อยที่พบบริเวณคลองบางแพงมีประมาณ 2 ชนิด คือ Pteroptyx malaccae และ Pteroptyx valida โดยหิ่งห้อยสองชนิดนี้มีขนาดลำตัวที่แตกต่างกัน Pteroptyx malaccae จะมีขนาดใหญ่กว่า แต่ลักษณะทั่วไปเช่น สีของลำตัว บริเวณที่พบปล่องเรืองแสง นั้นคล้ายกันมาก หิ่งห้อยที่ทำการศึกษาส่วน มักพบอยู่บริเวณปลายยอดของต้นโกงกาง และจะพบบริเวณฐานพุ่มน้อยกว่าบริเวณอื่น ๆ และหิ่งห้อยที่จับมาทำการนับ อัตราส่วนเพศส่วนใหญ่เป็นหิ่งห้อยเพศผู้

9. ความหลากหลายของลูกน้ำยุง Aedes sp. และ Culex sp. ในพื้นที่สวนยางและสวนผลไม้อำเภอขนอม จ. นครศรีธรรมราช

นางสาวกัลยา นิ่มดำ โรงเรียนเกียรติขนอมศึกษา หมู่ 9 ต.ขนอม อ.ขนอม จ.นครศรีธรรมราช

การศึกษานี้มุ่งที่จะเปรียบเทียบความหลากหลายของลูกน้ำยุงในพื้นที่สวนยางและสวนผลไม้ และรอบๆ บ้านเรือนในพื้นที่ ดังกล่าว ที่อำเภอขนอม จังหวัดนครศรีธรรมราช เราได้ทำการศึกษาระหว่างเดือนกุมภาพันธ์ถึงเดือนพฤษภาคม 2551 พบว่า ค่าดัชนีภาชนะ ดัชนีบ้าน และ Breteau Index สูงที่สุดในเดือนมีนาคม เราพบ Ae. aegypti ในบ้านมากกว่านอกบ้าน Ae. albopictus และ Culex spp. บริเวณนอกบ้านสูงกว่าในบ้าน ลูกน้ำยุงทุกชนิดชอบภาชนะสีเข้มมากกว่าสีสว่าง และชอบ ภาชนะที่มนุษย์ทำขึ้นมากกว่าวัสดุธรรมชาติ Ae. aegypti และ Culex spp.พบในภาชนะดินเผามากกว่าภาชนะพลาสติก แต่ Ae. albopictus พบ.ภาชนะพลาสติกมากกว่าภาชนะดินเผา Ae. aegypti พบที่สวนผลไม้มากกว่าสวนยางพารา แต่ Ae. albopictus และ Culex spp. พบบริเวณสวนยางพารามากกว่าสวนผลไม้ นี่แสดงว่ายุงแต่ละชนิดชอบอาศัยในภาชนะต่างกัน และในบริเวณที่ต่างกัน

10. การศึกษาความหลากหลายของนักท่องเที่ยวขนอม จังหวัดนครศรีธรรมราช

นางสาวิตรี รัตนะยามะ โรงเรียนเกียรติขนอมศึกษา อ.ขนอม จ.นครศรีธรรมราช

อำเภอขนอม เป็นอำเภอที่มีชายหาดที่สวยงามและ ชายหาดยาวที่สุดในจังหวัดนครศรีธรรมราช ชายหาดที่มีชื่อเสียงมากใน ปัจจุบันคือหาดในเพลา ลักษณะหาดเป็นแนวยาวโค้ง มีภูเขาล้อมรอบ หาดนี้จะมีนักท่องเที่ยวจากต่างประเทศเข้ามาท่องเที่ยว รวมถึงมาซื้อบ้าน (เช่าระยะยาว) มากที่สุด การศึกษาครั้งนี้ได้ทำแบบสอบถามและสัมภาษณ์ชาวบ้านและนักท่องเที่ยวว่าสนใจ จะทำกิจกรรมอะไรที่ขนอม อยากซื้อสินค้าท้องถิ่นอะไรเป็นของฝากกลับบ้าน พบว่า นักท่องเที่ยวส่วนใหญ่เป็นคนไทย อายุ 20-29 ปี มาโดยพาหนะส่วนตัว ทราบเกี่ยวกับอำเภอขนอมจากการบอกเล่าของเพื่อนๆและครอบครัว กิจกรรมที่ชอบมาก ที่สุดคือการดำน้ำดูปะการัง และอยากให้มีสินค้า OTOP ของขนอมออกมาจำหน่ายให้กับนักท่องเที่ยวซื้อเป็นของฝากเพื่อน และครอบครัว

11. การเปลี่ยนแปลงความหนาแน่นประชากร และขนาดของหอยกัน (*Polymesoda* sp.) ณ บ้านท่าม่วง อ.ขนอม จ. นครศรีธรรมราช

นางสถาพร ภัทรวังฟ้า โรงเรียนบ้านท่าม่วง อ.ขนอม จ.นครศรีธรรมราช

หอยกัน (marsh clams, Polymesoda erosa) เป็นหอยสองฝาที่พบในบริเวณป่าชายเลน หอยชนิดนี้เป็นทรัพยากรที่สำคัญ ของชุมชน ควรมีการจัดการเพื่อให้สามารถใช้ได้อย่างยั่งยืน แต่ชุมชนยังไม่มีข้อมูลพื้นฐานเกี่ยวกับหอยชนิดนี้ การศึกษานี้ มุ่งเน้นให้นักเรียน ได้เรียนรู้เกี่ยวกับการเปลี่ยนแปลงประชากรของหอยกันในช่วงปี ได้จัดตั้งจุดศึกษาถาวร กว้าง 30 เมตร ขึ้น ในบริเวณที่พบหอยกันชุกชุม สำรวจประชากรของหอยกันโดยสุ่มเก็บโดยใช้กรอบขนาด 50 x 50 เซนติเมตร 3 เส้นทาง เส้นทางละ 5 กรอบ นับจำนวนหอยกันทั้งหมด วัดความกว้าง ความยาว และความสูงของหอยกันแต่ละตัว พบว่าหอยกันมี ความหนาแน่นของหอยกันน้อยที่สุดในเดือนมีนาคมและมากที่สุดในเดือนสิงหาคม หอยกันมีการกระจายตัวแตกต่างกันโดยอยู่ ใกล้คลองบางแพงในเดือนสิงหาคม แต่อยู่ไกลจากคลองบางแพงในเดือนเดือนกุมภาพันธ์ มีนาคม และพฤษภาคมทั้งนี้อาจเป็น เพราะความเค็มของน้ำในคลองบางแพงที่แตกต่างกันตามปริมาณน้ำฝน

12. การศึกษาผลของภูมิอากาศและฤดูกาลต่อความหลากหลายของลูกน้ำยุง Aedes sp. และ Culex sp.

นายปิยะ พละคช โรงเรียนขนอมพิทยา 93 หมู่ 12 ต.ขนอม อ.ขนอม จ.นครศรีธรรมราช

ปัจจุบันนี้โรคไข้เลือดออกยังเป็นปัญหาสำคัญของกระทรวงสาธารณสุข โดยเฉพาะอย่างยิ่งในภาคใต้ของประเทศไทย การให้ โรงเรียนและชุมชนมีส่วนร่วมในการศึกษาเกี่ยวกับลูกน้ำยุง จึงมีความสำคัญเป็นอย่างยิ่ง เราได้ทำการศึกษาระหว่างเดือน กรกฎาคม 2550 ถึงเดือนพฤษภาคม 2551 พบว่า ค่าดัชนีภาชนะ ดัชนีบ้าน และ Breteau Index สูงที่สุดในเดือนกรกฎาคม เราพบ Ae. aegypti และ Culex spp.นอกบ้านมากกว่าในบ้าน Ae. albopictus บริเวณในบ้านสูงกว่านอกบ้าน ลูกน้ำยุงทุก ชนิดพบมากในภาชนะที่ไม่มีฝาปิดมากกว่ามีฝาปิด, ภาชนะสีเข้มมากกว่าสีสว่าง, ภาชนะที่มนุษย์ทำขึ้นมากกว่าวัสดุธรรมชาติ

และภาชนะดินเผามากกว่าวัสดุธรรมชาติ จำนวนผู้ป่วยไข้เลือดออกที่อำเภอขนอมเพิ่มขึ้นเมื่ออุณหภูมิเฉลี่ยสูงขึ้น เปอร์เซ็นต์ ความชื้นสัมพัทธ์ต่ำลง ปริมาณน้ำฝนลดลง และความเร็วลมเพิ่มขึ้น

13. การศึกษาการเปลี่ยนแปลงสภาพอากาศจากข้อมูลอากาศและโครงสร้างของเมฆ

นางเดือนนภา คงเพชรและนส.สุวลักษณ์ แซ่โย้ โรงเรียนชุมชนบ้านบางโหนด อ.ขนอม จ.นครศรีธรรมราช

งานวิจัยนี้เป็นการศึกษาความสัมพันธ์ระหว่างชนิดเมฆและปริมาณเมฆปกคลุมต่อปริมาณรังสียูวีระหว่างที่ดาวเทียม CloudSat เคลื่อนผ่านบริเวณโรงเรียนชุมชนบ้านบางโหนด อำเภอขนอม จังหวัดนครศรีธรรมราช โดยผู้วิจัยได้เก็บข้อมูล อากาศจากสถานีตรวจวัดอากาศอัตโนมัติ Davis Vantage Pro II Plus และเก็บข้อมูลบรรยากาศและเมฆตามวิธีการของ CEN ตั้งแต่วันที่ 1 พฤศจิกายน 2550 ถึง 30 เมษายน 2551 จากผลการศึกษาพบว่า เมฆคิวมูลัส (Cumulus) และเมฆกระจายตัว (Scattered) เป็นชนิดเมฆและปริมาณเมฆปกคลุมที่พบบ่อยที่สุดในระหว่างที่ดาวเทียมเคลื่อนผ่านบริเวณโรงเรียน ปริมาณ รังสียูวีเพิ่มขึ้นในช่วงเดือนมีนาคม และเมษายน ปริมาณรังสียูวีมีความแตกต่างตามชนิดเมฆและปริมาณเมฆปกคลุม

14. ความหลากหลายทางชีวภาพ ความชุกชุม และช่วงเวลาวางไข่ของปลาที่จับได้ในเขตอำเภอขนอม จังหวัด นครศรีธรรมราช

นางจินตนา บุญฤกษ์ โรงเรียนบ้านท่าม่วง อำเภอขนอม จ.นครศรีธรรมราช

การศึกษานี้มุ่งศึกษาความหลากหลายทางชีวภาพ ความชุกชุม และช่วงเวลาวางไข่ของปลาทะเลที่จับได้ในเขตอำเภอขนอม โดยไปสำรวจข้อมูล ณ แพปลา ตลาดปลา และชุมชนชาวประมงรายย่อย สำรวจชนิดและจำนวนของปลาที่ชาวประมงจับได้ เก็บข้อมูลอัตราส่วนเพศ ขนาดของปลา ข้อมูลการจับปลาของชาวประมง ราคา/ต่อกิโลของปลาแต่ละชนิด เพื่อศึกษาการ กระจายตัว การเปลี่ยนแปลงของจำนวนประชากร ได้เก็บข้อมูลปลาตั้งเดือนกรกฎาคม พ.ศ. 2550 ถึงเดือน เมษายน พ.ศ. 2551 พบชนิดของปลาทั้งหมดจำนวน 79 ชนิด พบที่ปลาที่พบเฉพาะที่แพปลาจำนวน 33 ชนิด ปลาที่พบเฉพาะที่ตลาดปลา 21 ชนิด และมีปลาที่พบทั้งที่แพปลาและตลาดปลาจำนวน 25 ชนิด ซึ่งปลาที่ไม่พบ ณ ตลาดปลา เดือนพฤศจิกายน ปี 2550 พบจำนวนปลามากที่สุดจำนวน 33 ชนิด

15. ลักษณะดินป่าชายเลน และสัตว์ไม่มีกระดูกสันหลังขนาดใหญ่ ที่คลองบางแพน

นางสถาพร ภัทรวังฟ้า โรงเรียนบ้านท่าม่วง อ.ขนอม จ.นครศรีธรรมราช

การศึกษานี้มุ่งศึกษาคุณภาพน้ำและดินที่คลองบางแพง อำเภอขนอม จังหวัดนครศรีธรรมราช ได้ทำการศึกษา คุณภาพน้ำและดินที่ 6 จุดศึกษา ได้ทำการวัดคุณภาพน้ำดังนี้ อุณหภูมิ, ความโปร่งแสง, ความเป็นกรดเบส, ค่าการนำ ไฟฟ้า และความเค็มแต่ละจุด ทำ 3 ซ้ำ ได้วัดคุณสมบัติของดิน ดังนี้ ความเป็นกรดเบส ค่าการนำไฟฟ้า ความเค็ม และความชื้นในดิน พบว่าจุดศึกษาน้ำผุดธรรมชาติน้ำใสที่สุด ส่วนเดือนตุลาคม มีน้ำขุ่นมากเนื่องจากเดือนนี้มีฝนตก หนัก บริเวณใกล้ปากน้ำมีน้ำขุ่นมาก เค็มมากและมีค่าการนำไฟฟ้าสูงที่สุดเนื่องจากติดทะเล เป็นแหล่งอุตสาหกรรม และบ้านคนเป็นส่วนใหญ่ อุณหภูมิน้ำสูงสุดในเดือนเมษายน ค่าการนำไฟฟ้าสูงที่สุดในเดือนธันวาคมและต่ำที่สุดใน เดือนตุลาคมเนื่องจากมีฝนตกหนัก ดินป่าชายเลนและบ่อน้ำผุดมีเปอร์เซ็นความชื้นในดินสูงกว่าจุดอื่นๆ เนื่องจากดิน เลนอุ้มน้ำมากและมีชากใบไม้ทับถม ดินป่าชายเลน มีค่าการนำไฟฟ้าสูงที่สุด เนื่องจากเป็นดินเลนมีชากพืชชากสัตว์ ทับถมอยู่มาก ดินที่สะพานบ้านดอนเคี้ยมมีค่าความเป็นกรดด่างสูงที่สุด เนื่องจากบริเวณนี้มีการทิ้งขยะและน้ำเสีย จากบ้านเรือน

ข. การอนุรักษ์และจัดการทรัพยากรชีวภาพในท้องถิ่น

1. เปิดตัวโครงการ "เด็กหมวกเขียว"

หลังจากที่ได้พัฒนาโจทย์วิจัยระดับโรงเรียนกับคุณครูเรียบร้อยแล้วงานวิจัยก็เริ่มต้นขึ้น โดยมีข้อสังเกตว่าน่าจะมี การสร้างภาพลักษณ์ที่ดีให้กับครูและนักเรียนทั้ง 16 โครงการ รวมทั้งสิ้นเกือบ 100 คนที่ทำงานวิจัยในท้องถิ่น รวมทั้งประกาศให้ผู้บริหารโรงเรียน และผู้บริหารการศึกษาส่วนท้องถิ่น และเขตการศึกษาได้ทราบความเป็นมา เป็นไปของงานวิจัยระดับโรงเรียน จึงได้ตั้งชื่อกลุ่มเยาวชนที่ทำงานดังกล่าวว่า "เด็กหมวกเขียว" พร้อมด้วยการ สร้างโลโก้ของกลุ่มเป็นภาพเด็กใส่หมวกสีเขียวที่มีมือถือหนังสือและอุปกรณ์วิทยาศาสตร์ สื่อถึงการจดบันทึกและ การเก็บข้อมูล ส่วนหมวกสีเขียวสื่อถึง จิตวิญญาณของการอนุรักษ์และความเป็นอิสระ โดยมีการจัดแถลงข่าว เพื่อเปิดตัวโครงการ "เด็กหมวกเขียว" เมื่อวันที่ 20 กุมภาพันธ์ 2551 เพื่อให้ทุนแก่ครูทุนละ 5,000 บาท เพื่อ

นำไปทำงานกับเยาวชนต่อไป โดยมีนักข่าวมาเข้าร่วมเผยแพร่ผลงาน เช่น ไข่นุ้ยคุยข่าว พร้อมด้วยตัวแทนของ ท้องถิ่น เช่น ชมรมอนุรักษ์ทรัพยากรชีวภาพในอำเภอขนอมและชมรมเสียงเด็ก ได้เข้ามารับทราบข้อมูลข่าวสาร ของโครงการ เด็กหมวกเขียวนี้ด้วย ทำให้งานวิจัยระดับโรงเรียนเป็นที่รู้จักในท้องถิ่นและมีการร่วมงานและขยาย งานมากขึ้นต่อไป

2. แอ๊ดคาราบาว&ปตท. ประชาสัมพันธ์ผลงานโครงการ "เด็กหมวกเขียว"

โครงการวิจัยเด็กหมวกเขียวทั้ง 16 โครงการ ดำเนินงานมาได้ระดับหนึ่ง ปรากฏผลงานวิจัยที่น่าสนใจ เช่น เรื่องหอยกัน, เมฆ, ปลา และโลมา ซึ่งเป็นรากฐานเศรษฐกิจชุมชนของที่นั่น บริษัท ปตท. จำกัด (มหาชน) จึงได้นำ ผลงานวิจัยโครงการดังกล่าวเผยแพร่ประชาสัมพันธ์ในรายการ "รักษ์ให้เป็น" ของแอ๊ด คาราบาว สร้างความ ภาคภูมิใจให้กับเยาวชน และชาวบ้านในพื้นที่อย่างยิ่ง ทำให้เขาหวงแหนทรัพยากรชีวภาพในพื้นที่ยิ่งขึ้น

3. รายการทุ่งแสงตะวัน & ปตท. ประชาสัมพันธ์ผลงานโครงการ "เด็กหมวกเขียว"

จากความภาคภูมิใจของคนขนอมผ่านรายการ "รักษ์ให้เป็น" บริษัท ปตท. จำกัด (มหาชน) ได้ ประชาสัมพันธ์ผลงานโครงการ "เด็กหมวกเขียว" อีกครั้งผ่านรายการทุ่งแสงตะวัน ออกอากาศ 2 ครั้ง ในเรื่อง "ปริศนาแห่งหอยกัน" และ "งานวิจัยเมฆ" ทำให้ชุมชนขนอมยิ่งภาคภูมิใจในลูกหลานของเขามากยิ่งขึ้น

4. โรงเรียนชุมชนบ้านบางโหนดได้รับเลือกเข้าโครงการ Cloudsat

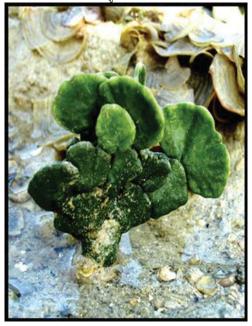
จากการติดตั้งสถานีตรวจวัดอากาศอัตโนมัติ ที่โรงเรียนชุมชนบ้านบางโหนด ซึ่งเป็นโรงเรียนในฝันของ ปตท. เด็กนักเรียนได้เก็บข้อมูลอากาศและดูเมฆตามโพรโตคอลของ GlOBE จนกระทั่งมีความเชี่ยวชาญและแม่นยำ ได้ รับคำชมเชยจากนักวิทยาศาสตร์จากองค์การนาซ่าอยู่บ่อยครั้งในเรื่องความขยันเก็บข้อมูล และเก็บตรงเวลา ทำให้ โรงเรียนชุมชนบ้านบางโหนดเป็น 1 ใน 10 โรงเรียนที่ได้รับคัดเลือกเข้าโครงการ Cloudsat โดยได้รับทุนจาก สสวท. สนับสนุนการติดตามการเปลี่ยนแปลงภูมิอากาศของโลก

7.ขนอมมีทรัพยากรชีวภาพและประวัติศาสตร์ท้องถิ่นที่โดดเด่น

ขนอมเป็นพื้นที่ที่มีความมหัศจรรย์เกี่ยวกับทรัพยากรชีวภาพหลาย ประการแรกประกอบด้วยระบบนิเวศ หลากหลายที่เป็นตัวแทนตั้งแต่ระบบนิเวศป่าไม้, เขาหินปูน, ป่าชายหาด, ป่าชายเลน พื้นที่ชุ่มน้ำไปจนถึงระบบนิเวศ ทางทะเล และเกาะแก่งต่างๆ เป็นต้น ประการต่อมาพื้นที่ทางทะเลของขนอมยังเป็นส่วนหนึ่งของหมู่เกาะน้อยใหญ่ใน กลุ่มของเกาะสมุย ซึ่งส่วนใหญ่เป็นหินแกรนิตและเขาหินปูนที่มีสิ่งมีชีวิตเฉพาะถิ่น (endemic species) ซุกซ่อนอยู่ เป็นจำนวนมาก เช่น กล้วยไม้กลุ่มรองเท้านารี "ช่องอ่างทอง" ที่อาศัยอยู่เฉพาะบริเวณเขาหินปูนหมู่เกาะอ่างทอง เป็นต้น ขนอมยังมีโลมาสีชมพูที่อาศัยอยู่มาตั้งแต่เมื่อใดไม่ทราบใด ทราบแต่ว่าผูเฒ่าผู้แก่ที่อยู่บริเวณนี้ได้เห็นพวกมัน

มานานแล้ว และยังคงเป็นโลมาสีชมพูเฉพาะถิ่นของที่นี่ตั้งแต่อดีตจนถึงปัจจุบัน ขนอมยังมีแนวหญ้าทะเลที่อุดม สมบูรณ์แห่งหนึ่งของจังหวัดนครศรีธรรมราชที่น่าหวงแหน อีกทั้งยังมีร่องรอยทางธรณีวิทยาที่น่าสนใจ เช่น หินพับผ้า ที่อาจบ่งบอกประวัติการเปลี่ยนแปลงของโลกในอดีตได้ นอกจากนั้น ขนอมยังมี "นกออก" สัตว์คุ้มครองที่หายาก แต่กลับบินโฉบเฉี่ยวไปมาอย่างอิสระที่ขนอม พื้นที่ขนอมยังมีถ้ำที่สวยงาม และยังมีพื้นที่ชุ่มน้ำที่เต็มไปด้วย "ต้น ลาน" พืชที่ใช้ในการทำกระดาษในอดีต ขนอมยังมีหิ่งห้อยส่องแสงระยิบระยับ มาขนอมครั้งเดียวเหมือนแต่ได้เห็น อะไรต่างๆ มากมาย

ขนอมยังมีภูมิปัญญาท้องถิ่นที่สืบทอดมายาวนาน ทั้งภูมิปัญญาการจับปลา การทอดแห้ กะปิที่เป็นโอท๊อป รสดี เพราะมีกุ้งเคยสายพันธุ์ดีและสะอาด อีกทั้งยังมีประวัติศาสตร์ท้องถิ่นที่น่าสนใจ ที่ผู้เฒ่าผู้แก่ที่รู้เรื่องในดีตยังคงเก็บ ข้อมูลไว้ในความทรงจำ รอลูกหลานไปเก็บข้อมูลออกมาเท่านั้น แค่นี้ก็เพียงพอแล้วสำหรับความมหัศจรรย์ของพื้นที่ ขนอม


8. เปิดเผยข้อมูลเกี่ยวกับชีวิตและความเป็นอยู่ของโลมาสีชมพูอ่าวขนอม

โลมาสีชมพู" อาศัยเป็นจ้าวถิ่นอยู่บริเวณ "อ่าวเสด็จ" หรือที่ชาวบ้านแถบนั้นเรียกแบบติดสำเนียงทองแดงจนเพี้ยนไป เป็น "อ่าวเตล็ด" ตั้งอยู่บริเวณเหนือสุดของอ่าวขนอม ในเขต อ.ขนอม จ.นครศรีธรรมราช มานานนับหลายสิบปี ชาวบ้านกับ ชาวประมงในละแวกนั้นเห็นฝูงเจ้าปลาโลมาสีชมพูมาแหวกว่ายวนเวียนอวดโฉมหน้าและดวงตาทะเล้นสุกใส บนผิวน้ำยามที่ ต้องโผล่พ้นขึ้นมาหายใจทุกเมื่อเชื่อวัน อยู่ตลอดทั้งปี เป็นภาพที่ชินตายิ่งนัก สำหรับคนที่ได้เห็นทุกวัน แต่สำหรับนักท่องเที่ยว ผู้เสาะแสวงหาธรรมชาติอย่างถึงที่สุดแล้ว ล้วนตื่นเต้นแปลกตากับฝูงเจ้าโลมาสีชมพู ซึ่งปกติแล้วปลาโลมาจะมีลักษณะสีเทา เผือก แต่ปลาโลมาสีชมพูที่ว่าจะมีอายุประมาณ 40-50 ปี สีเทาที่ผิวของมันจะค่อย ๆ เปลี่ยนเป็นสีชมพูทั่วทั้งตัวในที่สุด โลมาสีชมพูในขนอม โดยผลการวิจัยจำนวนประชากรพบว่า โลมาสีชมพูที่ขนอมมีจำนวนประมาณ 50 ตัว โลมาสีชมพูมีจำนวน เหลืออยู่ในพื้นที่แค่ 50 ตัว ซึ่งจำนวนดังกล่าวถือว่า กำลังอยู่ในวังวนของการสูญพันธุ์ ประกอบกับปัจจัยคุกคามที่เข้า มารุมเร้าอย่างต่อเนื่อง เช่น การใช้อวนลากเพื่อครูดหน้าดิน การใช้อวนตาถี่ การประกอบธุรกิจชมโลมาอย่างไม่เป็น ระบบ ทำให้มีโลมาตายไปแล้วถึง 11 ตัวในช่วง 3 ปีที่ผ่านมา จึงเป็นเรื่องเร่งด่วนที่ต้องให้ความรู้แก่ชุมชน การจัด เวทีชุมชนเพื่อการบริหารจัดการชมโลมาอย่างถูกต้อง รวมทั้งการวิจัยโลมาด้านประชากรและศึกษาการแพร่กระจาย อย่างต่อเนื่อง

9. สาหร่ายทะเล

สาหร่ายทะเลเป็นผู้ผลิตเบื้องต้นที่สำคัญในท้องทะเล ระบบนิเวศปะการังที่ซับซ้อนและสวยงามจะไม่สามารถดำรงอยู่ได้ เลยหากปราศจากสิ่งมีชีวิตกลุ่มนี้ซึ่งทำหน้าที่ผลิตออกซิเจน หมุนเวียนธาตุอาหาร รวมถึงเป็นอาหารหรือแหล่งหลบภัยให้กับ สัตว์น้ำน้อยใหญ่ที่อาศัยและที่แหวกว่ายอยู่ในแนวปะการัง ผลการศึกษาพบว่าสาหร่ายทะเลที่บริเวณมีความหลากหลายทาง ชีวภาพสูง โดยเฉพาะอย่างได้มีการศึกษาสาหร่าย ทะเลมาช่วยในการดูดซับปริมาณก๊าซคาร์บอนไดออกไซด์ เช่น โครงการ Asian Network for Using Algae as a CO₂ Sink เนื่องจากสาหร่ายทะเลบางชนิดโตได้อย่างรวดเร็ว หรือบางชนิดสามารถ เปลี่ยนรูปก๊าซคาร์บอนไดออกไซด์มาเป็นหินปูนสะสมได้ในจำนวนมากและรวดเร็ว เช่น สาหร่ายใบมะกรูด เป็นต้น การศึกษา ในเชิงลึกเหล่านี้จะช่วยให้เข้าใจ และสามารถนำองค์ความรู้ที่ได้มาช่วยในการจัดการและวางแผนการใช้ทรัพยากรอย่างยั่งยืน

รายงานผลการดำเนินงานส่วนที่ 3 การวิจัยเชิงพื้นที่ (Area-based research) ผลการดำเนินงานชุดโครงการหาดขนอม-เขานันระยะที่ 1 โดยความร่วมมือกับ ปตท. จำกัด (มหาชน) โครงการย่อยที่ 1 ชุดโครงการจัดการทรัพยากรชีวภาพป่าเมฆ อุทยานแห่งชาติเขานัน มกราคม 2549-กรกฎาคม 2552

บทสรุปสำหรับผู้บริหาร

"ป่าเมฆ" หรือ "Cloud Forest" เป็นป่าที่มีเมฆหมอกปกคลุมตลอดทั้งปี ก่อให้เกิดระบบนิเวศที่มีความพิเศษ พรรณไม้ที่พบจะมีความสูงไม่มากนัก ลำต้นปกคลุมด้วยพรรณไม้ขนาดเล็กที่ต้องการความชุ่มชื้นสูงอย่างหนาแน่น เช่น มอส เฟิร์น และลิเวอร์เวิร์ต ซึ่งมีความสามารถพิเศษในการดูดซับความชื้น แล้วค่อยๆ ปล่อยสู่ผืนป่าอันเป็นแหล่งต้นน้ำ ลำธารของสิ่งมีชีวิตอื่นๆ ด้วยเหตุนี้ "ป่าเมฆ" จึงได้รับการบรรจุเป็นวาระสำคัญระดับโลกหรือ "Cloud Forest Agenda" โดยองค์กรด้านสิ่งแวดล้อมระดับโลกหลายองค์กร เพื่อสนับสนุนการจัดการ การอนุรักษ์และการฟื้นฟูระบบ นิเวศป่าเมฆ ซึ่งไวต่อการเปลี่ยนแปลงทางสภาพแวดล้อม โดยเฉพาะการเกิดสภาวะโลกร้อน (global warming) ที่เป็น ปัญหาสำคัญของโลกในปัจจุบัน ป่าเมฆพบทั่วไปในพื้นที่ป่าใกล้แถบศูนย์สูตร ในประเทศไทยพบเพียงไม่กี่แห่ง จึงต้อง เร่งศึกษาวิจัยเพื่อหาข้อมูลพื้นฐานในการบริหารจัดการและการอนุรักษ์ป่าต้นน้ำลำธารอย่างยั่งยืน

"ป่าเมฆ" หรือ "Cloud Forest"

โครงการ BRT ได้เล็งเห็นถึงความสำคัญของประเด็นดังกล่าว จึงได้พัฒนาชุดโครงการวิจัยเชิงพื้นที่ขึ้นภายใต้ ชื่อ "ชุดโครงการวิจัยป่าเมฆ" โดยเลือกพื้นที่อุทยานแห่งชาติเขานั้น จังหวัดนครศรีธรรมราช ซึ่งมีระบบนิเวศป่าเมฆ เป็นพื้นที่ศึกษา ชุดโครงการวิจัยดังกล่าวมีระยะเวลา 3 ปี (พ.ศ 2549-2551) เน้นการวิเคราะห์ข้อมูลอย่างบูรณาการ ทั้งทางด้านชีวภาพและกายภาพ เพื่อสำรวจและประมวลองค์ความรู้พื้นฐานในระบบนิเวศป่าเมฆ รวมทั้งปัจจัยทาง กายภาพต่างๆ เช่น ข้อมูลอุตุนิยมวิทยา ปริมาณความชื้นสัมพัทธ์ ปริมาณน้ำฝน ข้อมูลดิน และน้ำ เป็นต้น เพื่ออธิบาย การเกิดป่าเมฆและความสัมพันธ์กับสิ่งมีชีวิตในป่าเมฆ

ชุดโครงการดังกล่าวนอกจากมีโครงการ BRT เป็นผู้สนับสนุนงบประมาณส่วนหนึ่งแล้ว ยังได้สร้างหุ้นส่วน ร่วมกับบริษัท ปตท. จำกัด (มหาชน) ซึ่งต้องการแสดงความรับผิดชอบต่อสังคมเชิงบรรษัทหรือของธุรกิจ หรือ

Corporate Social Responsibility (CSR) ด้วยการสนับสนุนทุนวิจัยร่วมกับโครงการ BRT ในการค้นหาความรู้เกี่ยวกับ ป่าเมฆ ซึ่งเป็นระบบนิเวศที่เปราะบางต่อการเปลี่ยนแปลงภูมิอากาศท้องถิ่น (local climate change) และภูมิอากาศ โลก (global climate change) เพื่อเผยแพร่ความรู้ให้กับผู้กำหนดนโยบายในการเฝ้าระวังและวางแนวทางในการ บริหารจัดการสิ่งแวดล้อมภายใต้กระแสโลกาภิวัฒน์อย่างยั่งยืน

หลังจากที่โครงการ BRT ได้พัฒนาชุดโครงการวิจัยดังกล่าวขึ้น ก็ได้รับการตอบรับเป็นอย่างดีจากนักวิจัย ทางด้านความหลากหลายทางชีวภาพจากหลายสถาบันเพื่อร่วมศึกษาระบบนิเวศปาเมฆ โดยโครงการ BRT ได้สนับสนุน โครงการวิจัยและวิทยานิพนธ์ไปแล้วทั้งสิ้นจำนวน 15 โครงการ งบประมาณรวม 5,224,000 บาท แบ่งเป็น 3 กลุ่ม ใหญ่ๆ คือ กลุ่มพืช 5 โครงการ ได้แก่ เทอริโดไฟต์, ไบรโอไฟต์, กล้วยไม้, พืชวงศ์ขิง และมะเดื่อ-ไทร กลุ่มสัตว์ 8 โครงการ ได้แก่ สัตว์เลื้อยคลานและสัตว์สะเทินน้ำสะเทินบก, ผีเสื้อกลางวัน, ผีเสื้อกลางคืน, แมงมุม, หอยทากบก, มด, ปลาน้ำจืด และปลาพลวง และกลุ่มฐานข้อมูล 2 โครงการ ได้แก่ ฐานข้อมูลความหลากหลายทางชีวภาพ และการ พัฒนาแบบจำลองการกระจายตัวของสิ่งมีชีวิตในอุทยานแห่งชาติเขานั้น

ผลการดำเนินงานที่มีความก้าวหน้าเป็นลำดับ โดยภารกิจในรูปแบบทีมสำรวจป่าเมฆที่ไม่เคยมีมาก่อนใน ประเทศไทย ทำให้ได้ข้อมูลเบื้องต้นของมีสิ่งมีชีวิตเฉพาะถิ่นที่พบเฉพาะปาเมฆ รวมทั้งลักษณะของปาเมฆ-สันเย็น จน ทำให้สามารถจัดทำบทความทางวิชาการ เพื่อเผยแพร่ข้อมูลพื้นฐานเกี่ยวกับป่าเมฆครั้งแรกของประเทศไทยผลการวิจัย พบชนิดพันธุ์ของสิ่งมีชีวิตทั้งสิ้น 1,587 ชนิด เป็นรายงานการค้นพบสิ่งมีชีวิชนิดใหม่ของโลก สิ่งมีชีวิตชนิดใหม่ใน ประเทศไทย และสิ่งมีชีวิตเฉพาะ รวมทั้งที่หากยากและใกล้สูญพันธุ์ ตลอดจนชนิดที่เป็นดัชนีชี้วัดป่าเมฆ นอกจากนั้น **"โลกร้อนกับผลกระทบต่อความหลากหลายทางชีวภาพ"** โดยการศึกษาสภาวะภูมิอากาศที่ เปลี่ยนแปลงไป (Climate change) อันเป็นผลมาจากการเกิดสภาวะโลกร้อนจึงได้ติดตั้งสถานีตรวจวัดอากาศทั่วเขานั้น พร้อมกันการศึกษาเปลี่ยนแปลงทางด้านชีพลักษณ์ (Phenology) ของต้นประ ได้ข้อบ่งชี้ว่าทิศทางลม และปริมาณ น้ำฝน ความชื้นสัมพัทธ์ เกี่ยวข้องกับการแตกตาของยอดประ ในด้านการศึกษาวิถีชุมชนรายรอบเขานั้น พบว่าชุมชน ดั้งเดิมรายรอบเขานันเป็นชุมชนที่ขยายต่อเนื่องมาจากอำเภอท่าศาลา โดยมีอายุของชุมชนไม่ต่ำกว่า 100 ปี วิถีชุมชน แบบเกษตรและพึ่งพิงป่า ชุมชนมีความความสัมพันธ์กับทรัพยากรชีวภาพในพื้นที่เชิงเศรษฐกิจ เช่น ที่บ้านปากลง ต. กรุงชิง อ.นบพิตำ ชุมชนยังพึ่งพิงและใช้ประโยชน์จากป่ามีมูลค่าถึง 2.6 ล้านบาทต่อปี และพบป่าประธรรมชาติ ซึ่ง คาวดว่าน่าจะเป็น ป่าประผืนเดียว และผืนสุดท้ายของโลกที่อุทยานแห่งชาติเขานั้น โดยชุมชน รายรอบเขานั้นเก็บหาลูก ประที่ทำได้เพียงปีละครั้ง ช่วงเดือนสิงหาคมถึงกันยายนของทุกปี คิดเป็นมูลค่ารวมถึง 1.7 ล้านบาทต่อปี นับว่าเป็น รายได้เสริมที่ดีอย่างหนึ่งของ นอกจากนั้น ผลงานวิจัยยังแสดงให้เห็นว่า ชุมชนห่วงใยในทรัพยากรและยินดีที่จะจ่ายค่า เข้าเก็บหาลูกประในพื้นที่ธรรมชาติ หากมีการบริหารจัดการที่ดี ในราคา 29 บาทต่อคนต่อวัน เพื่อจัดการเป็นกองทุน อนุรักษ์และฟื้นฟูต้นประต่อไป

ผลการดำเนินงาน

โครงการย่อยที่ 1 ชุดโครงการวิจัยเขานั้น เทือกเขานครศรีธรรมราช จ. นครศรีธรรมราช เพื่อศึกษาความหลากหลายทางชีวภาพและระบบนิเวศป่าเมฆ (Cloud Forest)

1. การศึกษาระบบนิเวศ "ป่าเมฆ" ทั้งด้านกายภาพและชีวภาพที่สมบูรณ์ที่สุดในประเทศไทย

โครงการ BRT ร่วมกับบริษัท ปตท. จำกัด (มหาชน) จัดการสำรวจป่าเมฆแบบทีม (Cloud Forest Expedition) เพื่อสำรวจความหลากหลายทางชีวภาพและเก็บข้อมูลทางกายภาพบริเวณป่าเมฆ ณ ยอดสันเย็นที่ระดับ ความสูง 1,400 เมตรจากระดับน้ำทะเล ของอุทยานแห่งชาติเขานัน จ.นครศรีธรรมราช ระหว่างวันที่ 16 – 23 เมษายน 2550 โดยมีนักวิจัยของชุดโครงการวิจัยป่าเมฆเขานันหลายท่าน รวมทั้งเจ้าหน้าที่อุทยานฯ ปฏิบัติภารกิจในรูปแบบทีม สำรวจที่ไม่เคยมีมาก่อนในประเทศไทย ทำให้ได้ข้อมูลเบื้องต้นของมีสิ่งมีชีวิตเฉพาะถิ่นที่พบเฉพาะป่าเมฆจำนวนไม่น้อย กว่า 500 ชนิด จากการศึกษาเพียง 8 วันเท่านั้น

การสำรวจป่าเมฆแบบทีม (Cloud Forest Expedition) วันที่ 16 - 23 เมษายน 2550

ผลการศึกษาข้อมูลทางกายภาพของป่าเมฆ ที่ยอดสันเย็น พบว่า ความสูงของทรงพุ่มและความสูง ของต้นไม้จะลดลงเมื่อระดับความสูงจากน้ำทะเลเพิ่มขึ้น โดยมีเปอร์เซ็นต์ปริมาณพืชอิงอาศัยปกคลุมเพิ่มขึ้นเมื่อความสูง จากระดับน้ำทะเลเพิ่มขึ้นด้วย นอกจากนี้ยังพบว่าความชื้นสัมพัทธ์จะลดลงเมื่ออุณหภูมิอากาศเพิ่มขึ้นที่ป่าเมฆ และ คุณภาพของแหล่งน้ำที่ป่าเมฆมีปริมาณออกซิเจนที่ละลายน้ำต่ำเนื่องจากปริมาณแสงส่งลงมาน้อยลง ทำให้สาหร่ายและ แพลงก์ตอนพืชสังเคราะห์แสงไม่ได้ ผลการสำรวจดังกล่าวจัดว่าเป็นการวิเคราะห์ป่าเมฆอย่างที่ไม่เคยมีมาก่อนใน ประเทศไทย ผลงานบางส่วนได้ตีพิมพ์แล้ว บางส่วนกำลังจะตีพิมพ์เป็นบทความทางวิชาการรวบรวมข้อมูลวิชาการของ ป่าเมฆครั้งแรกในประเทศไทย

2. รวบรวมสปีชีส์ลิสต์ในชุดโครงการ

จากการศึกษาความหลากหลายทางชีวภาพในพื้นที่ป่าเมฆและอุทยานแห่งชาติเขานั้น ตลอด 3 ปี ที่ ผ่านมาได้ค้นพบสิ่งมีชีวิตที่น่าสนใจเป็นจำนวนมาก จนสามารถรวบรวมเป็นสปีชีส์ลิสต์ของสิ่งมีชีวิตจำนวน 1,587 ชนิด ได้แก่ เทอร์ริโดไฟต์ (เฟิร์นและพืชใกล้เคียงเฟิร์น) 164 ชนิด, ไบรโอไฟต์ (มอส, ลิเวอร์เวิร์ต และฮอร์นเวิร์ต) 150 ชนิด, กล้วยไม้ 160 ชนิด, มะเดื่อ-ไทร 50 ชนิด, สัตว์สะเทินน้ำสะเทินบกและสัตว์เลื้อยคลาน 98 ชนิด, ผีเสื้อกลางวัน 335 ชนิด, ผีเสื้อกลางคืนกลุ่มหนอนม้วนใบ 305 ชนิด, มด 245 ชนิด และแมงมุม 80 ชนิด ผลการศึกษาดังกล่าวกำลัง รวบรวมเป็นหนังสือดังนี้

- หนังสือรายการสิ่งมีชีวิตในอุทยานแห่งชาติเขานั้น
- จัดทำเป็น BRT Magazine ฉบับพิเศษ
- หนังสือรวมภาพ (coffee table) สิ่งมีชีวิตในป่าเมฆที่สมบูรณ์ในประเทศไทย

3. พบสิ่งมีชีวิตชนิดใหม่ของโลก ชนิดที่หายากและใกล้สูญพันธุ์หลายชนิด

จากการศึกษาความหลากหลายของชนิดพันธุ์ในพื้นที่ป่าเมฆบนยอดความสูง 1,400 เมตรจาก ระดับน้ำทะเล พบสิ่งมีชีวิตที่เป็นเอกลักษณ์ของป่าเมฆ ชนิดใหม่ของโลก (new species) รายงานใหม่ในประเทศไทย (new record) ชนิดที่หายากและใกล้สูญพันธุ์ (rare and endangered species) และพืชที่อยู่ในบัญชีแดงหลายชนิด (red list in Thailand) ดังนี้

3.1 ชนิดใหม่ของโลก (new species)

- กิ้งก่าหัวยาวเขานั้น Pseudocalotes khaonanensis n. sp.
- ผีเสื้อหนอนม้วนใบชนิดใหม่ของโลก Fibuloides khaonanensis Pinkaew

กิ้งก่าหัวยาวเขานั้น

ผีเสื้อหนอนม้วนใบ *Fibuloides khaonanensis* Pinkaew

3.2 ชนิดรายงานใหม่ในประเทศไทย (new record)

- มอส ลิเวอร์เวิร์ต ฮอร์นเวิร์ต มากกว่า 37 ชนิด เช่น Cladopodanthus speciosus
- เฟิร์น 2 ชนิด เช่น Cyathea glabra
- กล้วยไม้ 1 ชนิด ได้แก่ Calanthe angustifolia (Blume) Lindl. var. flava Ridl.
- ผีเสื้อหนอนม้วนใบขมิ้นดิ้นเงิน (Cimeliomorpha egregiana (Felder et al, 1875))
- ด้วงดินปีกแผ่นคาสเทล (Mormolyce castelnaudi)

เฟิร์น Cyathea glabra

กล้วยไม้ Calanthe angustifolia

ฝีเสื้อ Cimeliomorpha egregiana

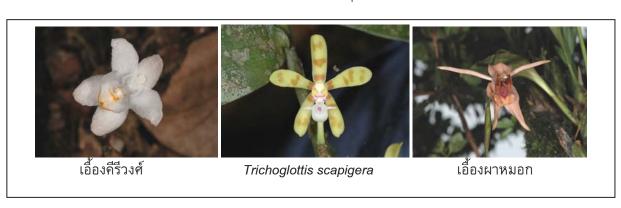
3.3 ชนิดที่อยู่ในบัญชีแดงของไทย (Thailand Red Data: Plants (2006))

• สิงโตอาจารย์เต็ม Bulbophyllum smitinandii Seidenf. & Thorat เป็นพืชถิ่นเดียวและมี

แนวโน้มจะสูญพันธุ์ (Endermic & Vulnurabel)

• รองเท้านารีคางกบใต้
Paphiopedilum callosum (Rchb.f.) Stein
var.warnerianum T.Moore อยู่ในภาวะเสี่ยงต่อการสูญ
พันธุ์ (Endandered species)

• เอื้องคีรีวงศ์ *Didymoplexiopsis* khiriwongensis Seidenf. เป็นพืชเดียวและเสี่ยงต่อการสูญ พันธุ์ (Endermic & Endangered)


• กล้วยไม้ Calanthe ceciliae Rchb.f. หายากที่สุดในโลก (rare species (global)) แต่มา พบที่ป่าเมฆ-เขานั้น

• กล้วยไม้ *Eria pilifera* Ridl. หายากที่สุดในโลก (rare species (global)) แต่มาพบที่ป่าเมฆ-เขานั้น

• กล้วยไม้ *Trichoglottis scapigera* หายากที่สุดในโลก (rare species (global)) แต่มาพบที่ป่า เมฆ-เขาบัน

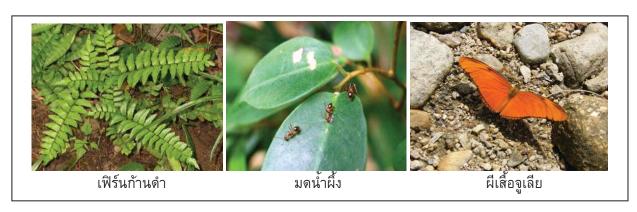
• เอื้องผาหมอก *Coelogyne xyrekes* Ridl. หายากที่สุดในโลก (rare species (global)) แต่มา พบที่ป่าเมฆ-เขานั้น โดยพบปริมาณมากจนกลายเป็น common species ที่ป่าเมฆเขานั้น

3.4 สิ่งมีชีวิตที่หายาก (rare species)

เฟิร์น Gleichenia hirta, เฟิร์น Gleichenia microphylla, เฟิร์น Lycopodium

casuarinoides

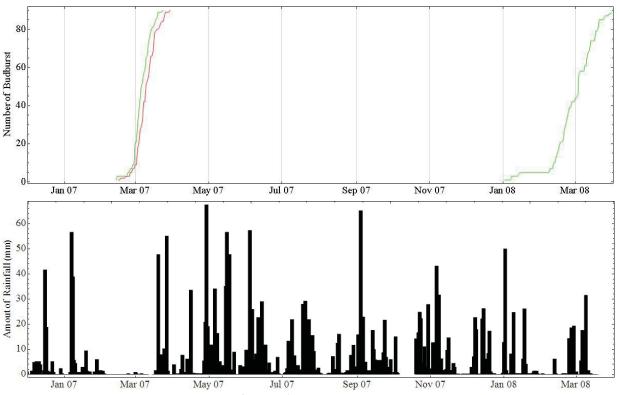
- งูพงอ้อภูเขาลายขีด (Macrocalamus lateralis) เป็นงูขนาดเล็ก ไม่มีพิษ พบเป็นตัวที่สอง ของประเทศไทย แต่เป็นตัวที่สามของโลก
 - งูกินทาก (*Pareas* sp.) ที่ไม่เคยพบมาก่อน
- จิ้งเหลนสองนิ้ว (*Larutia* sp.) ที่มีลำตัวเรียวยาว แต่ขาสั้นและมีนิ้วตีนเพียง2 นิ้ว ที่ตีนแต่ละ ข้าง นี่ก็บ่งบอกถึงความมหัศจรรย์ของสัตว์บนป่าเมฆ
- จิ้งเหลนภูเขาลายแฉก (Sphenomorphus scotophilus) ซึ่งเป็นจิ้งเหลนเล็กๆ ที่ไม่พบใน ระดับความสูงที่ต่ำกว่า 1,000 เมตร
- อึ่งกรายบาลา (Leptolalax solus) อึ่งกรายขายาว (Xenophrys longipes) และอึ่งกรายข้าง แถบ (Brachytarsophrys carinensis)



3.5 ชนิดพันธุ์ต่างถิ่น (Alien Species)

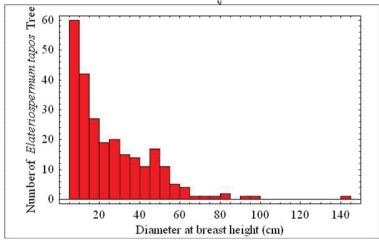
- เฟิร์นก้านดำ (Adiantum latifolium Lam.) เป็นเฟิร์นจากอเมริกากลางที่กระจายพันธุ์เข้ามา อยู่ในพื้นที่ป่าเมฆเขานั้น
- มดน้ำผึ้ง (Anoplolepis gracilipes) อยู่ในบัญชีชนิดพันธุ์ต่างถิ่นรุกรานที่ร้ายแรงของโลก จำนวน 100 ชนิด ตามการจัดของ Global Invasive Species
 - มดฟาร์โรห์ (Monomorium pharaonis) มดต่างถิ่นจากอาฟริกา
 - ผีเสื้อจูเลีย (*Dryas iulia* (Fabricius, 1775)) ผีเสื้อต่างถิ่นจากอเมริกาใต้ที่พบครั้งแรกที่เขานั้น

มดคันไฟ (Solenopsis geminata) และมดละเอียดหัวท้ายดำ (Monomorium floricola)


4. การศึกษาชีพลักษณ์ของประ พืชที่สามารถนำมาเป็นดัชนีชี้วัดการเปลี่ยนแปลงของภูมิอากาศ ได้

จากการติดตั้งเครื่องตรวจวัดอากาศอัตโนมัติ 6 จุด ที่ป่าเมฆระดับความสูงจากระดับน้ำทะเล 1,400 เมตร และที่ป่าประในระดับพื้นล่าง เพื่อเก็บข้อมูลทางกายภาพ เช่น ความกดดันบรรยากาศ (Barometric pressure), อุณหภูมิ (Temperature), ความชื้น (Humidity), ปริมาณน้ำฝน (Rainfall) ความเร็วลมและทิศทางลม (Wind speed, wind direction) ปริมาณน้ำค้าง (Dew point) ดัชนีค่าความร้อน (Heat index) ปริมาณแสง UV, Solar radiation, Evapo-transpiration เป็นต้น พบว่า ข้อมูลทางกายภาพสามารถนำไปอธิบายร่วมกับปรากฏการณ์ทาง ชีวภาพในการแตกยอดอ่อนของประ (Eltaeriospermum tapos) ได้ เนื่องจากประมีการผลัดใบ แตกตายอด และ แตกตาดอกพร้อมกันทั้งป่าปีละ 1 ครั้ง ทำให้ประสามารถนำมาใช้เป็นดัชนีทางชีวภาพในการศึกษาภาวะโลกร้อนได้ดี

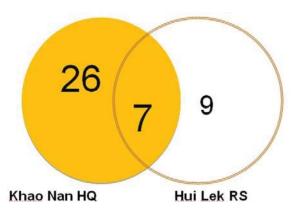
การติดตั้งเครื่องตรวจวัดอากาศอัตโนมัติ


ผลการศึกษา พบว่า ในปี 2550 ประมีการการแตกยอดใหม่เกิดขึ้นระหว่างวันที่ 13 กุมภาพันธ์ – 24 มีนาคม 2550 การออกดอกเกิดขึ้นระหว่างวันที่ 15 กุมภาพันธ์ – 30 มีนาคม 2550 ซึ่งช่วงที่ประมีการแตกตายอดและ ตาดอกนี้เป็นช่วงที่ไม่มีฝนตก ความชื้นสัมพันธ์ในอากาศต่ำ ผลต่างระหว่างอุณหภูมิสูงสุดและต่ำสุดมีค่าสูงสุด มีลมใน ทิศตะวันตกเฉียงเหนือพัดเอาความชื้นสัมพัทธ์ต่ำเข้ามา แต่ในปี 2551 พบว่าประมีการแตกตายอดเกิดขึ้นระหว่างวันที่ 2 มกราคม- 31 มีนาคม 2551 ซึ่งมีช่วงเวลาในการแตกตายอดและตาดอกที่ยาวนานมาก ทั้งนี้เป็นเพราะปีนี้มีฝนตกใน เดือนมกราคม ทำให้ประที่แตกตายอดและตาดอกไปส่วนหนึ่ง ประที่เหลือหยุดแตกตายอดและตาดอก รอให้มีการแล้ง ไปอีกช่วงหนึ่งแล้วจึงมีการแตกตายอดและตาดอกใหม่อีกครั้งหนึ่ง ผลการวิจัยได้แสดงความแปรปรวนของสภาพ อากาศระหว่างปี

ภาพแสดงช่วงเวลาการแตกยอดใหม่ของต้นประ เปรียบเทียบระหว่างปี 2550 และปี 2551

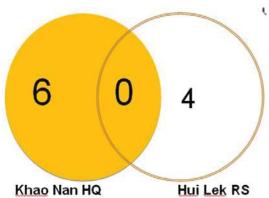
5. การศึกษาประชากรของต้นประ

ได้มีการวางแปลงศึกษาประชากรของต้นประที่ห้วยเลข บ้านนาใจ บ้านห้วยปู และที่น้ำตกสุนันทา ซึ่งทั้ง 4 บริเวณได้รับการรายงานว่ามีความหนาแน่นของต้นประสูง ผลจากการวางแปลงขนาด 25*25 ตารางเมตร จำนวน 25 แปลง ในพื้นที่ 4 แห่ง พบความหนาแน่นของต้นประจำนวน 266 ±131 ต้นต่อ ha มีขนาด DBH เท่ากับ 3.8 -142.9 ซม. ต้นประมีการเจริญเป็น J-curve นั่นคือ มีต้นอ่อนจำนวนมาก มีต้นแก่น้อยลงตามลำดับ โดยต้นที่มี ขนาดใหญ่ที่สุดอยู่ที่ DBH เท่ากับ 142.9 ซม. นอกจากนั้นยังมีข้อบ่งชี้ว่า ประที่บ้านห้วยปู ซึ่งเป็นพื้นที่เกษตรกรรมมี ความหนาแน่นของประที่มีขนาดเล็กจำนวนน้อยกว่าที่เป็นป่าสมบูรณ์ เช่น ที่ห้วยเลข หรือน้ำตกสุนันทา


กราฟแสดงการเจริญเติบโตของต้นประ

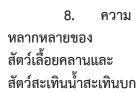
6. การศึกษาประชากรของแมลงกลางคืนขนาดใหญ่

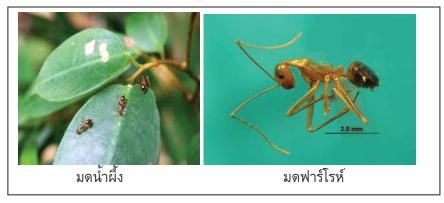
ได้มีการศึกษาประชากรของแมลงกลางคืนขนาดใหญ่ โดยวางกับดักแสงไฟในช่วงเวลาตั้งแต่หกโมง เย็นถึงหกโมงเช้า โดยจะเก็บแมลง 2 ครั้ง ๆ แรกช่วง 4 ทุ่ม และอีกช่วงหนึ่งคือ 6 โมงเช้า เก็บทุกวันเริ่มตั้งแต่ปี 2549 เป็นต้นมา ผลการศึกษาสรุปได้ดังนี้


6.1 การศึกษาผีเสื้อกลางคืนขนาดใหญ่ (Macro Moth)

พบจำนวน 42 ชนิด ใน 9 วงศ์ ในจำนวนนี้เป็นผีเสื้อ Actias maenas male ซึ่งเป็นสัตว์ป่าคุ้มครอง และผีเสื้อ Lyssa zampa ซึ่งเป็นสัตว์ป่าในบัญชีห้ามนำเข้า-ส่งออก ผลการศึกษาความสัมพันธ์ระหว่างประชากรของ ผีเสื้อกลางคืนใหญ่กับอุณหภูมิและปริมาณน้ำฝน พบว่า ผีเสื้อกลางคืนขนาดใหญ่มีจำนวนน้อยในเดือนมกราคมมีนาคม ซึ่งเป็นช่วงฤดูแล้ง ฝนตกน้อย ในขณะที่พบจำนวนสูงสุดในเดือนเมษายน, มิถุนายน และธันวาคม ซึ่งอาจจะ เป็นช่วงที่ฝนเริ่มต้นจึงความเหมาะสมทั้งกายภาพและชีวภาพต่างๆ ส่วนการศึกษาองค์ประกอบของชนิด (species composition) เปรียบเทียบระหว่างที่สำนักงานใหญ่อุทยานแห่งชาติเขานัน และที่หน่วยห้วยเลข พบชนิดของผีเสื้อ กลางคืนขนาดใหญ่ที่แตกต่างกันอย่างชัดเจน กล่าวคือ ที่สำนักงานใหญ่มีจำนวนชนิดทั้งสิ้น 26 ชนิด ที่ห้วยเลขมี 9 ชนิด ส่วนชนิดที่พบทั้งสำนักงานใหญ่กับที่ห้วยเลขมี 7 ชนิด แสดงว่าผีเสื้อกลางคืนขนาดใหญ่ได้แบ่งกลุ่มกันหากินอย่าง ชัดเจน

6.2 การศึกษาด้วงขนาดใหญ่ (Large Beetle)


พบทั้งสิ้น 10 ชนิด 3 วงศ์ โดยพบด้วงดินปีกแผ่นคาสเทล (Mormolyce castelnaudi) ซึ่งเป็นชนิด ที่รายงานใหม่ในประเทศไทยด้วย ผลการศึกษาความสัมพันธ์ระหว่างด้วงขนาดใหญ่กับปริมาณน้ำฝนและอุณหภูมิพบว่า ปริมาณของด้วงขนาดใหญ่จะลดลงเมื่อปริมาณน้ำฝนน้อยและอุณหภูมิต่ำ ส่วนการศึกษาองค์ประกอบชนิดของด้วง ขนาดใหญ่ พบว่า ด้วงขนาดใหญ่ที่พบที่ห้วยเลขเป็นชนิดที่แตกต่างจากที่สำนักงานใหญ่อุทยานแห่งชาติใหญ่โดยสิ้นเชิง โดยพบที่ห้วยเลข 4 ชนิด ที่สำนักงานใหญ่ 6 ชนิด และไม่พบชนิดที่หากินทั้งสองบริเวณ แสดงให้เห็นว่าด้วงขนาดใหญ่ มีความจำเพาะต่อถิ่นอาศัยมาก



7. ความหลากหลายและนิเวศวิทยาของมด

ผลการศึกษาพบมดทั้งสิ้น 245 ชนิด 50 สกุล และ 10 วงศ์ย่อย แบ่งกลุ่มมดออกเป็น 2 กลุ่ม คือมด ที่อาศัยอยู่ที่เส้นทางธรรมชาติบัวแฉกใหญ่ และกลุ่มมดที่อาศัยอยู่ในพื้นที่หน่วยพิทักษ์ห้วยเลขป่าประ แต่ไม่สามารถ แบ่งกลุ่มมดออกได้ตามฤดูกาล สำหรับความสัมพันธ์ระหว่างการแพร่กระจายและองค์ประกอบของปริมาณชนิดมดกับ ปัจจัยสิ่งแวดล้อม พบว่าเมื่ออุณหภูมิดินและอุณหภูมิอากาศเพิ่มมากขึ้นส่งผลทำให้มีการแพร่กระจายและมีจำนวน ประชากรของมดบางกลุ่มเพิ่มขึ้นตามไปด้วย พบมดต่างถิ่น เช่น มดน้ำผึ้ง (Anoplolepis gracilipes) ซึ่งอยู่ในบัญชี ชนิดพันธ์ุต่างถิ่นรุกรานที่ร้ายแรงของโลก ตามการจัดของ Global Invasive Species มดฟาร์โรห์ (Monomorium

pharaonis) มดต่างถิ่นจาก อาฟริกา มดคันไฟ (Solenopsis geminata) และ มดละเอียดหัวท้ายดำ (Monomorium floricola)

การสำรวจกลุ่มสัตว์เลื้อยคลานและสัตว์สะเทินน้ำสะเทินบก ระหว่างเดือนเมษายน 2549 ถึงเดือนพฤษภาคม 2550 พบสัตว์เลื้อยคลาน จำนวน 67 ชนิด และสัตว์สะเทินน้ำสะเทินบก จำนวน 31 ชนิด พบกิ้งก่าหัว ยาวเขานัน Pseudocalotes khaonanensis n. sp. ซึ่งเป็นชนิดใหม่ของโลก งูพงอ้อภูเขาลายขีด (Macrocalamus lateralis) เป็นงูขนาดเล็ก ไม่มีพิษ พบเป็นตัวที่สองของประเทศไทย แต่เป็นตัวที่สามของโลก งูกินทาก (Pareas sp.) ที่ไม่เคยพบมาก่อน จิ้งเหลนสองนิ้ว (Larutia sp.) ที่มีลำตัวเรียวยาว แต่ ขาสั้นและมีนิ้วตีนเพียง2 นิ้ว ที่ตีนแต่ละข้าง จิ้งเหลนภูเขาลายแฉก

(Sphenomorphus scotophilus) ซึ่งเป็นจิ้งเหลนเล็กๆ ที่ไม่พบในระดับความสูงที่ต่ำกว่า 1,000 เมตร

9. ความหลากหลายของผีเสื้อหนอนม้วนใบวงศ์ย่อย Olethreutinae

การศึกษาความหลากหลายของผีเสื้อหนอนม้วนใบวงศ์ย่อย Olethreutinae ระหว่างเดือนพฤษภาคม 2549-ตุลาคม 2551 พบผีเสื้อหนอน ม้วนใบที่สามารถจำแนกระดับชนิดได้ 305 ชนิด พบสกุลที่พบในประเทศไทย เป็นครั้งแรก (new genus record) จำนวน 8 สกุล และชนิดที่พบในประเทศ ไทยเป็นครั้งแรก (new record) จำนวน 4 ชนิดใน 3 สกุล เช่น ผีเสื้อหนอนม้วน ใบชมิ้นดิ้นเงิน (Cimeliomorpha egregiana (Felder et al, 1875)) นอกจากนี้ยังพบผีเสื้อหนอนม้วนใบชนิดใหม่ของโลกในสกุล Fibuloides โดยตั้ง ชื่อชนิดว่า Fibuloides khaonanensis ตามชื่อของอุทยานแห่งชาติเขานัน ซึ่ง ได้รับการตีพิมพ์เรียบร้อยแล้วในวารสาร 700taxa

10. พรรณไม้สกุลมะเดื่อ-ไทร ในอุทยานแห่งชาติเขานั้น จังหวัดนครศรีธรรมราช

การศึกษาความหลากชนิดของพรรณไม้สกุลมะเดื่อ-ไทร ในอุทยานแห่งชาติเขานั้น จังหวัด นครศรีธรรมราช มีเป้าหมายหลักเพื่อต้องการทราบถึงจำนวนชนิด และประโยชน์ที่มนุษย์ได้รับจาก มะเดื่อ-ไทร เก็บ ข้อมูลภาคสนามโดยการสำรวจและเก็บตัวอย่างในเขตอุทยานแห่งชาติเขานันและพื้นที่บริเวณใกล้เคียง จำนวน 8 ครั้ง ใช้ วิธีการเดินสำรวจตามเส้นทาง ระยะทางรวมไม่น้อยกว่า 40 กม. จากการศึกษา พบพรรณไม้สกุลมะเดื่อ-ไทร 50 ชนิด ชนิดที่ชาวบ้านนำมารับประทานเป็นอาหารมี 10 ชนิด โดยชนิดที่นิยมนำมารับประทานมากที่สุดคือ ซึ้ง Ficus fistulosa Reinw. ex Blume และ โพะ Ficus obpyramidata King

11. ชีพลักษณ์ของมะเดื่อ-ไทรและความหลากชนิดของสัตว์ที่กินผลมะเดื่อ-ไทรบางชนิด

โครงการศึกษาชีพลักษณ์ของมะเดื่อ-ไทรและความหลากหลายของชนิดสัตว์ที่กินผลมะเดื่อ-ไทรบาง ชนิดในอุทยานแห่งชาติเขานั้น จังหวัดนครศรีธรรมราช เป็นโครงการต่อเนื่องในปีที่ 2 ของโครงการความหลากชนิดของ มะเดื่อ-ไทร ในอุทยานแห่งชาติเขานั้น จังหวัดนครศรีธรรมราช โดยการศึกษาเน้นไปที่บทบาทของมะเดื่อ-ไทรในระบบ นิเวศ ผลจากการศึกษา พบสัตว์ป่าที่กินผลของมะเดื่อ-ไทร จำนวน 20 ชนิด ส่วนใหญ่เป็นนกที่มีขนาดเล็ก โดยมีกลุ่ม นกปรอดมากที่สุด รองลงมาเป็นกลุ่มนกกาฝาก และมีสัตว์เลี้ยงลูกด้วยนมเพียงชนิดเดียว คือ กระรอกปลายหางดำ ด้าน คุณค่าทางโภชนาการพบว่า โดยส่วนใหญ่ทั้งมะเดื่อและไทรมีปริมาณใกล้เคียงกัน ที่ต่างกันอย่างชัดเจนคือปริมาณ พลังงานกลุ่มไทรให้พลังงานที่สูงกว่า ในส่วนของการออกผลพบว่า มะเดื่อ-ไทรส่วนใหญ่มีแนวโน้มที่จะออกผลตลอดทั้ง ที

12. ผีเสื้อกลางวันในอุทยานแห่งชาติเขานั้น จังหวัดนครศรีธรรมราช

พบผีเสื้อกลางวันทั้งสิ้น 352 ชนิด 172 สกุล ในจำนวนนี้เป็นผีเสื้อกลางวันที่ในประเทศไทยพบเฉพาะ ภาคใต้ จำนวน 81 ชนิด เป็นผีเสื้อต่างถิ่น 2 ชนิดได้แก่ ผีเสื้อจูเลีย และผีเสื้อหนอนหนามกะทกรก และพบผีเสื้อกลาง

วันที่คาดว่าเป็นชนิดย่อยใหม่ 1 ชนิด คือ ผีเสื้อมรกตสุมาตรา (Poritia sumatrae subsp. nov.) ถิ่นอาศัยที่มีความหลากหลาย ของผีเสื้อกลางวันมากคือป่าดิบชื้นธรรมชาติใกล้ลำห้วย และพื้นที่ เกษตรใกล้ป่าธรรมชาติ และพื้นที่ที่มีความหลากหลายของผีเสื้อ กลางวันน้อยคือป่าดิบชื้นธรรมชาติห่างลำห้วย และพื้นที่โล่ง

จากการศึกษาพบผีเสื้อกลางวันจำนวน 3 ชนิด ที่ ถูกจัดเป็นแมลงสัตว์ป่าคุ้มครอง ได้แก่ ผีเสื้อถุงทองปักษ์ใต้ ผีเสื้อถุง ทองป่าสูง และผีเสื้อหางติ่งสะพายเขียว ในวงศ์ผีเสื้อหางติ่ง โดย ผีเสื้อถุงทองปักษ์ใต้ และผีเสื้อถุงทองป่าสูงยังถูกจัดเป็นแมลงที่อยู่ ในอนุสัญญาไซเตส Appendix II อีกด้วย

13. การพัฒนาทักษะการเก็บข้อมูลแก่เจ้าหน้าที่อุทยานแห่งชาติเขานั้น

โครงการ BRT ร่วมกับบริษัท ปตท. จำกัด (มหาชน) และมหาวิทยาลัยวลัยลักษณ์ ได้สร้างทักษะการ วิจัยให้กับเจ้าหน้าที่อุทยานแห่งชาติเขานันในการทำวิจัยและสำรวจเก็บข้อมูลทรัพยากรในพื้นที่ที่น่าสนใจ เช่น การ ติดตั้ง Light trap ในการวิจัยแมลง การเซตผีเสื้อ การเฝ้าสังเกตและจดบันทึก การทำแปลงศึกษาระยะยาว การ เพาะเลี้ยงกล้วยไม้ การถ่ายทอดความรู้ให้กับเยาวชน เป็นต้น ทักษะการเก็บข้อมูลเหล่านี้จะเป็นส่วนที่ขับเคลื่อนให้ เกิดองค์ความรู้โดยเจ้าหน้าที่อุทยานแห่งชาติเองและยังช่วยให้เกิดความตระหนักและหวงแหนถึงทรัพยากรเหล่านั้นด้วย

สร้างทักษะการวิจัยให้กับเจ้าหน้าที่อุทยานแห่งชาติเขานั้นในการทำวิจัยและสำรวจข้อมูลทรัพยากรในพื้นที่

14. การศึกษาวิถีชุมชนรายรอบเขานั้น

การวิจัยเกี่ยวกับป่าเมฆด้วยทุนวิจัยของโครงการ BRT และบริษัท ปตท. จำกัด (มหาชน) ดำเนินไป พอสมควร ด้วยจุดประสงค์ในการสร้างองค์ความรู้ทางชีวภาพและเอื้อไปถึงวัฒนธรรมด้วยเพราะเห็นว่าแท้จริง วัฒนธรรมเป็นสิ่งที่อยู่กับคนและคนเป็นผู้คิดทำขึ้นมา คนคือสิ่งมีชีวิตอยู่ในความหลายทางชีวภาพ วัฒนธรรมจึงมี ความสำคัญต่อความหลากหลายทางชีวภาพ การวิจัยความหลากหลายทางชีวภาพและวัฒนธรรมจึงเป็นสิ่งมีคุณค่าอย่าง ยิ่งในการศึกษาของคน และมีผลต่อความมั่นคงยั่งยืนของปาเมฆอันงดงาม

จากการศึกษาชุมชนดั้งเดิมในภูมิทัศน์เขานั้น พบว่า ชุมชนเริ่มมีการตั้งถิ่นฐานบริเวณที่ราบ มีวิถี ชุมชนแบบเกษตรและพึ่งพิงป่าเพื่อการยังชีพลักษณะการตั้งบ้านเรือนเป็นหย่อมบ้านกระจายตามพื้นที่ทำการเกษตร และการใช้ประโยชน์จากป่า เช่น ทำไร่ข้าว เพื่อการบริโภค ปลูกยาสูบ เจาะน้ำมันยาง หวาย และของป่าต่างๆ เพื่อใช้ ในครัวเรือนและขายเป็นรายได้ ชุมชนดั้งเดิมดังกล่าวเป็นชุมชนที่ขยายต่อเนื่องมาจากอำเภอท่าศาลาโดยมีอายุของ ชุมชนไม่ต่ำกว่า 100 ปี เช่น บ้านปากเจา ต.ตลิ่งชัน อ.ท่าศาลา, บ้านโรงเหล็ก ต.นบพิตำ กิ่ง อ นบพิตำ ส่วนชุมชน ใหม่นั้นจะทยอยเข้ามาตั้งถิ่นฐานในช่วงที่มีกิจกรรมสัมปทานเหมืองแร่เมื่อประมาณ 30 ปีที่ผ่านมา และการสัมปทานป่า ไม้เมื่อประมาณ 20 ปีที่ผ่านมา โดยตั้งบ้านเรือนอยู่บริเวณที่ราบเชิงเขาถัดจากชุมชนที่ราบดั้งเดิม มีอายุของชุมชน ประมาณ 30-40 ปี

ปัจจุบันมีชุมชนที่ตั้งอยู่รอบอุทยานแห่งชาติเขานันจำนวน 27 หมู่บ้าน ใน 7 ตำบล ของ 3 อำเภอ คือ อ.ท่าศาลา (ต.ตลิ่งชัน) กิ่ง อ.นบพิตำ (ต.กรุงชิง ต.นบพิตำ) และ อ.สิชล (ต.เขาน้อย ต.ฉลอง ต.เทพราช ต. เปลี่ยน) จ.นครศรีธรรมราช โดยมีอาชีพเกษตรกรรมเป็นหลัก ประกอบด้วย สวนยางพาราประมาณร้อยละ 80 สวน ผลไม้ผสม เช่น ทุเรียน มังคุด เงาะ ลองกอง ลางสาด กระท้อน ประมาณร้อยละ 20 แต่จะมีความแตกต่างในการใช้ ประโยชน์ที่ดินในแต่ละพื้นที่ กล่าวคือทางด้านเหนือบริเวณคลองห้วยแก้วจะเป็นยางพาราและสวนผลไม้ ส่วนบริเวณ คลองท่าควายในเขต ต.เทพราช และ ต.ฉลอง ซึ่งเป็นที่ตั้งเหมืองแร่เก่า (ดีบุกและวุลแฟรม) เป็นยางพาราและปาล์ม น้ำมัน ทางด้านตะวันออกบริเวณคลองท่าทน เป็นพื้นที่นาข้าว ส่วนบริเวณที่ทำการอุทยานา ในเขต ต.ตลิ่งชัน เป็น ยางพาราและสวนผลไม้ สำหรับทางด้านใต้ในเขต กิ่ง อ.นบพิตำ จะเป็นยางพารา ปาล์มน้ำมัน และสวนผลไม้ นอกจากนี้ยังประกอบอาชีพอื่นๆ ได้แก่ ค้าขาย รับจ้างทั่วไป รับราชการ

15. การศึกษาเศรษฐกิจชุมชนรายรอบเขานั้น

ชุมชนรอบเขานันพึ่งพิงทรัพยากรธรรมชาติท้องถิ่นทั้งทางตรงและทางอ้อม โดยเฉพาะทรัพยากรน้ำ ซึ่งมีต้นน้ำมาจากพื้นที่อุทยานแห่งชาติเขานัน และเป็นต้นกำเนิดของลำน้ำธรรมชาติมากกว่า 100 สาย สายหลัก ประมาณ 30 สาย ได้แก่ คลองกลาย คลองท่าทน คลองท่าควาย คลองห้วยแก้ว เป็นต้น มีน้ำไหลหล่อเลี้ยงชุมชน ด้านล่างได้ตลอดทั้งปี เพื่อใช้ในการอุปโภค ทำการเกษตร และจับหาสัตว์น้ำ ทรัพยากรน้ำจึงมีความสำคัญต่อการ

ประกอบอาชีพโดยเฉพาะการทำสวนผลไม้ต่างๆ เช่น ลองกอง เงาะ ทุเรียน มังคุด สะตอ จำปาดะ กระท้อน ขนุน และ กล้วย ซึ่งต้องใช้น้ำในกิจกรรมทำสวนค่อนข้างมาก

นอกจากนี้ชุมชนยังพึ่งพิงและใช้ประโยชน์จากป่าทั้งการเก็บหาของป่า พืช ผักป่าต่างๆ ได้แก่ สะตอ ป่า ลูกเนียง ลูกเหรียง ลูกเนียงนก ลูกนาง ลูกก่อ ลูกประ หน่อไม้ ผักกูด หวาย พืชสมุนไพร และน้ำผึ้ง เพื่อเป็น อาหาร ลดรายจ่าย และยังเป็นแหล่งรายได้เสริมของชุมชน จากการศึกษาการเก็บหาของป่า 4 ชนิดหลักคือ ลูกนาง สะตอป่า ลูกเนียง และลูกประ ของชาวบ้านปากลง ต.กรุงชิง กิ่ง อ. นบพิตำ จำนวน 104 ครัวเรือน โดยกลุ่มอนุรักษ์ ต้นน้ำคลองกลาย (2547) พบว่ามีมูลค่ารวมถึง 2.6 ล้านบาทต่อปี โดยเฉพาะลูกประ (Eltaeriospermum tapos) ถือว่าเป็นแหล่งเก็บหาแหล่งใหญ่ที่สุดเพียงแห่งเดียวของประเทศไทย ที่กระจายผลผลิตไปสู่ผู้บริโภคทั่วภาคใต้และ บางส่วนของกรุงเทพมหานคร

16. การศึกษาเศรษฐกิจชุมชนของป่าประธรรมชาติ

ต้นประ (Elateriospermum tapos) เป็นพืชที่มีลักษณะพิเศษเฉพาะตัว ใบของต้นประจะร่วง พร้อมกันปีละ 1 ครั้ง ในช่วงเดือนมกราคม เพื่อลดการสูญเสียน้ำอันเนื่องมาจากการคายน้ำทางปากใบในช่วงฤดูร้อน และจะแตกยอดและออกช่อดอกใหม่พร้อมกันทั้งป่าในช่วงเดือนกุมภาพันธ์ถึงมีนาคมของทุกปี ในช่วงที่ประแตก ยอดและออกช่อดอกใหม่นี้ ต้นประจะแตกยอดอ่อนใบสีแดงอมชมพูไปทั่วทั้งป่า โดยเฉพาะผืนป่าประจนาดใหญ่ หลายร้อยไร่นี้ สร้างความสวยงาม ไม่แพ้ไม้เปลี่ยนสีในฤดูใบไม้ร่วงของป่าภาคเหนือ

ป่าประธรรมชาติที่อุทยานแห่งชาติเขานันเป็นป่าประผืนใหญ่ และผืนสุดท้ายของประเทศไทย และน่าจะเป็นป่าประผืนเดียวในโลก กระจายอยู่ใน 3 บริเวณหลัก บริเวณแรกที่บ้านทับน้ำเต้าและบ้านห้วยตง ต.กรุงชิง ซึ่งมีพื้นที่กว้างใหญ่ที่สุดประมาณ 3,000-4,000 ไร่ บริเวณที่สองอยู่บริเวณน้ำตกคลองกัน และบริเวณที่สามอยู่บริเวณ น้ำตกหินท่อ นอกจากนี้ยังมีป่าประของชุมชนที่สำนักสงฆ์บ้านทับน้ำเต้า มีเนื้อที่ประมาณ 300 ไร่ ซึ่งเป็นป่าชุมชนที่ใช้ ประโยชน์ร่วมกัน การเก็บหาลูกประจะเก็บหาได้เพียงปีละครั้งในช่วงเดือนสิงหาคมถึงกันยายนของทุกปี ซึ่งสามารถ นำไปขายได้กิโลกรัมละ15-35 บาท ผู้เก็บหาจากหลายพื้นที่ได้เข้ามาเก็บลูกประ และมีพ่อค้าคนกลางมารับซื้อถึงใน พื้นที่ ปริมาณการเก็บหาจึงสูงมากในปัจจุบัน

ชุมชนรายรอบเขานันเก็บหาลูกประที่ทำได้เพียงปีละครั้ง ช่วงเดือนสิงหาคมถึงกันยายนของทุกปี คิดเป็นมูลค่ารวมถึง 1.7 ล้านบาทต่อปี

จากการศึกษาการพึ่งพิงเก็บหาลูกประบริเวณบ้านทับน้ำเต้าและบ้านห้วยตงในเบื้องต้น ซึ่งเป็นป่า ประผืนใหญ่ที่สุดในเขานั้น บ้านทับน้ำเต้ามีจำนวนครัวเรือน 181 ครัวเรือน และบ้านห้วยตงมีจำนวนครัวเรือน 150 ครัวเรือน พบว่าทุกครัวเรือนมีการเก็บลูกประเพื่อการบริโภค ส่วนการเก็บเพื่อขายทุกปีพบที่บ้านทับน้ำเต้า 100 ครัวเรือน (ร้อยละ 60) บ้านห้วยตง 75 ครัวเรือน (ร้อยละ 50) และมีจุดรับซื้อในหมู่บ้านทั้งสองรวม 7 จุด คิดเป็นมูลค่า รวมประมาณ 1,750,000 บาทต่อฤดูกาลเก็บหา นับว่าเป็นรายได้เสริมที่ดีอย่างหนึ่งของชาวบ้าน

ป่าประเป็นพื้นที่ที่ทุกคนสามารถเข้าไปใช้ประโยชน์ได้ ทำให้มีจำนวนผู้เข้าไปเป็นลูกประมีจำนวนเพิ่ม มากขึ้นเรื่อยๆ จนเกรงว่าการเก็บลูกประจะไม่ทั่วถึงทั้งชุมชน หรืออาจก่อให้เกิดผลกระทบต่อสภาพแวดล้อมและ คุณภาพสิ่งแวดล้อมมากมาย โดยเฉพาะปัญหาระบบนิเวศป่าถูกทำลาย จึงเกิดแนวคิดการจัดเก็บค่าธรรมเนียมการเข้า ไปใช้ป่าประ หรือการจัดตั้งกองทุนอนุรักษ์และดูแลรักษาป่า เพื่อสร้างแรงจูงใจทางเศรษฐศาสตร์ให้กับชุมชนในการจัดการป่าประ และเปลี่ยนแปลงพฤติกรรมของชุมชนในการดำเนินกิจกรรมต่างๆ อันมีผลกระทบกับป่าประ เพื่อให้ ผลกระทบที่เกิดกับป่าประลดน้อยลง

จากการศึกษาวิเคราะห์หาค่าความเต็มใจจะจ่ายของประชาชนให้ออกมาเป็นตัวเงิน พบว่าเฉลี่ยแล้ว เต็มใจจ่ายค่าธรรมเนียมที่ 26 บาทต่อคนต่อวัน โดยแนวทางการเก็บค่าธรรมเนียมนี้จะใช้ในช่วงฤดูการเก็บหาลูกประ ซึ่งเจ้าหน้าที่และผู้ที่เกี่ยวข้องจะสามารถนำรายได้ส่วนนี้ไปใช้เป็นกองทุนในการอนุรักษ์จัดการและช่วยฟื้นฟูป่าประให้ เกิดความยั่งยืนต่อไปในอนาคต

17. การถ่ายทอดความรู้สู่เยาวชนโดยเจ้าหน้าที่อุทยานแห่งชาติเขานั้น

ความหลากหลายของกล้วยไม้ในผืนป่าที่อุดมสมบูรณ์แห่งนี้ เป็นจุดเริ่มต้นของการเพาะเลี้ยงเนื้อเยื่อ กล้วยไม้ป่าในอุทยานแห่งชาติเขานัน โดยเจ้าหน้าที่อุทยานแห่งชาติเขานันได้ร่วมกับมหาวิทยาลัยวลัยลักษณ์เพาะเลี้ยง เนื้อเยื่อพันธุ์กล้วยไม้ป่าจากฝักที่เก็บได้ นำกล้วยไม้ที่ได้จากการเพาะเลี้ยงเนื้อเยื่อนำไปคืนกลับสู่ป่า โดยได้มีการสร้าง จิตอนุรักษ์ให้กับนักเรียนได้มีโอกาสเข้าร่วมนำกล้วยไม้ที่ได้จากการเพาะเลี้ยงเนื้อเยื่อคืนกลับสู่ป่า

18. การจัดการความรู้สู่สาธารณะ

หนังสือ "เขานัน-ป่าเมฆ : มหัศจรรย์ธรรมชาติ ภาวะคุกคาม และโลกร้อน"

เป็นผลมาจากการวิจัยความหลากหลายทางชีวภาพเชิงพื้นที่ (area-based) ในพื้นที่อุทยานแห่งชาติเขานัน โดยได้หยิบ ยก "ปาเมฆ" (Cloud forest) ที่กำลังตกอยู่ในภาวะวิกฤตอันเนื่องจากภาวะโลกร้อน มาเป็นประเด็นเผยแพร่สู่ สาธารณชน หนังสือเล่มนี้นอกจากให้ความรู้ด้านชีววิทยาของสิ่งมีชีวิตต่างๆ มากมายทั้งพืชและสัตว์ในอุทยานแห่งชาติ เขานันแล้ว ผู้อ่านยังได้เรียนรู้จักระบบนิเวศปาเมฆที่มีความโดดเด่นทั้งสังคมพืชและสังคมสัตว์ และสัมผัสกับความ สวยงามของสิ่งมีชีวิตเกือบ 200 ชนิด

• หนังสือหอยทากบกในอุทยานแห่งชาติเขานัน\

เป็นอีกหนึ่งผลงานวิจัยของดร.จิรศักดิ์ สุจริต และ ศ.ดร.สมศักดิ์ ปัญหา จากภาควิชาชีววิทยา จุฬาลงกรณ์มหาวิทยาลัย ในชุดโครงการป่าเมฆ-เขานั้น ที่นำมาตีพิมพ์เผยแพร่ ให้ความรู้ทั่วไปเกี่ยวกับหอยทากบก การจำแนกชนิดเบื้องต้น และการแนะนำหอยทากบกหลายชนิดที่มีความจำเพาะ สวยงาม ที่คนไทยจำนวนมากยังไม่มี โอกาสได้เห็น ซึ่งจะช่วยให้เกิดการศึกษาวิจัยขึ้นในวงกว้างที่ทั้งครู อาจารย์ นิสิต นักศึกษา และผู้คนทั่วไปที่สนใจศึกษา วิชาสัตว์ไม่มีกระดูกสันหลัง

- BRT Magazine ฉบับที่ 24 : บนเส้นทางสู่ป่าเมฆ ตุลาคม 2551 นำเสนอเรื่องราวการ เดินทางเพื่อไปสำรวจป่าเมฆ อุทยานแห่งชาติเขานั้น ซึ่งเป็นเรื่องเด่นในฉบับ พร้อมกับข้อมูลชนิดพันธุ์สิ่งมีชีวิตที่ น่าสนใจในป่าเมฆ
 - วีดีโอ "ป่าเมฆเขานั้นกับภาวะโลกร้อน"

รายงานผลการดำเนินงานส่วนที่ 4 :

Khanom Marine Biodiversity Initiative Project Had Khanom-Mu Koh Tha-le Tai Nakhon Si Thammarat Province,Thailand January 2006-December 2009

Executive Summary

Thailand is situated in the tropical region of Southeast Asia just north of the equator from N5° 37′ to 20° 30′ and from E97° 20′ to 105° 39′. The country occupies an area of 513,115 km² with about 25% tropical forests and 2,600 km of coastline. This area includes the Gulf of Thailand facing the South China Sea in the east and the Andaman Sea in the west covering a total area of 420,000 km² which is rich in marine biodiversity and encompasses a highly productive fishery. Thailand is also well known for its natural wealth of white sandy beaches, beautiful coral reefs and rocky mountains all of which have become popular tourist attractions.

In the past decades, deforestation and environmental problems have led to tremendous loss of biodiversity and ecosystems. Nevertheless, Thailand still retains substantial bioresources and natural beauty to be enjoyed by casual visitors and naturalists as well as by professional biologists. Such is the case at Khanom – Mu Koh Thale Tai (or South Sea Islands) including Samui Island in the Gulf of Thailand. This area has beautiful scenery with natural treasures including some of the world's most famous beaches and diving sites, and marvelous caves as well as a cultural diversity in folklore, making the South Sea Islands one of the most popular destinations for tourists.

Recognizing the prime importance of bioresources in the coastal area, BRT has launched an area-based research program on "Marine Biodiversity: Khanom - Mu Koh Thale Tai Initiative". Mu Koh Thale Tai (or South Sea Islands) includes 5 major islands, i.e., Tan Is, Rap Is., Wang Nok Is., Wang Nai Is., and Mudsum Is. These areas belong to Khanom District, Nakhon Si Thammarat Province. This 3-year (2006-2008) initiative project was aimed to support research and training in marine biodiversity for young biologists and local communities as well as gather basic information on marine life occurring in these pristine habitats. The project's management was based on a multidisciplinary approach among different groups of marine biologists. This project covered a general survey of marine life as well as an analysis of biotic and physical environments. The data collected will be useful for the long-term monitoring of the marine ecosystem in response to the effects of physical changes, e.g., a rise of sea temperature and water pollution.

This study has shown that "Khamon – Mu Koh Thale Tai" is rich in marine biodiversity and supports a variety of colorful fauna. A total of 719 species of marine life have been detected. These include rare and/or endangered species for Thailand, e.g., Pink Dolphins (i.e., Indo-Pacific Humpback Dolphins – Sousa chinensis), the Basket star (Euryle aspera) and the Gorgonian brittle star (Ophiopsammium semperi) as well as seagrass beds of only 0.1 km² which provide food and shelter for juveniles of many marine organisms. More than 46 species of marine algae have been found including green calcareous marine algae (Halimeda macroloba). These algae could help

reduce the rate of global warming by changing CO_2 to calcium carbonate where it is deposited in the algae's tissues. In addition, this study has revealed the unseen variety of marine organisms that live in harmony making the "Khanom – Mu Koh Thale Tai" one of the most valuable natural treasures in southern Thailand.

We can proudly say that the Khanom Marine Biodiversity Initiative Project has inspired and generated a new body of knowledge that has already appeared in scientific journals. Other publications such as books and magazines for general audiences have been made for public awareness of these valuable bioresources. Workshops and training for school students and local people have been conducted for appropriate management of Pink Dolphins and fireflies for ecotourism.

This colorful and informative book on marine life and ecosystems will provide a brief introduction to unseen southern Thailand's biological, cultural and historical wealth for nature lovers and tourists.

"Khanom Marine Biodiversity Initiative Project" was partially funded by BRT, the TOTAL Foundation of France and TOTAL E&P Thailand, the gas and oil business cooperative in the Gulf of Thailand. The project thus forms part of corporate social responsibility (CSR) of the private sectors in collaboration with the BRT and local communities in an effort to promote biodiversity conservation and sustainable development in Thailand.

1. Introduction

Khanom Marine Biodiversity Initiative Project is developed by Biodiversity Research and Training Program (BRT) to support research and training in marine biodiversity. This project is to promote the effective management and joint working between researchers, students and the local communities by using Khanom - Mu Koh Tale Tai Marine National Park as a study site

This project is not only partially funded by BRT but is also sponsored by TOTAL Foundation and TOTAL E&P Thailand which operate gas and oil business and is also the coinvestor of natural gas exploration and production in Gulf of Thailand. The company would like to commit to corporate social responsibility (CSR) by being partnership in long term reservation of biological resources of Thailand

Khanom Marine Biodiversity Initiative Project will be operated for 3 years (2006-2008) with the budget of 14 million baht. The goals, objectives and research directions of this project are summarized below.

2. Goals

- Biodiversity knowledge covering coastal and marine ecosystems at Khanom Mu Koh Tale
 Tai Marine National Park
- Long term monitoring of climate change, seawater temperature monitor

• A better awareness on marine biodiversity and its importance through local education

3. Objectives

- To study biodiversity covering marine ecosystems at Khanom Mu Koh Tale Tai Marine National Park
- To develop young researchers and students at all level ranging from undergraduates to doctoral degree
- To develop an area for multidisciplinary research team, to build an education networks in order to exchange ideas and information and incorporate all the gained knowledge for management of marine biodiversity.
- To apply the knowledge gained from the research to local community development particularly in schools.
- To raise public awareness in marine biodiversity and environmental conservation particularly students, enabling them to monitor change in population and ecosystem.
- To develop Database for Species founded in Khanom (http://www.brtprogram.com/tnbi/home.asp).
- To have a long term monitoring of climate change, seawater temperature monitor
- To produce media, book, etc for public education.

4. Research Directions

- To study the species diversity of coastal and marine organisms including their community e.g. algae, sponges, plankton and coral species diversity
- To study coral reef communities
- To build up the coastal and marine biodiversity database
- To build up the reference collection of coastal and marine organisms in Southern Thailand, and educate people on such knowledge via workshop and training
- To promote Marine Education Center for students, school teacher and others on coastal and marine biodiversity.
- To build up the permanent plots to study relationship between the changing temperature of seawater and the population of marine organisms.

5. Activities and Results

5.1 A Total of 16 research projects and 4 Thesis on Biodiversity are fund

A. Research

No	Project Title	Principal Investigator
1.	Biodiversity of Marine Fungi at Khanom Beach and	Dr. Jariya Sakayaroj
	South Sea Islands National Park	BIOTEC
2.	Species Diversity of Acetic Acid Bacteria at	Dr. Pattaraporn Rattanawaree
	Khanom-Mu Ko Talay Tai National Park, Nakhon Si	BIOTEC
	Thammarat Province	
3.	Species Diversity and Collection of Yeasts at	Dr. Sasitorn Jindamorakot
	Khanom-Mu Ko Talay Tai National Park	BIOTEC
4.	Diversity, distribution abundance and monitoring of	Assistance Professor. Dr. Anchana
	seaweed at Khanom-Mu Ko Talay Tai marine	Prathep
	national park, Nakhon Si Thammarat Province,	Prince of Songkla University
	Thailand	
5.	Diversity, distribution and abundance of seagrass at	Assistance Professor. Dr. Anchana
	Khanom- Mu Ko Talay Tai Marine National Park	Prathep
	Nakhon Si Thammarat Province, Thailand.	Prince of Songkla University

6.	Diversity study on Echinoderms in Khanom Beach	Miss Arom Mucharin
	– South Sea Islands National Park, Nakhon Si	National Science Museum
	Thammarat Province	
7.	Species diversity of marine ascidians dwelling in	Mr. Sucha Munkongsomboon
	the coral reefs in Khanom-South Islands National	Burapha University
	Park, Nakhon Si Thammarat Province	
8.	Species diversity of marine sponges	Mr. Sumaitt Putchakarn
	(Demospongiae, Porifera) dwelling in the coral	Burapha University
	reefs in Khanom-South Islands National Park,	
	Nakhon Si Thammarat Province	
9.	Intertidal Crabs Diversity of Khanom Coastal, in	Assistance Professor. Dr.
	Had Khanom-Mu Ko Talay Tai National Park	Pitiwong Tantichodok
		Walailak University
10.	Species diversity and distribution of gorgonians at	Dr. Voranop Viyakarn
	Had Khanom-Mu Ko Talay Tai National Park	Chulalongkorn University
11.	Organisms associated with the seagrass bed at Koh	Dr. Voranop Viyakarn
	Tarai, Nakhon Si Thammarat Province	Chulalongkorn University
12.	Species diversity of nudibranch at Had Khanom-Mu	Assistant Professor Dr. Suchana
	Ko Talay Tai National Park	Chavanich
		Chulalongkorn University
13.	Species Diversity and Community Dynamics of	Dr. Sakanan Plathong
	Coral Reef Fish in Mu Ko Talay Tai, Nakhon Si	Prince of Songkla University

No	Project Title	Principal Investigator
	Thammarat Province, Thailand	
14.	Status of Dolphin in Talay Tai Archipelago, Thailand	Mr. Atichat Inthongcum
15.	The plankton community in relation to environmental factors along Khanom Canal, Khanom Beach and South Sea Islands, Nakhon Si Thammarat Province	Ms. Supiyanit Maiphae Prince of Songkla University
16.	Recruitment processes and community dynamics of juvenile scleractinian corals on inshore reefs around Khanom-South Sea Islands Marine National Park	Ms. Srisakul Piromvaragorn Prince of Songkla University

B. Thesis

No	Project Title	Principal Investigator
17.	Water circulation and suspended sediment	Mr. Nikom Onsri
	dispersion around Khanom Beach to Southern Sea	Chulalongkorn University
	Island	
18.	Interspecific Competition by Scleractinian Corals in	Ms. Supranee Limpaungkaew
	Koh Tan, Suratthani Province, Thailand	<u>Walailak University</u>
19.	Comparison among fish communities in seagrass	Mr.Surasak Sichum
	beds, mangrove, sandy beach and mudflat at Had	Walailak University
	Khanom-Mu Ko Talay Tai National Park, Nakhon Si	
	Thammarat Province	
20.	Species composition and habitat uses of <i>Acetes</i>	Miss Usawadee Datsri
	shrimps and their fish predators at Taladyai Bay,	<u>Walailak University</u>
	Had Khanom-Mu Ko Talay Tai National Park	

5.1.1 Endophytic fungi associated with seagrass (Enhalus acoroides, Hydrocharitacea) at Had Khanom Mo Ko Talay Tai National Park, southern Thailand

Jariya Sakayaroj^{1,*}, Sita Preedanon¹, Orathai Supaphon², E.B. Gareth Jones¹ and Souwalak Phongpaichit²

¹National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand, ²Prince of Songkla University, Songkhla, Thailand, *E-mail: jariyask@biotec.or.th

Seagrasses are flowering plants inhabiting coastal and marine environments, with a worldwide distribution in temperate and tropical regions. They serve as feeding, breeding and nursery grounds for important marine organisms. Little information is available on fungi associated with seagrasses, especially fungal endophytes. Therefore, the tropical eelgrass Enhalus acoroides was collected from Had Khanom-Mo Ko Talay Tai National Park. The objectives of this project were to investigate the presence of endophytes in *E. acoroides* and test for their antimicrobial activity. This study yielded 42 fungal assemblages, isolated from four collections over one year. Our results confirm that E. acoroides harbored fungal endophytes. This is the first report of endophytes associated with seagrasses from Thailand. Molecular identification of endophytes based on LSU and ITS1, 2, 5.8S rRNA sequences revealed a diversity of fungal groups including two Phyla: Ascomycota (98%) and Basidiomycota (2%). Three major Ascomycota classes, including the Eurotiomycetes, Sordariomycetes and Dothideomycetes, were determined. Eight genera and two species were fully identified while others remain to be characterized. The predominant 12 isolates (29%) were members of the Hypocreales, followed by the Eurotiales and the Capnodiales, respectively. Fermentation broths, from selected fungal endophytes, were tested for their antimicrobial activity by agar well diffusion. Approximately 16% displayed antimicrobial activity against at least one pathogen with significant inhibition zones. Therefore, our study has revealed that marine endophytes are potentially useful as good sources of natural antimicrobial compounds.

Trichocladium achrasporum

Aigialus grandis

5.1.2 Species diversity of acetic acid bacteria at Khanom-Mo Ko Talay Tai National Park, Nakhon Si Thammarat province

Pattaraporn Rattanawaree (Yukphan)¹, Taweesak Malimas¹, Somboon Tanasupawat², Wanchern Potacharoen¹ and Yuzo Yamada¹

One hundred and eighty-three bacterial isolates were made from 179 natural samples, such as flowers, fruits, algae, sand, etc., in Khanom-Mo Ko Talay Tai National Park, Nakhon Si

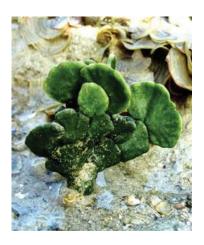
¹National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand,

²Chulalongkorn University, Bangkok, Thailand

Thammarat province, collected in March, 2007 and May, 2008. All isolates were purified and preserved in the BIOTEC Culture Collection for further studies. Seventy-nine representative isolates from different samples were selected for 5' end determination of 16S rDNA sequences. From a phylogenetic tree based on the 5' ends of 16S rRNA gene sequences and constructed by the neighbor-joining method, nine isolates did not belong to the cluster of acetic acid bacteria, fifty-two isolates were included in the lineage of three genera of acetic acid bacteria, *Acetobacter* (1 species), *Asaia* (3 species) and *Gluconobacter* (4 species), and eighteen isolates (25.7%) are suggested to be 5 new species. Among the 18 isolates, 3 isolates of three new species belonged to a new genus. Three isolates of three new species candidates belonging to two new genera, AH11, AH13 and Al15, were selected for further characterization of the proposed new genera and new species. The name of *Swingsia* gen. nov. was proposed with *Swingsia thailandicus* sp. nov. and *Swingsia tanensis* sp. nov. being proposed as names for AH11 and AH13, respectively.

5.1.3 Species diversity of yeasts at Khanom-Mo Ko Talay Tai National Park

Sasitorn Jindamorakot*, Somjit Am-In and Wanchern Potacharoen


National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand, *E-mail: sasitorn@biotec.or.th

The diversity of yeast at Khanom-Mo Ko Talay Tai, Nakhon Si Thammarat Province, was investigated. One hundred and fifty yeast strains were isolated from sea water (58), plant materials in sea water and mangrove forest (57), seaweeds (18), soils and sands in mangrove forest (13) and miscellaneous substrates (4). A membrane filtration technique, and direct streaking and enrichment technique were used for isolation. Among the isolates, 111 strains were ascomycetous yeasts and 39 strains were basidiomycetous yeasts. Based on the D1/D2 domain sequence of the 26S rDNA gene, 129 strains were identified as 51 known species in 21 genera. The remaining 21 strains differed by 4 nucleotide substitutions or more from any known species; they are considered to represent 17 new species in 8 genera. It is concluded that yeasts are diverse in Khanom-Mo Ko Talay Tai National Park. Two strains of black yeasts, ST-1082 and ST-1158, are under study for morphological and physiological characteristics and chemotaxonomy in order to propose them as new yeast species from Khanom-Mo Ko Talay Tai National Park, Thailand.

5.1.4 Diversity and Distribution of Seaweeds at Khanom-Mo Ko Talay Tai National Park, Nakhon Si Thammarat Province, Thailand

Anchana Prathep¹, Supattra Pongparadon, Anuchit Darakrai and Sutinee Sinutok
Seaweed and Seagrass Research Unit, Excellence Centre for Biodiversity of Peninsular Thailand
(CBIPT), Department of Biology, Faculty of Science, Prince of Songkla University, Songkhla,
90112, Thailand, E-mail¹: anchana.p@psu.ac.th

Diversity and Distribution of seaweeds at Khanom-Mo Ko Talay Tai National Park, Nakhon Si Thammarat Province, Thailand were carried out between October 2005 and May 2008 at 5 islets: Koh Tan, Koh Mud Sum, Koh Rab, Koh Wang Nai and Koh Wang Nok. A total of 60 species were identified including 23 species of Chlorophyta, 19 species of Phaeophyceae in the Chromophyta, 16 species of Rhodophyta and 2 species of Cyanobacteria. Of these, 8 species are believed to be new records for the Thai marine flora. The number of species varied from site to site. Ko Tan had the highest diversity with 49 species and KoWang Nok had the lowest diversity with 22 species. This study provides a more complete species list for further comparative studies between the Gulf of Thailand and the Andaman Sea. We have intensively reviewed the seaweed study of Thailand, which were very limited. However, recent work on population and community structure have increased from 2005, which help providing a baseline for future more complex ecological studies; and informing coastal management and exploring seaweed potential practical uses.

5.1.5 Diversity, Distribution and Abundance of Seagrass at Khanom-Mo Ko Talay Tai National Park, Nakhon Si Thammarat Province, Thailand

Anchana Prathep*, Jaruwan Mayakun, Ekkalak Rattanachot and Piyalap Tantiprapas Seaweed and Seagrass Research Unit, Centre for Biodiversity of Peninsular Thailand, Department of Biology,

Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand, E-mail address: anchana.p@psu.ac.th

Diversity and abundance of seagrasses were studied at Ko Ta Rai, Khanom-Mu Ko Thalae Tai Marine National Park, Nakhon Si Thammarat, Thailand. The study was carried out from July 2006- September 2007. A total of three permanent transect lines were investigated following the method of *SeagrassNet*. Light and temperature were also monitored using this protocol. This indeed provides important information for the climate change, which is an important issue in the recent years. The first data collection was monitored in July 2006, however, there were problems with the water visibility and weather conditions, thus field collections cannot be carried out according to plans. Recent field collections were done again in August and September 2007; and new method would be applied if the weather does not permit for the field collection. So far, 4

species of seagrasses were found, *Thalassia hemprichii* (Ehrenb.) Aschers, *Halodule uninervis* (Forsskål) Aschers, *Cymodocea rotundata* Ehrenb. Et Hempr. Ex Aschers and *Enhalus acoroides* (L.f.) Royle. We hope to have the field monitoring for at least 2 years since this would give a good understanding of seagrass population at ThaRia. In addition, the seagrass bed in Tharai, is the only seagrass bed found in the area, which provides sheltered for many marine organisms. These are used for the local fisheries communities in the area. Also, the area is proposed under the *SeagrassWatch* project, which local school students can monitor the seagrass and learn about the marine biodiversity at the area.

5.1.6 Diversity study on echinoderms in Had Khanom – Mo Ko Talay Tai National Park, Nakhon Si Thammarat Province

Arom Mucharin^{1,*}, Sumaitt Putchakarn² and Pattareena Komkham³

¹National Science Museum, Pathum Thani, Thailand, ²Burapha University, Chonburi, Thailand, ³Chulalongkorn University, Bangkok, Thailand, *E-mail: arom@nsm.or.th

Echinoderms of Had Khanom – Mo Ko Talay Tai National Park, Nakhon Si Thammarat Province, located in the southern part of the Gulf of Thailand were studied at 12 sites at Ko Tan (4 sties), Ko Mudsum (2 sites), Ko Wang Nai (2 sites), Ko Wang Nok (2 sites) and Ko Rab (2 sites) in November, 2006 and May 2008. The investigations were carried out by SCUBA diving in the daytime and random searching throughout the reefs. The results yielded 24 species of Echinoderms from 5 classes, 10 orders, 14 families and 20 genera. The most abundant echinoderms in the study area are: Lamprometra palmata, Ophiothrix (Ophiothrix) exigua, Holothuria (Metensiothuria) leucospilota and Diadema setosum. All observed species are commonly found in the Gulf of Thailand and the Indo-Pacific.

5.1.7 Species diversity of marine Ascidians dwelling in the coral reefs of the Khanom-South Islands, Nakhon Si Thammarat Province

Sucha Munkongsomboon* and Sumaitt Putchakarn

Burapha University, Chonburi, Thailand, *e-mail:sucha@buu.ac.th

The species diversity and distribution of ascidians dwelling in the coral reefs of Had Khanom - Mo Ko Talay Tai National Park, Nakhon Si Thammarat Provice, the southern Gulf of Thailand were investigated. The investigations were conducted at 12 sites in the Mo Ko Talay Tai area and were carried out by SCUBA diving during the daytime and random observation throughout the reefs. The results yielded 10 species of ascidians from 3 orders, 3 families and 5 genera. The genera were Didemnum (6), Diplosoma (1), Eudistoma (1), Polycarpa (1) and Ascidia (1).

เพรียงหัวหอมเดี่ยวท่อใหญ่, Polycarpa, sp.

เพรียงหัวหอมกลุ่มเคลือบสีน้ำตาล, Didemnum, sp.

5.1.8 Species diversity of marine sponges dwelling in coral reefs of Had Khanom – Mo Ko Talay Tai National Park, Nakhon Si Thammarat province, Thailand

Sumaitt Putchakarn

Burapha University, Chonburi, Thailand, E-mail: Sumaitt@bims.buu.ac.th

The species diversity of demosponges dwelling in the coral reefs of Had Khanom-Mo Ko Talay Tai National Park, located in the southern Gulf of Thailand was investigated with field surveys undertaken at 14 sites in November 2006 and May 2007 using SCUBA and random observation. 47 species of demosponges from 10 orders, 24 families and 34 genera were recorded. The Order Haplosclerida had the highest species abundance with 15 species, followed by Poecilosclerida with 9 species and Dictyoceratida with 6 species The massive sponge was the most dominant growth form of the study area. The most abundant and common sponges in this area are Oceanapia sagittaria Neopetrosia sp. "blue", Xestospongia testudinaria and Haliclona (Gellius) cymaeformis.

Most species are common representatives of the Indo-Pacific fauna found throughout the Gulf of Thailand.

ฟองน้ำหนัง, *Chondrosia* reticulata (Carter)

ฟองน้ำฝังตัวสีดำ, Aka mucosa (Bergquist)

ฟองน้ำท่อพุ่มสีแดง,

Oceanapia sagittaria
(Sollas)

5.1.9 Biodiversity of Marine Brachyuran Crabs at Had Khanom, Moo Kho Thalay Tai National Park, Nakhon Si Thammarat

Pitiwong Tantichodok¹, Arwut Kaenphet¹ and Ruengrit Promdam²

¹Institute of Science, Walailak University, Thasala, Nakhonsithammarat 80160

Inventory of species diversity of marine crabs (Decapoda: Brachyura) at Had Khanom – Moo Kho Thalay Tai National Park (Nakhonsithammarat and Suratthani Provinces) in 6 habitat types: sandy beach, rocky shore, seagrass beds, seaweed beds, mangrove areas and subtidal bottom was investigated from January to December 2007. This aims at providing baseline data on marine biodiversity of this area. A total of 57 species from 36 genera of 15 families were collected. One of which (sesarmid species) is undescribed and probably new to science. *Paracleistostoma tweediei* is new to Thailand and three other species (*Camposcia retusa*, *Charybdis acutifrons* and *Episesarma palawanense*) are first records in the Gulf of Thailand. All specimens were deposited at the Zoological Reference Collection at Walailak University. Photographs of brachyuran crabs were taken.

5.1.10 Species diversity and distribution of gorgonians at Had Khanom – Mo Ko Talay Tai National Park, Nakhon Si Thammarat, Thailand

²Phuket Marine Biological Center, 51 Sakdidet Road, Tumbol Wichit, Muang District, Phuket, 83000

Voranop Viyakarn*, Thepsuda Loyjiw, Chalothon Raksasab and Suchana Chavanich

Chulalongkorn University, Bangkok, Thailand, *E-mail: vvoranop@chula.ac.th

Gorgonians are invertebrates in the Subclass Octocoralli, Order Gorgonacea. Gorgonians can be found in every ocean from tropical to temperate zones. In Thailand, only a few studies have been done on gorgonians. The purpose of this study was to investigate the diversity of gorgonians at Had Khanom – Mo Ko Talay Tai Marine National Park. The study areas included Ko Wang Nai, Ko Wang Nok, Ko Rab, Ko Tan, and Ko Mat Sum. A total of 15 genera in 7 families were found in the areas. The families and genera were: the Family Anthothelidae, *Solenocaulon*; the Family Subergorgiidae, *Subergorgia*; the Family Melithaeidae, *Melithaea*; the Family Acanthogorgiidae, *Anthogorgia*; the Family Plexauridae, *Euplexaura*, *Echinomuricea*, *Echinogorgia*, *Menella*, and *Astrogorgia*; the Family Gorgoiidae, *Rumphella* and *Pseudopterogorgia*; and the Family Ellisellidae, *Ctenocella*, *Junceella*, *Dichotella*, and *Verrucella*. Ko Rab had the highest gorgonian diversity (15 genera), followed by Ko Tan (13 genera). Ko Wang Nai had the lowest diversity (6 genera). *Subergorgia*, *Astrogorgia*, *Ctenocella*, *Junceella* and *Dichotella* were found on every island. In contrast, *Solenocaulon* occurred only at Ko Rab. From this study, *Astrogorgia* and *Verrucella* were first records of these genera in the Gulf of Thailand and in Thai waters, respectively.

Junceella sp.

Verrucella sp.

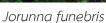
Astrogogia sp.

5.1.11 Organisms associated with gorganians at Mo Ko Talay Tai, Surat Thani and Nakhon Si Thammarat

Voranop Viyakarn*, Siripat Boonnuan, Thepsuda Loyjiw and Suchana Chavanich Chulalongkorn University, Bangkok, Thailand, *E-mail: vvoranop@chula.ac.th

The organisms associated with 3 different colony forms of gorgonians were investigated. Three gorgonian genera, *Subergorgia*, *Dichotella* and *Verrucella*, were chosen as representatives of 3 different forms, i.e., sparse, bushy and planar, respectively. Samples of each genus were collected from 3 different depths of water, shallow (< 5 m), mid-depth (5–10 m) and deep (> 10 m) in each study site of Mo Ko Talay Tai, Surat Thani and Nakhon Si Thammarat. The study sites included Ko Tan, Ko Mat Sum, Ko Rap, Ko Wang Nok and Ko Wang Nai. A total of 4,992 individuals in 8 phyla were found from 32 gorgonian samples. The 8 phyla were Porifera, Cnidaria, Platyhelminthes, Annelida, Sipunculida, Mollusca, Arthropoda and Echinodermata. The brittle stars (Ophiuroidea) and amphipods (Amphipoda) comprised the largest numbers of organisms associated with gorgonians. Moreover, there was a correlation between the numbers of organisms and forms

of gorgonians. The highest number of associated organisms was found for *Subergorgia* with 4,579, followed by *Dichotella*, 341, and *Verrucella*, 72, respectively. From these results, the morphology of gorgonians is likely to influence habitat selection by associated organisms.


5.1.12 Species diversity of nudibranches at Had Khanom – Mo Ko Talay Tai National Park, Nakhon Si Thammarat province Thailand

Suchana Chavanich^{1,*}, Larry G. Harris², Chalothon Raksasab¹, Pataporn Kuanui¹ and Voranop Viyakarn¹

¹Chulalongkorn University, Bangkok, Thailand, ²University of New Hampshire, NH 03824, U.S.A., *E-mail: suchana.c@chula.ac.th

Nudibranches belong to the mollusk group but have no shell protecting their soft bodies. In Thailand, approximately 60 species of nudibranchs have been found in the Gulf of Thailand and the Andaman Sea. However, no study has been done on the distribution and biology of nudibranches in Thailand. The purposes of this study were to investigate species diversity of nudibranchs at Had Khanom - Mo Ko Talay Tai Marine National Park and to gather baseline data for conservation and management of natural resources. There were five islands in the study: Ko Wang Nai, Ko Wang Nok, Ko Rab, Ko Tan, and Ko Mat Sum. A total of 19 species in 15 genera and 9 families were found at depths between 1-15 m. The difficulty and the ease in finding these nudibranchs were 42.1%. Phyllidiidae and Chromodorididae were the dominant groups. The dominant species was Jorunna funebris. From this study, Chromodoris sinensis, Glossodoris cincta, Dendrodoris denisoni, Platydoris dierythros and Bornella stellifer were first records of these species in Thai waters.

Phyllidiella nigra

Bornella stellifer

5.1.13 Diversity of reef fish in Had Khanom-Mo Ko Talay Tai National Park, Nakhon Si Thammarat

JirapongJeewarongkakul¹, Sakanan Plathong² and Set Songploy³

¹World Wild Fund for Nature, Thailand Office, Pathum Thani, Thailand, e-mail: jirapong_j@hotmail.com, ²Prince of Songkla University, Songkhla, Thailand, ³Ramkamhang University, Bangkok, Thailand

Data collection for a reef fish study was conducted 3 times in February, May and July, 2007, around Had Khanom - Mo Ko Talay Tai National Park at 5 stations: Ko Wang Nai, Ko Wang

Nok, Ko Rab, Ko Mud Sum and Ko Tan. Coral reefs of each island were located on reef flats on the leeward and windward sides and on reef slopes on the leeward and windward sides. 97 species of reef fish were recorded during the study period. The dominant fish families were Pomacentridae (23 species) and Labridae (14 species). Fish community diversity did not differ significantly (p>0.05) between island or between windward and leeward sides of each island while species abundances and numbers on reef slopes and reef flats showed significant differences among all stations (p<0.05). The number of species in the reef slope fish communities was higher than in the community of reef flat areas. On the other hand, the diversity index and evenness index of the reef flat were higher than for the reef slope. From this study it was obvious that there were two types of fish community: the fish community of reef flats and the fish community of reef slopes. However, data on fish populations in different seasons should be collected in order to get more information on fish community patterns.

5.1.14 Status of dolphin in Had Khanom -Thale Tai Archipelago, Thailand

Atichat Intongcome, Rabin Thongnak and Thanyaporn Thrupsomboon

Marine and Coastal Resources Research Centre, The Central Gulf of Thailand, Muang, Chumphon 86000

The status of dolphin at Hadd Khanom-Thale Tai Archipelago had been surveyed during August 2006-July 2007, from Ko tarai to Thong-yang bay and covering Ko Tan, Ko Rab, Ko Vangnai, Ko Vangnok and Ko Madsum. Interviewing of fishermen and tourists totally about 43 persons in Khanom district, Nakorn Si Thammarat province were conducted and resulted that 100% of them saw 3 types of Dolphins Sousa chinensis, Orcaella brevirostris and Neophocaena phocaenoides. 17 trips of ship-based survey found 2 species of dolphin (Family Delphinidae) which were Indo-Pacific hump backed dolphin (S. chinensis) and Irrawaddy dolphin (O. brevirostris). The first species (S. chinensis) was found 7-19 individuals/group, showing to be local species because of finding every trips, distributed along Thongshing bay, Kwang Phao bay, Thongnod bay, Thongnain bay, Taled bay and Ko Tharai. The second species (O. brevirostris) was found 5-7 individuals/group, distributed along Taled bay, Thongtakhum bay and Ko Tharai. Dolphin behavior such as swimming, eating, diving, resting and Travelling were also investigated. The data of stranding dolphins since 2006-2007 showed 3 species from 12 stranding samples. 6 samples of Indo-Pacific hump backed dolphin (S. chinensis) were found at Thongnian bay and Niphao beach. 1 stranding sample Irrawaddy dolphin (O. brevirostris) was found at Thongnian bay. 3 stranding samples Finless porpoise (N. phocaenoides) were found at Nadan bay and Niphao beach. Mostly stranding were caused by fishing gears and some unkwon caused. The status of dolphin in Hadd Khanom -Thale Tai Archipelago is critically endangered.

5.1.15 The Plankton community in the relation to the environmental factors along Khanom canal, Khanom beach, Mo Ko Thale-Tai, Nakhon Si Thammarat

Supiyanit Maiphae¹ and Phannee Sa-ardrit²

¹Department of General Science, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand.

E-mail:supiyanit.m@psu.ac.th, ²Princess Maha Chakri Sirindhorn Natural History Museum, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla, Thailand. E-mail:phannee.s@psu.ac.th

The present study aimed to examine plankton species diversity along Khanom Canal, Khanom beach, Mo Ko Thale-Tai, Nakhon Si Thammarat Province. Samplings were carried out covering 15 stations starting from Cho water fall to Khanom canal and around five islands of Mo Ko Thale-Tai (Wang nok, Wang nai, Rap, Tan and Mudsum) during October 2006 and September 2007. A total of 184 phytoplankton taxa in three Divisions were recorded. The most diverse Division was Chromophyta, comprising of Class Bacillariophyceae 41 genera (104 taxa), Class Dinophyceae 17 genera (51 taxa) and Class Dictyochophyceae 1 genus (2 taxa). Moreover, it was obviously shown that Bacteriastrum sp1, Chaetoceros diversus and Chaetoceros lorenzianus were the high frequently found taxa throughout sampling periods. However, based on the density, Bacteriastrum sp1 dominated phytoplankton of all stations sampled through out sampling period (7.27x10' ind./l). In addition, it showed the highest density in March 2007 (1.17x10⁶±2.21x10⁶ ind./l) followed by October 2006 $(8.80 \times 10^5 \pm 1.28 \times 10^6 \text{ ind./l})$ and September 2007 $(8.68 \times 10^5 \pm 6.24 \times 10^5 \text{ ind./l})$, respectively. Moreover, 61 taxa in 11 Phylum of zooplankton were recorded. Arthropoda was the most diverse phylum, comprising of 24 taxa. Of which, nineteen were the members of the Copepoda. Based on the density, nauplius of crustacean dominated zooplankton at all stations over the sampling period (1,316.67-5,293.02 ind./l). In addition, it showed the highest density in January (5,297±8,387 ind./l), March (4,662±6,315 ind./l) and September 2007 (3,437±4,279 ind./l), respectively. However, beside nauplius of crustacean, Tintinnopsis orientalis and Codonellopsis ostenfeldi also showed high density at all times during sampling period. Environmental factors differed from headwater, Khanom canal and Mu Ko Thale-Tai but the amount of each factors, especially nutrients, turbidity, DO are over standard though the turbidity was relatively high in Khanom canal and some parts of Koh Wang nai, Wang nok and Koh Tan.

These results showed the good sign that Mu Ko Thale-Tai is a good nursery are and still rich of the marine organisms. However, for sustainable use, their water quality and general

environmental factors need to be conserved in proper conditions as at the moment. Moreover, in order to explain the trophic relations at Mu Ko Thale-tai, more information on the association between plankton community and others ecosystem such as seaweed, seagrass and coral are necessary. Of which, such knowledge can be used to produce the whole ecosystem guidelines to regulate and manage them in a sustainable approach in the future.

5.1.16 A preliminary study of coral recruitment processes on reefs of Mo Ko Talay Tai

Srisakul Piromvaragorn^{1,*}, Sakanan Plathong¹, Monthon Ganmanee² and Lalita Putchim³

The Center of Excellence for Biodiversity in Peninsular of Thailand, Songkhla, Thailand, ²King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand, ³Phuket Marine Biological Center. Phuket, Thailand

*E-mail: srisakul p@hotmail.com

In this preliminary study, we compared the early recruits onto settlement panels during the spawning peak of year 2007 with in situ juvenile abundance on reef substrates. The population of newly settled recruits was predominantly Pocillopora damicornis (60%) with lesser proportion of the genera Porites (16%), Fungia (10%), Acropora (4%), mixed faviid genera (4%), Montipora (1%) and unidentified group (5%). On the other hand, the majority of in situ juveniles were Montipora (24%), Pocillopora (18%), Tubastrea (13%), Fungia (11%) and Favia (10%). We found that coral recruitment varied spatially among the five islands of Mo Ko Talay Tai. While settlement rate was generally higher on Ko Mudsum and Ko Rab, settlement rate seem to be consistently lower on Ko Wang Nai. Moreover, average in situ juvenile abundance on reefs at Ko Taen and Ko Mudsum were higher than at the other reefs. Despite high rates of settlement at Ko Rarb, juvenile abundance there was low, implying that post-settlement mortality plays an important role in shaping the community structure. In addition, density of recruits on settlement panels translates to ~270 spat per square meter of bare substrate which is many times the density of juveniles found on natural substrate. Because bare substrate is quickly fouled by algae and sediment, further study is needed to differentiate the roles of substrate limitation and post-settlement mortality as controls on natural coral recruitment processes on these islands.

5.1.17 Application of a numerical water circulation model and dispersal of coral eggs and planula larvae around Had Khanom - Mu Ko Talay Tai

Nikom Onsri* and Pramot Sojisuporn

Chulalongkorn University, Bangkok, Thailand *E-mail: nikom019@hotmail.com

In this study, a 2-D circulation model was applied to simulate tidal currents at Had Khanom – Mu Ko Talay Tai during 2008, and the dispersal of coral eggs and larvae during February - April 2008 was assessed based on velocity fields. Numerical model results showed that tidal currents in Had Khanom – Mu Ko Talay Tai were relatively weak, being less than 0.4 m/s. Strong tidal currents occurred only in the deep channels between islands. Eddies and current

meandering occurred at the tips of the islands and these helped in mixing of the water mass, nutrient mixing and dispersal of coral eggs and planula larvae. The current simulation for February to April indicated that if coral spawned their eggs during the spring tide, there was a good chance that planula larvae would settle down at the brooding colony or nearby site with a high survival rate. But if the spawning occurred during the neap tide, there was a good chance that the planula larvae would settle down at a farther distance from their brooding colony. Finally, the relation between the spawning time and flood-ebb cycle revealed that if spawning occurred during the ebb cycle, there was a good chance that the current would carry the eggs and larvae out to sea, thus reducing the survival rate. But if the spawning occurred during the flood cycle, the current would carry the eggs and larvae to the islands north of the study site and the larvae could settle down around the islands there or come back to the spawning area by the ebb current.

5.1.18 Interspecific competition by scleractinian corals at Koh Tan, Surat Thani province, Thailand

Supranee Limpuangkaew* and Pitiwong Tantichodok

Walailak University, Nakhon Si Thammarat, Thailand, *E-mail: realism14@gmail.com

Coral reefs are one of the most dynamic and diverse marine communities with many of species highly specialized to a particular niche. At present, coral reefs are subject to many destructive forces of both natural and human induced agents that can severely damage coral communities. The physical environment plays an important role in determining the composition of coral communities, while the biological environment creates the wealth of species that is characteristic of coral reefs. Coral's aggressive capacities play a central role in the determination of its coverage and distribution. Information on which coral species can tolerate different kinds of competitive interaction and which coral species can succeed in certain conditions is required for future coral propagation and coral rehabilitation. This research will provide the first quantitative evidence of patterns and outcomes of competitive ability among corals in Thailand. The objectives of this study are: to investigate patterns of interspecific interaction and indicate competitive ability by quantification among different species of corals, and to identify interspecific interactions of corals under different conditions for coral reefs at Koh Tan, Surat Thani Province. The proposed study sites are the coral reefs at Koh Tan which is an island south of Koh Samui in the Gulf of Thailand. There is an urgent need to study the ecology of coral reefs at Koh Tan and the research outcomes from this study can be applied for future reef restoration or rehabilitation.

5.1.19 Comparisons of fish communities among seagrass beds, mangroves, sandy beaches and mudflats at Had Khanom Mu Ko Talay Tai National Park, Nakhon Si Thammarat Province

Surasak Sichum* and Pitiwong Tantichodok

Walailak University, Nakhon Si Thammarat, Thailand, *E-mail: surasakbm99@yahoo.com

Had Khanom Mu Ko Talay Tai National Park encompasses various important coastal ecosystems such as mangroves, seagrass beds, coral reefs and other types of wetlands which act as spawning, nursery and feeding grounds for various kinds of aquatic life. Nowadays, the increasing loss of heterogeneous coastal habitats as well as the consequences of a number of human activities, such as sedimentation from construction into the sea, encroachment and reclamation of mangrove forests, wastewater from fisheries industries and domestic sources, illegal and destructive fishing, over fishing, all cause reductions in the ecological roles in goods and services of the Had Khanom coastal ecosystems.

This study explores the fish assemblages of various habitats including seagrass beds, mangroves, sandy beaches and mudflats within Had Khanom Mu Ko Talay Tai National Park in order to describe the relative importance of each habitat type in terms of diversity, abundance, and biomass of fish species of commercial importance throughout the year, as well as to determine the size distributions of fish in these habitats the data for which will be collected using a beach seine. This study will provide basic ecological information and understanding for decision makers, coastal zone managers, and park rangers for coastal zone management and conservation that eventually will lead toward sustainable development.

5.1.20 Species composition and habitat use and the influence of predators on habitat selection of Acetes spp.

Usawadee Datsri* and Udomsak Darumas

Walailak University, Nakhon Si Thammarat, Thailand, *E-mail:dusawadee@yahoo.com

The species of the genus *Acetes* are mainly fished and are of significant commercial importance at Taladyai Bay, Had Khanom Mu Ko Talay Tai National Park, Nakhon Si Thammarat. They are small planktonic shrimp living in fresh water rivers, brackish water, the open ocean,

mangroves and seagrass beds. Changes in water temperature, rainfall, tide, local winds, food supply and the presence of predators may be important for fishing seasons. This present study aims to gather information about the species composition, habitat uses, and habitat preference of *Acetes* shrimps. As well, the influence of predatory fish on habitat selection by *Acetes* shrimps will be investigated. The outcome of this study will provide ecological data for management of the *Acetes* shrimp fishery.

5.2 Research Projects have impacts on conservation and policy makers

BRT provided the information to National Human Rights Commission of Thailand: On the new ferry port at at Ao Talet, Tong Nian District, Khanom, Nakhon Srithammarat Province

According to BRT role in supporting marine biodiversity projects since 2006, National Human Rights Comission on Water, Coastal and Mineral resrounces asked BRT to provide the information in Khanom marine biodiversity on April 20^{th} , 2007.

Ao Taled communities had proposed the protest to the National Human Rights Commission of Thailand in harbor construction by Seatran Port company at Ao Talet, Tong Nian District, Khanom, Nakhon Srithammarat Province. The people are afraid that the harbor construction might have an effect on the dolphin habitat and seagrass beds.

According to the researches, BRT reported that in Khanom area, there is high abundance of seagrass beds which have the ecological roles as nurseries grounds to crabs and shrimp; and they are also important for small local fisheries. Estuarine and coastal waters of nutrients, contaminants, and sediments filters. Moreover, the area is known to be home of pink dolphin; and it is an important ecotourism site.

5.3 Species of marine organisms has been listed

The datasheets of marine organisms found in research projects were collected for producing the species list of marine organisms found in the area. The species list is presented as follows:

No.	Type of Organism	Number of species
1	Gorgonians	15
2	Nudibranch	15
3	Fish	96
4	Crab	98
5	Ascidians	10

No.	Type of Organism	Number of species
6	Plankton	120
7	Marine Sponges	55
8	Marine Fungi	164
9	dolphin	3
10	Seaweeds	46
11	Seagrasses	4
12	Echinoderms	24
13	Coral	70
	Total	719

5.4 Conservation for Dolphins, Seaweeds and Coral Reefs in Khanom: Bouys Projects On December 18th, 2009 BRT in corporation with TOTAL E&P Thailand, TOTAL Foundation French Republic and Department of Marine and Coastal Resources, Ministry of Natural Resources and Environment delivered ceremony at the sea buoy project at Khanom District, Nakornsrithammarat Province. Khanom area is rich in marine biodiversity including healthy coral reefs, seagrass beds and the largest habitat of the Pink Dolphins (Indo-Pacific Humpback Dolphin). Therefore, this sea buoy project set up for the local community at Khanom with the aim for marking the marine and coastal conservation zones, especially for the Pink Dolphin conservation. This project first started at Raja Kiri Resort and Spa, Nakornsrithammarat Province.

The project installed 30 buoys along the coastline of 12 kilometers long starting from Koh Phi, the border between Suratthani and Nakornsrithammarat Provinces, to Ao Node. This area is the large habitat for the Pink Dolphins. Additionally, Thong Nean community participation is crucial for successfully management of the buoys installed for marine and coastal conservation.

It is expected that the buoys installed at Khanom would help marking the Pink Dolphin habitat. The buoys can be used to mark a location where tourists can watch Dolphins. Moreover, the buoys could help marking the prevention zones from the dropped and dragged anchors by the fishing boats and ships. The trawled boats and ships create great damage to corals, seagrass beds and especially the Dolphin habitats. Thus, the installed buoys would help prevention the loss of marine bioresources at Khanom coastline.

5.5 Trainings & Educations & Others

1	Ecological Research Training Course	24 April – 21 May 2006
2	Long term ecological Plot at Koh Tan	9-10 June 2006
3	1 st Capacity building camp on marine conservation for students and local community	1-2 September 2006
4	2 nd Capacity Building Camp on Marine Conservation for Students and Local Community	8-10 November 2006
5	BRT organized the exhibition "Seagrass conservation for the King"	14 February 2007
6	Seaweed Biodiversity and Reference Collection Workshop was organized	16-20 April 2007
7	Preliminary Survey on Seagrasses	22-27 June 2007
8	3rd Capacity Building Camp on Marine Conservation for Students and Local Community	1-7 October 2007
9	First year research of Khanom Mu Koh Thalae Tai was presented to students at OPEN House organized by Faculty of Science Prince of Songkla University	10 November 2007
10	1 st Marine Photo trip at Khanom-Mu Koh Talay Tai Marine National Park for publishing the coffee table booklet	30 March – 1 April 2008

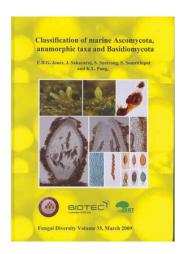
11	4th Capacity Building Camp on Marine Conservation for Students and Local Community	30 April - 4 May 2008
12	Capacity Building Workshop at PSU for Students	15-16 May 2008
13	2 nd Marine Photo trip at Khanom-Mu Koh Talay Tai Marine National Park for publishing the coffee table booklet	21-24 May 2008
14	An exhibition of underwater photograph of marine life and way of life of local community of Khanom Mu Koh Talay Tai was displayed at 12 th BRT Annual meeting	10-12 October 2008
15	30 Bouys sent to Khanom Community	18 December 2009

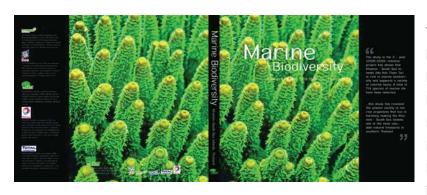
5.6 Outreaches and books

annelanni, innenetală Internitationeri, particularie restrevalurarie restreva

5.6.1 "The breath of Mu Koh Thalay Tai"

Breath of Mu Koh Thalay Tai was published. This booklet was launched and presented in $11^{\rm th}$ BRT meeting at Udon Thani during $15^{\rm th}$ - $18^{\rm th}$ October, 2007. Basic knowledge of marine biology and diversity of marine life in Mu Koh Thalay Tai has been presented.





5.6.2 Classification of Marine Ascomycota, anamorphic taxa and Basidiomycota โดย E.B.G. Jones, J. Sakayaroj, S Suetrong, S. Somrithipol and K.L. Pang

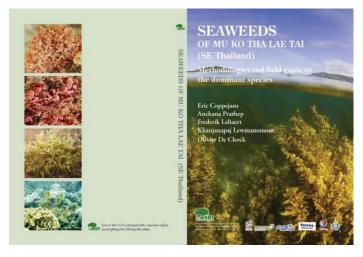
Over 10 years of marine fungal research, under the support by BRT, an up-to-date modern classification of 530 marine fungi has been published by BIOTEC researchers: E.B.G. Jones, J. Sakayaroj, S Suetrong, S. Somrithipol and K.L. Pang. They published this volume in the high impact international journal Fungal Diversity, Volume 35, in March 2009. This is a well-illustrated hard covered book, with 200 pages. This volume will be useful to marine biologists, those interested in marine animal diseases and to mycologists whose interest is in fungal phylogeny

5.6.3 Marine Biodiversity: Khanom South Sea Islands, Thailand

The new released book provides a brief introduction to the marine biodiversity at Khanom South Sea Islands, Nakhon Si Thammarat Province. This is under the 3-year Khanom Marine Biodiversity Initiative Project. Researchers involved in this project in

corporation with the professional photographers put their effort in bringing together the most beautiful photographs with biological meaning. Many photographs include the rare species for Thailand e.g. the live Gorgonian brittle star, Flagfin prawn goby and Basket star.

This colorful hard-covered book comprises 160 pages, A4 size. It is well written in both languages, Thai and English. This is the one essential handbook for tourists and those nature lovers who are interested to appreciate the wealth of marine biodiversity, cultural and local history hidden in the south sea of Thailand.


5.6.4 Nudibranchs of Thailand

The book "Nudibranchs of Thailand" is a fine piece of work, a contribution to science of Thai reef organisms, accessible by a broad audience. It contained both English and Thai languages. The book not only identified and classified nudibranchs found in Thailand, but also

provided general biology and ecology of nudibranchs from authors' extensive personal experience. Since very little has still been known about these small and beautiful creatures, the book will add enormously to the body of knowledge about nudibranchs in Thailand. More than 90 species of nudibranchs were in this book with photos shown intimate behavior aspects of their lives

5.6.5 Seaweeds of Mu Koh Thalay Tai

This guidebook "Seaweeds of Mu Ko Tha Lae Tai (SE Thailand): Methodologies and field guide to the dominant species" presents many unseen beautiful seaweeds of the Gulf of Thailand and of the region. The total of 77 recorded taxa with 10 new records for Thailand and one new species is the result This is one of only a few books from the region that provide a comprehensive knowledge on the biology and ecology of seaweeds.

5.7 Publications

A. Published in Internation Journal

5.7.1 Putchakarn, S. 2007. Species diversity of marine sponges dwelling in coral reefs in Had Khanom-Mo Ko Thale Tai National Park, Nakhon Si Thammarat Province, Thailand. Journal of the Marine Biological Association of the United Kingdom 87:1635-1642.

5.7.2 Prathep, A., A. Darakrai, P. Tantiprapas, J. Mayakun, P. Thongroy, B. Wichachucherd & S. Sinutok. 2007. Diversity and community structure of macroalgae at Koh Taen, Haad Khanom-Mu Koh Tale Tai, Marine National Park, Nakhon Si Thammarat Province, Thailand. Mar. Res. Indonesia 32(2): 153-162.

5.7.3 Promdam, R., & Peter, K.L.N. 2009. *Lithoselatium tantichodoki*, a new species of intertidal crab (Crustacea: Brachyura: Sesarmidae) from southern Thailand. Zootaxa 2291: 24–34.

5.7.4 Jones, E.B.G., Sakayaroj, J., Suetrong, S., Somrithipol, S. and Pang, K.L. (2009). Classification of marine Ascomycota, anamorphic taxa and Basidiomycota. Fungal Diversity 35 Jitkue, K.,W. Srisang,C. Yaiprasert,K. Jaroensutasinee and M. Jaroensutasinee. 2007. Integration of multi-source data to monitor coral biodiversity. International Journal of Mathematical, Physical and Engineering Sciences 1:238-242.

5.7.5 Sakayaroj, J., Preedanon, S., Supaphon, O., Jones, E.B.G. and Phongpaichit, S. (2010). Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass *Enhalus acoroides* in Thailand. Fungal Diversity 41: 10.1007/s13225-009-0013-9.

5.7.6 Suetrong, S., Schoch, C.L., Spatafora, J.W., Kohlmeyer, J., Volkmann-Kohlmeyer, B., Sakayaroj, J., Phongpaichit, S., Tanaka, K., Hirayama, K. and

B. Proceedings

5.7.7 Tuntiprapas P. et al. 2008. The Effect of Seagrass Coverage on Swimming Crabs (Portunidae) at Kon Tha Rai, Khanom Mu Koh Talay Tai National Park, Nakorn Si Thammarat Province. Proceedings of the 6^{th} IMT-GT UNINET Conference 2008

C. Review Papers in Songkhlanakarin Journal (Submitted)

5.7.8 Diversity and distribution of seaweeds at Mu Koh Tale Assist. Prof. Anchana Prathep Tai, Nakorn Si Thammarat Province, Gulf of Thailand. Prince of Songkla University

5.7.9 Seasonal variations in percentage cover and biomass Assist. Prof. Anchana Prathep at Koh Tha Ria, Nakhon Si Thammarat Province, Gulf of Prince of Songkla University Thailand

5.7.10 Higher marine fungi from Had Khanom Mu Ko Dr. Jariya Sakayaroj BIOTEC Thale Tai National Park, Nakhon Si Thammarat Province, southern Thailand

5.7.11 Diversity of the diatoms and dinoflagellates at Mo Ko Dr. Supiyanit Maiphae Prince Thale-tai, Nakhon Si Thammarat Province, Thailand of Songkla University

5.7.12 Diversity of the Copepoda at Mo Ko Thale-tai, Dr. Supiyanit Maiphae Prince Nakhon Si Thammarat Province, Thailand of Songkla University

5.7.13 The present status of Echinoderm of Had Khanom- Arom Mucharin, National Mu Ko Thale Tai National Park, Nakhon Si Thammarat History Muesuem Province, southern Thailand

D. in manuscript

5.7.14 Two new species of yeasts found at Haad Khanom- Mu Ko Tale Tai, the genus *Moniliella*

5.7.15 Two new species of bacteria found at Haa Khanom- Mu Ko Tale Tai, Swingsia thailandicus และ Swingsia tanensis

5.8 Poster Presentation

5.8.1 Poster presentation in 9^{th} BRT Annual Meeting, 10-13 October 2005, Sofitel Raja Orchid Hotel, Khon Kaen By Dr Anchana Prathep et al, Prince of Songkla University, Thailand

5.8.2 Poster Presentation at Khanom Beach for School Children and Communitie On 17th August 2006, BRT joined a biodiversity exhibition in "Protect Khanom's Dolphins for the King" event at Khanom Golden Beach hotel, Khanom, Nakon Si Thammarat

5.8.3 Poster Presentation in 10th BRT Annual Meeting, 8-11 October 2006, Maritime Park and Spa Resort Thailand, Krabi, Thailand

5.8.4 Poster presentation in 11th BRT Annual Meeting, 15-18 October 2007, Napalai Hotel, Udonthani

5.8.5 Poster presentation in 12th BRT Annual Meeting, 10-12 October 2008, Diamond Plaza Hotel, Surat Thani

- 5.8.6 Poster presentation in 13th BRT Annual Meeting, 12-14 October 2009, Holiday Inn, Chiangmai
 - 5.8.7 Poster presentation in the Asian Mycology Congress (AMC) 2007 and the Xth International Marine and Freshwater Mycological Symposium (IMFMS), 2-6 December 2007, Park Royal Hotel, Penang, Malaysia.
 - 5.8.8 Poster presentation in the International Conference on Fungal Evolution and Charles Darwin: From Morphology to Molecules, 9-11 July 2009, Thailand.
 - 5.8.9 Poster presentation in the Asian Mycological Congress 2009 and XIth International Marine and Freshwater Mycological Symposium, 15-19 November 2009, National Museum of Natural Science, Taichung, Taiwan, ROC.

5.9 Oral Presentation

- 5.9.1 Oral Presentation in 10th BRT Annual Meeting, 8-11 October 2006 at Maritime Park and Spa Resort Thailand, Krabi, Thailand
- 5.9.2 Oral presentation in 11th BRT Annual Meeting, 15-18 October 2007, Napalai Hotel, Udon thani
- 5.9.3 Marine National Park was presented in an International conference, Newzealand
- 5.9.4 Oral presentation in 12th BRT Annual Meeting, 10-12 October 2008, Diamond Plaza Hotel, Surat Thani (Khanom group session)
- 5.9.5 Oral presentation in the Asian Mycology Congress (AMC) 2007 and the Xth International Marine and Freshwater Mycological Symposium (IMFMS), 2-6 December 2007, Penang, Malaysia.
- 5.9.6 Oral presentation in the International Conference on Fungal Evolution and Charles Darwin: From Morphology to Molecules, 9-11 July 2009, Thailand.
- 5.9.7 <u>Four</u> Oral presentations in the Asian Mycological Congress 2009 and XIth International Marine and Freshwater Mycological Symposium, 15-19 November 2009. National Museum of Natural Science, Taichung, Taiwan, ROC.

5.10 Meetings

No	Meetings	Date
1	1st Meeting between researchers and BRT	29 January 2006
2	Meeting with Head of Khanom Marine National Park	30 January 2006
3	MOU Signing Ceremony between TOTAL E&P THAILAND, TOTAL FOUNDATION FRANCE and BRT	18 February 2006
4	2 nd Meeting between researchers and BRT	11 April 2006

No	Meetings	Date
5	3 rd Meeting between researchers tand BRT	2 September 2006
6	Oral Presentation in 10 th BRT Annual Meeting	8-11 October 2006
7	4th Meeting between Researchers and BRT	24 May 2007
8	5th Meeting between Researchers and BRT	23 June 2007
9	6th Meeting between Researchers and BRT	17 July 2007
10	7th Meeting between Researchers and BRT	20 July 2007
11	Meeting with TOTAL CEO for reporting the progress and adjusting the project plan	28 August 2007
12	9th Meeting between Researchers and BRT	7 December 2007
13	TOTAL and BRT Management Trip in Khanom, Nakhon Sri Thammarat for observing the research area	28-29 March 2008
14	10th Meeting with Khanom project researchers and BRT	24 April 2008
15	11th Meeting with Khanom project researchers and BRT	19 February 2009
16	1st Meeting with Local People	5-6 May 2009
17	12th Meeting with Khanom project researchers and BRT	27 May 2009
18	2nd Meeting with Local People	1-2 June 2009

รายงานผลการดำเนินงานส่วนที่ 5 การวิจัยเชิงพื้นที่ (Area-based research) ผลการดำเนินงานชุดโครงการหาดขนอม-เขานันระยะที่ 1 โดยความร่วมมือกับ ปตท. จำกัด (มหาชน) ชุดโครงการหาดขนอมระยะที่ 2 พ.ศ. 2552-2554

บทสรุปสำหรับผู้บริหาร

โครงการ BRT และกลุ่ม ปตท. เห็นความสำคัญของการศึกษาวิจัยความหลากหลายทางชีวภาพ ได้ร่วมกัน สนับสนุนงานวิจัยเป็นชุดโครงการเชิงพื้นที่ในระบบนิเวศต่างๆ ทั้งที่มีความอุดมสมบูรณ์และที่เปราะบางต่อการ เปลี่ยนแปลงสภาวะแวดล้อม และที่ใช้ประโยชน์โดยชุมชนท้องถิ่น ได้แก่ ชุดโครงการทองผาภูมิตะวันตก (พ.ศ. 2543-2548) ชุดโครงการป่าเมฆเขานันและหาดขนอมระยะที่ 1 (พ.ศ. 2549-2551) และชุดโครงการหาดขนอม ระยะที่ 2 (พ.ศ. 2552-2554) โดยมีวัตถุประสงค์เพื่อสร้างองค์ความรู้พื้นฐาน พัฒนาบุคลากรนักวิจัย และบริหาร จัดการความรู้ให้เกิดการใช้ประโยชน์โดยชุมชนอย่างยั่งยืน

ชุดโครงการหาดขนอมระยะที่ 2 อยู่ระหว่างการดำเนินงานในพื้นที่ทางทะเลและชายฝั่งในบริเวณ อ.ขนอม จ.นครศรีธรรมราช ซึ่งเป็นบริเวณที่มีระบบนิเวศหลากหลาย ตั้งแต่ระบบนิเวศป่าไม้ เขาหินปูน ป่าชายหาด หาดหิน หาดเลน ป่าชายเลน ไปจนถึงระบบนิเวศทางทะเล และเกาะแก่งต่างๆ ผลงานวิจัยความหลากหลายทางชีวภาพใน พื้นที่ขนอมระยะที่ 1 ได้เปิดเผยความอุดมสมบูรณ์ในพื้นที่อำเภอขนอม ที่มีสิ่งมีชีวิตใต้ทะเลถึง 719 ชนิด ทั้งชนิดที่หา ยากและใกล้สูญพันธุ์ เช่น โลมาสีชมพู (Sousa chinenesis), ดาวตระกร้าหรือดาวตาข่าย (Euryle aspera) , ดาว เปราะกัลปังหาร่อง (Ophiopsammium semperi) รวมทั้งแหล่งหญ้าทะเลที่ขึ้นอยู่หนาแน่นในพื้นที่ขนาดเล็กเพียง 0.1 ตร.กม. เท่านั้นซึ่งยังคงทำหน้าที่เป็นแหล่งอาหารและอนุบาลสัตว์น้ำที่สำคัญหลายชนิด นอกจากนั้นยังพบ สาหร่ายทะเลมากกว่า 46 ชนิด รวมทั้งสาหร่ายใบมะกรูด (Halimeda macroloba) ที่นำคาร์บอนไดออกไซด์มา เปลี่ยนรูปเป็นหินปูนสะสมไว้ที่ใบ ซึ่งสามารถนำมาศึกษาวิจัยต่อยอดเพื่อช่วยลดภาวะโลกร้อนได้

การดำเนินงานในชุดโครงการหาดขนอมระยะที่ 2 แบ่งออกเป็น 3 กลุ่ม ได้แก่ กลุ่มสร้างองค์ความรู้พื้นฐาน เพื่อการจัดการทรัพยากร กลุ่มสร้างแหล่งเรียนรู้และถ่ายทอดความรู้ให้แก่ชุมชนชน และกลุ่มงานวิจัยเพื่อส่งเสริมการ ท่องเที่ยวเชิงนิเวศ กิจกรรมในแต่ละกลุ่มมีความสัมพันธ์และเชื่อมโยงกัน โดยมีเป้าหมายเพื่อสร้างความเข้มแข็งให้กับ ชุมชนขนอมในการบริหารจัดการทรัพยากรชีวภาพอย่างยั่งยืน โครงการ BRT ได้สนับสนุนกิจกรรมและโครงการวิจัย ภายใต้กลุ่มต่างๆ ไปแล้ว 19 โครงการ อยู่ในระหว่างการพัฒนาโครงการ 4 โครงการ

โครงการในกลุ่มที่ 1 กลุ่มสร้างองค์ความรู้พื้นฐาน มุ่งสร้างความรู้เพื่อส่งเสริมการเรียนรู้ของชุมชนให้รู้จัก ทรัพยากรชีวภาพในท้องถิ่นและส่งเสริมการท่องเที่ยว ในส่วนนี้ได้สนับสนุนการวิจัยในกลุ่มพืชทั้งพืชในระบบ นิเวศป่าไม้ พืชในป่าชายหาด พืชในป่าชายเลน และพืชตามเกาะแก่ง รวมทั้งต้นลานซึ่งเป็นพืชเด่นในพื้นที่ขนอม และ การสำรวจความหลากหลายทางชีวภาพของสัตว์ต่างๆ บนหาดหิน หาดเลน หาดทราย ซึ่งเป็นระบบนิเวศชายฝั่งใน พื้นที่ขนอม ในด้านการศึกษาความอุดมสมบูรณ์ของพื้นที่ขนอม โครงการ BRT ได้สนับสนุนการศึกษาปลาที่อยู่ใน ระบบนิเวศต่างๆ เปรียบเทียบกัน ได้แก่ หญ้าทะเล ป่าชายเลน หาดทราย และหาดโคลน ผลการศึกษาพบว่าระบบ นิเวศหญ้าทะเลเป็นบริเวณปลาที่พบปลาปลาที่อยู่ในระยะวัยรุ่น และเป็นแหล่งที่อยู่อาศัยของปลาชนิดที่ไม่พบใน แหล่งอาศัยอื่นๆ เช่น ม้าน้ำ ปลาจิ้มฟันจระเข้ ปลาวัวหางพัด ปลานกขุนทอง เป็นต้น จึงมีความเป็นไปได้ที่แหล่งหญ้า ทะเลบริเวณนี้จะเป็นแหล่งอนุบาลสัตว์น้ำที่สำคัญ ส่วนป่าชายเลนเป็นแหล่งที่มักพบปลาที่มีความสำคัญทาง เศรษฐกิจ เช่น ปลากระบอก ปลากระพงขาว ปลาดุกทะเล เป็นต้น ซึ่งปลากระบอกที่จับได้บริเวณป่าชายเลนส่วน ใหญ่เป็นระยะวัยรุ่น มีขนาดเล็กและมักจับได้ในปริมาณที่สูง จึงมีความเป็นไปได้ที่ป่าชายเลนจะเป็นแหล่งอนุบาลวัย

อ่อนของกลุ่มปลากระบอกที่สำคัญ สำหรับ หาดโคลน หาดทราย พบปลาในกลุ่มปลาแป้นเป็นชนิดเด่น ปลาที่เข้ามา บริเวณนี้มักเป็นปลาที่อยู่รวมฝูง และมีการเคลื่อนย้ายไปมาตามน้ำขึ้นน้ำลง บริเวณหาดโคลนพบปลาในกลุ่มปลาจวด มากกว่าบริเวณอื่นๆ ส่วนบริเวณหาดทรายพบว่าปลากระบอกมักจะเข้ามาหากินบริเวณนี้ โดยเป็นปลาที่มีขนาดใหญ่ กว่าบริเวณอื่น ซึ่งชาวบ้านมักจะมาวางอวนและลากปลาบริเวณนี้ ดังนั้นบริเวณหาดโคลนและหาดทรายเป็นแหล่งทำ ประมงพื้นบ้านที่สำคัญของชุมชนท้องถิ่น ผลงานวิจัยดังกล่าวทำให้ชุมชนท้องถิ่นตระหนักถึงความสำคัญของระบบ นิเวศต่างๆ และช่วยกันอนุรักษ์

โครงการ BRT ได้สนับสนุนการศึกษากุ้งเคย บริเวณอ่าวเตล็ดใหญ่ เนื่องจากเป็นวัตถุดิบที่สำคัญในการทำ กะปี ซึ่งเป็นภูมิปัญญาท้องถิ่นในอำเภอขนอม ผลการศึกษาพบกุ้งเคยสกุล Acetes 3 ชนิด ได้แก่ Acetes japonicus, Acetes vulgaris และ Acetes erythraeus โดย A. japonicus พบมากที่สุด มีชื่อสามัญเรียกต่างๆ กัน พบชุกชุม ตามชายทะเลที่เป็นหาดทราย กุ้งเคยในสกุลนี้จะนิยมนำมาทำกะปิและกุ้งแห้ง การดำรงชีวิตของกุ้งเคย จะอยู่ใกล้พื้น ทะเลโดยไม่จมตัวลงคลานบนพื้นอย่างกุ้งทั่วไป เมื่อถึงฤดูกาลมักพบอาศัยอยู่รวมกันเป็นฝูง บริเวณชายฝั่งและลำ คลองบริเวณป่าชายเลน เนื่องจากกุ้งเคยเป็นสัตว์น้ำพวกแพลงก์ตอนสัตว์ จึงถูกพัดพาไปตามกระแสน้ำและลม ทำให้ ปริมาณการจับขึ้นอยู่กับสภาพคลื่นลม มรสุมและปริมาณฝนในแต่ละปี ตั้งแต่จังหวัดนครศรีธรรมราชจนถึงนราธิวาส กุ้งเคยจะชุกชุมในช่วงเดือนมกราคมถึงมีนาคม ข้อมูลจากกลุ่มชาวบ้านที่แหลมประทับ อำเภอขนอม จังหวัด นครศรีธรรมราช เมื่อถึงฤดูเคยเข้า จะละจากงานสวนมาทำประมงกัน กุ้งเคยจะชอบอาศัยบริเวณที่เป็นกองหิน หรือ ตามแนวชายฝั่ง โดยเฉพาะบริเวณที่มีสาหร่ายทุ่น (Sargassum sp.)

ปะการังในบริเวณเกาะแก่งต่างๆ ได้รับการศึกษาวิจัยเพื่อการอนุรักษ์ ผลการศึกษาปะการังที่เกาะแตน พบ ปะการังทั้งหมด 87 ชนิดโดยพบว่าจุดสำรวจที่ 4 (ด้านใต้ของเกาะแตน) สภาพแนวปะการังมีความสมบูรณ์ดีมาก แต่ มีจำนวนชนิดและดัชนีความหลากหลายทางชีวภาพต่ำที่สุด ส่วนจุดสำรวจที่ 3 (ด้านตะวันออกเฉียงใต้ของเกาะแตน) มีจำนวนชนิดและดัชนีความหลากหลายทางชีวภาพมีค่าสูงที่สุดและสภาพแนวปะการังสมบูรณ์ดี การอนุรักษ์แนว ปะการัง และเพิ่มแนวเขตปะการังนั้นสามารถทำได้หลายวิธี โดยวิธีที่นิยมทำกันมาก คือ การปลูกปะการัง ด้วยการ ปักกิ่งปะการังไว้ในแท่นคอนกรีต ทว่าวิธีการดังกล่าวมีข้อเสียคือ ปะการังที่เกิดใหม่จะมีความอ่อนแอ เนื่องจากกิ่ง ปะการังที่นำมาปักส่วนใหญ่มาจากปะการังต้นเดียวกันทำให้มีความหลากหลายทางพันธุกรรมต่ำ จึงไม่สามารถทนต่อ การเปลี่ยนแปลงที่เกิดขึ้นในทะเลได้ดีนัก อย่างไรก็ดี ยังมีอีกแนวทางหนึ่งที่คาดว่าจะเป็นการอนุรักษ์แนวปะการังที่ ให้ผลยั่งยืน นั่นคือ การอนุรักษ์แหล่งปล่อยไข่อ่อนปะการังในธรรมชาติให้คงอยู่ เพื่อจะได้สามารถสร้างไข่หรือตัวอ่อน ปะการังให้กระจายไปยังเกาะต่างๆ ด้วยเหตุนี้ จึงได้มีการศึกษาเรื่องการไหลเวียนของกระแสน้ำระหว่างหมู่เกาะทะเลใต้ อำเภอขนอม จังหวัดนครศรีธรรมราช ผลการศึกษาพบว่า แหล่งปล่อยไข่ปะการังในธรรมชาติที่สำคัญในหมู่เกาะ ทะเลใต้ ได้แก่ เกาะราบ เป็นแหล่งปล่อยไข่ปะการังที่สามารถใหล่ไป เกาะมัดโกง กองหินน้ำลาย และไหลรอบเกาะแตน ซึ่งจาก ข้อมูลเหล่านี้สามารถนำไปสู่การวางแผนการอนุรักษ์พื้นที่ตันกำเนิดไข่ปะการัง และจะนำไปสู่ความอุดมสมบูรณ์ของ แนวปะการังในทะเลขนอม – หมู่เกาะทะเลใต้ โดยเฉพาะเกาะแตน ซึ่งเป็นเกาะที่ได้รับไข่ปะการังจากเกาะอื่น

ป่าชายเลนเป็นระบบนิเวศที่สำคัญ เป็นแหล่งอนุบาลสัตว์น้ำและแหล่งประกอบอาชีพเสริมของชุมชน ป่า ชายเลนในพื้นที่ขนอมได้เสื่อมโทรมและบางส่วนเป็นโรคโคนเน่า โดยเฉพาะที่เกิดกับต้นตะบูน ผลการศึกษาวิจัยพบว่า ต้นตะบูนขาวมีอาการของโรคโคนเน่ารุนแรง ลำต้นกลวงเป็นโพรง และล้มตายจำนวนมาก มีอัตราการเกิดโรคโคนเน่า ตั้งแต่ 31.8%-88.9% การสำรวจและเก็บตัวอย่างดอกเห็ดที่พบบนต้นตะบูนขาว พบดอกเห็ดที่คาดว่าจะเป็นสาเหตุ ของโรคโคนเน่า เจริญอยู่ที่รอยแผล และบริเวณรากของต้นตะบูนขาวจำนวนมาก ซึ่งจากการศึกษาลักษณะทาง สัณฐานวิทยาและข้อมูลดีเอ็นเอ พบว่าเป็นเห็ดที่อยู่ใน ไฟล้ม Basidiomycota อันดับ Hymenochaetales วงศ์ Hymenochaetaceae อย่างไรก็ตาม การพบข้อมูลเกี่ยวกับเห็ดที่ก่อโรคเพียงอย่างเดียวยังไม่เพียงต่อการป้องกันและ ควบคุมโรค จำเป็นต้องมีการศึกษาเพิ่มเติมเชิงนิเวศวิทยา ความหลากหลายทางพันธุกรรมของเห็ด การระบาดและ การกระจายของโรค อัตราการย่อยสลายพืชเจ้าบ้าน ความสัมพันธ์ระหว่างเห็ดกับพืชเจ้าบ้านและสิ่งมีชีวิตอื่นๆ เมื่อได้

ข้อมูลพื้นฐานเหล่านี้ จึงจะสามารถหาแนวทางการป้องกันและควบคุมโรคต่อไปได้ ซึ่งกำลังอยู่ในระหว่างการ สนับสนุนงานวิจัยต่อไป

กลุ่มงานที่ 2 งานวิจัยเพื่อส่งเสริมการท่องเที่ยวเชิงนิเวศ เน้นไปที่การศึกษาต่อยอดโลมาสีชมพู ตั้งแต่ปี พ.ศ. 2549 เป็นต้นมา งานวิจัยในชุดโครงการหาดขนอมระยะที่ 1 สร้างความตื่นตัวให้ชุมชนและประชาชนในการ ท่องเที่ยวชมโลมาสีชมพู สร้างอาชีพในการนำเที่ยวโลมาสีชมพูแก่กลุ่มท่องเที่ยวเชิงอนุรักษ์โลมาบ้านแหลมประทับ อ. ขนอม จ.นครศรีธรรมราช ดังนั้น การศึกษาโลมาสีชมพู และการสร้างความตระหนักแก่ชุมชนจึงได้ดำเนินการต่อเนื่อง ในระยะที่ 2 โดยได้สนับสนุนให้มีการสร้างความเข้มแข็งให้ชุมชนในการนับจำนวนโลกมาตามแนวชายฝั่งขนอมด้วย ตนเอง เพื่อสร้างความยั่งยืน รวมทั้งสนับสนุนให้มีการประเมินมูลค่าทางเศรษฐศาสตร์ของโลมาสีชมพูด้วย

กลุ่มงานที่ 3 การสร้างแหล่งเรียนรู้และถ่ายทอดความรู้สู่ชุมชน การดำเนินงานระยะสั้น ได้มีการจัดค่าย เยาวชน จัด roadshow ให้ความรู้ และจัดนิทรรศการชุดต่างๆ สำหรับการถ่ายทอดความรู้ระยะยาว ได้ตั้งเป้าในการ นำความรู้ไปสู่หลักสูตรการเรียนการสอนในโรงเรียน และการทำแหล่งเรียนรู้ในบริเวณพื้นที่ธรรมชาติต่างๆ ซึ่งกำลัง อยู่ในระหว่างการพัฒนางานต่อไป

ผลกระทบจากการดำเนินงานของโครงการในเชิงเศรษฐกิจและสิ่งแวดล้อม ที่เห็นได้อย่างชัดเจน คือ ความ ตื่นตัวและความตระหนักของชุมชนท้องถิ่นในการร่วมกันอนุรักษ์พื้นที่และทรัพยากรทางทะเลและชายฝั่งที่สำคัญ เช่น ผลการศึกษาเรื่องหญ้าทะเลทำให้ชุมชนหันมาอนุรักษ์หญ้าทะเลทำให้พื้นที่หญ้าทะเลเพิ่มขึ้นจากเดิม 45 ไร่ เป็น 65 ไร่ ภายในระยะเวลา 2 ปี โดยเป็นการเพิ่มทั้งในเชิงปริมาณและเชิงคุณภาพ หญ้าทะเลให้บริการทางระบบนิเวศปีละ ประมาณ 19,000 ดอลลาร์ต่อแฮกแตร์ต่อปี การศึกษาหญ้าทะเลที่เกาะท่าไร่ อ.ขนอม จ.นครศรีธรรมราช คิดเป็น บริการทางระบบนิเวศของหญ้าทะเลจำนวน 7.9 ล้านบาทต่อปีต่อพื้นที่หญ้าทะเล 65 ไร่ พืชน้ำ/สาหร่ายทะเล เป็น แหล่งกักเก็บคาร์บอนที่สำคัญแหล่งหนึ่ง จากการค้นพบสาหร่ายใบมะกรูด ทำให้ประเทศไทย มีศักยภาพในการลด ปริมาณคาร์บอนไดออกไซด์ เนื่องจากสาหร่ายใบมะกรูดดูดชับกาชคาร์บอนไดออกไซด์ได้ถึง 2,400 ตันต่อเฮคแตร์ต่อ ปี ประเทศไทยมีพื้นที่สาหร่ายใบมะกรูดประมาณ 93,750 ไร่ ทำให้ดูดซับคาร์บอนไดออกไซด์ได้ถึง 36 ล้านตันต่อปี การวิจัยพื้นที่สาหร่ายใบมะกรูดในทะเลขนอม จ.นครศรีธรรมราช พื้นที่ 137.5 ไร่ ช่วยดูดซับคาร์บอนไดออกไซด์ 52,800 ตันต่อปี การพบโลมาสีชมพู ทำให้เกิดกลุ่มท่องเที่ยวเชิงอนุรักษ์โลมา บ้านแหลมประทับ อ.ขนอม จ.นครศรีธรรมราช ระหว่างปี พ.ศ. 2549-2552 มีจำนวนเที่ยวเรือที่ออกพานักท่องเที่ยวไปชมโลมาสีชมพูถึง 1,927 เที่ยว ราคาเที่ยวละ 800 บาท สร้างรายได้ให้ชุมชน 1,541,600 บาท

ผลงานวิจัยในชุดโครงการทำให้ค้นพบสิ่งมีชีวิตชนิดใหม่ของโลกในพื้นที่อ.ขนอม จ.นครศรีธรรมราช 3 ชนิด ได้แก่ ปูแสมปิติวงษ์ (*Lithoselatlum tantichodoki* Promdam & Ng, 2009) กุ้งเต้นขนอม *Tethygeneia khanomensis* Wongkamhaeng et. al., 2010 และกิ้งกือหางแหลมน้ำตาลดำ (*Thyropygus chelatus* Pimvichai, Enghoff and Panha, 2009)

1. ความน้ำ

โครงการ BRT และบริษัท ปตท. จำกัด (มหาชน) ได้เป็นพันธมิตรที่ดีต่อกันมาโดยตลอด 9 ปี โดยได้ สนับสนุนการวิจัยความหลากหลายทางชีวภาพ ขับเคลื่อนชุมชน และร่วมกันบริหารจัดการทรัพยากรชีวภาพเพื่อการ อนุรักษ์อย่างยั่งยืน ในกิจกรรมและโครงการต่างๆ ดังนี้

- -ปี 2543-2545 ชุดโครงการทองผาภูมิตะวันตก ระยะที่ 1
- -ปี 2546-2548 ชุดโครงการทองผาภูมิตะวันตก ระยะที่ 2
- -ปี 2549-2551 ชุดโครงการหาดขน้อม-เขานั้น

ชุดโครงการทองผาภูมิตะวันตกประสบผลสำเร็จอย่างดี ทั้งในด้านการวิจัยความหลากหลายทางชีวภาพ สร้างนักวิจัยรุ่นใหม่ และการนำความรู้จากการวิจัยเพื่อขับเคลื่อนชุมชน มีการสนับสนุนให้ชุมชนเป็นครอบครัว เศรษฐกิจพอเพียง ลดค่าใช้จ่าย เพิ่มรายได้ ตระหนักถึงคุณค่าของทรัพยากรชีวภาพ โดยทาง ปตท. ได้พัฒนาต่อ ยอดเป็นโครงการ 84 ตำบลเศรษฐกิจพอเพียง ซึ่งเป็นโครงการที่สำคัญโครงการหนึ่งของปตท. นอกจากนั้น ทาง โครงการ BRT และ ปตท. ยังได้ร่วมกันจัดสร้างสะพานศึกษาธรรมชาติพุหนองปลิง ความยาว 500 เมตร โดยนำ ความรู้เรื่องพุและความหลากหลายทางชีวภาพในพุ มาเป็นแหล่งเรียนรู้ของชุมชน ซึ่งนับว่าเป็นการสร้างแหล่งเรียนรู้ นิเวศวิทยาเกี่ยวกับ พุ ซึ่งเป็นพื้นที่ชุ่มน้ำเฉพาะถิ่นพบในจังหวัดกาญจนบุรี

ชุดโครงการหาดขนอม-เขานันระยะที่ 1 ได้เน้นการค้นหาความรู้ในระบบนิเวศป่าเมฆบนยอดเขานัน ที่ ระดับความสูง 1,400 เมตรจากระดับน้ำทะเล ป่าเมฆเป็นป่าที่มีความชื้นสูงตลอดทั้งวัน จึงเห็นเป็นเมฆหมอกปกคลุม ตลอดทั้งวัน จะมีพืชขนาดเล็กพวกมอส ลิเวอร์เวิร์ต และฮอร์นเวิร์ตขึ้นเป็นจำนวนมาก มีบทบาทสำคัญในการดักจับ ไอน้ำจากอากาศ จึงเป็นแหล่งต้นน้ำลำธารที่สำคัญของโลก พื้นที่ป่าเมฆนี้จะเปราะบางต่อการเปลี่ยนแปลงภูมิอากาศ ของโลก และมีจำนวนน้อยอยู่ในบริเวณเขตศูนย์สูตรเท่านั้น จึงทำให้โลกเฝ้าระวังการเปลี่ยนแปลงของป่าเมฆ โดยเป็น วาระในระดับโลก หรือ Cloud Forest Agenda

โครงการ BRT และ ปตท. ได้ร่วมกันศึกษาวิจัยป่าเมฆ ภารกิจในรูปแบบทีมสำรวจป่าเมฆที่ไม่เคยมีมาก่อนใน ประเทศไทย ทำให้ได้ข้อมูลเบื้องต้นของมีสิ่งมีชีวิตเฉพาะถิ่นที่พบเฉพาะปาเมฆ รวมทั้งลักษณะของปาเมฆ-สันเย็น จน เพื่อเผยแพร่ข้อมูลพื้นฐานเกี่ยวกับป่าเมฆครั้งแรกของประเทศไทย ทำให้สามารถจัดทำบทความทางวิชาการ ผลการวิจัยพบชนิดพันธุ์ของสิ่งมีชีวิตทั้งสิ้น 1,587 ชนิด เป็นรายงานการค้นพบสิ่งมีชีวิชนิดใหม่ของโลก สิ่งมีชีวิตชนิด ใหม่ในประเทศไทย และสิ่งมีชีวิตเฉพาะ รวมทั้งที่หากยากและใกล้สูญพันธุ์ ตลอดจนชนิดที่เป็นดัชนีชี้วัดป่าเมฆ นอกจากนั้น ยังได้ติดตามภาวะ "โลกร้อนกับผลกระทบต่อความหลากหลายทางชีวภาพ" โดยการศึกษาสภาวะ ภูมิอากาศที่เปลี่ยนแปลงไป (Climate change) อันเป็นผลมาจากการเกิดสภาวะโลกร้อนจึงได้ติดตั้งสถานีตรวจวัด อากาศทั่วเขานั้น พร้อมกันการศึกษาเปลี่ยนแปลงทางด้านชีพลักษณ์ (Phenology) ของต้นประ ได้ข้อบ่งชี้ว่าทิศทาง ลม และปริมาณน้ำฝน ความชื้นสัมพัทธ์ เกี่ยวข้องกับการแตกตาของยอดประ ในด้านการศึกษาวิถีชุมชนรายรอบ เขานั้น พบว่าชุมชนดั้งเดิมรายรอบเขานั้นเป็นชุมชนที่ขยายต่อเนื่องมาจากอำเภอท่าศาลา โดยมีอายุของชุมชนไม่ต่ำ กว่า 100 ปี วิถีชุมชนแบบเกษตรและพึ่งพิงป่า ชุมชนมีความความสัมพันธ์กับทรัพยากรชีวภาพในพื้นที่เชิงเศรษฐกิจ เช่น ที่บ้านปากลง ต.กรุงชิง อ.นบพิตำ ชุมชนยังพึ่งพิงและใช้ประโยชน์จากป่ามีมูลค่าถึง 2.6 ล้านบาทต่อปี และพบ ป่าประธรรมชาติ ซึ่งคาวดว่าน่าจะเป็น ป่าประผืนเดียว และผืนสุดท้ายของโลกที่อุทยานแห่งชาติเขานั้น โดยชุมชน รายรอบเขานั้นเก็บหาลูกประที่ทำได้เพียงปีละครั้ง ช่วงเดือนสิงหาคมถึงกันยายนของทุกปี คิดเป็นมูลค่ารวมถึง 1.7 ล้านบาทต่อปี นับว่าเป็นรายได้เสริมที่ดีอย่างหนึ่งของ นอกจากนั้น ผลงานวิจัยยังแสดงให้เห็นว่า ชุมชนห่วงใยใน ทรัพยากรและยินดีที่จะจ่ายค่าเข้าเก็บหาลูกประในพื้นที่ธรรมชาติ หากมีการบริหารจัดการที่ดี ในราคา 29 บาทต่อ คนต่อวัน เพื่อจัดการเป็นกองทุนอนุรักษ์และฟื้นฟูต้นประต่อไป

โครงการ BRT และกลุ่ม ปตท. ได้เล็งเห็นถึงความสำคัญด้านการเรียนการสอนสำหรับนักเรียน ที่มุ่งเน้นให้ นักเรียนได้มีโอกาสทำวิจัยด้วยการร่วมสังเกต ตั้งคำถาม ศึกษาทดลอง ไปจนถึงการสรุปและวิเคราะห์ผล เพื่อ เสริมสร้างแนวคิดในเชิงวิทยาศาสตร์ให้กับนักเรียนจากการเรียนรู้ด้านทรัพยากรธรรมชาติในท้องถิ่น โครงการ BRT จึงได้พัฒนาโครงการวิจัยระดับโรงเรียนโดยร่วมกับผศ.มัลลิกา เจริญสุธาสินี จากมหาวิทยาลัยวลัยลักษณ์ และครูใน ชุมชนขนอมอีก 7 โรงเรียน ทำโครงการวิจัยระดับโรงเรียนในพื้นที่ขนอมถึง 16 เรื่อง